from __future__ import division, print_function, absolute_import import functools import operator import sys import warnings import numbers from collections import namedtuple import inspect import numpy as np def _valarray(shape, value=np.nan, typecode=None): """Return an array of all value. """ out = np.ones(shape, dtype=bool) * value if typecode is not None: out = out.astype(typecode) if not isinstance(out, np.ndarray): out = np.asarray(out) return out def _lazywhere(cond, arrays, f, fillvalue=None, f2=None): """ np.where(cond, x, fillvalue) always evaluates x even where cond is False. This one only evaluates f(arr1[cond], arr2[cond], ...). For example, >>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]) >>> def f(a, b): return a*b >>> _lazywhere(a > 2, (a, b), f, np.nan) array([ nan, nan, 21., 32.]) Notice it assumes that all `arrays` are of the same shape, or can be broadcasted together. """ if fillvalue is None: if f2 is None: raise ValueError("One of (fillvalue, f2) must be given.") else: fillvalue = np.nan else: if f2 is not None: raise ValueError("Only one of (fillvalue, f2) can be given.") arrays = np.broadcast_arrays(*arrays) temp = tuple(np.extract(cond, arr) for arr in arrays) out = _valarray(np.shape(arrays[0]), value=fillvalue) np.place(out, cond, f(*temp)) if f2 is not None: temp = tuple(np.extract(~cond, arr) for arr in arrays) np.place(out, ~cond, f2(*temp)) return out def _aligned_zeros(shape, dtype=float, order="C", align=None): """Allocate a new ndarray with aligned memory. Primary use case for this currently is working around a f2py issue in Numpy 1.9.1, where dtype.alignment is such that np.zeros() does not necessarily create arrays aligned up to it. """ dtype = np.dtype(dtype) if align is None: align = dtype.alignment if not hasattr(shape, '__len__'): shape = (shape,) size = functools.reduce(operator.mul, shape) * dtype.itemsize buf = np.empty(size + align + 1, np.uint8) offset = buf.__array_interface__['data'][0] % align if offset != 0: offset = align - offset # Note: slices producing 0-size arrays do not necessarily change # data pointer --- so we use and allocate size+1 buf = buf[offset:offset+size+1][:-1] data = np.ndarray(shape, dtype, buf, order=order) data.fill(0) return data class DeprecatedImport(object): """ Deprecated import, with redirection + warning. Examples -------- Suppose you previously had in some module:: from foo import spam If this has to be deprecated, do:: spam = DeprecatedImport("foo.spam", "baz") to redirect users to use "baz" module instead. """ def __init__(self, old_module_name, new_module_name): self._old_name = old_module_name self._new_name = new_module_name __import__(self._new_name) self._mod = sys.modules[self._new_name] def __dir__(self): return dir(self._mod) def __getattr__(self, name): warnings.warn("Module %s is deprecated, use %s instead" % (self._old_name, self._new_name), DeprecationWarning) return getattr(self._mod, name) # copy-pasted from scikit-learn utils/validation.py def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None (or np.random), return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def _asarray_validated(a, check_finite=True, sparse_ok=False, objects_ok=False, mask_ok=False, as_inexact=False): """ Helper function for scipy argument validation. Many scipy linear algebra functions do support arbitrary array-like input arguments. Examples of commonly unsupported inputs include matrices containing inf/nan, sparse matrix representations, and matrices with complicated elements. Parameters ---------- a : array_like The array-like input. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True sparse_ok : bool, optional True if scipy sparse matrices are allowed. objects_ok : bool, optional True if arrays with dype('O') are allowed. mask_ok : bool, optional True if masked arrays are allowed. as_inexact : bool, optional True to convert the input array to a np.inexact dtype. Returns ------- ret : ndarray The converted validated array. """ if not sparse_ok: import scipy.sparse if scipy.sparse.issparse(a): msg = ('Sparse matrices are not supported by this function. ' 'Perhaps one of the scipy.sparse.linalg functions ' 'would work instead.') raise ValueError(msg) if not mask_ok: if np.ma.isMaskedArray(a): raise ValueError('masked arrays are not supported') toarray = np.asarray_chkfinite if check_finite else np.asarray a = toarray(a) if not objects_ok: if a.dtype is np.dtype('O'): raise ValueError('object arrays are not supported') if as_inexact: if not np.issubdtype(a.dtype, np.inexact): a = toarray(a, dtype=np.float_) return a # Add a replacement for inspect.getargspec() which is deprecated in python 3.5 # The version below is borrowed from Django, # https://github.com/django/django/pull/4846 # Note an inconsistency between inspect.getargspec(func) and # inspect.signature(func). If `func` is a bound method, the latter does *not* # list `self` as a first argument, while the former *does*. # Hence cook up a common ground replacement: `getargspec_no_self` which # mimics `inspect.getargspec` but does not list `self`. # # This way, the caller code does not need to know whether it uses a legacy # .getargspec or bright and shiny .signature. try: # is it python 3.3 or higher? inspect.signature # @UndefinedVariable # Apparently, yes. Wrap inspect.signature ArgSpec = namedtuple('ArgSpec', ['args', 'varargs', 'keywords', 'defaults']) def getargspec_no_self(func): """inspect.getargspec replacement using inspect.signature. inspect.getargspec is deprecated in python 3. This is a replacement based on the (new in python 3.3) `inspect.signature`. Parameters ---------- func : callable A callable to inspect Returns ------- argspec : ArgSpec(args, varargs, varkw, defaults) This is similar to the result of inspect.getargspec(func) under python 2.x. NOTE: if the first argument of `func` is self, it is *not*, I repeat *not* included in argspec.args. This is done for consistency between inspect.getargspec() under python 2.x, and inspect.signature() under python 3.x. """ sig = inspect.signature(func) args = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] varargs = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_POSITIONAL ] varargs = varargs[0] if varargs else None varkw = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_KEYWORD ] varkw = varkw[0] if varkw else None defaults = [ p.default for p in sig.parameters.values() if (p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not p.empty) ] or None return ArgSpec(args, varargs, varkw, defaults) except AttributeError: # python 2.x def getargspec_no_self(func): """inspect.getargspec replacement for compatibility with python 3.x. inspect.getargspec is deprecated in python 3. This wraps it, and *removes* `self` from the argument list of `func`, if present. This is done for forward compatibility with python 3. Parameters ---------- func : callable A callable to inspect Returns ------- argspec : ArgSpec(args, varargs, varkw, defaults) This is similar to the result of inspect.getargspec(func) under python 2.x. NOTE: if the first argument of `func` is self, it is *not*, I repeat *not* included in argspec.args. This is done for consistency between inspect.getargspec() under python 2.x, and inspect.signature() under python 3.x. """ argspec = inspect.getargspec(func) if argspec.args[0] == 'self': argspec.args.pop(0) return argspec