From e73624161cbf7dd2e417639b2f9f55c235b29b82 Mon Sep 17 00:00:00 2001
From: pbrod <per.andreas.brodtkorb@gmail.com>
Date: Fri, 12 Feb 2016 13:11:20 +0100
Subject: [PATCH] Simplified wafo.stats:  -Deleted obsolete files.  -Requires
 scipy v0.16  -._distn_infrastructure.py monkeypatch
 scipy.stats._distn_infrastructure.py

---
 wafo/stats/__init__.py                     |  110 +-
 wafo/stats/_binned_statistic.py            |  408 --
 wafo/stats/_constants.py                   |    5 +-
 wafo/stats/_continuous_distns.py           | 2054 +++++----
 wafo/stats/_discrete_distns.py             |  133 +-
 wafo/stats/_distn_infrastructure.py        | 3815 ++---------------
 wafo/stats/_distr_params.py                |    7 +-
 wafo/stats/_multivariate.py                |  884 ----
 wafo/stats/_tukeylambda_stats.py           |  201 -
 wafo/stats/contingency.py                  |  271 --
 wafo/stats/distributions.py                |    1 -
 wafo/stats/estimation.py                   |  322 +-
 wafo/stats/kde.py                          |  541 ---
 wafo/stats/kde_example.py                  |   15 -
 wafo/stats/misc.py                         |   13 -
 wafo/stats/morestats.py                    | 2377 -----------
 wafo/stats/mstats.py                       |   79 -
 wafo/stats/mstats_basic.py                 | 2027 ---------
 wafo/stats/mstats_extras.py                |  451 --
 wafo/stats/rv.py                           |   76 -
 wafo/stats/six.py                          |  389 --
 wafo/stats/stats.py                        | 4508 --------------------
 wafo/stats/tests/common_tests.py           |  147 +-
 wafo/stats/tests/test_binned_statistic.py  |  238 --
 wafo/stats/tests/test_contingency.py       |  202 -
 wafo/stats/tests/test_continuous_basic.py  |  197 +-
 wafo/stats/tests/test_discrete_basic.py    |   91 +-
 wafo/stats/tests/test_distributions.py     |  718 +++-
 wafo/stats/tests/test_fit.py               |   17 +-
 wafo/stats/tests/test_kdeoth.py            |  202 -
 wafo/stats/tests/test_morestats.py         | 1009 -----
 wafo/stats/tests/test_mstats_basic.py      | 1055 -----
 wafo/stats/tests/test_mstats_extras.py     |  107 -
 wafo/stats/tests/test_multivariate.py      |  485 ---
 wafo/stats/tests/test_rank.py              |  193 -
 wafo/stats/tests/test_stats.py             | 2830 ------------
 wafo/stats/tests/test_tukeylambda_stats.py |   91 -
 wafo/stats/twolumps.py                     |  412 --
 wafo/stats/vonmises.py                     |   47 -
 wafo/stats/vonmises_cython.pyx             |   76 -
 40 files changed, 2822 insertions(+), 23982 deletions(-)
 delete mode 100644 wafo/stats/_binned_statistic.py
 delete mode 100644 wafo/stats/_multivariate.py
 delete mode 100644 wafo/stats/_tukeylambda_stats.py
 delete mode 100644 wafo/stats/contingency.py
 delete mode 100644 wafo/stats/kde.py
 delete mode 100644 wafo/stats/kde_example.py
 delete mode 100644 wafo/stats/misc.py
 delete mode 100644 wafo/stats/morestats.py
 delete mode 100644 wafo/stats/mstats.py
 delete mode 100644 wafo/stats/mstats_basic.py
 delete mode 100644 wafo/stats/mstats_extras.py
 delete mode 100644 wafo/stats/rv.py
 delete mode 100644 wafo/stats/six.py
 delete mode 100644 wafo/stats/stats.py
 delete mode 100644 wafo/stats/tests/test_binned_statistic.py
 delete mode 100644 wafo/stats/tests/test_contingency.py
 delete mode 100644 wafo/stats/tests/test_kdeoth.py
 delete mode 100644 wafo/stats/tests/test_morestats.py
 delete mode 100644 wafo/stats/tests/test_mstats_basic.py
 delete mode 100644 wafo/stats/tests/test_mstats_extras.py
 delete mode 100644 wafo/stats/tests/test_multivariate.py
 delete mode 100644 wafo/stats/tests/test_rank.py
 delete mode 100644 wafo/stats/tests/test_stats.py
 delete mode 100644 wafo/stats/tests/test_tukeylambda_stats.py
 delete mode 100644 wafo/stats/twolumps.py
 delete mode 100644 wafo/stats/vonmises.py
 delete mode 100644 wafo/stats/vonmises_cython.pyx

diff --git a/wafo/stats/__init__.py b/wafo/stats/__init__.py
index 35ca55f..e3c5dbb 100644
--- a/wafo/stats/__init__.py
+++ b/wafo/stats/__init__.py
@@ -8,50 +8,14 @@ Statistical functions (:mod:`scipy.stats`)
 This module contains a large number of probability distributions as
 well as a growing library of statistical functions.
 
-Each included distribution is an instance of the class rv_continuous:
-For each given name the following methods are available:
+Each univariate distribution is an instance of a subclass of `rv_continuous`
+(`rv_discrete` for discrete distributions):
 
 .. autosummary::
    :toctree: generated/
 
    rv_continuous
-   rv_continuous.pdf
-   rv_continuous.logpdf
-   rv_continuous.cdf
-   rv_continuous.logcdf
-   rv_continuous.sf
-   rv_continuous.logsf
-   rv_continuous.ppf
-   rv_continuous.isf
-   rv_continuous.moment
-   rv_continuous.stats
-   rv_continuous.entropy
-   rv_continuous.fit
-   rv_continuous.expect
-
-Calling the instance as a function returns a frozen pdf whose shape,
-location, and scale parameters are fixed.
-
-Similarly, each discrete distribution is an instance of the class
-rv_discrete:
-
-.. autosummary::
-   :toctree: generated/
-
    rv_discrete
-   rv_discrete.rvs
-   rv_discrete.pmf
-   rv_discrete.logpmf
-   rv_discrete.cdf
-   rv_discrete.logcdf
-   rv_discrete.sf
-   rv_discrete.logsf
-   rv_discrete.ppf
-   rv_discrete.isf
-   rv_discrete.stats
-   rv_discrete.moment
-   rv_discrete.entropy
-   rv_discrete.expect
 
 Continuous distributions
 ========================
@@ -65,7 +29,8 @@ Continuous distributions
    beta              -- Beta
    betaprime         -- Beta Prime
    bradford          -- Bradford
-   burr              -- Burr
+   burr              -- Burr (Type III)
+   burr12            -- Burr (Type XII)
    cauchy            -- Cauchy
    chi               -- Chi
    chi2              -- Chi-squared
@@ -74,6 +39,7 @@ Continuous distributions
    dweibull          -- Double Weibull
    erlang            -- Erlang
    expon             -- Exponential
+   exponnorm         -- Exponentially Modified Normal
    exponweib         -- Exponentiated Weibull
    exponpow          -- Exponential Power
    f                 -- F (Snecdor F)
@@ -84,6 +50,7 @@ Continuous distributions
    frechet_r         -- Frechet Right Sided, Extreme Value Type II (Extreme LB) or weibull_min
    frechet_l         -- Frechet Left Sided, Weibull_max
    genlogistic       -- Generalized Logistic
+   gennorm           -- Generalized normal
    genpareto         -- Generalized Pareto
    genexpon          -- Generalized Exponential
    genextreme        -- Generalized Extreme Value
@@ -98,6 +65,7 @@ Continuous distributions
    halfcauchy        -- Half Cauchy
    halflogistic      -- Half Logistic
    halfnorm          -- Half Normal
+   halfgennorm       -- Generalized Half Normal
    hypsecant         -- Hyperbolic Secant
    invgamma          -- Inverse Gamma
    invgauss          -- Inverse Gaussian
@@ -107,6 +75,9 @@ Continuous distributions
    ksone             -- Kolmogorov-Smirnov one-sided (no stats)
    kstwobign         -- Kolmogorov-Smirnov two-sided test for Large N (no stats)
    laplace           -- Laplace
+   levy              -- Levy
+   levy_l
+   levy_stable
    logistic          -- Logistic
    loggamma          -- Log-Gamma
    loglaplace        -- Log-Laplace (Log Double Exponential)
@@ -130,6 +101,7 @@ Continuous distributions
    rice              -- Rice
    recipinvgauss     -- Reciprocal Inverse Gaussian
    semicircular      -- Semicircular
+   skewnorm          -- Skew normal
    t                 -- Student's T
    triang            -- Triangular
    truncexpon        -- Truncated Exponential
@@ -137,6 +109,7 @@ Continuous distributions
    tukeylambda       -- Tukey-Lambda
    uniform           -- Uniform
    vonmises          -- Von-Mises (Circular)
+   vonmises_line     -- Von-Mises (Line)
    wald              -- Wald
    weibull_min       -- Minimum Weibull (see Frechet)
    weibull_max       -- Maximum Weibull (see Frechet)
@@ -149,7 +122,12 @@ Multivariate distributions
    :toctree: generated/
 
    multivariate_normal   -- Multivariate normal distribution
+   matrix_normal         -- Matrix normal distribution
    dirichlet             -- Dirichlet
+   wishart               -- Wishart
+   invwishart            -- Inverse Wishart
+   special_ortho_group   -- SO(N) group
+   ortho_group           -- O(N) group
 
 Discrete distributions
 ======================
@@ -190,27 +168,28 @@ which work for masked arrays.
    normaltest        --
    skew              -- Skewness
    skewtest          --
+   kstat             --
+   kstatvar          --
    tmean             -- Truncated arithmetic mean
    tvar              -- Truncated variance
    tmin              --
    tmax              --
    tstd              --
    tsem              --
-   nanmean           -- Mean, ignoring NaN values
-   nanstd            -- Standard deviation, ignoring NaN values
-   nanmedian         -- Median, ignoring NaN values
    variation         -- Coefficient of variation
+   find_repeats
+   trim_mean
 
 .. autosummary::
    :toctree: generated/
 
-   cumfreq           _
-   histogram2        _
-   histogram         _
-   itemfreq          _
-   percentileofscore _
-   scoreatpercentile _
-   relfreq           _
+   cumfreq
+   histogram2
+   histogram
+   itemfreq
+   percentileofscore
+   scoreatpercentile
+   relfreq
 
 .. autosummary::
    :toctree: generated/
@@ -225,6 +204,7 @@ which work for masked arrays.
    obrientransform
    signaltonoise
    bayes_mvs
+   mvsdist
    sem
    zmap
    zscore
@@ -247,12 +227,14 @@ which work for masked arrays.
    kendalltau
    linregress
    theilslopes
+   f_value
 
 .. autosummary::
    :toctree: generated/
 
    ttest_1samp
    ttest_ind
+   ttest_ind_from_stats
    ttest_rel
    kstest
    chisquare
@@ -265,6 +247,10 @@ which work for masked arrays.
    wilcoxon
    kruskal
    friedmanchisquare
+   combine_pvalues
+   ss
+   square_of_sums
+   jarque_bera
 
 .. autosummary::
    :toctree: generated/
@@ -289,6 +275,22 @@ which work for masked arrays.
 
    entropy
 
+.. autosummary::
+   :toctree: generated/
+
+   chisqprob
+   betai
+
+Circular statistical functions
+==============================
+
+.. autosummary::
+   :toctree: generated/
+
+   circmean
+   circvar
+   circstd
+
 Contingency table functions
 ===========================
 
@@ -335,21 +337,11 @@ interface package rpy.
 from __future__ import division, print_function, absolute_import
 from scipy.stats import *
 from .core import *
-from .stats import *
 from .distributions import *
-from .rv import *
-from .morestats import *
-from ._binned_statistic import *
-from .kde import gaussian_kde
-from . import mstats
-from .contingency import chi2_contingency
-from ._multivariate import *
 from . import estimation
 
 #remove vonmises_cython from __all__, I don't know why it is included
 __all__ = [s for s in dir() if not (s.startswith('_') or s.endswith('cython'))]
-#import distributions #@Reimport
-#from wafo.stats.distributions import *
 
 from numpy.testing import Tester
 test = Tester().test
diff --git a/wafo/stats/_binned_statistic.py b/wafo/stats/_binned_statistic.py
deleted file mode 100644
index ff5d353..0000000
--- a/wafo/stats/_binned_statistic.py
+++ /dev/null
@@ -1,408 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import warnings
-
-import numpy as np
-from scipy._lib.six import callable
-
-
-def binned_statistic(x, values, statistic='mean',
-                     bins=10, range=None):
-    """
-    Compute a binned statistic for a set of data.
-
-    This is a generalization of a histogram function.  A histogram divides
-    the space into bins, and returns the count of the number of points in
-    each bin.  This function allows the computation of the sum, mean, median,
-    or other statistic of the values within each bin.
-
-    Parameters
-    ----------
-    x : array_like
-        A sequence of values to be binned.
-    values : array_like
-        The values on which the statistic will be computed.  This must be
-        the same shape as `x`.
-    statistic : string or callable, optional
-        The statistic to compute (default is 'mean').
-        The following statistics are available:
-
-          * 'mean' : compute the mean of values for points within each bin.
-            Empty bins will be represented by NaN.
-          * 'median' : compute the median of values for points within each
-            bin. Empty bins will be represented by NaN.
-          * 'count' : compute the count of points within each bin.  This is
-            identical to an unweighted histogram.  `values` array is not
-            referenced.
-          * 'sum' : compute the sum of values for points within each bin.
-            This is identical to a weighted histogram.
-          * function : a user-defined function which takes a 1D array of
-            values, and outputs a single numerical statistic. This function
-            will be called on the values in each bin.  Empty bins will be
-            represented by function([]), or NaN if this returns an error.
-
-    bins : int or sequence of scalars, optional
-        If `bins` is an int, it defines the number of equal-width
-        bins in the given range (10, by default). If `bins` is a sequence,
-        it defines the bin edges, including the rightmost edge, allowing
-        for non-uniform bin widths.
-    range : (float, float) or [(float, float)], optional
-        The lower and upper range of the bins.  If not provided, range
-        is simply ``(x.min(), x.max())``.  Values outside the range are
-        ignored.
-
-    Returns
-    -------
-    statistic : array
-        The values of the selected statistic in each bin.
-    bin_edges : array of dtype float
-        Return the bin edges ``(length(statistic)+1)``.
-    binnumber : 1-D ndarray of ints
-        This assigns to each observation an integer that represents the bin
-        in which this observation falls. Array has the same length as values.
-
-    See Also
-    --------
-    numpy.histogram, binned_statistic_2d, binned_statistic_dd
-
-    Notes
-    -----
-    All but the last (righthand-most) bin is half-open.  In other words, if
-    `bins` is::
-
-      [1, 2, 3, 4]
-
-    then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the
-    second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which *includes*
-    4.
-
-    .. versionadded:: 0.11.0
-
-    Examples
-    --------
-    >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean',
-    ... bins=3)
-    (array([ 1.,  2.,  4.]), array([ 1.,  2.,  3.,  4.]), array([1, 2, 1, 2, 3]))
-
-    >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', bins=3)
-    (array([ 1.,  2.,  4.]), array([ 1.,  2.,  3.,  4.]), array([1, 2, 1, 2, 3]))
-
-    """
-    try:
-        N = len(bins)
-    except TypeError:
-        N = 1
-
-    if N != 1:
-        bins = [np.asarray(bins, float)]
-
-    if range is not None:
-        if len(range) == 2:
-            range = [range]
-
-    medians, edges, xy = binned_statistic_dd([x], values, statistic,
-                                             bins, range)
-
-    return medians, edges[0], xy
-
-
-def binned_statistic_2d(x, y, values, statistic='mean',
-                        bins=10, range=None):
-    """
-    Compute a bidimensional binned statistic for a set of data.
-
-    This is a generalization of a histogram2d function.  A histogram divides
-    the space into bins, and returns the count of the number of points in
-    each bin.  This function allows the computation of the sum, mean, median,
-    or other statistic of the values within each bin.
-
-    Parameters
-    ----------
-    x : (N,) array_like
-        A sequence of values to be binned along the first dimension.
-    y : (M,) array_like
-        A sequence of values to be binned along the second dimension.
-    values : (N,) array_like
-        The values on which the statistic will be computed.  This must be
-        the same shape as `x`.
-    statistic : string or callable, optional
-        The statistic to compute (default is 'mean').
-        The following statistics are available:
-
-          * 'mean' : compute the mean of values for points within each bin.
-            Empty bins will be represented by NaN.
-          * 'median' : compute the median of values for points within each
-            bin. Empty bins will be represented by NaN.
-          * 'count' : compute the count of points within each bin.  This is
-            identical to an unweighted histogram.  `values` array is not
-            referenced.
-          * 'sum' : compute the sum of values for points within each bin.
-            This is identical to a weighted histogram.
-          * function : a user-defined function which takes a 1D array of
-            values, and outputs a single numerical statistic. This function
-            will be called on the values in each bin.  Empty bins will be
-            represented by function([]), or NaN if this returns an error.
-
-    bins : int or [int, int] or array-like or [array, array], optional
-        The bin specification:
-
-          * the number of bins for the two dimensions (nx=ny=bins),
-          * the number of bins in each dimension (nx, ny = bins),
-          * the bin edges for the two dimensions (x_edges = y_edges = bins),
-          * the bin edges in each dimension (x_edges, y_edges = bins).
-
-    range : (2,2) array_like, optional
-        The leftmost and rightmost edges of the bins along each dimension
-        (if not specified explicitly in the `bins` parameters):
-        [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
-        considered outliers and not tallied in the histogram.
-
-    Returns
-    -------
-    statistic : (nx, ny) ndarray
-        The values of the selected statistic in each two-dimensional bin
-    xedges : (nx + 1) ndarray
-        The bin edges along the first dimension.
-    yedges : (ny + 1) ndarray
-        The bin edges along the second dimension.
-    binnumber : 1-D ndarray of ints
-        This assigns to each observation an integer that represents the bin
-        in which this observation falls. Array has the same length as `values`.
-
-    See Also
-    --------
-    numpy.histogram2d, binned_statistic, binned_statistic_dd
-
-    Notes
-    -----
-
-    .. versionadded:: 0.11.0
-
-    """
-
-    # This code is based on np.histogram2d
-    try:
-        N = len(bins)
-    except TypeError:
-        N = 1
-
-    if N != 1 and N != 2:
-        xedges = yedges = np.asarray(bins, float)
-        bins = [xedges, yedges]
-
-    medians, edges, xy = binned_statistic_dd([x, y], values, statistic,
-                                             bins, range)
-
-    return medians, edges[0], edges[1], xy
-
-
-def binned_statistic_dd(sample, values, statistic='mean',
-                        bins=10, range=None):
-    """
-    Compute a multidimensional binned statistic for a set of data.
-
-    This is a generalization of a histogramdd function.  A histogram divides
-    the space into bins, and returns the count of the number of points in
-    each bin.  This function allows the computation of the sum, mean, median,
-    or other statistic of the values within each bin.
-
-    Parameters
-    ----------
-    sample : array_like
-        Data to histogram passed as a sequence of D arrays of length N, or
-        as an (N,D) array.
-    values : array_like
-        The values on which the statistic will be computed.  This must be
-        the same shape as x.
-    statistic : string or callable, optional
-        The statistic to compute (default is 'mean').
-        The following statistics are available:
-
-          * 'mean' : compute the mean of values for points within each bin.
-            Empty bins will be represented by NaN.
-          * 'median' : compute the median of values for points within each
-            bin. Empty bins will be represented by NaN.
-          * 'count' : compute the count of points within each bin.  This is
-            identical to an unweighted histogram.  `values` array is not
-            referenced.
-          * 'sum' : compute the sum of values for points within each bin.
-            This is identical to a weighted histogram.
-          * function : a user-defined function which takes a 1D array of
-            values, and outputs a single numerical statistic. This function
-            will be called on the values in each bin.  Empty bins will be
-            represented by function([]), or NaN if this returns an error.
-
-    bins : sequence or int, optional
-        The bin specification:
-
-          * A sequence of arrays describing the bin edges along each dimension.
-          * The number of bins for each dimension (nx, ny, ... =bins)
-          * The number of bins for all dimensions (nx=ny=...=bins).
-
-    range : sequence, optional
-        A sequence of lower and upper bin edges to be used if the edges are
-        not given explicitely in `bins`. Defaults to the minimum and maximum
-        values along each dimension.
-
-    Returns
-    -------
-    statistic : ndarray, shape(nx1, nx2, nx3,...)
-        The values of the selected statistic in each two-dimensional bin
-    edges : list of ndarrays
-        A list of D arrays describing the (nxi + 1) bin edges for each
-        dimension
-    binnumber : 1-D ndarray of ints
-        This assigns to each observation an integer that represents the bin
-        in which this observation falls. Array has the same length as values.
-
-    See Also
-    --------
-    np.histogramdd, binned_statistic, binned_statistic_2d
-
-    Notes
-    -----
-
-    .. versionadded:: 0.11.0
-
-    """
-    if type(statistic) == str:
-        if statistic not in ['mean', 'median', 'count', 'sum', 'std']:
-            raise ValueError('unrecognized statistic "%s"' % statistic)
-    elif callable(statistic):
-        pass
-    else:
-        raise ValueError("statistic not understood")
-
-    # This code is based on np.histogramdd
-    try:
-        # Sample is an ND-array.
-        N, D = sample.shape
-    except (AttributeError, ValueError):
-        # Sample is a sequence of 1D arrays.
-        sample = np.atleast_2d(sample).T
-        N, D = sample.shape
-
-    nbin = np.empty(D, int)
-    edges = D * [None]
-    dedges = D * [None]
-
-    try:
-        M = len(bins)
-        if M != D:
-            raise AttributeError('The dimension of bins must be equal '
-                                 'to the dimension of the sample x.')
-    except TypeError:
-        bins = D * [bins]
-
-    # Select range for each dimension
-    # Used only if number of bins is given.
-    if range is None:
-        smin = np.atleast_1d(np.array(sample.min(0), float))
-        smax = np.atleast_1d(np.array(sample.max(0), float))
-    else:
-        smin = np.zeros(D)
-        smax = np.zeros(D)
-        for i in np.arange(D):
-            smin[i], smax[i] = range[i]
-
-    # Make sure the bins have a finite width.
-    for i in np.arange(len(smin)):
-        if smin[i] == smax[i]:
-            smin[i] = smin[i] - .5
-            smax[i] = smax[i] + .5
-
-    # Create edge arrays
-    for i in np.arange(D):
-        if np.isscalar(bins[i]):
-            nbin[i] = bins[i] + 2  # +2 for outlier bins
-            edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1)
-        else:
-            edges[i] = np.asarray(bins[i], float)
-            nbin[i] = len(edges[i]) + 1  # +1 for outlier bins
-        dedges[i] = np.diff(edges[i])
-
-    nbin = np.asarray(nbin)
-
-    # Compute the bin number each sample falls into.
-    Ncount = {}
-    for i in np.arange(D):
-        Ncount[i] = np.digitize(sample[:, i], edges[i])
-
-    # Using digitize, values that fall on an edge are put in the right bin.
-    # For the rightmost bin, we want values equal to the right
-    # edge to be counted in the last bin, and not as an outlier.
-    for i in np.arange(D):
-        # Rounding precision
-        decimal = int(-np.log10(dedges[i].min())) + 6
-        # Find which points are on the rightmost edge.
-        on_edge = np.where(np.around(sample[:, i], decimal)
-                           == np.around(edges[i][-1], decimal))[0]
-        # Shift these points one bin to the left.
-        Ncount[i][on_edge] -= 1
-
-    # Compute the sample indices in the flattened statistic matrix.
-    ni = nbin.argsort()
-    xy = np.zeros(N, int)
-    for i in np.arange(0, D - 1):
-        xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod()
-    xy += Ncount[ni[-1]]
-
-    result = np.empty(nbin.prod(), float)
-
-    if statistic == 'mean':
-        result.fill(np.nan)
-        flatcount = np.bincount(xy, None)
-        flatsum = np.bincount(xy, values)
-        a = flatcount.nonzero()
-        result[a] = flatsum[a] / flatcount[a]
-    elif statistic == 'std':
-        result.fill(0)
-        flatcount = np.bincount(xy, None)
-        flatsum = np.bincount(xy, values)
-        flatsum2 = np.bincount(xy, values ** 2)
-        a = flatcount.nonzero()
-        result[a] = np.sqrt(flatsum2[a] / flatcount[a]
-                            - (flatsum[a] / flatcount[a]) ** 2)
-    elif statistic == 'count':
-        result.fill(0)
-        flatcount = np.bincount(xy, None)
-        a = np.arange(len(flatcount))
-        result[a] = flatcount
-    elif statistic == 'sum':
-        result.fill(0)
-        flatsum = np.bincount(xy, values)
-        a = np.arange(len(flatsum))
-        result[a] = flatsum
-    elif statistic == 'median':
-        result.fill(np.nan)
-        for i in np.unique(xy):
-            result[i] = np.median(values[xy == i])
-    elif callable(statistic):
-        with warnings.catch_warnings():
-            # Numpy generates a warnings for mean/std/... with empty list
-            warnings.filterwarnings('ignore', category=RuntimeWarning)
-            old = np.seterr(invalid='ignore')
-            try:
-                null = statistic([])
-            except:
-                null = np.nan
-            np.seterr(**old)
-        result.fill(null)
-        for i in np.unique(xy):
-            result[i] = statistic(values[xy == i])
-
-    # Shape into a proper matrix
-    result = result.reshape(np.sort(nbin))
-    for i in np.arange(nbin.size):
-        j = ni.argsort()[i]
-        result = result.swapaxes(i, j)
-        ni[i], ni[j] = ni[j], ni[i]
-
-    # Remove outliers (indices 0 and -1 for each dimension).
-    core = D * [slice(1, -1)]
-    result = result[core]
-
-    if (result.shape != nbin - 2).any():
-        raise RuntimeError('Internal Shape Error')
-
-    return result, edges, xy
diff --git a/wafo/stats/_constants.py b/wafo/stats/_constants.py
index 4b5048f..552e697 100644
--- a/wafo/stats/_constants.py
+++ b/wafo/stats/_constants.py
@@ -13,6 +13,10 @@ _EPS = np.finfo(float).eps
 # The largest [in magnitude] usable floating value.
 _XMAX = np.finfo(float).machar.xmax
 
+# The log of the largest usable floating value; useful for knowing
+# when exp(something) will overflow
+_LOGXMAX = np.log(_XMAX)
+
 # The smallest [in magnitude] usable floating value.
 _XMIN = np.finfo(float).machar.xmin
 
@@ -21,4 +25,3 @@ _EULER = 0.577215664901532860606512090082402431042
 
 # special.zeta(3, 1)  Apery's constant
 _ZETA3 = 1.202056903159594285399738161511449990765
-
diff --git a/wafo/stats/_continuous_distns.py b/wafo/stats/_continuous_distns.py
index f6c9fd2..504ce8e 100644
--- a/wafo/stats/_continuous_distns.py
+++ b/wafo/stats/_continuous_distns.py
@@ -12,68 +12,41 @@ from scipy import special
 from scipy import optimize
 from scipy import integrate
 from scipy.special import (gammaln as gamln, gamma as gam, boxcox, boxcox1p,
-                           log1p, expm1)  # inv_boxcox, inv_boxcox1p)
+                           inv_boxcox, inv_boxcox1p, erfc, chndtr, chndtrix,
+                           log1p, expm1)
 
-from numpy import (where, arange, putmask, ravel, sum, shape,
+from numpy import (where, arange, putmask, ravel, shape,
                    log, sqrt, exp, arctanh, tan, sin, arcsin, arctan,
                    tanh, cos, cosh, sinh)
 
-from numpy import polyval, place, extract, any, asarray, nan, inf, pi
+from numpy import polyval, place, extract, asarray, nan, inf, pi
 
 import numpy as np
-import numpy.random as mtrand
+from scipy.stats.mstats_basic import mode
 try:
     from scipy.stats import vonmises_cython
 except:
     vonmises_cython = None
-# try:
-#    from scipy.stats._tukeylambda_stats import \
-#                        tukeylambda_variance as _tlvar, \
-#                        tukeylambda_kurtosis as _tlkurt
-# except:
-#    _tlvar = _tlkurt = None
-# from . import vonmises_cython
-from ._tukeylambda_stats import (tukeylambda_variance as _tlvar,
-                                 tukeylambda_kurtosis as _tlkurt)
+
+from scipy.stats._tukeylambda_stats import (tukeylambda_variance as _tlvar,
+                                            tukeylambda_kurtosis as _tlkurt)
 
 from ._distn_infrastructure import (
-    rv_continuous, valarray, _skew, _kurtosis, _lazywhere,
-    _ncx2_log_pdf, _ncx2_pdf, _ncx2_cdf, get_distribution_names)
-
-from ._constants import _XMIN, _EULER, _ZETA3, _EPS
-from .stats import mode
-# from .estimation import FitDistribution
-
-__all__ = [
-    'ksone', 'kstwobign', 'norm', 'alpha', 'anglit', 'arcsine',
-    'beta', 'betaprime', 'bradford', 'burr', 'fisk', 'cauchy',
-    'chi', 'chi2', 'cosine', 'dgamma', 'dweibull', 'erlang',
-    'expon', 'exponweib', 'exponpow', 'fatiguelife', 'foldcauchy',
-    'f', 'foldnorm', 'frechet_r', 'weibull_min', 'frechet_l',
-    'weibull_max', 'genlogistic', 'genpareto', 'genexpon', 'genextreme',
-    'gamma', 'gengamma', 'genhalflogistic', 'gompertz', 'gumbel_r',
-    'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm', 'hypsecant',
-    'gausshyper', 'invgamma', 'invgauss', 'invweibull',
-    'johnsonsb', 'johnsonsu', 'laplace', 'levy', 'levy_l',
-    'levy_stable', 'logistic', 'loggamma', 'loglaplace', 'lognorm',
-    'gilbrat', 'maxwell', 'mielke', 'nakagami', 'ncx2', 'ncf', 't',
-    'nct', 'pareto', 'lomax', 'pearson3', 'powerlaw', 'powerlognorm',
-    'powernorm', 'rdist', 'rayleigh', 'reciprocal', 'rice',
-    'truncrayleigh',
-    'recipinvgauss', 'semicircular', 'triang', 'truncexpon',
-    'truncnorm', 'tukeylambda', 'uniform', 'vonmises', 'vonmises_line',
-    'wald', 'wrapcauchy']
-
-
-# Kolmogorov-Smirnov one-sided and two-sided test statistics
-class ksone_gen(rv_continuous):
+        rv_continuous, valarray, _skew, _kurtosis,  # @UnresolvedImport
+        _lazywhere,  _ncx2_log_pdf, _ncx2_pdf, _ncx2_cdf,  # @UnresolvedImport
+        get_distribution_names,  # @UnresolvedImport
+        )
+
+from ._constants import _XMIN, _EULER, _ZETA3, _XMAX, _LOGXMAX, _EPS
 
+
+## Kolmogorov-Smirnov one-sided and two-sided test statistics
+class ksone_gen(rv_continuous):
     """General Kolmogorov-Smirnov one-sided test.
 
     %(default)s
 
     """
-
     def _cdf(self, x, n):
         return 1.0 - special.smirnov(n, x)
 
@@ -83,13 +56,11 @@ ksone = ksone_gen(a=0.0, name='ksone')
 
 
 class kstwobign_gen(rv_continuous):
-
     """Kolmogorov-Smirnov two-sided test for large N.
 
     %(default)s
 
     """
-
     def _cdf(self, x):
         return 1.0 - special.kolmogorov(x)
 
@@ -97,25 +68,25 @@ class kstwobign_gen(rv_continuous):
         return special.kolmogorov(x)
 
     def _ppf(self, q):
-        return special.kolmogi(1.0 - q)
+        return special.kolmogi(1.0-q)
 kstwobign = kstwobign_gen(a=0.0, name='kstwobign')
 
 
-# Normal distribution
+## Normal distribution
 
 # loc = mu, scale = std
 # Keep these implementations out of the class definition so they can be reused
 # by other distributions.
-_norm_pdf_C = np.sqrt(2 * pi)
+_norm_pdf_C = np.sqrt(2*pi)
 _norm_pdf_logC = np.log(_norm_pdf_C)
 
 
 def _norm_pdf(x):
-    return exp(-x ** 2 / 2.0) / _norm_pdf_C
+    return exp(-x**2/2.0) / _norm_pdf_C
 
 
 def _norm_logpdf(x):
-    return -x ** 2 / 2.0 - _norm_pdf_logC
+    return -x**2 / 2.0 - _norm_pdf_logC
 
 
 def _norm_cdf(x):
@@ -143,7 +114,6 @@ def _norm_isf(q):
 
 
 class norm_gen(rv_continuous):
-
     """A normal continuous random variable.
 
     The location (loc) keyword specifies the mean.
@@ -157,12 +127,13 @@ class norm_gen(rv_continuous):
 
         norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self):
-        return mtrand.standard_normal(self._size)
+        return self._random_state.standard_normal(self._size)
 
     def _pdf(self, x):
         return _norm_pdf(x)
@@ -192,7 +163,7 @@ class norm_gen(rv_continuous):
         return 0.0, 1.0, 0.0, 0.0
 
     def _entropy(self):
-        return 0.5 * (log(2 * pi) + 1)
+        return 0.5*(log(2*pi)+1)
 
     @inherit_docstring_from(rv_continuous)
     def fit(self, data, **kwds):
@@ -219,7 +190,7 @@ class norm_gen(rv_continuous):
             loc = floc
 
         if fscale is None:
-            scale = np.sqrt(((data - loc) ** 2).mean())
+            scale = np.sqrt(((data - loc)**2).mean())
         else:
             scale = fscale
 
@@ -229,7 +200,6 @@ norm = norm_gen(name='norm')
 
 
 class alpha_gen(rv_continuous):
-
     """An alpha continuous random variable.
 
     %(before_notes)s
@@ -242,29 +212,31 @@ class alpha_gen(rv_continuous):
 
     where ``Phi(alpha)`` is the normal CDF, ``x > 0``, and ``a > 0``.
 
+    `alpha` takes ``a`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, a):
-        return 1.0 / (x ** 2) / special.ndtr(a) * _norm_pdf(a - 1.0 / x)
+        return 1.0/(x**2)/special.ndtr(a)*_norm_pdf(a-1.0/x)
 
     def _logpdf(self, x, a):
-        return -2 * log(x) + _norm_logpdf(a - 1.0 / x) - log(special.ndtr(a))
+        return -2*log(x) + _norm_logpdf(a-1.0/x) - log(special.ndtr(a))
 
     def _cdf(self, x, a):
-        return special.ndtr(a - 1.0 / x) / special.ndtr(a)
+        return special.ndtr(a-1.0/x) / special.ndtr(a)
 
     def _ppf(self, q, a):
-        return 1.0 / asarray(a - special.ndtri(q * special.ndtr(a)))
+        return 1.0/asarray(a-special.ndtri(q*special.ndtr(a)))
 
     def _stats(self, a):
-        return [inf] * 2 + [nan] * 2
+        return [inf]*2 + [nan]*2
 alpha = alpha_gen(a=0.0, name='alpha')
 
 
 class anglit_gen(rv_continuous):
-
     """An anglit continuous random variable.
 
     %(before_notes)s
@@ -277,30 +249,29 @@ class anglit_gen(rv_continuous):
 
     for ``-pi/4 <= x <= pi/4``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return cos(2 * x)
+        return cos(2*x)
 
     def _cdf(self, x):
-        return sin(x + pi / 4) ** 2.0
+        return sin(x+pi/4)**2.0
 
     def _ppf(self, q):
-        return (arcsin(sqrt(q)) - pi / 4)
+        return (arcsin(sqrt(q))-pi/4)
 
     def _stats(self):
-        return 0.0, pi * pi / 16 - 0.5, 0.0, -2 * \
-            (pi ** 4 - 96) / (pi * pi - 8) ** 2
+        return 0.0, pi*pi/16-0.5, 0.0, -2*(pi**4 - 96)/(pi*pi-8)**2
 
     def _entropy(self):
-        return 1 - log(2)
-anglit = anglit_gen(a=-pi / 4, b=pi / 4, name='anglit')
+        return 1-log(2)
+anglit = anglit_gen(a=-pi/4, b=pi/4, name='anglit')
 
 
 class arcsine_gen(rv_continuous):
-
     """An arcsine continuous random variable.
 
     %(before_notes)s
@@ -313,24 +284,25 @@ class arcsine_gen(rv_continuous):
 
     for ``0 < x < 1``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 1.0 / pi / sqrt(x * (1 - x))
+        return 1.0/pi/sqrt(x*(1-x))
 
     def _cdf(self, x):
-        return 2.0 / pi * arcsin(sqrt(x))
+        return 2.0/pi*arcsin(sqrt(x))
 
     def _ppf(self, q):
-        return sin(pi / 2.0 * q) ** 2.0
+        return sin(pi/2.0*q)**2.0
 
     def _stats(self):
         mu = 0.5
-        mu2 = 1.0 / 8
+        mu2 = 1.0/8
         g1 = 0
-        g2 = -3.0 / 2.0
+        g2 = -3.0/2.0
         return mu, mu2, g1, g2
 
     def _entropy(self):
@@ -342,7 +314,6 @@ class FitDataError(ValueError):
     # This exception is raised by, for example, beta_gen.fit when both floc
     # and fscale  are fixed and there are values in the data not in the open
     # interval (floc, floc+fscale).
-
     def __init__(self, distr, lower, upper):
         self.args = (
             "Invalid values in `data`.  Maximum likelihood "
@@ -355,7 +326,6 @@ class FitDataError(ValueError):
 class FitSolverError(RuntimeError):
     # This exception is raised by, for example, beta_gen.fit when
     # optimize.fsolve returns with ier != 1.
-
     def __init__(self, mesg):
         emsg = "Solver for the MLE equations failed to converge: "
         emsg += mesg.replace('\n', '')
@@ -386,7 +356,6 @@ def _beta_mle_ab(theta, n, s1, s2):
 
 
 class beta_gen(rv_continuous):
-
     """A beta continuous random variable.
 
     %(before_notes)s
@@ -402,18 +371,21 @@ class beta_gen(rv_continuous):
     for ``0 < x < 1``, ``a > 0``, ``b > 0``, where ``gamma(z)`` is the gamma
     function (`scipy.special.gamma`).
 
+    `beta` takes ``a`` and ``b`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, a, b):
-        return mtrand.beta(a, b, self._size)
+        return self._random_state.beta(a, b, self._size)
 
     def _pdf(self, x, a, b):
         return np.exp(self._logpdf(x, a, b))
 
     def _logpdf(self, x, a, b):
-        lPx = special.xlog1py(b - 1.0, -x) + special.xlogy(a - 1.0, x)
+        lPx = special.xlog1py(b-1.0, -x) + special.xlogy(a-1.0, x)
         lPx -= special.betaln(a, b)
         return lPx
 
@@ -424,12 +396,11 @@ class beta_gen(rv_continuous):
         return special.btdtri(a, b, q)
 
     def _stats(self, a, b):
-        mn = a * 1.0 / (a + b)
-        var = (a * b * 1.0) / (a + b + 1.0) / (a + b) ** 2.0
-        g1 = 2.0 * (b - a) * sqrt((1.0 + a + b) / (a * b)) / (2 + a + b)
-        g2 = 6.0 * (a ** 3 + a ** 2 * (1 - 2 * b) + b **
-                    2 * (1 + b) - 2 * a * b * (2 + b))
-        g2 /= a * b * (a + b + 2) * (a + b + 3)
+        mn = a*1.0 / (a + b)
+        var = (a*b*1.0)/(a+b+1.0)/(a+b)**2.0
+        g1 = 2.0*(b-a)*sqrt((1.0+a+b)/(a*b)) / (2+a+b)
+        g2 = 6.0*(a**3 + a**2*(1-2*b) + b**2*(1+b) - 2*a*b*(2+b))
+        g2 /= a*b*(a+b+2)*(a+b+3)
         return mn, var, g1, g2
 
     def _fitstart(self, data):
@@ -438,12 +409,11 @@ class beta_gen(rv_continuous):
 
         def func(x):
             a, b = x
-            sk = 2 * (b - a) * sqrt(a + b + 1) / (a + b + 2) / sqrt(a * b)
-            ku = a ** 3 - a ** 2 * \
-                (2 * b - 1) + b ** 2 * (b + 1) - 2 * a * b * (b + 2)
-            ku /= a * b * (a + b + 2) * (a + b + 3)
+            sk = 2*(b-a)*sqrt(a + b + 1) / (a + b + 2) / sqrt(a*b)
+            ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2)
+            ku /= a*b*(a+b+2)*(a+b+3)
             ku *= 6
-            return [sk - g1, ku - g2]
+            return [sk-g1, ku-g2]
         a, b = optimize.fsolve(func, (1.0, 1.0))
         return super(beta_gen, self)._fitstart(data, args=(a, b))
 
@@ -457,8 +427,10 @@ class beta_gen(rv_continuous):
         # Override rv_continuous.fit, so we can more efficiently handle the
         # case where floc and fscale are given.
 
-        f0 = kwds.get('f0', None)
-        f1 = kwds.get('f1', None)
+        f0 = (kwds.get('f0', None) or kwds.get('fa', None) or
+              kwds.get('fix_a', None))
+        f1 = (kwds.get('f1', None) or kwds.get('fb', None) or
+              kwds.get('fix_b', None))
         floc = kwds.get('floc', None)
         fscale = kwds.get('fscale', None)
 
@@ -503,9 +475,11 @@ class beta_gen(rv_continuous):
             a = b * xbar / (1 - xbar)
 
             # Compute the MLE for `a` by solving _beta_mle_a.
-            theta, _info, ier, mesg = optimize.fsolve(
-                _beta_mle_a, a, args=(b, len(data), np.log(data).sum()),
-                full_output=True)
+            theta, info, ier, mesg = optimize.fsolve(
+                _beta_mle_a, a,
+                args=(b, len(data), np.log(data).sum()),
+                full_output=True
+            )
             if ier != 1:
                 raise FitSolverError(mesg=mesg)
             a = theta[0]
@@ -530,9 +504,11 @@ class beta_gen(rv_continuous):
             b = (1 - xbar) * fac
 
             # Compute the MLE for a and b by solving _beta_mle_ab.
-            theta, _info, ier, mesg = optimize.fsolve(
-                _beta_mle_ab, [a, b], args=(len(data), s1, s2),
-                full_output=True)
+            theta, info, ier, mesg = optimize.fsolve(
+                _beta_mle_ab, [a, b],
+                args=(len(data), s1, s2),
+                full_output=True
+            )
             if ier != 1:
                 raise FitSolverError(mesg=mesg)
             a, b = theta
@@ -543,7 +519,6 @@ beta = beta_gen(a=0.0, b=1.0, name='beta')
 
 
 class betaprime_gen(rv_continuous):
-
     """A beta prime continuous random variable.
 
     %(before_notes)s
@@ -557,27 +532,28 @@ class betaprime_gen(rv_continuous):
     for ``x > 0``, ``a > 0``, ``b > 0``, where ``beta(a, b)`` is the beta
     function (see `scipy.special.beta`).
 
+    `betaprime` takes ``a`` and ``b`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, a, b):
-        u1 = gamma.rvs(a, size=self._size)
-        u2 = gamma.rvs(b, size=self._size)
+        sz, rndm = self._size, self._random_state
+        u1 = gamma.rvs(a, size=sz, random_state=rndm)
+        u2 = gamma.rvs(b, size=sz, random_state=rndm)
         return (u1 / u2)
 
     def _pdf(self, x, a, b):
         return np.exp(self._logpdf(x, a, b))
 
     def _logpdf(self, x, a, b):
-        return (special.xlogy(a - 1.0, x) - special.xlog1py(a + b, x) -
+        return (special.xlogy(a-1.0, x) - special.xlog1py(a+b, x) -
                 special.betaln(a, b))
 
     def _cdf(self, x, a, b):
-        return special.betainc(a, b, x / (1. + x))
-        # remove for now: special.hyp2f1 is incorrect for large a
-        # x = where(x == 1.0, 1.0-1e-6, x)
-        # return pow(x, a)*special.hyp2f1(a+b, a, 1+a, -x)/a/special.beta(a, b)
+        return special.betainc(a, b, x/(1.+x))
 
     def _fitstart(self, data):
         g1 = np.mean(data)
@@ -593,26 +569,22 @@ class betaprime_gen(rv_continuous):
 
     def _munp(self, n, a, b):
         if (n == 1.0):
-            return where(b > 1, a / (b - 1.0), inf)
+            return where(b > 1, a/(b-1.0), inf)
         elif (n == 2.0):
-            return where(b > 2, a * (a + 1.0) / ((b - 2.0) * (b - 1.0)), inf)
+            return where(b > 2, a*(a+1.0)/((b-2.0)*(b-1.0)), inf)
         elif (n == 3.0):
-            return where(b > 3,
-                         a * (a + 1.0) * (a + 2.0) /
-                         ((b - 3.0) * (b - 2.0) * (b - 1.0)),
+            return where(b > 3, a*(a+1.0)*(a+2.0)/((b-3.0)*(b-2.0)*(b-1.0)),
                          inf)
         elif (n == 4.0):
             return where(b > 4,
-                         a * (a + 1.0) * (a + 2.0) * (a + 3.0) /
-                         ((b - 4.0) * (b - 3.0) * (b - 2.0) * (b - 1.0)),
-                         inf)
+                         a*(a+1.0)*(a+2.0)*(a+3.0)/((b-4.0)*(b-3.0)
+                                                    * (b-2.0)*(b-1.0)), inf)
         else:
             raise NotImplementedError
 betaprime = betaprime_gen(a=0.0, name='betaprime')
 
 
 class bradford_gen(rv_continuous):
-
     """A Bradford continuous random variable.
 
     %(before_notes)s
@@ -625,10 +597,13 @@ class bradford_gen(rv_continuous):
 
     for ``0 < x < 1``, ``c > 0`` and ``k = log(1+c)``.
 
+    `bradford` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
         return c / (c * x + 1.0) / log1p(c)
 
@@ -636,28 +611,26 @@ class bradford_gen(rv_continuous):
         return log1p(c * x) / log1p(c)
 
     def _ppf(self, q, c):
-        return ((1.0 + c) ** q - 1) / c
+        return ((1.0+c)**q-1)/c
 
     def _stats(self, c, moments='mv'):
         k = log1p(c)
-        mu = (c - k) / (c * k)
-        mu2 = ((c + 2.0) * k - 2.0 * c) / (2 * c * k * k)
+        mu = (c-k)/(c*k)
+        mu2 = ((c+2.0)*k-2.0*c)/(2*c*k*k)
         g1 = None
         g2 = None
         if 's' in moments:
-            g1 = (sqrt(2) * (12 * c * c - 9 * c * k * (c + 2) +
-                             2 * k * k * (c * (c + 3) + 3)))
-            g1 /= sqrt(c * (c * (k - 2) + 2 * k)) * (3 * c * (k - 2) + 6 * k)
+            g1 = sqrt(2)*(12*c*c-9*c*k*(c+2)+2*k*k*(c*(c+3)+3))
+            g1 /= sqrt(c*(c*(k-2)+2*k))*(3*c*(k-2)+6*k)
         if 'k' in moments:
-            g2 = (c ** 3 * (k - 3) * (k * (3 * k - 16) + 24) +
-                  12 * k * c * c * (k - 4) * (k - 3)
-                  + 6 * c * k * k * (3 * k - 14) + 12 * k ** 3)
-            g2 /= 3 * c * (c * (k - 2) + 2 * k) ** 2
+            g2 = (c**3*(k-3)*(k*(3*k-16)+24)+12*k*c*c*(k-4)*(k-3)
+                  + 6*c*k*k*(3*k-14) + 12*k**3)
+            g2 /= 3*c*(c*(k-2)+2*k)**2
         return mu, mu2, g1, g2
 
     def _entropy(self, c):
         k = log1p(c)
-        return k / 2.0 - log(c / k)
+        return k/2.0 - log(c/k)
 
     def _fitstart(self, data):
         loc = data.min() - 1e-4
@@ -671,14 +644,14 @@ bradford = bradford_gen(a=0.0, b=1.0, name='bradford')
 
 
 class burr_gen(rv_continuous):
-
-    """A Burr continuous random variable.
+    """A Burr (Type III) continuous random variable.
 
     %(before_notes)s
 
     See Also
     --------
-    fisk : a special case of `burr` with ``d = 1``
+    fisk : a special case of either `burr` or ``burr12`` with ``d = 1``
+    burr12 : Burr Type XII distribution
 
     Notes
     -----
@@ -688,19 +661,29 @@ class burr_gen(rv_continuous):
 
     for ``x > 0``.
 
+    `burr` takes ``c`` and ``d`` as shape parameters.
+
+    This is the PDF corresponding to the third CDF given in Burr's list;
+    specifically, it is equation (11) in Burr's paper [1]_.
+
+    %(after_notes)s
+
+    References
+    ----------
+    .. [1] Burr, I. W. "Cumulative frequency functions", Annals of
+       Mathematical Statistics, 13(2), pp 215-232 (1942).
+
     %(example)s
 
     """
-
     def _pdf(self, x, c, d):
-        return c * d * (x ** (-c - 1.0)) * \
-            ((1 + x ** (-c * 1.0)) ** (-d - 1.0))
+        return c * d * (x**(-c - 1.0)) * ((1 + x**(-c))**(-d - 1.0))
 
     def _cdf(self, x, c, d):
-        return (1 + x ** (-c * 1.0)) ** (-d ** 1.0)
+        return (1 + x**(-c))**(-d)
 
     def _ppf(self, q, c, d):
-        return (q ** (-1.0 / d) - 1) ** (-1.0 / c)
+        return (q**(-1.0/d) - 1)**(-1.0/c)
 
     def _munp(self, n, c, d):
         nc = 1. * n / c
@@ -708,15 +691,93 @@ class burr_gen(rv_continuous):
 burr = burr_gen(a=0.0, name='burr')
 
 
-class fisk_gen(burr_gen):
+class burr12_gen(rv_continuous):
+    """A Burr (Type XII) continuous random variable.
+
+    %(before_notes)s
+
+    See Also
+    --------
+    fisk : a special case of either `burr` or ``burr12`` with ``d = 1``
+    burr : Burr Type III distribution
+
+    Notes
+    -----
+    The probability density function for `burr` is::
+
+        burr12.pdf(x, c, d) = c * d * x**(c-1) * (1+x**(c))**(-d-1)
+
+    for ``x > 0``.
+
+    `burr12` takes ``c`` and ``d`` as shape parameters.
+
+    This is the PDF corresponding to the twelfth CDF given in Burr's list;
+    specifically, it is equation (20) in Burr's paper [1]_.
+
+    %(after_notes)s
+
+    The Burr type 12 distribution is also sometimes referred to as
+    the Singh-Maddala distribution from NIST [2]_.
 
+    References
+    ----------
+    .. [1] Burr, I. W. "Cumulative frequency functions", Annals of
+       Mathematical Statistics, 13(2), pp 215-232 (1942).
+
+    .. [2] http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/b12pdf.htm
+
+    %(example)s
+
+    """
+    def _pdf(self, x, c, d):
+        return np.exp(self._logpdf(x, c, d))
+
+    def _logpdf(self, x, c, d):
+        return log(c) + log(d) + special.xlogy(c-1, x) + special.xlog1py(-d-1, x**c)
+
+    def _cdf(self, x, c, d):
+        return 1 - self._sf(x, c, d)
+
+    def _logcdf(self, x, c, d):
+        return special.log1p(-(1 + x**c)**(-d))
+
+    def _sf(self, x, c, d):
+        return np.exp(self._logsf(x, c, d))
+
+    def _logsf(self, x, c, d):
+        return special.xlog1py(-d, x**c)
+
+    def _ppf(self, q, c, d):
+        return ((1 - q)**(-1.0/d) - 1)**(1.0/c)
+
+    def _munp(self, n, c, d):
+        nc = 1. * n / c
+        return d * special.beta(1.0 + nc, d - nc)
+burr12 = burr12_gen(a=0.0, name='burr12')
+
+
+class fisk_gen(burr_gen):
     """A Fisk continuous random variable.
 
     The Fisk distribution is also known as the log-logistic distribution, and
     equals the Burr distribution with ``d == 1``.
 
+    `fisk` takes ``c`` as a shape parameter.
+
     %(before_notes)s
 
+    Notes
+    -----
+    The probability density function for `fisk` is::
+
+        fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)
+
+    for ``x > 0``.
+
+    `fisk` takes ``c`` as a shape parameters.
+
+    %(after_notes)s
+
     See Also
     --------
     burr
@@ -724,7 +785,6 @@ class fisk_gen(burr_gen):
     %(example)s
 
     """
-
     def _pdf(self, x, c):
         return burr_gen._pdf(self, x, c, 1.0)
 
@@ -744,7 +804,6 @@ fisk = fisk_gen(a=0.0, name='fisk')
 
 # median = loc
 class cauchy_gen(rv_continuous):
-
     """A Cauchy continuous random variable.
 
     %(before_notes)s
@@ -755,38 +814,40 @@ class cauchy_gen(rv_continuous):
 
         cauchy.pdf(x) = 1 / (pi * (1 + x**2))
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 1.0 / pi / (1.0 + x * x)
+        return 1.0/pi/(1.0+x*x)
 
     def _cdf(self, x):
-        return 0.5 + 1.0 / pi * arctan(x)
+        return 0.5 + 1.0/pi*arctan(x)
 
     def _ppf(self, q):
-        return tan(pi * q - pi / 2.0)
+        return tan(pi*q-pi/2.0)
 
     def _sf(self, x):
-        return 0.5 - 1.0 / pi * arctan(x)
+        return 0.5 - 1.0/pi*arctan(x)
 
     def _isf(self, q):
-        return tan(pi / 2.0 - pi * q)
+        return tan(pi/2.0-pi*q)
 
     def _stats(self):
-        return inf, inf, nan, nan
+        return nan, nan, nan, nan
 
     def _entropy(self):
-        return log(4 * pi)
+        return log(4*pi)
 
     def _fitstart(self, data, args=None):
-        return (0, 1)
+        # Initialize ML guesses using quartiles instead of moments.
+        p25, p50, p75 = np.percentile(data, [25, 50, 75])
+        return p50, (p75 - p25)/2
 cauchy = cauchy_gen(name='cauchy')
 
 
 class chi_gen(rv_continuous):
-
     """A chi continuous random variable.
 
