# Copyright (c) Gary Strangman. All rights reserved # # Disclaimer # # This software is provided "as-is". There are no expressed or implied # warranties of any kind, including, but not limited to, the warranties # of merchantability and fitness for a given application. In no event # shall Gary Strangman be liable for any direct, indirect, incidental, # special, exemplary or consequential damages (including, but not limited # to, loss of use, data or profits, or business interruption) however # caused and on any theory of liability, whether in contract, strict # liability or tort (including negligence or otherwise) arising in any way # out of the use of this software, even if advised of the possibility of # such damage. # # # Heavily adapted for use by SciPy 2002 by Travis Oliphant """ A collection of basic statistical functions for python. The function names appear below. Some scalar functions defined here are also available in the scipy.special package where they work on arbitrary sized arrays. Disclaimers: The function list is obviously incomplete and, worse, the functions are not optimized. All functions have been tested (some more so than others), but they are far from bulletproof. Thus, as with any free software, no warranty or guarantee is expressed or implied. :-) A few extra functions that don't appear in the list below can be found by interested treasure-hunters. These functions don't necessarily have both list and array versions but were deemed useful. Central Tendency ---------------- .. autosummary:: :toctree: generated/ gmean hmean mode Moments ------- .. autosummary:: :toctree: generated/ moment variation skew kurtosis normaltest Moments Handling NaN: .. autosummary:: :toctree: generated/ nanmean nanmedian nanstd Altered Versions ---------------- .. autosummary:: :toctree: generated/ tmean tvar tstd tsem describe Frequency Stats --------------- .. autosummary:: :toctree: generated/ itemfreq scoreatpercentile percentileofscore histogram cumfreq relfreq Variability ----------- .. autosummary:: :toctree: generated/ obrientransform signaltonoise sem Trimming Functions ------------------ .. autosummary:: :toctree: generated/ threshold trimboth trim1 Correlation Functions --------------------- .. autosummary:: :toctree: generated/ pearsonr fisher_exact spearmanr pointbiserialr kendalltau linregress theilslopes Inferential Stats ----------------- .. autosummary:: :toctree: generated/ ttest_1samp ttest_ind ttest_rel chisquare power_divergence ks_2samp mannwhitneyu ranksums wilcoxon kruskal friedmanchisquare Probability Calculations ------------------------ .. autosummary:: :toctree: generated/ chisqprob zprob fprob betai ANOVA Functions --------------- .. autosummary:: :toctree: generated/ f_oneway f_value Support Functions ----------------- .. autosummary:: :toctree: generated/ ss square_of_sums rankdata References ---------- .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ from __future__ import division, print_function, absolute_import import warnings import math from scipy._lib.six import xrange # friedmanchisquare patch uses python sum pysum = sum # save it before it gets overwritten # Scipy imports. from scipy._lib.six import callable, string_types from numpy import array, asarray, ma, zeros, sum import scipy.special as special import scipy.linalg as linalg import numpy as np from . import futil from . import distributions try: from scipy.stats._rank import rankdata, tiecorrect except: rankdata = tiecorrect = None __all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation', 'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest', 'normaltest', 'jarque_bera', 'itemfreq', 'scoreatpercentile', 'percentileofscore', 'histogram', 'histogram2', 'cumfreq', 'relfreq', 'obrientransform', 'signaltonoise', 'sem', 'zmap', 'zscore', 'threshold', 'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway', 'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr', 'kendalltau', 'linregress', 'theilslopes', 'ttest_1samp', 'ttest_ind', 'ttest_rel', 'kstest', 'chisquare', 'power_divergence', 'ks_2samp', 'mannwhitneyu', 'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare', 'zprob', 'chisqprob', 'ksprob', 'fprob', 'betai', 'f_value_wilks_lambda', 'f_value', 'f_value_multivariate', 'ss', 'square_of_sums', 'fastsort', 'rankdata', 'nanmean', 'nanstd', 'nanmedian', ] def _chk_asarray(a, axis): if axis is None: a = np.ravel(a) outaxis = 0 else: a = np.asarray(a) outaxis = axis return a, outaxis def _chk2_asarray(a, b, axis): if axis is None: a = np.ravel(a) b = np.ravel(b) outaxis = 0 else: a = np.asarray(a) b = np.asarray(b) outaxis = axis return a, b, outaxis def find_repeats(arr): """ Find repeats and repeat counts. Parameters ---------- arr : array_like Input array Returns ------- find_repeats : tuple Returns a tuple of two 1-D ndarrays. The first ndarray are the repeats as sorted, unique values that are repeated in `arr`. The second ndarray are the counts mapped one-to-one of the repeated values in the first ndarray. Examples -------- >>> import scipy.stats as stats >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5]) (array([ 2. ]), array([ 4 ], dtype=int32) >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]]) (array([ 4., 5.]), array([2, 2], dtype=int32)) """ v1,v2, n = futil.dfreps(arr) return v1[:n],v2[:n] ####### ### NAN friendly functions ######## def nanmean(x, axis=0): """ Compute the mean over the given axis ignoring nans. Parameters ---------- x : ndarray Input array. axis : int, optional Axis along which the mean is computed. Default is 0, i.e. the first axis. Returns ------- m : float The mean of `x`, ignoring nans. See Also -------- nanstd, nanmedian Examples -------- >>> from scipy import stats >>> a = np.linspace(0, 4, 3) >>> a array([ 0., 2., 4.]) >>> a[-1] = np.nan >>> stats.nanmean(a) 1.0 """ x, axis = _chk_asarray(x, axis) x = x.copy() Norig = x.shape[axis] mask = np.isnan(x) factor = 1.0 - np.sum(mask, axis) / Norig x[mask] = 0.0 return np.mean(x, axis) / factor def nanstd(x, axis=0, bias=False): """ Compute the standard deviation over the given axis, ignoring nans. Parameters ---------- x : array_like Input array. axis : int or None, optional Axis along which the standard deviation is computed. Default is 0. If None, compute over the whole array `x`. bias : bool, optional If True, the biased (normalized by N) definition is used. If False (default), the unbiased definition is used. Returns ------- s : float The standard deviation. See Also -------- nanmean, nanmedian Examples -------- >>> from scipy import stats >>> a = np.arange(10, dtype=float) >>> a[1:3] = np.nan >>> np.std(a) nan >>> stats.nanstd(a) 2.9154759474226504 >>> stats.nanstd(a.reshape(2, 5), axis=1) array([ 2.0817, 1.5811]) >>> stats.nanstd(a.reshape(2, 5), axis=None) 2.9154759474226504 """ x, axis = _chk_asarray(x, axis) x = x.copy() Norig = x.shape[axis] mask = np.isnan(x) Nnan = np.sum(mask, axis) * 1.0 n = Norig - Nnan x[mask] = 0.0 m1 = np.sum(x, axis) / n if axis: d = x - np.expand_dims(m1, axis) else: d = x - m1 d *= d m2 = np.sum(d, axis) - m1 * m1 * Nnan if bias: m2c = m2 / n else: m2c = m2 / (n - 1.0) return np.sqrt(m2c) def _nanmedian(arr1d): # This only works on 1d arrays """Private function for rank a arrays. Compute the median ignoring Nan. Parameters ---------- arr1d : ndarray Input array, of rank 1. Results ------- m : float The median. """ x = arr1d.copy() c = np.isnan(x) s = np.where(c)[0] if s.size == x.size: warnings.warn("All-NaN slice encountered", RuntimeWarning) return np.nan elif s.size != 0: # select non-nans at end of array enonan = x[-s.size:][~c[-s.size:]] # fill nans in beginning of array with non-nans of end x[s[:enonan.size]] = enonan # slice nans away x = x[:-s.size] return np.median(x, overwrite_input=True) def nanmedian(x, axis=0): """ Compute the median along the given axis ignoring nan values. Parameters ---------- x : array_like Input array. axis : int, optional Axis along which the median is computed. Default is 0, i.e. the first axis. Returns ------- m : float The median of `x` along `axis`. See Also -------- nanstd, nanmean, numpy.nanmedian Examples -------- >>> from scipy import stats >>> a = np.array([0, 3, 1, 5, 5, np.nan]) >>> stats.nanmedian(a) array(3.0) >>> b = np.array([0, 3, 1, 5, 5, np.nan, 5]) >>> stats.nanmedian(b) array(4.0) Example with axis: >>> c = np.arange(30.).reshape(5,6) >>> idx = np.array([False, False, False, True, False] * 6).reshape(5,6) >>> c[idx] = np.nan >>> c array([[ 0., 1., 2., nan, 4., 5.], [ 6., 7., nan, 9., 10., 11.], [ 12., nan, 14., 15., 16., 17.], [ nan, 19., 20., 21., 22., nan], [ 24., 25., 26., 27., nan, 29.]]) >>> stats.nanmedian(c, axis=1) array([ 2. , 9. , 15. , 20.5, 26. ]) """ x, axis = _chk_asarray(x, axis) if x.ndim == 0: return float(x.item()) if hasattr(np, 'nanmedian'): # numpy 1.9 faster for some cases return np.nanmedian(x, axis) x = np.apply_along_axis(_nanmedian, axis, x) if x.ndim == 0: x = float(x.item()) return x ##################################### ######## CENTRAL TENDENCY ######## ##################################### def gmean(a, axis=0, dtype=None): """ Compute the geometric mean along the specified axis. Returns the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn) Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int, optional, default axis=0 Axis along which the geometric mean is computed. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- gmean : ndarray see dtype parameter above See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average hmean : Harmonic mean Notes ----- The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values. """ if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it log_a = np.log(np.array(a, dtype=dtype)) elif dtype: # Must change the default dtype allowing array type if isinstance(a,np.ma.MaskedArray): log_a = np.log(np.ma.asarray(a, dtype=dtype)) else: log_a = np.log(np.asarray(a, dtype=dtype)) else: log_a = np.log(a) return np.exp(log_a.mean(axis=axis)) def hmean(a, axis=0, dtype=None): """ Calculates the harmonic mean along the specified axis. That is: n / (1/x1 + 1/x2 + ... + 1/xn) Parameters ---------- a : array_like Input array, masked array or object that can be converted to an array. axis : int, optional, default axis=0 Axis along which the harmonic mean is computed. