#include "math.h" /* * Install gfortran and run the following to build the module on windows: * f2py c_library.pyf c_functions.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 */ /* * findrfc.c - * * Returns indices to RFC turningpoints of a vector * of turningpoints * * 1998 by Per Andreas Brodtkorb. */ void findrfc(double *y1,double hmin, int *ind, int n,int *info) { double xminus, xplus, Tpl, Tmi, *y, Tstart; int i, j, ix=0, NC, iy; info[0] = 0; if (*(y1+0)> *(y1+1)){ /* if first is a max , ignore the first max*/ y=&(*(y1+1)); NC=floor((n-1)/2); Tstart=1; } else { y=y1; NC=floor(n/2); Tstart=0; } if (NC<1){ return; /* No RFC cycles*/ } if (( *(y+0) > *(y+1)) && ( *(y+1) > *(y+2)) ){ info[0] = -1; return; /*This is not a sequence of turningpoints, exit */ } if ((*(y+0) < *(y+1)) && (*(y+1)< *(y+2))){ info[0]=-1; return; /*This is not a sequence of turningpoints, exit */ } for (i=0; i=0) && (*(y+2*j+1)<=*(y+2*i+1))){ if( (*(y+2*j)= xplus){ if ( (*(y+2*i+1)-xminus) >= hmin){ *(ind+ix)=Tmi; ix++; *(ind+ix)=(Tstart+2*i+1); ix++; } /*if*/ goto L180; } j=i+1; while((j= *(y+2*i+1)) goto L170; if( (*(y+2*j+2) <= xplus) ){ xplus=*(y+2*j+2); Tpl=(Tstart+2*j+2); }/*if*/ j++; } /*while*/ if ( (*(y+2*i+1)-xminus) >= hmin) { *(ind+ix)=Tmi; ix++; *(ind+ix)=(Tstart+2*i+1); ix++; } /*if*/ goto L180; L170: if (xplus <= xminus ) { if ( (*(y+2*i+1)-xminus) >= hmin){ *(ind+ix)=Tmi; ix++; *(ind+ix)=(Tstart+2*i+1); ix++; } /*if*/ /*goto L180;*/ } else{ if ( (*(y+2*i+1)-xplus) >= hmin) { *(ind+ix)=(Tstart+2*i+1); ix++; *(ind+ix)=Tpl; ix++; } /*if*/ } /*elseif*/ L180: iy=i; } /* for i */ info[0] = ix; return ; } /* * findcross.c - * * Returns indices to level v crossings of argument vector * * 1998 by Per Andreas Brodtkorb. last modified 23.06-98 */ void findcross(double *y, double v, int *ind, int n, int *info) { int i,start, ix=0,dcross=0; start=0; if ( y[0]< v){ dcross=-1; /* first is a up-crossing*/ } else if ( y[0]> v){ dcross=1; /* first is a down-crossing*/ } else if ( y[0]== v){ /* Find out what type of crossing we have next time.. */ for (i=1; i v){ ind[ix] = i-1; /* first crossing is a up-crossing*/ ix++; dcross=1; /*The next crossing is a down-crossing*/ goto L120; } } } L120: for (i=start; i v) ) || ((dcross==1 ) && (y[i]>=v) && (y[i+1] < v) ) ) { ind[ix] = i; ix++; dcross=-dcross; } } info[0] = ix; return; } /* * DISUFQ Is an internal function to spec2nlsdat * * CALL: disufq(rvec,ivec,rA,iA, w,kw,h,g,nmin,nmax,m,n) * * rvec, ivec = real and imaginary parts of the resultant (size m X n). * rA, iA = real and imaginary parts of the amplitudes (size m X n). * w = vector with angular frequencies (w>=0) * kw = vector with wavenumbers (kw>=0) * h = water depth (h >=0) * g = constant acceleration of gravity * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is * greater than zero. * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is * greater than zero. * m = size(rA,1),size(iA,1) * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) * * DISUFQ returns the summation of difference frequency and sum * frequency effects in the vector vec = rvec +sqrt(-1)*ivec. * The 2'nd order contribution to the Stokes wave is then calculated by * a simple 1D Fourier transform, real(FFT(vec)). * * Install gfortran and run the following to build the module: * f2py diffsumfunq.pyf disufq1.