     %(before_notes)s
@@ -805,29 +866,36 @@ class chi_gen(rv_continuous):
         - ``chi(2, 0, scale)`` is equivalent to `rayleigh`
         - ``chi(3, 0, scale)`` is equivalent to `maxwell`
 
+    `chi` takes ``df`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, df):
-        return sqrt(chi2.rvs(df, size=self._size))
+        sz, rndm = self._size, self._random_state
+        return sqrt(chi2.rvs(df, size=sz, random_state=rndm))
 
     def _pdf(self, x, df):
-        return x ** (df - 1.) * exp(-x * x * 0.5) / \
-            (2.0) ** (df * 0.5 - 1) / gam(df * 0.5)
+        return np.exp(self._logpdf(x, df))
+
+    def _logpdf(self, x, df):
+        l = np.log(2) - .5*np.log(2)*df - special.gammaln(.5*df)
+        return l + special.xlogy(df-1.,x) - .5*x**2
 
     def _cdf(self, x, df):
-        return special.gammainc(df * 0.5, 0.5 * x * x)
+        return special.gammainc(.5*df, .5*x**2)
 
     def _ppf(self, q, df):
-        return sqrt(2 * special.gammaincinv(df * 0.5, q))
+        return sqrt(2*special.gammaincinv(.5*df, q))
 
     def _stats(self, df):
-        mu = sqrt(2) * special.gamma(df / 2.0 + 0.5) / special.gamma(df / 2.0)
-        mu2 = df - mu * mu
-        g1 = (2 * mu ** 3.0 + mu * (1 - 2 * df)) / asarray(np.power(mu2, 1.5))
-        g2 = 2 * df * (1.0 - df) - 6 * mu ** 4 + 4 * mu ** 2 * (2 * df - 1)
-        g2 /= asarray(mu2 ** 2.0)
+        mu = sqrt(2)*special.gamma(df/2.0+0.5)/special.gamma(df/2.0)
+        mu2 = df - mu*mu
+        g1 = (2*mu**3.0 + mu*(1-2*df))/asarray(np.power(mu2, 1.5))
+        g2 = 2*df*(1.0-df)-6*mu**4 + 4*mu**2 * (2*df-1)
+        g2 /= asarray(mu2**2.0)
         return mu, mu2, g1, g2
 
     def _fitstart(self, data):
@@ -839,9 +907,8 @@ class chi_gen(rv_continuous):
 chi = chi_gen(a=0.0, name='chi')
 
 
-# Chi-squared (gamma-distributed with loc=0 and scale=2 and shape=df/2)
+## Chi-squared (gamma-distributed with loc=0 and scale=2 and shape=df/2)
 class chi2_gen(rv_continuous):
-
     """A chi-squared continuous random variable.
 
     %(before_notes)s
@@ -852,19 +919,21 @@ class chi2_gen(rv_continuous):
 
         chi2.pdf(x, df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)
 
+    `chi2` takes ``df`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, df):
-        return mtrand.chisquare(df, self._size)
+        return self._random_state.chisquare(df, self._size)
 
     def _pdf(self, x, df):
         return exp(self._logpdf(x, df))
 
     def _logpdf(self, x, df):
-        return special.xlogy(df / 2. - 1, x) - x / 2. - \
-            gamln(df / 2.) - (log(2) * df) / 2.
+        return special.xlogy(df/2.-1, x) - x/2. - gamln(df/2.) - (log(2)*df)/2.
 
     def _cdf(self, x, df):
         return special.chdtr(df, x)
@@ -876,13 +945,13 @@ class chi2_gen(rv_continuous):
         return special.chdtri(df, p)
 
     def _ppf(self, p, df):
-        return self._isf(1.0 - p, df)
+        return self._isf(1.0-p, df)
 
     def _stats(self, df):
         mu = df
-        mu2 = 2 * df
-        g1 = 2 * sqrt(2.0 / df)
-        g2 = 12.0 / df
+        mu2 = 2*df
+        g1 = 2*sqrt(2.0/df)
+        g2 = 12.0/df
         return mu, mu2, g1, g2
 
     def _fitstart(self, data):
@@ -895,7 +964,6 @@ chi2 = chi2_gen(a=0.0, name='chi2')
 
 
 class cosine_gen(rv_continuous):
-
     """A cosine continuous random variable.
 
     %(before_notes)s
@@ -909,27 +977,26 @@ class cosine_gen(rv_continuous):
 
     for ``-pi <= x <= pi``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 1.0 / 2 / pi * (1 + cos(x))
+        return 1.0/2/pi*(1+cos(x))
 
     def _cdf(self, x):
-        return 1.0 / 2 / pi * (pi + x + sin(x))
+        return 1.0/2/pi*(pi + x + sin(x))
 
     def _stats(self):
-        return 0.0, pi * pi / 3.0 - 2.0, 0.0, -6.0 * \
-            (pi ** 4 - 90) / (5.0 * (pi * pi - 6) ** 2)
+        return 0.0, pi*pi/3.0-2.0, 0.0, -6.0*(pi**4-90)/(5.0*(pi*pi-6)**2)
 
     def _entropy(self):
-        return log(4 * pi) - 1.0
+        return log(4*pi)-1.0
 cosine = cosine_gen(a=-pi, b=pi, name='cosine')
 
 
 class dgamma_gen(rv_continuous):
-
     """A double gamma continuous random variable.
 
     %(before_notes)s
@@ -942,42 +1009,46 @@ class dgamma_gen(rv_continuous):
 
     for ``a > 0``.
 
+    `dgamma` takes ``a`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, a):
-        u = mtrand.random_sample(size=self._size)
-        return (gamma.rvs(a, size=self._size) * where(u >= 0.5, 1, -1))
+        sz, rndm = self._size, self._random_state
+        u = rndm.random_sample(size=sz)
+        gm = gamma.rvs(a, size=sz, random_state=rndm)
+        return gm * where(u >= 0.5, 1, -1)
 
     def _pdf(self, x, a):
         ax = abs(x)
-        return 1.0 / (2 * special.gamma(a)) * ax ** (a - 1.0) * exp(-ax)
+        return 1.0/(2*special.gamma(a))*ax**(a-1.0) * exp(-ax)
 
     def _logpdf(self, x, a):
         ax = abs(x)
-        return special.xlogy(a - 1.0, ax) - ax - log(2) - gamln(a)
+        return special.xlogy(a-1.0, ax) - ax - log(2) - gamln(a)
 
     def _cdf(self, x, a):
-        fac = 0.5 * special.gammainc(a, abs(x))
+        fac = 0.5*special.gammainc(a, abs(x))
         return where(x > 0, 0.5 + fac, 0.5 - fac)
 
     def _sf(self, x, a):
-        fac = 0.5 * special.gammainc(a, abs(x))
-        return where(x > 0, 0.5 - fac, 0.5 + fac)
+        fac = 0.5*special.gammainc(a, abs(x))
+        return where(x > 0, 0.5-fac, 0.5+fac)
 
     def _ppf(self, q, a):
-        fac = special.gammainccinv(a, 1 - abs(2 * q - 1))
+        fac = special.gammainccinv(a, 1-abs(2*q-1))
         return where(q > 0.5, fac, -fac)
 
     def _stats(self, a):
-        mu2 = a * (a + 1.0)
-        return 0.0, mu2, 0.0, (a + 2.0) * (a + 3.0) / mu2 - 3.0
+        mu2 = a*(a+1.0)
+        return 0.0, mu2, 0.0, (a+2.0)*(a+3.0)/mu2-3.0
 dgamma = dgamma_gen(name='dgamma')
 
 
 class dweibull_gen(rv_continuous):
-
     """A double Weibull continuous random variable.
 
     %(before_notes)s
@@ -988,25 +1059,30 @@ class dweibull_gen(rv_continuous):
 
         dweibull.pdf(x, c) = c / 2 * abs(x)**(c-1) * exp(-abs(x)**c)
 
+    `dweibull` takes ``d`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, c):
-        u = mtrand.random_sample(size=self._size)
-        return weibull_min.rvs(c, size=self._size) * (where(u >= 0.5, 1, -1))
+        sz, rndm = self._size, self._random_state
+        u = rndm.random_sample(size=sz)
+        w = weibull_min.rvs(c, size=sz, random_state=rndm)
+        return w * (where(u >= 0.5, 1, -1))
 
     def _pdf(self, x, c):
         ax = abs(x)
-        Px = c / 2.0 * ax ** (c - 1.0) * exp(-ax ** c)
+        Px = c / 2.0 * ax**(c-1.0) * exp(-ax**c)
         return Px
 
     def _logpdf(self, x, c):
         ax = abs(x)
-        return log(c) - log(2.0) + special.xlogy(c - 1.0, ax) - ax ** c
+        return log(c) - log(2.0) + special.xlogy(c - 1.0, ax) - ax**c
 
     def _cdf(self, x, c):
-        Cx1 = 0.5 * exp(-abs(x) ** c)
+        Cx1 = 0.5 * exp(-abs(x)**c)
         return where(x > 0, 1 - Cx1, Cx1)
 
     def _ppf(self, q, c):
@@ -1025,9 +1101,8 @@ class dweibull_gen(rv_continuous):
 dweibull = dweibull_gen(name='dweibull')
 
 
-# Exponential (gamma distributed with a=1.0, loc=loc and scale=scale)
+## Exponential (gamma distributed with a=1.0, loc=loc and scale=scale)
 class expon_gen(rv_continuous):
-
     """An exponential continuous random variable.
 
     %(before_notes)s
@@ -1036,13 +1111,15 @@ class expon_gen(rv_continuous):
     -----
     The probability density function for `expon` is::
 
-        expon.pdf(x) = lambda * exp(- lambda*x)
+        expon.pdf(x) = exp(-x)
 
     for ``x >= 0``.
 
-    The scale parameter is equal to ``scale = 1.0 / lambda``.
+    %(after_notes)s
 
-    `expon` does not have shape parameters.
+    A common parameterization for `expon` is in terms of the rate parameter
+    ``lambda``, such that ``pdf = lambda * exp(-lambda * x)``. This
+    parameterization corresponds to using ``scale = 1 / lambda``.
 
     %(example)s
 
@@ -1057,7 +1134,7 @@ class expon_gen(rv_continuous):
             raise IndexError('Index to the fixed parameter is out of bounds')
 
     def _rvs(self):
-        return mtrand.standard_exponential(self._size)
+        return self._random_state.standard_exponential(self._size)
 
     def _pdf(self, x):
         return exp(-x)
@@ -1066,10 +1143,10 @@ class expon_gen(rv_continuous):
         return -x
 
     def _cdf(self, x):
-        return -expm1(-x)
+        return -special.expm1(-x)
 
     def _ppf(self, q):
-        return -log1p(-q)
+        return -special.log1p(-q)
 
     def _sf(self, x):
         return exp(-x)
@@ -1088,8 +1165,79 @@ class expon_gen(rv_continuous):
 expon = expon_gen(a=0.0, name='expon')
 
 
-class exponweib_gen(rv_continuous):
+## Exponentially Modified Normal (exponential distribution
+##  convolved with a Normal).
+## This is called an exponentially modified gaussian on wikipedia
+class exponnorm_gen(rv_continuous):
+    """An exponentially modified Normal continuous random variable.
+
+    %(before_notes)s
 
+    Notes
+    -----
+    The probability density function for `exponnorm` is::
+
+        exponnorm.pdf(x, K) = 1/(2*K) exp(1/(2 * K**2)) exp(-x / K) * erfc(-(x - 1/K) / sqrt(2))
+
+    where the shape parameter ``K > 0``.
+
+    It can be thought of as the sum of a normally distributed random
+    value with mean ``loc`` and sigma ``scale`` and an exponentially
+    distributed random number with a pdf proportional to ``exp(-lambda * x)``
+    where ``lambda = (K * scale)**(-1)``.
+
+    %(after_notes)s
+
+    An alternative parameterization of this distribution (for example, in
+    `Wikipedia <http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution>`_)
+    involves three parameters, :math:`\mu`, :math:`\lambda` and :math:`\sigma`.
+    In the present parameterization this corresponds to having ``loc`` and
+    ``scale`` equal to :math:`\mu` and :math:`\sigma`, respectively, and
+    shape parameter :math:`K = 1/\sigma\lambda`.
+
+    .. versionadded:: 0.16.0
+
+    %(example)s
+
+    """
+    def _rvs(self, K):
+        expval = self._random_state.standard_exponential(self._size) * K
+        gval = self._random_state.standard_normal(self._size)
+        return expval + gval
+
+    def _pdf(self, x, K):
+        invK = 1.0 / K
+        exparg = 0.5 * invK**2 - invK * x
+        # Avoid overflows; setting exp(exparg) to the max float works
+        #  all right here
+        expval = _lazywhere(exparg < _LOGXMAX, (exparg,), exp, _XMAX)
+        return 0.5 * invK * expval * erfc(-(x - invK) / sqrt(2))
+
+    def _logpdf(self, x, K):
+        invK = 1.0 / K
+        exparg = 0.5 * invK**2 - invK * x
+        return exparg + log(0.5 * invK * erfc(-(x - invK) / sqrt(2)))
+
+    def _cdf(self, x, K):
+        invK = 1.0 / K
+        expval = invK * (0.5 * invK - x)
+        return special.ndtr(x) - exp(expval) * special.ndtr(x - invK)
+
+    def _sf(self, x, K):
+        invK = 1.0 / K
+        expval = invK * (0.5 * invK - x)
+        return special.ndtr(-x) + exp(expval) * special.ndtr(x - invK)
+
+    def _stats(self, K):
+        K2 = K * K
+        opK2 = 1.0 + K2
+        skw = 2 * K**3 * opK2**(-1.5)
+        krt = 6.0 * K2 * K2 * opK2**(-2)
+        return K, opK2, skw, krt
+exponnorm = exponnorm_gen(name='exponnorm')
+
+
+class exponweib_gen(rv_continuous):
     """An exponentiated Weibull continuous random variable.
 
     %(before_notes)s
@@ -1103,31 +1251,33 @@ class exponweib_gen(rv_continuous):
 
     for ``x > 0``, ``a > 0``, ``c > 0``.
 
+    `exponweib` takes ``a`` and ``c`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, a, c):
         return exp(self._logpdf(x, a, c))
 
     def _logpdf(self, x, a, c):
-        negxc = -x ** c
+        negxc = -x**c
         exm1c = -special.expm1(negxc)
         logp = (log(a) + log(c) + special.xlogy(a - 1.0, exm1c) +
                 negxc + special.xlogy(c - 1.0, x))
         return logp
 
     def _cdf(self, x, a, c):
-        exm1c = -expm1(-x ** c)
-        return (exm1c) ** a
+        exm1c = -special.expm1(-x**c)
+        return exm1c**a
 
     def _ppf(self, q, a, c):
-        return (-log1p(-q ** (1.0 / a))) ** asarray(1.0 / c)
+        return (-special.log1p(-q**(1.0/a)))**asarray(1.0/c)
 exponweib = exponweib_gen(a=0.0, name='exponweib')
 
 
 class exponpow_gen(rv_continuous):
-
     """An exponential power continuous random variable.
 
     %(before_notes)s
@@ -1142,6 +1292,10 @@ class exponpow_gen(rv_continuous):
     from the exponential power distribution that is also known under the names
     "generalized normal" or "generalized Gaussian".
 
+    `exponpow` takes ``b`` as a shape parameter.
+
+    %(after_notes)s
+
     References
     ----------
     http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf
@@ -1149,31 +1303,29 @@ class exponpow_gen(rv_continuous):
     %(example)s
 
     """
-
     def _pdf(self, x, b):
         return exp(self._logpdf(x, b))
 
     def _logpdf(self, x, b):
-        xb = x ** b
+        xb = x**b
         f = 1 + log(b) + special.xlogy(b - 1.0, x) + xb - exp(xb)
         return f
 
     def _cdf(self, x, b):
-        return -expm1(-expm1(x ** b))
+        return -special.expm1(-special.expm1(x**b))
 
     def _sf(self, x, b):
-        return exp(-expm1(x ** b))
+        return exp(-special.expm1(x**b))
 
     def _isf(self, x, b):
-        return (log1p(-log(x))) ** (1. / b)
+        return (special.log1p(-log(x)))**(1./b)
 
     def _ppf(self, q, b):
-        return pow(log1p(-log1p(-q)), 1.0 / b)
+        return pow(special.log1p(-special.log1p(-q)), 1.0/b)
 exponpow = exponpow_gen(a=0.0, name='exponpow')
 
 
 class fatiguelife_gen(rv_continuous):
-
     """A fatigue-life (Birnbaum-Saunders) continuous random variable.
 
     %(before_notes)s
@@ -1187,6 +1339,10 @@ class fatiguelife_gen(rv_continuous):
 
     for ``x > 0``.
 
+    `fatiguelife` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     References
     ----------
     .. [1] "Birnbaum-Saunders distribution",
@@ -1195,27 +1351,26 @@ class fatiguelife_gen(rv_continuous):
     %(example)s
 
     """
-
     def _rvs(self, c):
-        z = mtrand.standard_normal(self._size)
-        x = 0.5 * c * z
-        x2 = x * x
-        t = 1.0 + 2 * x2 + 2 * x * sqrt(1 + x2)
+        z = self._random_state.standard_normal(self._size)
+        x = 0.5*c*z
+        x2 = x*x
+        t = 1.0 + 2*x2 + 2*x*sqrt(1 + x2)
         return t
 
     def _pdf(self, x, c):
         return np.exp(self._logpdf(x, c))
 
     def _logpdf(self, x, c):
-        return (log(x + 1) - (x - 1) ** 2 / (2.0 * x * c ** 2) - log(2 * c) -
-                0.5 * (log(2 * pi) + 3 * log(x)))
+        return (log(x+1) - (x-1)**2 / (2.0*x*c**2) - log(2*c) -
+                0.5*(log(2*pi) + 3*log(x)))
 
     def _cdf(self, x, c):
-        return special.ndtr(1.0 / c * (sqrt(x) - 1.0 / sqrt(x)))
+        return special.ndtr(1.0 / c * (sqrt(x) - 1.0/sqrt(x)))
 
     def _ppf(self, q, c):
-        tmp = c * special.ndtri(q)
-        return 0.25 * (tmp + sqrt(tmp ** 2 + 4)) ** 2
+        tmp = c*special.ndtri(q)
+        return 0.25 * (tmp + sqrt(tmp**2 + 4))**2
 
     def _stats(self, c):
         # NB: the formula for kurtosis in wikipedia seems to have an error:
@@ -1223,18 +1378,17 @@ class fatiguelife_gen(rv_continuous):
         # Alpha.  And the latter one, below, passes the tests, while the wiki
         # one doesn't So far I didn't have the guts to actually check the
         # coefficients from the expressions for the raw moments.
-        c2 = c * c
+        c2 = c*c
         mu = c2 / 2.0 + 1.0
         den = 5.0 * c2 + 4.0
-        mu2 = c2 * den / 4.0
-        g1 = 4 * c * (11 * c2 + 6.0) / np.power(den, 1.5)
-        g2 = 6 * c2 * (93 * c2 + 40.0) / den ** 2.0
+        mu2 = c2*den / 4.0
+        g1 = 4 * c * (11*c2 + 6.0) / np.power(den, 1.5)
+        g2 = 6 * c2 * (93*c2 + 40.0) / den**2.0
         return mu, mu2, g1, g2
 fatiguelife = fatiguelife_gen(a=0.0, name='fatiguelife')
 
 
 class foldcauchy_gen(rv_continuous):
-
     """A folded Cauchy continuous random variable.
 
     %(before_notes)s
@@ -1247,18 +1401,20 @@ class foldcauchy_gen(rv_continuous):
 
     for ``x >= 0``.
 
+    `foldcauchy` takes ``c`` as a shape parameter.
+
     %(example)s
 
     """
-
     def _rvs(self, c):
-        return abs(cauchy.rvs(loc=c, size=self._size))
+        return abs(cauchy.rvs(loc=c, size=self._size,
+                              random_state=self._random_state))
 
     def _pdf(self, x, c):
-        return 1.0 / pi * (1.0 / (1 + (x - c) ** 2) + 1.0 / (1 + (x + c) ** 2))
+        return 1.0/pi*(1.0/(1+(x-c)**2) + 1.0/(1+(x+c)**2))
 
     def _cdf(self, x, c):
-        return 1.0 / pi * (arctan(x - c) + arctan(x + c))
+        return 1.0/pi*(arctan(x-c) + arctan(x+c))
 
     def _stats(self, c):
         return inf, inf, nan, nan
@@ -1266,7 +1422,6 @@ foldcauchy = foldcauchy_gen(a=0.0, name='foldcauchy')
 
 
 class f_gen(rv_continuous):
-
     """An F continuous random variable.
 
     %(before_notes)s
@@ -1281,12 +1436,15 @@ class f_gen(rv_continuous):
 
     for ``x > 0``.
 
+    `f` takes ``dfn`` and ``dfd`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, dfn, dfd):
-        return mtrand.f(dfn, dfd, self._size)
+        return self._random_state.f(dfn, dfd, self._size)
 
     def _pdf(self, x, dfn, dfd):
         return exp(self._logpdf(x, dfn, dfd))
@@ -1294,8 +1452,8 @@ class f_gen(rv_continuous):
     def _logpdf(self, x, dfn, dfd):
         n = 1.0 * dfn
         m = 1.0 * dfd
-        lPx = m / 2 * log(m) + n / 2 * log(n) + (n / 2 - 1) * log(x)
-        lPx -= ((n + m) / 2) * log(m + n * x) + special.betaln(n / 2, m / 2)
+        lPx = m/2 * log(m) + n/2 * log(n) + (n/2 - 1) * log(x)
+        lPx -= ((n+m)/2) * log(m + n*x) + special.betaln(n/2, m/2)
         return lPx
 
     def _cdf(self, x, dfn, dfd):
@@ -1319,7 +1477,7 @@ class f_gen(rv_continuous):
         mu2 = _lazywhere(
             v2 > 4, (v1, v2, v2_2, v2_4),
             lambda v1, v2, v2_2, v2_4:
-            2 * v2 * v2 * (v1 + v2_2) / (v1 * v2_2 ** 2 * v2_4),
+            2 * v2 * v2 * (v1 + v2_2) / (v1 * v2_2**2 * v2_4),
             np.inf)
 
         g1 = _lazywhere(
@@ -1349,16 +1507,15 @@ class f_gen(rv_continuous):
 f = f_gen(a=0.0, name='f')
 
 
-# Folded Normal
-# abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S)
+## Folded Normal
+##   abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S)
 ##
-# note: regress docs have scale parameter correct, but first parameter
-# he gives is a shape parameter A = c * scale
+##  note: regress docs have scale parameter correct, but first parameter
+##    he gives is a shape parameter A = c * scale
 
-# Half-normal is folded normal with shape-parameter c=0.
+##  Half-normal is folded normal with shape-parameter c=0.
 
 class foldnorm_gen(rv_continuous):
-
     """A folded normal continuous random variable.
 
     %(before_notes)s
@@ -1371,49 +1528,51 @@ class foldnorm_gen(rv_continuous):
 
     for ``c >= 0``.
 
+    `foldnorm` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, c):
         return (c >= 0)
 
     def _rvs(self, c):
-        return abs(mtrand.standard_normal(self._size) + c)
+        return abs(self._random_state.standard_normal(self._size) + c)
 
     def _pdf(self, x, c):
-        return _norm_pdf(x + c) + _norm_pdf(x - c)
+        return _norm_pdf(x + c) + _norm_pdf(x-c)
 
     def _cdf(self, x, c):
-        return special.ndtr(x - c) + special.ndtr(x + c) - 1.0
+        return special.ndtr(x-c) + special.ndtr(x+c) - 1.0
 
     def _stats(self, c):
         # Regina C. Elandt, Technometrics 3, 551 (1961)
         # http://www.jstor.org/stable/1266561
         #
-        c2 = c * c
-        expfac = np.exp(-0.5 * c2) / np.sqrt(2. * pi)
+        c2 = c*c
+        expfac = np.exp(-0.5*c2) / np.sqrt(2.*pi)
 
-        mu = 2. * expfac + c * special.erf(c / sqrt(2))
-        mu2 = c2 + 1 - mu * mu
+        mu = 2.*expfac + c * special.erf(c/sqrt(2))
+        mu2 = c2 + 1 - mu*mu
 
-        g1 = 2. * (mu * mu * mu - c2 * mu - expfac)
+        g1 = 2. * (mu*mu*mu - c2*mu - expfac)
         g1 /= np.power(mu2, 1.5)
 
-        g2 = c2 * (c2 + 6.) + 3 + 8. * expfac * mu
-        g2 += (2. * (c2 - 3.) - 3. * mu ** 2) * mu ** 2
-        g2 = g2 / mu2 ** 2.0 - 3.
+        g2 = c2 * (c2 + 6.) + 3 + 8.*expfac*mu
+        g2 += (2. * (c2 - 3.) - 3. * mu**2) * mu**2
+        g2 = g2 / mu2**2.0 - 3.
 
         return mu, mu2, g1, g2
 foldnorm = foldnorm_gen(a=0.0, name='foldnorm')
 
 
-# Extreme Value Type II or Frechet
-# (defined in Regress+ documentation as Extreme LB) as
-# a limiting value distribution.
+## Extreme Value Type II or Frechet
+## (defined in Regress+ documentation as Extreme LB) as
+##   a limiting value distribution.
 ##
 class frechet_r_gen(rv_continuous):
-
     """A Frechet right (or Weibull minimum) continuous random variable.
 
     %(before_notes)s
@@ -1431,10 +1590,13 @@ class frechet_r_gen(rv_continuous):
 
     for ``x > 0``, ``c > 0``.
 
+    `frechet_r` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _link(self, x, logSF, phat, ix):
         if ix == 0:
             phati = log(-logSF) / log((x - phat[1]) / phat[2])
@@ -1447,19 +1609,19 @@ class frechet_r_gen(rv_continuous):
         return phati
 
     def _pdf(self, x, c):
-        return c * pow(x, c - 1) * exp(-pow(x, c))
+        return c*pow(x, c-1)*exp(-pow(x, c))
 
     def _logpdf(self, x, c):
         return log(c) + special.xlogy(c - 1, x) - pow(x, c)
 
     def _cdf(self, x, c):
-        return -expm1(-pow(x, c))
+        return -special.expm1(-pow(x, c))
 
     def _ppf(self, q, c):
-        return pow(-log1p(-q), 1.0 / c)
+        return pow(-special.log1p(-q), 1.0/c)
 
     def _munp(self, n, c):
-        return special.gamma(1.0 + n * 1.0 / c)
+        return special.gamma(1.0+n*1.0/c)
 
     def _entropy(self, c):
         return -_EULER / c - log(c) + _EULER + 1
@@ -1475,7 +1637,6 @@ weibull_min = frechet_r_gen(a=0.0, name='weibull_min')
 
 
 class frechet_l_gen(rv_continuous):
-
     """A Frechet left (or Weibull maximum) continuous random variable.
 
     %(before_notes)s
@@ -1493,21 +1654,24 @@ class frechet_l_gen(rv_continuous):
 
     for ``x < 0``, ``c > 0``.
 
+    `frechet_l` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
-        return c * pow(-x, c - 1) * exp(-pow(-x, c))
+        return c*pow(-x, c-1)*exp(-pow(-x, c))
 
     def _cdf(self, x, c):
         return exp(-pow(-x, c))
 
     def _ppf(self, q, c):
-        return -pow(-log(q), 1.0 / c)
+        return -pow(-log(q), 1.0/c)
 
     def _munp(self, n, c):
-        val = special.gamma(1.0 + n * 1.0 / c)
+        val = special.gamma(1.0+n*1.0/c)
         if (int(n) % 2):
             sgn = -1
         else:
@@ -1527,7 +1691,6 @@ weibull_max = frechet_l_gen(b=0.0, name='weibull_max')
 
 
 class genlogistic_gen(rv_continuous):
-
     """A generalized logistic continuous random variable.
 
     %(before_notes)s
@@ -1540,32 +1703,35 @@ class genlogistic_gen(rv_continuous):
 
     for ``x > 0``, ``c > 0``.
 
+    `genlogistic` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
         return exp(self._logpdf(x, c))
 
     def _logpdf(self, x, c):
-        return log(c) - x - (c + 1.0) * log1p(exp(-x))
+        return log(c) - x - (c+1.0)*special.log1p(exp(-x))
 
     def _cdf(self, x, c):
-        Cx = (1 + exp(-x)) ** (-c)
+        Cx = (1+exp(-x))**(-c)
         return Cx
 
     def _ppf(self, q, c):
-        vals = -log(pow(q, -1.0 / c) - 1)
+        vals = -log(pow(q, -1.0/c)-1)
         return vals
 
     def _stats(self, c):
         zeta = special.zeta
         mu = _EULER + special.psi(c)
-        mu2 = pi * pi / 6.0 + zeta(2, c)
-        g1 = -2 * zeta(3, c) + 2 * _ZETA3
+        mu2 = pi*pi/6.0 + zeta(2, c)
+        g1 = -2*zeta(3, c) + 2*_ZETA3
         g1 /= np.power(mu2, 1.5)
-        g2 = pi ** 4 / 15.0 + 6 * zeta(4, c)
-        g2 /= mu2 ** 2.0
+        g2 = pi**4/15.0 + 6*zeta(4, c)
+        g2 /= mu2**2.0
         return mu, mu2, g1, g2
 genlogistic = genlogistic_gen(name='genlogistic')
 
@@ -1579,7 +1745,6 @@ def log1pxdx(x):
 
 
 class genpareto_gen(rv_continuous):
-
     """A generalized Pareto continuous random variable.
 
     %(before_notes)s
@@ -1593,6 +1758,8 @@ class genpareto_gen(rv_continuous):
     defined for ``x >= 0`` if ``c >=0``, and for
     ``0 <= x <= -1/c`` if ``c < 0``.
 
+    `genpareto` takes ``c`` as a shape parameter.
+
     For ``c == 0``, `genpareto` reduces to the exponential
     distribution, `expon`::
 
@@ -1602,6 +1769,8 @@ class genpareto_gen(rv_continuous):
 
         genpareto.cdf(x, c=-1) = x
 
+    %(after_notes)s
+
     %(example)s
 
     """
@@ -1639,23 +1808,23 @@ class genpareto_gen(rv_continuous):
         return where(abs(c) == inf, False, True)
 
     def _pdf(self, x, c):
-        return exp(self._logpdf(x, c))
+        return np.exp(self._logpdf(x, c))
 
     def _logpdf(self, x, c):
         return _lazywhere((x == x) & (c != 0), (x, c),
-                          lambda x, c: -special.xlog1py(c + 1., c * x) / c,
-                          -x)
+            lambda x, c: -special.xlog1py(c+1., c*x) / c,
+            -x)
 
     def _cdf(self, x, c):
-        return - expm1(self._logsf(x, c))
+        return -inv_boxcox1p(-x, -c)
 
     def _sf(self, x, c):
-        return exp(self._logsf(x, c))
+        return inv_boxcox(-x, -c)
 
     def _logsf(self, x, c):
         return _lazywhere((x == x) & (c != 0), (x, c),
-                          lambda x, c: -log1p(c * x) / c,
-                          -x)
+            lambda x, c: -special.log1p(c*x) / c,
+            -x)
 
     def _ppf(self, q, c):
         return -boxcox1p(-q, -c)
@@ -1756,8 +1925,8 @@ class genpareto_gen(rv_continuous):
                 val = val + cnk * (-1) ** ki / (1.0 - c * ki)
             return where(c * n < 1, val * (-1.0 / c) ** n, inf)
         return _lazywhere(c != 0, (c,),
-                          lambda c: __munp(n, c),
-                          gam(n + 1))
+                lambda c: __munp(n, c),
+                gam(n + 1))
 
     def _entropy(self, c):
         return 1. + c
@@ -1765,7 +1934,6 @@ genpareto = genpareto_gen(a=0.0, name='genpareto')
 
 
 class genexpon_gen(rv_continuous):
-
     """A generalized exponential continuous random variable.
 
     %(before_notes)s
@@ -1779,6 +1947,10 @@ class genexpon_gen(rv_continuous):
 
     for ``x >= 0``, ``a, b, c > 0``.
 
+    `genexpon` takes ``a``, ``b`` and ``c`` as shape parameters.
+
+    %(after_notes)s
+
     References
     ----------
     H.K. Ryu, "An Extension of Marshall and Olkin's Bivariate Exponential
@@ -1807,20 +1979,19 @@ class genexpon_gen(rv_continuous):
         return phati
 
     def _pdf(self, x, a, b, c):
-        return (a + b * (-expm1(-c * x))) * exp((-a - b) * x +
-                                                b * (-expm1(-c * x)) / c)
+        return (a + b*(-special.expm1(-c*x)))*exp((-a-b)*x +
+            b*(-special.expm1(-c*x))/c)
 
     def _cdf(self, x, a, b, c):
-        return -expm1((-a - b) * x + b * (-expm1(-c * x)) / c)
+        return -special.expm1((-a-b)*x + b*(-special.expm1(-c*x))/c)
 
     def _logpdf(self, x, a, b, c):
-        return (np.log(a + b * (-expm1(-c * x))) + (-a - b) * x +
-                b * (-expm1(-c * x)) / c)
+        return np.log(a+b*(-special.expm1(-c*x))) + \
+                (-a-b)*x+b*(-special.expm1(-c*x))/c
 genexpon = genexpon_gen(a=0.0, name='genexpon')
 
 
 class genextreme_gen(rv_continuous):
-
     """A generalized extreme value continuous random variable.
 
     %(before_notes)s
@@ -1841,13 +2012,16 @@ class genextreme_gen(rv_continuous):
     Note that several sources and software packages use the opposite
     convention for the sign of the shape parameter ``c``.
 
+    `genextreme` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, c):
-        min = np.minimum  # @ReservedAssignment
-        max = np.maximum  # @ReservedAssignment
+        min = np.minimum
+        max = np.maximum
         self.b = where(c > 0, 1.0 / max(c, _XMIN), inf)
         self.a = where(c < 0, 1.0 / min(c, -_XMIN), -inf)
         return where(abs(c) == inf, 0, 1)
@@ -1888,40 +2062,40 @@ class genextreme_gen(rv_continuous):
                           lambda x, c: -expm1(-c * x) / c, x)
 
     def _stats(self, c):
-        g = lambda n: gam(n * c + 1)
+        g = lambda n: gam(n*c+1)
         g1 = g(1)
         g2 = g(2)
         g3 = g(3)
         g4 = g(4)
-        g2mg12 = where(abs(c) < 1e-7, (c * pi) ** 2.0 / 6.0, g2 - g1 ** 2.0)
-        gam2k = where(abs(c) < 1e-7, pi ** 2.0 / 6.0,
-                      expm1(gamln(2.0 * c + 1.0) -
-                            2 * gamln(c + 1.0)) / c ** 2.0)
+        g2mg12 = where(abs(c) < 1e-7, (c*pi)**2.0/6.0, g2-g1**2.0)
+        gam2k = where(abs(c) < 1e-7, pi**2.0/6.0,
+                      special.expm1(gamln(2.0*c+1.0)-2*gamln(c+1.0))/c**2.0)
         eps = 1e-14
-        gamk = where(abs(c) < eps, -_EULER, expm1(gamln(c + 1)) / c)
+        gamk = where(abs(c) < eps, -_EULER, special.expm1(gamln(c+1))/c)
 
         m = where(c < -1.0, nan, -gamk)
-        v = where(c < -0.5, nan, g1 ** 2.0 * gam2k)
+        v = where(c < -0.5, nan, g1**2.0*gam2k)
 
         # skewness
-        sk1 = where(c < -1. / 3, nan,
-                    np.sign(c) * (-g3 + (g2 + 2 * g2mg12) * g1) /
-                    ((g2mg12) ** (3. / 2.)))
-        sk = where(abs(c) <= eps ** 0.29, 12 * sqrt(6) * _ZETA3 / pi ** 3, sk1)
+        sk1 = where(c < -1./3, nan,
+                    np.sign(c)*(-g3+(g2+2*g2mg12)*g1)/((g2mg12)**(3./2.)))
+        sk = where(abs(c) <= eps**0.29, 12*sqrt(6)*_ZETA3/pi**3, sk1)
 
         # kurtosis
-        ku1 = where(c < -1. / 4, nan,
-                    (g4 + (-4 * g3 + 3 * (g2 + g2mg12) * g1) * g1) /
-                    ((g2mg12) ** 2))
-        ku = where(abs(c) <= (eps) ** 0.23, 12.0 / 5.0, ku1 - 3.0)
+        ku1 = where(c < -1./4, nan,
+                    (g4+(-4*g3+3*(g2+g2mg12)*g1)*g1)/((g2mg12)**2))
+        ku = where(abs(c) <= (eps)**0.23, 12.0/5.0, ku1-3.0)
         return m, v, sk, ku
 
     def _munp(self, n, c):
-        k = arange(0, n + 1)
-        vals = 1.0 / c ** n * sum(
-            comb(n, k) * (-1) ** k * special.gamma(c * k + 1),
+        k = arange(0, n+1)
+        vals = 1.0/c**n * np.sum(
+            comb(n, k) * (-1)**k * special.gamma(c*k + 1),
             axis=0)
-        return where(c * n > -1, vals, inf)
+        return where(c*n > -1, vals, inf)
+
+    def _entropy(self, c):
+        return _EULER*(1 - c) + 1
 
     def _fitstart(self, data):
         d = asarray(data)
@@ -1967,26 +2141,25 @@ def _digammainv(y):
             value = optimize.newton(func, x0, tol=1e-10)
             return value
     elif y > -3:
-        x0 = exp(y / 2.332) + 0.08661
+        x0 = exp(y/2.332) + 0.08661
     else:
         x0 = 1.0 / (-y - _em)
 
-    value, _info, ier, _msg = optimize.fsolve(func, x0, xtol=1e-11,
-                                              full_output=True)
+    value, info, ier, mesg = optimize.fsolve(func, x0, xtol=1e-11,
+                                             full_output=True)
     if ier != 1:
         raise RuntimeError("_digammainv: fsolve failed, y = %r" % y)
 
     return value[0]
 
 
-# Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition)
+## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition)
 
-# gamma(a, loc, scale)  with a an integer is the Erlang distribution
-# gamma(1, loc, scale)  is the Exponential distribution
-# gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom.
+## gamma(a, loc, scale)  with a an integer is the Erlang distribution
+## gamma(1, loc, scale)  is the Exponential distribution
+## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom.
 
 class gamma_gen(rv_continuous):
-
     """A gamma continuous random variable.
 
     %(before_notes)s
@@ -1999,36 +2172,28 @@ class gamma_gen(rv_continuous):
     -----
     The probability density function for `gamma` is::
 
-        gamma.pdf(x, a) = lambda**a * x**(a-1) * exp(-lambda*x) / gamma(a)
+        gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a)
 
     for ``x >= 0``, ``a > 0``. Here ``gamma(a)`` refers to the gamma function.
 
-    The scale parameter is equal to ``scale = 1.0 / lambda``.
-
-    `gamma` has a shape parameter `a` which needs to be set explicitly. For
-    instance:
-
-        >>> from scipy.stats import gamma
-        >>> rv = gamma(3., loc = 0., scale = 2.)
-
-    produces a frozen form of `gamma` with shape ``a = 3.``, ``loc =0.``
-    and ``lambda = 1./scale = 1./2.``.
+    `gamma` has a shape parameter `a` which needs to be set explicitly.
 
     When ``a`` is an integer, `gamma` reduces to the Erlang
     distribution, and when ``a=1`` to the exponential distribution.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, a):
-        return mtrand.standard_gamma(a, self._size)
+        return self._random_state.standard_gamma(a, self._size)
 
     def _pdf(self, x, a):
         return exp(self._logpdf(x, a))
 
     def _logpdf(self, x, a):
-        return special.xlogy(a - 1.0, x) - x - gamln(a)
+        return special.xlogy(a-1.0, x) - x - gamln(a)
 
     def _cdf(self, x, a):
         return special.gammainc(a, x)
@@ -2040,10 +2205,10 @@ class gamma_gen(rv_continuous):
         return special.gammaincinv(a, q)
 
     def _stats(self, a):
-        return a, a, 2.0 / sqrt(a), 6.0 / a
+        return a, a, 2.0/sqrt(a), 6.0/a
 
     def _entropy(self, a):
-        return special.psi(a) * (1 - a) + a + gamln(a)
+        return special.psi(a)*(1-a) + a + gamln(a)
 
     def _fitstart(self, data):
         # The skewness of the gamma distribution is `4 / sqrt(a)`.
@@ -2051,12 +2216,13 @@ class gamma_gen(rv_continuous):
         # of the data.  The formula is regularized with 1e-8 in the
         # denominator to allow for degenerate data where the skewness
         # is close to 0.
-        a = 4 / (1e-8 + _skew(data) ** 2)
+        a = 4 / (1e-8 + _skew(data)**2)
         return super(gamma_gen, self)._fitstart(data, args=(a,))
 
     @inherit_docstring_from(rv_continuous)
     def fit(self, data, *args, **kwds):
-        f0 = kwds.get('f0', None)
+        f0 = (kwds.get('f0', None) or kwds.get('fa', None) or
+              kwds.get('fix_a', None))
         floc = kwds.get('floc', None)
         fscale = kwds.get('fscale', None)
 
@@ -2099,9 +2265,9 @@ class gamma_gen(rv_continuous):
                 # log(a) - special.digamma(a) - log(xbar) + log(data.mean) = 0
                 s = log(xbar) - log(data).mean()
                 func = lambda a: log(a) - special.digamma(a) - s
-                aest = (3 - s + np.sqrt((s - 3) ** 2 + 24 * s)) / (12 * s)
-                xa = aest * (1 - 0.4)
-                xb = aest * (1 + 0.4)
+                aest = (3-s + np.sqrt((s-3)**2 + 24*s)) / (12*s)
+                xa = aest*(1-0.4)
+                xb = aest*(1+0.4)
                 a = optimize.brentq(func, xa, xb, disp=0)
 
             # The MLE for the scale parameter is just the data mean
@@ -2121,7 +2287,6 @@ gamma = gamma_gen(a=0.0, name='gamma')
 
 
 class erlang_gen(gamma_gen):
-
     """An Erlang continuous random variable.
 
     %(before_notes)s
@@ -2157,7 +2322,7 @@ class erlang_gen(gamma_gen):
         # Override gamma_gen_fitstart so that an integer initial value is
         # used.  (Also regularize the division, to avoid issues when
         # _skew(data) is 0 or close to 0.)
-        a = int(4.0 / (1e-8 + _skew(data) ** 2))
+        a = int(4.0 / (1e-8 + _skew(data)**2))
         return super(gamma_gen, self)._fitstart(data, args=(a,))
 
     # Trivial override of the fit method, so we can monkey-patch its
@@ -2167,7 +2332,7 @@ class erlang_gen(gamma_gen):
 
     if fit.__doc__ is not None:
         fit.__doc__ = (rv_continuous.fit.__doc__ +
-                       """
+            """
             Notes
             -----
             The Erlang distribution is generally defined to have integer values
@@ -2181,7 +2346,6 @@ erlang = erlang_gen(a=0.0, name='erlang')
 
 
 class gengamma_gen(rv_continuous):
-
     """A generalized gamma continuous random variable.
 
     %(before_notes)s
@@ -2194,42 +2358,55 @@ class gengamma_gen(rv_continuous):
 
     for ``x > 0``, ``a > 0``, and ``c != 0``.
 
+    `gengamma` takes ``a`` and ``c`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, a, c):
         return (a > 0) & (c != 0)
 
     def _pdf(self, x, a, c):
-        return exp(self._logpdf(x, a, c))
+        return np.exp(self._logpdf(x, a, c))
 
     def _logpdf(self, x, a, c):
-        return log(abs(c)) + special.xlogy(c * a - 1, x) - x ** c - gamln(a)
+        return np.log(abs(c)) + special.xlogy(c*a - 1, x) - x**c - special.gammaln(a)
 
     def _cdf(self, x, a, c):
-        val = special.gammainc(a, x ** c)
-        cond = c + 0 * val
-        return where(cond > 0, val, 1 - val)
+        xc = x**c
+        val1 = special.gammainc(a, xc)
+        val2 = special.gammaincc(a, xc)
+        return np.where(c > 0, val1, val2)
+
+    def _sf(self, x, a, c):
+        xc = x**c
+        val1 = special.gammainc(a, xc)
+        val2 = special.gammaincc(a, xc)
+        return np.where(c > 0, val2, val1)
 
     def _ppf(self, q, a, c):
         val1 = special.gammaincinv(a, q)
-        val2 = special.gammaincinv(a, 1.0 - q)
-        ic = 1.0 / c
-        cond = c + 0 * val1
-        return where(cond > 0, val1 ** ic, val2 ** ic)
+        val2 = special.gammainccinv(a, q)
+        return np.where(c > 0, val1, val2)**(1.0/c)
+
+    def _isf(self, q, a, c):
+        val1 = special.gammaincinv(a, q)
+        val2 = special.gammainccinv(a, q)
+        return np.where(c > 0, val2, val1)**(1.0/c)
 
     def _munp(self, n, a, c):
-        return special.gamma(a + n * 1.0 / c) / special.gamma(a)
+        # Pochhammer symbol: poch(a,n) = gamma(a+n)/gamma(a)
+        return special.poch(a, n*1.0/c)
 
     def _entropy(self, a, c):
         val = special.psi(a)
-        return a * (1 - val) + 1.0 / c * val + gamln(a) - log(abs(c))
+        return a*(1-val) + 1.0/c*val + special.gammaln(a) - np.log(abs(c))
 gengamma = gengamma_gen(a=0.0, name='gengamma')
 
 
 class genhalflogistic_gen(rv_continuous):
-
     """A generalized half-logistic continuous random variable.
 
     %(before_notes)s
@@ -2242,37 +2419,39 @@ class genhalflogistic_gen(rv_continuous):
 
     for ``0 <= x <= 1/c``, and ``c > 0``.
 
+    `genhalflogistic` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, c):
         self.b = 1.0 / c
         return (c > 0)
 
     def _pdf(self, x, c):
-        limit = 1.0 / c
-        tmp = asarray(1 - c * x)
-        tmp0 = tmp ** (limit - 1)
-        tmp2 = tmp0 * tmp
-        return 2 * tmp0 / (1 + tmp2) ** 2
+        limit = 1.0/c
+        tmp = asarray(1-c*x)
+        tmp0 = tmp**(limit-1)
+        tmp2 = tmp0*tmp
+        return 2*tmp0 / (1+tmp2)**2
 
     def _cdf(self, x, c):
-        limit = 1.0 / c
-        tmp = asarray(1 - c * x)
-        tmp2 = tmp ** (limit)
-        return (1.0 - tmp2) / (1 + tmp2)
+        limit = 1.0/c
+        tmp = asarray(1-c*x)
+        tmp2 = tmp**(limit)
+        return (1.0-tmp2) / (1+tmp2)
 
     def _ppf(self, q, c):
-        return 1.0 / c * (1 - ((1.0 - q) / (1.0 + q)) ** c)
+        return 1.0/c*(1-((1.0-q)/(1.0+q))**c)
 
     def _entropy(self, c):
-        return 2 - (2 * c + 1) * log(2)
+        return 2 - (2*c+1)*log(2)
 genhalflogistic = genhalflogistic_gen(a=0.0, name='genhalflogistic')
 
 
 class gompertz_gen(rv_continuous):
-
     """A Gompertz (or truncated Gumbel) continuous random variable.
 
     %(before_notes)s
@@ -2285,29 +2464,31 @@ class gompertz_gen(rv_continuous):
 
     for ``x >= 0``, ``c > 0``.
 
+    `gompertz` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
         return exp(self._logpdf(x, c))
 
     def _logpdf(self, x, c):
-        return log(c) + x - c * expm1(x)
+        return log(c) + x - c * special.expm1(x)
 
     def _cdf(self, x, c):
-        return -expm1(-c * expm1(x))
+        return -special.expm1(-c * special.expm1(x))
 
     def _ppf(self, q, c):
-        return log1p(-1.0 / c * log1p(-q))
+        return special.log1p(-1.0 / c * special.log1p(-q))
 
     def _entropy(self, c):
-        return 1.0 - log(c) - exp(c) * special.expn(1, c)
+        return 1.0 - log(c) - exp(c)*special.expn(1, c)
 gompertz = gompertz_gen(a=0.0, name='gompertz')
 
 
 class gumbel_r_gen(rv_continuous):
-
     """A right-skewed Gumbel continuous random variable.
 
     %(before_notes)s
@@ -2326,10 +2507,11 @@ class gumbel_r_gen(rv_continuous):
     distribution.  It is also related to the extreme value distribution,
     log-Weibull and Gompertz distributions.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
         return exp(self._logpdf(x))
 
@@ -2346,7 +2528,7 @@ class gumbel_r_gen(rv_continuous):
         return -log(-log(q))
 
     def _stats(self):
-        return _EULER, pi * pi / 6.0, 12 * sqrt(6) / pi ** 3 * _ZETA3, 12.0 / 5
+        return _EULER, pi*pi/6.0, 12*sqrt(6)/pi**3 * _ZETA3, 12.0/5
 
     def _entropy(self):
         # http://en.wikipedia.org/wiki/Gumbel_distribution
@@ -2355,7 +2537,6 @@ gumbel_r = gumbel_r_gen(name='gumbel_r')
 
 
 class gumbel_l_gen(rv_continuous):
-
     """A left-skewed Gumbel continuous random variable.
 
     %(before_notes)s
@@ -2374,10 +2555,11 @@ class gumbel_l_gen(rv_continuous):
     distribution.  It is also related to the extreme value distribution,
     log-Weibull and Gompertz distributions.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
         return exp(self._logpdf(x))
 
@@ -2391,8 +2573,8 @@ class gumbel_l_gen(rv_continuous):
         return log(-log1p(-q))
 
     def _stats(self):
-        return -_EULER, pi * pi / 6.0, \
-               -12 * sqrt(6) / pi ** 3 * _ZETA3, 12.0 / 5
+        return -_EULER, pi*pi/6.0, \
+               -12*sqrt(6)/pi**3 * _ZETA3, 12.0/5
 
     def _entropy(self):
         return _EULER + 1.
@@ -2400,7 +2582,6 @@ gumbel_l = gumbel_l_gen(name='gumbel_l')
 
 
 class halfcauchy_gen(rv_continuous):
-
     """A Half-Cauchy continuous random variable.
 
     %(before_notes)s
@@ -2413,32 +2594,32 @@ class halfcauchy_gen(rv_continuous):
 
     for ``x >= 0``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 2.0 / pi / (1.0 + x * x)
+        return 2.0/pi/(1.0+x*x)
 
     def _logpdf(self, x):
-        return np.log(2.0 / pi) - special.log1p(x * x)
+        return np.log(2.0/pi) - special.log1p(x*x)
 
     def _cdf(self, x):
-        return 2.0 / pi * arctan(x)
+        return 2.0/pi*arctan(x)
 
     def _ppf(self, q):
-        return tan(pi / 2 * q)
+        return tan(pi/2*q)
 
     def _stats(self):
         return inf, inf, nan, nan
 
     def _entropy(self):
-        return log(2 * pi)
+        return log(2*pi)
 halfcauchy = halfcauchy_gen(a=0.0, name='halfcauchy')
 
 
 class halflogistic_gen(rv_continuous):
-
     """A half-logistic continuous random variable.
 
     %(before_notes)s
@@ -2451,10 +2632,11 @@ class halflogistic_gen(rv_continuous):
 
     for ``x >= 0``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
         return exp(self._logpdf(x))
 
@@ -2462,30 +2644,28 @@ class halflogistic_gen(rv_continuous):
         return log(2) - x - 2. * special.log1p(exp(-x))
 
     def _cdf(self, x):
-        return tanh(x / 2.0)
+        return tanh(x/2.0)
 
     def _ppf(self, q):
-        return 2 * arctanh(q)
+        return 2*arctanh(q)
 
     def _munp(self, n):
         if n == 1:
-            return 2 * log(2)
+            return 2*log(2)
         if n == 2:
-            return pi * pi / 3.0
+            return pi*pi/3.0
         if n == 3:
-            return 9 * _ZETA3
+            return 9*_ZETA3
         if n == 4:
-            return 7 * pi ** 4 / 15.0
-        return 2 * (1 - pow(2.0, 1 - n)) * \
-            special.gamma(n + 1) * special.zeta(n, 1)
+            return 7*pi**4 / 15.0
+        return 2*(1-pow(2.0, 1-n))*special.gamma(n+1)*special.zeta(n, 1)
 
     def _entropy(self):
-        return 2 - log(2)
+        return 2-log(2)
 halflogistic = halflogistic_gen(a=0.0, name='halflogistic')
 
 
 class halfnorm_gen(rv_continuous):
-
     """A half-normal continuous random variable.
 
     %(before_notes)s
@@ -2500,37 +2680,36 @@ class halfnorm_gen(rv_continuous):
 
     `halfnorm` is a special case of `chi` with ``df == 1``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self):
-        return abs(mtrand.standard_normal(size=self._size))
+        return abs(self._random_state.standard_normal(size=self._size))
 
     def _pdf(self, x):
-        return sqrt(2.0 / pi) * exp(-x * x / 2.0)
+        return sqrt(2.0/pi)*exp(-x*x/2.0)
 
     def _logpdf(self, x):
-        return 0.5 * np.log(2.0 / pi) - x * x / 2.0
+        return 0.5 * np.log(2.0/pi) - x*x/2.0
 
     def _cdf(self, x):
-        return special.ndtr(x) * 2 - 1.0
+        return special.ndtr(x)*2-1.0
 
     def _ppf(self, q):
-        return special.ndtri((1 + q) / 2.0)
+        return special.ndtri((1+q)/2.0)
 
     def _stats(self):
-        return (sqrt(2.0 / pi),
-                1 - 2.0 / pi, sqrt(2) * (4 - pi) / (pi - 2) ** 1.5,
-                8 * (pi - 3) / (pi - 2) ** 2)
+        return (sqrt(2.0/pi), 1-2.0/pi, sqrt(2)*(4-pi)/(pi-2)**1.5,
+                8*(pi-3)/(pi-2)**2)
 
     def _entropy(self):
-        return 0.5 * log(pi / 2.0) + 0.5
+        return 0.5*log(pi/2.0)+0.5
 halfnorm = halfnorm_gen(a=0.0, name='halfnorm')
 
 
 class hypsecant_gen(rv_continuous):
-
     """A hyperbolic secant continuous random variable.
 