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer `dtype` with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- hmean : ndarray see `dtype` parameter above See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average gmean : Geometric mean Notes ----- The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity. """ if not isinstance(a, np.ndarray): a = np.array(a, dtype=dtype) if np.all(a > 0): # Harmonic mean only defined if greater than zero if isinstance(a, np.ma.MaskedArray): size = a.count(axis) else: if axis is None: a = a.ravel() size = a.shape[0] else: size = a.shape[axis] return size / np.sum(1.0/a, axis=axis, dtype=dtype) else: raise ValueError("Harmonic mean only defined if all elements greater than zero") def mode(a, axis=0): """ Returns an array of the modal (most common) value in the passed array. If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. counts : ndarray Array of counts for each mode. Examples -------- >>> a = np.array([[6, 8, 3, 0], [3, 2, 1, 7], [8, 1, 8, 4], [5, 3, 0, 5], [4, 7, 5, 9]]) >>> from scipy import stats >>> stats.mode(a) (array([[ 3., 1., 0., 0.]]), array([[ 1., 1., 1., 1.]])) To get mode of whole array, specify axis=None: >>> stats.mode(a, axis=None) (array([ 3.]), array([ 3.])) """ a, axis = _chk_asarray(a, axis) scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape, dtype=a.dtype) oldcounts = np.zeros(testshape) for score in scores: template = (a == score) counts = np.expand_dims(np.sum(template, axis),axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am def tmean(a, limits=None, inclusive=(True, True)): """ Compute the trimmed mean. This function finds the arithmetic mean of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tmean : float """ a = asarray(a) if limits is None: return np.mean(a, None) am = mask_to_limits(a.ravel(), limits, inclusive) return am.mean() def masked_var(am): m = am.mean() s = ma.add.reduce((am - m)**2) n = am.count() - 1.0 return s / n def tvar(a, limits=None, inclusive=(True, True)): """ Compute the trimmed variance This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tvar : float Trimmed variance. Notes ----- `tvar` computes the unbiased sample variance, i.e. it uses a correction factor ``n / (n - 1)``. """ a = asarray(a) a = a.astype(float).ravel() if limits is None: n = len(a) return a.var()*(n/(n-1.)) am = mask_to_limits(a, limits, inclusive) return masked_var(am) def tmin(a, lowerlimit=None, axis=0, inclusive=True): """ Compute the trimmed minimum This function finds the miminum value of an array `a` along the specified axis, but only considering values greater than a specified lower limit. Parameters ---------- a : array_like array of values lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : None or int, optional Operate along this axis. None means to use the flattened array and the default is zero inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. Returns ------- tmin : float """ a, axis = _chk_asarray(a, axis) am = mask_to_limits(a, (lowerlimit, None), (inclusive, False)) return ma.minimum.reduce(am, axis) def tmax(a, upperlimit=None, axis=0, inclusive=True): """ Compute the trimmed maximum This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like array of values upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : None or int, optional Operate along this axis. None means to use the flattened array and the default is zero. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. Returns ------- tmax : float """ a, axis = _chk_asarray(a, axis) am = mask_to_limits(a, (None, upperlimit), (False, inclusive)) return ma.maximum.reduce(am, axis) def tstd(a, limits=None, inclusive=(True, True)): """ Compute the trimmed sample standard deviation This function finds the sample standard deviation of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tstd : float Notes ----- `tstd` computes the unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. """ return np.sqrt(tvar(a, limits, inclusive)) def tsem(a, limits=None, inclusive=(True, True)): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tsem : float Notes ----- `tsem` uses unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. """ a = np.asarray(a).ravel() if limits is None: return a.std(ddof=1) / np.sqrt(a.size) am = mask_to_limits(a, limits, inclusive) sd = np.sqrt(masked_var(am)) return sd / np.sqrt(am.count()) ##################################### ############ MOMENTS ############# ##################################### def moment(a, moment=1, axis=0): """ Calculates the nth moment about the mean for a sample. Generally used to calculate coefficients of skewness and kurtosis. Parameters ---------- a : array_like data moment : int order of central moment that is returned axis : int or None Axis along which the central moment is computed. If None, then the data array is raveled. The default axis is zero. Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: mn = np.expand_dims(np.mean(a,axis), axis) s = np.power((a-mn), moment) return np.mean(s, axis) def variation(a, axis=0): """ Computes the coefficient of variation, the ratio of the biased standard deviation to the mean. Parameters ---------- a : array_like Input array. axis : int or None Axis along which to calculate the coefficient of variation. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a, axis) return a.std(axis)/a.mean(axis) def skew(a, axis=0, bias=True): """ Computes the skewness of a data set. For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more weight in the left tail of the distribution. The function `skewtest` can be used to determine if the skewness value is close enough to 0, statistically speaking. Parameters ---------- a : ndarray data axis : int or None axis along which skewness is calculated bias : bool If False, then the calculations are corrected for statistical bias. Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. References ---------- [CRCProbStat2000]_ Section 2.2.24.1 .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a,axis) n = a.shape[axis] m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) zero = (m2 == 0) vals = np.where(zero, 0, m3 / m2**1.5) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = np.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 np.place(vals, can_correct, nval) if vals.ndim == 0: return vals.item() return vals def kurtosis(a, axis=0, fisher=True, bias=True): """ Computes the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array data for which the kurtosis is calculated axis : int or None Axis along which the kurtosis is calculated fisher : bool If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool If False, then the calculations are corrected for statistical bias. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] m2 = moment(a,2,axis) m4 = moment(a,4,axis) zero = (m2 == 0) olderr = np.seterr(all='ignore') try: vals = np.where(zero, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: can_correct = (n > 3) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) np.place(vals, can_correct, nval+3.0) if vals.ndim == 0: vals = vals.item() # array scalar if fisher: return vals - 3 else: return vals def describe(a, axis=0, ddof=1): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which statistics are calculated. If axis is None, then data array is raveled. The default axis is zero. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- size of the data : int length of data along axis (min, max): tuple of ndarrays or floats minimum and maximum value of data array arithmetic mean : ndarray or float mean of data along axis unbiased variance : ndarray or float variance of the data along axis, denominator is number of observations minus one. biased skewness : ndarray or float skewness, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction biased kurtosis : ndarray or float kurtosis (Fisher), the kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom or bias correction is used. See Also -------- skew, kurtosis """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] mm = (np.min(a, axis=axis), np.max(a, axis=axis)) m = np.mean(a, axis=axis) v = np.var(a, axis=axis, ddof=ddof) sk = skew(a, axis) kurt = kurtosis(a, axis) return n, mm, m, v, sk, kurt ##################################### ######## NORMALITY TESTS ########## ##################################### def skewtest(a, axis=0): """ Tests whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. Parameters ---------- a : array axis : int or None Returns ------- z-score : float The computed z-score for this test. p-value : float a 2-sided p-value for the hypothesis test Notes ----- The sample size must be at least 8. """ a, axis = _chk_asarray(a, axis) if axis is None: a = np.ravel(a) axis = 0 b2 = skew(a, axis) n = float(a.shape[axis]) if n < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % int(n)) y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2))) beta2 = (3.0 * (n * n + 27 * n - 70) * (n + 1) * (n + 3) / ((n - 2.0) * (n + 5) * (n + 7) * (n + 9))) W2 = -1 + math.sqrt(2 * (beta2 - 1)) delta = 1 / math.sqrt(0.5 * math.log(W2)) alpha = math.sqrt(2.0 / (W2 - 1)) y = np.where(y == 0, 1, y) Z = delta * np.log(y / alpha + np.sqrt((y / alpha) ** 2 + 1)) return Z, 2 * distributions.norm.sf(np.abs(Z)) def kurtosistest(a, axis=0): """ Tests whether a dataset has normal kurtosis This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``. Parameters ---------- a : array array of the sample data axis : int or None the axis to operate along, or None to work on the whole array. The default is the first axis. Returns ------- z-score : float The computed z-score for this test. p-value : float The 2-sided p-value for the hypothesis test Notes ----- Valid only for n>20. The Z-score is set to 0 for bad entries. """ a, axis = _chk_asarray(a, axis) n = float(a.shape[axis]) if n < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % int(n)) if n < 20: warnings.warn( "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % int(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) x = (b2-E)/np.sqrt(varb2) sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2/(9.0*A) denom = 1 + x*np.sqrt(2/(A-4.0)) denom = np.where(denom < 0, 99, denom) term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom,1/3.0)) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) Z = np.where(denom == 99, 0, Z) if Z.ndim == 0: Z = Z[()] # JPNote: p-value sometimes larger than 1 # zprob uses upper tail, so Z needs to be positive return Z, 2 * distributions.norm.sf(np.abs(Z)) def normaltest(a, axis=0): """ Tests whether a sample differs from a normal distribution. This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [1]_, [2]_ test that combines skew and kurtosis to produce an omnibus test of normality. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None If None, the array is treated as a single data set, regardless of its shape. Otherwise, each 1-d array along axis `axis` is tested. Returns ------- k2 : float or array `s^2 + k^2`, where `s` is the z-score returned by `skewtest` and `k` is the z-score returned by `kurtosistest`. p-value : float or array A 2-sided chi squared probability for the hypothesis test. References ---------- .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for moderate and large sample size," Biometrika, 58, 341-348 .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Testing for departures from normality," Biometrika, 60, 613-622 """ a, axis = _chk_asarray(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return k2, chisqprob(k2,2) def jarque_bera(x): """ Perform the Jarque-Bera goodness of fit test on sample data. The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution. Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom. Parameters ---------- x : array_like Observations of a random variable. Returns ------- jb_value : float The test statistic. p : float The p-value for the hypothesis test. References ---------- .