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * * by Per Andreas Brodtkorb 15.08.2001 * revised pab 14.03.2002, 01.05.2002 22.07.2002, oct 2008 */ void disufq(double *rvec, double *ivec, double *rA, double *iA, double *w, double *kw, double h, double g, int nmin, int nmax, int m, int n) { double Epij, Edij; double tmp1, tmp2, tmp3, tmp4, kfact; double w1, w2, kw1, kw2, Cg; double rrA, iiA, riA, irA; int i,jy,ix,iz1,iv1,ixi,jyi; //int iz2, iv2; //Initialize rvec and ivec to zero for (ix=0;ix10000){ /* deep water /Inifinite water depth */ for (ix = nmin-1;ix=0) * kw = vector with wavenumbers (kw>=0) * h = water depth (h >=0) * g = constant acceleration of gravity * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is * greater than zero. * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is * greater than zero. * m = size(rA,1),size(iA,1) * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) * * DISUFQ2 returns the summation of sum and difference frequency * frequency effects in the vectors svec = rsvec +sqrt(-1)*isvec and * dvec = rdvec +sqrt(-1)*idvec. * The 2'nd order contribution to the Stokes wave is then calculated by * a simple 1D Fourier transform, real(FFT(svec+dvec)). * * * This is a MEX-file for MATLAB. * by Per Andreas Brodtkorb 15.08.2001 * revised pab 14.03.2002, 01.05.2002 */ void disufq2(double *rsvec, double *isvec, double *rdvec, double *idvec, double *rA, double *iA, double *w, double *kw, double h, double g, int nmin, int nmax, int m, int n) { double Epij, Edij; double tmp1, tmp2, tmp3, tmp4, kfact; double w1, w2, kw1, kw2, Cg; double rrA, iiA, riA, irA; int i,jy,ix,iz1,iv1,ixi,jyi; //int iz2,iv2 //Initialize rvec and ivec to zero for (ix=0;ix10000){ /* deep water /Inifinite water depth */ for (ix = nmin-1;ix= 2) && (fabs(a[j-1]-a[j-2]) <= fabs(a[j]-a[j-1])) ) { ampl=fabs( (a[j-1]-a[j-2])/2 ); switch(j) { case 0: { break; } case 1: { break; } case 2: { mean=(a[0]+a[1])/2; a[0]=a[1]; a[1]=a[2]; j=1; if (ampl > 0) { *po++=ampl; *po++=mean; *po++=0.50; } break; } default: { mean=(a[j-1]+a[j-2])/2; a[j-2]=a[j]; j=j-2; if (ampl > 0) { *po++=ampl; *po++=mean; *po++=1.00; cNr1++; } break; } } } } cNr2 = 1; for (index=0; index 0){ *po++=ampl; *po++=mean; *po++=0.50; cNr2++; } } // array of ints nout is outputted nout[0] = cNr1; nout[1] = cNr2; } /* ++++++++++ END RF3 */ // ++ BEGIN RF5 [ampl ampl_mean nr_of_cycle cycle_begin_time cycle_period_time] /* ++++++++++ Rain flow with time analysis */ //By Adam Nieslony //Visit the MATLAB Central File Exchange for latest version //http://www.mathworks.com/matlabcentral/fileexchange/3026 void findrfc5_astm(double *array_ext, double *array_t, double *array_out, int n, int *nout) { double *pr, *pt, *po, a[16384], t[16384], ampl, mean, period, atime; int tot_num, index, j, cNr1, cNr2; // tot_num = mxGetM(array_ext) * mxGetN(array_ext); tot_num = n; // pointers to the first element of the arrays pr = &array_ext[0]; pt = &array_t[0]; po = &array_out[0]; // array_out = mxCreateDoubleMatrix(5, tot_num-1, mxREAL); // The original rainflow counting by Nieslony, unchanged j = -1; cNr1 = 1; for (index=0; index= 2) && (fabs(a[j-1]-a[j-2]) <= fabs(a[j]-a[j-1])) ) { ampl=fabs( (a[j-1]-a[j-2])/2 ); switch(j) { case 0: { break; } case 1: { break; } case 2: { mean=(a[0]+a[1])/2; period=(t[1]-t[0])*2; atime=t[0]; a[0]=a[1]; a[1]=a[2]; t[0]=t[1]; t[1]=t[2]; j=1; if (ampl > 0) { *po++=ampl; *po++=mean; *po++=0.50; *po++=atime; *po++=period; } break; } default: { mean=(a[j-1]+a[j-2])/2; period=(t[j-1]-t[j-2])*2; atime=t[j-2]; a[j-2]=a[j]; t[j-2]=t[j]; j=j-2; if (ampl > 0) { *po++=ampl; *po++=mean; *po++=1.00; *po++=atime; *po++=period; cNr1++; } break; } } } } cNr2 = 1; for (index=0; index 0){ *po++=ampl; *po++=mean; *po++=0.50; *po++=atime; *po++=period; cNr2++; } } // /* free the memeory !!!*/ // mxSetN(array_out, tot_num - cNr); nout[0] = cNr1; nout[1] = cNr2; } /* ++++++++++ END RF5 */