     %(before_notes)s
@@ -2541,29 +2720,29 @@ class hypsecant_gen(rv_continuous):
 
         hypsecant.pdf(x) = 1/pi * sech(x)
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 1.0 / (pi * cosh(x))
+        return 1.0/(pi*cosh(x))
 
     def _cdf(self, x):
-        return 2.0 / pi * arctan(exp(x))
+        return 2.0/pi*arctan(exp(x))
 
     def _ppf(self, q):
-        return log(tan(pi * q / 2.0))
+        return log(tan(pi*q/2.0))
 
     def _stats(self):
-        return 0, pi * pi / 4, 0, 2
+        return 0, pi*pi/4, 0, 2
 
     def _entropy(self):
-        return log(2 * pi)
+        return log(2*pi)
 hypsecant = hypsecant_gen(name='hypsecant')
 
 
 class gausshyper_gen(rv_continuous):
-
     """A Gauss hypergeometric continuous random variable.
 
     %(before_notes)s
@@ -2578,28 +2757,29 @@ class gausshyper_gen(rv_continuous):
     for ``0 <= x <= 1``, ``a > 0``, ``b > 0``, and
     ``C = 1 / (B(a, b) F[2, 1](c, a; a+b; -z))``
 
+    `gausshyper` takes ``a``, ``b``, ``c`` and ``z`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, a, b, c, z):
         return (a > 0) & (b > 0) & (c == c) & (z == z)
 
     def _pdf(self, x, a, b, c, z):
-        Cinv = gam(a) * gam(b) / gam(a + b) * special.hyp2f1(c, a, a + b, -z)
-        return 1.0 / Cinv * \
-            x ** (a - 1.0) * (1.0 - x) ** (b - 1.0) / (1.0 + z * x) ** c
+        Cinv = gam(a)*gam(b)/gam(a+b)*special.hyp2f1(c, a, a+b, -z)
+        return 1.0/Cinv * x**(a-1.0) * (1.0-x)**(b-1.0) / (1.0+z*x)**c
 
     def _munp(self, n, a, b, c, z):
-        fac = special.beta(n + a, b) / special.beta(a, b)
-        num = special.hyp2f1(c, a + n, a + b + n, -z)
-        den = special.hyp2f1(c, a, a + b, -z)
-        return fac * num / den
+        fac = special.beta(n+a, b) / special.beta(a, b)
+        num = special.hyp2f1(c, a+n, a+b+n, -z)
+        den = special.hyp2f1(c, a, a+b, -z)
+        return fac*num / den
 gausshyper = gausshyper_gen(a=0.0, b=1.0, name='gausshyper')
 
 
 class invgamma_gen(rv_continuous):
-
     """An inverted gamma continuous random variable.
 
     %(before_notes)s
@@ -2612,27 +2792,30 @@ class invgamma_gen(rv_continuous):
 
     for x > 0, a > 0.
 
+    `invgamma` takes ``a`` as a shape parameter.
+
     `invgamma` is a special case of `gengamma` with ``c == -1``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, a):
         return exp(self._logpdf(x, a))
 
     def _logpdf(self, x, a):
-        return (-(a + 1) * log(x) - gamln(a) - 1.0 / x)
+        return (-(a+1) * log(x) - gamln(a) - 1.0/x)
 
     def _cdf(self, x, a):
-        return 1.0 - special.gammainc(a, 1.0 / x)
+        return 1.0 - special.gammainc(a, 1.0/x)
 
     def _ppf(self, q, a):
-        return 1.0 / special.gammaincinv(a, 1. - q)
+        return 1.0 / special.gammaincinv(a, 1.-q)
 
     def _stats(self, a, moments='mvsk'):
         m1 = _lazywhere(a > 1, (a,), lambda x: 1. / (x - 1.), np.inf)
-        m2 = _lazywhere(a > 2, (a,), lambda x: 1. / (x - 1.) ** 2 / (x - 2.),
+        m2 = _lazywhere(a > 2, (a,), lambda x: 1. / (x - 1.)**2 / (x - 2.),
                         np.inf)
 
         g1, g2 = None, None
@@ -2647,13 +2830,12 @@ class invgamma_gen(rv_continuous):
         return m1, m2, g1, g2
 
     def _entropy(self, a):
-        return a - (a + 1.0) * special.psi(a) + gamln(a)
+        return a - (a+1.0) * special.psi(a) + gamln(a)
 invgamma = invgamma_gen(a=0.0, name='invgamma')
 
 
 # scale is gamma from DATAPLOT and B from Regress
 class invgauss_gen(rv_continuous):
-
     """An inverse Gaussian continuous random variable.
 
     %(before_notes)s
@@ -2666,6 +2848,10 @@ class invgauss_gen(rv_continuous):
 
     for ``x > 0``.
 
+    `invgauss` takes ``mu`` as a shape parameter.
+
+    %(after_notes)s
+
     When `mu` is too small, evaluating the cumulative density function will be
     inaccurate due to ``cdf(mu -> 0) = inf * 0``.
     NaNs are returned for ``mu <= 0.0028``.
@@ -2673,32 +2859,28 @@ class invgauss_gen(rv_continuous):
     %(example)s
 
     """
-
     def _rvs(self, mu):
-        return mtrand.wald(mu, 1.0, size=self._size)
+        return self._random_state.wald(mu, 1.0, size=self._size)
 
     def _pdf(self, x, mu):
-        return 1.0 / sqrt(2 * pi * x ** 3.0) * \
-            exp(-1.0 / (2 * x) * ((x - mu) / mu) ** 2)
+        return 1.0/sqrt(2*pi*x**3.0)*exp(-1.0/(2*x)*((x-mu)/mu)**2)
 
     def _logpdf(self, x, mu):
-        return -0.5 * log(2 * pi) - 1.5 * log(x) - \
-            ((x - mu) / mu) ** 2 / (2 * x)
+        return -0.5*log(2*pi) - 1.5*log(x) - ((x-mu)/mu)**2/(2*x)
 
     def _cdf(self, x, mu):
-        fac = sqrt(1.0 / x)
+        fac = sqrt(1.0/x)
         # Numerical accuracy for small `mu` is bad.  See #869.
-        C1 = _norm_cdf(fac * (x - mu) / mu)
-        C1 += exp(1.0 / mu) * _norm_cdf(-fac * (x + mu) / mu) * exp(1.0 / mu)
+        C1 = _norm_cdf(fac*(x-mu)/mu)
+        C1 += exp(1.0/mu) * _norm_cdf(-fac*(x+mu)/mu) * exp(1.0/mu)
         return C1
 
     def _stats(self, mu):
-        return mu, mu ** 3.0, 3 * sqrt(mu), 15 * mu
+        return mu, mu**3.0, 3*sqrt(mu), 15*mu
 invgauss = invgauss_gen(a=0.0, name='invgauss')
 
 
 class invweibull_gen(rv_continuous):
-
     """An inverted Weibull continuous random variable.
 
     %(before_notes)s
@@ -2711,6 +2893,10 @@ class invweibull_gen(rv_continuous):
 
     for ``x > 0``, ``c > 0``.
 
+    `invweibull` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     References
     ----------
     F.R.S. de Gusmao, E.M.M Ortega and G.M. Cordeiro, "The generalized inverse
@@ -2719,7 +2905,6 @@ class invweibull_gen(rv_continuous):
     %(example)s
 
     """
-
     def _pdf(self, x, c):
         xc1 = np.power(x, -c - 1.0)
         xc2 = np.power(x, -c)
@@ -2731,18 +2916,17 @@ class invweibull_gen(rv_continuous):
         return exp(-xc1)
 
     def _ppf(self, q, c):
-        return np.power(-log(q), -1.0 / c)
+        return np.power(-log(q), -1.0/c)
 
     def _munp(self, n, c):
         return special.gamma(1 - n / c)
 
     def _entropy(self, c):
-        return 1 + _EULER + _EULER / c - log(c)
+        return 1+_EULER + _EULER / c - log(c)
 invweibull = invweibull_gen(a=0, name='invweibull')
 
 
 class johnsonsb_gen(rv_continuous):
-
     """A Johnson SB continuous random variable.
 
     %(before_notes)s
@@ -2759,19 +2943,22 @@ class johnsonsb_gen(rv_continuous):
 
     for ``0 < x < 1`` and ``a, b > 0``, and ``phi`` is the normal pdf.
 
+    `johnsonsb` takes ``a`` and ``b`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, a, b):
         return (b > 0) & (a == a)
 
     def _pdf(self, x, a, b):
-        trm = _norm_pdf(a + b * log(x / (1.0 - x)))
-        return b * 1.0 / (x * (1 - x)) * trm
+        trm = _norm_pdf(a + b*log(x/(1.0-x)))
+        return b*1.0/(x*(1-x))*trm
 
     def _cdf(self, x, a, b):
-        return _norm_cdf(a + b * log(x / (1.0 - x)))
+        return _norm_cdf(a + b*log(x/(1.0-x)))
 
     def _ppf(self, q, a, b):
         return 1.0 / (1 + exp(-1.0 / b * (_norm_ppf(q) - a)))
@@ -2779,7 +2966,6 @@ johnsonsb = johnsonsb_gen(a=0.0, b=1.0, name='johnsonsb')
 
 
 class johnsonsu_gen(rv_continuous):
-
     """A Johnson SU continuous random variable.
 
     %(before_notes)s
@@ -2797,20 +2983,23 @@ class johnsonsu_gen(rv_continuous):
 
     for all ``x, a, b > 0``, and `phi` is the normal pdf.
 
+    `johnsonsu` takes ``a`` and ``b`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, a, b):
         return (b > 0) & (a == a)
 
     def _pdf(self, x, a, b):
-        x2 = x * x
-        trm = _norm_pdf(a + b * log(x + sqrt(x2 + 1)))
-        return b * 1.0 / sqrt(x2 + 1.0) * trm
+        x2 = x*x
+        trm = _norm_pdf(a + b * log(x + sqrt(x2+1)))
+        return b*1.0/sqrt(x2+1.0)*trm
 
     def _cdf(self, x, a, b):
-        return _norm_cdf(a + b * log(x + sqrt(x * x + 1)))
+        return _norm_cdf(a + b * log(x + sqrt(x*x + 1)))
 
     def _ppf(self, q, a, b):
         return sinh((_norm_ppf(q) - a) / b)
@@ -2818,7 +3007,6 @@ johnsonsu = johnsonsu_gen(name='johnsonsu')
 
 
 class laplace_gen(rv_continuous):
-
     """A Laplace continuous random variable.
 
     %(before_notes)s
@@ -2829,18 +3017,19 @@ class laplace_gen(rv_continuous):
 
         laplace.pdf(x) = 1/2 * exp(-abs(x))
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self):
-        return mtrand.laplace(0, 1, size=self._size)
+        return self._random_state.laplace(0, 1, size=self._size)
 
     def _pdf(self, x):
-        return 0.5 * exp(-abs(x))
+        return 0.5*exp(-abs(x))
 
     def _cdf(self, x):
-        return where(x > 0, 1.0 - 0.5 * exp(-x), 0.5 * exp(x))
+        return where(x > 0, 1.0-0.5*exp(-x), 0.5*exp(x))
 
     def _ppf(self, q):
         return where(q > 0.5, -log(2) - log1p(-q), log(2 * q))
@@ -2849,12 +3038,11 @@ class laplace_gen(rv_continuous):
         return 0, 2, 0, 3
 
     def _entropy(self):
-        return log(2) + 1
+        return log(2)+1
 laplace = laplace_gen(name='laplace')
 
 
 class levy_gen(rv_continuous):
-
     """A Levy continuous random variable.
 
     %(before_notes)s
@@ -2873,12 +3061,13 @@ class levy_gen(rv_continuous):
 
     This is the same as the Levy-stable distribution with a=1/2 and b=1.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 1 / sqrt(2 * pi * x) / x * exp(-1 / (2 * x))
+        return 1 / sqrt(2*pi*x) / x * exp(-1/(2*x))
 
     def _cdf(self, x):
         # Equivalent to 2*norm.sf(sqrt(1/x))
@@ -2886,7 +3075,7 @@ class levy_gen(rv_continuous):
 
     def _ppf(self, q):
         # Equivalent to 1.0/(norm.isf(q/2)**2) or 0.5/(erfcinv(q)**2)
-        val = -special.ndtri(q / 2)
+        val = -special.ndtri(q/2)
         return 1.0 / (val * val)
 
     def _stats(self):
@@ -2895,7 +3084,6 @@ levy = levy_gen(a=0.0, name="levy")
 
 
 class levy_l_gen(rv_continuous):
-
     """A left-skewed Levy continuous random variable.
 
     %(before_notes)s
@@ -2914,13 +3102,14 @@ class levy_l_gen(rv_continuous):
 
     This is the same as the Levy-stable distribution with a=1/2 and b=-1.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
         ax = abs(x)
-        return 1 / sqrt(2 * pi * ax) / ax * exp(-1 / (2 * ax))
+        return 1/sqrt(2*pi*ax)/ax*exp(-1/(2*ax))
 
     def _cdf(self, x):
         ax = abs(x)
@@ -2936,7 +3125,6 @@ levy_l = levy_l_gen(b=0.0, name="levy_l")
 
 
 class levy_stable_gen(rv_continuous):
-
     """A Levy-stable continuous random variable.
 
     %(before_notes)s
@@ -2950,29 +3138,27 @@ class levy_stable_gen(rv_continuous):
     Levy-stable distribution (only random variates available -- ignore other
     docs)
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, alpha, beta):
         sz = self._size
-        TH = uniform.rvs(loc=-pi / 2.0, scale=pi, size=sz)
+        TH = uniform.rvs(loc=-pi/2.0, scale=pi, size=sz)
         W = expon.rvs(size=sz)
         if alpha == 1:
-            return 2 / pi * (pi / 2 + beta * TH) * tan(TH) - beta * \
-                log((pi / 2 * W * cos(TH)) / (pi / 2 + beta * TH))
+            return 2/pi*(pi/2+beta*TH)*tan(TH)-beta*log((pi/2*W*cos(TH))/(pi/2+beta*TH))
 
-        ialpha = 1.0 / alpha
-        aTH = alpha * TH
+        ialpha = 1.0/alpha
+        aTH = alpha*TH
         if beta == 0:
-            return W / (cos(TH) / tan(aTH) + sin(TH)) * \
-                ((cos(aTH) + sin(aTH) * tan(TH)) / W) ** ialpha
-
-        val0 = beta * tan(pi * alpha / 2)
-        th0 = arctan(val0) / alpha
-        val3 = W / (cos(TH) / tan(alpha * (th0 + TH)) + sin(TH))
-        res3 = val3 * ((cos(aTH) + sin(aTH) * tan(TH) - val0 *
-                        (sin(aTH) - cos(aTH) * tan(TH))) / W) ** ialpha
+            return W/(cos(TH)/tan(aTH)+sin(TH))*((cos(aTH)+sin(aTH)*tan(TH))/W)**ialpha
+
+        val0 = beta*tan(pi*alpha/2)
+        th0 = arctan(val0)/alpha
+        val3 = W/(cos(TH)/tan(alpha*(th0+TH))+sin(TH))
+        res3 = val3*((cos(aTH)+sin(aTH)*tan(TH)-val0*(sin(aTH)-cos(aTH)*tan(TH)))/W)**ialpha
         return res3
 
     def _argcheck(self, alpha, beta):
@@ -2988,7 +3174,6 @@ levy_stable = levy_stable_gen(name='levy_stable')
 
 
 class logistic_gen(rv_continuous):
-
     """A logistic (or Sech-squared) continuous random variable.
 
     %(before_notes)s
@@ -3001,12 +3186,13 @@ class logistic_gen(rv_continuous):
 
     `logistic` is a special case of `genlogistic` with ``c == 1``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self):
-        return mtrand.logistic(size=self._size)
+        return self._random_state.logistic(size=self._size)
 
     def _pdf(self, x):
         return exp(self._logpdf(x))
@@ -3021,7 +3207,7 @@ class logistic_gen(rv_continuous):
         return -log1p(-q) + log(q)
 
     def _stats(self):
-        return 0, pi * pi / 3.0, 0, 6.0 / 5.0
+        return 0, pi*pi/3.0, 0, 6.0/5.0
 
     def _entropy(self):
         # http://en.wikipedia.org/wiki/Logistic_distribution
@@ -3030,7 +3216,6 @@ logistic = logistic_gen(name='logistic')
 
 
 class loggamma_gen(rv_continuous):
-
     """A log gamma continuous random variable.
 
     %(before_notes)s
@@ -3043,15 +3228,18 @@ class loggamma_gen(rv_continuous):
 
     for all ``x, c > 0``.
 
+    `loggamma` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, c):
-        return log(mtrand.gamma(c, size=self._size))
+        return log(self._random_state.gamma(c, size=self._size))
 
     def _pdf(self, x, c):
-        return exp(c * x - exp(x) - gamln(c))
+        return exp(c*x-exp(x)-gamln(c))
 
     def _cdf(self, x, c):
         return special.gammainc(c, exp(x))
@@ -3065,14 +3253,13 @@ class loggamma_gen(rv_continuous):
         mean = special.digamma(c)
         var = special.polygamma(1, c)
         skewness = special.polygamma(2, c) / np.power(var, 1.5)
-        excess_kurtosis = special.polygamma(3, c) / (var * var)
+        excess_kurtosis = special.polygamma(3, c) / (var*var)
         return mean, var, skewness, excess_kurtosis
 
 loggamma = loggamma_gen(name='loggamma')
 
 
 class loglaplace_gen(rv_continuous):
-
     """A log-Laplace continuous random variable.
 
     %(before_notes)s
@@ -3086,6 +3273,10 @@ class loglaplace_gen(rv_continuous):
 
     for ``c > 0``.
 
+    `loglaplace` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     References
     ----------
     T.J. Kozubowski and K. Podgorski, "A log-Laplace growth rate model",
@@ -3094,34 +3285,32 @@ class loglaplace_gen(rv_continuous):
     %(example)s
 
     """
-
     def _pdf(self, x, c):
-        cd2 = c / 2.0
+        cd2 = c/2.0
         c = where(x < 1, c, -c)
-        return cd2 * x ** (c - 1)
+        return cd2*x**(c-1)
 
     def _cdf(self, x, c):
-        return where(x < 1, 0.5 * x ** c, 1 - 0.5 * x ** (-c))
+        return where(x < 1, 0.5*x**c, 1-0.5*x**(-c))
 
     def _ppf(self, q, c):
-        return where(
-            q < 0.5, (2.0 * q) ** (1.0 / c), (2 * (1.0 - q)) ** (-1.0 / c))
+        return where(q < 0.5, (2.0*q)**(1.0/c), (2*(1.0-q))**(-1.0/c))
 
     def _munp(self, n, c):
-        return c ** 2 / (c ** 2 - n ** 2)
+        return c**2 / (c**2 - n**2)
 
     def _entropy(self, c):
-        return log(2.0 / c) + 1.0
+        return log(2.0/c) + 1.0
 loglaplace = loglaplace_gen(a=0.0, name='loglaplace')
 
 
 def _lognorm_logpdf(x, s):
-    return -log(x) ** 2 / (2 * s ** 2) + \
-        np.where(x == 0, 0, -log(s * x * sqrt(2 * pi)))
+    return _lazywhere(x != 0, (x, s),
+                      lambda x, s: -log(x)**2 / (2*s**2) - log(s*x*sqrt(2*pi)),
+                      -np.inf)
 
 
 class lognorm_gen(rv_continuous):
-
     """A lognormal continuous random variable.
 
     %(before_notes)s
@@ -3134,16 +3323,21 @@ class lognorm_gen(rv_continuous):
 
     for ``x > 0``, ``s > 0``.
 
-    If ``log(x)`` is normally distributed with mean ``mu`` and variance
-    ``sigma**2``, then ``x`` is log-normally distributed with shape parameter
-    sigma and scale parameter ``exp(mu)``.
+    `lognorm` takes ``s`` as a shape parameter.
+
+    %(after_notes)s
+
+    A common parametrization for a lognormal random variable ``Y`` is in
+    terms of the mean, ``mu``, and standard deviation, ``sigma``, of the
+    unique normally distributed random variable ``X`` such that exp(X) = Y.
+    This parametrization corresponds to setting ``s = sigma`` and ``scale =
+    exp(mu)``.
 
     %(example)s
 
     """
-
     def _rvs(self, s):
-        return exp(s * mtrand.standard_normal(self._size))
+        return exp(s * self._random_state.standard_normal(self._size))
 
     def _pdf(self, x, s):
         return exp(self._logpdf(x, s))
@@ -3158,15 +3352,15 @@ class lognorm_gen(rv_continuous):
         return exp(s * _norm_ppf(q))
 
     def _stats(self, s):
-        p = exp(s * s)
+        p = exp(s*s)
         mu = sqrt(p)
-        mu2 = p * (p - 1)
-        g1 = sqrt((p - 1)) * (2 + p)
+        mu2 = p*(p-1)
+        g1 = sqrt((p-1))*(2+p)
         g2 = np.polyval([1, 2, 3, 0, -6.0], p)
         return mu, mu2, g1, g2
 
     def _entropy(self, s):
-        return 0.5 * (1 + log(2 * pi) + 2 * log(s))
+        return 0.5 * (1 + log(2*pi) + 2 * log(s))
 
     def _fitstart(self, data):
         scale = data.std()
@@ -3179,7 +3373,6 @@ lognorm = lognorm_gen(a=0.0, name='lognorm')
 
 
 class gilbrat_gen(rv_continuous):
-
     """A Gilbrat continuous random variable.
 
     %(before_notes)s
@@ -3192,12 +3385,13 @@ class gilbrat_gen(rv_continuous):
 
     `gilbrat` is a special case of `lognorm` with ``s = 1``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self):
-        return exp(mtrand.standard_normal(self._size))
+        return exp(self._random_state.standard_normal(self._size))
 
     def _pdf(self, x):
         return exp(self._logpdf(x))
@@ -3230,7 +3424,6 @@ gilbrat = gilbrat_gen(a=0.0, name='gilbrat')
 
 
 class maxwell_gen(rv_continuous):
-
     """A Maxwell continuous random variable.
 
     %(before_notes)s
@@ -3247,38 +3440,37 @@ class maxwell_gen(rv_continuous):
 
     for ``x > 0``.
 
+    %(after_notes)s
+
     References
     ----------
     .. [1] http://mathworld.wolfram.com/MaxwellDistribution.html
 
     %(example)s
     """
-
     def _rvs(self):
-        return chi.rvs(3.0, size=self._size)
+        return chi.rvs(3.0, size=self._size, random_state=self._random_state)
 
     def _pdf(self, x):
-        return sqrt(2.0 / pi) * x * x * exp(-x * x / 2.0)
+        return sqrt(2.0/pi)*x*x*exp(-x*x/2.0)
 
     def _cdf(self, x):
-        return special.gammainc(1.5, x * x / 2.0)
+        return special.gammainc(1.5, x*x/2.0)
 
     def _ppf(self, q):
-        return sqrt(2 * special.gammaincinv(1.5, q))
+        return sqrt(2*special.gammaincinv(1.5, q))
 
     def _stats(self):
-        val = 3 * pi - 8
-        return (2 * sqrt(2.0 / pi), 3 -
-                8 / pi, sqrt(2) * (32 - 10 * pi) / val ** 1.5,
-                (-12 * pi * pi + 160 * pi - 384) / val ** 2.0)
+        val = 3*pi-8
+        return (2*sqrt(2.0/pi), 3-8/pi, sqrt(2)*(32-10*pi)/val**1.5,
+                (-12*pi*pi + 160*pi - 384) / val**2.0)
 
     def _entropy(self):
-        return _EULER + 0.5 * log(2 * pi) - 0.5
+        return _EULER + 0.5*log(2*pi)-0.5
 maxwell = maxwell_gen(a=0.0, name='maxwell')
 
 
 class mielke_gen(rv_continuous):
-
     """A Mielke's Beta-Kappa continuous random variable.
 
     %(before_notes)s
@@ -3291,24 +3483,26 @@ class mielke_gen(rv_continuous):
 
     for ``x > 0``.
 
+    `mielke` takes ``k`` and ``s`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, k, s):
-        return k * x ** (k - 1.0) / (1.0 + x ** s) ** (1.0 + k * 1.0 / s)
+        return k*x**(k-1.0) / (1.0+x**s)**(1.0+k*1.0/s)
 
     def _cdf(self, x, k, s):
-        return x ** k / (1.0 + x ** s) ** (k * 1.0 / s)
+        return x**k / (1.0+x**s)**(k*1.0/s)
 
     def _ppf(self, q, k, s):
-        qsk = pow(q, s * 1.0 / k)
-        return pow(qsk / (1.0 - qsk), 1.0 / s)
+        qsk = pow(q, s*1.0/k)
+        return pow(qsk/(1.0-qsk), 1.0/s)
 mielke = mielke_gen(a=0.0, name='mielke')
 
 
 class nakagami_gen(rv_continuous):
-
     """A Nakagami continuous random variable.
 
     %(before_notes)s
@@ -3322,32 +3516,33 @@ class nakagami_gen(rv_continuous):
 
     for ``x > 0``, ``nu > 0``.
 
+    `nakagami` takes ``nu`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, nu):
-        return 2 * nu ** nu / \
-            gam(nu) * (x ** (2 * nu - 1.0)) * exp(-nu * x * x)
+        return 2*nu**nu/gam(nu)*(x**(2*nu-1.0))*exp(-nu*x*x)
 
     def _cdf(self, x, nu):
-        return special.gammainc(nu, nu * x * x)
+        return special.gammainc(nu, nu*x*x)
 
     def _ppf(self, q, nu):
-        return sqrt(1.0 / nu * special.gammaincinv(nu, q))
+        return sqrt(1.0/nu*special.gammaincinv(nu, q))
 
     def _stats(self, nu):
-        mu = gam(nu + 0.5) / gam(nu) / sqrt(nu)
-        mu2 = 1.0 - mu * mu
-        g1 = mu * (1 - 4 * nu * mu2) / 2.0 / nu / np.power(mu2, 1.5)
-        g2 = -6 * mu ** 4 * nu + (8 * nu - 2) * mu ** 2 - 2 * nu + 1
-        g2 /= nu * mu2 ** 2.0
+        mu = gam(nu+0.5)/gam(nu)/sqrt(nu)
+        mu2 = 1.0-mu*mu
+        g1 = mu * (1 - 4*nu*mu2) / 2.0 / nu / np.power(mu2, 1.5)
+        g2 = -6*mu**4*nu + (8*nu-2)*mu**2-2*nu + 1
+        g2 /= nu*mu2**2.0
         return mu, mu2, g1, g2
 nakagami = nakagami_gen(a=0.0, name="nakagami")
 
 
 class ncx2_gen(rv_continuous):
-
     """A non-central chi-squared continuous random variable.
 
     %(before_notes)s
@@ -3356,17 +3551,20 @@ class ncx2_gen(rv_continuous):
     -----
     The probability density function for `ncx2` is::
 
-        ncx2.pdf(x, df, nc) = exp(-(nc+df)/2) * 1/2 * (x/nc)**((df-2)/4)
+        ncx2.pdf(x, df, nc) = exp(-(nc+x)/2) * 1/2 * (x/nc)**((df-2)/4)
                               * I[(df-2)/2](sqrt(nc*x))
 
     for ``x > 0``.
 
+    `ncx2` takes ``df`` and ``nc`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, df, nc):
-        return mtrand.noncentral_chisquare(df, nc, self._size)
+        return self._random_state.noncentral_chisquare(df, nc, self._size)
 
     def _logpdf(self, x, df, nc):
         return _ncx2_log_pdf(x, df, nc)
@@ -3381,9 +3579,9 @@ class ncx2_gen(rv_continuous):
         return special.chndtrix(q, df, nc)
 
     def _stats(self, df, nc):
-        val = df + 2.0 * nc
-        return (df + nc, 2 * val, sqrt(8) * (val + nc) / val ** 1.5,
-                12.0 * (val + 2 * nc) / val ** 2.0)
+        val = df + 2.0*nc
+        return (df + nc, 2*val, sqrt(8)*(val+nc)/val**1.5,
+                12.0*(val+2*nc)/val**2.0)
 
     def _fitstart(self, data):
         m = data.mean()
@@ -3396,7 +3594,6 @@ ncx2 = ncx2_gen(a=0.0, name='ncx2')
 
 
 class ncf_gen(rv_continuous):
-
     """A non-central F distribution continuous random variable.
 
     %(before_notes)s
@@ -3414,33 +3611,25 @@ class ncf_gen(rv_continuous):
 
     for ``df1, df2, nc > 0``.
 
+    `ncf` takes ``df1``, ``df2`` and ``nc`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, dfn, dfd, nc):
-        return mtrand.noncentral_f(dfn, dfd, nc, self._size)
+        return self._random_state.noncentral_f(dfn, dfd, nc, self._size)
 
     def _pdf_skip(self, x, dfn, dfd, nc):
         n1, n2 = dfn, dfd
-        term = -nc / 2 + nc * n1 * x / \
-            (2 * (n2 + n1 * x)) + gamln(n1 / 2.) + gamln(1 + n2 / 2.)
-        term -= gamln((n1 + n2) / 2.0)
+        term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + gamln(n1/2.)+gamln(1+n2/2.)
+        term -= gamln((n1+n2)/2.0)
         Px = exp(term)
-        Px *= n1 ** (n1 / 2) * n2 ** (n2 / 2) * x ** (n1 / 2 - 1)
-        Px *= (n2 + n1 * x) ** (-(n1 + n2) / 2)
-        Px *= special.assoc_laguerre(-
-                                     nc *
-                                     n1 *
-                                     x /
-                                     (2.0 *
-                                      (n2 +
-                                       n1 *
-                                       x)), n2 /
-                                     2, n1 /
-                                     2 -
-                                     1)
-        Px /= special.beta(n1 / 2, n2 / 2)
+        Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1)
+        Px *= (n2+n1*x)**(-(n1+n2)/2)
+        Px *= special.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)), n2/2, n1/2-1)
+        Px /= special.beta(n1/2, n2/2)
         # This function does not have a return.  Drop it for now, the generic
         # function seems to work OK.
 
@@ -3451,23 +3640,22 @@ class ncf_gen(rv_continuous):
         return special.ncfdtri(dfn, dfd, nc, q)
 
     def _munp(self, n, dfn, dfd, nc):
-        val = (dfn * 1.0 / dfd) ** n
-        term = gamln(n + 0.5 * dfn) + gamln(0.5 * dfd - n) - gamln(dfd * 0.5)
-        val *= exp(-nc / 2.0 + term)
-        val *= special.hyp1f1(n + 0.5 * dfn, 0.5 * dfn, 0.5 * nc)
+        val = (dfn * 1.0/dfd)**n
+        term = gamln(n+0.5*dfn) + gamln(0.5*dfd-n) - gamln(dfd*0.5)
+        val *= exp(-nc / 2.0+term)
+        val *= special.hyp1f1(n+0.5*dfn, 0.5*dfn, 0.5*nc)
         return val
 
     def _stats(self, dfn, dfd, nc):
-        mu = where(dfd <= 2, inf, dfd / (dfd - 2.0) * (1 + nc * 1.0 / dfn))
-        mu2 = where(dfd <= 4, inf, 2 * (dfd * 1.0 / dfn) ** 2.0 *
-                    ((dfn + nc / 2.0) ** 2.0 + (dfn + nc) * (dfd - 2.0)) /
-                    ((dfd - 2.0) ** 2.0 * (dfd - 4.0)))
+        mu = where(dfd <= 2, inf, dfd / (dfd-2.0)*(1+nc*1.0/dfn))
+        mu2 = where(dfd <= 4, inf, 2*(dfd*1.0/dfn)**2.0 *
+                    ((dfn+nc/2.0)**2.0 + (dfn+nc)*(dfd-2.0)) /
+                    ((dfd-2.0)**2.0 * (dfd-4.0)))
         return mu, mu2, None, None
 ncf = ncf_gen(a=0.0, name='ncf')
 
 
 class t_gen(rv_continuous):
-
     """A Student's T continuous random variable.
 
     %(before_notes)s
@@ -3482,23 +3670,26 @@ class t_gen(rv_continuous):
 
     for ``df > 0``.
 
+    `t` takes ``df`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, df):
-        return mtrand.standard_t(df, size=self._size)
+        return self._random_state.standard_t(df, size=self._size)
 
     def _pdf(self, x, df):
-        r = asarray(df * 1.0)
-        Px = exp(gamln((r + 1) / 2) - gamln(r / 2))
-        Px /= sqrt(r * pi) * (1 + (x ** 2) / r) ** ((r + 1) / 2)
+        r = asarray(df*1.0)
+        Px = exp(gamln((r+1)/2)-gamln(r/2))
+        Px /= sqrt(r*pi)*(1+(x**2)/r)**((r+1)/2)
         return Px
 
     def _logpdf(self, x, df):
-        r = df * 1.0
-        lPx = gamln((r + 1) / 2) - gamln(r / 2)
-        lPx -= 0.5 * log(r * pi) + (r + 1) / 2 * log(1 + (x ** 2) / r)
+        r = df*1.0
+        lPx = gamln((r+1)/2)-gamln(r/2)
+        lPx -= 0.5*log(r*pi) + (r+1)/2*log(1+(x**2)/r)
         return lPx
 
     def _cdf(self, x, df):
@@ -3514,15 +3705,18 @@ class t_gen(rv_continuous):
         return -special.stdtrit(df, q)
 
     def _stats(self, df):
-        mu2 = where(df > 2, df / (df - 2.0), inf)
-        g1 = where(df > 3, 0.0, nan)
-        g2 = where(df > 4, 6.0 / (df - 4.0), nan)
+        mu2 = _lazywhere(df > 2, (df,),
+                         lambda df: df / (df-2.0),
+                         np.inf)
+        g1 = where(df > 3, 0.0, np.nan)
+        g2 = _lazywhere(df > 4, (df,),
+                        lambda df: 6.0 / (df-4.0),
+                        np.nan)
         return 0, mu2, g1, g2
 t = t_gen(name='t')
 
 
 class nct_gen(rv_continuous):
-
     """A non-central Student's T continuous random variable.
 
     %(before_notes)s
@@ -3531,39 +3725,43 @@ class nct_gen(rv_continuous):
     -----
     The probability density function for `nct` is::
 
-                                          df**(df/2) * gamma(df+1)
-      nct.pdf(x, df, nc) = ----------------------------------------------------
-                           2**df*exp(nc**2/2) * (df+x**2)**(df/2) * gamma(df/2)
+                                            df**(df/2) * gamma(df+1)
+        nct.pdf(x, df, nc) = ----------------------------------------------------
+                             2**df*exp(nc**2/2) * (df+x**2)**(df/2) * gamma(df/2)
 
     for ``df > 0``.
 
+    `nct` takes ``df`` and ``nc`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, df, nc):
         return (df > 0) & (nc == nc)
 
     def _rvs(self, df, nc):
-        return (norm.rvs(loc=nc, size=self._size) * sqrt(df) /
-                sqrt(chi2.rvs(df, size=self._size)))
+        sz, rndm = self._size, self._random_state
+        n = norm.rvs(loc=nc, size=sz, random_state=rndm)
+        c2 = chi2.rvs(df, size=sz, random_state=rndm)
+        return n * sqrt(df) / sqrt(c2)
 
     def _pdf(self, x, df, nc):
-        n = df * 1.0
-        nc = nc * 1.0
-        x2 = x * x
-        ncx2 = nc * nc * x2
+        n = df*1.0
+        nc = nc*1.0
+        x2 = x*x
+        ncx2 = nc*nc*x2
         fac1 = n + x2
-        trm1 = n / 2. * log(n) + gamln(n + 1)
-        trm1 -= n * log(2) + nc * nc / 2. + (n / 2.) * \
-            log(fac1) + gamln(n / 2.)
+        trm1 = n/2.*log(n) + gamln(n+1)
+        trm1 -= n*log(2)+nc*nc/2.+(n/2.)*log(fac1)+gamln(n/2.)
         Px = exp(trm1)
-        valF = ncx2 / (2 * fac1)
-        trm1 = sqrt(2) * nc * x * special.hyp1f1(n / 2 + 1, 1.5, valF)
-        trm1 /= asarray(fac1 * special.gamma((n + 1) / 2))
-        trm2 = special.hyp1f1((n + 1) / 2, 0.5, valF)
-        trm2 /= asarray(sqrt(fac1) * special.gamma(n / 2 + 1))
-        Px *= trm1 + trm2
+        valF = ncx2 / (2*fac1)
+        trm1 = sqrt(2)*nc*x*special.hyp1f1(n/2+1, 1.5, valF)
+        trm1 /= asarray(fac1*special.gamma((n+1)/2))
+        trm2 = special.hyp1f1((n+1)/2, 0.5, valF)
+        trm2 /= asarray(sqrt(fac1)*special.gamma(n/2+1))
+        Px *= trm1+trm2
         return Px
 
     def _cdf(self, x, df, nc):
@@ -3595,36 +3793,35 @@ class nct_gen(rv_continuous):
         # Biometrika 48, p. 465 (2961).
         # e.g. http://www.jstor.org/stable/2332772 (gated)
         #
-        g1 = g2 = None
-
-        gfac = gam(df / 2. - 0.5) / gam(df / 2.)
-        c11 = sqrt(df / 2.) * gfac
-        c20 = df / (df - 2.)
-        c22 = c20 - c11 * c11
-        mu = np.where(df > 1, nc * c11, np.inf)
-        mu2 = np.where(df > 2, c22 * nc * nc + c20, np.inf)
+        mu, mu2, g1, g2 = None, None, None, None
+
+        gfac = gam(df/2.-0.5) / gam(df/2.)
+        c11 = sqrt(df/2.) * gfac
+        c20 = df / (df-2.)
+        c22 = c20 - c11*c11
+        mu = np.where(df > 1, nc*c11, np.inf)
+        mu2 = np.where(df > 2, c22*nc*nc + c20, np.inf)
         if 's' in moments:
-            c33t = df * (7. - 2. * df) / (df - 2.) / (df - 3.) + 2. * c11 * c11
-            c31t = 3. * df / (df - 2.) / (df - 3.)
-            mu3 = (c33t * nc * nc + c31t) * c11 * nc
+            c33t = df * (7.-2.*df) / (df-2.) / (df-3.) + 2.*c11*c11
+            c31t = 3.*df / (df-2.) / (df-3.)
+            mu3 = (c33t*nc*nc + c31t) * c11*nc
             g1 = np.where(df > 3, mu3 / np.power(mu2, 1.5), np.nan)
-        # kurtosis
+        #kurtosis
         if 'k' in moments:
-            c44 = df * df / (df - 2.) / (df - 4.)
-            c44 -= c11 * c11 * 2. * df * (5. - df) / (df - 2.) / (df - 3.)
-            c44 -= 3. * c11 ** 4
-            c42 = df / (df - 4.) - c11 * c11 * (df - 1.) / (df - 3.)
-            c42 *= 6. * df / (df - 2.)
-            c40 = 3. * df * df / (df - 2.) / (df - 4.)
-
-            mu4 = c44 * nc ** 4 + c42 * nc ** 2 + c40
-            g2 = np.where(df > 4, mu4 / mu2 ** 2 - 3., np.nan)
+            c44 = df*df / (df-2.) / (df-4.)
+            c44 -= c11*c11 * 2.*df*(5.-df) / (df-2.) / (df-3.)
+            c44 -= 3.*c11**4
+            c42 = df / (df-4.) - c11*c11 * (df-1.) / (df-3.)
+            c42 *= 6.*df / (df-2.)
+            c40 = 3.*df*df / (df-2.) / (df-4.)
+
+            mu4 = c44 * nc**4 + c42*nc**2 + c40
+            g2 = np.where(df > 4, mu4/mu2**2 - 3., np.nan)
         return mu, mu2, g1, g2
 nct = nct_gen(name="nct")
 
 
 class pareto_gen(rv_continuous):
-
     """A Pareto continuous random variable.
 
     %(before_notes)s
@@ -3637,18 +3834,21 @@ class pareto_gen(rv_continuous):
 
     for ``x >= 1``, ``b > 0``.
 
+    `pareto` takes ``b`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, b):
-        return b * x ** (-b - 1)
+        return b * x**(-b-1)
 
     def _cdf(self, x, b):
-        return 1 - x ** (-b)
+        return 1 - x**(-b)
 
     def _ppf(self, q, b):
-        return pow(1 - q, -1.0 / b)
+        return pow(1-q, -1.0/b)
 
     def _stats(self, b, moments='mv'):
         mu, mu2, g1, g2 = None, None, None, None
@@ -3656,12 +3856,12 @@ class pareto_gen(rv_continuous):
             mask = b > 1
             bt = extract(mask, b)
             mu = valarray(shape(b), value=inf)
-            place(mu, mask, bt / (bt - 1.0))
+            place(mu, mask, bt / (bt-1.0))
         if 'v' in moments:
             mask = b > 2
             bt = extract(mask, b)
             mu2 = valarray(shape(b), value=inf)
-            place(mu2, mask, bt / (bt - 2.0) / (bt - 1.0) ** 2)
+            place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2)
         if 's' in moments:
             mask = b > 3
             bt = extract(mask, b)
@@ -3672,18 +3872,17 @@ class pareto_gen(rv_continuous):
             mask = b > 4
             bt = extract(mask, b)
             g2 = valarray(shape(b), value=nan)
-            vals = (6.0 * polyval([1.0, 1.0, -6, -2], bt) /
+            vals = (6.0*polyval([1.0, 1.0, -6, -2], bt) /
                     polyval([1.0, -7.0, 12.0, 0.0], bt))
             place(g2, mask, vals)
         return mu, mu2, g1, g2
 
     def _entropy(self, c):
-        return 1 + 1.0 / c - log(c)
+        return 1 + 1.0/c - log(c)
 pareto = pareto_gen(a=1.0, name="pareto")
 
 
 class lomax_gen(rv_continuous):
-
     """A Lomax (Pareto of the second kind) continuous random variable.
 
     %(before_notes)s
@@ -3699,39 +3898,41 @@ class lomax_gen(rv_continuous):
 
     for ``x >= 0``, ``c > 0``.
 
+    `lomax` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
-        return c * 1.0 / (1.0 + x) ** (c + 1.0)
+        return c*1.0/(1.0+x)**(c+1.0)
 
     def _logpdf(self, x, c):
-        return log(c) - (c + 1) * log1p(x)
+        return log(c) - (c+1)*special.log1p(x)
 
     def _cdf(self, x, c):
-        return -expm1(-c * log1p(x))
+        return -special.expm1(-c*special.log1p(x))
 
     def _sf(self, x, c):
-        return exp(-c * log1p(x))
+        return exp(-c*special.log1p(x))
 
     def _logsf(self, x, c):
-        return -c * log1p(x)
+        return -c*special.log1p(x)
 
     def _ppf(self, q, c):
-        return expm1(-log1p(-q) / c)
+        return special.expm1(-special.log1p(-q)/c)
 
     def _stats(self, c):
         mu, mu2, g1, g2 = pareto.stats(c, loc=-1.0, moments='mvsk')
         return mu, mu2, g1, g2
 
     def _entropy(self, c):
-        return 1 + 1.0 / c - log(c)
+        return 1+1.0/c-log(c)
 lomax = lomax_gen(a=0.0, name="lomax")
 
 
 class pearson3_gen(rv_continuous):
-
     """A pearson type III continuous random variable.
 
     %(before_notes)s
@@ -3749,6 +3950,10 @@ class pearson3_gen(rv_continuous):
             alpha = (stddev * beta)**2
             zeta = loc - alpha / beta
 
+    `pearson3` takes ``skew`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     References
@@ -3764,7 +3969,6 @@ class pearson3_gen(rv_continuous):
     Aviation Loads Data", Office of Aviation Research (2003).
 
     """
-
     def _preprocess(self, x, skew):
         # The real 'loc' and 'scale' are handled in the calling pdf(...). The
         # local variables 'loc' and 'scale' within pearson3._pdf are set to
@@ -3786,7 +3990,7 @@ class pearson3_gen(rv_continuous):
         invmask = ~mask
 
         beta = 2.0 / (skew[invmask] * scale)
-        alpha = (scale * beta) ** 2
+        alpha = (scale * beta)**2
         zeta = loc - alpha / beta
 
         transx = beta * (x[invmask] - zeta)
@@ -3800,12 +4004,11 @@ class pearson3_gen(rv_continuous):
         return np.ones(np.shape(skew), dtype=bool)
 
     def _stats(self, skew):
-        # ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
-        _1, _2, _3, skew, _4, _5, beta, alpha, zeta = self._preprocess([1],
-                                                                       skew)
+        ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
+            self._preprocess([1], skew))
         m = zeta + alpha / beta
-        v = alpha / (beta ** 2)
-        s = 2.0 / (alpha ** 0.5) * np.sign(beta)
+        v = alpha / (beta**2)
+        s = 2.0 / (alpha**0.5) * np.sign(beta)
         k = 6.0 / alpha
         return m, v, s, k
 
@@ -3826,7 +4029,7 @@ class pearson3_gen(rv_continuous):
         # + (alpha - 1)*log(beta*(x - zeta))          + (a - 1)*log(x)
         # - beta*(x - zeta)                           - x
         # - gamln(alpha)                              - gamln(a)
-        ans, x, transx, skew, mask, invmask, beta, alpha, _zeta = (
+        ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
             self._preprocess(x, skew))
 
         ans[mask] = np.log(_norm_pdf(x[mask]))
@@ -3834,7 +4037,7 @@ class pearson3_gen(rv_continuous):
         return ans
 
     def _cdf(self, x, skew):
-        ans, x, transx, skew, mask, invmask, _beta, alpha, _zeta = (
+        ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
             self._preprocess(x, skew))
 
         ans[mask] = _norm_cdf(x[mask])
@@ -3842,26 +4045,25 @@ class pearson3_gen(rv_continuous):
         return ans
 
     def _rvs(self, skew):
-        _ans, _x, _transx, skew, mask, _invmask, beta, alpha, zeta = (
+        ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
             self._preprocess([0], skew))
         if mask[0]:
-            return mtrand.standard_normal(self._size)
-        ans = mtrand.standard_gamma(alpha, self._size) / beta + zeta
+            return self._random_state.standard_normal(self._size)
+        ans = self._random_state.standard_gamma(alpha, self._size)/beta + zeta
         if ans.size == 1:
             return ans[0]
         return ans
 
     def _ppf(self, q, skew):
-        ans, q, _transq, skew, mask, invmask, beta, alpha, zeta = (
+        ans, q, transq, skew, mask, invmask, beta, alpha, zeta = (
             self._preprocess(q, skew))
         ans[mask] = _norm_ppf(q[mask])
-        ans[invmask] = special.gammaincinv(alpha, q[invmask]) / beta + zeta
+        ans[invmask] = special.gammaincinv(alpha, q[invmask])/beta + zeta
         return ans
 pearson3 = pearson3_gen(name="pearson3")
 
 
 class powerlaw_gen(rv_continuous):
-
     """A power-function continuous random variable.
 
     %(before_notes)s
@@ -3874,26 +4076,29 @@ class powerlaw_gen(rv_continuous):
 
     for ``0 <= x <= 1``, ``a > 0``.
 
+    `powerlaw` takes ``a`` as a shape parameter.
+
+    %(after_notes)s
+
     `powerlaw` is a special case of `beta` with ``b == 1``.
 
     %(example)s
 
     """
-
     def _pdf(self, x, a):
-        return a * x ** (a - 1.0)
+        return a*x**(a-1.0)
 
     def _logpdf(self, x, a):
         return log(a) + special.xlogy(a - 1, x)
 
     def _cdf(self, x, a):
-        return x ** (a * 1.0)
+        return x**(a*1.0)
 
     def _logcdf(self, x, a):
-        return a * log(x)
+        return a*log(x)
 
     def _ppf(self, q, a):
-        return pow(q, 1.0 / a)
+        return pow(q, 1.0/a)
 
     def _stats(self, a):
         return (a / (a + 1.0),
@@ -3902,12 +4107,11 @@ class powerlaw_gen(rv_continuous):
                 6 * polyval([1, -1, -6, 2], a) / (a * (a + 3.0) * (a + 4)))
 
     def _entropy(self, a):
-        return 1 - 1.0 / a - log(a)
+        return 1 - 1.0/a - log(a)
 powerlaw = powerlaw_gen(a=0.0, b=1.0, name="powerlaw")
 
 
 class powerlognorm_gen(rv_continuous):
-
     """A power log-normal continuous random variable.
 
     %(before_notes)s
@@ -3922,16 +4126,19 @@ class powerlognorm_gen(rv_continuous):
     where ``phi`` is the normal pdf, and ``Phi`` is the normal cdf,
     and ``x > 0``, ``s, c > 0``.
 
+    `powerlognorm` takes ``c`` and ``s`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c, s):
-        return (c / (x * s) * _norm_pdf(log(x) / s) *
-                pow(_norm_cdf(-log(x) / s), c * 1.0 - 1.0))
+        return (c/(x*s) * _norm_pdf(log(x)/s) *
+                pow(_norm_cdf(-log(x)/s), c*1.0-1.0))
 
     def _cdf(self, x, c, s):
-        return 1.0 - pow(_norm_cdf(-log(x) / s), c * 1.0)
+        return 1.0 - pow(_norm_cdf(-log(x)/s), c*1.0)
 
     def _ppf(self, q, c, s):
         return exp(-s * _norm_ppf(pow(1.0 - q, 1.0 / c)))
@@ -3939,7 +4146,6 @@ powerlognorm = powerlognorm_gen(a=0.0, name="powerlognorm")
 
 
 class powernorm_gen(rv_continuous):
-
     """A power normal continuous random variable.
 
     %(before_notes)s
@@ -3953,18 +4159,21 @@ class powernorm_gen(rv_continuous):
     where ``phi`` is the normal pdf, and ``Phi`` is the normal cdf,
     and ``x > 0``, ``c > 0``.
 
+    `powernorm` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
-        return (c * _norm_pdf(x) * (_norm_cdf(-x) ** (c - 1.0)))
+        return (c*_norm_pdf(x) * (_norm_cdf(-x)**(c-1.0)))
 
     def _logpdf(self, x, c):
-        return log(c) + _norm_logpdf(x) + (c - 1) * _norm_logcdf(-x)
+        return log(c) + _norm_logpdf(x) + (c-1)*_norm_logcdf(-x)
 
     def _cdf(self, x, c):
-        return 1.0 - _norm_cdf(-x) ** (c * 1.0)
+        return 1.0-_norm_cdf(-x)**(c*1.0)
 
     def _ppf(self, q, c):
         return -_norm_ppf(pow(1.0 - q, 1.0 / c))
@@ -3972,7 +4181,6 @@ powernorm = powernorm_gen(name='powernorm')
 
 
 class rdist_gen(rv_continuous):
-
     """An R-distributed continuous random variable.
 
     %(before_notes)s
@@ -3985,21 +4193,23 @@ class rdist_gen(rv_continuous):
 
     for ``-1 <= x <= 1``, ``c > 0``.
 
+    `rdist` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x, c):
-        return np.power((1.0 - x ** 2), c / 2.0 - 1) / \
-            special.beta(0.5, c / 2.0)
+        return np.power((1.0 - x**2), c / 2.0 - 1) / special.beta(0.5, c / 2.0)
 
     def _cdf(self, x, c):
         term1 = x / special.beta(0.5, c / 2.0)
-        res = 0.5 + term1 * special.hyp2f1(0.5, 1 - c / 2.0, 1.5, x ** 2)
+        res = 0.5 + term1 * special.hyp2f1(0.5, 1 - c / 2.0, 1.5, x**2)
         # There's an issue with hyp2f1, it returns nans near x = +-1, c > 100.
         # Use the generic implementation in that case.  See gh-1285 for
         # background.
-        if any(np.isnan(res)):
+        if np.any(np.isnan(res)):
             return rv_continuous._cdf(self, x, c)
         return res
 
@@ -4010,7 +4220,6 @@ rdist = rdist_gen(a=-1.0, b=1.0, name="rdist")
 
 
 class rayleigh_gen(rv_continuous):
-
     """A Rayleigh continuous random variable.
 
     %(before_notes)s
@@ -4025,6 +4234,8 @@ class rayleigh_gen(rv_continuous):
 
     `rayleigh` is a special case of `chi` with ``df == 2``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
@@ -4038,7 +4249,7 @@ class rayleigh_gen(rv_continuous):
             raise IndexError('Index to the fixed parameter is out of bounds')
 
     def _rvs(self):
-        return chi.rvs(2, size=self._size)
+        return chi.rvs(2, size=self._size, random_state=self._random_state)
 
     def _pdf(self, r):
         return exp(self._logpdf(r))
@@ -4048,24 +4259,24 @@ class rayleigh_gen(rv_continuous):
         return where(rr2 == inf, - rr2, log(r) - rr2)
 
     def _cdf(self, r):
-        return - expm1(-r * r / 2.0)
-
-    def _sf(self, r):
-        return exp(-r * r / 2.0)
+        return -special.expm1(-0.5 * r**2)
 
     def _ppf(self, q):
-        return sqrt(-2 * log1p(-q))
+        return sqrt(-2 * special.log1p(-q))
+
+    def _sf(self, r):
+        return exp(-0.5 * r**2)
 
     def _isf(self, q):
         return sqrt(-2 * log(q))
 
     def _stats(self):
         val = 4 - pi
-        return (np.sqrt(pi / 2), val / 2, 2 * (pi - 3) * sqrt(pi) / val ** 1.5,
-                6 * pi / val - 16 / val ** 2)
+        return (np.sqrt(pi/2), val/2, 2*(pi-3)*sqrt(pi)/val**1.5,
+                6*pi/val-16/val**2)
 
     def _entropy(self):
-        return _EULER / 2.0 + 1 - 0.5 * log(2)
+        return _EULER/2.0 + 1 - 0.5*log(2)
 rayleigh = rayleigh_gen(a=0.0, name="rayleigh")
 
 
@@ -4146,7 +4357,6 @@ truncrayleigh = truncrayleigh_gen(a=0.0, name="truncrayleigh", shapes='c')
 
 
 class reciprocal_gen(rv_continuous):
-
     """A reciprocal continuous random variable.
 