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality, homoscedasticity and serial independence of regression residuals", 6 Econometric Letters 255-259. Examples -------- >>> from scipy import stats >>> np.random.seed(987654321) >>> x = np.random.normal(0, 1, 100000) >>> y = np.random.rayleigh(1, 100000) >>> stats.jarque_bera(x) (4.7165707989581342, 0.09458225503041906) >>> stats.jarque_bera(y) (6713.7098548143422, 0.0) """ x = np.asarray(x) n = float(x.size) if n == 0: raise ValueError('At least one observation is required.') mu = x.mean() diffx = x - mu skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.) kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2 jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4) p = 1 - distributions.chi2.cdf(jb_value, 2) return jb_value, p ##################################### ###### FREQUENCY FUNCTIONS ####### ##################################### def itemfreq(a): """ Returns a 2-D array of item frequencies. Parameters ---------- a : (N,) array_like Input array. Returns ------- itemfreq : (K, 2) ndarray A 2-D frequency table. Column 1 contains sorted, unique values from `a`, column 2 contains their respective counts. Examples -------- >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4]) >>> stats.itemfreq(a) array([[ 0., 2.], [ 1., 4.], [ 2., 2.], [ 4., 1.], [ 5., 1.]]) >>> np.bincount(a) array([2, 4, 2, 0, 1, 1]) >>> stats.itemfreq(a/10.) array([[ 0. , 2. ], [ 0.1, 4. ], [ 0.2, 2. ], [ 0.4, 1. ], [ 0.5, 1. ]]) """ items, inv = np.unique(a, return_inverse=True) freq = np.bincount(inv) return np.array([items, freq]).T def scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None): """ Calculate the score at a given percentile of the input sequence. For example, the score at `per=50` is the median. If the desired quantile lies between two data points, we interpolate between them, according to the value of `interpolation`. If the parameter `limit` is provided, it should be a tuple (lower, upper) of two values. Parameters ---------- a : array_like A 1-D array of values from which to extract score. per : array_like Percentile(s) at which to extract score. Values should be in range [0,100]. limit : tuple, optional Tuple of two scalars, the lower and upper limits within which to compute the percentile. Values of `a` outside this (closed) interval will be ignored. interpolation : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j` - fraction: ``i + (j - i) * fraction`` where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. - lower: ``i``. - higher: ``j``. axis : int, optional Axis along which the percentiles are computed. The default (None) is to compute the median along a flattened version of the array. Returns ------- score : float or ndarray Score at percentile(s). See Also -------- percentileofscore, numpy.percentile Notes ----- This function will become obsolete in the future. For Numpy 1.9 and higher, `numpy.percentile` provides all the functionality that `scoreatpercentile` provides. And it's significantly faster. Therefore it's recommended to use `numpy.percentile` for users that have numpy >= 1.9. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ # adapted from NumPy's percentile function. When we require numpy >= 1.8, # the implementation of this function can be replaced by np.percentile. a = np.asarray(a) if a.size == 0: # empty array, return nan(s) with shape matching `per` if np.isscalar(per): return np.nan else: return np.ones(np.asarray(per).shape, dtype=np.float64) * np.nan if limit: a = a[(limit[0] <= a) & (a <= limit[1])] sorted = np.sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted, per, interpolation_method, axis) # handle sequence of per's without calling sort multiple times def _compute_qth_percentile(sorted, per, interpolation_method, axis): if not np.isscalar(per): score = [_compute_qth_percentile(sorted, i, interpolation_method, axis) for i in per] return np.array(score) if (per < 0) or (per > 100): raise ValueError("percentile must be in the range [0, 100]") indexer = [slice(None)] * sorted.ndim idx = per / 100. * (sorted.shape[axis] - 1) if int(idx) != idx: # round fractional indices according to interpolation method if interpolation_method == 'lower': idx = int(np.floor(idx)) elif interpolation_method == 'higher': idx = int(np.ceil(idx)) elif interpolation_method == 'fraction': pass # keep idx as fraction and interpolate else: raise ValueError("interpolation_method can only be 'fraction', " "'lower' or 'higher'") i = int(idx) if i == idx: indexer[axis] = slice(i, i + 1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i + 2) j = i + 1 weights = array([(j - idx), (idx - i)], float) wshape = [1] * sorted.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use np.add.reduce (== np.sum but a little faster) to coerce data type return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval def percentileofscore(a, score, kind='rank'): """ The percentile rank of a score relative to a list of scores. A `percentileofscore` of, for example, 80% means that 80% of the scores in `a` are below the given score. In the case of gaps or ties, the exact definition depends on the optional keyword, `kind`. Parameters ---------- a : array_like Array of scores to which `score` is compared. score : int or float Score that is compared to the elements in `a`. kind : {'rank', 'weak', 'strict', 'mean'}, optional This optional parameter specifies the interpretation of the resulting score: - "rank": Average percentage ranking of score. In case of multiple matches, average the percentage rankings of all matching scores. - "weak": This kind corresponds to the definition of a cumulative distribution function. A percentileofscore of 80% means that 80% of values are less than or equal to the provided score. - "strict": Similar to "weak", except that only values that are strictly less than the given score are counted. - "mean": The average of the "weak" and "strict" scores, often used in testing. See http://en.wikipedia.org/wiki/Percentile_rank Returns ------- pcos : float Percentile-position of score (0-100) relative to `a`. Examples -------- Three-quarters of the given values lie below a given score: >>> percentileofscore([1, 2, 3, 4], 3) 75.0 With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged: >>> percentileofscore([1, 2, 3, 3, 4], 3) 70.0 Only 2/5 values are strictly less than 3: >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='strict') 40.0 But 4/5 values are less than or equal to 3: >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='weak') 80.0 The average between the weak and the strict scores is >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='mean') 60.0 """ a = np.array(a) n = len(a) if kind == 'rank': if not(np.any(a == score)): a = np.append(a, score) a_len = np.array(list(range(len(a)))) else: a_len = np.array(list(range(len(a)))) + 1.0 a = np.sort(a) idx = [a == score] pct = (np.mean(a_len[idx]) / n) * 100.0 return pct elif kind == 'strict': return sum(a < score) / float(n) * 100 elif kind == 'weak': return sum(a <= score) / float(n) * 100 elif kind == 'mean': return (sum(a < score) + sum(a <= score)) * 50 / float(n) else: raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'") def histogram2(a, bins): """ Compute histogram using divisions in bins. Count the number of times values from array `a` fall into numerical ranges defined by `bins`. Range x is given by bins[x] <= range_x < bins[x+1] where x =0,N and N is the length of the `bins` array. The last range is given by bins[N] <= range_N < infinity. Values less than bins[0] are not included in the histogram. Parameters ---------- a : array_like of rank 1 The array of values to be assigned into bins bins : array_like of rank 1 Defines the ranges of values to use during histogramming. Returns ------- histogram2 : ndarray of rank 1 Each value represents the occurrences for a given bin (range) of values. """ # comment: probably obsoleted by numpy.histogram() n = np.searchsorted(np.sort(a), bins) n = np.concatenate([n, [len(a)]]) return n[1:]-n[:-1] def histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False): """ Separates the range into several bins and returns the number of instances in each bin. Parameters ---------- a : array_like Array of scores which will be put into bins. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultlimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger then the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 printextras : bool, optional If True, if there are extra points (i.e. the points that fall outside the bin limits) a warning is raised saying how many of those points there are. Default is False. Returns ------- histogram : ndarray Number of points (or sum of weights) in each bin. low_range : float Lowest value of histogram, the lower limit of the first bin. binsize : float The size of the bins (all bins have the same size). extrapoints : int The number of points outside the range of the histogram. See Also -------- numpy.histogram Notes ----- This histogram is based on numpy's histogram but has a larger range by default if default limits is not set. """ a = np.ravel(a) if defaultlimits is None: # no range given, so use values in `a` data_min = a.min() data_max = a.max() # Have bins extend past min and max values slightly s = (data_max - data_min) / (2. * (numbins - 1.)) defaultlimits = (data_min - s, data_max + s) # use numpy's histogram method to compute bins hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits, weights=weights) # hist are not always floats, convert to keep with old output hist = np.array(hist, dtype=float) # fixed width for bins is assumed, as numpy's histogram gives # fixed width bins for int values for 'bins' binsize = bin_edges[1] - bin_edges[0] # calculate number of extra points extrapoints = len([v for v in a if defaultlimits[0] > v or v > defaultlimits[1]]) if extrapoints > 0 and printextras: warnings.warn("Points outside given histogram range = %s" % extrapoints) return (hist, defaultlimits[0], binsize, extrapoints) def cumfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Returns a cumulative frequency histogram, using the histogram function. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultlimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- cumfreq : ndarray Binned values of cumulative frequency. lowerreallimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import scipy.stats as stats >>> x = [1, 4, 2, 1, 3, 1] >>> cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4) >>> cumfreqs array([ 3., 4., 5., 6.]) >>> cumfreqs, lowlim, binsize, extrapoints = \ ... stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) >>> cumfreqs array([ 1., 2., 3., 3.]) >>> extrapoints 3 """ h,l,b,e = histogram(a, numbins, defaultreallimits, weights=weights) cumhist = np.cumsum(h*1, axis=0) return cumhist,l,b,e def relfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Returns a relative frequency histogram, using the histogram function. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger then the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- relfreq : ndarray Binned values of relative frequency. lowerreallimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import scipy.stats as stats >>> a = np.array([1, 4, 2, 1, 3, 1]) >>> relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4) >>> relfreqs array([ 0.5 , 0.16666667, 0.16666667, 0.16666667]) >>> np.sum(relfreqs) # relative frequencies should add up to 1 0.99999999999999989 """ h, l, b, e = histogram(a, numbins, defaultreallimits, weights=weights) h = np.array(h / float(np.array(a).shape[0])) return h, l, b, e ##################################### ###### VARIABILITY FUNCTIONS ##### ##################################### def obrientransform(*args): """ Computes the O'Brien transform on input data (any number of arrays). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If `f_oneway` is run on the transformed data and found significant, the variances are unequal. From Maxwell and Delaney [1]_, p.112. Parameters ---------- args : tuple of array_like Any number of arrays. Returns ------- obrientransform : ndarray Transformed data for use in an ANOVA. The first dimension of the result corresponds to the sequence of transformed arrays. If the arrays given are all 1-D of the same length, the return value is a 2-D array; otherwise it is a 1-D array of type object, with each element being an ndarray. References ---------- .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990. Examples -------- We'll test the following data sets for differences in their variance. >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10] >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15] Apply the O'Brien transform to the data. >>> tx, ty = obrientransform(x, y) Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the transformed data. >>> from scipy.stats import f_oneway >>> F, p = f_oneway(tx, ty) >>> p 0.1314139477040335 If we require that ``p < 0.05`` for significance, we cannot conclude that the variances are different. """ TINY = np.sqrt(np.finfo(float).eps) # `arrays` will hold the transformed arguments. arrays = [] for arg in args: a = np.asarray(arg) n = len(a) mu = np.mean(a) sq = (a - mu)**2 sumsq = sq.sum() # The O'Brien transform. t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2)) # Check that the mean of the transformed data is equal to the # original variance. var = sumsq / (n - 1) if abs(var - np.mean(t)) > TINY: raise ValueError('Lack of convergence in obrientransform.') arrays.append(t) # If the arrays are not all the same shape, calling np.array(arrays) # creates a 1-D array with dtype `object` in numpy 1.6+. In numpy # 1.5.x, it raises an exception. To work around this, we explicitly # set the dtype to `object` when the arrays are not all the same shape. if len(arrays) < 2 or all(x.shape == arrays[0].shape for x in arrays[1:]): dt = None else: dt = object return np.array(arrays, dtype=dt) def signaltonoise(a, axis=0, ddof=0): """ The signal-to-noise ratio of the input data. Returns the signal-to-noise ratio of `a`, here defined as the mean divided by the standard deviation. Parameters ---------- a : array_like An array_like object containing the sample data. axis : int or None, optional If axis is equal to None, the array is first ravel'd. If axis is an integer, this is the axis over which to operate. Default is 0. ddof : int, optional Degrees of freedom correction for standard deviation. Default is 0. Returns ------- s2n : ndarray The mean to standard deviation ratio(s) along `axis`, or 0 where the standard deviation is 0. """ a = np.asanyarray(a) m = a.mean(axis) sd = a.std(axis=axis, ddof=ddof) return np.where(sd == 0, 0, m/sd) def sem(a, axis=0, ddof=1): """ Calculates the standard error of the mean (or standard error of measurement) of the values in the input array. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional. If axis is None, ravel `a` first. If axis is an integer, this will be the axis over which to operate. Defaults to 0. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` is different to the default (0) used by other ddof containing routines, such as np.std nd stats.nanstd. Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> stats.sem(a) array([ 2.8284, 2.8284, 2.8284, 2.8284]) Find standard error across the whole array, using n degrees of freedom: >>> stats.sem(a, axis=None, ddof=0) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n) return s def zscore(a, axis=0, ddof=0): """ Calculates the z score of each value in the sample, relative to the sample mean and standard deviation. Parameters ---------- a : array_like An array like object containing the sample data. axis : int or None, optional If `axis` is equal to None, the array is first raveled. If `axis` is an integer, this is the axis over which to operate. Default is 0. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like The z-scores, standardized by mean and standard deviation of input array `a`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954, 0.6307, 0.6599, 0.1065, 0.0508]) >>> from scipy import stats >>> stats.zscore(a) array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786, 0.6748, -1.1488, -1.3324]) Computing along a specified axis, using n-1 degrees of freedom (``ddof=1``) to calculate the standard deviation: >>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608], [ 0.7149, 0.0775, 0.6072, 0.9656], [ 0.6341, 0.1403, 0.9759, 0.4064], [ 0.5918, 0.6948, 0.904 , 0.3721], [ 0.0921, 0.2481, 0.1188, 0.1366]]) >>> stats.zscore(b, axis=1, ddof=1) array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358], [ 0.33048416, -1.37380874, 0.04251374, 1.00081084], [ 0.26796377, -1.12598418, 1.23283094, -0.37481053], [-0.22095197, 0.24468594, 1.19042819, -1.21416216], [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]]) """ a = np.asanyarray(a) mns = a.mean(axis=axis) sstd = a.std(axis=axis, ddof=ddof) if axis and mns.ndim < a.ndim: return ((a - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd,axis=axis)) else: return (a - mns) / sstd def zmap(scores, compare, axis=0, ddof=0): """ Calculates the relative z-scores. Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array. Parameters ---------- scores : array_like The input for which z-scores are calculated. compare : array_like The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as `scores`. axis : int or None, optional Axis over which mean and variance of `compare` are calculated. Default is 0. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like Z-scores, in the same shape as `scores`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> a = [0.5, 2.0, 2.5, 3] >>> b = [0, 1, 2, 3, 4] >>> zmap(a, b) array([-1.06066017, 0. , 0.35355339, 0.70710678]) """ scores, compare = map(np.asanyarray, [scores, compare]) mns = compare.mean(axis=axis) sstd = compare.std(axis=axis, ddof=ddof) if axis and mns.ndim < compare.ndim: return ((scores - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd,axis=axis)) else: return (scores - mns) / sstd ##################################### ####### TRIMMING FUNCTIONS ####### ##################################### def threshold(a, threshmin=None, threshmax=None, newval=0): """ Clip array to a given value. Similar to numpy.clip(), except that values less than `threshmin` or greater than `threshmax` are replaced by `newval`, instead of by `threshmin` and `threshmax` respectively. Parameters ---------- a : array_like Data to threshold. threshmin : float, int or None, optional Minimum threshold, defaults to None. threshmax : float, int or None, optional Maximum threshold, defaults to None. newval : float or int, optional Value to put in place of values in `a` outside of bounds. Defaults to 0. Returns ------- out : ndarray The clipped input array, with values less than `threshmin` or greater than `threshmax` replaced with `newval`. Examples -------- >>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8]) >>> from scipy import stats >>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1) array([-1, -1, 6, 3, -1, 6, -1, -1, -1, 8]) """ a = asarray(a).copy() mask = zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin) if threshmax is not None: mask |= (a > threshmax) a[mask] = newval return a def sigmaclip(a, low=4., high=4.): """ Iterative sigma-clipping of array elements. The output array contains only those elements of the input array `c` that satisfy the conditions :: mean(c) - std(c)*low < c < mean(c) + std(c)*high Starting from the full sample, all elements outside the critical range are removed. The iteration continues with a new critical range until no elements are outside the range. Parameters ---------- a : array_like Data array, will be raveled if not 1-D. low : float, optional Lower bound factor of sigma clipping. Default is 4. high : float, optional Upper bound factor of sigma clipping. Default is 4. Returns ------- c : ndarray Input array with clipped elements removed. critlower : float Lower threshold value use for clipping. critlupper : float Upper threshold value use for clipping. Examples -------- >>> a = np.concatenate((np.linspace(9.5,10.5,31), np.linspace(0,20,5))) >>> fact = 1.5 >>> c, low, upp = sigmaclip(a, fact, fact) >>> c array([ 9.96666667, 10. , 10.03333333, 10. ]) >>> c.var(), c.std() (0.00055555555555555165, 0.023570226039551501) >>> low, c.mean() - fact*c.std(), c.min() (9.9646446609406727, 9.9646446609406727, 9.9666666666666668) >>> upp, c.mean() + fact*c.std(), c.max() (10.035355339059327, 10.035355339059327, 10.033333333333333) >>> a = np.concatenate((np.linspace(9.5,10.5,11), np.linspace(-100,-50,3))) >>> c, low, upp = sigmaclip(a, 1.8, 1.8) >>> (c == np.linspace(9.5,10.5,11)).all() True """ c = np.asarray(a).ravel() delta = 1 while delta: c_std = c.std() c_mean = c.mean() size = c.size critlower = c_mean - c_std*low critupper = c_mean + c_std*high c = c[(c > critlower) & (c < critupper)] delta = size-c.size return c, critlower, critupper def trimboth(a, proportiontocut, axis=0): """ Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). You must pre-sort the array if you want 'proper' trimming. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float Proportion (in range 0-1) of total data set to trim of each end. axis : int or None, optional Axis along which the observations are trimmed. The default is to trim along axis=0. If axis is None then the array will be flattened before trimming. Returns ------- out : ndarray Trimmed version of array `a`. See Also -------- trim_mean Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,) """ a = np.asarray(a) if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut >= uppercut): raise ValueError("Proportion too big.") sl = [slice(None)] * a.ndim sl[axis] = slice(lowercut, uppercut) return a[sl] def trim1(a, proportiontocut, tail='right'): """ Slices off a proportion of items from ONE end of the passed array distribution. If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off of 'left' or 'right' of distribution tail : {'left', 'right'}, optional Defaults to 'right'. Returns ------- trim1 : ndarray Trimmed version of array `a` """ a = asarray(a) if tail.lower() == 'right': lowercut = 0 uppercut = len(a) - int(proportiontocut*len(a)) elif tail.lower() == 'left': lowercut = int(proportiontocut*len(a)) uppercut = len(a) return a[lowercut:uppercut] def trim_mean(a, proportiontocut, axis=0): """ Return mean of array after trimming distribution from both lower and upper tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off of both tails of the distribution axis : int or None, optional Axis along which the trimmed means are computed. The default is axis=0. If axis is None then the trimmed mean will be computed for the flattened array. Returns ------- trim_mean : ndarray Mean of trimmed array. See Also -------- trimboth Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.trim_mean(x, 0.1) 9.5 >>> x2 = x.reshape(5, 4) >>> x2 array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]) >>> stats.trim_mean(x2, 0.25) array([ 8., 9., 10., 11.]) >>> stats.trim_mean(x2, 0.25, axis=1) array([ 1.5, 5.5, 9.5, 13.5, 17.5]) """ a = np.asarray(a) if axis is None: nobs = a.size else: nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut - 1 if (lowercut > uppercut): raise ValueError("Proportion too big.") try: atmp = np.partition(a, (lowercut, uppercut), axis) except AttributeError: atmp = np.sort(a, axis) newa = trimboth(atmp, proportiontocut, axis=axis) return np.mean(newa, axis=axis) def f_oneway(*args): """ Performs a 1-way ANOVA. The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes. Parameters ---------- sample1, sample2, ... : array_like The sample measurements for each group. Returns ------- F-value : float The computed F-value of the test. p-value : float The associated p-value from the F-distribution. Notes ----- The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid. 1. The samples are independent. 