''' Created on 17. juli 2010 @author: pab ''' import numpy as np from numpy import pi, inf from numpy.testing import assert_array_almost_equal from wafo.gaussian import (Rind, prbnormtndpc, prbnormndpc, prbnormnd, cdfnorm2d, prbnorm2d) def test_rind(): Et = 0.001946 # exact prob. n = 5 Blo = -np.inf Bup = -1.2 indI = [-1, n - 1] # Barriers m = np.zeros(n) rho = 0.3 Sc = (np.ones((n, n)) - np.eye(n)) * rho + np.eye(n) rind = Rind() E0, err0, terr0 = rind(Sc, m, Blo, Bup, indI) assert(np.abs(E0 - Et) < 2*(err0 + terr0)) t = 'E0 = %2.5f' % E0 t_true = 'E0 = %2.5f' % Et assert(t == t_true) A = np.repeat(Blo, n) B = np.repeat(Bup, n) # Integration limits E1, _err1, _terr1 = rind(np.triu(Sc), m, A, B) # same as E0 assert(np.abs(E1 - Et) < err0 + terr0) t = 'E1 = %2.5f' % E1 assert(t == 'E1 = 0.00195') # Compute expectation E( abs(X1*X2*...*X5) ) xc = np.zeros((0, 1)) infinity = 37 dev = np.sqrt(np.diag(Sc)) # std ind = np.nonzero(indI[1:])[0] Bup, Blo = np.atleast_2d(Bup, Blo) Bup[0, ind] = np.minimum(Bup[0, ind], infinity * dev[indI[ind + 1]]) Blo[0, ind] = np.maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]]) val, err, terr = rind(Sc, m, Blo, Bup, indI, xc, nt=0) assert_array_almost_equal(val, 0.05494076, decimal=3) assert(err < 0.001) assert_array_almost_equal(terr, 1.00000000e-10) # Compute expectation E( X1^{+}*X2^{+} ) with random # correlation coefficient,Cov(X1,X2) = rho2. m2 = [0, 0] rho2 = 0.3 # np.random.rand(1) Sc2 = [[1, rho2], [rho2, 1]] Blo2 = 0 Bup2 = np.inf indI2 = [-1, 1] rind2 = Rind(method=1) def g2(x): return (x * (np.pi / 2 + np.arcsin(x)) + np.sqrt(1 - x**2)) / (2 * np.pi) assert_array_almost_equal(g2(rho2), 0.24137214191774381) # exact value E3, err3, terr3 = rind(Sc2, m2, Blo2, Bup2, indI2, nt=0) assert_array_almost_equal(E3, 0.24127499) assert_array_almost_equal(err3, 0.00013838) assert_array_almost_equal(terr3, 1.00000000e-10) E4, err4, terr4 = rind2(Sc2, m2, Blo2, Bup2, indI2, nt=0) assert_array_almost_equal(E4, 0.24127499) assert_array_almost_equal(err4, 0.00013838) assert_array_almost_equal(terr4, 1.00000000e-10) # # >>> E5, err5, terr5 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0,abseps=1e-4) # array([ 0.24127499]) # array([ 0.00013838]) # array([ 1.00000000e-10]) def test_prbnormtndpc(): rho2 = np.random.rand(2) a2 = np.zeros(2) b2 = np.repeat(np.inf, 2) val2, err2, _ift2 = prbnormtndpc(rho2, a2, b2) def g2(x): return 0.25 + np.arcsin(x[0] * x[1]) / (2 * pi) E2 = g2(rho2) # exact value assert(np.abs(E2 - val2) < err2) rho3 = np.random.rand(3) a3 = np.zeros(3) b3 = np.repeat(inf, 3) val3, err3, _ift3 = prbnormtndpc(rho3, a3, b3) def g3(x): return 0.5 - sum(np.sort(np.arccos([x[0] * x[1], x[0] * x[2], x[1] * x[2]]))) / (4 * pi) E3 = g3(rho3) # Exact value assert(np.abs(E3 - val3) < err3) def test_prbnormndpc(): rho2 = np.random.rand(2) a2 = np.zeros(2) b2 = np.repeat(np.inf, 2) val2, err2, _ift2 = prbnormndpc(rho2, a2, b2) def g2(x): return 0.25 + np.arcsin(x[0] * x[1]) / (2 * pi) E2 = g2(rho2) # exact value assert(np.abs(E2 - val2) < err2) rho3 = np.random.rand(3) a3 = np.zeros(3) b3 = np.repeat(inf, 3) val3, err3, _ift3 = prbnormndpc(rho3, a3, b3) def g3(x): return 0.5 - sum(np.sort(np.arccos([x[0] * x[1], x[0] * x[2], x[1] * x[2]]))) / (4 * pi) E3 = g3(rho3) # Exact value assert(np.abs(E3 - val3) < err3) def test_prbnormnd(): Et = 0.001946 # exact prob. n = 5 Blo = -np.inf Bup = -1.2 m = np.zeros(n) rho = 0.3 Sc = (np.ones((n, n)) - np.eye(n)) * rho + np.eye(n) A = np.repeat(Blo, n) B = np.repeat(Bup, n) - m [val, err, _inform] = prbnormnd(Sc, A, B) assert(np.abs(val - Et) < err) t = 'val = %2.5f' % val assert(t == 'val = 0.00195') def test_cdfnorm2d(): x = np.linspace(-3, 3, 3) [b1, b2] = np.meshgrid(x, x) r = 0.3 truth = [[2.38515157e-05, 1.14504149e-03, 1.34987703e-03], [1.14504149e-03, 2.98493342e-01, 4.99795143e-01], [1.34987703e-03, 4.99795143e-01, 9.97324055e-01]] assert_array_almost_equal(cdfnorm2d(b1, b2, r), truth) def test_prbnorm2d(): a = [-1, -2] b = [1, 1] r = 0.3 assert_array_almost_equal(prbnorm2d(a, b, r), 0.56659121) if __name__ == '__main__': import doctest doctest.testmod()