     %(before_notes)s
@@ -4159,14 +4369,17 @@ class reciprocal_gen(rv_continuous):
 
     for ``a <= x <= b``, ``a, b > 0``.
 
+    `reciprocal` takes ``a`` and ``b`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, a, b):
         self.a = a
         self.b = b
-        self.d = log(b * 1.0 / a)
+        self.d = log(b*1.0 / a)
         return (a > 0) & (b > 0) & (b > a)
 
     def _pdf(self, x, a, b):
@@ -4176,13 +4389,13 @@ class reciprocal_gen(rv_continuous):
         return -log(x) - log(self.d)
 
     def _cdf(self, x, a, b):
-        return (log(x) - log(a)) / self.d
+        return (log(x)-log(a)) / self.d
 
     def _ppf(self, q, a, b):
-        return a * pow(b * 1.0 / a, q)
+        return a*pow(b*1.0/a, q)
 
     def _munp(self, n, a, b):
-        return 1.0 / self.d / n * (pow(b * 1.0, n) - pow(a * 1.0, n))
+        return 1.0/self.d / n * (pow(b*1.0, n) - pow(a*1.0, n))
 
     def _fitstart(self, data):
         a = np.min(data)
@@ -4196,13 +4409,10 @@ class reciprocal_gen(rv_continuous):
         return super(reciprocal_gen, self)._fitstart(data, args=(a, b))
 
     def _entropy(self, a, b):
-        return 0.5 * log(a * b) + log(log(b / a))
+        return 0.5*log(a*b)+log(log(b/a))
 reciprocal = reciprocal_gen(name="reciprocal")
 
-
-# FIXME: PPF does not work.
 class rice_gen(rv_continuous):
-
     """A Rice continuous random variable.
 
     %(before_notes)s
@@ -4215,34 +4425,52 @@ class rice_gen(rv_continuous):
 
     for ``x > 0``, ``b > 0``.
 
+    `rice` takes ``b`` as a shape parameter.
+
+    %(after_notes)s
+
+    The Rice distribution describes the length, ``r``, of a 2-D vector
+    with components ``(U+u, V+v)``, where ``U, V`` are constant, ``u, v``
+    are independent Gaussian random variables with standard deviation
+    ``s``.  Let ``R = (U**2 + V**2)**0.5``. Then the pdf of ``r`` is
+    ``rice.pdf(x, R/s, scale=s)``.
+
     %(example)s
 
     """
-
     def _argcheck(self, b):
         return b >= 0
 
     def _rvs(self, b):
         # http://en.wikipedia.org/wiki/Rice_distribution
         sz = self._size if self._size else 1
-        t = b / np.sqrt(2) + mtrand.standard_normal(size=(2, sz))
-        return np.sqrt((t * t).sum(axis=0))
+        t = b/np.sqrt(2) + self._random_state.standard_normal(size=(2, sz))
+        return np.sqrt((t*t).sum(axis=0))
+
+    def _cdf(self, x, b):
+        return chndtr(np.square(x), 2, np.square(b))
+
+    def _ppf(self, q, b):
+        return np.sqrt(chndtrix(q, 2, np.square(b)))
 
     def _pdf(self, x, b):
-        return x * exp(-(x - b) * (x - b) / 2.0) * special.i0e(x * b)
+        # We use (x**2 + b**2)/2 = ((x-b)**2)/2 + xb.
+        # The factor of exp(-xb) is then included in the i0e function
+        # in place of the modified Bessel function, i0, improving
+        # numerical stability for large values of xb.
+        return x * exp(-(x-b)*(x-b)/2.0) * special.i0e(x*b)
 
     def _munp(self, n, b):
-        nd2 = n / 2.0
+        nd2 = n/2.0
         n1 = 1 + nd2
-        b2 = b * b / 2.0
-        return (2.0 ** (nd2) * exp(-b2) * special.gamma(n1) *
+        b2 = b*b/2.0
+        return (2.0**(nd2) * exp(-b2) * special.gamma(n1) *
                 special.hyp1f1(n1, 1, b2))
 rice = rice_gen(a=0.0, name="rice")
 
 
 # FIXME: PPF does not work.
 class recipinvgauss_gen(rv_continuous):
-
     """A reciprocal inverse Gaussian continuous random variable.
 
     %(before_notes)s
@@ -4255,32 +4483,31 @@ class recipinvgauss_gen(rv_continuous):
 
     for ``x >= 0``.
 
+    `recipinvgauss` takes ``mu`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _rvs(self, mu):
-        return 1.0 / mtrand.wald(mu, 1.0, size=self._size)
+        return 1.0/self._random_state.wald(mu, 1.0, size=self._size)
 
     def _pdf(self, x, mu):
-        return 1.0 / sqrt(2 * pi * x) * \
-            exp(-(1 - mu * x) ** 2.0 / (2 * x * mu ** 2.0))
+        return 1.0/sqrt(2*pi*x)*exp(-(1-mu*x)**2.0 / (2*x*mu**2.0))
 
     def _logpdf(self, x, mu):
-        return -(1 - mu * x) ** 2.0 / \
-            (2 * x * mu ** 2.0) - 0.5 * log(2 * pi * x)
+        return -(1-mu*x)**2.0 / (2*x*mu**2.0) - 0.5*log(2*pi*x)
 
     def _cdf(self, x, mu):
-        trm1 = 1.0 / mu - x
-        trm2 = 1.0 / mu + x
-        isqx = 1.0 / sqrt(x)
-        return 1.0 - _norm_cdf(isqx * trm1) - \
-            exp(2.0 / mu) * _norm_cdf(-isqx * trm2)
+        trm1 = 1.0/mu - x
+        trm2 = 1.0/mu + x
+        isqx = 1.0/sqrt(x)
+        return 1.0-_norm_cdf(isqx*trm1)-exp(2.0/mu)*_norm_cdf(-isqx*trm2)
 recipinvgauss = recipinvgauss_gen(a=0.0, name='recipinvgauss')
 
 
 class semicircular_gen(rv_continuous):
-
     """A semicircular continuous random variable.
 
     %(before_notes)s
@@ -4293,15 +4520,16 @@ class semicircular_gen(rv_continuous):
 
     for ``-1 <= x <= 1``.
 
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _pdf(self, x):
-        return 2.0 / pi * sqrt(1 - x * x)
+        return 2.0/pi*sqrt(1-x*x)
 
     def _cdf(self, x):
-        return 0.5 + 1.0 / pi * (x * sqrt(1 - x * x) + arcsin(x))
+        return 0.5+1.0/pi*(x*sqrt(1-x*x) + arcsin(x))
 
     def _stats(self):
         return 0, 0.25, 0, -1.0
@@ -4311,8 +4539,65 @@ class semicircular_gen(rv_continuous):
 semicircular = semicircular_gen(a=-1.0, b=1.0, name="semicircular")
 
 
-class triang_gen(rv_continuous):
+class skew_norm_gen(rv_continuous):
+    """A skew-normal random variable.
+
+    %(before_notes)s
+
+    Notes
+    -----
+    The pdf is
+
+    skewnorm.pdf(x, a) = 2*norm.pdf(x)*norm.cdf(ax)
+
+    `skewnorm` takes ``a`` as a skewness parameter
+    When a=0 the distribution is identical to a normal distribution.
+    rvs implements the method of [1].
+
+    %(after_notes)s
+
+    %(example)s
 
+
+    References
+    ----------
+
+    [1] A. Azzalini and A. Capitanio (1999). Statistical applications of the
+        multivariate skew-normal distribution. J. Roy. Statist. Soc., B 61, 579-602.
+        http://azzalini.stat.unipd.it/SN/faq-r.html
+    """
+
+    def _argcheck(self, a):
+        return np.isfinite(a)
+
+    def _pdf(self, x, a):
+        return 2.*_norm_pdf(x)*_norm_cdf(a*x)
+
+    def _rvs(self, a):
+        u0 = self._random_state.normal(size=self._size)
+        v = self._random_state.normal(size=self._size)
+        d = a/np.sqrt(1 + a**2)
+        u1 = d*u0 + v*np.sqrt(1 - d**2)
+        return np.where(u0 >= 0, u1, -u1)
+
+    def _stats(self, a, moments='mvsk'):
+        output = [None, None, None, None]
+        const = np.sqrt(2/pi) * a/np.sqrt(1 + a**2)
+
+        if 'm' in moments:
+            output[0] = const
+        if 'v' in moments:
+            output[1] = 1 - const**2
+        if 's' in moments:
+            output[2] = ((4 - pi)/2) * (const/np.sqrt(1 - const**2))**3
+        if 'k' in moments:
+            output[3] = (2*(pi - 3)) * (const**4/(1 - const**2)**2)
+
+        return output
+
+skewnorm = skew_norm_gen(name='skewnorm')
+
+class triang_gen(rv_continuous):
     """A triangular continuous random variable.
 
     %(before_notes)s
@@ -4323,6 +4608,10 @@ class triang_gen(rv_continuous):
     ``loc`` to ``(loc + c*scale)`` and then downsloping for ``(loc + c*scale)``
     to ``(loc+scale)``.
 
+    `triang` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     The standard form is in the range [0, 1] with c the mode.
     The location parameter shifts the start to `loc`.
     The scale parameter changes the width from 1 to `scale`.
@@ -4330,33 +4619,31 @@ class triang_gen(rv_continuous):
     %(example)s
 
     """
-
     def _rvs(self, c):
-        return mtrand.triangular(0, c, 1, self._size)
+        return self._random_state.triangular(0, c, 1, self._size)
 
     def _argcheck(self, c):
         return (c >= 0) & (c <= 1)
 
     def _pdf(self, x, c):
-        return where(x < c, 2 * x / c, 2 * (1 - x) / (1 - c))
+        return where(x < c, 2*x/c, 2*(1-x)/(1-c))
 
     def _cdf(self, x, c):
-        return where(x < c, x * x / c, (x * x - 2 * x + c) / (c - 1))
+        return where(x < c, x*x/c, (x*x-2*x+c)/(c-1))
 
     def _ppf(self, q, c):
-        return where(q < c, sqrt(c * q), 1 - sqrt((1 - c) * (1 - q)))
+        return where(q < c, sqrt(c*q), 1-sqrt((1-c)*(1-q)))
 
     def _stats(self, c):
-        return (c + 1.0) / 3.0, (1.0 - c + c * c) / 18, sqrt(2) * (2 * c - 1) * (c + 1) * (c - 2) / \
-               (5 * np.power((1.0 - c + c * c), 1.5)), -3.0 / 5.0
+        return (c+1.0)/3.0, (1.0-c+c*c)/18, sqrt(2)*(2*c-1)*(c+1)*(c-2) / \
+               (5 * np.power((1.0-c+c*c), 1.5)), -3.0/5.0
 
     def _entropy(self, c):
-        return 0.5 - log(2)
+        return 0.5-log(2)
 triang = triang_gen(a=0.0, b=1.0, name="triang")
 
 
 class truncexpon_gen(rv_continuous):
-
     """A truncated exponential continuous random variable.
 
     %(before_notes)s
@@ -4369,33 +4656,36 @@ class truncexpon_gen(rv_continuous):
 
     for ``0 < x < b``.
 
+    `truncexpon` takes ``b`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, b):
         self.b = b
         return (b > 0)
 
     def _pdf(self, x, b):
-        return exp(-x) / (-expm1(-b))
+        return exp(-x)/(-special.expm1(-b))
 
     def _logpdf(self, x, b):
-        return - x - log(-expm1(-b))
+        return -x - log(-special.expm1(-b))
 
     def _cdf(self, x, b):
-        return expm1(-x) / expm1(-b)
+        return special.expm1(-x)/special.expm1(-b)
 
     def _ppf(self, q, b):
-        return - log1p(q * expm1(-b))
+        return -special.log1p(q*special.expm1(-b))
 
     def _munp(self, n, b):
         # wrong answer with formula, same as in continuous.pdf
         # return gam(n+1)-special.gammainc(1+n, b)
         if n == 1:
-            return (1 - (b + 1) * exp(-b)) / (-expm1(-b))
+            return (1-(b+1)*exp(-b))/(-special.expm1(-b))
         elif n == 2:
-            return 2 * (1 - 0.5 * (b * b + 2 * b + 2) * exp(-b)) / (-expm1(-b))
+            return 2*(1-0.5*(b*b+2*b+2)*exp(-b))/(-special.expm1(-b))
         else:
             # return generic for higher moments
             # return rv_continuous._mom1_sc(self, n, b)
@@ -4403,12 +4693,11 @@ class truncexpon_gen(rv_continuous):
 
     def _entropy(self, b):
         eB = exp(b)
-        return log(eB - 1) + (1 + eB * (b - 1.0)) / (1.0 - eB)
+        return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB)
 truncexpon = truncexpon_gen(a=0.0, name='truncexpon')
 
 
 class truncnorm_gen(rv_continuous):
-
     """A truncated normal continuous random variable.
 
     %(before_notes)s
@@ -4422,10 +4711,13 @@ class truncnorm_gen(rv_continuous):
 
         a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std
 
+    `truncnorm` takes ``a`` and ``b`` as shape parameters.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, a, b):
         self.a = a
         self.b = b
@@ -4451,23 +4743,22 @@ class truncnorm_gen(rv_continuous):
 
     def _ppf(self, q, a, b):
         if self.a > 0:
-            return _norm_isf(q * self._sb + self._sa * (1.0 - q))
+            return _norm_isf(q*self._sb + self._sa*(1.0-q))
         else:
-            return _norm_ppf(q * self._nb + self._na * (1.0 - q))
+            return _norm_ppf(q*self._nb + self._na*(1.0-q))
 
     def _stats(self, a, b):
         nA, nB = self._na, self._nb
         d = nB - nA
         pA, pB = _norm_pdf(a), _norm_pdf(b)
         mu = (pA - pB) / d   # correction sign
-        mu2 = 1 + (a * pA - b * pB) / d - mu * mu
+        mu2 = 1 + (a*pA - b*pB) / d - mu*mu
         return mu, mu2, None, None
 truncnorm = truncnorm_gen(name='truncnorm')
 
 
 # FIXME: RVS does not work.
 class tukeylambda_gen(rv_continuous):
-
     """A Tukey-Lamdba continuous random variable.
 
     %(before_notes)s
@@ -4483,40 +4774,39 @@ class tukeylambda_gen(rv_continuous):
         - u-shape               (lam = 0.5)
         - uniform from -1 to 1  (lam = 1)
 
+    `tukeylambda` takes ``lam`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, lam):
         return np.ones(np.shape(lam), dtype=bool)
 
     def _pdf(self, x, lam):
         Fx = asarray(special.tklmbda(x, lam))
-        Px = Fx ** (lam - 1.0) + (asarray(1 - Fx)) ** (lam - 1.0)
-        Px = 1.0 / asarray(Px)
-        return where((lam <= 0) | (abs(x) < 1.0 / asarray(lam)), Px, 0.0)
+        Px = Fx**(lam-1.0) + (asarray(1-Fx))**(lam-1.0)
+        Px = 1.0/asarray(Px)
+        return where((lam <= 0) | (abs(x) < 1.0/asarray(lam)), Px, 0.0)
 
     def _cdf(self, x, lam):
         return special.tklmbda(x, lam)
 
     def _ppf(self, q, lam):
-        q = q * 1.0
-        vals1 = (q ** lam - (1 - q) ** lam) / lam
-        vals2 = log(q / (1 - q))
-        return where((lam == 0) & (q == q), vals2, vals1)
+        return special.boxcox(q, lam) - special.boxcox1p(-q, lam)
 
     def _stats(self, lam):
         return 0, _tlvar(lam), 0, _tlkurt(lam)
 
     def _entropy(self, lam):
         def integ(p):
-            return log(pow(p, lam - 1) + pow(1 - p, lam - 1))
+            return log(pow(p, lam-1)+pow(1-p, lam-1))
         return integrate.quad(integ, 0, 1)[0]
 tukeylambda = tukeylambda_gen(name='tukeylambda')
 
 
 class uniform_gen(rv_continuous):
-
     """A uniform continuous random variable.
 
     This distribution is constant between `loc` and ``loc + scale``.
@@ -4526,12 +4816,11 @@ class uniform_gen(rv_continuous):
     %(example)s
 
     """
-
     def _rvs(self):
-        return mtrand.uniform(0.0, 1.0, self._size)
+        return self._random_state.uniform(0.0, 1.0, self._size)
 
     def _pdf(self, x):
-        return 1.0 * (x == x)
+        return 1.0*(x == x)
 
     def _cdf(self, x):
         return x
@@ -4540,7 +4829,7 @@ class uniform_gen(rv_continuous):
         return q
 
     def _stats(self):
-        return 0.5, 1.0 / 12, 0, -1.2
+        return 0.5, 1.0/12, 0, -1.2
 
     def _entropy(self):
         return 0.0
@@ -4548,7 +4837,6 @@ uniform = uniform_gen(a=0.0, b=1.0, name='uniform')
 
 
 class vonmises_gen(rv_continuous):
-
     """A Von Mises continuous random variable.
 
     %(before_notes)s
@@ -4564,6 +4852,10 @@ class vonmises_gen(rv_continuous):
 
     for ``-pi <= x <= pi``, ``kappa > 0``.
 
+    `vonmises` takes ``kappa`` as a shape parameter.
+
+    %(after_notes)s
+
     See Also
     --------
     vonmises_line : The same distribution, defined on a [-pi, pi] segment
@@ -4572,12 +4864,11 @@ class vonmises_gen(rv_continuous):
     %(example)s
 
     """
-
     def _rvs(self, kappa):
-        return mtrand.vonmises(0.0, kappa, size=self._size)
+        return self._random_state.vonmises(0.0, kappa, size=self._size)
 
     def _pdf(self, x, kappa):
-        return exp(kappa * cos(x)) / (2 * pi * special.i0(kappa))
+        return exp(kappa * cos(x)) / (2*pi*special.i0(kappa))
 
     def _cdf(self, x, kappa):
         return vonmises_cython.von_mises_cdf(kappa, x)
@@ -4589,7 +4880,6 @@ vonmises_line = vonmises_gen(a=-np.pi, b=np.pi, name='vonmises_line')
 
 
 class wald_gen(invgauss_gen):
-
     """A Wald continuous random variable.
 
     %(before_notes)s
@@ -4604,11 +4894,12 @@ class wald_gen(invgauss_gen):
 
     `wald` is a special case of `invgauss` with ``mu == 1``.
 
+    %(after_notes)s
+
     %(example)s
     """
-
     def _rvs(self):
-        return mtrand.wald(1.0, 1.0, size=self._size)
+        return self._random_state.wald(1.0, 1.0, size=self._size)
 
     def _pdf(self, x):
         return invgauss._pdf(x, 1.0)
@@ -4625,7 +4916,6 @@ wald = wald_gen(a=0.0, name="wald")
 
 
 class wrapcauchy_gen(rv_continuous):
-
     """A wrapped Cauchy continuous random variable.
 
     %(before_notes)s
@@ -4638,45 +4928,169 @@ class wrapcauchy_gen(rv_continuous):
 
     for ``0 <= x <= 2*pi``, ``0 < c < 1``.
 
+    `wrapcauchy` takes ``c`` as a shape parameter.
+
+    %(after_notes)s
+
     %(example)s
 
     """
-
     def _argcheck(self, c):
         return (c > 0) & (c < 1)
 
     def _pdf(self, x, c):
-        return (1.0 - c * c) / (2 * pi * (1 + c * c - 2 * c * cos(x)))
+        return (1.0-c*c)/(2*pi*(1+c*c-2*c*cos(x)))
 
     def _cdf(self, x, c):
-        output = 0.0 * x
-        val = (1.0 + c) / (1.0 - c)
+        output = np.zeros(x.shape, dtype=x.dtype)
+        val = (1.0+c)/(1.0-c)
         c1 = x < pi
-        c2 = 1 - c1
+        c2 = 1-c1
         xp = extract(c1, x)
         xn = extract(c2, x)
-        if (any(xn)):
-            valn = extract(c2, np.ones_like(x) * val)
-            xn = 2 * pi - xn
-            yn = tan(xn / 2.0)
-            on = 1.0 - 1.0 / pi * arctan(valn * yn)
+        if np.any(xn):
+            valn = extract(c2, np.ones_like(x)*val)
+            xn = 2*pi - xn
+            yn = tan(xn/2.0)
+            on = 1.0-1.0/pi*arctan(valn*yn)
             place(output, c2, on)
-        if (any(xp)):
-            valp = extract(c1, np.ones_like(x) * val)
-            yp = tan(xp / 2.0)
-            op = 1.0 / pi * arctan(valp * yp)
+        if np.any(xp):
+            valp = extract(c1, np.ones_like(x)*val)
+            yp = tan(xp/2.0)
+            op = 1.0/pi*arctan(valp*yp)
             place(output, c1, op)
         return output
 
     def _ppf(self, q, c):
-        val = (1.0 - c) / (1.0 + c)
-        rcq = 2 * arctan(val * tan(pi * q))
-        rcmq = 2 * pi - 2 * arctan(val * tan(pi * (1 - q)))
-        return where(q < 1.0 / 2, rcq, rcmq)
+        val = (1.0-c)/(1.0+c)
+        rcq = 2*arctan(val*tan(pi*q))
+        rcmq = 2*pi-2*arctan(val*tan(pi*(1-q)))
+        return where(q < 1.0/2, rcq, rcmq)
 
     def _entropy(self, c):
-        return log(2 * pi * (1 - c * c))
-wrapcauchy = wrapcauchy_gen(a=0.0, b=2 * pi, name='wrapcauchy')
+        return log(2*pi*(1-c*c))
+wrapcauchy = wrapcauchy_gen(a=0.0, b=2*pi, name='wrapcauchy')
+
+
+class gennorm_gen(rv_continuous):
+    """A generalized normal continuous random variable.
+
+    %(before_notes)s
+
+    Notes
+    -----
+    The probability density function for `gennorm` is [1]_::
+
+                                     beta
+        gennorm.pdf(x, beta) =  ---------------  exp(-|x|**beta)
+                                2 gamma(1/beta)
+
+    `gennorm` takes ``beta`` as a shape parameter.
+    For ``beta = 1``, it is identical to a Laplace distribution.
+    For ``beta = 2``, it is identical to a normal distribution
+    (with ``scale=1/sqrt(2)``).
+
+    See Also
+    --------
+    laplace : Laplace distribution
+    norm : normal distribution
+
+    References
+    ----------
+
+    .. [1] "Generalized normal distribution, Version 1",
+           https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
+
+    %(example)s
+
+    """
+
+    def _pdf(self, x, beta):
+        return np.exp(self._logpdf(x, beta))
+
+    def _logpdf(self, x, beta):
+        return np.log(.5 * beta) - special.gammaln(1. / beta) - abs(x)**beta
+
+    def _cdf(self, x, beta):
+        c = .5 * np.sign(x)
+        # evaluating (.5 + c) first prevents numerical cancellation
+        return (.5 + c) - c * special.gammaincc(1. / beta, abs(x)**beta)
+
+    def _ppf(self, x, beta):
+        c = np.sign(x - .5)
+        # evaluating (1. + c) first prevents numerical cancellation
+        return c * special.gammainccinv(1. / beta, (1. + c) - 2.*c*x)**(1. / beta)
+
+    def _sf(self, x, beta):
+        return self._cdf(-x, beta)
+
+    def _isf(self, x, beta):
+        return -self._ppf(x, beta)
+
+    def _stats(self, beta):
+        c1, c3, c5 = special.gammaln([1./beta, 3./beta, 5./beta])
+        return 0., np.exp(c3 - c1), 0., np.exp(c5 + c1 - 2. * c3) - 3.
+
+    def _entropy(self, beta):
+        return 1. / beta - np.log(.5 * beta) + special.gammaln(1. / beta)
+gennorm = gennorm_gen(name='gennorm')
+
+
+class halfgennorm_gen(rv_continuous):
+    """The upper half of a generalized normal continuous random variable.
+
+    %(before_notes)s
+
+    Notes
+    -----
+    The probability density function for `halfgennorm` is::
+
+                                        beta
+        halfgennorm.pdf(x, beta) =  -------------  exp(-|x|**beta)
+                                    gamma(1/beta)
+
+    `gennorm` takes ``beta`` as a shape parameter.
+    For ``beta = 1``, it is identical to an exponential distribution.
+    For ``beta = 2``, it is identical to a half normal distribution
+    (with ``scale=1/sqrt(2)``).
+
+    See Also
+    --------
+    gennorm : generalized normal distribution
+    expon : exponential distribution
+    halfnorm : half normal distribution
+
+    References
+    ----------
+
+    .. [1] "Generalized normal distribution, Version 1",
+           https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
+
+    %(example)s
+
+    """
+
+    def _pdf(self, x, beta):
+        return np.exp(self._logpdf(x, beta))
+
+    def _logpdf(self, x, beta):
+        return np.log(beta) - special.gammaln(1. / beta) - x**beta
+
+    def _cdf(self, x, beta):
+        return special.gammainc(1. / beta, x**beta)
+
+    def _ppf(self, x, beta):
+        return special.gammaincinv(1. / beta, x)**(1. / beta)
+
+    def _sf(self, x, beta):
+        return special.gammaincc(1. / beta, x**beta)
+
+    def _isf(self, x, beta):
+        return special.gammainccinv(1. / beta, x)**(1. / beta)
+
+    def _entropy(self, beta):
+        return 1. / beta - np.log(beta) + special.gammaln(1. / beta)
+halfgennorm = halfgennorm_gen(a=0, name='halfgennorm')
 
 
 # Collect names of classes and objects in this module.
diff --git a/wafo/stats/_discrete_distns.py b/wafo/stats/_discrete_distns.py
index c442032..afa18a1 100644
--- a/wafo/stats/_discrete_distns.py
+++ b/wafo/stats/_discrete_distns.py
@@ -5,15 +5,15 @@
 from __future__ import division, print_function, absolute_import
 
 from scipy import special
-from scipy.special import gammaln as gamln
+from scipy.special import entr, gammaln as gamln
+from scipy.misc import logsumexp
 
 from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh
 
 import numpy as np
-import numpy.random as mtrand
 
-from ._distn_infrastructure import (rv_discrete, _lazywhere, _ncx2_pdf,
-                                    _ncx2_cdf, get_distribution_names)
+from ._distn_infrastructure import (
+        rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf, get_distribution_names)
 
 
 class binom_gen(rv_discrete):
@@ -31,11 +31,13 @@ class binom_gen(rv_discrete):
 
     `binom` takes ``n`` and ``p`` as shape parameters.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _rvs(self, n, p):
-        return mtrand.binomial(n, p, self._size)
+        return self._random_state.binomial(n, p, self._size)
 
     def _argcheck(self, n, p):
         self.b = n
@@ -78,8 +80,7 @@ class binom_gen(rv_discrete):
     def _entropy(self, n, p):
         k = np.r_[0:n + 1]
         vals = self._pmf(k, n, p)
-        h = -np.sum(special.xlogy(vals, vals), axis=0)
-        return h
+        return np.sum(entr(vals), axis=0)
 binom = binom_gen(name='binom')
 
 
@@ -99,6 +100,8 @@ class bernoulli_gen(binom_gen):
 
     `bernoulli` takes ``p`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
@@ -127,8 +130,7 @@ class bernoulli_gen(binom_gen):
         return binom._stats(1, p)
 
     def _entropy(self, p):
-        h = -special.xlogy(p, p) - special.xlogy(1 - p, 1 - p)
-        return h
+        return entr(p) + entr(1-p)
 bernoulli = bernoulli_gen(b=1, name='bernoulli')
 
 
@@ -147,21 +149,23 @@ class nbinom_gen(rv_discrete):
 
     `nbinom` takes ``n`` and ``p`` as shape parameters.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _rvs(self, n, p):
-        return mtrand.negative_binomial(n, p, self._size)
+        return self._random_state.negative_binomial(n, p, self._size)
 
     def _argcheck(self, n, p):
-        return (n >= 0) & (p >= 0) & (p <= 1)
+        return (n > 0) & (p >= 0) & (p <= 1)
 
     def _pmf(self, x, n, p):
         return exp(self._logpmf(x, n, p))
 
     def _logpmf(self, x, n, p):
-        coeff = gamln(n + x) - gamln(x + 1) - gamln(n)
-        return coeff + special.xlogy(n, p) + special.xlog1py(x, -p)
+        coeff = gamln(n+x) - gamln(x+1) - gamln(n)
+        return coeff + n*log(p) + special.xlog1py(x, -p)
 
     def _cdf(self, x, n, p):
         k = floor(x)
@@ -204,11 +208,13 @@ class geom_gen(rv_discrete):
 
     `geom` takes ``p`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _rvs(self, p):
-        return mtrand.geometric(p, size=self._size)
+        return self._random_state.geometric(p, size=self._size)
 
     def _argcheck(self, p):
         return (p <= 1) & (p >= 0)
@@ -221,14 +227,14 @@ class geom_gen(rv_discrete):
 
     def _cdf(self, x, p):
         k = floor(x)
-        return -expm1(log1p(-p) * k)
+        return -expm1(log1p(-p)*k)
 
     def _sf(self, x, p):
         return np.exp(self._logsf(x, p))
 
     def _logsf(self, x, p):
         k = floor(x)
-        return k * log1p(-p)
+        return k*log1p(-p)
 
     def _ppf(self, q, p):
         vals = ceil(log1p(-q) / log1p(-p))
@@ -262,6 +268,8 @@ class hypergeom_gen(rv_discrete):
         pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N),
                                        for max(0, N - (M-n)) <= k <= min(n, N)
 
+    %(after_notes)s
+
     Examples
     --------
     >>> from scipy.stats import hypergeom
@@ -297,10 +305,10 @@ class hypergeom_gen(rv_discrete):
 
     """
     def _rvs(self, M, n, N):
-        return mtrand.hypergeometric(n, M-n, N, size=self._size)
+        return self._random_state.hypergeometric(n, M-n, N, size=self._size)
 
     def _argcheck(self, M, n, N):
-        cond = rv_discrete._argcheck(self, M, n, N)
+        cond = (M > 0) & (n >= 0) & (N >= 0)
         cond &= (n <= M) & (N <= M)
         self.a = max(N-(M-n), 0)
         self.b = min(n, N)
@@ -338,8 +346,7 @@ class hypergeom_gen(rv_discrete):
     def _entropy(self, M, n, N):
         k = np.r_[N - (M - n):min(n, N) + 1]
         vals = self.pmf(k, M, n, N)
-        h = -np.sum(special.xlogy(vals, vals), axis=0)
-        return h
+        return np.sum(entr(vals), axis=0)
 
     def _sf(self, k, M, n, N):
         """More precise calculation, 1 - cdf doesn't cut it."""
@@ -354,6 +361,17 @@ class hypergeom_gen(rv_discrete):
             k2 = np.arange(quant + 1, draw + 1)
             res.append(np.sum(self._pmf(k2, tot, good, draw)))
         return np.asarray(res)
+        
+    def _logsf(self, k, M, n, N):
+        """
+        More precise calculation than log(sf)
+        """
+        res = []
+        for quant, tot, good, draw in zip(k, M, n, N):
+            # Integration over probability mass function using logsumexp
+            k2 = np.arange(quant + 1, draw + 1)
+            res.append(logsumexp(self._logpmf(k2, tot, good, draw)))
+        return np.asarray(res)
 hypergeom = hypergeom_gen(name='hypergeom')
 
 
@@ -373,13 +391,15 @@ class logser_gen(rv_discrete):
 
     `logser` takes ``p`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _rvs(self, p):
         # looks wrong for p>0.5, too few k=1
         # trying to use generic is worse, no k=1 at all
-        return mtrand.logseries(p, size=self._size)
+        return self._random_state.logseries(p, size=self._size)
 
     def _argcheck(self, p):
         return (p > 0) & (p < 1)
@@ -419,14 +439,21 @@ class poisson_gen(rv_discrete):
 
     `poisson` takes ``mu`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
+
+    # Override rv_discrete._argcheck to allow mu=0.
+    def _argcheck(self, mu):
+        return mu >= 0
+
     def _rvs(self, mu):
-        return mtrand.poisson(mu, self._size)
+        return self._random_state.poisson(mu, self._size)
 
     def _logpmf(self, k, mu):
-        Pk = k*log(mu)-gamln(k+1) - mu
+        Pk = special.xlogy(k, mu) - gamln(k + 1) - mu
         return Pk
 
     def _pmf(self, k, mu):
@@ -449,9 +476,11 @@ class poisson_gen(rv_discrete):
     def _stats(self, mu):
         var = mu
         tmp = np.asarray(mu)
-        g1 = sqrt(1.0 / tmp)
-        g2 = 1.0 / tmp
+        mu_nonzero = tmp > 0
+        g1 = _lazywhere(mu_nonzero, (tmp,), lambda x: sqrt(1.0/x), np.inf)
+        g2 = _lazywhere(mu_nonzero, (tmp,), lambda x: 1.0/x, np.inf)
         return mu, var, g1, g2
+
 poisson = poisson_gen(name="poisson", longname='A Poisson')
 
 
@@ -470,6 +499,8 @@ class planck_gen(rv_discrete):
 
     `planck` takes ``lambda_`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
@@ -487,7 +518,7 @@ class planck_gen(rv_discrete):
 
     def _pmf(self, k, lambda_):
         fact = -expm1(-lambda_)
-        return fact * exp(-lambda_ * k)
+        return fact*exp(-lambda_*k)
 
     def _cdf(self, x, lambda_):
         k = floor(x)
@@ -528,12 +559,14 @@ class boltzmann_gen(rv_discrete):
 
     `boltzmann` takes ``lambda_`` and ``N`` as shape parameters.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _pmf(self, k, lambda_, N):
         fact = (expm1(-lambda_)) / (expm1(-lambda_ * N))
-        return fact * exp(-lambda_ * k)
+        return fact*exp(-lambda_*k)
 
     def _cdf(self, x, lambda_, N):
         k = floor(x)
@@ -559,7 +592,7 @@ class boltzmann_gen(rv_discrete):
         g2 = g2 / trm2 / trm2
         return mu, var, g1, g2
 boltzmann = boltzmann_gen(name='boltzmann',
-                          longname='A truncated discrete exponential ')
+        longname='A truncated discrete exponential ')
 
 
 class randint_gen(rv_discrete):
@@ -577,8 +610,7 @@ class randint_gen(rv_discrete):
 
     `randint` takes ``low`` and ``high`` as shape parameters.
 
-    Note the difference to the numpy ``random_integers`` which
-    returns integers on a *closed* interval ``[low, high]``.
+    %(after_notes)s
 
     %(example)s
 
@@ -616,7 +648,7 @@ class randint_gen(rv_discrete):
 
         If ``high`` is ``None``, then range is >=0  and < low
         """
-        return mtrand.randint(low, high, self._size)
+        return self._random_state.randint(low, high, self._size)
 
     def _entropy(self, low, high):
         return log(high - low)
@@ -624,21 +656,6 @@ randint = randint_gen(name='randint', longname='A discrete uniform '
                       '(random integer)')
 
 
-def harmonic(n, r):
-    return (1./n + special.polygamma(r-1, n)/special.gamma(r) +
-            special.zeta(r, 1))
-
-
-def H(n):
-    """Returns the n-th harmonic number.
-
-       http://en.wikipedia.org/wiki/Harmonic_number
-    """
-    # Euler-Mascheroni constant
-    gamma = 0.57721566490153286060651209008240243104215933593992
-    return gamma + special.digamma(n+1)
-
-
 # FIXME: problems sampling.
 class zipf_gen(rv_discrete):
     """A Zipf discrete random variable.
@@ -655,11 +672,13 @@ class zipf_gen(rv_discrete):
 
     `zipf` takes ``a`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _rvs(self, a):
-        return mtrand.zipf(a, size=self._size)
+        return self._random_state.zipf(a, size=self._size)
 
     def _argcheck(self, a):
         return a > 1
@@ -691,6 +710,8 @@ class dlaplace_gen(rv_discrete):
 
     `dlaplace` takes ``a`` as shape parameter.
 
+    %(after_notes)s
+
     %(example)s
 
     """
@@ -705,9 +726,8 @@ class dlaplace_gen(rv_discrete):
 
     def _ppf(self, q, a):
         const = 1 + exp(a)
-        vals = ceil(np.where(q < 1.0 / (1 + exp(-a)),
-                             log(q*const) / a - 1,
-                             -log((1-q) * const) / a))
+        vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1,
+                                                      -log((1-q) * const) / a))
         vals1 = vals - 1
         return np.where(self._cdf(vals1, a) >= q, vals1, vals)
 
@@ -746,25 +766,28 @@ class skellam_gen(rv_discrete):
 
     `skellam` takes ``mu1`` and ``mu2`` as shape parameters.
 
+    %(after_notes)s
+
     %(example)s
 
     """
     def _rvs(self, mu1, mu2):
         n = self._size
-        return mtrand.poisson(mu1, n) - mtrand.poisson(mu2, n)
+        return (self._random_state.poisson(mu1, n) -
+                self._random_state.poisson(mu2, n))
 
     def _pmf(self, x, mu1, mu2):
         px = np.where(x < 0,
-                      _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2,
-                      _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2)
+                _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2,
+                _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2)
         # ncx2.pdf() returns nan's for extremely low probabilities
         return px
 
     def _cdf(self, x, mu1, mu2):
         x = floor(x)
         px = np.where(x < 0,
-                      _ncx2_cdf(2*mu2, -2*x, 2*mu1),
-                      1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2))
+                _ncx2_cdf(2*mu2, -2*x, 2*mu1),
+                1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2))
         return px
 
     def _stats(self, mu1, mu2):
diff --git a/wafo/stats/_distn_infrastructure.py b/wafo/stats/_distn_infrastructure.py
index 3fb23b0..9677194 100644
--- a/wafo/stats/_distn_infrastructure.py
+++ b/wafo/stats/_distn_infrastructure.py
@@ -1,193 +1,10 @@
-#
-# Author:  Travis Oliphant  2002-2011 with contributions from
-#          SciPy Developers 2004-2011
-#
-from __future__ import division, print_function, absolute_import
-
-from scipy._lib.six import string_types, exec_
-
-import sys
-import keyword
-import re
-import inspect
-import types
-import warnings
-
-from scipy.misc import doccer
-from ._distr_params import distcont, distdiscrete
-
-from scipy.special import xlogy, chndtr, gammaln, hyp0f1, comb
-
-# for root finding for discrete distribution ppf, and max likelihood estimation
-from scipy import optimize
-
-# for functions of continuous distributions (e.g. moments, entropy, cdf)
-from scipy import integrate
-
-# to approximate the pdf of a continuous distribution given its cdf
-from scipy.misc import derivative
-
-from numpy import (arange, putmask, ravel, take, ones, sum, shape,
-                   product, reshape, zeros, floor, logical_and, log, sqrt, exp,
-                   ndarray)
-
-from numpy import (place, any, argsort, argmax, vectorize,
-                   asarray, nan, inf, isinf, NINF, empty)
-
+from scipy.stats._distn_infrastructure import *
+from scipy.stats._distn_infrastructure import (_skew, _kurtosis,  # @UnresolvedImport
+    _lazywhere,  _ncx2_log_pdf, _ncx2_pdf, _ncx2_cdf)
+from wafo.stats.estimation import FitDistribution
+from wafo.stats._constants import _EPS, _XMAX
 import numpy as np
-import numpy.random as mtrand
 
-from ._constants import _EPS, _XMAX
-from .estimation import FitDistribution
-
-try:
-    from new import instancemethod
-except ImportError:
-    # Python 3
-    def instancemethod(func, obj, cls):
-        return types.MethodType(func, obj)
-
-
-# These are the docstring parts used for substitution in specific
-# distribution docstrings
-
-docheaders = {'methods': """\nMethods\n-------\n""",
-              'parameters': """\nParameters\n---------\n""",
-              'notes': """\nNotes\n-----\n""",
-              'examples': """\nExamples\n--------\n"""}
-
-_doc_rvs = """\
-``rvs(%(shapes)s, loc=0, scale=1, size=1)``
-    Random variates.
-"""
-_doc_pdf = """\
-``pdf(x, %(shapes)s, loc=0, scale=1)``
-    Probability density function.
-"""
-_doc_logpdf = """\
-``logpdf(x, %(shapes)s, loc=0, scale=1)``
-    Log of the probability density function.
-"""
-_doc_pmf = """\
-``pmf(x, %(shapes)s, loc=0, scale=1)``
-    Probability mass function.
-"""
-_doc_logpmf = """\
-``logpmf(x, %(shapes)s, loc=0, scale=1)``
-    Log of the probability mass function.
-"""
-_doc_cdf = """\
-``cdf(x, %(shapes)s, loc=0, scale=1)``
-    Cumulative density function.
-"""
-_doc_logcdf = """\
-``logcdf(x, %(shapes)s, loc=0, scale=1)``
-    Log of the cumulative density function.
-"""
-_doc_sf = """\
-``sf(x, %(shapes)s, loc=0, scale=1)``
-    Survival function (1-cdf --- sometimes more accurate).
-"""
-_doc_logsf = """\
-``logsf(x, %(shapes)s, loc=0, scale=1)``
-    Log of the survival function.
-"""
-_doc_ppf = """\
-``ppf(q, %(shapes)s, loc=0, scale=1)``
-    Percent point function (inverse of cdf --- percentiles).
-"""
-_doc_isf = """\
-``isf(q, %(shapes)s, loc=0, scale=1)``
-    Inverse survival function (inverse of sf).
-"""
-_doc_moment = """\
-``moment(n, %(shapes)s, loc=0, scale=1)``
-    Non-central moment of order n
-"""
-_doc_stats = """\
-``stats(%(shapes)s, loc=0, scale=1, moments='mv')``
-    Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
-"""
-_doc_entropy = """\
-``entropy(%(shapes)s, loc=0, scale=1)``
-    (Differential) entropy of the RV.
-"""
-_doc_fit = """\
-``fit(data, %(shapes)s, loc=0, scale=1)``
-    Parameter estimates for generic data.
-"""
-_doc_expect = """\
-``expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)``
-    Expected value of a function (of one argument) with respect to the distribution.
-"""
-_doc_expect_discrete = """\
-``expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False)``
-    Expected value of a function (of one argument) with respect to the distribution.
-"""
-_doc_median = """\
-``median(%(shapes)s, loc=0, scale=1)``
-    Median of the distribution.
-"""
-_doc_mean = """\
-``mean(%(shapes)s, loc=0, scale=1)``
-    Mean of the distribution.
-"""
-_doc_var = """\
-``var(%(shapes)s, loc=0, scale=1)``
-    Variance of the distribution.
-"""
-_doc_std = """\
-``std(%(shapes)s, loc=0, scale=1)``
-    Standard deviation of the distribution.
-"""
-_doc_interval = """\
-``interval(alpha, %(shapes)s, loc=0, scale=1)``
-    Endpoints of the range that contains alpha percent of the distribution
-"""
-_doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf,
-                           _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf,
-                           _doc_logsf, _doc_ppf, _doc_isf, _doc_moment,
-                           _doc_stats, _doc_entropy, _doc_fit,
-                           _doc_expect, _doc_median,
-                           _doc_mean, _doc_var, _doc_std, _doc_interval])
-
-# Note that the two lines for %(shapes) are searched for and replaced in
-# rv_continuous and rv_discrete - update there if the exact string changes
-_doc_default_callparams = """
-Parameters
-----------
-x : array_like
-    quantiles
-q : array_like
-    lower or upper tail probability
-%(shapes)s : array_like
-    shape parameters
-loc : array_like, optional
-    location parameter (default=0)
-scale : array_like, optional
-    scale parameter (default=1)
-size : int or tuple of ints, optional
-    shape of random variates (default computed from input arguments )
-moments : str, optional
-    composed of letters ['mvsk'] specifying which moments to compute where
-    'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
-    'k' = (Fisher's) kurtosis.
-    Default is 'mv'.
-"""
-_doc_default_longsummary = """\
-Continuous random variables are defined from a standard form and may
-require some shape parameters to complete its specification.  Any
-optional keyword parameters can be passed to the methods of the RV
-object as given below:
-"""
-_doc_default_frozen_note = """
-Alternatively, the object may be called (as a function) to fix the shape,
-location, and scale parameters returning a "frozen" continuous RV object:
-
-rv = %(name)s(%(shapes)s, loc=0, scale=1)
-    - Frozen RV object with the same methods but holding the given shape,
-      location, and scale fixed.
-"""
 _doc_default_example = """\
 Examples
 --------
@@ -203,11 +20,15 @@ Calculate a few first moments:
 Display the probability density function (``pdf``):
 
 >>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s),
-...               %(name)s.ppf(0.99, %(shapes)s), 100)
+...                 %(name)s.ppf(0.99, %(shapes)s), 100)
 >>> ax.plot(x, %(name)s.pdf(x, %(shapes)s),
-...          'r-', lw=5, alpha=0.6, label='%(name)s pdf')
+...        'r-', lw=5, alpha=0.6, label='%(name)s pdf')
 
-Alternatively, freeze the distribution and display the frozen pdf:
+Alternatively, the distribution object can be called (as a function)
+to fix the shape, location and scale parameters. This returns a "frozen"
+RV object holding the given parameters fixed.
+
+Freeze the distribution and display the frozen ``pdf``:
 
 >>> rv = %(name)s(%(shapes)s)
 >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
@@ -229,8 +50,8 @@ And compare the histogram:
 >>> plt.show()
 
 Compare ML and MPS method
->>> phat = %(name)s.fit2(R, method='ml');
->>> phat.plotfitsummary();  plt.figure(plt.gcf().number+1)
+>>> phat = %(name)s.fit2(R, method='ml');>>> phat.plotfitsummary()
+>>> plt.figure(plt.gcf().number+1)
 >>> phat2 = %(name)s.fit2(R, method='mps')
 >>> phat2.plotfitsummary(); plt.figure(plt.gcf().number+1)
 
@@ -245,275 +66,6 @@ Accurate confidence interval with profile loglikelihood
 
 """
 
-_doc_default = ''.join([_doc_default_longsummary,
-                        _doc_allmethods,
-                        _doc_default_callparams,
-                        _doc_default_frozen_note,
-                        _doc_default_example])
-
-_doc_default_before_notes = ''.join([_doc_default_longsummary,
-                                     _doc_allmethods,
-                                     _doc_default_callparams,
-                                     _doc_default_frozen_note])
-
-docdict = {
-    'rvs': _doc_rvs,
-    'pdf': _doc_pdf,
-    'logpdf': _doc_logpdf,
-    'cdf': _doc_cdf,
-    'logcdf': _doc_logcdf,
-    'sf': _doc_sf,
-    'logsf': _doc_logsf,
-    'ppf': _doc_ppf,
-    'isf': _doc_isf,
-    'stats': _doc_stats,
-    'entropy': _doc_entropy,
-    'fit': _doc_fit,
-    'moment': _doc_moment,
-    'expect': _doc_expect,
-    'interval': _doc_interval,
-    'mean': _doc_mean,
-    'std': _doc_std,
-    'var': _doc_var,
-    'median': _doc_median,
-    'allmethods': _doc_allmethods,
-    'callparams': _doc_default_callparams,
-    'longsummary': _doc_default_longsummary,
-    'frozennote': _doc_default_frozen_note,
-    'example': _doc_default_example,
-    'default': _doc_default,
-    'before_notes': _doc_default_before_notes
-}
-
-# Reuse common content between continuous and discrete docs, change some
-# minor bits.
-docdict_discrete = docdict.copy()
-
-docdict_discrete['pmf'] = _doc_pmf
-docdict_discrete['logpmf'] = _doc_logpmf
-docdict_discrete['expect'] = _doc_expect_discrete
-_doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf',
-                     'ppf', 'isf', 'stats', 'entropy', 'expect', 'median',
-                     'mean', 'var', 'std', 'interval',
-                     'fit']
-for obj in _doc_disc_methods:
-    docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '')
-docdict_discrete.pop('pdf')
-docdict_discrete.pop('logpdf')
-
-_doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods])
-docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods
-
-docdict_discrete['longsummary'] = _doc_default_longsummary.replace(
-    'Continuous', 'Discrete')
-_doc_default_frozen_note = """
-Alternatively, the object may be called (as a function) to fix the shape and
-location parameters returning a "frozen" discrete RV object:
-
-rv = %(name)s(%(shapes)s, loc=0)
-    - Frozen RV object with the same methods but holding the given shape and
-      location fixed.
-"""
-docdict_discrete['frozennote'] = _doc_default_frozen_note
-
-_doc_default_discrete_example = """\
-Examples
---------
->>> from wafo.stats import %(name)s
->>> import matplotlib.pyplot as plt
->>> fig, ax = plt.subplots(1, 1)
-
-Calculate a few first moments:
-
-%(set_vals_stmt)s
->>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')
-
-Display the probability mass function (``pmf``):
-
->>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s),
-...               %(name)s.ppf(0.99, %(shapes)s))
->>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf')
->>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5)
-
-Alternatively, freeze the distribution and display the frozen ``pmf``:
-
->>> rv = %(name)s(%(shapes)s)
->>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
-...         label='frozen pmf')
->>> ax.legend(loc='best', frameon=False)
->>> plt.show()
-
-Check accuracy of ``cdf`` and ``ppf``:
-
->>> prob = %(name)s.cdf(x, %(shapes)s)
->>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s))
-True
-
-Generate random numbers:
-
->>> r = %(name)s.rvs(%(shapes)s, size=1000)
-"""
-docdict_discrete['example'] = _doc_default_discrete_example
-
-_doc_default_before_notes = ''.join([docdict_discrete['longsummary'],
-                                     docdict_discrete['allmethods'],
-                                     docdict_discrete['callparams'],
-                                     docdict_discrete['frozennote']])
-docdict_discrete['before_notes'] = _doc_default_before_notes
-
-_doc_default_disc = ''.join([docdict_discrete['longsummary'],
-                             docdict_discrete['allmethods'],
-                             docdict_discrete['frozennote'],
-                             docdict_discrete['example']])
-docdict_discrete['default'] = _doc_default_disc
-
-
-# clean up all the separate docstring elements, we do not need them anymore
-for obj in [s for s in dir() if s.startswith('_doc_')]:
-    exec('del ' + obj)
-del obj
-try:
-    del s
-except NameError:
-    # in Python 3, loop variables are not visible after the loop
-    pass
-
-
-def _moment(data, n, mu=None):
-    if mu is None:
-        mu = data.mean()
-    return ((data - mu)**n).mean()
-
-
-def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args):
-    if (n == 0):
-        return 1.0
-    elif (n == 1):
-        if mu is None:
-            val = moment_func(1, *args)
-        else:
-            val = mu
-    elif (n == 2):
-        if mu2 is None or mu is None:
-            val = moment_func(2, *args)
-        else:
-            val = mu2 + mu*mu
-    elif (n == 3):
-        if g1 is None or mu2 is None or mu is None:
-            val = moment_func(3, *args)
-        else:
-            mu3 = g1 * np.power(mu2, 1.5)  # 3rd central moment
-            val = mu3+3*mu*mu2+mu*mu*mu  # 3rd non-central moment
-    elif (n == 4):
-        if g1 is None or g2 is None or mu2 is None or mu is None:
-            val = moment_func(4, *args)
-        else:
-            mu4 = (g2+3.0)*(mu2**2.0)  # 4th central moment
-            mu3 = g1*np.power(mu2, 1.5)  # 3rd central moment
-            val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu
-    else:
-        val = moment_func(n, *args)
-
-    return val
-
-
-def _skew(data):
-    """
-    skew is third central moment / variance**(1.5)
-    """
-    data = np.ravel(data)
-    mu = data.mean()
-    m2 = ((data - mu)**2).mean()
-    m3 = ((data - mu)**3).mean()
-    return m3 / np.power(m2, 1.5)
-
-
-def _kurtosis(data):
-    """
-    kurtosis is fourth central moment / variance**2 - 3
-    """
-    data = np.ravel(data)
-    mu = data.mean()
-    m2 = ((data - mu)**2).mean()
-    m4 = ((data - mu)**4).mean()
-    return m4 / m2**2 - 3
-
-
-# Frozen RV class
-class rv_frozen_old(object):
-
-    def __init__(self, dist, *args, **kwds):
-        self.args = args
-        self.kwds = kwds
-
-        # create a new instance
-        self.dist = dist.__class__(**dist._ctor_param)
-
-        # a, b may be set in _argcheck, depending on *args, **kwds. Ouch.
-        shapes, _, _ = self.dist._parse_args(*args, **kwds)
-        self.dist._argcheck(*shapes)
-
-    def pdf(self, x):   # raises AttributeError in frozen discrete distribution
-        return self.dist.pdf(x, *self.args, **self.kwds)
-
-    def logpdf(self, x):
-        return self.dist.logpdf(x, *self.args, **self.kwds)
-
-    def cdf(self, x):
-        return self.dist.cdf(x, *self.args, **self.kwds)
-
-    def logcdf(self, x):
-        return self.dist.logcdf(x, *self.args, **self.kwds)
-
-    def ppf(self, q):
-        return self.dist.ppf(q, *self.args, **self.kwds)
-
-    def isf(self, q):
-        return self.dist.isf(q, *self.args, **self.kwds)
-
-    def rvs(self, size=None):
-        kwds = self.kwds.copy()
-        kwds.update({'size': size})
-        return self.dist.rvs(*self.args, **kwds)
-
-    def sf(self, x):
-        return self.dist.sf(x, *self.args, **self.kwds)
-
-    def logsf(self, x):
-        return self.dist.logsf(x, *self.args, **self.kwds)
-
-    def stats(self, moments='mv'):
-        kwds = self.kwds.copy()
-        kwds.update({'moments': moments})
-        return self.dist.stats(*self.args, **kwds)
-
-    def median(self):
-        return self.dist.median(*self.args, **self.kwds)
-
-    def mean(self):
-        return self.dist.mean(*self.args, **self.kwds)
-
-    def var(self):
-        return self.dist.var(*self.args, **self.kwds)
-
-    def std(self):
-        return self.dist.std(*self.args, **self.kwds)
-
-    def moment(self, n):
-        return self.dist.moment(n, *self.args, **self.kwds)
-
-    def entropy(self):
-        return self.dist.entropy(*self.args, **self.kwds)
-
-    def pmf(self, k):
-        return self.dist.pmf(k, *self.args, **self.kwds)
-
-    def logpmf(self, k):
-        return self.dist.logpmf(k, *self.args, **self.kwds)
-
-    def interval(self, alpha):
-        return self.dist.interval(alpha, *self.args, **self.kwds)
-
 
 # Frozen RV class
 class rv_frozen(object):
@@ -521,51 +73,52 @@ class rv_frozen(object):
 
     Methods
     -------
-    RV.rvs(size=1)
-        - random variates
-
-    RV.pdf(x)
-        - probability density function (continous case)
-
-    RV.pmf(x)
-        - probability mass function (discrete case)
-
-    RV.cdf(x)
-        - cumulative density function
-
-    RV.sf(x)
-        - survival function (1-cdf --- sometimes more accurate)
-
-    RV.ppf(q)
-        - percent point function (inverse of cdf --- percentiles)
-
-    RV.isf(q)
-        - inverse survival function (inverse of sf)
-
-    RV.stats(moments='mv')
-        - mean('m'), variance('v'), skew('s'), and/or kurtosis('k')
-
-    RV.entropy()
-        - (differential) entropy of the RV.
-
-    Parameters
-    ----------
-    x : array-like
-        quantiles
-    q : array-like
-        lower or upper tail probability
-    size : int or tuple of ints, optional, keyword
-        shape of random variates
-    moments : string, optional, keyword
-        one or more of 'm' mean, 'v' variance, 's' skewness, 'k' kurtosis
+    rvs(size=1)
+        Random variates.
+    pdf(x)
+        Probability density function.
+    cdf(x)
+        Cumulative density function.
+    sf(x)
+        Survival function (1-cdf --- sometimes more accurate).
+    ppf(q)
+        Percent point function (inverse of cdf --- percentiles).
+    isf(q)
+        Inverse survival function (inverse of sf).
+    stats(moments='mv')
+        Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
+    moment(n)
+        n-th order non-central moment of distribution.
+    entropy()
+        (Differential) entropy of the RV.
+    interval(alpha)
+        Confidence interval with equal areas around the median.
+    expect(func, lb, ub, conditional=False)
+        Calculate expected value of a function with respect to the
+        distribution.
     '''
     def __init__(self, dist, *args, **kwds):
-        self.dist = dist
-        args, loc, scale = dist._parse_args(*args, **kwds)
+        # create a new instance
+        self.dist = dist  # .__class__(**dist._ctor_param)
+        shapes, loc, scale = self.dist._parse_args(*args, **kwds)
         if isinstance(dist, rv_continuous):
-            self.par = args + (loc, scale)
+            self.par = shapes + (loc, scale)
         else:  # rv_discrete
-            self.par = args + (loc,)
+            self.par = shapes + (loc,)
+        self.a = self.dist.a
+        self.b = self.dist.b
+        self.shapes = self.dist.shapes
+    # @property
+    # def shapes(self):
+    #     return self.dist.shapes
+
+    @property
+    def random_state(self):
+        return self.dist._random_state
+
+    @random_state.setter
+    def random_state(self, seed):
+        self.dist._random_state = check_random_state(seed)
 
     def pdf(self, x):
         ''' Probability density function at x of the given RV.'''
@@ -589,9 +142,8 @@ class rv_frozen(object):
         '''Inverse survival function at q of the given RV.'''
         return self.dist.isf(q, *self.par)
 
-    def rvs(self, size=None):
-        '''Random variates of given type.'''
-        kwds = dict(size=size)
+    def rvs(self, size=None, random_state=None):
+        kwds = {'size': size, 'random_state': random_state}
         return self.dist.rvs(*self.par, **kwds)
 
     def sf(self, x):
@@ -634,2998 +186,391 @@ class rv_frozen(object):
     def interval(self, alpha):
         return self.dist.interval(alpha, *self.par)
 
+    def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds):
+        if isinstance(self.dist, rv_continuous):
+            a, loc, scale = self.par[:-2], self.par[:-2], self.par[-1]
+            return self.dist.expect(func, a, loc, scale, lb, ub, conditional,
+                                    **kwds)
 
+        a, loc = self.par[:-1], self.par[-1]
+        if kwds:
+            raise ValueError("Discrete expect does not accept **kwds.")
+        return self.dist.expect(func, a, loc, lb, ub, conditional)
 
-def valarray(shape, value=nan, typecode=None):
-    """Return an array of all value.
-    """
-
-    out = ones(shape, dtype=bool) * value
-    if typecode is not None:
-        out = out.astype(typecode)
-    if not isinstance(out, ndarray):
-        out = asarray(out)
-    return out
-
-
-def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
-    """
-    np.where(cond, x, fillvalue) always evaluates x even where cond is False.
-    This one only evaluates f(arr1[cond], arr2[cond], ...).
-    For example,
-    >>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
-    >>> def f(a, b):
-        return a*b
-    >>> _lazywhere(a > 2, (a, b), f, np.nan)
-    array([ nan,  nan,  21.,  32.])
-
-    Notice it assumes that all `arrays` are of the same shape, or can be
-    broadcasted together.
-
-    """
-    if fillvalue is None:
-        if f2 is None:
-            raise ValueError("One of (fillvalue, f2) must be given.")
-        else:
-            fillvalue = np.nan
-    else:
-        if f2 is not None:
-            raise ValueError("Only one of (fillvalue, f2) can be given.")
-
-    arrays = np.broadcast_arrays(*arrays)
-    temp = tuple(np.extract(cond, arr) for arr in arrays)
-    out = valarray(shape(arrays[0]), value=fillvalue)
-    np.place(out, cond, f(*temp))
-    if f2 is not None:
-        temp = tuple(np.extract(~cond, arr) for arr in arrays)
-        np.place(out, ~cond, f2(*temp))
-
-    return out
-
-
-# This should be rewritten
-def argsreduce(cond, *args):
-    """Return the sequence of ravel(args[i]) where ravel(condition) is
-    True in 1D.
-
-    Examples
-    --------
-    >>> import numpy as np
-    >>> rand = np.random.random_sample
-    >>> A = rand((4, 5))
-    >>> B = 2
-    >>> C = rand((1, 5))
-    >>> cond = np.ones(A.shape)
-    >>> [A1, B1, C1] = argsreduce(cond, A, B, C)
-    >>> B1.shape
-    (20,)
-    >>> cond[2,:] = 0
-    >>> [A2, B2, C2] = argsreduce(cond, A, B, C)
-    >>> B2.shape
-    (15,)
-
-    """
-    newargs = np.atleast_1d(*args)
-    if not isinstance(newargs, list):
-        newargs = [newargs, ]
-    expand_arr = (cond == cond)
-    return [np.extract(cond, arr1 * expand_arr) for arr1 in newargs]
-
-
-parse_arg_template = """
-def _parse_args(self, %(shape_arg_str)s %(locscale_in)s):
-    return (%(shape_arg_str)s), %(locscale_out)s
-
-def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None):
-    return (%(shape_arg_str)s), %(locscale_out)s, size
-
-def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'):
-    return (%(shape_arg_str)s), %(locscale_out)s, moments
-"""
-
-
-# Both the continuous and discrete distributions depend on ncx2.
-# I think the function name ncx2 is an abbreviation for noncentral chi squared.
 