2. Each sample is from a normally distributed population. 3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity. If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although with some loss of power. The algorithm is from Heiman[2], pp.394-7. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 14. http://faculty.vassar.edu/lowry/ch14pt1.html .. [2] Heiman, G.W. Research Methods in Statistics. 2002. """ args = [np.asarray(arg, dtype=float) for arg in args] na = len(args) # ANOVA on 'na' groups, each in it's own array alldata = np.concatenate(args) bign = len(alldata) sstot = ss(alldata) - (square_of_sums(alldata) / float(bign)) ssbn = 0 for a in args: ssbn += square_of_sums(a) / float(len(a)) ssbn -= (square_of_sums(alldata) / float(bign)) sswn = sstot - ssbn dfbn = na - 1 dfwn = bign - na msb = ssbn / float(dfbn) msw = sswn / float(dfwn) f = msb / msw prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf return f, prob def pearsonr(x, y): """ Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : (N,) array_like Input y : (N,) array_like Input Returns ------- (Pearson's correlation coefficient, 2-tailed p-value) References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ # x and y should have same length. x = np.asarray(x) y = np.asarray(y) n = len(x) mx = x.mean() my = y.mean() xm, ym = x-mx, y-my r_num = np.add.reduce(xm * ym) r_den = np.sqrt(ss(xm) * ss(ym)) r = r_num / r_den # Presumably, if abs(r) > 1, then it is only some small artifact of floating # point arithmetic. r = max(min(r, 1.0), -1.0) df = n-2 if abs(r) == 1.0: prob = 0.0 else: t_squared = r*r * (df / ((1.0 - r) * (1.0 + r))) prob = betai(0.5*df, 0.5, df / (df + t_squared)) return r, prob def fisher_exact(table, alternative='two-sided'): """Performs a Fisher exact test on a 2x2 contingency table. Parameters ---------- table : array_like of ints A 2x2 contingency table. Elements should be non-negative integers. alternative : {'two-sided', 'less', 'greater'}, optional Which alternative hypothesis to the null hypothesis the test uses. Default is 'two-sided'. Returns ------- oddsratio : float This is prior odds ratio and not a posterior estimate. p_value : float P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. See Also -------- chi2_contingency : Chi-square test of independence of variables in a contingency table. Notes ----- The calculated odds ratio is different from the one R uses. In R language, this implementation returns the (more common) "unconditional Maximum Likelihood Estimate", while R uses the "conditional Maximum Likelihood Estimate". For tables with large numbers the (inexact) chi-square test implemented in the function `chi2_contingency` can also be used. Examples -------- Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:: Atlantic Indian whales 8 2 sharks 1 5 We use this table to find the p-value: >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]]) >>> pvalue 0.0349... The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A commonly used significance level is 5%, if we adopt that we can therefore conclude that our observed imbalance is statistically significant; whales prefer the Atlantic while sharks prefer the Indian ocean. """ hypergeom = distributions.hypergeom c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm if not c.shape == (2, 2): raise ValueError("The input `table` must be of shape (2, 2).") if np.any(c < 0): raise ValueError("All values in `table` must be nonnegative.") if 0 in c.sum(axis=0) or 0 in c.sum(axis=1): # If both values in a row or column are zero, the p-value is 1 and # the odds ratio is NaN. return np.nan, 1.0 if c[1,0] > 0 and c[0,1] > 0: oddsratio = c[0,0] * c[1,1] / float(c[1,0] * c[0,1]) else: oddsratio = np.inf n1 = c[0,0] + c[0,1] n2 = c[1,0] + c[1,1] n = c[0,0] + c[1,0] def binary_search(n, n1, n2, side): """Binary search for where to begin lower/upper halves in two-sided test. """ if side == "upper": minval = mode maxval = n else: minval = 0 maxval = mode guess = -1 while maxval - minval > 1: if maxval == minval + 1 and guess == minval: guess = maxval else: guess = (maxval + minval) // 2 pguess = hypergeom.pmf(guess, n1 + n2, n1, n) if side == "upper": ng = guess - 1 else: ng = guess + 1 if pguess <= pexact and hypergeom.pmf(ng, n1 + n2, n1, n) > pexact: break elif pguess < pexact: maxval = guess else: minval = guess if guess == -1: guess = minval if side == "upper": while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess -= 1 while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess += 1 else: while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess += 1 while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess -= 1 return guess if alternative == 'less': pvalue = hypergeom.cdf(c[0,0], n1 + n2, n1, n) elif alternative == 'greater': # Same formula as the 'less' case, but with the second column. pvalue = hypergeom.cdf(c[0,1], n1 + n2, n1, c[0,1] + c[1,1]) elif alternative == 'two-sided': mode = int(float((n + 1) * (n1 + 1)) / (n1 + n2 + 2)) pexact = hypergeom.pmf(c[0,0], n1 + n2, n1, n) pmode = hypergeom.pmf(mode, n1 + n2, n1, n) epsilon = 1 - 1e-4 if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon: return oddsratio, 1. elif c[0,0] < mode: plower = hypergeom.cdf(c[0,0], n1 + n2, n1, n) if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, plower guess = binary_search(n, n1, n2, "upper") pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n) else: pupper = hypergeom.sf(c[0,0] - 1, n1 + n2, n1, n) if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, pupper guess = binary_search(n, n1, n2, "lower") pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n) else: msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}" raise ValueError(msg) if pvalue > 1.0: pvalue = 1.0 return oddsratio, pvalue def spearmanr(a, b=None, axis=0): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- a, b : 1D or 2D array_like, b is optional One or two 1-D or 2-D arrays containing multiple variables and observations. Each column of `a` and `b` represents a variable, and each row entry a single observation of those variables. See also `axis`. Both arrays need to have the same length in the `axis` dimension. axis : int or None, optional If axis=0 (default), then each column represents a variable, with observations in the rows. If axis=0, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled. Returns ------- rho : float or ndarray (2-D square) Spearman correlation matrix or correlation coefficient (if only 2 variables are given as parameters. Correlation matrix is square with length equal to total number of variables (columns or rows) in a and b combined. p-value : float The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, has same dimension as rho. Notes ----- Changes in scipy 0.8.0: rewrite to add tie-handling, and axis. References ---------- [CRCProbStat2000]_ Section 14.7 .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Examples -------- >>> spearmanr([1,2,3,4,5],[5,6,7,8,7]) (0.82078268166812329, 0.088587005313543798) >>> np.random.seed(1234321) >>> x2n=np.random.randn(100,2) >>> y2n=np.random.randn(100,2) >>> spearmanr(x2n) (0.059969996999699973, 0.55338590803773591) >>> spearmanr(x2n[:,0], x2n[:,1]) (0.059969996999699973, 0.55338590803773591) >>> rho, pval = spearmanr(x2n,y2n) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> pval array([[ 0. , 0.55338591, 0.06435364, 0.53617935], [ 0.55338591, 0. , 0.27592895, 0.80234077], [ 0.06435364, 0.27592895, 0. , 0.73039992], [ 0.53617935, 0.80234077, 0.73039992, 0. ]]) >>> rho, pval = spearmanr(x2n.T, y2n.T, axis=1) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> spearmanr(x2n, y2n, axis=None) (0.10816770419260482, 0.1273562188027364) >>> spearmanr(x2n.ravel(), y2n.ravel()) (0.10816770419260482, 0.1273562188027364) >>> xint = np.random.randint(10,size=(100,2)) >>> spearmanr(xint) (0.052760927029710199, 0.60213045837062351) """ a, axisout = _chk_asarray(a, axis) ar = np.apply_along_axis(rankdata,axisout,a) br = None if b is not None: b, axisout = _chk_asarray(b, axis) br = np.apply_along_axis(rankdata,axisout,b) n = a.shape[axisout] rs = np.corrcoef(ar,br,rowvar=axisout) olderr = np.seterr(divide='ignore') # rs can have elements equal to 1 try: t = rs * np.sqrt((n-2) / ((rs+1.0)*(1.0-rs))) finally: np.seterr(**olderr) prob = distributions.t.sf(np.abs(t),n-2)*2 if rs.shape == (2,2): return rs[1,0], prob[1,0] else: return rs, prob def pointbiserialr(x, y): """Calculates a point biserial correlation coefficient and the associated p-value. The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship. This function uses a shortcut formula but produces the same result as `pearsonr`. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- r : float R value p-value : float 2-tailed p-value References ---------- http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient Examples -------- >>> from scipy import stats >>> a = np.array([0, 0, 0, 1, 1, 1, 1]) >>> b = np.arange(7) >>> stats.pointbiserialr(a, b) (0.8660254037844386, 0.011724811003954652) >>> stats.pearsonr(a, b) (0.86602540378443871, 0.011724811003954626) >>> np.corrcoef(a, b) array([[ 1. , 0.8660254], [ 0.8660254, 1. ]]) """ x = np.asarray(x, dtype=bool) y = np.asarray(y, dtype=float) n = len(x) # phat is the fraction of x values that are True phat = x.sum() / float(len(x)) y0 = y[~x] # y-values where x is False y1 = y[x] # y-values where x is True y0m = y0.mean() y1m = y1.mean() # phat - phat**2 is more stable than phat*(1-phat) rpb = (y1m - y0m) * np.sqrt(phat - phat**2) / y.std() df = n-2 # fixme: see comment about TINY in pearsonr() TINY = 1e-20 t = rpb*np.