#from tutor_init import * import numpy as np import logging import matplotlib.pyplot as plt import itertools # import sys import itertools log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) MARKERS = ('o', 'x', '+', '.', '<', '>', '^', 'v') def set_windows_title(title='', log=None): pass def plot_varying_symbols(x, y, color='red', size=5): """ Create a plot with varying symbols Parameters ---------- x : numpy array with x data of the points y : numpy array with y data of the points color : color of the symbols Returns ------- """ markers = itertools.cycle(MARKERS) for q, p in zip(x, y): plt.plot(q, p, marker=markers.next(), linestyle='', color=color, markersize=size) def damage_vs_S(S, beta, K): """ calculate the damage 1/N for a given stress S Parameters ---------- S : Stress [Pa] beta : coefficient, typically 3 K : constant Returns ------- """ return K * np.power(S, beta) # Section 4.3.1 Crossing intensity #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import wafo.data as wd import wafo.objects as wo import wafo.misc as wm xx_sea = wd.sea() Tlength = xx_sea[-1, 0] - xx_sea[0, 0] beta = 3 K1 = 6.5e-31 Np = 200 Tp = Tlength/Np A = 100e6 log.info("setting sin wave with Tp={} and T={}".format(Tp, Tlength)) Nc = 1.0 / damage_vs_S(A, beta, K1) damage = float(Np)/float(Nc) log.info("budget at S={} N={}: damage = {} ".format(A, Nc, damage)) #xx_sea[:, 1] = A * np.cos(2 * np.pi * xx_sea[:, 0]/Tp) xx_sea[:, 1] *= 500e6 log.info("loaded sea time series {}".format(xx_sea.shape)) ts = wo.mat2timeseries(xx_sea) tp = ts.turning_points() mM = tp.cycle_pairs(kind='min2max') Mm = tp.cycle_pairs(kind='max2min') lc = mM.level_crossings(intensity=True) T_sea = ts.args[-1]-ts.args[0] #for i in dir(mM): # print(i) ts1 = wo.mat2timeseries(xx_sea[:,:]) tp1 = ts1.turning_points() sig_tp = ts.turning_points(h=0, wavetype='astm') try: sig_cp = sig_tp.cycle_astm() log.info("Successfully used cycle_astm") except AttributeError: log.warning("Could use cycle_astm") sig_cp = None tp1 = ts1.turning_points() tp2 = ts1.turning_points(wavetype='Mw') mM1 = tp1.cycle_pairs(kind='min2max') Mm1 = tp1.cycle_pairs(kind='max2min') tp_rfc = tp1.rainflow_filter(h=100e6) mM_rfc = tp_rfc.cycle_pairs() try: mM_rfc_a = tp1.cycle_astm() except AttributeError: mM_rfc_a = None tc1 = ts1.trough_crest() min_to_max = True rfc_plot = True if min_to_max: m1, M1 = mM1.get_minima_and_maxima() i_min_start = 0 else: m1, M1 = Mm1.get_minima_and_maxima() i_min_start = 2 m_rfc, M_rfc = mM_rfc.get_minima_and_maxima() #m_rfc_a, M_rfc_a = mM_rfc_a.get_minima_and_maxima() ts1.plot('b-') if rfc_plot: plot_varying_symbols(tp_rfc.args[0::2], m_rfc, color='red', size=10) plot_varying_symbols(tp_rfc.args[1::2], M_rfc, color='green', size=10) else: plot_varying_symbols(tp.args[i_min_start::2], m1, color='red', size=10) plot_varying_symbols(tp.args[1::2], M1, color='green', size=10) set_windows_title("Sea time series", log) plt.figure() plt.subplot(122), mM.plot() plt.title('min-max cycle pairs') plt.subplot(121), mM_rfc.plot() title = 'Rainflow filtered cycles' plt.title(title) set_windows_title(title) # Min-max and rainflow cycle distributions #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # import wafo.misc as wm ampmM_sea = mM.amplitudes() ampRFC_sea = mM_rfc.amplitudes() plt.figure() title = "s_n_curve" set_windows_title(title) S = np.linspace(1e6,1000e6) plt.loglog(S, damage_vs_S(S, beta, K1)) plt.figure() plt.subplot(121) stress_range = (1,1e9) n_bins = 100 wm.plot_histgrm(ampmM_sea, bins=n_bins, range=stress_range) plt.xlim(stress_range) ylim = plt.gca().get_ylim() plt.title('min-max amplitude distribution') plt.subplot(122) if sig_cp is not None: wm.plot_histgrm(sig_cp[:, 0],bins=n_bins, range=stress_range) plt.gca().set_ylim(ylim) title = 'Rainflow amplitude distribution' plt.title(title) plt.semilogy set_windows_title(title) hist, bin_edges = np.histogram(sig_cp[:, 0], bins=n_bins, range=stress_range) plt.figure() title = "my_bins" plt.title(title) plt.title(title) set_windows_title(title) plt.semilogy plt.bar(bin_edges[:-1], hist, width=stress_range[1]/n_bins) print("damage min/max : {}".format(mM_rfc.damage([beta], K1))) damage_rfc = K1 * np.sum(sig_cp[:, 0] ** beta) print("damage rfc : {}".format(damage_rfc)) plt.show('hold')