-def _ncx2_log_pdf(x, df, nc):
-    a = asarray(df/2.0)
-    fac = -nc/2.0 - x/2.0 + (a-1)*log(x) - a*log(2) - gammaln(a)
-    return fac + np.nan_to_num(log(hyp0f1(a, nc * x/4.0)))
-
-
-def _ncx2_pdf(x, df, nc):
-    return np.exp(_ncx2_log_pdf(x, df, nc))
-
-
-def _ncx2_cdf(x, df, nc):
-    return chndtr(x, df, nc)
+def freeze(self, *args, **kwds):
+    """Freeze the distribution for the given arguments.
 
+    Parameters
+    ----------
+    arg1, arg2, arg3,... : array_like
+        The shape parameter(s) for the distribution.  Should include all
+        the non-optional arguments, may include ``loc`` and ``scale``.
 
-class rv_generic(object):
-    """Class which encapsulates common functionality between rv_discrete
-    and rv_continuous.
+    Returns
+    -------
+    rv_frozen : rv_frozen instance
+        The frozen distribution.
 
     """
-    def __init__(self):
-        super(rv_generic, self).__init__()
-
-        # figure out if _stats signature has 'moments' keyword
-        sign = inspect.getargspec(self._stats)
-        self._stats_has_moments = ((sign[2] is not None) or
-                                   ('moments' in sign[0]))
-
-    def _construct_argparser(
-            self, meths_to_inspect, locscale_in, locscale_out):
-        """Construct the parser for the shape arguments.
-
-        Generates the argument-parsing functions dynamically and attaches
-        them to the instance.
-        Is supposed to be called in __init__ of a class for each distribution.
-
-        If self.shapes is a non-empty string, interprets it as a
-        comma-separated list of shape parameters.
-
-        Otherwise inspects the call signatures of `meths_to_inspect`
-        and constructs the argument-parsing functions from these.
-        In this case also sets `shapes` and `numargs`.
-        """
-
-        if self.shapes:
-            # sanitize the user-supplied shapes
-            if not isinstance(self.shapes, string_types):
-                raise TypeError('shapes must be a string.')
-
-            shapes = self.shapes.replace(',', ' ').split()
-
-            for field in shapes:
-                if keyword.iskeyword(field):
-                    raise SyntaxError('keywords cannot be used as shapes.')
-                if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field):
-                    raise SyntaxError(
-                        'shapes must be valid python identifiers')
-        else:
-            # find out the call signatures (_pdf, _cdf etc), deduce shape
-            # arguments
-            shapes_list = []
-            for meth in meths_to_inspect:
-                shapes_args = inspect.getargspec(meth)
-                shapes_list.append(shapes_args.args)
-
-                # *args or **kwargs are not allowed w/automatic shapes
-                # (generic methods have 'self, x' only)
-                if len(shapes_args.args) > 2:
-                    if shapes_args.varargs is not None:
-                        raise TypeError(
-                            '*args are not allowed w/out explicit shapes')
-                    if shapes_args.keywords is not None:
-                        raise TypeError(
-                            '**kwds are not allowed w/out explicit shapes')
-                    if shapes_args.defaults is not None:
-                        raise TypeError('defaults are not allowed for shapes')
-
-            shapes = max(shapes_list, key=lambda x: len(x))
-            shapes = shapes[2:]  # remove self, x,
-
-            # make sure the signatures are consistent
-            # (generic methods have 'self, x' only)
-            for item in shapes_list:
-                if len(item) > 2 and item[2:] != shapes:
-                    raise TypeError('Shape arguments are inconsistent.')
-
-        # have the arguments, construct the method from template
-        shapes_str = ', '.join(shapes) + ', ' if shapes else ''  # NB: not None
-        dct = dict(shape_arg_str=shapes_str,
-                   locscale_in=locscale_in,
-                   locscale_out=locscale_out,
-                   )
-        ns = {}
-        exec_(parse_arg_template % dct, ns)
-        # NB: attach to the instance, not class
-        for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']:
-            setattr(self, name,
-                    instancemethod(ns[name], self, self.__class__)
-                    )
-
-        self.shapes = ', '.join(shapes) if shapes else None
-        if not hasattr(self, 'numargs'):
-            # allows more general subclassing with *args
-            self.numargs = len(shapes)
-
-    def _construct_doc(self, docdict, shapes_vals=None):
-        """Construct the instance docstring with string substitutions."""
-        tempdict = docdict.copy()
-        tempdict['name'] = self.name or 'distname'
-        tempdict['shapes'] = self.shapes or ''
-
-        if shapes_vals is None:
-            shapes_vals = ()
-        vals = ', '.join(str(_) for _ in shapes_vals)
-        tempdict['vals'] = vals
-
-        if self.shapes:
-            tempdict['set_vals_stmt'] = '>>> %s = %s' % (self.shapes, vals)
-        else:
-            tempdict['set_vals_stmt'] = ''
-
-        if self.shapes is None:
-            # remove shapes from call parameters if there are none
-            for item in ['callparams', 'default', 'before_notes']:
-                tempdict[item] = tempdict[item].replace(
-                    "\n%(shapes)s : array_like\n    shape parameters", "")
-        for i in range(2):
-            if self.shapes is None:
-                # necessary because we use %(shapes)s in two forms (w w/o ", ")
-                self.__doc__ = self.__doc__.replace("%(shapes)s, ", "")
-            self.__doc__ = doccer.docformat(self.__doc__, tempdict)
-
-        # correct for empty shapes
-        self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')')
-
-    def freeze(self, *args, **kwds):
-        """Freeze the distribution for the given arguments.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution.  Should include all
-            the non-optional arguments, may include ``loc`` and ``scale``.
-
-        Returns
-        -------
-        rv_frozen : rv_frozen instance
-            The frozen distribution.
-
-        """
-        return rv_frozen(self, *args, **kwds)
-
-    def __call__(self, *args, **kwds):
-        return self.freeze(*args, **kwds)
-
-    # The actual calculation functions (no basic checking need be done)
-    # If these are defined, the others won't be looked at.
-    # Otherwise, the other set can be defined.
-    def _stats(self, *args, **kwds):
-        return None, None, None, None
-
-    #  Central moments
-    def _munp(self, n, *args):
-        # Silence floating point warnings from integration.
-        olderr = np.seterr(all='ignore')
-        vals = self.generic_moment(n, *args)
-        np.seterr(**olderr)
-        return vals
-
-    ## These are the methods you must define (standard form functions)
-    ## NB: generic _pdf, _logpdf, _cdf are different for
-    ## rv_continuous and rv_discrete hence are defined in there
-    def _argcheck(self, *args):
-        """Default check for correct values on args and keywords.
-
-        Returns condition array of 1's where arguments are correct and
-         0's where they are not.
-
-        """
-        cond = 1
-        for arg in args:
-            cond = logical_and(cond, (asarray(arg) > 0))
-        return cond
-
-    ##(return 1-d using self._size to get number)
-    def _rvs(self, *args):
-        ## Use basic inverse cdf algorithm for RV generation as default.
-        U = mtrand.sample(self._size)
-        Y = self._ppf(U, *args)
-        return Y
-
-    def _logcdf(self, x, *args):
-        return log(self._cdf(x, *args))
-
-    def _sf(self, x, *args):
-        return 1.0-self._cdf(x, *args)
-
-    def _logsf(self, x, *args):
-        return log(self._sf(x, *args))
-
-    def _ppf(self, q, *args):
-        return self._ppfvec(q, *args)
-
-    def _isf(self, q, *args):
-        return self._ppf(1.0-q, *args)  # use correct _ppf for subclasses
-
-    # These are actually called, and should not be overwritten if you
-    # want to keep error checking.
-    def rvs(self, *args, **kwds):
-        """
-        Random variates of given type.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-        scale : array_like, optional
-            Scale parameter (default=1).
-        size : int or tuple of ints, optional
-            Defining number of random variates (default=1).
-
-        Returns
-        -------
-        rvs : ndarray or scalar
-            Random variates of given `size`.
-
-        """
-        discrete = kwds.pop('discrete', None)
-        args, loc, scale, size = self._parse_args_rvs(*args, **kwds)
-        cond = logical_and(self._argcheck(*args), (scale >= 0))
-        if not np.all(cond):
-            raise ValueError("Domain error in arguments.")
-
-        # self._size is total size of all output values
-        self._size = product(size, axis=0)
-        if self._size is not None and self._size > 1:
-            size = np.array(size, ndmin=1)
-
-        if np.all(scale == 0):
-            return loc*ones(size, 'd')
-
-        vals = self._rvs(*args)
-        if self._size is not None:
-            vals = reshape(vals, size)
-
-        vals = vals * scale + loc
-
-        # Cast to int if discrete
-        if discrete:
-            if np.isscalar(vals):
-                vals = int(vals)
-            else:
-                vals = vals.astype(int)
-
-        return vals
-
-    def stats(self, *args, **kwds):
-        """
-        Some statistics of the given RV
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional (discrete RVs only)
-            scale parameter (default=1)
-        moments : str, optional
-            composed of letters ['mvsk'] defining which moments to compute:
-            'm' = mean,
-            'v' = variance,
-            's' = (Fisher's) skew,
-            'k' = (Fisher's) kurtosis.
-            (default='mv')
-
-        Returns
-        -------
-        stats : sequence
-            of requested moments.
-
-        """
-        args, loc, scale, moments = self._parse_args_stats(*args, **kwds)
-        # scale = 1 by construction for discrete RVs
-        loc, scale = map(asarray, (loc, scale))
-        args = tuple(map(asarray, args))
-        cond = self._argcheck(*args) & (scale > 0) & (loc == loc)
-        output = []
-        default = valarray(shape(cond), self.badvalue)
-
-        # Use only entries that are valid in calculation
-        if any(cond):
-            goodargs = argsreduce(cond, *(args+(scale, loc)))
-            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
-
-            if self._stats_has_moments:
-                mu, mu2, g1, g2 = self._stats(*goodargs,
-                                              **{'moments': moments})
-            else:
-                mu, mu2, g1, g2 = self._stats(*goodargs)
-            if g1 is None:
-                mu3 = None
-            else:
-                if mu2 is None:
-                    mu2 = self._munp(2, *goodargs)
-                # (mu2**1.5) breaks down for nan and inf
-                mu3 = g1 * np.power(mu2, 1.5)
-
-            if 'm' in moments:
-                if mu is None:
-                    mu = self._munp(1, *goodargs)
-                out0 = default.copy()
-                place(out0, cond, mu * scale + loc)
-                output.append(out0)
-
-            if 'v' in moments:
-                if mu2 is None:
-                    mu2p = self._munp(2, *goodargs)
-                    if mu is None:
-                        mu = self._munp(1, *goodargs)
-                    mu2 = mu2p - mu * mu
-                    if np.isinf(mu):
-                        #if mean is inf then var is also inf
-                        mu2 = np.inf
-                out0 = default.copy()
-                place(out0, cond, mu2 * scale * scale)
-                output.append(out0)
-
-            if 's' in moments:
-                if g1 is None:
-                    mu3p = self._munp(3, *goodargs)
-                    if mu is None:
-                        mu = self._munp(1, *goodargs)
-                    if mu2 is None:
-                        mu2p = self._munp(2, *goodargs)
-                        mu2 = mu2p - mu * mu
-                    mu3 = mu3p - 3 * mu * mu2 - mu**3
-                    g1 = mu3 / np.power(mu2, 1.5)
-                out0 = default.copy()
-                place(out0, cond, g1)
-                output.append(out0)
-
-            if 'k' in moments:
-                if g2 is None:
-                    mu4p = self._munp(4, *goodargs)
-                    if mu is None:
-                        mu = self._munp(1, *goodargs)
-                    if mu2 is None:
-                        mu2p = self._munp(2, *goodargs)
-                        mu2 = mu2p - mu * mu
-                    if mu3 is None:
-                        mu3p = self._munp(3, *goodargs)
-                        mu3 = mu3p - 3 * mu * mu2 - mu**3
-                    mu4 = mu4p - 4 * mu * mu3 - 6 * mu * mu * mu2 - mu**4
-                    g2 = mu4 / mu2**2.0 - 3.0
-                out0 = default.copy()
-                place(out0, cond, g2)
-                output.append(out0)
-        else:  # no valid args
-            output = []
-            for _ in moments:
-                out0 = default.copy()
-                output.append(out0)
-
-        if len(output) == 1:
-            return output[0]
-        else:
-            return tuple(output)
-
-    def entropy(self, *args, **kwds):
-        """
-        Differential entropy of the RV.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-        scale : array_like, optional  (continuous distributions only).
-            Scale parameter (default=1).
-
-        Notes
-        -----
-        Entropy is defined base `e`:
-
-        >>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
-        >>> np.allclose(drv.entropy(), np.log(2.0))
-        True
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        # NB: for discrete distributions scale=1 by construction in _parse_args
-        args = tuple(map(asarray, args))
-        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
-        output = zeros(shape(cond0), 'd')
-        place(output, (1-cond0), self.badvalue)
-        goodargs = argsreduce(cond0, *args)
-        # I don't know when or why vecentropy got broken when numargs == 0
-        # 09.08.2013: is this still relevant? cf check_vecentropy test
-        # in tests/test_continuous_basic.py
-        if self.numargs == 0:
-            place(output, cond0, self._entropy() + log(scale))
-        else:
-            place(output, cond0, self.vecentropy(*goodargs) + log(scale))
-        return output
-
-    def moment(self, n, *args, **kwds):
-        """
-        n'th order non-central moment of distribution.
-
-        Parameters
-        ----------
-        n : int, n>=1
-            Order of moment.
-        arg1, arg2, arg3,... : float
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        kwds : keyword arguments, optional
-            These can include "loc" and "scale", as well as other keyword
-            arguments relevant for a given distribution.
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        if not (self._argcheck(*args) and (scale > 0)):
-            return nan
-        if (floor(n) != n):
-            raise ValueError("Moment must be an integer.")
-        if (n < 0):
-            raise ValueError("Moment must be positive.")
-        mu, mu2, g1, g2 = None, None, None, None
-        if (n > 0) and (n < 5):
-            if self._stats_has_moments:
-                mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'vk'}[n]}
-            else:
-                mdict = {}
-            mu, mu2, g1, g2 = self._stats(*args, **mdict)
-        val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args)
-
-        # Convert to transformed  X = L + S*Y
-        # E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n)
-        if loc == 0:
-            return scale**n * val
-        else:
-            result = 0
-            fac = float(scale) / float(loc)
-            for k in range(n):
-                valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args)
-                result += comb(n, k, exact=True)*(fac**k) * valk
-            result += fac**n * val
-            return result * loc**n
-
-    def median(self, *args, **kwds):
-        """
-        Median of the distribution.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            Location parameter, Default is 0.
-        scale : array_like, optional
-            Scale parameter, Default is 1.
-
-        Returns
-        -------
-        median : float
-            The median of the distribution.
-
-        See Also
-        --------
-        stats.distributions.rv_discrete.ppf
-            Inverse of the CDF
-
-        """
-        return self.ppf(0.5, *args, **kwds)
-
-    def mean(self, *args, **kwds):
-        """
-        Mean of the distribution
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        mean : float
-            the mean of the distribution
-        """
-        kwds['moments'] = 'm'
-        res = self.stats(*args, **kwds)
-        if isinstance(res, ndarray) and res.ndim == 0:
-            return res[()]
-        return res
-
-    def var(self, *args, **kwds):
-        """
-        Variance of the distribution
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        var : float
-            the variance of the distribution
-
-        """
-        kwds['moments'] = 'v'
-        res = self.stats(*args, **kwds)
-        if isinstance(res, ndarray) and res.ndim == 0:
-            return res[()]
-        return res
-
-    def std(self, *args, **kwds):
-        """
-        Standard deviation of the distribution.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        std : float
-            standard deviation of the distribution
-
-        """
-        kwds['moments'] = 'v'
-        res = sqrt(self.stats(*args, **kwds))
-        return res
-
-    def interval(self, alpha, *args, **kwds):
-        """
-        Confidence interval with equal areas around the median.
+    return rv_frozen(self, *args, **kwds)
 
-        Parameters
-        ----------
-        alpha : array_like of float
-            Probability that an rv will be drawn from the returned range.
-            Each value should be in the range [0, 1].
-        arg1, arg2, ... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            location parameter, Default is 0.
-        scale : array_like, optional
-            scale parameter, Default is 1.
-
-        Returns
-        -------
-        a, b : ndarray of float
-            end-points of range that contain ``100 * alpha %`` of the rv's
-            possible values.
-
-        """
-        alpha = asarray(alpha)
-        if any((alpha > 1) | (alpha < 0)):
-            raise ValueError("alpha must be between 0 and 1 inclusive")
-        q1 = (1.0-alpha)/2
-        q2 = (1.0+alpha)/2
-        a = self.ppf(q1, *args, **kwds)
-        b = self.ppf(q2, *args, **kwds)
-        return a, b
-
-
-##  continuous random variables: implement maybe later
-##
-##  hf  --- Hazard Function (PDF / SF)
-##  chf  --- Cumulative hazard function (-log(SF))
-##  psf --- Probability sparsity function (reciprocal of the pdf) in
-##                units of percent-point-function (as a function of q).
-##                Also, the derivative of the percent-point function.
-
-class rv_continuous(rv_generic):
-    """
-    A generic continuous random variable class meant for subclassing.
 
-    `rv_continuous` is a base class to construct specific distribution classes
-    and instances from for continuous random variables. It cannot be used
-    directly as a distribution.
+def link(self, x, logSF, theta, i):
+    '''
+    Return theta[i] as function of quantile, survival probability and
+        theta[j] for j!=i.
 
     Parameters
     ----------
-    momtype : int, optional
-        The type of generic moment calculation to use: 0 for pdf, 1 (default)
-        for ppf.
-    a : float, optional
-        Lower bound of the support of the distribution, default is minus
-        infinity.
-    b : float, optional
-        Upper bound of the support of the distribution, default is plus
-        infinity.
-    xtol : float, optional
-        The tolerance for fixed point calculation for generic ppf.
-    badvalue : object, optional
-        The value in a result arrays that indicates a value that for which
-        some argument restriction is violated, default is np.nan.
-    name : str, optional
-        The name of the instance. This string is used to construct the default
-        example for distributions.
-    longname : str, optional
-        This string is used as part of the first line of the docstring returned
-        when a subclass has no docstring of its own. Note: `longname` exists
-        for backwards compatibility, do not use for new subclasses.
-    shapes : str, optional
-        The shape of the distribution. For example ``"m, n"`` for a
-        distribution that takes two integers as the two shape arguments for all
-        its methods.
-    extradoc :  str, optional, deprecated
-        This string is used as the last part of the docstring returned when a
-        subclass has no docstring of its own. Note: `extradoc` exists for
-        backwards compatibility, do not use for new subclasses.
+    x : quantile
+    logSF : logarithm of the survival probability
+    theta : list
+        all distribution parameters including location and scale.
 
-    Methods
+    Returns
     -------
-    ``rvs(<shape(s)>, loc=0, scale=1, size=1)``
-        random variates
-
-    ``pdf(x, <shape(s)>, loc=0, scale=1)``
-        probability density function
-
-    ``logpdf(x, <shape(s)>, loc=0, scale=1)``
-        log of the probability density function
-
-    ``cdf(x, <shape(s)>, loc=0, scale=1)``
-        cumulative density function
-
-    ``logcdf(x, <shape(s)>, loc=0, scale=1)``
-        log of the cumulative density function
-
-    ``sf(x, <shape(s)>, loc=0, scale=1)``
-        survival function (1-cdf --- sometimes more accurate)
-
-    ``logsf(x, <shape(s)>, loc=0, scale=1)``
-        log of the survival function
-
-    ``ppf(q, <shape(s)>, loc=0, scale=1)``
-      percent point function (inverse of cdf --- quantiles)
-
-    ``isf(q, <shape(s)>, loc=0, scale=1)``
-        inverse survival function (inverse of sf)
-
-    ``moment(n, <shape(s)>, loc=0, scale=1)``
-        non-central n-th moment of the distribution.  May not work for array
-        arguments.
-
-    ``stats(<shape(s)>, loc=0, scale=1, moments='mv')``
-        mean('m'), variance('v'), skew('s'), and/or kurtosis('k')
-
-    ``entropy(<shape(s)>, loc=0, scale=1)``
-        (differential) entropy of the RV.
-
-    ``fit(data, <shape(s)>, loc=0, scale=1)``
-        Parameter estimates for generic data
-
-    ``expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)``
-        Expected value of a function with respect to the distribution.
-        Additional kwd arguments passed to integrate.quad
-
-    ``median(<shape(s)>, loc=0, scale=1)``
-        Median of the distribution.
-
-    ``mean(<shape(s)>, loc=0, scale=1)``
-        Mean of the distribution.
-
-    ``std(<shape(s)>, loc=0, scale=1)``
-        Standard deviation of the distribution.
-
-    ``var(<shape(s)>, loc=0, scale=1)``
-        Variance of the distribution.
-
-    ``interval(alpha, <shape(s)>, loc=0, scale=1)``
-        Interval that with `alpha` percent probability contains a random
-        realization of this distribution.
-
-    ``__call__(<shape(s)>, loc=0, scale=1)``
-        Calling a distribution instance creates a frozen RV object with the
-        same methods but holding the given shape, location, and scale fixed.
-        See Notes section.
-
-    **Parameters for Methods**
-
-    x : array_like
-        quantiles
-    q : array_like
-        lower or upper tail probability
-    <shape(s)> : array_like
-        shape parameters
-    loc : array_like, optional
-        location parameter (default=0)
-    scale : array_like, optional
-        scale parameter (default=1)
-    size : int or tuple of ints, optional
-        shape of random variates (default computed from input arguments )
-    moments : string, optional
-        composed of letters ['mvsk'] specifying which moments to compute where
-        'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
-        'k' = (Fisher's) kurtosis. (default='mv')
-    n : int
-        order of moment to calculate in method moments
-
-    Notes
-    -----
-
-    **Methods that can be overwritten by subclasses**
-    ::
-
-      _rvs
-      _pdf
-      _cdf
-      _sf
-      _ppf
-      _isf
-      _stats
-      _munp
-      _entropy
-      _argcheck
-
-    There are additional (internal and private) generic methods that can
-    be useful for cross-checking and for debugging, but might work in all
-    cases when directly called.
-
-    **Frozen Distribution**
-
-    Alternatively, the object may be called (as a function) to fix the shape,
-    location, and scale parameters returning a "frozen" continuous RV object:
-
-    rv = generic(<shape(s)>, loc=0, scale=1)
-        frozen RV object with the same methods but holding the given shape,
-        location, and scale fixed
-
-    **Subclassing**
+    theta[i] : real scalar
+        fixed distribution parameter theta[i] as function of x, logSF and
+        theta[j] where j != i.
+
+    LINK is a function connecting the fixed distribution parameter theta[i]
+    with the quantile (x) and the survival probability (SF) and the
+    remaining free distribution parameters theta[j] for j!=i, i.e.:
+        theta[i] = link(x, logSF, theta, i),
+    where logSF = log(Prob(X>x; theta)).
+
+    See also
+    estimation.Profile
+    '''
+    return self._link(x, logSF, theta, i)
 
-    New random variables can be defined by subclassing rv_continuous class
-    and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized
-    to location 0 and scale 1) which will be given clean arguments (in between
-    a and b) and passing the argument check method.
 
-    If positive argument checking is not correct for your RV
-    then you will also need to re-define the ``_argcheck`` method.
+def _link(self, x, logSF, theta, i):
+    msg = ('Link function not implemented for the %s distribution' %
+           self.name)
+    raise NotImplementedError(msg)
 
-    Correct, but potentially slow defaults exist for the remaining
-    methods but for speed and/or accuracy you can over-ride::
 
-      _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf
+def nlogps(self, theta, x):
+    """ Moran's negative log Product Spacings statistic
 
-    Rarely would you override ``_isf``, ``_sf`` or ``_logsf``, but you could.
+        where theta are the parameters (including loc and scale)
 
-    Statistics are computed using numerical integration by default.
-    For speed you can redefine this using ``_stats``:
+        Note the data in x must be sorted
 
-     - take shape parameters and return mu, mu2, g1, g2
-     - If you can't compute one of these, return it as None
-     - Can also be defined with a keyword argument ``moments=<str>``,
-       where <str> is a string composed of 'm', 'v', 's',
-       and/or 'k'.  Only the components appearing in string
-       should be computed and returned in the order 'm', 'v',
-       's', or 'k'  with missing values returned as None.
+    References
+    -----------
 
-    Alternatively, you can override ``_munp``, which takes n and shape
-    parameters and returns the nth non-central moment of the distribution.
+    R. C. H. Cheng; N. A. K. Amin (1983)
+    "Estimating Parameters in Continuous Univariate Distributions with a
+    Shifted Origin.",
+    Journal of the Royal Statistical Society. Series B (Methodological),
+    Vol. 45, No. 3. (1983), pp. 394-403.
 
-    A note on ``shapes``: subclasses need not specify them explicitly. In this
-    case, the `shapes` will be automatically deduced from the signatures of the
-    overridden methods.
-    If, for some reason, you prefer to avoid relying on introspection, you can
-    specify ``shapes`` explicitly as an argument to the instance constructor.
-
-    Examples
-    --------
-    To create a new Gaussian distribution, we would do the following::
-
-        class gaussian_gen(rv_continuous):
-            "Gaussian distribution"
-            def _pdf(self, x):
-                ...
-            ...
+    R. C. H. Cheng; M. A. Stephens (1989)
+    "A Goodness-Of-Fit Test Using Moran's Statistic with Estimated
+    Parameters", Biometrika, 76, 2, pp 385-392
 
+    Wong, T.S.T. and Li, W.K. (2006)
+    "A note on the estimation of extreme value distributions using maximum
+    product of spacings.",
+    IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
     """
 
-    def __init__(self, momtype=1, a=None, b=None, xtol=1e-14,
-                 badvalue=None, name=None, longname=None,
-                 shapes=None, extradoc=None):
-
-        super(rv_continuous, self).__init__()
-
-        # save the ctor parameters, cf generic freeze
-        self._ctor_param = dict(
-            momtype=momtype, a=a, b=b, xtol=xtol,
-            badvalue=badvalue, name=name, longname=longname,
-            shapes=shapes, extradoc=extradoc)
-
-        if badvalue is None:
-            badvalue = nan
-        if name is None:
-            name = 'Distribution'
-        self.badvalue = badvalue
-        self.name = name
-        self.a = a
-        self.b = b
-        if a is None:
-            self.a = -inf
-        if b is None:
-            self.b = inf
-        self.xtol = xtol
-        self._size = 1
-        self.moment_type = momtype
-        self.shapes = shapes
-        self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf],
-                                  locscale_in='loc=0, scale=1',
-                                  locscale_out='loc, scale')
-
-        # nin correction
-        self._ppfvec = vectorize(self._ppf_single, otypes='d')
-        self._ppfvec.nin = self.numargs + 1
-        self.vecentropy = vectorize(self._entropy, otypes='d')
-        self._cdfvec = vectorize(self._cdf_single, otypes='d')
-        self._cdfvec.nin = self.numargs + 1
-
-        # backwards compat.  these were removed in 0.14.0, put back but
-        # deprecated in 0.14.1:
-        self.vecfunc = np.deprecate(self._ppfvec, "vecfunc")
-        self.veccdf = np.deprecate(self._cdfvec, "veccdf")
-
-        self.extradoc = extradoc
-        if momtype == 0:
-            self.generic_moment = vectorize(self._mom0_sc, otypes='d')
-        else:
-            self.generic_moment = vectorize(self._mom1_sc, otypes='d')
-        # Because of the *args argument of _mom0_sc, vectorize cannot count the
-        # number of arguments correctly.
-        self.generic_moment.nin = self.numargs + 1
-
-        if longname is None:
-            if name[0] in ['aeiouAEIOU']:
-                hstr = "An "
-            else:
-                hstr = "A "
-            longname = hstr + name
-
-        if sys.flags.optimize < 2:
-            # Skip adding docstrings if interpreter is run with -OO
-            if self.__doc__ is None:
-                self._construct_default_doc(longname=longname,
-                                            extradoc=extradoc)
-            else:
-                dct = dict(distcont)
-                self._construct_doc(docdict, dct.get(self.name))
-
-    def _construct_default_doc(self, longname=None, extradoc=None):
-        """Construct instance docstring from the default template."""
-        if longname is None:
-            longname = 'A'
-        if extradoc is None:
-            extradoc = ''
-        if extradoc.startswith('\n\n'):
-            extradoc = extradoc[2:]
-        self.__doc__ = ''.join(['%s continuous random variable.' % longname,
-                                '\n\n%(before_notes)s\n', docheaders['notes'],
-                                extradoc, '\n%(example)s'])
-        self._construct_doc(docdict)
-
-    def _ppf_to_solve(self, x, q, *args):
-        return self.cdf(*(x, )+args)-q
-
-    def _ppf_single(self, q, *args):
-        left = right = None
-        if self.a > -np.inf:
-            left = self.a
-        if self.b < np.inf:
-            right = self.b
-
-        factor = 10.
-        if not left:  # i.e. self.a = -inf
-            left = -1.*factor
-            while self._ppf_to_solve(left, q, *args) > 0.:
-                right = left
-                left *= factor
-            # left is now such that cdf(left) < q
-        if not right:  # i.e. self.b = inf
-            right = factor
-            while self._ppf_to_solve(right, q, *args) < 0.:
-                left = right
-                right *= factor
-            # right is now such that cdf(right) > q
-
-        return optimize.brentq(self._ppf_to_solve,
-                               left, right, args=(q,)+args, xtol=self.xtol)
-
-    # moment from definition
-    def _mom_integ0(self, x, m, *args):
-        return x**m * self.pdf(x, *args)
-
-    def _mom0_sc(self, m, *args):
-        return integrate.quad(self._mom_integ0, self.a, self.b,
-                              args=(m,)+args)[0]
-
-    # moment calculated using ppf
-    def _mom_integ1(self, q, m, *args):
-        return (self.ppf(q, *args))**m
-
-    def _mom1_sc(self, m, *args):
-        return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0]
-
-    def _pdf(self, x, *args):
-        return derivative(self._cdf, x, dx=1e-5, args=args, order=5)
-
-    ## Could also define any of these
-    def _logpdf(self, x, *args):
-        return log(self._pdf(x, *args))
-
-    def _cdf_single(self, x, *args):
-        return integrate.quad(self._pdf, self.a, x, args=args)[0]
-
-    def _cdf(self, x, *args):
-        return self._cdfvec(x, *args)
-
-    ## generic _argcheck, _logcdf, _sf, _logsf, _ppf, _isf, _rvs are defined
-    ## in rv_generic
-
-    def pdf(self, x, *args, **kwds):
-        """
-        Probability density function at x of the given RV.
-
-        Parameters
-        ----------
-        x : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        pdf : ndarray
-            Probability density function evaluated at x
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        x, loc, scale = map(asarray, (x, loc, scale))
-        args = tuple(map(asarray, args))
-        x = asarray((x-loc)*1.0/scale)
-        cond0 = self._argcheck(*args) & (scale > 0)
-        cond1 = (scale > 0) & (x >= self.a) & (x <= self.b)
-        cond = cond0 & cond1
-        output = zeros(shape(cond), 'd')
-        putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
-        if any(cond):
-            goodargs = argsreduce(cond, *((x,)+args+(scale,)))
-            scale, goodargs = goodargs[-1], goodargs[:-1]
-            place(output, cond, self._pdf(*goodargs) / scale)
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def logpdf(self, x, *args, **kwds):
-        """
-        Log of the probability density function at x of the given RV.
-
-        This uses a more numerically accurate calculation if available.
-
-        Parameters
-        ----------
-        x : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        logpdf : array_like
-            Log of the probability density function evaluated at x
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        x, loc, scale = map(asarray, (x, loc, scale))
-        args = tuple(map(asarray, args))
-        x = asarray((x-loc)*1.0/scale)
-        cond0 = self._argcheck(*args) & (scale > 0)
-        cond1 = (scale > 0) & (x >= self.a) & (x <= self.b)
-        cond = cond0 & cond1
-        output = empty(shape(cond), 'd')
-        output.fill(NINF)
-        putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
-        if any(cond):
-            goodargs = argsreduce(cond, *((x,)+args+(scale,)))
-            scale, goodargs = goodargs[-1], goodargs[:-1]
-            place(output, cond, self._logpdf(*goodargs) - log(scale))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def cdf(self, x, *args, **kwds):
-        """
-        Cumulative distribution function of the given RV.
-
-        Parameters
-        ----------
-        x : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        cdf : ndarray
-            Cumulative distribution function evaluated at `x`
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        x, loc, scale = map(asarray, (x, loc, scale))
-        args = tuple(map(asarray, args))
-        x = (x-loc)*1.0/scale
-        cond0 = self._argcheck(*args) & (scale > 0)
-        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
-        cond2 = (x >= self.b) & cond0
-        cond = cond0 & cond1
-        output = zeros(shape(cond), 'd')
-        place(output, (1-cond0)+np.isnan(x), self.badvalue)
-        place(output, cond2, 1.0)
-        if any(cond):  # call only if at least 1 entry
-            goodargs = argsreduce(cond, *((x,)+args))
-            place(output, cond, self._cdf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def logcdf(self, x, *args, **kwds):
-        """
-        Log of the cumulative distribution function at x of the given RV.
-
-        Parameters
-        ----------
-        x : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        logcdf : array_like
-            Log of the cumulative distribution function evaluated at x
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        x, loc, scale = map(asarray, (x, loc, scale))
-        args = tuple(map(asarray, args))
-        x = (x-loc)*1.0/scale
-        cond0 = self._argcheck(*args) & (scale > 0)
-        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
-        cond2 = (x >= self.b) & cond0
-        cond = cond0 & cond1
-        output = empty(shape(cond), 'd')
-        output.fill(NINF)
-        place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue)
-        place(output, cond2, 0.0)
-        if any(cond):  # call only if at least 1 entry
-            goodargs = argsreduce(cond, *((x,)+args))
-            place(output, cond, self._logcdf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def sf(self, x, *args, **kwds):
-        """
-        Survival function (1-cdf) at x of the given RV.
-
-        Parameters
-        ----------
-        x : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        sf : array_like
-            Survival function evaluated at x
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        x, loc, scale = map(asarray, (x, loc, scale))
-        args = tuple(map(asarray, args))
-        x = (x-loc)*1.0/scale
-        cond0 = self._argcheck(*args) & (scale > 0)
-        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
-        cond2 = cond0 & (x <= self.a)
-        cond = cond0 & cond1
-        output = zeros(shape(cond), 'd')
-        place(output, (1-cond0)+np.isnan(x), self.badvalue)
-        place(output, cond2, 1.0)
-        if any(cond):
-            goodargs = argsreduce(cond, *((x,)+args))
-            place(output, cond, self._sf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def logsf(self, x, *args, **kwds):
-        """
-        Log of the survival function of the given RV.
-
-        Returns the log of the "survival function," defined as (1 - `cdf`),
-        evaluated at `x`.
-
-        Parameters
-        ----------
-        x : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        logsf : ndarray
-            Log of the survival function evaluated at `x`.
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        x, loc, scale = map(asarray, (x, loc, scale))
-        args = tuple(map(asarray, args))
-        x = (x-loc)*1.0/scale
-        cond0 = self._argcheck(*args) & (scale > 0)
-        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
-        cond2 = cond0 & (x <= self.a)
-        cond = cond0 & cond1
-        output = empty(shape(cond), 'd')
-        output.fill(NINF)
-        place(output, (1-cond0)+np.isnan(x), self.badvalue)
-        place(output, cond2, 0.0)
-        if any(cond):
-            goodargs = argsreduce(cond, *((x,)+args))
-            place(output, cond, self._logsf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def ppf(self, q, *args, **kwds):
-        """
-        Percent point function (inverse of cdf) at q of the given RV.
-
-        Parameters
-        ----------
-        q : array_like
-            lower tail probability
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        x : array_like
-            quantile corresponding to the lower tail probability q.
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        q, loc, scale = map(asarray, (q, loc, scale))
-        args = tuple(map(asarray, args))
-        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
-        cond1 = (0 < q) & (q < 1)
-        cond2 = cond0 & (q == 0)
-        cond3 = cond0 & (q == 1)
-        cond = cond0 & cond1
-        output = valarray(shape(cond), value=self.badvalue)
-
-        lower_bound = self.a * scale + loc
-        upper_bound = self.b * scale + loc
-        place(output, cond2, argsreduce(cond2, lower_bound)[0])
-        place(output, cond3, argsreduce(cond3, upper_bound)[0])
-
-        if any(cond):  # call only if at least 1 entry
-            goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
-            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
-            place(output, cond, self._ppf(*goodargs) * scale + loc)
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def isf(self, q, *args, **kwds):
-        """
-        Inverse survival function at q of the given RV.
-
-        Parameters
-        ----------
-        q : array_like
-            upper tail probability
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            location parameter (default=0)
-        scale : array_like, optional
-            scale parameter (default=1)
-
-        Returns
-        -------
-        x : ndarray or scalar
-            Quantile corresponding to the upper tail probability q.
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        q, loc, scale = map(asarray, (q, loc, scale))
-        args = tuple(map(asarray, args))
-        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
-        cond1 = (0 < q) & (q < 1)
-        cond2 = cond0 & (q == 1)
-        cond3 = cond0 & (q == 0)
-        cond = cond0 & cond1
-        output = valarray(shape(cond), value=self.badvalue)
-
-        lower_bound = self.a * scale + loc
-        upper_bound = self.b * scale + loc
-        place(output, cond2, argsreduce(cond2, lower_bound)[0])
-        place(output, cond3, argsreduce(cond3, upper_bound)[0])
-
-        if any(cond):
-            goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
-            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
-            place(output, cond, self._isf(*goodargs) * scale + loc)
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def link(self, x, logSF, theta, i):
-        '''
-        Return theta[i] as function of quantile, survival probability and
-            theta[j] for j!=i.
-
-        Parameters
-        ----------
-        x : quantile
-        logSF : logarithm of the survival probability
-        theta : list
-            all distribution parameters including location and scale.
-
-        Returns
-        -------
-        theta[i] : real scalar
-            fixed distribution parameter theta[i] as function of x, logSF and
-            theta[j] where j != i.
-
-        LINK is a function connecting the fixed distribution parameter theta[i]
-        with the quantile (x) and the survival probability (SF) and the
-        remaining free distribution parameters theta[j] for j!=i, i.e.:
-            theta[i] = link(x, logSF, theta, i),
-        where logSF = log(Prob(X>x; theta)).
-
-        See also
-        estimation.Profile
-        '''
-        return self._link(x, logSF, theta, i)
-
-    def _link(self, x, logSF, theta, i):
-        msg = ('Link function not implemented for the %s distribution' %
-               self.name)
-        raise NotImplementedError(msg)
-
-
-    def _nnlf(self, x, *args):
-        return -sum(self._logpdf(x, *args), axis=0)
-
-    def nnlf(self, theta, x):
-        '''Return negative loglikelihood function
-
-        Notes
-        -----
-        This is ``-sum(log pdf(x, theta), axis=0)`` where theta are the
-        parameters (including loc and scale).
-        '''
-        try:
-            loc = theta[-2]
-            scale = theta[-1]
-            args = tuple(theta[:-2])
-        except IndexError:
-            raise ValueError("Not enough input arguments.")
-        if not self._argcheck(*args) or scale <= 0:
-            return inf
-        x = asarray((x-loc) / scale)
-        cond0 = (x <= self.a) | (self.b <= x)
-        if (any(cond0)):
-            return inf
-        else:
-            N = len(x)
-            return self._nnlf(x, *args) + N * log(scale)
-
-    def _penalized_nnlf(self, theta, x):
-        ''' Return negative loglikelihood function,
-        i.e., - sum (log pdf(x, theta), axis=0)
-           where theta are the parameters (including loc and scale)
-        '''
-        try:
-            loc = theta[-2]
-            scale = theta[-1]
-            args = tuple(theta[:-2])
-        except IndexError:
-            raise ValueError("Not enough input arguments.")
-        if not self._argcheck(*args) or scale <= 0:
-            return inf
-        x = asarray((x-loc) / scale)
-
-        loginf = log(_XMAX)
-
-        if np.isneginf(self.a).all() and np.isinf(self.b).all():
-            Nbad = 0
-        else:
-            cond0 = (x <= self.a) | (self.b <= x)
-            Nbad = sum(cond0)
-            if Nbad > 0:
-                x = argsreduce(~cond0, x)[0]
-
-        N = len(x)
-        return self._nnlf(x, *args) + N*log(scale) + Nbad * 100.0 * loginf
-
-    def hessian_nnlf(self, theta, data, eps=None):
-        ''' approximate hessian of nnlf where theta are the parameters (including loc and scale)
-        '''
-        #Nd = len(x)
-        np = len(theta)
-        # pab 07.01.2001: Always choose the stepsize h so that
-        # it is an exactly representable number.
-        # This is important when calculating numerical derivatives and is
-        #  accomplished by the following.
-
-        if eps == None:
-            eps = (_EPS) ** 0.4
-        #xmin = floatinfo.machar.xmin
-        #myfun = lambda y: max(y,100.0*log(xmin)) #% trick to avoid log of zero
-        delta = (eps + 2.0) - 2.0
-        delta2 = delta ** 2.0
-        # Approximate 1/(nE( (d L(x|theta)/dtheta)^2)) with
-        #              1/(d^2 L(theta|x)/dtheta^2)
-        # using central differences
-
-        LL = self.nnlf(theta, data)
-        H = zeros((np, np))   #%% Hessian matrix
-        theta = tuple(theta)
-        for ix in xrange(np):
-            sparam = list(theta)
-            sparam[ix] = theta[ix] + delta
-            fp = self.nnlf(sparam, data)
-            #fp = sum(myfun(x))
-
-            sparam[ix] = theta[ix] - delta
-            fm = self.nnlf(sparam, data)
-            #fm = sum(myfun(x))
-
-            H[ix, ix] = (fp - 2 * LL + fm) / delta2
-            for iy in range(ix + 1, np):
-                sparam[ix] = theta[ix] + delta
-                sparam[iy] = theta[iy] + delta
-                fpp = self.nnlf(sparam, data)
-                #fpp = sum(myfun(x))
-
-                sparam[iy] = theta[iy] - delta
-                fpm = self.nnlf(sparam, data)
-                #fpm = sum(myfun(x))
-
-                sparam[ix] = theta[ix] - delta
-                fmm = self.nnlf(sparam, data)
-                #fmm = sum(myfun(x));
-
-                sparam[iy] = theta[iy] + delta
-                fmp = self.nnlf(sparam, data)
-                #fmp = sum(myfun(x))
-                H[ix, iy] = ((fpp + fmm) - (fmp + fpm)) / (4. * delta2)
-                H[iy, ix] = H[ix, iy]
-                sparam[iy] = theta[iy]
-
-        # invert the Hessian matrix (i.e. invert the observed information number)
-        #pcov = -pinv(H);
-        return - H
-
-    def nlogps(self, theta, x):
-        """ Moran's negative log Product Spacings statistic
-
-            where theta are the parameters (including loc and scale)
-
-            Note the data in x must be sorted
-
-        References
-        -----------
-
-        R. C. H. Cheng; N. A. K. Amin (1983)
-        "Estimating Parameters in Continuous Univariate Distributions with a
-        Shifted Origin.",
-        Journal of the Royal Statistical Society. Series B (Methodological),
-        Vol. 45, No. 3. (1983), pp. 394-403.
-
-        R. C. H. Cheng; M. A. Stephens (1989)
-        "A Goodness-Of-Fit Test Using Moran's Statistic with Estimated
-        Parameters", Biometrika, 76, 2, pp 385-392
-
-        Wong, T.S.T. and Li, W.K. (2006)
-        "A note on the estimation of extreme value distributions using maximum
-        product of spacings.",
-        IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
-        """
-
-        try:
-            loc = theta[-2]
-            scale = theta[-1]
-            args = tuple(theta[:-2])
-        except IndexError:
-            raise ValueError("Not enough input arguments.")
-        if not self._argcheck(*args) or scale <= 0:
-            return inf
-        x = asarray((x - loc) / scale)
-        cond0 = (x <= self.a) | (self.b <= x)
-        Nbad = sum(cond0)
-        if Nbad > 0:
-            x = argsreduce(~cond0, x)[0]
-
-        lowertail = True
-        if lowertail:
-            prb = np.hstack((0.0, self.cdf(x, *args), 1.0))
-            dprb = np.diff(prb)
-        else:
-            prb = np.hstack((1.0, self.sf(x, *args), 0.0))
-            dprb = -np.diff(prb)
-
-        logD = log(dprb)
-        dx = np.diff(x, axis=0)
-        tie = (dx == 0)
-        if any(tie):
-            # TODO : implement this method for treating ties in data:
-            # Assume measuring error is delta. Then compute
-            # yL = F(xi-delta,theta)
-            # yU = F(xi+delta,theta)
-            # and replace
-            # logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
-
-            # The following is OK when only minimization of T is wanted
-            i_tie, = np.nonzero(tie)
-            tiedata = x[i_tie]
-            logD[i_tie + 1] = log(self._pdf(tiedata, *args)) - log(scale)
-
-        finiteD = np.isfinite(logD)
-        nonfiniteD = 1 - finiteD
-        Nbad += sum(nonfiniteD, axis=0)
-        if Nbad > 0:
-            T = -sum(logD[finiteD], axis=0) + 100.0 * log(_XMAX) * Nbad
-        else:
-            T = -sum(logD, axis=0)  #Moran's negative log product spacing statistic
-        return T
-
-    def hessian_nlogps(self, theta, data, eps=None):
-        ''' approximate hessian of nlogps where theta are the parameters (including loc and scale)
-        '''
-        np = len(theta)
-        # pab 07.01.2001: Always choose the stepsize h so that
-        # it is an exactly representable number.
-        # This is important when calculating numerical derivatives and is
-        #  accomplished by the following.
-
-        if eps == None:
-            eps = (_EPS) ** 0.4
-        #xmin = floatinfo.machar.xmin
-        #myfun = lambda y: max(y,100.0*log(xmin)) #% trick to avoid log of zero
-        delta = (eps + 2.0) - 2.0
-        delta2 = delta ** 2.0
-        #  Approximate 1/(nE( (d L(x|theta)/dtheta)^2)) with
-        #               1/(d^2 L(theta|x)/dtheta^2)
-        #    using central differences
-
-        LL = self.nlogps(theta, data)
-        H = zeros((np, np))   # Hessian matrix
-        theta = tuple(theta)
-        for ix in xrange(np):
-            sparam = list(theta)
-            sparam[ix] = theta[ix] + delta
-            fp = self.nlogps(sparam, data)
-            #fp = sum(myfun(x))
-
-            sparam[ix] = theta[ix] - delta
-            fm = self.nlogps(sparam, data)
-            #fm = sum(myfun(x))
-
-            H[ix, ix] = (fp - 2 * LL + fm) / delta2
-            for iy in range(ix + 1, np):
-                sparam[ix] = theta[ix] + delta
-                sparam[iy] = theta[iy] + delta
-                fpp = self.nlogps(sparam, data)
-                #fpp = sum(myfun(x))
-
-                sparam[iy] = theta[iy] - delta
-                fpm = self.nlogps(sparam, data)
-                #fpm = sum(myfun(x))
-
-                sparam[ix] = theta[ix] - delta
-                fmm = self.nlogps(sparam, data)
-                #fmm = sum(myfun(x));
-
-                sparam[iy] = theta[iy] + delta
-                fmp = self.nlogps(sparam, data)
-                #fmp = sum(myfun(x))
-                H[ix, iy] = ((fpp + fmm) - (fmp + fpm)) / (4. * delta2)
-                H[iy, ix] = H[ix, iy]
-                sparam[iy] = theta[iy];
-
-        # invert the Hessian matrix (i.e. invert the observed information number)
-        #pcov = -pinv(H);
-        return - H
-
-    # return starting point for fit (shape arguments + loc + scale)
-    def _fitstart(self, data, args=None):
-        if args is None:
-            args = (1.0,)*self.numargs
-        return args + self.fit_loc_scale(data, *args)
-
-    # Return the (possibly reduced) function to optimize in order to find MLE
-    #  estimates for the .fit method
-    def _reduce_func(self, args, kwds):
-        args = list(args)
-        Nargs = len(args)
-        fixedn = []
-        index = list(range(Nargs))
-        names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
-        x0 = []
-        for n, key in zip(index, names):
-            if key in kwds:
-                fixedn.append(n)
-                args[n] = kwds[key]
-            else:
-                x0.append(args[n])
-        method = kwds.get('method', 'ml').lower()
-        if method.startswith('mps'):
-            fitfun = self.nlogps
-        else:
-            fitfun = self._penalized_nnlf
-
-        if len(fixedn) == 0:
-            func = fitfun
-            restore = None
-        else:
-            if len(fixedn) == len(index):
-                raise ValueError(
-                    "All parameters fixed. There is nothing to optimize.")
-
-            def restore(args, theta):
-                # Replace with theta for all numbers not in fixedn
-                # This allows the non-fixed values to vary, but
-                #  we still call self.nnlf with all parameters.
-                i = 0
-                for n in range(Nargs):
-                    if n not in fixedn:
-                        args[n] = theta[i]
-                        i += 1
-                return args
-
-            def func(theta, x):
-                newtheta = restore(args[:], theta)
-                return fitfun(newtheta, x)
-
-        return x0, func, restore, args
-
-    def fit(self, data, *args, **kwds):
-        """
-        Return MLEs for shape, location, and scale parameters from data.
-
-        MLE stands for Maximum Likelihood Estimate.  Starting estimates for
-        the fit are given by input arguments; for any arguments not provided
-        with starting estimates, ``self._fitstart(data)`` is called to generate
-        such.
-
-        One can hold some parameters fixed to specific values by passing in
-        keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters)
-        and ``floc`` and ``fscale`` (for location and scale parameters,
-        respectively).
-
-        Parameters
-        ----------
-        data : array_like
-            Data to use in calculating the MLEs.
-        args : floats, optional
-            Starting value(s) for any shape-characterizing arguments (those not
-            provided will be determined by a call to ``_fitstart(data)``).
-            No default value.
-        kwds : floats, optional
-            Starting values for the location and scale parameters; no default.
-            Special keyword arguments are recognized as holding certain
-            parameters fixed:
-
-            f0...fn : hold respective shape parameters fixed.
-
-            floc : hold location parameter fixed to specified value.
-
-            fscale : hold scale parameter fixed to specified value.
-
-            optimizer : The optimizer to use.  The optimizer must take func,
-                        and starting position as the first two arguments,
-                        plus args (for extra arguments to pass to the
-                        function to be optimized) and disp=0 to suppress
-                        output as keyword arguments.
-
-        Returns
-        -------
-        shape, loc, scale : tuple of floats
-            MLEs for any shape statistics, followed by those for location and
-            scale.
-
-        Notes
-        -----
-        This fit is computed by maximizing a log-likelihood function, with
-        penalty applied for samples outside of range of the distribution. The
-        returned answer is not guaranteed to be the globally optimal MLE, it
-        may only be locally optimal, or the optimization may fail altogether.
-        """
-        Narg = len(args)
-        if Narg > self.numargs:
-            raise TypeError("Too many input arguments.")
-
-        start = [None]*2
-        if (Narg < self.numargs) or not ('loc' in kwds and
-                                         'scale' in kwds):
-            # get distribution specific starting locations
-            start = self._fitstart(data)
-            args += start[Narg:-2]
-        loc = kwds.get('loc', start[-2])
-        scale = kwds.get('scale', start[-1])
-        args += (loc, scale)
-        x0, func, restore, args = self._reduce_func(args, kwds)
-
-        optimizer = kwds.get('optimizer', optimize.fmin)
-        # convert string to function in scipy.optimize
-        if not callable(optimizer) and isinstance(optimizer, string_types):
-            if not optimizer.startswith('fmin_'):
-                optimizer = "fmin_"+optimizer
-            if optimizer == 'fmin_':
-                optimizer = 'fmin'
-            try:
-                optimizer = getattr(optimize, optimizer)
-            except AttributeError:
-                raise ValueError("%s is not a valid optimizer" % optimizer)
-        vals = optimizer(func, x0, args=(ravel(data),), disp=0)
-        if restore is not None:
-            vals = restore(args, vals)
-        vals = tuple(vals)
-        return vals
-
-    def fit2(self, data, *args, **kwds):
-        ''' Return Maximum Likelihood or Maximum Product Spacing estimator object
-
-        Parameters
-        ----------
-        data : array-like
-            Data to use in calculating the ML or MPS estimators
-        args : optional
-            Starting values for any shape arguments (those not specified
-            will be determined by dist._fitstart(data))
-        kwds : loc, scale
-            Starting values for the location and scale parameters
-            Special keyword arguments are recognized as holding certain
-            parameters fixed:
-                f0..fn : hold respective shape paramters fixed
-                floc : hold location parameter fixed to specified value
-                fscale : hold scale parameter fixed to specified value
-            method : of estimation. Options are
-                'ml' : Maximum Likelihood method (default)
-                'mps': Maximum Product Spacing method
-            alpha : scalar, optional
-                Confidence coefficent  (default=0.05)
-            search : bool
-                If true search for best estimator (default),
-                otherwise return object with initial distribution parameters
-            copydata : bool
-                If true copydata (default)
-            optimizer : The optimizer to use.  The optimizer must take func,
-                         and starting position as the first two arguments,
-                         plus args (for extra arguments to pass to the
-                         function to be optimized) and disp=0 to suppress
-                         output as keyword arguments.
-
-        Return
-        ------
-        phat : FitDistribution object
-            Fitted distribution object with following member variables:
-            LLmax  : loglikelihood function evaluated using par
-            LPSmax : log product spacing function evaluated using par
-            pvalue : p-value for the fit
-            par : distribution parameters (fixed and fitted)
-            par_cov : covariance of distribution parameters
-            par_fix : fixed distribution parameters
-            par_lower : lower (1-alpha)% confidence bound for the parameters
-            par_upper : upper (1-alpha)% confidence bound for the parameters
-
-        Note
-        ----
-        `data` is sorted using this function, so if `copydata`==False the data
-        in your namespace will be sorted as well.
-        '''
-        return FitDistribution(self, data, *args, **kwds)
-
-    def fit_loc_scale(self, data, *args):
-        """
-        Estimate loc and scale parameters from data using 1st and 2nd moments.
-
-        Parameters
-        ----------
-        data : array_like
-            Data to fit.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-
-        Returns
-        -------
-        Lhat : float
-            Estimated location parameter for the data.
-        Shat : float
-            Estimated scale parameter for the data.
-
-        """
-        mu, mu2 = self.stats(*args, **{'moments': 'mv'})
-        tmp = asarray(data)
-        muhat = tmp.mean()
-        mu2hat = tmp.var()
-        Shat = sqrt(mu2hat / mu2)
-        Lhat = muhat - Shat*mu
-        if not np.isfinite(Lhat):
-            Lhat = 0
-        if not (np.isfinite(Shat) and (0 < Shat)):
-            Shat = 1
-        return Lhat, Shat
-
-    @np.deprecate
-    def est_loc_scale(self, data, *args):
-        """This function is deprecated, use self.fit_loc_scale(data) instead.
-        """
-        return self.fit_loc_scale(data, *args)
-
-    def _entropy(self, *args):
-        def integ(x):
-            val = self._pdf(x, *args)
-            return -xlogy(val, val)
-
-        # upper limit is often inf, so suppress warnings when integrating
-        olderr = np.seterr(over='ignore')
-        h = integrate.quad(integ, self.a, self.b)[0]
-        np.seterr(**olderr)
-
-        if not np.isnan(h):
-            return h
-        else:
-            # try with different limits if integration problems
-            low, upp = self.ppf([1e-10, 1. - 1e-10], *args)
-            if np.isinf(self.b):
-                upper = upp
-            else:
-                upper = self.b
-            if np.isinf(self.a):
-                lower = low
-            else:
-                lower = self.a
-            return integrate.quad(integ, lower, upper)[0]
-
-    def entropy(self, *args, **kwds):
-        """
-        Differential entropy of the RV.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-        scale : array_like, optional
-            Scale parameter (default=1).
-
-        """
-        args, loc, scale = self._parse_args(*args, **kwds)
-        args = tuple(map(asarray, args))
-        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
-        output = zeros(shape(cond0), 'd')
-        place(output, (1-cond0), self.badvalue)
-        goodargs = argsreduce(cond0, *args)
-        # np.vectorize doesn't work when numargs == 0 in numpy 1.5.1
-        if self.numargs == 0:
-            place(output, cond0, self._entropy() + log(scale))
-        else:
-            place(output, cond0, self.vecentropy(*goodargs) + log(scale))
-
-        return output
-
-    def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None,
-               conditional=False, **kwds):
-        """Calculate expected value of a function with respect to the
-        distribution.
-
-        The expected value of a function ``f(x)`` with respect to a
-        distribution ``dist`` is defined as::
-
-                    ubound
-            E[x] = Integral(f(x) * dist.pdf(x))
-                    lbound
-
-        Parameters
-        ----------
-        func : callable, optional
-            Function for which integral is calculated. Takes only one argument.
-            The default is the identity mapping f(x) = x.
-        args : tuple, optional
-            Argument (parameters) of the distribution.
-        lb, ub : scalar, optional
-            Lower and upper bound for integration. default is set to the
-            support of the distribution.
-        conditional : bool, optional
-            If True, the integral is corrected by the conditional probability
-            of the integration interval.  The return value is the expectation
-            of the function, conditional on being in the given interval.
-            Default is False.
-
-        Additional keyword arguments are passed to the integration routine.
-
-        Returns
-        -------
-        expect : float
-            The calculated expected value.
-
-        Notes
-        -----
-        The integration behavior of this function is inherited from
-        `integrate.quad`.
-
-        """
-        lockwds = {'loc': loc,
-                   'scale': scale}
-        self._argcheck(*args)
-        if func is None:
-            def fun(x, *args):
-                return x * self.pdf(x, *args, **lockwds)
-        else:
-            def fun(x, *args):
-                return func(x) * self.pdf(x, *args, **lockwds)
-        if lb is None:
-            lb = loc + self.a * scale
-        if ub is None:
-            ub = loc + self.b * scale
-        if conditional:
-            invfac = (self.sf(lb, *args, **lockwds)
-                      - self.sf(ub, *args, **lockwds))
-        else:
-            invfac = 1.0
-        kwds['args'] = args
-        # Silence floating point warnings from integration.
-        olderr = np.seterr(all='ignore')
-        vals = integrate.quad(fun, lb, ub, **kwds)[0] / invfac
-        np.seterr(**olderr)
-        return vals
-
-
-## Handlers for generic case where xk and pk are given
-## The _drv prefix probably means discrete random variable.
-
-def _drv_pmf(self, xk, *args):
     try:
-        return self.P[xk]
-    except KeyError:
-        return 0.0
-
-
-def _drv_cdf(self, xk, *args):
-    indx = argmax((self.xk > xk), axis=-1)-1
-    return self.F[self.xk[indx]]
-
-
-def _drv_ppf(self, q, *args):
-    indx = argmax((self.qvals >= q), axis=-1)
-    return self.Finv[self.qvals[indx]]
-
-
-def _drv_nonzero(self, k, *args):
-    return 1
-
-
-def _drv_moment(self, n, *args):
-    n = asarray(n)
-    return sum(self.xk**n[np.newaxis, ...] * self.pk, axis=0)
-
-
-def _drv_moment_gen(self, t, *args):
-    t = asarray(t)
-    return sum(exp(self.xk * t[np.newaxis, ...]) * self.pk, axis=0)
-
-
-def _drv2_moment(self, n, *args):
-    """Non-central moment of discrete distribution."""
-    # many changes, originally not even a return
-    tot = 0.0
-    diff = 1e100
-    # pos = self.a
-    pos = max(0.0, 1.0*self.a)
-    count = 0
-    # handle cases with infinite support
-    ulimit = max(1000, (min(self.b, 1000) + max(self.a, -1000))/2.0)
-    llimit = min(-1000, (min(self.b, 1000) + max(self.a, -1000))/2.0)
-
-    while (pos <= self.b) and ((pos <= ulimit) or
-                               (diff > self.moment_tol)):
-        diff = np.power(pos, n) * self.pmf(pos, *args)
-        # use pmf because _pmf does not check support in randint and there
-        # might be problems ? with correct self.a, self.b at this stage
-        tot += diff
-        pos += self.inc
-        count += 1
-
-    if self.a < 0:  # handle case when self.a = -inf
-        diff = 1e100
-        pos = -self.inc
-        while (pos >= self.a) and ((pos >= llimit) or
-                                   (diff > self.moment_tol)):
-            diff = np.power(pos, n) * self.pmf(pos, *args)
-            # using pmf instead of _pmf, see above
-            tot += diff
-            pos -= self.inc
-            count += 1
-    return tot
-
-
-def _drv2_ppfsingle(self, q, *args):  # Use basic bisection algorithm
-    b = self.b
-    a = self.a
-    if isinf(b):            # Be sure ending point is > q
-        b = int(max(100*q, 10))
-        while 1:
-            if b >= self.b:
-                qb = 1.0
-                break
-            qb = self._cdf(b, *args)
-            if (qb < q):
-                b += 10
-            else:
-                break
+        loc = theta[-2]
+        scale = theta[-1]
+        args = tuple(theta[:-2])
+    except IndexError:
+        raise ValueError("Not enough input arguments.")
+    if not self._argcheck(*args) or scale <= 0:
+        return inf
+    x = asarray((x - loc) / scale)
+    cond0 = (x <= self.a) | (self.b <= x)
+    Nbad = np.sum(cond0)
+    if Nbad > 0:
+        x = argsreduce(~cond0, x)[0]
+
+    lowertail = True
+    if lowertail:
+        prb = np.hstack((0.0, self.cdf(x, *args), 1.0))
+        dprb = np.diff(prb)
     else:
-        qb = 1.0
-    if isinf(a):    # be sure starting point < q
-        a = int(min(-100*q, -10))
-        while 1:
-            if a <= self.a:
-                qb = 0.0
-                break
-            qa = self._cdf(a, *args)
-            if (qa > q):
-                a -= 10
-            else:
-                break
+        prb = np.hstack((1.0, self.sf(x, *args), 0.0))
+        dprb = -np.diff(prb)
+
+    logD = log(dprb)
+    dx = np.diff(x, axis=0)
+    tie = (dx == 0)
+    if any(tie):
+        # TODO : implement this method for treating ties in data:
+        # Assume measuring error is delta. Then compute
+        # yL = F(xi-delta,theta)
+        # yU = F(xi+delta,theta)
+        # and replace
+        # logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
+
+        # The following is OK when only minimization of T is wanted
+        i_tie, = np.nonzero(tie)
+        tiedata = x[i_tie]
+        logD[i_tie + 1] = log(self._pdf(tiedata, *args)) - log(scale)
+
+    finiteD = np.isfinite(logD)
+    nonfiniteD = 1 - finiteD
+    Nbad += np.sum(nonfiniteD, axis=0)
+    if Nbad > 0:
+        T = -np.sum(logD[finiteD], axis=0) + 100.0 * np.log(_XMAX) * Nbad
     else:
-        qa = self._cdf(a, *args)
-
-    while 1:
-        if (qa == q):
-            return a
-        if (qb == q):
-            return b
-        if b <= a+1:
-            # testcase: return wrong number at lower index
-            # python -c "from scipy.stats import zipf;print zipf.ppf(0.01, 2)" wrong
-            # python -c "from scipy.stats import zipf;print zipf.ppf([0.01, 0.61, 0.77, 0.83], 2)"
-            # python -c "from scipy.stats import logser;print logser.ppf([0.1, 0.66, 0.86, 0.93], 0.6)"
-            if qa > q:
-                return a
-            else:
-                return b
-        c = int((a+b)/2.0)
-        qc = self._cdf(c, *args)
-        if (qc < q):
-            if a != c:
-                a = c
-            else:
-                raise RuntimeError('updating stopped, endless loop')
-            qa = qc
-        elif (qc > q):
-            if b != c:
-                b = c
-            else:
-                raise RuntimeError('updating stopped, endless loop')
-            qb = qc
+        T = -np.sum(logD, axis=0)
+    return T
+
+
+def _reduce_func(self, args, kwds):
+    # First of all, convert fshapes params to fnum: eg for stats.beta,
+    # shapes='a, b'. To fix `a`, can specify either `f1` or `fa`.
+    # Convert the latter into the former.
+    if self.shapes:
+        shapes = self.shapes.replace(',', ' ').split()
+        for j, s in enumerate(shapes):
+            val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None)
+            if val is not None:
+                key = 'f%d' % j
+                if key in kwds:
+                    raise ValueError("Duplicate entry for %s." % key)
+                else:
+                    kwds[key] = val
+
+    args = list(args)
+    Nargs = len(args)
+    fixedn = []
+    names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
+    x0 = []
+    for n, key in enumerate(names):
+        if key in kwds:
+            fixedn.append(n)
+            args[n] = kwds.pop(key)
         else:
-            return c
-
-
-def entropy(pk, qk=None, base=None):
-    """Calculate the entropy of a distribution for given probability values.
+            x0.append(args[n])
+    method = kwds.pop('method', 'ml').lower()
+    if method.startswith('mps'):
+        fitfun = self.nlogps
+    else:
+        fitfun = self._penalized_nnlf
 