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY))) prob = betai(0.5*df, 0.5, df/(df+t*t)) return rpb, prob def kendalltau(x, y, initial_lexsort=True): """ Calculates Kendall's tau, a correlation measure for ordinal data. Kendall's tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, values close to -1 indicate strong disagreement. This is the tau-b version of Kendall's tau which accounts for ties. Parameters ---------- x, y : array_like Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flattened to 1-D. initial_lexsort : bool, optional Whether to use lexsort or quicksort as the sorting method for the initial sort of the inputs. Default is lexsort (True), for which `kendalltau` is of complexity O(n log(n)). If False, the complexity is O(n^2), but with a smaller pre-factor (so quicksort may be faster for small arrays). Returns ------- Kendall's tau : float The tau statistic. p-value : float The two-sided p-value for a hypothesis test whose null hypothesis is an absence of association, tau = 0. Notes ----- The definition of Kendall's tau that is used is:: tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U)) where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in `x`, and U the number of ties only in `y`. If a tie occurs for the same pair in both `x` and `y`, it is not added to either T or U. References ---------- W.R. Knight, "A Computer Method for Calculating Kendall's Tau with Ungrouped Data", Journal of the American Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966. Examples -------- >>> import scipy.stats as stats >>> x1 = [12, 2, 1, 12, 2] >>> x2 = [1, 4, 7, 1, 0] >>> tau, p_value = stats.kendalltau(x1, x2) >>> tau -0.47140452079103173 >>> p_value 0.24821309157521476 """ x = np.asarray(x).ravel() y = np.asarray(y).ravel() if not x.size or not y.size: return (np.nan, np.nan) # Return NaN if arrays are empty n = np.int64(len(x)) temp = list(range(n)) # support structure used by mergesort # this closure recursively sorts sections of perm[] by comparing # elements of y[perm[]] using temp[] as support # returns the number of swaps required by an equivalent bubble sort def mergesort(offs, length): exchcnt = 0 if length == 1: return 0 if length == 2: if y[perm[offs]] <= y[perm[offs+1]]: return 0 t = perm[offs] perm[offs] = perm[offs+1] perm[offs+1] = t return 1 length0 = length // 2 length1 = length - length0 middle = offs + length0 exchcnt += mergesort(offs, length0) exchcnt += mergesort(middle, length1) if y[perm[middle - 1]] < y[perm[middle]]: return exchcnt # merging i = j = k = 0 while j < length0 or k < length1: if k >= length1 or (j < length0 and y[perm[offs + j]] <= y[perm[middle + k]]): temp[i] = perm[offs + j] d = i - j j += 1 else: temp[i] = perm[middle + k] d = (offs + i) - (middle + k) k += 1 if d > 0: exchcnt += d i += 1 perm[offs:offs+length] = temp[0:length] return exchcnt # initial sort on values of x and, if tied, on values of y if initial_lexsort: # sort implemented as mergesort, worst case: O(n log(n)) perm = np.lexsort((y, x)) else: # sort implemented as quicksort, 30% faster but with worst case: O(n^2) perm = list(range(n)) perm.sort(key=lambda a: (x[a], y[a])) # compute joint ties first = 0 t = 0 for i in xrange(1, n): if x[perm[first]] != x[perm[i]] or y[perm[first]] != y[perm[i]]: t += ((i - first) * (i - first - 1)) // 2 first = i t += ((n - first) * (n - first - 1)) // 2 # compute ties in x first = 0 u = 0 for i in xrange(1,n): if x[perm[first]] != x[perm[i]]: u += ((i - first) * (i - first - 1)) // 2 first = i u += ((n - first) * (n - first - 1)) // 2 # count exchanges exchanges = mergesort(0, n) # compute ties in y after mergesort with counting first = 0 v = 0 for i in xrange(1,n): if y[perm[first]] != y[perm[i]]: v += ((i - first) * (i - first - 1)) // 2 first = i v += ((n - first) * (n - first - 1)) // 2 tot = (n * (n - 1)) // 2 if tot == u or tot == v: return (np.nan, np.nan) # Special case for all ties in both ranks # Prevent overflow; equal to np.sqrt((tot - u) * (tot - v)) denom = np.exp(0.5 * (np.log(tot - u) + np.log(tot - v))) tau = ((tot - (v + u - t)) - 2.0 * exchanges) / denom # what follows reproduces the ending of Gary Strangman's original # stats.kendalltau() in SciPy svar = (4.0 * n + 10.0) / (9.0 * n * (n - 1)) z = tau / np.sqrt(svar) prob = special.erfc(np.abs(z) / 1.4142136) return tau, prob def linregress(x, y=None): """ Calculate a regression line This computes a least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line r-value : float correlation coefficient p-value : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimate Examples -------- >>> from scipy import stats >>> import numpy as np >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) # To get coefficient of determination (r_squared) >>> print "r-squared:", r_value**2 r-squared: 0.15286643777 """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = "If only `x` is given as input, it has to be of shape (2, N) \ or (N, 2), provided shape was %s" % str(x.shape) raise ValueError(msg) else: x = asarray(x) y = asarray(y) n = len(x) xmean = np.mean(x,None) ymean = np.mean(y,None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm*ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if (r > 1.0): r = 1.0 elif (r < -1.0): r = -1.0 df = n-2 t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY))) prob = distributions.t.sf(np.abs(t),df)*2 slope = r_num / ssxm intercept = ymean - slope*xmean sterrest = np.sqrt((1-r*r)*ssym / ssxm / df) return slope, intercept, r, prob, sterrest def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : {None, array_like}, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ y = np.asarray(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.asarray(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = find_repeats(x) _, nyreps = find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) - np.sum(k * (k-1) * (2*k + 5) for k in nxreps) - np.sum(k * (k-1) * (2*k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1) Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] ##################################### ##### INFERENTIAL STATISTICS ##### ##################################### def ttest_1samp(a, popmean, axis=0): """ Calculates the T-test for the mean of ONE group of scores. This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations `a` is equal to the given population mean, `popmean`. Parameters ---------- a : array_like sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension axis : int, optional, (default axis=0) Axis can equal None (ravel array first), or an integer (the axis over which to operate on a). Returns ------- t : float or array t-statistic prob : float or array two-tailed p-value Examples -------- >>> from scipy import stats >>> np.random.seed(7654567) # fix seed to get the same result >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case. >>> stats.ttest_1samp(rvs,5.0) (array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674])) >>> stats.ttest_1samp(rvs,0.0) (array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999])) Examples using axis and non-scalar dimension for population mean. >>> stats.ttest_1samp(rvs,[5.0,0.0]) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs,[[5.0],[0.0]]) (array([[-0.68014479, -0.04323899], [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01], [ 7.89094663e-03, 1.49986458e-04]])) """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] df = n - 1 d = np.mean(a, axis) - popmean v = np.var(a, axis, ddof=1) denom = np.sqrt(v / float(n)) t = np.divide(d, denom) t, prob = _ttest_finish(df, t) return t, prob def _ttest_finish(df,t): """Common code between all 3 t-test functions.""" prob = distributions.t.sf(np.abs(t), df) * 2 # use np.abs to get upper tail if t.ndim == 0: t = t[()] return t, prob def ttest_ind(a, b, axis=0, equal_var=True): """ Calculates the T-test for the means of TWO INDEPENDENT samples of scores. This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. This test assumes that the populations have identical variances. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional Axis can equal None (ravel array first), or an integer (the axis over which to operate on a and b). equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. .. versionadded:: 0.11.0 Returns ------- t : float or array The calculated t-statistic. prob : float or array The two-tailed p-value. Notes ----- We can use this test, if we observe two independent samples from the same or different population, e.g. exam scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. References ---------- .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) Test with sample with identical means: >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) >>> stats.ttest_ind(rvs1,rvs2) (0.26833823296239279, 0.78849443369564776) >>> stats.ttest_ind(rvs1,rvs2, equal_var = False) (0.26833823296239279, 0.78849452749500748) `ttest_ind` underestimates p for unequal variances: >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500) >>> stats.ttest_ind(rvs1, rvs3) (-0.46580283298287162, 0.64145827413436174) >>> stats.ttest_ind(rvs1, rvs3, equal_var = False) (-0.46580283298287162, 0.64149646246569292) When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic: >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs4) (-0.99882539442782481, 0.3182832709103896) >>> stats.ttest_ind(rvs1, rvs4, equal_var = False) (-0.69712570584654099, 0.48716927725402048) T-test with different means, variance, and n: >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs5) (-1.4679669854490653, 0.14263895620529152) >>> stats.ttest_ind(rvs1, rvs5, equal_var = False) (-0.94365973617132992, 0.34744170334794122) """ a, b, axis = _chk2_asarray(a, b, axis) if a.size == 0 or b.size == 0: return (np.nan, np.nan) v1 = np.var(a, axis, ddof=1) v2 = np.var(b, axis, ddof=1) n1 = a.shape[axis] n2 = b.shape[axis] if (equal_var): df = n1 + n2 - 2 svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / float(df) denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2)) else: vn1 = v1 / n1 vn2 = v2 / n2 df = ((vn1 + vn2)**2) / ((vn1**2) / (n1 - 1) + (vn2**2) / (n2 - 1)) # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0). # Hence it doesn't matter what df is as long as it's not NaN. df = np.where(np.isnan(df), 1, df) denom = np.sqrt(vn1 + vn2) d = np.mean(a, axis) - np.mean(b, axis) t = np.divide(d, denom) t, prob = _ttest_finish(df, t) return t, prob def ttest_rel(a, b, axis=0): """ Calculates the T-test on TWO RELATED samples of scores, a and b. This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int, optional, (default axis=0) Axis can equal None (ravel array first), or an integer (the axis over which to operate on a and b). Returns ------- t : float or array t-statistic prob : float or array two-tailed p-value Notes ----- Examples for the use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics. References ---------- http://en.wikipedia.org/wiki/T-test#Dependent_t-test Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) # fix random seed to get same numbers >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs2) (0.24101764965300962, 0.80964043445811562) >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs3) (-3.9995108708727933, 7.3082402191726459e-005) """ a, b, axis = _chk2_asarray(a, b, axis) if a.shape[axis] != b.shape[axis]: raise ValueError('unequal length arrays') if a.size == 0 or b.size == 0: return (np.nan, np.nan) n = a.shape[axis] df = float(n - 1) d = (a - b).astype(np.float64) v = np.var(d, axis, ddof=1) dm = np.mean(d, axis) denom = np.sqrt(v / float(n)) t = np.divide(dm, denom) t, prob = _ttest_finish(df, t) return t, prob def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'): """ Perform the Kolmogorov-Smirnov test for goodness of fit. This performs a test of the distribution G(x) of an observed random variable against a given distribution F(x). Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either 'two-sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. Parameters ---------- rvs : str, array or callable If a string, it should be the name of a distribution in `scipy.stats`. If an array, it should be a 1-D array of observations of random variables. If a callable, it should be a function to generate random variables; it is required to have a keyword argument `size`. cdf : str or callable If a string, it should be the name of a distribution in `scipy.stats`. If `rvs` is a string then `cdf` can be False or the same as `rvs`. If a callable, that callable is used to calculate the cdf. args : tuple, sequence, optional Distribution parameters, used if `rvs` or `cdf` are strings. N : int, optional Sample size if `rvs` is string or callable. Default is 20. alternative : {'two-sided', 'less','greater'}, optional Defines the alternative hypothesis (see explanation above). Default is 'two-sided'. mode : 'approx' (default) or 'asymp', optional Defines the distribution used for calculating the p-value. - 'approx' : use approximation to exact distribution of test statistic - 'asymp' : use asymptotic distribution of test statistic Returns ------- D : float KS test statistic, either D, D+ or D-. p-value : float One-tailed or two-tailed p-value. Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function F(x) of the hypothesis, ``G(x)<=F(x)``, resp. ``G(x)>=F(x)``. Examples -------- >>> from scipy import stats >>> x = np.linspace(-15, 15, 9) >>> stats.kstest(x, 'norm') (0.44435602715924361, 0.038850142705171065) >>> np.random.seed(987654321) # set random seed to get the same result >>> stats.kstest('norm', False, N=100) (0.058352892479417884, 0.88531190944151261) The above lines are equivalent to: >>> np.random.seed(987654321) >>> stats.kstest(stats.norm.rvs(size=100), 'norm') (0.058352892479417884, 0.88531190944151261) *Test against one-sided alternative hypothesis* Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``: >>> np.random.seed(987654321) >>> x = stats.norm.rvs(loc=0.2, size=100) >>> stats.kstest(x,'norm', alternative = 'less') (0.12464329735846891, 0.040989164077641749) Reject equal distribution against alternative hypothesis: less >>> stats.kstest(x,'norm', alternative = 'greater') (0.0072115233216311081, 0.98531158590396395) Don't reject equal distribution against alternative hypothesis: greater >>> stats.kstest(x,'norm', mode='asymp') (0.12464329735846891, 0.08944488871182088) *Testing t distributed random variables against normal distribution* With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(100,size=100),'norm') (0.072018929165471257, 0.67630062862479168) With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(3,size=100),'norm') (0.131016895759829, 0.058826222555312224) """ if isinstance(rvs, string_types): if (not cdf) or (cdf == rvs): cdf = getattr(distributions, rvs).cdf rvs = getattr(distributions, rvs).rvs else: raise AttributeError("if rvs is string, cdf has to be the " "same distribution") if isinstance(cdf, string_types): cdf = getattr(distributions, cdf).cdf if callable(rvs): kwds = {'size':N} vals = np.sort(rvs(*args,**kwds)) else: vals = np.sort(rvs) N = len(vals) cdfvals = cdf(vals, *args) # to not break compatibility with existing code if alternative == 'two_sided': alternative = 'two-sided' if alternative in ['two-sided', 'greater']: Dplus = (np.arange(1.0, N+1)/N - cdfvals).max() if alternative == 'greater': return Dplus, distributions.ksone.sf(Dplus,N) if alternative in ['two-sided', 'less']: Dmin = (cdfvals - np.arange(0.0, N)/N).max() if alternative == 'less': return Dmin, distributions.ksone.sf(Dmin,N) if alternative == 'two-sided': D = np.max([Dplus,Dmin]) if mode == 'asymp': return D, distributions.kstwobign.sf(D*np.sqrt(N)) if mode == 'approx': pval_two = distributions.kstwobign.sf(D*np.sqrt(N)) if N > 2666 or pval_two > 0.80 - N*0.3/1000.0: return D, distributions.kstwobign.sf(D*np.sqrt(N)) else: return D, distributions.ksone.sf(D,N)*2 # Map from names to lambda_ values used in power_divergence(). _power_div_lambda_names = { "pearson": 1, "log-likelihood": 0, "freeman-tukey": -0.5, "mod-log-likelihood": -1, "neyman": -2, "cressie-read": 2/3, } def _count(a, axis=None): """ Count the number of non-masked elements of an array. This function behaves like np.ma.count(), but is much faster for ndarrays. """ if hasattr(a, 'count'): num = a.count(axis=axis) if isinstance(num, np.ndarray) and num.ndim == 0: # In some cases, the `count` method returns a scalar array (e.g. # np.array(3)), but we want a plain integer. num = int(num) else: if axis is None: num = a.size else: num = a.shape[axis] return num def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None): """ Cressie-Read power divergence statistic and goodness of fit test. This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. lambda_ : float or str, optional `lambda_` gives the power in the Cressie-Read power divergence statistic. The default is 1. For convenience, `lambda_` may be assigned one of the following strings, in which case the corresponding numerical value is used:: String Value Description "pearson" 1 Pearson's chi-squared statistic. In this case, the function is equivalent to `stats.chisquare`. "log-likelihood" 0 Log-likelihood ratio. Also known as the G-test [3]_. "freeman-tukey" -1/2 Freeman-Tukey statistic. "mod-log-likelihood" -1 Modified log-likelihood ratio. "neyman" -2 Neyman's statistic. "cressie-read" 2/3 The power recommended in [5]_. Returns ------- stat : float or ndarray The Cressie-Read power divergence test statistic. The value is a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D. p : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `stat` are scalars. See Also -------- chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. When `lambda_` is less than zero, the formula for the statistic involves dividing by `f_obs`, so a warning or error may be generated if any value in `f_obs` is 0. Similarly, a warning or error may be generated if any value in `f_exp` is zero when `lambda_` >= 0. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. This function handles masked arrays. If an element of `f_obs` or `f_exp` is masked, then data at that position is ignored, and does not count towards the size of the data set. .. versionadded:: 0.13.0 References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test .. [3] "G-test", http://en.wikipedia.org/wiki/G-test .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and practice of statistics in biological research", New York: Freeman (1981) .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984), pp. 440-464. Examples -------- (See `chisquare` for more examples.) When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic): >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') (2.006573162632538, 0.84823476779463769) The expected frequencies can be given with the `f_exp` argument: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[16, 16, 16, 16, 16, 8], ... lambda_='log-likelihood') (3.5, 0.62338762774958223) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> power_divergence(obs, lambda_="log-likelihood") (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> power_divergence(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> power_divergence(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the test statistic with `ddof`. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use ``axis=1``: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], ... [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ # Convert the input argument `lambda_` to a numerical value. if isinstance(lambda_, string_types): if lambda_ not in _power_div_lambda_names: names = repr(list(_power_div_lambda_names.keys()))[1:-1] raise ValueError("invalid string for lambda_: {0!r}. Valid strings " "are {1}".format(lambda_, names)) lambda_ = _power_div_lambda_names[lambda_] elif lambda_ is None: lambda_ = 1 f_obs = np.asanyarray(f_obs) if f_exp is not None: f_exp = np.atleast_1d(np.asanyarray(f_exp)) else: # Compute the equivalent of # f_exp = f_obs.mean(axis=axis, keepdims=True) # Older versions of numpy do not have the 'keepdims' argument, so # we have to do a little work to achieve the same result. # Ignore 'invalid' errors so the edge case of a data set with length 0 # is handled without spurious warnings. with np.errstate(invalid='ignore'): f_exp = np.atleast_1d(f_obs.mean(axis=axis)) if axis is not None: reduced_shape = list(f_obs.shape) reduced_shape[axis] = 1 f_exp.shape = reduced_shape # `terms` is the array of terms that are summed along `axis` to create # the test statistic. We use some specialized code for a few special # cases of lambda_. if lambda_ == 1: # Pearson's chi-squared statistic terms = (f_obs - f_exp)**2 / f_exp elif lambda_ == 0: # Log-likelihood ratio (i.e. G-test) terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp) elif lambda_ == -1: # Modified log-likelihood ratio terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs) else: # General Cressie-Read power divergence. terms = f_obs * ((f_obs / f_exp)**lambda_ - 1) terms /= 0.5 * lambda_ * (lambda_ + 1) stat = terms.sum(axis=axis) num_obs = _count(terms, axis=axis) ddof = asarray(ddof) p = chisqprob(stat, num_obs - 1 - ddof) return stat, p def chisquare(f_obs, f_exp=None, ddof=0, axis=0): """ Calculates a one-way chi square test. The chi square test tests the null hypothesis that the categorical data has the given frequencies. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. Returns ------- chisq : float or ndarray The chi-squared test statistic. The value is a float if `axis` is None or `f_obs` and `f_exp` are 1-D. p : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `chisq` are scalars. See Also -------- power_divergence mstats.chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test Examples -------- When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. >>> chisquare([16, 18, 16, 14, 12, 12]) (2.0, 0.84914503608460956) With `f_exp` the expected frequencies can be given. >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8]) (3.5, 0.62338762774958223) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> chisquare(obs) (array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> chisquare(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> chisquare(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the chi-squared statistic with `ddof`. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we use ``axis=1``: >>> chisquare([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_="pearson") def ks_2samp(data1, data2): """ Computes the Kolmogorov-Smirnov statistic on 2 samples. This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution. Parameters ---------- a, b : sequence of 1-D ndarrays two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different Returns ------- D : float KS statistic p-value : float two-tailed p-value Notes ----- This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample K-S test, the distribution is assumed to be continuous. This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution. If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) #fix random seed to get the same result >>> n1 = 200 # size of first sample >>> n2 = 300 # size of second sample For a different distribution, we can reject the null hypothesis since the pvalue is below 1%: >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1) >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5) >>> stats.ks_2samp(rvs1, rvs2) (0.20833333333333337, 4.6674975515806989e-005) For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the p-value at 0.144 is higher than 10% >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0) >>> stats.ks_2samp(rvs1, rvs3) (0.10333333333333333, 0.14498781825751686) For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%: >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0) >>> stats.ks_2samp(rvs1, rvs4) (0.07999999999999996, 0.41126949729859719) """ data1, data2 = map(asarray, (data1, data2)) n1 = data1.shape[0] n2 = data2.shape[0] n1 = len(data1) n2 = len(data2) data1 = np.sort(data1) data2 = np.sort(data2) data_all = np.concatenate([data1,data2]) cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1) cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2) d = np.max(np.absolute(cdf1-cdf2)) # Note: d absolute not signed distance en = np.sqrt(n1*n2/float(n1+n2)) try: prob = distributions.kstwobign.sf((en + 0.12 + 0.11 / en) * d) except: prob = 1.0 return d, prob def mannwhitneyu(x, y, use_continuity=True): """ Computes the Mann-Whitney rank test on samples x and y. Parameters ---------- x, y : array_like Array of samples, should be one-dimensional. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. Returns ------- u : float The Mann-Whitney statistics. prob : float One-sided p-value assuming a asymptotic normal distribution. Notes ----- Use only when the number of observation in each sample is > 20 and you have 2 independent samples of ranks. Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U. This test corrects for ties and by default uses a continuity correction. The reported p-value is for a one-sided hypothesis, to get the two-sided p-value multiply the returned p-value by 2. """ x = asarray(x) y = asarray(y) n1 = len(x) n2 = len(y) ranked = rankdata(np.concatenate((x,y))) rankx = ranked[0:n1] # get the x-ranks u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx,axis=0) # calc U for x u2 = n1*n2 - u1 # remainder is U for y bigu = max(u1,u2) smallu = min(u1,u2) T = tiecorrect(ranked) if T == 0: raise ValueError('All numbers are identical in amannwhitneyu') sd = np.sqrt(T*n1*n2*(n1+n2+1)/12.0) if use_continuity: # normal approximation for prob calc with continuity correction z = abs((bigu-0.5-n1*n2/2.0) / sd) else: z = abs((bigu-n1*n2/2.0) / sd) # normal approximation for prob calc return smallu, distributions.norm.sf(z) # (1.0 - zprob(z)) def ranksums(x, y): """ Compute the Wilcoxon rank-sum statistic for two samples. The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in the other sample. This test should be used to compare two samples from continuous distributions. It does not handle ties between measurements in x and y. For tie-handling and an optional continuity correction see `scipy.stats.mannwhitneyu`. Parameters ---------- x,y : array_like The data from the two samples Returns ------- z-statistic : float The test statistic under the large-sample approximation that the rank sum statistic is normally distributed p-value : float The two-sided p-value of the test References ---------- .. [1] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test """ x,y = map(np.asarray, (x, y)) n1 = len(x) n2 = len(y) alldata = np.concatenate((x,y)) ranked = rankdata(alldata) x = ranked[:n1] y = ranked[n1:] s = np.sum(x,axis=0) expected = n1*(n1+n2+1) / 2.0 z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0) prob = 2 * distributions.norm.sf(abs(z)) return z, prob def kruskal(*args): """ Compute the Kruskal-Wallis H-test for independent samples The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different. Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. Returns ------- H-statistic : float The Kruskal-Wallis H statistic, corrected for ties p-value : float The p-value for the test using the assumption that H has a chi square distribution Notes ----- Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements. References ---------- .. [1] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance """ args = list(map(np.asarray, args)) # convert to a numpy array na = len(args) # Kruskal-Wallis on 'na' groups, each in it's own array if na < 2: raise ValueError("Need at least two groups in stats.kruskal()") n = np.asarray(list(map(len, args))) alldata = np.concatenate(args) ranked = rankdata(alldata) # Rank the data T = tiecorrect(ranked) # Correct for ties if T == 0: raise ValueError('All numbers are identical in kruskal') # Compute sum^2/n for each group and sum j = np.insert(np.cumsum(n), 0, 0) ssbn = 0 for i in range(na): ssbn += square_of_sums(ranked[j[i]:j[i+1]]) / float(n[i]) totaln = np.sum(n) h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1) df = na - 1 h = h / float(T) return h, chisqprob(h, df) def friedmanchisquare(*args): """ Computes the Friedman test for repeated measurements The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same distribution. It is often used to test for consistency among measurements obtained in different ways. For example, if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine if the two measurement techniques are consistent. Parameters ---------- measurements1, measurements2, measurements3... : array_like Arrays of measurements. All of the arrays must have the same number of elements. At least 3 sets of measurements must be given. Returns ------- friedman chi-square statistic : float the test statistic, correcting for ties p-value : float the associated p-value assuming that the test statistic has a chi squared distribution Notes ----- Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10 and more than 6 repeated measurements. References ---------- .. [1] http://en.wikipedia.org/wiki/Friedman_test """ k = len(args) if k < 3: raise ValueError('\nLess than 3 levels. Friedman test not appropriate.\n') n = len(args[0]) for i in range(1, k): if len(args[i]) != n: raise ValueError('Unequal N in friedmanchisquare. Aborting.') # Rank data data = np.vstack(args).T data = data.astype(float) for i in range(len(data)): data[i] = rankdata(data[i]) # Handle ties ties = 0 for i in range(len(data)): replist, repnum = find_repeats(array(data[i])) for t in repnum: ties += t*(t*t-1) c = 1 - ties / float(k*(k*k-1)*n) ssbn = pysum(pysum(data)**2) chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c return chisq, chisqprob(chisq,k-1) ##################################### #### PROBABILITY CALCULATIONS #### ##################################### zprob = np.deprecate(message='zprob is deprecated in scipy 0.14, ' 'use norm.cdf or special.ndtr instead\n', old_name='zprob')(special.ndtr) def chisqprob(chisq, df): """ Probability value (1-tail) for the Chi^2 probability distribution. Broadcasting rules apply. Parameters ---------- chisq : array_like or float > 0 df : array_like or float, probably int >= 1 Returns ------- chisqprob : ndarray The area from `chisq` to infinity under the Chi^2 probability distribution with degrees of freedom `df`. """ return special.chdtrc(df,chisq) ksprob = np.deprecate(message='ksprob is deprecated in scipy 0.14, ' 'use stats.kstwobign.sf or special.kolmogorov instead\n', old_name='ksprob')(special.kolmogorov) fprob = np.deprecate(message='fprob is deprecated in scipy 0.14, ' 'use stats.f.sf or special.fdtrc instead\n', old_name='fprob')(special.fdtrc) def betai(a, b, x): """ Returns the incomplete beta function. I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt) where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a. The standard broadcasting rules apply to a, b, and x. Parameters ---------- a : array_like or float > 0 b : array_like or float > 0 x : array_like or float x will be clipped to be no greater than 1.0 . Returns ------- betai : ndarray Incomplete beta function. """ x = np.asarray(x) x = np.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) ##################################### ####### ANOVA CALCULATIONS ####### ##################################### def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell & Delaney p.657. """ if isinstance(ER, (int, float)): ER = array([[ER]]) if isinstance(EF, (int, float)): EF = array([[EF]]) lmbda = linalg.det(EF) / linalg.det(ER) if (a-1)**2 + (b-1)**2 == 5: q = 1 else: q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5)) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en def f_value(ER, EF, dfR, dfF): """ Returns an F-statistic for a restricted vs. unrestricted model. Parameters ---------- ER : float `ER` is the sum of squared residuals for the restricted model or null hypothesis EF : float `EF` is the sum of squared residuals for the unrestricted model or alternate hypothesis dfR : int `dfR` is the degrees of freedom in the restricted model dfF : int `dfF` is the degrees of freedom in the unrestricted model Returns ------- F-statistic : float """ return ((ER-EF)/float(dfR-dfF) / (EF/float(dfF))) def f_value_multivariate(ER, EF, dfnum, dfden): """ Returns a multivariate F-statistic. Parameters ---------- ER : ndarray Error associated with the null hypothesis (the Restricted model). From a multivariate F calculation. EF : ndarray Error associated with the alternate hypothesis (the Full model) From a multivariate F calculation. dfnum : int Degrees of freedom the Restricted model. dfden : int Degrees of freedom associated with the Restricted model. Returns ------- fstat : float The computed F-statistic. """ if isinstance(ER, (int, float)): ER = array([[ER]]) if isinstance(EF, (int, float)): EF = array([[EF]]) n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum) d_en = linalg.det(EF) / float(dfden) return n_um / d_en ##################################### ####### SUPPORT FUNCTIONS ######## ##################################### def ss(a, axis=0): """ Squares each element of the input array, and returns the sum(s) of that. Parameters ---------- a : array_like Input array. axis : int or None, optional The axis along which to calculate. If None, use whole array. Default is 0, i.e. along the first axis. Returns ------- ss : ndarray The sum along the given axis for (a**2). See also -------- square_of_sums : The square(s) of the sum(s) (the opposite of `ss`). Examples -------- >>> from scipy import stats >>> a = np.array([1., 2., 5.]) >>> stats.ss(a) 30.0 And calculating along an axis: >>> b = np.array([[1., 2., 5.], [2., 5., 6.]]) >>> stats.ss(b, axis=1) array([ 30., 65.]) """ a, axis = _chk_asarray(a, axis) return np.sum(a*a, axis) def square_of_sums(a, axis=0): """ Sums elements of the input array, and returns the square(s) of that sum. Parameters ---------- a : array_like Input array. axis : int or None, optional If axis is None, ravel `a` first. If `axis` is an integer, this will be the axis over which to operate. Defaults to 0. Returns ------- square_of_sums : float or ndarray The square of the sum over `axis`. See also -------- ss : The sum of squares (the opposite of `square_of_sums`). Examples -------- >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> stats.square_of_sums(a) array([ 1600., 2025., 2500., 3025.]) >>> stats.square_of_sums(a, axis=None) 36100.0 """ a, axis = _chk_asarray(a, axis) s = np.sum(a,axis) if not np.isscalar(s): return s.astype(float)*s else: return float(s)*s def fastsort(a): """ Sort an array and provide the argsort. Parameters ---------- a : array_like Input array. Returns ------- fastsort : ndarray of type int sorted indices into the original array """ # TODO: the wording in the docstring is nonsense. it = np.argsort(a) as_ = a[it] return as_, it