from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_array_almost_equal, run_module_suite from scipy.stats import \ binned_statistic, binned_statistic_2d, binned_statistic_dd class TestBinnedStatistic(object): @classmethod def setup_class(cls): np.random.seed(9865) cls.x = np.random.random(100) cls.y = np.random.random(100) cls.v = np.random.random(100) cls.X = np.random.random((100, 3)) def test_1d_count(self): x = self.x v = self.v count1, edges1, bc = binned_statistic(x, v, 'count', bins=10) count2, edges2 = np.histogram(x, bins=10) assert_array_almost_equal(count1, count2) assert_array_almost_equal(edges1, edges2) def test_1d_sum(self): x = self.x v = self.v sum1, edges1, bc = binned_statistic(x, v, 'sum', bins=10) sum2, edges2 = np.histogram(x, bins=10, weights=v) assert_array_almost_equal(sum1, sum2) assert_array_almost_equal(edges1, edges2) def test_1d_mean(self): x = self.x v = self.v stat1, edges1, bc = binned_statistic(x, v, 'mean', bins=10) stat2, edges2, bc = binned_statistic(x, v, np.mean, bins=10) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(edges1, edges2) def test_1d_std(self): x = self.x v = self.v stat1, edges1, bc = binned_statistic(x, v, 'std', bins=10) stat2, edges2, bc = binned_statistic(x, v, np.std, bins=10) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(edges1, edges2) def test_1d_median(self): x = self.x v = self.v stat1, edges1, bc = binned_statistic(x, v, 'median', bins=10) stat2, edges2, bc = binned_statistic(x, v, np.median, bins=10) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(edges1, edges2) def test_1d_bincode(self): x = self.x[:20] v = self.v[:20] count1, edges1, bc = binned_statistic(x, v, 'count', bins=3) bc2 = np.array([3, 2, 1, 3, 2, 3, 3, 3, 3, 1, 1, 3, 3, 1, 2, 3, 1, 1, 2, 1]) bcount = [(bc == i).sum() for i in np.unique(bc)] assert_array_almost_equal(bc, bc2) assert_array_almost_equal(bcount, count1) def test_1d_range_keyword(self): # Regression test for gh-3063, range can be (min, max) or [(min, max)] np.random.seed(9865) x = np.arange(30) data = np.random.random(30) mean, bins, _ = binned_statistic(x[:15], data[:15]) mean_range, bins_range, _ = binned_statistic(x, data, range=[(0, 14)]) mean_range2, bins_range2, _ = binned_statistic(x, data, range=(0, 14)) assert_array_almost_equal(mean, mean_range) assert_array_almost_equal(bins, bins_range) assert_array_almost_equal(mean, mean_range2) assert_array_almost_equal(bins, bins_range2) def test_2d_count(self): x = self.x y = self.y v = self.v count1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'count', bins=5) count2, binx2, biny2 = np.histogram2d(x, y, bins=5) assert_array_almost_equal(count1, count2) assert_array_almost_equal(binx1, binx2) assert_array_almost_equal(biny1, biny2) def test_2d_sum(self): x = self.x y = self.y v = self.v sum1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'sum', bins=5) sum2, binx2, biny2 = np.histogram2d(x, y, bins=5, weights=v) assert_array_almost_equal(sum1, sum2) assert_array_almost_equal(binx1, binx2) assert_array_almost_equal(biny1, biny2) def test_2d_mean(self): x = self.x y = self.y v = self.v stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'mean', bins=5) stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.mean, bins=5) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(binx1, binx2) assert_array_almost_equal(biny1, biny2) def test_2d_std(self): x = self.x y = self.y v = self.v stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'std', bins=5) stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.std, bins=5) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(binx1, binx2) assert_array_almost_equal(biny1, biny2) def test_2d_median(self): x = self.x y = self.y v = self.v stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'median', bins=5) stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.median, bins=5) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(binx1, binx2) assert_array_almost_equal(biny1, biny2) def test_2d_bincode(self): x = self.x[:20] y = self.y[:20] v = self.v[:20] count1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'count', bins=3) bc2 = np.array([17, 11, 6, 16, 11, 17, 18, 17, 17, 7, 6, 18, 16, 6, 11, 16, 6, 6, 11, 8]) bcount = [(bc == i).sum() for i in np.unique(bc)] assert_array_almost_equal(bc, bc2) count1adj = count1[count1.nonzero()] assert_array_almost_equal(bcount, count1adj) def test_dd_count(self): X = self.X v = self.v count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3) count2, edges2 = np.histogramdd(X, bins=3) assert_array_almost_equal(count1, count2) assert_array_almost_equal(edges1, edges2) def test_dd_sum(self): X = self.X v = self.v sum1, edges1, bc = binned_statistic_dd(X, v, 'sum', bins=3) sum2, edges2 = np.histogramdd(X, bins=3, weights=v) assert_array_almost_equal(sum1, sum2) assert_array_almost_equal(edges1, edges2) def test_dd_mean(self): X = self.X v = self.v stat1, edges1, bc = binned_statistic_dd(X, v, 'mean', bins=3) stat2, edges2, bc = binned_statistic_dd(X, v, np.mean, bins=3) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(edges1, edges2) def test_dd_std(self): X = self.X v = self.v stat1, edges1, bc = binned_statistic_dd(X, v, 'std', bins=3) stat2, edges2, bc = binned_statistic_dd(X, v, np.std, bins=3) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(edges1, edges2) def test_dd_median(self): X = self.X v = self.v stat1, edges1, bc = binned_statistic_dd(X, v, 'median', bins=3) stat2, edges2, bc = binned_statistic_dd(X, v, np.median, bins=3) assert_array_almost_equal(stat1, stat2) assert_array_almost_equal(edges1, edges2) def test_dd_bincode(self): X = self.X[:20] v = self.v[:20] count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3) bc2 = np.array([63, 33, 86, 83, 88, 67, 57, 33, 42, 41, 82, 83, 92, 32, 36, 91, 43, 87, 81, 81]) bcount = [(bc == i).sum() for i in np.unique(bc)] assert_array_almost_equal(bc, bc2) count1adj = count1[count1.nonzero()] assert_array_almost_equal(bcount, count1adj) if __name__ == "__main__": run_module_suite()