-    If only probabilities `pk` are given, the entropy is calculated as
-    ``S = -sum(pk * log(pk), axis=0)``.
+    if len(fixedn) == 0:
+        func = fitfun
+        restore = None
+    else:
+        if len(fixedn) == Nargs:
+            raise ValueError(
+                "All parameters fixed. There is nothing to optimize.")
 
-    If `qk` is not None, then compute the Kullback-Leibler divergence
-    ``S = sum(pk * log(pk / qk), axis=0)``.
+        def restore(args, theta):
+            # Replace with theta for all numbers not in fixedn
+            # This allows the non-fixed values to vary, but
+            #  we still call self.nnlf with all parameters.
+            i = 0
+            for n in range(Nargs):
+                if n not in fixedn:
+                    args[n] = theta[i]
+                    i += 1
+            return args
 
-    This routine will normalize `pk` and `qk` if they don't sum to 1.
+        def func(theta, x):
+            newtheta = restore(args[:], theta)
+            return fitfun(newtheta, x)
 
-    Parameters
-    ----------
-    pk : sequence
-        Defines the (discrete) distribution. ``pk[i]`` is the (possibly
-        unnormalized) probability of event ``i``.
-    qk : sequence, optional
-        Sequence against which the relative entropy is computed. Should be in
-        the same format as `pk`.
-    base : float, optional
-        The logarithmic base to use, defaults to ``e`` (natural logarithm).
+    return x0, func, restore, args
 
-    Returns
-    -------
-    S : float
-        The calculated entropy.
 
+def fit(self, data, *args, **kwds):
     """
-    pk = asarray(pk)
-    pk = 1.0*pk / sum(pk, axis=0)
-    if qk is None:
-        vec = xlogy(pk, pk)
-    else:
-        qk = asarray(qk)
-        if len(qk) != len(pk):
-            raise ValueError("qk and pk must have same length.")
-        qk = 1.0*qk / sum(qk, axis=0)
-        # If qk is zero anywhere, then unless pk is zero at those places
-        #   too, the relative entropy is infinite.
-        mask = qk == 0.0
-        qk[mask] = 1.0  # Avoid the divide-by-zero warning
-        quotient = pk / qk
-        vec = -xlogy(pk, quotient)
-        vec[mask & (pk != 0.0)] = -inf
-        vec[mask & (pk == 0.0)] = 0.0
-    S = -sum(vec, axis=0)
-    if base is not None:
-        S /= log(base)
-    return S
-
-
-# Must over-ride one of _pmf or _cdf or pass in
-#  x_k, p(x_k) lists in initialization
-
-class rv_discrete(rv_generic):
-    """
-    A generic discrete random variable class meant for subclassing.
+    Return ML or MPS estimate for shape, location, and scale parameters from data.
 
-    `rv_discrete` is a base class to construct specific distribution classes
-    and instances from for discrete random variables. rv_discrete can be used
-    to construct an arbitrary distribution with defined by a list of support
-    points and the corresponding probabilities.
+    ML and MPS stands for Maximum Likelihood and Maximum Product Spacing,
+    respectively.  Starting estimates for
+    the fit are given by input arguments; for any arguments not provided
+    with starting estimates, ``self._fitstart(data)`` is called to generate
+    such.
+
+    One can hold some parameters fixed to specific values by passing in
+    keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters)
+    and ``floc`` and ``fscale`` (for location and scale parameters,
+    respectively).
 
     Parameters
     ----------
-    a : float, optional
-        Lower bound of the support of the distribution, default: 0
-    b : float, optional
-        Upper bound of the support of the distribution, default: plus infinity
-    moment_tol : float, optional
-        The tolerance for the generic calculation of moments
-    values : tuple of two array_like
-        (xk, pk) where xk are points (integers) with positive probability pk
-        with sum(pk) = 1
-    inc : integer
-        increment for the support of the distribution, default: 1
-        other values have not been tested
-    badvalue : object, optional
-        The value in (masked) arrays that indicates a value that should be
-        ignored.
-    name : str, optional
-        The name of the instance. This string is used to construct the default
-        example for distributions.
-    longname : str, optional
-        This string is used as part of the first line of the docstring returned
-        when a subclass has no docstring of its own. Note: `longname` exists
-        for backwards compatibility, do not use for new subclasses.
-    shapes : str, optional
-        The shape of the distribution. For example ``"m, n"`` for a
-        distribution that takes two integers as the first two arguments for all
-        its methods.
-    extradoc :  str, optional
-        This string is used as the last part of the docstring returned when a
-        subclass has no docstring of its own. Note: `extradoc` exists for
-        backwards compatibility, do not use for new subclasses.
+    data : array_like
+        Data to use in calculating the MLEs.
+    args : floats, optional
+        Starting value(s) for any shape-characterizing arguments (those not
+        provided will be determined by a call to ``_fitstart(data)``).
+        No default value.
+    kwds : floats, optional
+        Starting values for the location and scale parameters; no default.
+        Special keyword arguments are recognized as holding certain
+        parameters fixed:
+
+        - f0...fn : hold respective shape parameters fixed.
+          Alternatively, shape parameters to fix can be specified by name.
+          For example, if ``self.shapes == "a, b"``, ``fa``and ``fix_a``
+          are equivalent to ``f0``, and ``fb`` and ``fix_b`` are
+          equivalent to ``f1``.
+
+        - floc : hold location parameter fixed to specified value.
+
+        - fscale : hold scale parameter fixed to specified value.
+
+        - optimizer : The optimizer to use.  The optimizer must take ``func``,
+          and starting position as the first two arguments,
+          plus ``args`` (for extra arguments to pass to the
+          function to be optimized) and ``disp=0`` to suppress
+          output as keyword arguments.
 
-    Methods
+    Returns
     -------
-    ``generic.rvs(<shape(s)>, loc=0, size=1)``
-        random variates
-
-    ``generic.pmf(x, <shape(s)>, loc=0)``
-        probability mass function
-
-    ``logpmf(x, <shape(s)>, loc=0)``
-        log of the probability density function
-
-    ``generic.cdf(x, <shape(s)>, loc=0)``
-        cumulative density function
-
-    ``generic.logcdf(x, <shape(s)>, loc=0)``
-        log of the cumulative density function
-
-    ``generic.sf(x, <shape(s)>, loc=0)``
-        survival function (1-cdf --- sometimes more accurate)
-
-    ``generic.logsf(x, <shape(s)>, loc=0, scale=1)``
-        log of the survival function
-
-    ``generic.ppf(q, <shape(s)>, loc=0)``
-        percent point function (inverse of cdf --- percentiles)
-
-    ``generic.isf(q, <shape(s)>, loc=0)``
-        inverse survival function (inverse of sf)
-
-    ``generic.moment(n, <shape(s)>, loc=0)``
-        non-central n-th moment of the distribution.  May not work for array
-        arguments.
-
-    ``generic.stats(<shape(s)>, loc=0, moments='mv')``
-        mean('m', axis=0), variance('v'), skew('s'), and/or kurtosis('k')
-
-    ``generic.entropy(<shape(s)>, loc=0)``
-        entropy of the RV
-
-    ``generic.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False)``
-        Expected value of a function with respect to the distribution.
-        Additional kwd arguments passed to integrate.quad
-
-    ``generic.median(<shape(s)>, loc=0)``
-        Median of the distribution.
-
-    ``generic.mean(<shape(s)>, loc=0)``
-        Mean of the distribution.
-
-    ``generic.std(<shape(s)>, loc=0)``
-        Standard deviation of the distribution.
-
-    ``generic.var(<shape(s)>, loc=0)``
-        Variance of the distribution.
-
-    ``generic.interval(alpha, <shape(s)>, loc=0)``
-        Interval that with `alpha` percent probability contains a random
-        realization of this distribution.
-
-    ``generic(<shape(s)>, loc=0)``
-        calling a distribution instance returns a frozen distribution
+    shape, loc, scale : tuple of floats
+        MLEs for any shape statistics, followed by those for location and
+        scale.
 
     Notes
     -----
+    This fit is computed by maximizing a log-likelihood function, with
+    penalty applied for samples outside of range of the distribution. The
+    returned answer is not guaranteed to be the globally optimal MLE, it
+    may only be locally optimal, or the optimization may fail altogether.
 
-    You can construct an arbitrary discrete rv where ``P{X=xk} = pk``
-    by passing to the rv_discrete initialization method (through the
-    values=keyword) a tuple of sequences (xk, pk) which describes only those
-    values of X (xk) that occur with nonzero probability (pk).
 
-    To create a new discrete distribution, we would do the following::
-
-        class poisson_gen(rv_discrete):
-            # "Poisson distribution"
-            def _pmf(self, k, mu):
-                ...
-
-    and create an instance::
-
-        poisson = poisson_gen(name="poisson",
-                              longname='A Poisson')
+    Examples
+    --------
 
-    The docstring can be created from a template.
+    Generate some data to fit: draw random variates from the `beta`
+    distribution
 
-    Alternatively, the object may be called (as a function) to fix the shape
-    and location parameters returning a "frozen" discrete RV object::
+    >>> from wafo.stats import beta
+    >>> a, b = 1., 2.
+    >>> x = beta.rvs(a, b, size=1000)
 
-        myrv = generic(<shape(s)>, loc=0)
-            - frozen RV object with the same methods but holding the given
-              shape and location fixed.
+    Now we can fit all four parameters (``a``, ``b``, ``loc`` and ``scale``):
 
-    A note on ``shapes``: subclasses need not specify them explicitly. In this
-    case, the `shapes` will be automatically deduced from the signatures of the
-    overridden methods.
-    If, for some reason, you prefer to avoid relying on introspection, you can
-    specify ``shapes`` explicitly as an argument to the instance constructor.
+    >>> a1, b1, loc1, scale1 = beta.fit(x)
 
+    We can also use some prior knowledge about the dataset: let's keep
+    ``loc`` and ``scale`` fixed:
 
-    Examples
-    --------
+    >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
+    >>> loc1, scale1
+    (0, 1)
 
-    Custom made discrete distribution:
+    We can also keep shape parameters fixed by using ``f``-keywords. To
+    keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or,
+    equivalently, ``fa=1``:
 
-    >>> from scipy import stats
-    >>> xk = np.arange(7)
-    >>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)
-    >>> custm = stats.rv_discrete(name='custm', values=(xk, pk))
-    >>>
-    >>> import matplotlib.pyplot as plt
-    >>> fig, ax = plt.subplots(1, 1)
-    >>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r')
-    >>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4)
-    >>> plt.show()
+    >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
+    >>> a1
+    1
 
-    Random number generation:
+    """
+    Narg = len(args)
+    if Narg > self.numargs:
+        raise TypeError("Too many input arguments.")
+
+    start = [None]*2
+    if (Narg < self.numargs) or not ('loc' in kwds and
+                                     'scale' in kwds):
+        # get distribution specific starting locations
+        start = self._fitstart(data)
+        args += start[Narg:-2]
+    loc = kwds.pop('loc', start[-2])
+    scale = kwds.pop('scale', start[-1])
+    args += (loc, scale)
+    x0, func, restore, args = self._reduce_func(args, kwds)
+
+    optimizer = kwds.pop('optimizer', optimize.fmin)
+    # convert string to function in scipy.optimize
+    if not callable(optimizer) and isinstance(optimizer, string_types):
+        if not optimizer.startswith('fmin_'):
+            optimizer = "fmin_"+optimizer
+        if optimizer == 'fmin_':
+            optimizer = 'fmin'
+        try:
+            optimizer = getattr(optimize, optimizer)
+        except AttributeError:
+            raise ValueError("%s is not a valid optimizer" % optimizer)
 
-    >>> R = custm.rvs(size=100)
+    # by now kwds must be empty, since everybody took what they needed
+    if kwds:
+        raise TypeError("Unknown arguments: %s." % kwds)
 
-    Check accuracy of cdf and ppf:
+    vals = optimizer(func, x0, args=(ravel(data),), disp=0)
+    if restore is not None:
+        vals = restore(args, vals)
+    vals = tuple(vals)
+    return vals
 
-    >>> prb = custm.cdf(x, <shape(s)>)
-    >>> h = plt.semilogy(np.abs(x-custm.ppf(prb, <shape(s)>))+1e-20)
-    """
 
-    def __init__(self, a=0, b=inf, name=None, badvalue=None,
-                 moment_tol=1e-8, values=None, inc=1, longname=None,
-                 shapes=None, extradoc=None):
-
-        super(rv_discrete, self).__init__()
-
-        # cf generic freeze
-        self._ctor_param = dict(
-            a=a, b=b, name=name, badvalue=badvalue,
-            moment_tol=moment_tol, values=values, inc=inc,
-            longname=longname, shapes=shapes, extradoc=extradoc)
-
-        if badvalue is None:
-            badvalue = nan
-        if name is None:
-            name = 'Distribution'
-        self.badvalue = badvalue
-        self.a = a
-        self.b = b
-        self.name = name
-        self.moment_tol = moment_tol
-        self.inc = inc
-        self._cdfvec = vectorize(self._cdf_single, otypes='d')
-        self.return_integers = 1
-        self.vecentropy = vectorize(self._entropy)
-        self.shapes = shapes
-        self.extradoc = extradoc
-
-        if values is not None:
-            self.xk, self.pk = values
-            self.return_integers = 0
-            indx = argsort(ravel(self.xk))
-            self.xk = take(ravel(self.xk), indx, 0)
-            self.pk = take(ravel(self.pk), indx, 0)
-            self.a = self.xk[0]
-            self.b = self.xk[-1]
-            self.P = dict(zip(self.xk, self.pk))
-            self.qvals = np.cumsum(self.pk, axis=0)
-            self.F = dict(zip(self.xk, self.qvals))
-            decreasing_keys = sorted(self.F.keys(), reverse=True)
-            self.Finv = dict((self.F[k], k) for k in decreasing_keys)
-            self._ppf = instancemethod(vectorize(_drv_ppf, otypes='d'),
-                                       self, rv_discrete)
-            self._pmf = instancemethod(vectorize(_drv_pmf, otypes='d'),
-                                       self, rv_discrete)
-            self._cdf = instancemethod(vectorize(_drv_cdf, otypes='d'),
-                                       self, rv_discrete)
-            self._nonzero = instancemethod(_drv_nonzero, self, rv_discrete)
-            self.generic_moment = instancemethod(_drv_moment,
-                                                 self, rv_discrete)
-            self.moment_gen = instancemethod(_drv_moment_gen,
-                                             self, rv_discrete)
-            self._construct_argparser(meths_to_inspect=[_drv_pmf],
-                                      locscale_in='loc=0',
-                                      # scale=1 for discrete RVs
-                                      locscale_out='loc, 1')
-        else:
-            self._construct_argparser(meths_to_inspect=[self._pmf, self._cdf],
-                                      locscale_in='loc=0',
-                                      # scale=1 for discrete RVs
-                                      locscale_out='loc, 1')
-
-            # nin correction needs to be after we know numargs
-            # correct nin for generic moment vectorization
-            _vec_generic_moment = vectorize(_drv2_moment, otypes='d')
-            _vec_generic_moment.nin = self.numargs + 2
-            self.generic_moment = instancemethod(_vec_generic_moment,
-                                                 self, rv_discrete)
-            # backwards compat.  was removed in 0.14.0, put back but
-            # deprecated in 0.14.1:
-            self.vec_generic_moment = np.deprecate(_vec_generic_moment,
-                                                   "vec_generic_moment",
-                                                   "generic_moment")
-
-            # correct nin for ppf vectorization
-            _vppf = vectorize(_drv2_ppfsingle, otypes='d')
-            _vppf.nin = self.numargs + 2  # +1 is for self
-            self._ppfvec = instancemethod(_vppf,
-                                          self, rv_discrete)
-
-        # now that self.numargs is defined, we can adjust nin
-        self._cdfvec.nin = self.numargs + 1
-
-        # generate docstring for subclass instances
-        if longname is None:
-            if name[0] in ['aeiouAEIOU']:
-                hstr = "An "
-            else:
-                hstr = "A "
-            longname = hstr + name
-
-        if sys.flags.optimize < 2:
-            # Skip adding docstrings if interpreter is run with -OO
-            if self.__doc__ is None:
-                self._construct_default_doc(longname=longname,
-                                            extradoc=extradoc)
-            else:
-                dct = dict(distdiscrete)
-                self._construct_doc(docdict_discrete, dct.get(self.name))
-
-            #discrete RV do not have the scale parameter, remove it
-            self.__doc__ = self.__doc__.replace(
-                '\n    scale : array_like, '
-                'optional\n        scale parameter (default=1)', '')
-
-    def _construct_default_doc(self, longname=None, extradoc=None):
-        """Construct instance docstring from the rv_discrete template."""
-        if extradoc is None:
-            extradoc = ''
-        if extradoc.startswith('\n\n'):
-            extradoc = extradoc[2:]
-        self.__doc__ = ''.join(['%s discrete random variable.' % longname,
-                                '\n\n%(before_notes)s\n', docheaders['notes'],
-                                extradoc, '\n%(example)s'])
-        self._construct_doc(docdict_discrete)
-
-    def _nonzero(self, k, *args):
-        return floor(k) == k
-
-    def _pmf(self, k, *args):
-        return self._cdf(k, *args) - self._cdf(k-1, *args)
-
-    def _logpmf(self, k, *args):
-        return log(self._pmf(k, *args))
-
-    def _cdf_single(self, k, *args):
-        m = arange(int(self.a), k+1)
-        return sum(self._pmf(m, *args), axis=0)
-
-    def _cdf(self, x, *args):
-        k = floor(x)
-        return self._cdfvec(k, *args)
-
-    # generic _logcdf, _sf, _logsf, _ppf, _isf, _rvs defined in rv_generic
-
-    def rvs(self, *args, **kwargs):
-        """
-        Random variates of given type.
-
-        Parameters
-        ----------
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-        size : int or tuple of ints, optional
-            Defining number of random variates (default=1).  Note that `size`
-            has to be given as keyword, not as positional argument.
-
-        Returns
-        -------
-        rvs : ndarray or scalar
-            Random variates of given `size`.
-
-        """
-        kwargs['discrete'] = True
-        return super(rv_discrete, self).rvs(*args, **kwargs)
-
-    def pmf(self, k, *args, **kwds):
-        """
-        Probability mass function at k of the given RV.
-
-        Parameters
-        ----------
-        k : array_like
-            quantiles
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information)
-        loc : array_like, optional
-            Location parameter (default=0).
-
-        Returns
-        -------
-        pmf : array_like
-            Probability mass function evaluated at k
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        k, loc = map(asarray, (k, loc))
-        args = tuple(map(asarray, args))
-        k = asarray((k-loc))
-        cond0 = self._argcheck(*args)
-        cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args)
-        cond = cond0 & cond1
-        output = zeros(shape(cond), 'd')
-        place(output, (1-cond0) + np.isnan(k), self.badvalue)
-        if any(cond):
-            goodargs = argsreduce(cond, *((k,)+args))
-            place(output, cond, np.clip(self._pmf(*goodargs), 0, 1))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def logpmf(self, k, *args, **kwds):
-        """
-        Log of the probability mass function at k of the given RV.
-
-        Parameters
-        ----------
-        k : array_like
-            Quantiles.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter. Default is 0.
-
-        Returns
-        -------
-        logpmf : array_like
-            Log of the probability mass function evaluated at k.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        k, loc = map(asarray, (k, loc))
-        args = tuple(map(asarray, args))
-        k = asarray((k-loc))
-        cond0 = self._argcheck(*args)
-        cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args)
-        cond = cond0 & cond1
-        output = empty(shape(cond), 'd')
-        output.fill(NINF)
-        place(output, (1-cond0) + np.isnan(k), self.badvalue)
-        if any(cond):
-            goodargs = argsreduce(cond, *((k,)+args))
-            place(output, cond, self._logpmf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def cdf(self, k, *args, **kwds):
-        """
-        Cumulative distribution function of the given RV.
-
-        Parameters
-        ----------
-        k : array_like, int
-            Quantiles.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-
-        Returns
-        -------
-        cdf : ndarray
-            Cumulative distribution function evaluated at `k`.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        k, loc = map(asarray, (k, loc))
-        args = tuple(map(asarray, args))
-        k = asarray((k-loc))
-        cond0 = self._argcheck(*args)
-        cond1 = (k >= self.a) & (k < self.b)
-        cond2 = (k >= self.b)
-        cond = cond0 & cond1
-        output = zeros(shape(cond), 'd')
-        place(output, (1-cond0) + np.isnan(k), self.badvalue)
-        place(output, cond2*(cond0 == cond0), 1.0)
-
-        if any(cond):
-            goodargs = argsreduce(cond, *((k,)+args))
-            place(output, cond, np.clip(self._cdf(*goodargs), 0, 1))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def logcdf(self, k, *args, **kwds):
-        """
-        Log of the cumulative distribution function at k of the given RV
-
-        Parameters
-        ----------
-        k : array_like, int
-            Quantiles.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-
-        Returns
-        -------
-        logcdf : array_like
-            Log of the cumulative distribution function evaluated at k.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        k, loc = map(asarray, (k, loc))
-        args = tuple(map(asarray, args))
-        k = asarray((k-loc))
-        cond0 = self._argcheck(*args)
-        cond1 = (k >= self.a) & (k < self.b)
-        cond2 = (k >= self.b)
-        cond = cond0 & cond1
-        output = empty(shape(cond), 'd')
-        output.fill(NINF)
-        place(output, (1-cond0) + np.isnan(k), self.badvalue)
-        place(output, cond2*(cond0 == cond0), 0.0)
-
-        if any(cond):
-            goodargs = argsreduce(cond, *((k,)+args))
-            place(output, cond, self._logcdf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def sf(self, k, *args, **kwds):
-        """
-        Survival function (1-cdf) at k of the given RV.
-
-        Parameters
-        ----------
-        k : array_like
-            Quantiles.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-
-        Returns
-        -------
-        sf : array_like
-            Survival function evaluated at k.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        k, loc = map(asarray, (k, loc))
-        args = tuple(map(asarray, args))
-        k = asarray(k-loc)
-        cond0 = self._argcheck(*args)
-        cond1 = (k >= self.a) & (k <= self.b)
-        cond2 = (k < self.a) & cond0
-        cond = cond0 & cond1
-        output = zeros(shape(cond), 'd')
-        place(output, (1-cond0) + np.isnan(k), self.badvalue)
-        place(output, cond2, 1.0)
-        if any(cond):
-            goodargs = argsreduce(cond, *((k,)+args))
-            place(output, cond, np.clip(self._sf(*goodargs), 0, 1))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def logsf(self, k, *args, **kwds):
-        """
-        Log of the survival function of the given RV.
-
-        Returns the log of the "survival function," defined as ``1 - cdf``,
-        evaluated at `k`.
-
-        Parameters
-        ----------
-        k : array_like
-            Quantiles.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-
-        Returns
-        -------
-        logsf : ndarray
-            Log of the survival function evaluated at `k`.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        k, loc = map(asarray, (k, loc))
-        args = tuple(map(asarray, args))
-        k = asarray(k-loc)
-        cond0 = self._argcheck(*args)
-        cond1 = (k >= self.a) & (k <= self.b)
-        cond2 = (k < self.a) & cond0
-        cond = cond0 & cond1
-        output = empty(shape(cond), 'd')
-        output.fill(NINF)
-        place(output, (1-cond0) + np.isnan(k), self.badvalue)
-        place(output, cond2, 0.0)
-        if any(cond):
-            goodargs = argsreduce(cond, *((k,)+args))
-            place(output, cond, self._logsf(*goodargs))
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def ppf(self, q, *args, **kwds):
-        """
-        Percent point function (inverse of cdf) at q of the given RV
-
-        Parameters
-        ----------
-        q : array_like
-            Lower tail probability.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-        scale : array_like, optional
-            Scale parameter (default=1).
-
-        Returns
-        -------
-        k : array_like
-            Quantile corresponding to the lower tail probability, q.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        q, loc = map(asarray, (q, loc))
-        args = tuple(map(asarray, args))
-        cond0 = self._argcheck(*args) & (loc == loc)
-        cond1 = (q > 0) & (q < 1)
-        cond2 = (q == 1) & cond0
-        cond = cond0 & cond1
-        output = valarray(shape(cond), value=self.badvalue, typecode='d')
-        # output type 'd' to handle nin and inf
-        place(output, (q == 0)*(cond == cond), self.a-1)
-        place(output, cond2, self.b)
-        if any(cond):
-            goodargs = argsreduce(cond, *((q,)+args+(loc,)))
-            loc, goodargs = goodargs[-1], goodargs[:-1]
-            place(output, cond, self._ppf(*goodargs) + loc)
-
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def isf(self, q, *args, **kwds):
-        """
-        Inverse survival function (inverse of `sf`) at q of the given RV.
-
-        Parameters
-        ----------
-        q : array_like
-            Upper tail probability.
-        arg1, arg2, arg3,... : array_like
-            The shape parameter(s) for the distribution (see docstring of the
-            instance object for more information).
-        loc : array_like, optional
-            Location parameter (default=0).
-
-        Returns
-        -------
-        k : ndarray or scalar
-            Quantile corresponding to the upper tail probability, q.
-
-        """
-        args, loc, _ = self._parse_args(*args, **kwds)
-        q, loc = map(asarray, (q, loc))
-        args = tuple(map(asarray, args))
-        cond0 = self._argcheck(*args) & (loc == loc)
-        cond1 = (q > 0) & (q < 1)
-        cond2 = (q == 1) & cond0
-        cond = cond0 & cond1
-
-        # same problem as with ppf; copied from ppf and changed
-        output = valarray(shape(cond), value=self.badvalue, typecode='d')
-        # output type 'd' to handle nin and inf
-        place(output, (q == 0)*(cond == cond), self.b)
-        place(output, cond2, self.a-1)
-
-        # call place only if at least 1 valid argument
-        if any(cond):
-            goodargs = argsreduce(cond, *((q,)+args+(loc,)))
-            loc, goodargs = goodargs[-1], goodargs[:-1]
-            # PB same as ticket 766
-            place(output, cond, self._isf(*goodargs) + loc)
-
-        if output.ndim == 0:
-            return output[()]
-        return output
-
-    def _entropy(self, *args):
-        if hasattr(self, 'pk'):
-            return entropy(self.pk)
-        else:
-            mu = int(self.stats(*args, **{'moments': 'm'}))
-            val = self.pmf(mu, *args)
-            ent = -xlogy(val, val)
-            k = 1
-            term = 1.0
-            while (abs(term) > _EPS):
-                val = self.pmf(mu+k, *args)
-                term = -xlogy(val, val)
-                val = self.pmf(mu-k, *args)
-                term -= xlogy(val, val)
-                k += 1
-                ent += term
-            return ent
-
-    def expect(self, func=None, args=(), loc=0, lb=None, ub=None,
-               conditional=False):
-        """
-        Calculate expected value of a function with respect to the distribution
-        for discrete distribution
-
-        Parameters
-        ----------
-        fn : function (default: identity mapping)
-            Function for which sum is calculated. Takes only one argument.
-        args : tuple
-            argument (parameters) of the distribution
-        lb, ub : numbers, optional
-            lower and upper bound for integration, default is set to the
-            support of the distribution, lb and ub are inclusive (ul<=k<=ub)
-        conditional : bool, optional
-            Default is False.
-            If true then the expectation is corrected by the conditional
-            probability of the integration interval. The return value is the
-            expectation of the function, conditional on being in the given
-            interval (k such that ul<=k<=ub).
-
-        Returns
-        -------
-        expect : float
-            Expected value.
-
-        Notes
-        -----
-        * function is not vectorized
-        * accuracy: uses self.moment_tol as stopping criterium
-          for heavy tailed distribution e.g. zipf(4), accuracy for
-          mean, variance in example is only 1e-5,
-          increasing precision (moment_tol) makes zipf very slow
-        * suppnmin=100 internal parameter for minimum number of points to
-          evaluate could be added as keyword parameter, to evaluate functions
-          with non-monotonic shapes, points include integers in (-suppnmin,
-          suppnmin)
-        * uses maxcount=1000 limits the number of points that are evaluated
-          to break loop for infinite sums
-          (a maximum of suppnmin+1000 positive plus suppnmin+1000 negative
-          integers are evaluated)
-
-        """
-
-        # moment_tol = 1e-12 # increase compared to self.moment_tol,
-        # too slow for only small gain in precision for zipf
-
-        # avoid endless loop with unbound integral, eg. var of zipf(2)
-        maxcount = 1000
-        suppnmin = 100  # minimum number of points to evaluate (+ and -)
-
-        if func is None:
-            def fun(x):
-                # loc and args from outer scope
-                return (x+loc)*self._pmf(x, *args)
-        else:
-            def fun(x):
-                # loc and args from outer scope
-                return func(x+loc)*self._pmf(x, *args)
-        # used pmf because _pmf does not check support in randint and there
-        # might be problems(?) with correct self.a, self.b at this stage maybe
-        # not anymore, seems to work now with _pmf
-
-        self._argcheck(*args)  # (re)generate scalar self.a and self.b
-        if lb is None:
-            lb = (self.a)
-        else:
-            lb = lb - loc   # convert bound for standardized distribution
-        if ub is None:
-            ub = (self.b)
-        else:
-            ub = ub - loc   # convert bound for standardized distribution
-        if conditional:
-            if np.isposinf(ub)[()]:
-                # work around bug: stats.poisson.sf(stats.poisson.b, 2) is nan
-                invfac = 1 - self.cdf(lb-1, *args)
-            else:
-                invfac = 1 - self.cdf(lb-1, *args) - self.sf(ub, *args)
-        else:
-            invfac = 1.0
-
-        #tot = 0.0
-        low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args)
-        low = max(min(-suppnmin, low), lb)
-        upp = min(max(suppnmin, upp), ub)
-        supp = np.arange(low, upp+1, self.inc)  # check limits
-        tot = np.sum(fun(supp))
-        diff = 1e100
-        pos = upp + self.inc
-        count = 0
-
-        # handle cases with infinite support
-
-        while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount:
-            diff = fun(pos)
-            tot += diff
-            pos += self.inc
-            count += 1
-
-        if self.a < 0:  # handle case when self.a = -inf
-            diff = 1e100
-            pos = low - self.inc
-            while ((pos >= lb) and (diff > self.moment_tol) and
-                   count <= maxcount):
-                diff = fun(pos)
-                tot += diff
-                pos -= self.inc
-                count += 1
-        if count > maxcount:
-            warnings.warn('expect(): sum did not converge', RuntimeWarning)
-        return tot/invfac
-
-
-def get_distribution_names(namespace_pairs, rv_base_class):
-    """
-    Collect names of statistical distributions and their generators.
+def fit2(self, data, *args, **kwds):
+    ''' Return Maximum Likelihood or Maximum Product Spacing estimator object
 
     Parameters
     ----------
-    namespace_pairs : sequence
-        A snapshot of (name, value) pairs in the namespace of a module.
-    rv_base_class : class
-        The base class of random variable generator classes in a module.
+    data : array-like
+        Data to use in calculating the ML or MPS estimators
+    args : optional
+        Starting values for any shape arguments (those not specified
+        will be determined by dist._fitstart(data))
+    kwds : loc, scale
+        Starting values for the location and scale parameters
+        Special keyword arguments are recognized as holding certain
+        parameters fixed:
+            f0..fn : hold respective shape paramters fixed
+            floc : hold location parameter fixed to specified value
+            fscale : hold scale parameter fixed to specified value
+        method : of estimation. Options are
+            'ml' : Maximum Likelihood method (default)
+            'mps': Maximum Product Spacing method
+        alpha : scalar, optional
+            Confidence coefficent  (default=0.05)
+        search : bool
+            If true search for best estimator (default),
+            otherwise return object with initial distribution parameters
+        copydata : bool
+            If true copydata (default)
+        optimizer : The optimizer to use.  The optimizer must take func,
+                     and starting position as the first two arguments,
+                     plus args (for extra arguments to pass to the
+                     function to be optimized) and disp=0 to suppress
+                     output as keyword arguments.
+
+    Return
+    ------
+    phat : FitDistribution object
+        Fitted distribution object with following member variables:
+        LLmax  : loglikelihood function evaluated using par
+        LPSmax : log product spacing function evaluated using par
+        pvalue : p-value for the fit
+        par : distribution parameters (fixed and fitted)
+        par_cov : covariance of distribution parameters
+        par_fix : fixed distribution parameters
+        par_lower : lower (1-alpha)% confidence bound for the parameters
+        par_upper : upper (1-alpha)% confidence bound for the parameters
+
+    Note
+    ----
+    `data` is sorted using this function, so if `copydata`==False the data
+    in your namespace will be sorted as well.
+    '''
+    return FitDistribution(self, data, *args, **kwds)
 
-    Returns
-    -------
-    distn_names : list of strings
-        Names of the statistical distributions.
-    distn_gen_names : list of strings
-        Names of the generators of the statistical distributions.
-        Note that these are not simply the names of the statistical
-        distributions, with a _gen suffix added.
 
-    """
-    distn_names = []
-    distn_gen_names = []
-    for name, value in namespace_pairs:
-        if name.startswith('_'):
-            continue
-        if name.endswith('_gen') and issubclass(value, rv_base_class):
-            distn_gen_names.append(name)
-        if isinstance(value, rv_base_class):
-            distn_names.append(name)
-    return distn_names, distn_gen_names
+rv_generic.freeze = freeze
+rv_discrete.freeze = freeze
+rv_continuous.freeze = freeze
+rv_continuous.link = link
+rv_continuous._link = _link
+rv_continuous.nlogps = nlogps
+rv_continuous._reduce_func = _reduce_func
+rv_continuous.fit = fit
+rv_continuous.fit2 = fit2
+
diff --git a/wafo/stats/_distr_params.py b/wafo/stats/_distr_params.py
index ee19707..ec65bdd 100644
--- a/wafo/stats/_distr_params.py
+++ b/wafo/stats/_distr_params.py
@@ -10,6 +10,7 @@ distcont = [
     ['betaprime', (5, 6)],
     ['bradford', (0.29891359763170633,)],
     ['burr', (10.5, 4.3)],
+    ['burr12', (10, 4)],
     ['cauchy', ()],
     ['chi', (78,)],
     ['chi2', (55,)],
@@ -18,6 +19,7 @@ distcont = [
     ['dweibull', (2.0685080649914673,)],
     ['erlang', (10,)],
     ['expon', ()],
+    ['exponnorm', (1.5,)],
     ['exponpow', (2.697119160358469,)],
     ['exponweib', (2.8923945291034436, 1.9505288745913174)],
     ['f', (29, 18)],
@@ -33,8 +35,11 @@ distcont = [
     ['genexpon', (9.1325976465418908, 16.231956600590632, 3.2819552690843983)],
     ['genextreme', (-0.1,)],
     ['gengamma', (4.4162385429431925, 3.1193091679242761)],
+    ['gengamma', (4.4162385429431925, -3.1193091679242761)],
     ['genhalflogistic', (0.77274727809929322,)],
     ['genlogistic', (0.41192440799679475,)],
+    ['gennorm', (1.2988442399460265,)],
+    ['halfgennorm', (0.6748054997000371,)],
     ['genpareto', (0.1,)],   # use case with finite moments
     ['gilbrat', ()],
     ['gompertz', (0.94743713075105251,)],
@@ -80,6 +85,7 @@ distcont = [
     ['reciprocal', (0.0062309367010521255, 1.0062309367010522)],
     ['rice', (0.7749725210111873,)],
     ['semicircular', ()],
+    ['skewnorm', (4.0,)],
     ['t', (2.7433514990818093,)],
     ['triang', (0.15785029824528218,)],
     ['truncexpon', (4.6907725456810478,)],
@@ -113,4 +119,3 @@ distdiscrete = [
     ['skellam', (15, 8)],
     ['zipf', (6.5,)]
 ]
-
diff --git a/wafo/stats/_multivariate.py b/wafo/stats/_multivariate.py
deleted file mode 100644
index 5455a61..0000000
--- a/wafo/stats/_multivariate.py
+++ /dev/null
@@ -1,884 +0,0 @@
-#
-# Author: Joris Vankerschaver 2013
-#
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-import scipy.linalg
-from scipy.misc import doccer
-from scipy.special import gammaln
-
-
-__all__ = ['multivariate_normal', 'dirichlet']
-
-_LOG_2PI = np.log(2 * np.pi)
-
-
-def _process_parameters(dim, mean, cov):
-    """
-    Infer dimensionality from mean or covariance matrix, ensure that
-    mean and covariance are full vector resp. matrix.
-
-    """
-
-    # Try to infer dimensionality
-    if dim is None:
-        if mean is None:
-            if cov is None:
-                dim = 1
-            else:
-                cov = np.asarray(cov, dtype=float)
-                if cov.ndim < 2:
-                    dim = 1
-                else:
-                    dim = cov.shape[0]
-        else:
-            mean = np.asarray(mean, dtype=float)
-            dim = mean.size
-    else:
-        if not np.isscalar(dim):
-            raise ValueError("Dimension of random variable must be a scalar.")
-
-    # Check input sizes and return full arrays for mean and cov if necessary
-    if mean is None:
-        mean = np.zeros(dim)
-    mean = np.asarray(mean, dtype=float)
-
-    if cov is None:
-        cov = 1.0
-    cov = np.asarray(cov, dtype=float)
-
-    if dim == 1:
-        mean.shape = (1,)
-        cov.shape = (1, 1)
-
-    if mean.ndim != 1 or mean.shape[0] != dim:
-        raise ValueError("Array 'mean' must be a vector of length %d." % dim)
-    if cov.ndim == 0:
-        cov = cov * np.eye(dim)
-    elif cov.ndim == 1:
-        cov = np.diag(cov)
-    elif cov.ndim == 2 and cov.shape != (dim, dim):
-        rows, cols = cov.shape
-        if rows != cols:
-            msg = ("Array 'cov' must be square if it is two dimensional,"
-                   " but cov.shape = %s." % str(cov.shape))
-        else:
-            msg = ("Dimension mismatch: array 'cov' is of shape %s,"
-                   " but 'mean' is a vector of length %d.")
-            msg = msg % (str(cov.shape), len(mean))
-        raise ValueError(msg)
-    elif cov.ndim > 2:
-        raise ValueError("Array 'cov' must be at most two-dimensional,"
-                         " but cov.ndim = %d" % cov.ndim)
-
-    return dim, mean, cov
-
-
-def _process_quantiles(x, dim):
-    """
-    Adjust quantiles array so that last axis labels the components of
-    each data point.
-
-    """
-    x = np.asarray(x, dtype=float)
-
-    if x.ndim == 0:
-        x = x[np.newaxis]
-    elif x.ndim == 1:
-        if dim == 1:
-            x = x[:, np.newaxis]
-        else:
-            x = x[np.newaxis, :]
-
-    return x
-
-
-def _squeeze_output(out):
-    """
-    Remove single-dimensional entries from array and convert to scalar,
-    if necessary.
-
-    """
-    out = out.squeeze()
-    if out.ndim == 0:
-        out = out[()]
-    return out
-
-
-def _eigvalsh_to_eps(spectrum, cond=None, rcond=None):
-    """
-    Determine which eigenvalues are "small" given the spectrum.
-
-    This is for compatibility across various linear algebra functions
-    that should agree about whether or not a Hermitian matrix is numerically
-    singular and what is its numerical matrix rank.
-    This is designed to be compatible with scipy.linalg.pinvh.
-
-    Parameters
-    ----------
-    spectrum : 1d ndarray
-        Array of eigenvalues of a Hermitian matrix.
-    cond, rcond : float, optional
-        Cutoff for small eigenvalues.
-        Singular values smaller than rcond * largest_eigenvalue are
-        considered zero.
-        If None or -1, suitable machine precision is used.
-
-    Returns
-    -------
-    eps : float
-        Magnitude cutoff for numerical negligibility.
-
-    """
-    if rcond is not None:
-        cond = rcond
-    if cond in [None, -1]:
-        t = spectrum.dtype.char.lower()
-        factor = {'f': 1E3, 'd': 1E6}
-        cond = factor[t] * np.finfo(t).eps
-    eps = cond * np.max(abs(spectrum))
-    return eps
-
-
-def _pinv_1d(v, eps=1e-5):
-    """
-    A helper function for computing the pseudoinverse.
-
-    Parameters
-    ----------
-    v : iterable of numbers
-        This may be thought of as a vector of eigenvalues or singular values.
-    eps : float
-        Values with magnitude no greater than eps are considered negligible.
-
-    Returns
-    -------
-    v_pinv : 1d float ndarray
-        A vector of pseudo-inverted numbers.
-
-    """
-    return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float)
-
-
-class _PSD(object):
-    """
-    Compute coordinated functions of a symmetric positive semidefinite matrix.
-
-    This class addresses two issues.  Firstly it allows the pseudoinverse,
-    the logarithm of the pseudo-determinant, and the rank of the matrix
-    to be computed using one call to eigh instead of three.
-    Secondly it allows these functions to be computed in a way
-    that gives mutually compatible results.
-    All of the functions are computed with a common understanding as to
-    which of the eigenvalues are to be considered negligibly small.
-    The functions are designed to coordinate with scipy.linalg.pinvh()
-    but not necessarily with np.linalg.det() or with np.linalg.matrix_rank().
-
-    Parameters
-    ----------
-    M : 2d array-like
-        Symmetric positive semidefinite matrix.
-    cond, rcond : float, optional
-        Cutoff for small eigenvalues.
-        Singular values smaller than rcond * largest_eigenvalue are
-        considered zero.
-        If None or -1, suitable machine precision is used.
-    lower : bool, optional
-        Whether the pertinent array data is taken from the lower
-        or upper triangle of M. (Default: lower)
-    check_finite : bool, optional
-        Whether to check that the input matrices contain only finite
-        numbers. Disabling may give a performance gain, but may result
-        in problems (crashes, non-termination) if the inputs do contain
-        infinities or NaNs.
-    allow_singular : bool, optional
-        Whether to allow a singular matrix.  (Default: True)
-
-    Notes
-    -----
-    The arguments are similar to those of scipy.linalg.pinvh().
-
-    """
-
-    def __init__(self, M, cond=None, rcond=None, lower=True,
-                 check_finite=True, allow_singular=True):
-        # Compute the symmetric eigendecomposition.
-        # Note that eigh takes care of array conversion, chkfinite,
-        # and assertion that the matrix is square.
-        s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite)
-
-        eps = _eigvalsh_to_eps(s, cond, rcond)
-        if np.min(s) < -eps:
-            raise ValueError('the input matrix must be positive semidefinite')
-        d = s[s > eps]
-        if len(d) < len(s) and not allow_singular:
-            raise np.linalg.LinAlgError('singular matrix')
-        s_pinv = _pinv_1d(s, eps)
-        U = np.multiply(u, np.sqrt(s_pinv))
-
-        # Initialize the eagerly precomputed attributes.
-        self.rank = len(d)
-        self.U = U
-        self.log_pdet = np.sum(np.log(d))
-
-        # Initialize an attribute to be lazily computed.
-        self._pinv = None
-
-    @property
-    def pinv(self):
-        if self._pinv is None:
-            self._pinv = np.dot(self.U, self.U.T)
-        return self._pinv
-
-
-_doc_default_callparams = """\
-mean : array_like, optional
-    Mean of the distribution (default zero)
-cov : array_like, optional
-    Covariance matrix of the distribution (default one)
-allow_singular : bool, optional
-    Whether to allow a singular covariance matrix.  (Default: False)
-"""
-
-_doc_callparams_note = \
-    """Setting the parameter `mean` to `None` is equivalent to having `mean`
-    be the zero-vector. The parameter `cov` can be a scalar, in which case
-    the covariance matrix is the identity times that value, a vector of
-    diagonal entries for the covariance matrix, or a two-dimensional
-    array_like.
-    """
-
-_doc_frozen_callparams = ""
-
-_doc_frozen_callparams_note = \
-    """See class definition for a detailed description of parameters."""
-
-docdict_params = {
-    '_doc_default_callparams': _doc_default_callparams,
-    '_doc_callparams_note': _doc_callparams_note
-}
-
-docdict_noparams = {
-    '_doc_default_callparams': _doc_frozen_callparams,
-    '_doc_callparams_note': _doc_frozen_callparams_note
-}
-
-
-class multivariate_normal_gen(object):
-    r"""
-    A multivariate normal random variable.
-
-    The `mean` keyword specifies the mean. The `cov` keyword specifies the
-    covariance matrix.
-
-    Methods
-    -------
-    pdf(x, mean=None, cov=1, allow_singular=False)
-        Probability density function.
-    logpdf(x, mean=None, cov=1, allow_singular=False)
-        Log of the probability density function.
-    rvs(mean=None, cov=1, allow_singular=False, size=1)
-        Draw random samples from a multivariate normal distribution.
-    entropy()
-        Compute the differential entropy of the multivariate normal.
-
-    Parameters
-    ----------
-    x : array_like
-        Quantiles, with the last axis of `x` denoting the components.
-    %(_doc_default_callparams)s
-
-    Alternatively, the object may be called (as a function) to fix the mean
-    and covariance parameters, returning a "frozen" multivariate normal
-    random variable:
-
-    rv = multivariate_normal(mean=None, cov=1, allow_singular=False)
-        - Frozen object with the same methods but holding the given
-          mean and covariance fixed.
-
-    Notes
-    -----
-    %(_doc_callparams_note)s
-
-    The covariance matrix `cov` must be a (symmetric) positive
-    semi-definite matrix. The determinant and inverse of `cov` are computed
-    as the pseudo-determinant and pseudo-inverse, respectively, so
-    that `cov` does not need to have full rank.
-
-    The probability density function for `multivariate_normal` is
-
-    .. math::
-
-        f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
-
-    where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
-    and :math:`k` is the dimension of the space where :math:`x` takes values.
-
-    .. versionadded:: 0.14.0
-
-    Examples
-    --------
-    >>> import matplotlib.pyplot as plt
-    >>> from scipy.stats import multivariate_normal
-    >>> x = np.linspace(0, 5, 10, endpoint=False)
-    >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
-    array([ 0.00108914,  0.01033349,  0.05946514,  0.20755375,  0.43939129,
-            0.56418958,  0.43939129,  0.20755375,  0.05946514,  0.01033349])
-    >>> plt.plot(x, y)
-
-    The input quantiles can be any shape of array, as long as the last
-    axis labels the components.  This allows us for instance to
-    display the frozen pdf for a non-isotropic random variable in 2D as
-    follows:
-
-    >>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
-    >>> pos = np.empty(x.shape + (2,))
-    >>> pos[:, :, 0] = x; pos[:, :, 1] = y
-    >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
-    >>> plt.contourf(x, y, rv.pdf(pos))
-
-    """
-
-    def __init__(self):
-        self.__doc__ = doccer.docformat(self.__doc__, docdict_params)
-
-    def __call__(self, mean=None, cov=1, allow_singular=False):
-        """
-        Create a frozen multivariate normal distribution.
-
-        See `multivariate_normal_frozen` for more information.
-
-        """
-        return multivariate_normal_frozen(mean, cov,
-                                          allow_singular=allow_singular)
-
-    def _logpdf(self, x, mean, prec_U, log_det_cov, rank):
-        """
-        Parameters
-        ----------
-        x : ndarray
-            Points at which to evaluate the log of the probability
-            density function
-        mean : ndarray
-            Mean of the distribution
-        prec_U : ndarray
-            A decomposition such that np.dot(prec_U, prec_U.T)
-            is the precision matrix, i.e. inverse of the covariance matrix.
-        log_det_cov : float
-            Logarithm of the determinant of the covariance matrix
-        rank : int
-            Rank of the covariance matrix.
-
-        Notes
-        -----
-        As this function does no argument checking, it should not be
-        called directly; use 'logpdf' instead.
-
-        """
-        dev = x - mean
-        maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1)
-        return -0.5 * (rank * _LOG_2PI + log_det_cov + maha)
-
-    def logpdf(self, x, mean, cov, allow_singular=False):
-        """
-        Log of the multivariate normal probability density function.
-
-        Parameters
-        ----------
-        x : array_like
-            Quantiles, with the last axis of `x` denoting the components.
-        %(_doc_default_callparams)s
-
-        Notes
-        -----
-        %(_doc_callparams_note)s
-
-        Returns
-        -------
-        pdf : ndarray
-            Log of the probability density function evaluated at `x`
-
-        """
-        dim, mean, cov = _process_parameters(None, mean, cov)
-        x = _process_quantiles(x, dim)
-        psd = _PSD(cov, allow_singular=allow_singular)
-        out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)
-        return _squeeze_output(out)
-
-    def pdf(self, x, mean, cov, allow_singular=False):
-        """
-        Multivariate normal probability density function.
-
-        Parameters
-        ----------
-        x : array_like
-            Quantiles, with the last axis of `x` denoting the components.
-        %(_doc_default_callparams)s
-
-        Notes
-        -----
-        %(_doc_callparams_note)s
-
-        Returns
-        -------
-        pdf : ndarray
-            Probability density function evaluated at `x`
-
-        """
-        dim, mean, cov = _process_parameters(None, mean, cov)
-        x = _process_quantiles(x, dim)
-        psd = _PSD(cov, allow_singular=allow_singular)
-        out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank))
-        return _squeeze_output(out)
-
-    def rvs(self, mean=None, cov=1, size=1):
-        """
-        Draw random samples from a multivariate normal distribution.
-
-        Parameters
-        ----------
-        %(_doc_default_callparams)s
-        size : integer, optional
-            Number of samples to draw (default 1).
-
-        Notes
-        -----
-        %(_doc_callparams_note)s
-
-        Returns
-        -------
-        rvs : ndarray or scalar
-            Random variates of size (`size`, `N`), where `N` is the
-            dimension of the random variable.
-
-        """
-        dim, mean, cov = _process_parameters(None, mean, cov)
-        out = np.random.multivariate_normal(mean, cov, size)
-        return _squeeze_output(out)
-
-    def entropy(self, mean=None, cov=1):
-        """
-        Compute the differential entropy of the multivariate normal.
-
-        Parameters
-        ----------
-        %(_doc_default_callparams)s
-
-        Notes
-        -----
-        %(_doc_callparams_note)s
-
-        Returns
-        -------
-        h : scalar
-            Entropy of the multivariate normal distribution
-
-        """
-        dim, mean, cov = _process_parameters(None, mean, cov)
-        return 0.5 * np.log(np.linalg.det(2 * np.pi * np.e * cov))
-
-
-multivariate_normal = multivariate_normal_gen()
-
-
-class multivariate_normal_frozen(object):
-    def __init__(self, mean=None, cov=1, allow_singular=False):
-        """
-        Create a frozen multivariate normal distribution.
-
-        Parameters
-        ----------
-        mean : array_like, optional
-            Mean of the distribution (default zero)
-        cov : array_like, optional
-            Covariance matrix of the distribution (default one)
-        allow_singular : bool, optional
-            If this flag is True then tolerate a singular
-            covariance matrix (default False).
-
-        Examples
-        --------
-        When called with the default parameters, this will create a 1D random
-        variable with mean 0 and covariance 1:
-
-        >>> from scipy.stats import multivariate_normal
-        >>> r = multivariate_normal()
-        >>> r.mean
-        array([ 0.])
-        >>> r.cov
-        array([[1.]])
-
-        """
-        self.dim, self.mean, self.cov = _process_parameters(None, mean, cov)
-        self.cov_info = _PSD(self.cov, allow_singular=allow_singular)
-        self._mnorm = multivariate_normal_gen()
-
-    def logpdf(self, x):
-        x = _process_quantiles(x, self.dim)
-        out = self._mnorm._logpdf(x, self.mean, self.cov_info.U,
-                                  self.cov_info.log_pdet, self.cov_info.rank)
-        return _squeeze_output(out)
-
-    def pdf(self, x):
-        return np.exp(self.logpdf(x))
-
-    def rvs(self, size=1):
-        return self._mnorm.rvs(self.mean, self.cov, size)
-
-    def entropy(self):
-        """
-        Computes the differential entropy of the multivariate normal.
-
-        Returns
-        -------
-        h : scalar
-            Entropy of the multivariate normal distribution
-
-        """
-        log_pdet = self.cov_info.log_pdet
-        rank = self.cov_info.rank
-        return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet)
-
-
-# Set frozen generator docstrings from corresponding docstrings in
-# multivariate_normal_gen and fill in default strings in class docstrings
-for name in ['logpdf', 'pdf', 'rvs']:
-    method = multivariate_normal_gen.__dict__[name]
-    method_frozen = multivariate_normal_frozen.__dict__[name]
-    method_frozen.__doc__ = doccer.docformat(method.__doc__, docdict_noparams)
-    method.__doc__ = doccer.docformat(method.__doc__, docdict_params)
-
-_dirichlet_doc_default_callparams = """\
-alpha : array_like
-    The concentration parameters. The number of entries determines the
-    dimensionality of the distribution.
-"""
-_dirichlet_doc_frozen_callparams = ""
-
-_dirichlet_doc_frozen_callparams_note = \
-    """See class definition for a detailed description of parameters."""
-
-dirichlet_docdict_params = {
-    '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams,
-}
-
-dirichlet_docdict_noparams = {
-    '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams,
-}
-
-
-def _dirichlet_check_parameters(alpha):
-    alpha = np.asarray(alpha)
-    if np.min(alpha) <= 0:
-        raise ValueError("All parameters must be greater than 0")
-    elif alpha.ndim != 1:
-        raise ValueError("Parameter vector 'a' must be one dimensional, " +
-                         "but a.shape = %s." % str(alpha.shape))
-    return alpha
-
-
-def _dirichlet_check_input(alpha, x):
-    x = np.asarray(x)
-
-    if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]:
-        raise ValueError("Vector 'x' must have one entry less then the" +
-                         " parameter vector 'a', but alpha.shape = " +
-                         "%s and " % alpha.shape +
-                         "x.shape = %s." % x.shape)
-
-    if x.shape[0] != alpha.shape[0]:
-        xk = np.array([1 - np.sum(x, 0)])
-        if xk.ndim == 1:
-            x = np.append(x, xk)
-        elif xk.ndim == 2:
-            x = np.vstack((x, xk))
-        else:
-            raise ValueError("The input must be one dimensional or a two "
-                             "dimensional matrix containing the entries.")
-
-    if np.min(x) < 0:
-        raise ValueError("Each entry in 'x' must be greater or equal zero.")
-
-    if np.max(x) > 1:
-        raise ValueError("Each entry in 'x' must be smaller or equal one.")
-
-    if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any():
-        raise ValueError("The input vector 'x' must lie within the normal " +
-                         "simplex. but sum(x)=%f." % np.sum(x, 0))
-
-    return x
-
-
-def _lnB(alpha):
-    r"""
-    Internal helper function to compute the log of the useful quotient
-
-    .. math::
-        B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)}
-
-    Parameters
-    ----------
-    %(_dirichlet_doc_default_callparams)s
-
-    Returns
-    -------
-    B : scalar
-        Helper quotient, internal use only
-
-    """
-    return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha))
-
-
-class dirichlet_gen(object):
-    r"""
-    A Dirichlet random variable.
-
-    The `alpha` keyword specifies the concentration parameters of the
-    distribution.
-
-    .. versionadded:: 0.15.0
-
-    Methods
-    -------
-    pdf(x, alpha)
-        Probability density function.
-    logpdf(x, alpha)
-        Log of the probability density function.
-    rvs(alpha, size=1)
-        Draw random samples from a Dirichlet distribution.
-    mean(alpha)
-        The mean of the Dirichlet distribution
-    var(alpha)
-        The variance of the Dirichlet distribution
-    entropy(alpha)
-        Compute the differential entropy of the multivariate normal.
-
-    Parameters
-    ----------
-    x : array_like
-        Quantiles, with the last axis of `x` denoting the components.
-    %(_dirichlet_doc_default_callparams)s
-
-    Alternatively, the object may be called (as a function) to fix
-    concentration parameters, returning a "frozen" Dirichlet
-    random variable:
-
-    rv = dirichlet(alpha)
-        - Frozen object with the same methods but holding the given
-          concentration parameters fixed.
-
-    Notes
-    -----
-    Each :math:`\alpha` entry must be positive. The distribution has only
-    support on the simplex defined by
-
-    .. math::
-        \sum_{i=1}^{K} x_i \le 1
-
-
-    The probability density function for `dirichlet` is
-
-    .. math::
-
-        f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}
-
-    where
-
-    .. math::
-        \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)}{\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)}
-
-    and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the
-    concentration parameters and :math:`K` is the dimension of the space
-    where :math:`x` takes values.
-
-    """
-
-    def __init__(self):
-        self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params)
-
-    def __call__(self, alpha):
-        return dirichlet_frozen(alpha)
-
-    def _logpdf(self, x, alpha):
-        """
-        Parameters
-        ----------
-        x : ndarray
-            Points at which to evaluate the log of the probability
-            density function
-        %(_dirichlet_doc_default_callparams)s
-
-        Notes
-        -----
-        As this function does no argument checking, it should not be
-        called directly; use 'logpdf' instead.
-
-        """
-        lnB = _lnB(alpha)
-        return - lnB + np.sum((np.log(x.T) * (alpha - 1)).T, 0)
-
-    def logpdf(self, x, alpha):
-        """
-        Log of the Dirichlet probability density function.
-
-        Parameters
-        ----------
-        x : array_like
-            Quantiles, with the last axis of `x` denoting the components.
-        %(_dirichlet_doc_default_callparams)s
-
-        Returns
-        -------
-        pdf : ndarray
-            Log of the probability density function evaluated at `x`
-        """
-        alpha = _dirichlet_check_parameters(alpha)
-        x = _dirichlet_check_input(alpha, x)
-
-        out = self._logpdf(x, alpha)
-        return _squeeze_output(out)
-
-    def pdf(self, x, alpha):
-        """
-        The Dirichlet probability density function.
-
-        Parameters
-        ----------
-        x : array_like
-            Quantiles, with the last axis of `x` denoting the components.
-        %(_dirichlet_doc_default_callparams)s
-
-        Returns
-        -------
-        pdf : ndarray
-            The probability density function evaluated at `x`
-        """
-        alpha = _dirichlet_check_parameters(alpha)
-        x = _dirichlet_check_input(alpha, x)
-
-        out = np.exp(self._logpdf(x, alpha))
-        return _squeeze_output(out)
-
-    def mean(self, alpha):
-        """
-        Compute the mean of the dirichlet distribution.
-
-        Parameters
-        ----------
-        %(_dirichlet_doc_default_callparams)s
-
-        Returns
-        -------
-        mu : scalar
-            Mean of the Dirichlet distribution
-
-        """
-        alpha = _dirichlet_check_parameters(alpha)
-
-        out = alpha / (np.sum(alpha))
-        return _squeeze_output(out)
-
-    def var(self, alpha):
-        """
-        Compute the variance of the dirichlet distribution.
-
-        Parameters
-        ----------
-        %(_dirichlet_doc_default_callparams)s
-
-        Returns
-        -------
-        v : scalar
-            Variance of the Dirichlet distribution
-
-        """
-
-        alpha = _dirichlet_check_parameters(alpha)
-
-        alpha0 = np.sum(alpha)
-        out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1))
-        return out
-
-    def entropy(self, alpha):
-        """
-        Compute the differential entropy of the dirichlet distribution.
-
-        Parameters
-        ----------
-        %(_dirichlet_doc_default_callparams)s
-
-        Returns
-        -------
-        h : scalar
-            Entropy of the Dirichlet distribution
-
-        """
-
-        alpha = _dirichlet_check_parameters(alpha)
-
-        alpha0 = np.sum(alpha)
-        lnB = _lnB(alpha)
-        K = alpha.shape[0]
-
-        out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum(
-            (alpha - 1) * scipy.special.psi(alpha))
-        return _squeeze_output(out)
-
-    def rvs(self, alpha, size=1):
-        """
-        Draw random samples from a Dirichlet distribution.
-
-        Parameters
-        ----------
-        %(_dirichlet_doc_default_callparams)s
-        size : integer, optional
-            Number of samples to draw (default 1).
-
-
-        Returns
-        -------
-        rvs : ndarray or scalar
-            Random variates of size (`size`, `N`), where `N` is the
-            dimension of the random variable.
-
-        """
-        alpha = _dirichlet_check_parameters(alpha)
-        return np.random.dirichlet(alpha, size=size)
-
-
-dirichlet = dirichlet_gen()
-
-
-class dirichlet_frozen(object):
-    def __init__(self, alpha):
-        self.alpha = _dirichlet_check_parameters(alpha)
-        self._dirichlet = dirichlet_gen()
-
-    def logpdf(self, x):
-        return self._dirichlet.logpdf(x, self.alpha)
-
-    def pdf(self, x):
-        return self._dirichlet.pdf(x, self.alpha)
-
-    def mean(self):
-        return self._dirichlet.mean(self.alpha)
-
-    def var(self):
-        return self._dirichlet.var(self.alpha)
-
-    def entropy(self):
-        return self._dirichlet.entropy(self.alpha)
-
-    def rvs(self, size=1):
-        return self._dirichlet.rvs(self.alpha, size)
-
-
-# Set frozen generator docstrings from corresponding docstrings in
-# multivariate_normal_gen and fill in default strings in class docstrings
-for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']:
-    method = dirichlet_gen.__dict__[name]
-    method_frozen = dirichlet_frozen.__dict__[name]
-    method_frozen.__doc__ = doccer.docformat(
-        method.__doc__, dirichlet_docdict_noparams)
-    method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params)
diff --git a/wafo/stats/_tukeylambda_stats.py b/wafo/stats/_tukeylambda_stats.py
deleted file mode 100644
index 2681814..0000000
--- a/wafo/stats/_tukeylambda_stats.py
+++ /dev/null
@@ -1,201 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-from numpy import poly1d
-from scipy.special import beta
-
-
-# The following code was used to generate the Pade coefficients for the
-# Tukey Lambda variance function.  Version 0.17 of mpmath was used.
-#---------------------------------------------------------------------------
-# import mpmath as mp
-#
-# mp.mp.dps = 60
-#
-# one   = mp.mpf(1)
-# two   = mp.mpf(2)
-#
-# def mpvar(lam):
-#     if lam == 0:
-#         v = mp.pi**2 / three
-#     else:
-#         v = (two / lam**2) * (one / (one + two*lam) -
-#                               mp.beta(lam + one, lam + one))
-#     return v
-#
-# t = mp.taylor(mpvar, 0, 8)
-# p, q = mp.pade(t, 4, 4)
-# print "p =", [mp.fp.mpf(c) for c in p]
-# print "q =", [mp.fp.mpf(c) for c in q]
-#---------------------------------------------------------------------------
-
-# Pade coefficients for the Tukey Lambda variance function.
-_tukeylambda_var_pc = [3.289868133696453, 0.7306125098871127,
-                       -0.5370742306855439, 0.17292046290190008,
-                       -0.02371146284628187]
-_tukeylambda_var_qc = [1.0, 3.683605511659861, 4.184152498888124,
-                       1.7660926747377275, 0.2643989311168465]
-
-# numpy.poly1d instances for the numerator and denominator of the
-# Pade approximation to the Tukey Lambda variance.
-_tukeylambda_var_p = poly1d(_tukeylambda_var_pc[::-1])
-_tukeylambda_var_q = poly1d(_tukeylambda_var_qc[::-1])
-
-
-def tukeylambda_variance(lam):
-    """Variance of the Tukey Lambda distribution.
-
-    Parameters
-    ----------
-    lam : array_like
-        The lambda values at which to compute the variance.
-
-    Returns
-    -------
-    v : ndarray
-        The variance.  For lam < -0.5, the variance is not defined, so
-        np.nan is returned.  For lam = 0.5, np.inf is returned.
-
-    Notes
-    -----
-    In an interval around lambda=0, this function uses the [4,4] Pade
-    approximation to compute the variance.  Otherwise it uses the standard
-    formula (http://en.wikipedia.org/wiki/Tukey_lambda_distribution).  The
-    Pade approximation is used because the standard formula has a removable
-    discontinuity at lambda = 0, and does not produce accurate numerical
-    results near lambda = 0.
-    """
-    lam = np.asarray(lam)
-    shp = lam.shape
-    lam = np.atleast_1d(lam).astype(np.float64)
-
-    # For absolute values of lam less than threshold, use the Pade
-    # approximation.
-    threshold = 0.075
-
-    # Play games with masks to implement the conditional evaluation of
-    # the distribution.
-    # lambda < -0.5:  var = nan
-    low_mask = lam < -0.5
-    # lambda == -0.5: var = inf
-    neghalf_mask = lam == -0.5
-    # abs(lambda) < threshold:  use Pade approximation
-    small_mask = np.abs(lam) < threshold
-    # else the "regular" case:  use the explicit formula.
-    reg_mask = ~(low_mask | neghalf_mask | small_mask)
-
-    # Get the 'lam' values for the cases where they are needed.
-    small = lam[small_mask]
-    reg = lam[reg_mask]
-
-    # Compute the function for each case.
-    v = np.empty_like(lam)
-    v[low_mask] = np.nan
-    v[neghalf_mask] = np.inf
-    if small.size > 0:
-        # Use the Pade approximation near lambda = 0.
-        v[small_mask] = _tukeylambda_var_p(small) / _tukeylambda_var_q(small)
-    if reg.size > 0:
-        v[reg_mask] = (2.0 / reg**2) * (1.0 / (1.0 + 2 * reg) -
-                                      beta(reg + 1, reg + 1))
-    v.shape = shp
-    return v
-
-
-# The following code was used to generate the Pade coefficients for the
-# Tukey Lambda kurtosis function.  Version 0.17 of mpmath was used.
-#---------------------------------------------------------------------------
-# import mpmath as mp
-#
-# mp.mp.dps = 60
-#
-# one   = mp.mpf(1)
-# two   = mp.mpf(2)
-# three = mp.mpf(3)
-# four  = mp.mpf(4)
-#
-# def mpkurt(lam):
-#     if lam == 0:
-#         k = mp.mpf(6)/5
-#     else:
-#         numer = (one/(four*lam+one) - four*mp.beta(three*lam+one, lam+one) +
-#                  three*mp.beta(two*lam+one, two*lam+one))
-#         denom = two*(one/(two*lam+one) - mp.beta(lam+one,lam+one))**2
-#         k = numer / denom - three
-#     return k
-#
-# # There is a bug in mpmath 0.17: when we use the 'method' keyword of the
-# # taylor function and we request a degree 9 Taylor polynomial, we actually
-# # get degree 8.
-# t = mp.taylor(mpkurt, 0, 9, method='quad', radius=0.01)
-# t = [mp.chop(c, tol=1e-15) for c in t]
-# p, q = mp.pade(t, 4, 4)
-# print "p =", [mp.fp.mpf(c) for c in p]
-# print "q =", [mp.fp.mpf(c) for c in q]
-#---------------------------------------------------------------------------
-
-# Pade coefficients for the Tukey Lambda kurtosis function.
-_tukeylambda_kurt_pc = [1.2, -5.853465139719495, -22.653447381131077,
-                        0.20601184383406815, 4.59796302262789]
-_tukeylambda_kurt_qc = [1.0, 7.171149192233599, 12.96663094361842,
-                        0.43075235247853005, -2.789746758009912]
-
-# numpy.poly1d instances for the numerator and denominator of the
-# Pade approximation to the Tukey Lambda kurtosis.
-_tukeylambda_kurt_p = poly1d(_tukeylambda_kurt_pc[::-1])
-_tukeylambda_kurt_q = poly1d(_tukeylambda_kurt_qc[::-1])
-
-
-def tukeylambda_kurtosis(lam):
-    """Kurtosis of the Tukey Lambda distribution.
-
-    Parameters
-    ----------
-    lam : array_like
-        The lambda values at which to compute the variance.
-
-    Returns
-    -------
-    v : ndarray
-        The variance.  For lam < -0.25, the variance is not defined, so
-        np.nan is returned.  For lam = 0.25, np.inf is returned.
-
-    """
-    lam = np.asarray(lam)
-    shp = lam.shape
-    lam = np.atleast_1d(lam).astype(np.float64)
-
-    # For absolute values of lam less than threshold, use the Pade
-    # approximation.
-    threshold = 0.055
-
-    # Use masks to implement the conditional evaluation of the kurtosis.
-    # lambda < -0.25:  kurtosis = nan
-    low_mask = lam < -0.25
-    # lambda == -0.25: kurtosis = inf
-    negqrtr_mask = lam == -0.25
-    # lambda near 0:  use Pade approximation
-    small_mask = np.abs(lam) < threshold
-    # else the "regular" case:  use the explicit formula.
-    reg_mask = ~(low_mask | negqrtr_mask | small_mask)
-
-    # Get the 'lam' values for the cases where they are needed.
-    small = lam[small_mask]
-    reg = lam[reg_mask]
-
-    # Compute the function for each case.
-    k = np.empty_like(lam)
-    k[low_mask] = np.nan
-    k[negqrtr_mask] = np.inf
-    if small.size > 0:
-        k[small_mask] = _tukeylambda_kurt_p(small) / _tukeylambda_kurt_q(small)
-    if reg.size > 0:
-        numer = (1.0 / (4 * reg + 1) - 4 * beta(3 * reg + 1, reg + 1) +
-                 3 * beta(2 * reg + 1, 2 * reg + 1))
-        denom = 2 * (1.0/(2 * reg + 1) - beta(reg + 1, reg + 1))**2
-        k[reg_mask] = numer / denom - 3
-
-    # The return value will be a numpy array; resetting the shape ensures that
-    # if `lam` was a scalar, the return value is a 0-d array.
-    k.shape = shp
-    return k
diff --git a/wafo/stats/contingency.py b/wafo/stats/contingency.py
deleted file mode 100644
index c67306c..0000000
--- a/wafo/stats/contingency.py
+++ /dev/null
@@ -1,271 +0,0 @@
-"""Some functions for working with contingency tables (i.e. cross tabulations).
-"""
-
-
-from __future__ import division, print_function, absolute_import
-
-from functools import reduce
-import numpy as np
-from .stats import power_divergence
-
-
-__all__ = ['margins', 'expected_freq', 'chi2_contingency']
-
-
-def margins(a):
-    """Return a list of the marginal sums of the array `a`.
-
-    Parameters
-    ----------
-    a : ndarray
-        The array for which to compute the marginal sums.
-
-    Returns
-    -------
-    margsums : list of ndarrays
-        A list of length `a.ndim`.  `margsums[k]` is the result
-        of summing `a` over all axes except `k`; it has the same
-        number of dimensions as `a`, but the length of each axis
-        except axis `k` will be 1.
-
-    Examples
-    --------
-    >>> a = np.arange(12).reshape(2, 6)
-    >>> a
-    array([[ 0,  1,  2,  3,  4,  5],
-           [ 6,  7,  8,  9, 10, 11]])
-    >>> m0, m1 = margins(a)
-    >>> m0
-    array([[15],
-           [51]])
-    >>> m1
-    array([[ 6,  8, 10, 12, 14, 16]])
-
-    >>> b = np.arange(24).reshape(2,3,4)
-    >>> m0, m1, m2 = margins(b)
-    >>> m0
-    array([[[ 66]],
-           [[210]]])
-    >>> m1
-    array([[[ 60],
-            [ 92],
-            [124]]])
-    >>> m2
-    array([[[60, 66, 72, 78]]])
-    """
-    margsums = []
-    ranged = list(range(a.ndim))
-    for k in ranged:
-        marg = np.apply_over_axes(np.sum, a, [j for j in ranged if j != k])
-        margsums.append(marg)
-    return margsums
-
-
-def expected_freq(observed):
-    """
-    Compute the expected frequencies from a contingency table.
-
-    Given an n-dimensional contingency table of observed frequencies,
-    compute the expected frequencies for the table based on the marginal
-    sums under the assumption that the groups associated with each
-    dimension are independent.
-
-    Parameters
-    ----------
-    observed : array_like
-        The table of observed frequencies.  (While this function can handle
-        a 1-D array, that case is trivial.  Generally `observed` is at
-        least 2-D.)
-
-    Returns
-    -------
-    expected : ndarray of float64
-        The expected frequencies, based on the marginal sums of the table.
-        Same shape as `observed`.
-
-    Examples
-    --------
-    >>> observed = np.array([[10, 10, 20],[20, 20, 20]])
-    >>> expected_freq(observed)
-    array([[ 12.,  12.,  16.],
-           [ 18.,  18.,  24.]])
-
-    """
-    # Typically `observed` is an integer array. If `observed` has a large
-    # number of dimensions or holds large values, some of the following
-    # computations may overflow, so we first switch to floating point.
-    observed = np.asarray(observed, dtype=np.float64)
-
-    # Create a list of the marginal sums.
-    margsums = margins(observed)
-
-    # Create the array of expected frequencies.  The shapes of the
-    # marginal sums returned by apply_over_axes() are just what we
-    # need for broadcasting in the following product.
-    d = observed.ndim
-    expected = reduce(np.multiply, margsums) / observed.sum() ** (d - 1)
-    return expected
-
-
-def chi2_contingency(observed, correction=True, lambda_=None):
-    """Chi-square test of independence of variables in a contingency table.
-
-    This function computes the chi-square statistic and p-value for the
-    hypothesis test of independence of the observed frequencies in the
-    contingency table [1]_ `observed`.  The expected frequencies are computed
-    based on the marginal sums under the assumption of independence; see
-    `scipy.stats.contingency.expected_freq`.  The number of degrees of
-    freedom is (expressed using numpy functions and attributes)::
-
-        dof = observed.size - sum(observed.shape) + observed.ndim - 1
-
-
-    Parameters
-    ----------
-    observed : array_like
-        The contingency table. The table contains the observed frequencies
-        (i.e. number of occurrences) in each category.  In the two-dimensional
-        case, the table is often described as an "R x C table".
-    correction : bool, optional
-        If True, *and* the degrees of freedom is 1, apply Yates' correction
-        for continuity.  The effect of the correction is to adjust each
-        observed value by 0.5 towards the corresponding expected value.
-    lambda_ : float or str, optional.
-        By default, the statistic computed in this test is Pearson's
-        chi-squared statistic [2]_.  `lambda_` allows a statistic from the
-        Cressie-Read power divergence family [3]_ to be used instead.  See
-        `power_divergence` for details.
-
-    Returns
-    -------
-    chi2 : float
-        The test statistic.
-    p : float
-        The p-value of the test
-    dof : int
-        Degrees of freedom
-    expected : ndarray, same shape as `observed`
-        The expected frequencies, based on the marginal sums of the table.
-
-    See Also
-    --------
-    contingency.expected_freq
-    fisher_exact
-    chisquare
-    power_divergence
-
-    Notes
-    -----
-    An often quoted guideline for the validity of this calculation is that
-    the test should be used only if the observed and expected frequency in
-    each cell is at least 5.
-
-    This is a test for the independence of different categories of a
-    population. The test is only meaningful when the dimension of
-    `observed` is two or more.  Applying the test to a one-dimensional
-    table will always result in `expected` equal to `observed` and a
-    chi-square statistic equal to 0.
-
-    This function does not handle masked arrays, because the calculation
-    does not make sense with missing values.
-
-    Like stats.chisquare, this function computes a chi-square statistic;
-    the convenience this function provides is to figure out the expected
-    frequencies and degrees of freedom from the given contingency table.
-    If these were already known, and if the Yates' correction was not
-    required, one could use stats.chisquare.  That is, if one calls::
-
-        chi2, p, dof, ex = chi2_contingency(obs, correction=False)
-
-    then the following is true::
-
-        (chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
-                                     ddof=obs.size - 1 - dof)
-
-    The `lambda_` argument was added in version 0.13.0 of scipy.
-
-    References
-    ----------
-    .. [1] "Contingency table", http://en.wikipedia.org/wiki/Contingency_table
-    .. [2] "Pearson's chi-squared test",
-           http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
-    .. [3] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
-           Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
-           pp. 440-464.
-
-    Examples
-    --------
-    A two-way example (2 x 3):
-
-    >>> obs = np.array([[10, 10, 20], [20, 20, 20]])
-    >>> chi2_contingency(obs)
-    (2.7777777777777777,
-     0.24935220877729619,
-     2,
-     array([[ 12.,  12.,  16.],
-            [ 18.,  18.,  24.]]))
-
-    Perform the test using the log-likelihood ratio (i.e. the "G-test")
-    instead of Pearson's chi-squared statistic.
-
-    >>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
-    >>> g, p
-    (2.7688587616781319, 0.25046668010954165)
-
-    A four-way example (2 x 2 x 2 x 2):
-
-    >>> obs = np.array(
-    ...     [[[[12, 17],
-    ...        [11, 16]],
-    ...       [[11, 12],
-    ...        [15, 16]]],
-    ...      [[[23, 15],
-    ...        [30, 22]],
-    ...       [[14, 17],
-    ...        [15, 16]]]])
-    >>> chi2_contingency(obs)
-    (8.7584514426741897,
-     0.64417725029295503,
-     11,
-     array([[[[ 14.15462386,  14.15462386],
-              [ 16.49423111,  16.49423111]],
-             [[ 11.2461395 ,  11.2461395 ],
-              [ 13.10500554,  13.10500554]]],
-            [[[ 19.5591166 ,  19.5591166 ],
-              [ 22.79202844,  22.79202844]],
-             [[ 15.54012004,  15.54012004],
-              [ 18.10873492,  18.10873492]]]]))
-    """
-    observed = np.asarray(observed)
-    if np.any(observed < 0):
-        raise ValueError("All values in `observed` must be nonnegative.")
-    if observed.size == 0:
-        raise ValueError("No data; `observed` has size 0.")
-
-    expected = expected_freq(observed)
-    if np.any(expected == 0):
-        # Include one of the positions where expected is zero in
-        # the exception message.
-        zeropos = list(zip(*np.where(expected == 0)))[0]
-        raise ValueError("The internally computed table of expected "
-                         "frequencies has a zero element at %s." % (zeropos,))
-
-    # The degrees of freedom
-    dof = expected.size - sum(expected.shape) + expected.ndim - 1
-
-    if dof == 0:
-        # Degenerate case; this occurs when `observed` is 1D (or, more
-        # generally, when it has only one nontrivial dimension).  In this
-        # case, we also have observed == expected, so chi2 is 0.
-        chi2 = 0.0
-        p = 1.0
-    else:
-        if dof == 1 and correction:
-            # Adjust `observed` according to Yates' correction for continuity.
-            observed = observed + 0.5 * np.sign(expected - observed)
-
-        chi2, p = power_divergence(observed, expected,
-                                   ddof=observed.size - 1 - dof, axis=None,
-                                   lambda_=lambda_)
-
-    return chi2, p, dof, expected
diff --git a/wafo/stats/distributions.py b/wafo/stats/distributions.py
index ecf8942..c26fd65 100644
--- a/wafo/stats/distributions.py
+++ b/wafo/stats/distributions.py
@@ -22,4 +22,3 @@ __all__ = ['entropy', 'rv_discrete', 'rv_continuous']
 # Add only the distribution names, not the *_gen names.
 __all__ += _continuous_distns._distn_names
 __all__ += _discrete_distns._distn_names
-
diff --git a/wafo/stats/estimation.py b/wafo/stats/estimation.py
index 6ee4f64..3fd5371 100644
--- a/wafo/stats/estimation.py
+++ b/wafo/stats/estimation.py
@@ -11,20 +11,19 @@ from __future__ import division, absolute_import
 import warnings
 
 from wafo.plotbackend import plotbackend
-from wafo.misc import ecross, findcross
-
-
-import numdifftools  # @UnresolvedImport
+from wafo.misc import ecross, findcross, argsreduce
+from wafo.stats._util import check_random_state
+from wafo.stats._constants import _EPS, _XMAX
+from wafo.stats._distn_infrastructure import rv_frozen
+from scipy._lib.six import string_types
+import numdifftools as nd  # @UnresolvedImport
 from scipy import special
 from scipy.linalg import pinv2
 from scipy import optimize
 
-import numpy
 import numpy as np
-from numpy import alltrue, arange, ravel, sum, zeros, log, sqrt, exp
-from numpy import (
-    atleast_1d, any, asarray, nan, pi,  # reshape, #repeat, product, ndarray,
-    isfinite)
+from numpy import (alltrue, arange, ravel, zeros, log, sqrt, exp,
+                   atleast_1d, any, asarray, nan, pi, isfinite)
 from numpy import flatnonzero as nonzero
 
 
@@ -48,97 +47,6 @@ def norm_ppf(q):
     return special.ndtri(q)
 
 
-# Frozen RV class
-class rv_frozen(object):
-
-    ''' Frozen continous or discrete 1D Random Variable object (RV)
-
-    Methods
-    -------
-    rvs(size=1)
-        Random variates.
-    pdf(x)
-        Probability density function.
-    cdf(x)
-        Cumulative density function.
-    sf(x)
-        Survival function (1-cdf --- sometimes more accurate).
-    ppf(q)
-        Percent point function (inverse of cdf --- percentiles).
-    isf(q)
-        Inverse survival function (inverse of sf).
-    stats(moments='mv')
-        Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
-    entropy()
-        (Differential) entropy of the RV.
-    '''
-
-    def __init__(self, dist, *args, **kwds):
-        self.dist = dist
-        args, loc, scale = dist._parse_args(*args, **kwds)
-        if len(args) == dist.numargs - 2:  #
-            # if isinstance(dist, rv_continuous):
-            self.par = args + (loc, scale)
-        else:  # rv_discrete
-            self.par = args + (loc,)
-
-    def pdf(self, x):
-        ''' Probability density function at x of the given RV.'''
-        return self.dist.pdf(x, *self.par)
-
-    def cdf(self, x):
-        '''Cumulative distribution function at x of the given RV.'''
-        return self.dist.cdf(x, *self.par)
-
-    def ppf(self, q):
-        '''Percent point function (inverse of cdf) at q of the given RV.'''
-        return self.dist.ppf(q, *self.par)
-
-    def isf(self, q):
-        '''Inverse survival function at q of the given RV.'''
-        return self.dist.isf(q, *self.par)
-
-    def rvs(self, size=None):
-        '''Random variates of given type.'''
-        kwds = dict(size=size)
-        return self.dist.rvs(*self.par, **kwds)
-
-    def sf(self, x):
-        '''Survival function (1-cdf) at x of the given RV.'''
-        return self.dist.sf(x, *self.par)
-
-    def stats(self, moments='mv'):
-        ''' Some statistics of the given RV'''
-        kwds = dict(moments=moments)
-        return self.dist.stats(*self.par, **kwds)
-
-    def median(self):
-        return self.dist.median(*self.par)
-
-    def mean(self):
-        return self.dist.mean(*self.par)
-
-    def var(self):
-        return self.dist.var(*self.par)
-
-    def std(self):
-        return self.dist.std(*self.par)
-
-    def moment(self, n):
-        par1 = self.par[:self.dist.numargs]
-        return self.dist.moment(n, *par1)
-
-    def entropy(self):
-        return self.dist.entropy(*self.par)
-
-    def pmf(self, k):
-        '''Probability mass function at k of the given RV'''
-        return self.dist.pmf(k, *self.par)
-
-    def interval(self, alpha):
-        return self.dist.interval(alpha, *self.par)
-
-
 # internal class to profile parameters of a given distribution
 class Profile(object):
 
@@ -230,7 +138,7 @@ class Profile(object):
     def __init__(self, fit_dist, **kwds):
 
         try:
-            i0 = (1 - numpy.isfinite(fit_dist.par_fix)).argmax()
+            i0 = (1 - np.isfinite(fit_dist.par_fix)).argmax()
         except:
             i0 = 0
         self.fit_dist = fit_dist
@@ -259,7 +167,7 @@ class Profile(object):
         if fit_dist.par_fix is None:
             isnotfixed = np.ones(fit_dist.par.shape, dtype=bool)
         else:
-            isnotfixed = 1 - numpy.isfinite(fit_dist.par_fix)
+            isnotfixed = 1 - np.isfinite(fit_dist.par_fix)
 
         self.i_notfixed = nonzero(isnotfixed)
 
@@ -341,7 +249,7 @@ class Profile(object):
     def _set_profile(self, phatfree0, p_opt):
         pvec = self._get_pvec(phatfree0, p_opt)
 
-        self.data = numpy.ones_like(pvec) * nan
+        self.data = np.ones_like(pvec) * nan
         k1 = (pvec >= p_opt).argmax()
 
         for size, step in ((-1, -1), (pvec.size, 1)):
@@ -358,14 +266,14 @@ class Profile(object):
 
     def _prettify_profile(self):
         pvec = self.args
-        ix = nonzero(numpy.isfinite(pvec))
+        ix = nonzero(np.isfinite(pvec))
         self.data = self.data[ix]
         self.args = pvec[ix]
-        cond = self.data == -numpy.inf
+        cond = self.data == -np.inf
         if any(cond):
             ind, = cond.nonzero()
             self.data.put(ind, floatinfo.min / 2.0)
-            ind1 = numpy.where(ind == 0, ind, ind - 1)
+            ind1 = np.where(ind == 0, ind, ind - 1)
             cl = self.alpha_cross_level - self.alpha_Lrange / 2.0
             t0 = ecross(self.args, self.data, ind1, cl)
             self.data.put(ind, cl)
@@ -379,29 +287,29 @@ class Profile(object):
             phatv = self._par
 
             if self.profile_x:
-                gradfun = numdifftools.Gradient(self._myinvfun)
+                gradfun = nd.Gradient(self._myinvfun)
             else:
-                gradfun = numdifftools.Gradient(self._myprbfun)
+                gradfun = nd.Gradient(self._myprbfun)
             drl = gradfun(phatv[self.i_notfixed])
 
             pcov = self.fit_dist.par_cov[i_notfixed, :][:, i_notfixed]
-            pvar = sum(numpy.dot(drl, pcov) * drl)
+            pvar = np.sum(np.dot(drl, pcov) * drl)
         return pvar
 
     def _get_pvec(self, phatfree0, p_opt):
         ''' return proper interval for the variable to profile
         '''
 
-        linspace = numpy.linspace
+        linspace = np.linspace
         if self.pmin is None or self.pmax is None:
 
             pvar = self._get_variance()
 
-            if pvar <= 1e-5 or numpy.isnan(pvar):
+            if pvar <= 1e-5 or np.isnan(pvar):
                 pvar = max(abs(p_opt) * 0.5, 0.5)
 
             p_crit = (-norm_ppf(self.alpha / 2.0) *
-                      sqrt(numpy.ravel(pvar)) * 1.5)
+                      sqrt(np.ravel(pvar)) * 1.5)
             if self.pmin is None:
                 self.pmin = self._search_pmin(phatfree0,
                                               p_opt - 5.0 * p_crit, p_opt)
@@ -412,13 +320,13 @@ class Profile(object):
                                               p_opt + 5.0 * p_crit, p_opt)
             p_crit_up = (self.pmax - p_opt) / 5
 
-            N4 = numpy.floor(self.N / 4.0)
+            N4 = np.floor(self.N / 4.0)
 
             pvec1 = linspace(self.pmin, p_opt - p_crit_low, N4 + 1)
             pvec2 = linspace(
                 p_opt - p_crit_low, p_opt + p_crit_up, self.N - 2 * N4)
             pvec3 = linspace(p_opt + p_crit_up, self.pmax, N4 + 1)
-            pvec = numpy.unique(numpy.hstack((pvec1, p_opt, pvec2, pvec3)))
+            pvec = np.unique(np.hstack((pvec1, p_opt, pvec2, pvec3)))
 
         else:
             pvec = linspace(self.pmin, self.pmax, self.N)
@@ -701,12 +609,12 @@ class FitDistribution(rv_frozen):
         m_variables = ['method', 'alpha', 'par_fix', 'search', 'copydata']
         m_defaults = ['ml', 0.05, None, True, True]
         for (name, val) in zip(m_variables, m_defaults):
-            setattr(self, name, kwds.get(name, val))
+            setattr(self, name, kwds.pop(name, val))
 
         if self.method.lower()[:].startswith('mps'):
-            self._fitfun = dist.nlogps
+            self._fitfun = self._nlogps
         else:
-            self._fitfun = dist.nnlf
+            self._fitfun = self._nnlf
 
         self.data = ravel(data)
         if self.copydata:
@@ -714,6 +622,7 @@ class FitDistribution(rv_frozen):
         self.data.sort()
 
         par, fixedn = self._fit(*args, **kwds)
+        # super(FitDistribution, self).__init__(dist, *par)
         self.par = arr(par)
         somefixed = len(fixedn) > 0
         if somefixed:
@@ -729,13 +638,13 @@ class FitDistribution(rv_frozen):
         self._compute_cov()
 
         # Set confidence interval for parameters
-        pvar = numpy.diag(self.par_cov)
+        pvar = np.diag(self.par_cov)
         zcrit = -norm_ppf(self.alpha / 2.0)
         self.par_lower = self.par - zcrit * sqrt(pvar)
         self.par_upper = self.par + zcrit * sqrt(pvar)
 
-        self.LLmax = -dist.nnlf(self.par, self.data)
-        self.LPSmax = -dist.nlogps(self.par, self.data)
+        self.LLmax = -self._nnlf(self.par, self.data)
+        self.LPSmax = -self._nlogps(self.par, self.data)
         self.pvalue = self._pvalue(self.par, self.data, unknown_numpar=numpar)
 
     def __repr__(self):
@@ -747,17 +656,30 @@ class FitDistribution(rv_frozen):
         return ''.join(t)
 
     def _reduce_func(self, args, kwds):
+        # First of all, convert fshapes params to fnum: eg for stats.beta,
+        # shapes='a, b'. To fix `a`, can specify either `f1` or `fa`.
+        # Convert the latter into the former.
+        if self.shapes:
+            shapes = self.shapes.replace(',', ' ').split()
+            for j, s in enumerate(shapes):
+                val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None)
+                if val is not None:
+                    key = 'f%d' % j
+                    if key in kwds:
+                        raise ValueError("Duplicate entry for %s." % key)
+                    else:
+                        kwds[key] = val
         args = list(args)
         Nargs = len(args)
         fixedn = []
-        index = range(Nargs)
         names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
-        x0 = args[:]
-        for n, key in zip(index[::-1], names[::-1]):
+        x0 = []
+        for n, key in enumerate(names):
             if key in kwds:
                 fixedn.append(n)
-                args[n] = kwds[key]
-                del x0[n]
+                args[n] = kwds.pop(key)
+            else:
+                x0.append(args[n])
 
         fitfun = self._fitfun
 
@@ -765,7 +687,7 @@ class FitDistribution(rv_frozen):
             func = fitfun
             restore = None
         else:
-            if len(fixedn) == len(index):
+            if len(fixedn) == Nargs:
                 raise ValueError("All parameters fixed. " +
                                  "There is nothing to optimize.")
 
@@ -786,6 +708,134 @@ class FitDistribution(rv_frozen):
 
         return x0, func, restore, args, fixedn
 
+    @staticmethod
+    def _hessian(nnlf, theta, data, eps=None):
+        ''' approximate hessian of nnlf where theta are the parameters
+        (including loc and scale)
+        '''
+        if eps is None:
+            eps = (_EPS) ** 0.4
+        num_par = len(theta)
+        # pab 07.01.2001: Always choose the stepsize h so that
+        # it is an exactly representable number.
+        # This is important when calculating numerical derivatives and is
+        #  accomplished by the following.
+        delta = (eps + 2.0) - 2.0
+        delta2 = delta ** 2.0
+        # Approximate 1/(nE( (d L(x|theta)/dtheta)^2)) with
+        #              1/(d^2 L(theta|x)/dtheta^2)
+        # using central differences
+
+        LL = nnlf(theta, data)
+        H = zeros((num_par, num_par))   # Hessian matrix
+        theta = tuple(theta)
+        for ix in xrange(num_par):
+            sparam = list(theta)
+            sparam[ix] = theta[ix] + delta
+            fp = nnlf(sparam, data)
+
+            sparam[ix] = theta[ix] - delta
+            fm = nnlf(sparam, data)
+
+            H[ix, ix] = (fp - 2 * LL + fm) / delta2
+            for iy in range(ix + 1, num_par):
+                sparam[ix] = theta[ix] + delta
+                sparam[iy] = theta[iy] + delta
+                fpp = nnlf(sparam, data)
+
+                sparam[iy] = theta[iy] - delta
+                fpm = nnlf(sparam, data)
+
+                sparam[ix] = theta[ix] - delta
+                fmm = nnlf(sparam, data)
+
+                sparam[iy] = theta[iy] + delta
+                fmp = nnlf(sparam, data)
+
+                H[ix, iy] = ((fpp + fmm) - (fmp + fpm)) / (4. * delta2)
+                H[iy, ix] = H[ix, iy]
+                sparam[iy] = theta[iy]
+        return -H
+
+    def _nnlf(self, theta, x):
+        return self.dist._penalized_nnlf(theta, x)
+
+    def _nlogps(self, theta, x):
+        """ Moran's negative log Product Spacings statistic
+
+            where theta are the parameters (including loc and scale)
+
+            Note the data in x must be sorted
+
+        References
+        -----------
+
+        R. C. H. Cheng; N. A. K. Amin (1983)
+        "Estimating Parameters in Continuous Univariate Distributions with a
+        Shifted Origin.",
+        Journal of the Royal Statistical Society. Series B (Methodological),
+        Vol. 45, No. 3. (1983), pp. 394-403.
+
+        R. C. H. Cheng; M. A. Stephens (1989)
+        "A Goodness-Of-Fit Test Using Moran's Statistic with Estimated
+        Parameters", Biometrika, 76, 2, pp 385-392
+
+        Wong, T.S.T. and Li, W.K. (2006)
+        "A note on the estimation of extreme value distributions using maximum
+        product of spacings.",
+        IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
+        """
+        n = 2 if self._rv_continous else 1
+        try:
+            loc = theta[-n]
+            scale = theta[-1]
+            args = tuple(theta[:-n])
+        except IndexError:
+            raise ValueError("Not enough input arguments.")
+        if not self._rv_continous:
+            scale = 1
+        if not self._argcheck(*args) or scale <= 0:
+            return np.inf
+        dist = self.dist
+        x = asarray((x - loc) / scale)
+        cond0 = (x <= dist.a) | (dist.b <= x)
+        Nbad = np.sum(cond0)
+        if Nbad > 0:
+            x = argsreduce(~cond0, x)[0]
+
+        lowertail = True
+        if lowertail:
+            prb = np.hstack((0.0, dist.cdf(x, *args), 1.0))
+            dprb = np.diff(prb)
+        else:
+            prb = np.hstack((1.0, dist.sf(x, *args), 0.0))
+            dprb = -np.diff(prb)
+
+        logD = log(dprb)
+        dx = np.diff(x, axis=0)
+        tie = (dx == 0)
+        if any(tie):
+            # TODO : implement this method for treating ties in data:
+            # Assume measuring error is delta. Then compute
+            # yL = F(xi-delta,theta)
+            # yU = F(xi+delta,theta)
+            # and replace
+            # logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
+
+            # The following is OK when only minimization of T is wanted
+            i_tie, = np.nonzero(tie)
+            tiedata = x[i_tie]
+            logD[i_tie + 1] = log(dist._pdf(tiedata, *args)) - log(scale)
+
+        finiteD = np.isfinite(logD)
+        nonfiniteD = 1 - finiteD
+        Nbad += np.sum(nonfiniteD, axis=0)
+        if Nbad > 0:
+            T = -np.sum(logD[finiteD], axis=0) + 100.0 * log(_XMAX) * Nbad
+        else:
+            T = -np.sum(logD, axis=0)
+        return T
+
     def _fit(self, *args, **kwds):
 
         dist = self.dist
@@ -799,15 +849,14 @@ class FitDistribution(rv_frozen):
             # get distribution specific starting locations
             start = dist._fitstart(data)
             args += start[Narg:-2]
-        loc = kwds.get('loc', start[-2])
-        scale = kwds.get('scale', start[-1])
+        loc = kwds.pop('loc', start[-2])
+        scale = kwds.pop('scale', start[-1])
         args += (loc, scale)
         x0, func, restore, args, fixedn = self._reduce_func(args, kwds)
         if self.search:
-            optimizer = kwds.get('optimizer', optimize.fmin)
+            optimizer = kwds.pop('optimizer', optimize.fmin)
             # convert string to function in scipy.optimize
-            if (not callable(optimizer) and
-                    isinstance(optimizer, (str, unicode))):
+            if not callable(optimizer) and isinstance(optimizer, string_types):
                 if not optimizer.startswith('fmin_'):
                     optimizer = "fmin_" + optimizer
                 if optimizer == 'fmin_':
@@ -816,7 +865,9 @@ class FitDistribution(rv_frozen):
                     optimizer = getattr(optimize, optimizer)
                 except AttributeError:
                     raise ValueError("%s is not a valid optimizer" % optimizer)
-
+            # by now kwds must be empty, since everybody took what they needed
+            if kwds:
+                raise TypeError("Unknown arguments: %s." % kwds)
             vals = optimizer(func, x0, args=(ravel(data),), disp=0)
             vals = tuple(vals)
         else:
@@ -829,8 +880,7 @@ class FitDistribution(rv_frozen):
         '''Compute covariance
         '''
         somefixed = (self.par_fix is not None) and any(isfinite(self.par_fix))
-        # H1 = numpy.asmatrix(self.dist.hessian_nnlf(self.par, self.data))
-        H = numpy.asmatrix(self.dist.hessian_nlogps(self.par, self.data))
+        H = np.asmatrix(self._hessian(self._fitfun, self.par, self.data))
         self.H = H
         try:
             if somefixed:
@@ -1034,7 +1084,7 @@ class FitDistribution(rv_frozen):
         # yy[0,0] = 0.0 # pdf
         yy[:, 0] = 0.0  # histogram
         yy.shape = (-1,)
-        yy = numpy.hstack((yy, 0.0))
+        yy = np.hstack((yy, 0.0))
         return xx, yy
 
     def _get_empirical_pdf(self):
@@ -1110,7 +1160,7 @@ class FitDistribution(rv_frozen):
 
             Note: the data in x must be sorted
         '''
-        dx = numpy.diff(x, axis=0)
+        dx = np.diff(x, axis=0)
         tie = (dx == 0)
         if any(tie):
             warnings.warn(
diff --git a/wafo/stats/kde.py b/wafo/stats/kde.py
deleted file mode 100644
index 85ddbf1..0000000
--- a/wafo/stats/kde.py
+++ /dev/null
@@ -1,541 +0,0 @@
-#-------------------------------------------------------------------------------
-#
-#  Define classes for (uni/multi)-variate kernel density estimation.
-#
-#  Currently, only Gaussian kernels are implemented.
-#
-#  Written by: Robert Kern
-#
-#  Date: 2004-08-09
-#
-#  Modified: 2005-02-10 by Robert Kern.
-#              Contributed to Scipy
-#            2005-10-07 by Robert Kern.
-#              Some fixes to match the new scipy_core
-#
-#  Copyright 2004-2005 by Enthought, Inc.
-#
-#-------------------------------------------------------------------------------
-
-from __future__ import division, print_function, absolute_import
-
-# Standard library imports.
-import warnings
-
-# Scipy imports.
-from scipy._lib.six import callable, string_types
-from scipy import linalg, special
-
-from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \
-     ravel, power, atleast_1d, squeeze, sum, transpose
-import numpy as np
-from numpy.random import randint, multivariate_normal
-
-# Local imports.
-from . import mvn
-
-
-__all__ = ['gaussian_kde']
-
-
-class gaussian_kde(object):
-    """Representation of a kernel-density estimate using Gaussian kernels.
-
-    Kernel density estimation is a way to estimate the probability density
-    function (PDF) of a random variable in a non-parametric way.
-    `gaussian_kde` works for both uni-variate and multi-variate data.   It
-    includes automatic bandwidth determination.  The estimation works best for
-    a unimodal distribution; bimodal or multi-modal distributions tend to be
-    oversmoothed.
-
-    Parameters
-    ----------
-    dataset : array_like
-        Datapoints to estimate from. In case of univariate data this is a 1-D
-        array, otherwise a 2-D array with shape (# of dims, # of data).
-    bw_method : str, scalar or callable, optional
-        The method used to calculate the estimator bandwidth.  This can be
-        'scott', 'silverman', a scalar constant or a callable.  If a scalar,
-        this will be used directly as `kde.factor`.  If a callable, it should
-        take a `gaussian_kde` instance as only parameter and return a scalar.
-        If None (default), 'scott' is used.  See Notes for more details.
-
-    Attributes
-    ----------
-    dataset : ndarray
-        The dataset with which `gaussian_kde` was initialized.
-    d : int
-        Number of dimensions.
-    n : int
-        Number of datapoints.
-    factor : float
-        The bandwidth factor, obtained from `kde.covariance_factor`, with which
-        the covariance matrix is multiplied.
-    covariance : ndarray
-        The covariance matrix of `dataset`, scaled by the calculated bandwidth
-        (`kde.factor`).
-    inv_cov : ndarray
-        The inverse of `covariance`.
-
-    Methods
-    -------
-    kde.evaluate(points) : ndarray
-        Evaluate the estimated pdf on a provided set of points.
-    kde(points) : ndarray
-        Same as kde.evaluate(points)
-    kde.integrate_gaussian(mean, cov) : float
-        Multiply pdf with a specified Gaussian and integrate over the whole
-        domain.
-    kde.integrate_box_1d(low, high) : float
-        Integrate pdf (1D only) between two bounds.
-    kde.integrate_box(low_bounds, high_bounds) : float
-        Integrate pdf over a rectangular space between low_bounds and
-        high_bounds.
-    kde.integrate_kde(other_kde) : float
-        Integrate two kernel density estimates multiplied together.
-    kde.pdf(points) : ndarray
-        Alias for ``kde.evaluate(points)``.
-    kde.logpdf(points) : ndarray
-        Equivalent to ``np.log(kde.evaluate(points))``.
-    kde.resample(size=None) : ndarray
-        Randomly sample a dataset from the estimated pdf.
-    kde.set_bandwidth(bw_method='scott') : None
-        Computes the bandwidth, i.e. the coefficient that multiplies the data
-        covariance matrix to obtain the kernel covariance matrix.
-        .. versionadded:: 0.11.0
-    kde.covariance_factor : float
-        Computes the coefficient (`kde.factor`) that multiplies the data
-        covariance matrix to obtain the kernel covariance matrix.
-        The default is `scotts_factor`.  A subclass can overwrite this method
-        to provide a different method, or set it through a call to
-        `kde.set_bandwidth`.
-
-    Notes
-    -----
-    Bandwidth selection strongly influences the estimate obtained from the KDE
-    (much more so than the actual shape of the kernel).  Bandwidth selection
-    can be done by a "rule of thumb", by cross-validation, by "plug-in
-    methods" or by other means; see [3]_, [4]_ for reviews.  `gaussian_kde`
-    uses a rule of thumb, the default is Scott's Rule.
-
-    Scott's Rule [1]_, implemented as `scotts_factor`, is::
-
-        n**(-1./(d+4)),
-
-    with ``n`` the number of data points and ``d`` the number of dimensions.
-    Silverman's Rule [2]_, implemented as `silverman_factor`, is::
-
-        (n * (d + 2) / 4.)**(-1. / (d + 4)).
-
-    Good general descriptions of kernel density estimation can be found in [1]_
-    and [2]_, the mathematics for this multi-dimensional implementation can be
-    found in [1]_.
-
-    References
-    ----------
-    .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
-           Visualization", John Wiley & Sons, New York, Chicester, 1992.
-    .. [2] B.W. Silverman, "Density Estimation for Statistics and Data
-           Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
-           Chapman and Hall, London, 1986.
-    .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
-           Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
-    .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
-           conditional density estimation", Computational Statistics & Data
-           Analysis, Vol. 36, pp. 279-298, 2001.
-
-    Examples
-    --------
-    Generate some random two-dimensional data:
-
-    >>> from scipy import stats
-    >>> def measure(n):
-    >>>     "Measurement model, return two coupled measurements."
-    >>>     m1 = np.random.normal(size=n)
-    >>>     m2 = np.random.normal(scale=0.5, size=n)
-    >>>     return m1+m2, m1-m2
-
-    >>> m1, m2 = measure(2000)
-    >>> xmin = m1.min()
-    >>> xmax = m1.max()
-    >>> ymin = m2.min()
-    >>> ymax = m2.max()
-
-    Perform a kernel density estimate on the data:
-
-    >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
-    >>> positions = np.vstack([X.ravel(), Y.ravel()])
-    >>> values = np.vstack([m1, m2])
-    >>> kernel = stats.gaussian_kde(values)
-    >>> Z = np.reshape(kernel(positions).T, X.shape)
-
-    Plot the results:
-
-    >>> import matplotlib.pyplot as plt
-    >>> fig = plt.figure()
-    >>> ax = fig.add_subplot(111)
-    >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
-    ...           extent=[xmin, xmax, ymin, ymax])
-    >>> ax.plot(m1, m2, 'k.', markersize=2)
-    >>> ax.set_xlim([xmin, xmax])
-    >>> ax.set_ylim([ymin, ymax])
-    >>> plt.show()
-
-    """
-    def __init__(self, dataset, bw_method=None):
-        self.dataset = atleast_2d(dataset)
-        if not self.dataset.size > 1:
-            raise ValueError("`dataset` input should have multiple elements.")
-
-        self.d, self.n = self.dataset.shape
-        self.set_bandwidth(bw_method=bw_method)
-
-    def evaluate(self, points):
-        """Evaluate the estimated pdf on a set of points.
-
-        Parameters
-        ----------
-        points : (# of dimensions, # of points)-array
-            Alternatively, a (# of dimensions,) vector can be passed in and
-            treated as a single point.
-
-        Returns
-        -------
-        values : (# of points,)-array
-            The values at each point.
-
-        Raises
-        ------
-        ValueError : if the dimensionality of the input points is different than
-                     the dimensionality of the KDE.
-
-        """
-        points = atleast_2d(points)
-
-        d, m = points.shape
-        if d != self.d:
-            if d == 1 and m == self.d:
-                # points was passed in as a row vector
-                points = reshape(points, (self.d, 1))
-                m = 1
-            else:
-                msg = "points have dimension %s, dataset has dimension %s" % (d,
-                    self.d)
-                raise ValueError(msg)
-
-        result = zeros((m,), dtype=np.float)
-
-        if m >= self.n:
-            # there are more points than data, so loop over data
-            for i in range(self.n):
-                diff = self.dataset[:, i, newaxis] - points
-                tdiff = dot(self.inv_cov, diff)
-                energy = sum(diff*tdiff,axis=0) / 2.0
-                result = result + exp(-energy)
-        else:
-            # loop over points
-            for i in range(m):
-                diff = self.dataset - points[:, i, newaxis]
-                tdiff = dot(self.inv_cov, diff)
-                energy = sum(diff * tdiff, axis=0) / 2.0
-                result[i] = sum(exp(-energy), axis=0)
-
-        result = result / self._norm_factor
-
-        return result
-
-    __call__ = evaluate
-
-    def integrate_gaussian(self, mean, cov):
-        """
-        Multiply estimated density by a multivariate Gaussian and integrate
-        over the whole space.
-
-        Parameters
-        ----------
-        mean : aray_like
-            A 1-D array, specifying the mean of the Gaussian.
-        cov : array_like
-            A 2-D array, specifying the covariance matrix of the Gaussian.
-
-        Returns
-        -------
-        result : scalar
-            The value of the integral.
-
-        Raises
-        ------
-        ValueError :
-            If the mean or covariance of the input Gaussian differs from
-            the KDE's dimensionality.
-
-        """
-        mean = atleast_1d(squeeze(mean))
-        cov = atleast_2d(cov)
-
-        if mean.shape != (self.d,):
-            raise ValueError("mean does not have dimension %s" % self.d)
-        if cov.shape != (self.d, self.d):
-            raise ValueError("covariance does not have dimension %s" % self.d)
-
-        # make mean a column vector
-        mean = mean[:, newaxis]
-
-        sum_cov = self.covariance + cov
-
-        diff = self.dataset - mean
-        tdiff = dot(linalg.inv(sum_cov), diff)
-
-        energies = sum(diff * tdiff, axis=0) / 2.0
-        result = sum(exp(-energies), axis=0) / sqrt(linalg.det(2 * pi *
-                                                        sum_cov)) / self.n
-
-        return result
-
-    def integrate_box_1d(self, low, high):
-        """
-        Computes the integral of a 1D pdf between two bounds.
-
-        Parameters
-        ----------
-        low : scalar
-            Lower bound of integration.
-        high : scalar
-            Upper bound of integration.
-
-        Returns
-        -------
-        value : scalar
-            The result of the integral.
-
-        Raises
-        ------
-        ValueError
-            If the KDE is over more than one dimension.
-
-        """
-        if self.d != 1:
-            raise ValueError("integrate_box_1d() only handles 1D pdfs")
-
-        stdev = ravel(sqrt(self.covariance))[0]
-
-        normalized_low = ravel((low - self.dataset) / stdev)
-        normalized_high = ravel((high - self.dataset) / stdev)
-
-        value = np.mean(special.ndtr(normalized_high) -
-                        special.ndtr(normalized_low))
-        return value
-
-    def integrate_box(self, low_bounds, high_bounds, maxpts=None):
-        """Computes the integral of a pdf over a rectangular interval.
-
-        Parameters
-        ----------
-        low_bounds : array_like
-            A 1-D array containing the lower bounds of integration.
-        high_bounds : array_like
-            A 1-D array containing the upper bounds of integration.
-        maxpts : int, optional
-            The maximum number of points to use for integration.
-
-        Returns
-        -------
-        value : scalar
-            The result of the integral.
-
-        """
-        if maxpts is not None:
-            extra_kwds = {'maxpts': maxpts}
-        else:
-            extra_kwds = {}
-
-        value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset,
-                                  self.covariance, **extra_kwds)
-        if inform:
-            msg = ('An integral in mvn.mvnun requires more points than %s' %
-                   (self.d * 1000))
-            warnings.warn(msg)
-
-        return value
-
-    def integrate_kde(self, other):
-        """
-        Computes the integral of the product of this  kernel density estimate
-        with another.
-
-        Parameters
-        ----------
-        other : gaussian_kde instance
-            The other kde.
-
-        Returns
-        -------
-        value : scalar
-            The result of the integral.
-
-        Raises
-        ------
-        ValueError
-            If the KDEs have different dimensionality.
-
-        """
-        if other.d != self.d:
-            raise ValueError("KDEs are not the same dimensionality")
-
-        # we want to iterate over the smallest number of points
-        if other.n < self.n:
-            small = other
-            large = self
-        else:
-            small = self
-            large = other
-
-        sum_cov = small.covariance + large.covariance
-        sum_cov_chol = linalg.cho_factor(sum_cov)
-        result = 0.0
-        for i in range(small.n):
-            mean = small.dataset[:, i, newaxis]
-            diff = large.dataset - mean
-            tdiff = linalg.cho_solve(sum_cov_chol, diff)
-
-            energies = sum(diff * tdiff, axis=0) / 2.0
-            result += sum(exp(-energies), axis=0)
-
-        result /= sqrt(linalg.det(2 * pi * sum_cov)) * large.n * small.n
-
-        return result
-
-    def resample(self, size=None):
-        """
-        Randomly sample a dataset from the estimated pdf.
-
-        Parameters
-        ----------
-        size : int, optional
-            The number of samples to draw.  If not provided, then the size is
-            the same as the underlying dataset.
-
-        Returns
-        -------
-        resample : (self.d, `size`) ndarray
-            The sampled dataset.
-
-        """
-        if size is None:
-            size = self.n
-
-        norm = transpose(multivariate_normal(zeros((self.d,), float),
-                         self.covariance, size=size))
-        indices = randint(0, self.n, size=size)
-        means = self.dataset[:, indices]
-
-        return means + norm
-
-    def scotts_factor(self):
-        return power(self.n, -1./(self.d+4))
-
-    def silverman_factor(self):
-        return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4))
-
-    #  Default method to calculate bandwidth, can be overwritten by subclass
-    covariance_factor = scotts_factor
-
-    def set_bandwidth(self, bw_method=None):
-        """Compute the estimator bandwidth with given method.
-
-        The new bandwidth calculated after a call to `set_bandwidth` is used
-        for subsequent evaluations of the estimated density.
-
-        Parameters
-        ----------
-        bw_method : str, scalar or callable, optional
-            The method used to calculate the estimator bandwidth.  This can be
-            'scott', 'silverman', a scalar constant or a callable.  If a
-            scalar, this will be used directly as `kde.factor`.  If a callable,
-            it should take a `gaussian_kde` instance as only parameter and
-            return a scalar.  If None (default), nothing happens; the current
-            `kde.covariance_factor` method is kept.
-
-        Notes
-        -----
-        .. versionadded:: 0.11
-
-        Examples
-        --------
-        >>> x1 = np.array([-7, -5, 1, 4, 5.])
-        >>> kde = stats.gaussian_kde(x1)
-        >>> xs = np.linspace(-10, 10, num=50)
-        >>> y1 = kde(xs)
-        >>> kde.set_bandwidth(bw_method='silverman')
-        >>> y2 = kde(xs)
-        >>> kde.set_bandwidth(bw_method=kde.factor / 3.)
-        >>> y3 = kde(xs)
-
-        >>> fig = plt.figure()
-        >>> ax = fig.add_subplot(111)
-        >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
-        ...         label='Data points (rescaled)')
-        >>> ax.plot(xs, y1, label='Scott (default)')
-        >>> ax.plot(xs, y2, label='Silverman')
-        >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
-        >>> ax.legend()
-        >>> plt.show()
-
-        """
-        if bw_method is None:
-            pass
-        elif bw_method == 'scott':
-            self.covariance_factor = self.scotts_factor
-        elif bw_method == 'silverman':
-            self.covariance_factor = self.silverman_factor
-        elif np.isscalar(bw_method) and not isinstance(bw_method, string_types):
-            self._bw_method = 'use constant'
-            self.covariance_factor = lambda: bw_method
-        elif callable(bw_method):
-            self._bw_method = bw_method
-            self.covariance_factor = lambda: self._bw_method(self)
-        else:
-            msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
-                  "or a callable."
-            raise ValueError(msg)
-
-        self._compute_covariance()
-
-    def _compute_covariance(self):
-        """Computes the covariance matrix for each Gaussian kernel using
-        covariance_factor().
-        """
-        self.factor = self.covariance_factor()
-        # Cache covariance and inverse covariance of the data
-        if not hasattr(self, '_data_inv_cov'):
-            self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1,
-                                               bias=False))
-            self._data_inv_cov = linalg.inv(self._data_covariance)
-
-        self.covariance = self._data_covariance * self.factor**2
-        self.inv_cov = self._data_inv_cov / self.factor**2
-        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n
-
-    def pdf(self, x):
-        """
-        Evaluate the estimated pdf on a provided set of points.
-
-        Notes
-        -----
-        This is an alias for `gaussian_kde.evaluate`.  See the ``evaluate``
-        docstring for more details.
-
-        """
-        return self.evaluate(x)
-
-    def logpdf(self, x):
-        """
-        Evaluate the log of the estimated pdf on a provided set of points.
-
-        Notes
-        -----
-        See `gaussian_kde.evaluate` for more details; this method simply
-        returns ``np.log(gaussian_kde.evaluate(x))``.
-
-        """
-        return np.log(self.evaluate(x))
diff --git a/wafo/stats/kde_example.py b/wafo/stats/kde_example.py
deleted file mode 100644
index 0e9139c..0000000
--- a/wafo/stats/kde_example.py
+++ /dev/null
@@ -1,15 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Tue Dec 06 16:02:47 2011
-
-@author: pab
-"""
-import numpy as np
-import wafo.kdetools as wk
-n = 100
-x = np.sort(5*np.random.rand(1,n)-2.5, axis=-1).ravel()
-y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
-
-kreg = wk.KRegression(x,y)
-f = kreg(output='plotobj', title='Kernel regression', plotflag=1)
-f.plot()
\ No newline at end of file
diff --git a/wafo/stats/misc.py b/wafo/stats/misc.py
deleted file mode 100644
index 0cb9108..0000000
--- a/wafo/stats/misc.py
+++ /dev/null
@@ -1,13 +0,0 @@
-from numpy import asarray, ndarray, ones, nan #, reshape, repeat,  product
-
-def valarray(shape, value=nan, typecode=None):
-    """Return an array of all value.
-    """
-    #out = reshape(repeat([value],product(shape,axis=0),axis=0),shape)
-    out = ones(shape, dtype=bool) * value
-    if typecode is not None:
-        out = out.astype(typecode)
-    if not isinstance(out, ndarray):
-        out = asarray(out)
-    return out
-
diff --git a/wafo/stats/morestats.py b/wafo/stats/morestats.py
deleted file mode 100644
index f5521a5..0000000
--- a/wafo/stats/morestats.py
+++ /dev/null
@@ -1,2377 +0,0 @@
-# Author:  Travis Oliphant, 2002
-#
-# Further updates and enhancements by many SciPy developers.
-#
-from __future__ import division, print_function, absolute_import
-
-import math
-import warnings
-
-import numpy as np
-from numpy import (isscalar, r_, log, sum, around, unique, asarray,
-     zeros, arange, sort, amin, amax, any, atleast_1d, sqrt, ceil,
-     floor, array, poly1d, compress, not_equal, pi, exp, ravel, angle)
-from numpy.testing.decorators import setastest
-
-from scipy._lib.six import string_types
-from ._numpy_compat import count_nonzero
-from scipy import optimize
-from scipy import special
-from . import statlib
-from . import stats
-from .stats import find_repeats
-from .contingency import chi2_contingency
-from . import distributions
-from ._distn_infrastructure import rv_generic
-
-
-__all__ = ['mvsdist',
-           'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot',
-           'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot',
-           'shapiro', 'anderson', 'ansari', 'bartlett', 'levene', 'binom_test',
-           'fligner', 'mood', 'wilcoxon', 'median_test',
-           'pdf_fromgamma', 'circmean', 'circvar', 'circstd', 'anderson_ksamp'
-           ]
-
-
-def bayes_mvs(data, alpha=0.90):
-    """
-    Bayesian confidence intervals for the mean, var, and std.
-
-    Parameters
-    ----------
-    data : array_like
-        Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`.
-        Requires 2 or more data points.
-    alpha : float, optional
-        Probability that the returned confidence interval contains
-        the true parameter.
-
-    Returns
-    -------
-    mean_cntr, var_cntr, std_cntr : tuple
-        The three results are for the mean, variance and standard deviation,
-        respectively.  Each result is a tuple of the form::
-
-            (center, (lower, upper))
-
-        with `center` the mean of the conditional pdf of the value given the
-        data, and `(lower, upper)` a confidence interval, centered on the
-        median, containing the estimate to a probability `alpha`.
-
-    Notes
-    -----
-    Each tuple of mean, variance, and standard deviation estimates represent
-    the (center, (lower, upper)) with center the mean of the conditional pdf
-    of the value given the data and (lower, upper) is a confidence interval
-    centered on the median, containing the estimate to a probability
-    `alpha`.
-
-    Converts data to 1-D and assumes all data has the same mean and variance.
-    Uses Jeffrey's prior for variance and std.
-
-    Equivalent to tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))
-
-    References
-    ----------
-    T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
-    standard-deviation from data", http://hdl.handle.net/1877/438, 2006.
-
-    """
-    res = mvsdist(data)
-    if alpha >= 1 or alpha <= 0:
-        raise ValueError("0 < alpha < 1 is required, but alpha=%s was given." % alpha)
-    return tuple((x.mean(), x.interval(alpha)) for x in res)
-
-
-def mvsdist(data):
-    """
-    'Frozen' distributions for mean, variance, and standard deviation of data.
-
-    Parameters
-    ----------
-    data : array_like
-        Input array. Converted to 1-D using ravel.
-        Requires 2 or more data-points.
-
-    Returns
-    -------
-    mdist : "frozen" distribution object
-        Distribution object representing the mean of the data
-    vdist : "frozen" distribution object
-        Distribution object representing the variance of the data
-    sdist : "frozen" distribution object
-        Distribution object representing the standard deviation of the data
-
-    Notes
-    -----
-    The return values from bayes_mvs(data) is equivalent to
-    ``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``.
-
-    In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)``
-    on the three distribution objects returned from this function will give
-    the same results that are returned from `bayes_mvs`.
-
-    Examples
-    --------
-    >>> from scipy.stats import mvsdist
-    >>> data = [6, 9, 12, 7, 8, 8, 13]
-    >>> mean, var, std = mvsdist(data)
-
-    We now have frozen distribution objects "mean", "var" and "std" that we can
-    examine:
-
-    >>> mean.mean()
-    9.0
-    >>> mean.interval(0.95)
-    (6.6120585482655692, 11.387941451734431)
-    >>> mean.std()
-    1.1952286093343936
-
-    """
-    x = ravel(data)
-    n = len(x)
-    if (n < 2):
-        raise ValueError("Need at least 2 data-points.")
-    xbar = x.mean()
-    C = x.var()
-    if (n > 1000):  # gaussian approximations for large n
-        mdist = distributions.norm(loc=xbar, scale=math.sqrt(C/n))
-        sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C/(2.*n)))
-        vdist = distributions.norm(loc=C, scale=math.sqrt(2.0/n)*C)
-    else:
-        nm1 = n-1
-        fac = n*C/2.
-        val = nm1/2.
-        mdist = distributions.t(nm1,loc=xbar,scale=math.sqrt(C/nm1))
-        sdist = distributions.gengamma(val,-2,scale=math.sqrt(fac))
-        vdist = distributions.invgamma(val,scale=fac)
-    return mdist, vdist, sdist
-
-
-def kstat(data,n=2):
-    """
-    Return the nth k-statistic (1<=n<=4 so far).
-
-    The nth k-statistic is the unique symmetric unbiased estimator of the nth
-    cumulant kappa_n.
-
-    Parameters
-    ----------
-    data : array_like
-        Input array.
-    n : int, {1, 2, 3, 4}, optional
-        Default is equal to 2.
-
-    Returns
-    -------
-    kstat : float
-        The nth k-statistic.
-
-    See Also
-    --------
-    kstatvar: Returns an unbiased estimator of the variance of the k-statistic.
-
-    Notes
-    -----
-    The cumulants are related to central moments but are specifically defined
-    using a power series expansion of the logarithm of the characteristic
-    function (which is the Fourier transform of the PDF).
-    In particular let phi(t) be the characteristic function, then::
-
-        ln phi(t) = > kappa_n (it)^n / n!    (sum from n=0 to inf)
-
-    The first few cumulants (kappa_n)  in terms of central moments (mu_n) are::
-
-        kappa_1 = mu_1
-        kappa_2 = mu_2
-        kappa_3 = mu_3
-        kappa_4 = mu_4 - 3*mu_2**2
-        kappa_5 = mu_5 - 10*mu_2 * mu_3
-
-    References
-    ----------
-    http://mathworld.wolfram.com/k-Statistic.html
-
-    http://mathworld.wolfram.com/Cumulant.html
-
-    """
-    if n > 4 or n < 1:
-        raise ValueError("k-statistics only supported for 1<=n<=4")
-    n = int(n)
-    S = zeros(n+1,'d')
-    data = ravel(data)
-    N = len(data)
-    for k in range(1,n+1):
-        S[k] = sum(data**k,axis=0)
-    if n == 1:
-        return S[1]*1.0/N
-    elif n == 2:
-        return (N*S[2]-S[1]**2.0)/(N*(N-1.0))
-    elif n == 3:
-        return (2*S[1]**3 - 3*N*S[1]*S[2]+N*N*S[3]) / (N*(N-1.0)*(N-2.0))
-    elif n == 4:
-        return (-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 -
-                4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) / \
-                (N*(N-1.0)*(N-2.0)*(N-3.0))
-    else:
-        raise ValueError("Should not be here.")
-
-
-def kstatvar(data,n=2):
-    """
-    Returns an unbiased estimator of the variance of the k-statistic.
-
-    See `kstat` for more details of the k-statistic.
-
-    Parameters
-    ----------
-    data : array_like
-        Input array.
-    n : int, {1, 2}, optional
-        Default is equal to 2.
-
-    Returns
-    -------
-    kstatvar : float
-        The nth k-statistic variance.
-
-    See Also
-    --------
-    kstat
-
-    """
-    data = ravel(data)
-    N = len(data)
-    if n == 1:
-        return kstat(data,n=2)*1.0/N
-    elif n == 2:
-        k2 = kstat(data,n=2)
-        k4 = kstat(data,n=4)
-        return (2*k2*k2*N + (N-1)*k4)/(N*(N+1))
-    else:
-        raise ValueError("Only n=1 or n=2 supported.")
-
-
-def _calc_uniform_order_statistic_medians(x):
-    """See Notes section of `probplot` for details."""
-    N = len(x)
-    osm_uniform = np.zeros(N, dtype=np.float64)
-    osm_uniform[-1] = 0.5**(1.0 / N)
-    osm_uniform[0] = 1 - osm_uniform[-1]
-    i = np.arange(2, N)
-    osm_uniform[1:-1] = (i - 0.3175) / (N + 0.365)
-    return osm_uniform
-
-
-def _parse_dist_kw(dist, enforce_subclass=True):
-    """Parse `dist` keyword.
-
-    Parameters
-    ----------
-    dist : str or stats.distributions instance.
-        Several functions take `dist` as a keyword, hence this utility
-        function.
-    enforce_subclass : bool, optional
-        If True (default), `dist` needs to be a
-        `_distn_infrastructure.rv_generic` instance.
-        It can sometimes be useful to set this keyword to False, if a function
-        wants to accept objects that just look somewhat like such an instance
-        (for example, they have a ``ppf`` method).
-
-    """
-    if isinstance(dist, rv_generic):
-        pass
-    elif isinstance(dist, string_types):
-        try:
-            dist = getattr(distributions, dist)
-        except AttributeError:
-            raise ValueError("%s is not a valid distribution name" % dist)
-    elif enforce_subclass:
-        msg = ("`dist` should be a stats.distributions instance or a string "
-              "with the name of such a distribution.")
-        raise ValueError(msg)
-
-    return dist
-
-
-def probplot(x, sparams=(), dist='norm', fit=True, plot=None):
-    """
-    Calculate quantiles for a probability plot, and optionally show the plot.
-
-    Generates a probability plot of sample data against the quantiles of a
-    specified theoretical distribution (the normal distribution by default).
-    `probplot` optionally calculates a best-fit line for the data and plots the
-    results using Matplotlib or a given plot function.
-
-    Parameters
-    ----------
-    x : array_like
-        Sample/response data from which `probplot` creates the plot.
-    sparams : tuple, optional
-        Distribution-specific shape parameters (shape parameters plus location
-        and scale).
-    dist : str or stats.distributions instance, optional
-        Distribution or distribution function name. The default is 'norm' for a
-        normal probability plot.  Objects that look enough like a
-        stats.distributions instance (i.e. they have a ``ppf`` method) are also
-        accepted.
-    fit : bool, optional
-        Fit a least-squares regression (best-fit) line to the sample data if
-        True (default).
-    plot : object, optional
-        If given, plots the quantiles and least squares fit.
-        `plot` is an object that has to have methods "plot" and "text".
-        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
-        or a custom object with the same methods.
-        Default is None, which means that no plot is created.
-
-    Returns
-    -------
-    (osm, osr) : tuple of ndarrays
-        Tuple of theoretical quantiles (osm, or order statistic medians) and
-        ordered responses (osr).  `osr` is simply sorted input `x`.
-        For details on how `osm` is calculated see the Notes section.
-    (slope, intercept, r) : tuple of floats, optional
-        Tuple  containing the result of the least-squares fit, if that is
-        performed by `probplot`. `r` is the square root of the coefficient of
-        determination.  If ``fit=False`` and ``plot=None``, this tuple is not
-        returned.
-
-    Notes
-    -----
-    Even if `plot` is given, the figure is not shown or saved by `probplot`;
-    ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after
-    calling `probplot`.
-
-    `probplot` generates a probability plot, which should not be confused with
-    a Q-Q or a P-P plot.  Statsmodels has more extensive functionality of this
-    type, see ``statsmodels.api.ProbPlot``.
-
-    The formula used for the theoretical quantiles (horizontal axis of the
-    probability plot) is Filliben's estimate::
-
-        quantiles = dist.ppf(val), for
-
-                0.5**(1/n),                  for i = n
-          val = (i - 0.3175) / (n + 0.365),  for i = 2, ..., n-1
-                1 - 0.5**(1/n),              for i = 1
-
-    where ``i`` indicates the i-th ordered value and ``n`` is the total number
-    of values.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import matplotlib.pyplot as plt
-    >>> nsample = 100
-    >>> np.random.seed(7654321)
-
-    A t distribution with small degrees of freedom:
-
-    >>> ax1 = plt.subplot(221)
-    >>> x = stats.t.rvs(3, size=nsample)
-    >>> res = stats.probplot(x, plot=plt)
-
-    A t distribution with larger degrees of freedom:
-
-    >>> ax2 = plt.subplot(222)
-    >>> x = stats.t.rvs(25, size=nsample)
-    >>> res = stats.probplot(x, plot=plt)
-
-    A mixture of two normal distributions with broadcasting:
-
-    >>> ax3 = plt.subplot(223)
-    >>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
-    ...                    size=(nsample/2.,2)).ravel()
-    >>> res = stats.probplot(x, plot=plt)
-
-    A standard normal distribution:
-
-    >>> ax4 = plt.subplot(224)
-    >>> x = stats.norm.rvs(loc=0, scale=1, size=nsample)
-    >>> res = stats.probplot(x, plot=plt)
-
-    Produce a new figure with a loggamma distribution, using the ``dist`` and
-    ``sparams`` keywords:
-
-    >>> fig = plt.figure()
-    >>> ax = fig.add_subplot(111)
-    >>> x = stats.loggamma.rvs(c=2.5, size=500)
-    >>> stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
-    >>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")
-
-    Show the results with Matplotlib:
-
-    >>> plt.show()
-
-    """
-    x = np.asarray(x)
-    osm_uniform = _calc_uniform_order_statistic_medians(x)
-    dist = _parse_dist_kw(dist, enforce_subclass=False)
-    if sparams is None:
-        sparams = ()
-    if isscalar(sparams):
-        sparams = (sparams,)
-    if not isinstance(sparams, tuple):
-        sparams = tuple(sparams)
-
-    osm = dist.ppf(osm_uniform, *sparams)
-    osr = sort(x)
-    if fit or (plot is not None):
-        # perform a linear fit.
-        slope, intercept, r, prob, sterrest = stats.linregress(osm, osr)
-
-    if plot is not None:
-        plot.plot(osm, osr, 'bo', osm, slope*osm + intercept, 'r-')
-        try:
-            if hasattr(plot, 'set_title'):
-                # Matplotlib Axes instance or something that looks like it
-                plot.set_title('Probability Plot')
-                plot.set_xlabel('Quantiles')
-                plot.set_ylabel('Ordered Values')
-            else:
-                # matplotlib.pyplot module
-                plot.title('Probability Plot')
-                plot.xlabel('Quantiles')
-                plot.ylabel('Ordered Values')
-        except:
-            # Not an MPL object or something that looks (enough) like it.
-            # Don't crash on adding labels or title
-            pass
-
-        # Add R^2 value to the plot as text
-        xmin = amin(osm)
-        xmax = amax(osm)
-        ymin = amin(x)
-        ymax = amax(x)
-        posx = xmin + 0.70 * (xmax - xmin)
-        posy = ymin + 0.01 * (ymax - ymin)
-        plot.text(posx, posy, "$R^2=%1.4f$" % r)
-
-    if fit:
-        return (osm, osr), (slope, intercept, r)
-    else:
-        return osm, osr
-
-
-def ppcc_max(x, brack=(0.0,1.0), dist='tukeylambda'):
-    """Returns the shape parameter that maximizes the probability plot
-    correlation coefficient for the given data to a one-parameter
-    family of distributions.
-
-    See also ppcc_plot
-    """
-    dist = _parse_dist_kw(dist)
-    osm_uniform = _calc_uniform_order_statistic_medians(x)
-    osr = sort(x)
-
-    # this function computes the x-axis values of the probability plot
-    #  and computes a linear regression (including the correlation)
-    #  and returns 1-r so that a minimization function maximizes the
-    #  correlation
-    def tempfunc(shape, mi, yvals, func):
-        xvals = func(mi, shape)
-        r, prob = stats.pearsonr(xvals, yvals)
-        return 1-r
-
-    return optimize.brent(tempfunc, brack=brack, args=(osm_uniform, osr, dist.ppf))
-
-
-def ppcc_plot(x,a,b,dist='tukeylambda', plot=None, N=80):
-    """Returns (shape, ppcc), and optionally plots shape vs. ppcc
-    (probability plot correlation coefficient) as a function of shape
-    parameter for a one-parameter family of distributions from shape
-    value a to b.
-
-    See also ppcc_max
-    """
-    svals = r_[a:b:complex(N)]
-    ppcc = svals*0.0
-    k = 0
-    for sval in svals:
-        r1,r2 = probplot(x,sval,dist=dist,fit=1)
-        ppcc[k] = r2[-1]
-        k += 1
-    if plot is not None:
-        plot.plot(svals, ppcc, 'x')
-        plot.title('(%s) PPCC Plot' % dist)
-        plot.xlabel('Prob Plot Corr. Coef.')
-        plot.ylabel('Shape Values')
-    return svals, ppcc
-
-
-def boxcox_llf(lmb, data):
-    r"""The boxcox log-likelihood function.
-
-    Parameters
-    ----------
-    lmb : scalar
-        Parameter for Box-Cox transformation.  See `boxcox` for details.
-    data : array_like
-        Data to calculate Box-Cox log-likelihood for.  If `data` is
-        multi-dimensional, the log-likelihood is calculated along the first
-        axis.
-
-    Returns
-    -------
-    llf : float or ndarray
-        Box-Cox log-likelihood of `data` given `lmb`.  A float for 1-D `data`,
-        an array otherwise.
-
-    See Also
-    --------
-    boxcox, probplot, boxcox_normplot, boxcox_normmax
-
-    Notes
-    -----
-    The Box-Cox log-likelihood function is defined here as
-
-    .. math::
-
-        llf = (\lambda - 1) \sum_i(\log(x_i)) -
-              N/2 \log(\sum_i (y_i - \bar{y})^2 / N),
-
-    where ``y`` is the Box-Cox transformed input data ``x``.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import matplotlib.pyplot as plt
-    >>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
-    >>> np.random.seed(1245)
-
-    Generate some random variates and calculate Box-Cox log-likelihood values
-    for them for a range of ``lmbda`` values:
-
-    >>> x = stats.loggamma.rvs(5, loc=10, size=1000)
-    >>> lmbdas = np.linspace(-2, 10)
-    >>> llf = np.zeros(lmbdas.shape, dtype=np.float)
-    >>> for ii, lmbda in enumerate(lmbdas):
-    ...     llf[ii] = stats.boxcox_llf(lmbda, x)
-
-    Also find the optimal lmbda value with `boxcox`:
-
-    >>> x_most_normal, lmbda_optimal = stats.boxcox(x)
-
-    Plot the log-likelihood as function of lmbda.  Add the optimal lmbda as a
-    horizontal line to check that that's really the optimum:
-
-    >>> fig = plt.figure()
-    >>> ax = fig.add_subplot(111)
-    >>> ax.plot(lmbdas, llf, 'b.-')
-    >>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
-    >>> ax.set_xlabel('lmbda parameter')
-    >>> ax.set_ylabel('Box-Cox log-likelihood')
-
-    Now add some probability plots to show that where the log-likelihood is
-    maximized the data transformed with `boxcox` looks closest to normal:
-
-    >>> locs = [3, 10, 4]  # 'lower left', 'center', 'lower right'
-    >>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
-    ...     xt = stats.boxcox(x, lmbda=lmbda)
-    ...     (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
-    ...     ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
-    ...     ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
-    ...     ax_inset.set_xticklabels([])
-    ...     ax_inset.set_yticklabels([])
-    ...     ax_inset.set_title('$\lambda=%1.2f$' % lmbda)
-
-    >>> plt.show()
-
-    """
-    data = np.asarray(data)
-    N = data.shape[0]
-    if N == 0:
-        return np.nan
-
-    y = boxcox(data, lmb)
-    y_mean = np.mean(y, axis=0)
-    llf = (lmb - 1) * np.sum(np.log(data), axis=0)
-    llf -= N / 2.0 * np.log(np.sum((y - y_mean)**2. / N, axis=0))
-    return llf
-
-
-def _boxcox_conf_interval(x, lmax, alpha):
-    # Need to find the lambda for which
-    #  f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1
-    fac = 0.5 * distributions.chi2.ppf(1 - alpha, 1)
-    target = boxcox_llf(lmax, x) - fac
-
-    def rootfunc(lmbda, data, target):
-        return boxcox_llf(lmbda, data) - target
-
-    # Find positive endpoint of interval in which answer is to be found
-    newlm = lmax + 0.5
-    N = 0
-    while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
-        newlm += 0.1
-        N += 1
-
-    if N == 500:
-        raise RuntimeError("Could not find endpoint.")
-
-    lmplus = optimize.brentq(rootfunc, lmax, newlm, args=(x, target))
-
-    # Now find negative interval in the same way
-    newlm = lmax - 0.5
-    N = 0
-    while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
-        newlm -= 0.1
-        N += 1
-
-    if N == 500:
-        raise RuntimeError("Could not find endpoint.")
-
-    lmminus = optimize.brentq(rootfunc, newlm, lmax, args=(x, target))
-    return lmminus, lmplus
-
-
-def boxcox(x, lmbda=None, alpha=None):
-    r"""
-    Return a positive dataset transformed by a Box-Cox power transformation.
-
-    Parameters
-    ----------
-    x : ndarray
-        Input array.  Should be 1-dimensional.
-    lmbda : {None, scalar}, optional
-        If `lmbda` is not None, do the transformation for that value.
-
-        If `lmbda` is None, find the lambda that maximizes the log-likelihood
-        function and return it as the second output argument.
-    alpha : {None, float}, optional
-        If `alpha` is not None, return the ``100 * (1-alpha)%`` confidence
-        interval for `lmbda` as the third output argument.
-        Must be between 0.0 and 1.0.
-
-    Returns
-    -------
-    boxcox : ndarray
-        Box-Cox power transformed array.
-    maxlog : float, optional
-        If the `lmbda` parameter is None, the second returned argument is
-        the lambda that maximizes the log-likelihood function.
-    (min_ci, max_ci) : tuple of float, optional
-        If `lmbda` parameter is None and `alpha` is not None, this returned
-        tuple of floats represents the minimum and maximum confidence limits
-        given `alpha`.
-
-    See Also
-    --------
-    probplot, boxcox_normplot, boxcox_normmax, boxcox_llf
-
-    Notes
-    -----
-    The Box-Cox transform is given by::
-
-        y = (x**lmbda - 1) / lmbda,  for lmbda > 0
-            log(x),                  for lmbda = 0
-
-    `boxcox` requires the input data to be positive.  Sometimes a Box-Cox
-    transformation provides a shift parameter to achieve this; `boxcox` does
-    not.  Such a shift parameter is equivalent to adding a positive constant to
-    `x` before calling `boxcox`.
-
-    The confidence limits returned when `alpha` is provided give the interval
-    where:
-
-    .. math::
-
-        llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2}\chi^2(1 - \alpha, 1),
-
-    with ``llf`` the log-likelihood function and :math:`\chi^2` the chi-squared
-    function.
-
-    References
-    ----------
-    G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal of the
-    Royal Statistical Society B, 26, 211-252 (1964).
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import matplotlib.pyplot as plt
-
-    We generate some random variates from a non-normal distribution and make a
-    probability plot for it, to show it is non-normal in the tails:
-
-    >>> fig = plt.figure()
-    >>> ax1 = fig.add_subplot(211)
-    >>> x = stats.loggamma.rvs(5, size=500) + 5
-    >>> stats.probplot(x, dist=stats.norm, plot=ax1)
-    >>> ax1.set_xlabel('')
-    >>> ax1.set_title('Probplot against normal distribution')
-
-    We now use `boxcox` to transform the data so it's closest to normal:
-
-    >>> ax2 = fig.add_subplot(212)
-    >>> xt, _ = stats.boxcox(x)
-    >>> stats.probplot(xt, dist=stats.norm, plot=ax2)
-    >>> ax2.set_title('Probplot after Box-Cox transformation')
-
-    >>> plt.show()
-
-    """
-    x = np.asarray(x)
-    if x.size == 0:
-        return x
-
-    if any(x <= 0):
-        raise ValueError("Data must be positive.")
-
-    if lmbda is not None:  # single transformation
-        return special.boxcox(x, lmbda)
-
-    # If lmbda=None, find the lmbda that maximizes the log-likelihood function.
-    lmax = boxcox_normmax(x, method='mle')
-    y = boxcox(x, lmax)
-
-    if alpha is None:
-        return y, lmax
-    else:
-        # Find confidence interval
-        interval = _boxcox_conf_interval(x, lmax, alpha)
-        return y, lmax, interval
-
-
-def boxcox_normmax(x, brack=(-2.0, 2.0), method='pearsonr'):
-    """Compute optimal Box-Cox transform parameter for input data.
-
-    Parameters
-    ----------
-    x : array_like
-        Input array.
-    brack : 2-tuple, optional
-        The starting interval for a downhill bracket search with
-        `optimize.brent`.  Note that this is in most cases not critical; the
-        final result is allowed to be outside this bracket.
-    method : str, optional
-        The method to determine the optimal transform parameter (`boxcox`
-        ``lmbda`` parameter). Options are:
-
-        'pearsonr'  (default)
-            Maximizes the Pearson correlation coefficient between
-            ``y = boxcox(x)`` and the expected values for ``y`` if `x` would be
-            normally-distributed.
-
-        'mle'
-            Minimizes the log-likelihood `boxcox_llf`.  This is the method used
-            in `boxcox`.
-
-        'all'
-            Use all optimization methods available, and return all results.
-            Useful to compare different methods.
-
-    Returns
-    -------
-    maxlog : float or ndarray
-        The optimal transform parameter found.  An array instead of a scalar
-        for ``method='all'``.
-
-    See Also
-    --------
-    boxcox, boxcox_llf, boxcox_normplot
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import matplotlib.pyplot as plt
-    >>> np.random.seed(1234)  # make this example reproducible
-
-    Generate some data and determine optimal ``lmbda`` in various ways:
-
-    >>> x = stats.loggamma.rvs(5, size=30) + 5
-    >>> y, lmax_mle = stats.boxcox(x)
-    >>> lmax_pearsonr = stats.boxcox_normmax(x)
-
-    >>> lmax_mle
-    7.177...
-    >>> lmax_pearsonr
-    7.916...
-    >>> stats.boxcox_normmax(x, method='all')
-    array([ 7.91667384,  7.17718692])
-
-    >>> fig = plt.figure()
-    >>> ax = fig.add_subplot(111)
-    >>> stats.boxcox_normplot(x, -10, 10, plot=ax)
-    >>> ax.axvline(lmax_mle, color='r')
-    >>> ax.axvline(lmax_pearsonr, color='g', ls='--')
-
-    >>> plt.show()
-
-    """
-    def _pearsonr(x, brack):
-        osm_uniform = _calc_uniform_order_statistic_medians(x)
-        xvals = distributions.norm.ppf(osm_uniform)
-
-        def _eval_pearsonr(lmbda, xvals, samps):
-            # This function computes the x-axis values of the probability plot
-            # and computes a linear regression (including the correlation) and
-            # returns ``1 - r`` so that a minimization function maximizes the
-            # correlation.
-            y = boxcox(samps, lmbda)
-            yvals = np.sort(y)
-            r, prob = stats.pearsonr(xvals, yvals)
-            return 1 - r
-
-        return optimize.brent(_eval_pearsonr, brack=brack, args=(xvals, x))
-
-    def _mle(x, brack):
-        def _eval_mle(lmb, data):
-            # function to minimize
-            return -boxcox_llf(lmb, data)
-
-        return optimize.brent(_eval_mle, brack=brack, args=(x,))
-
-    def _all(x, brack):
-        maxlog = np.zeros(2, dtype=np.float)
-        maxlog[0] = _pearsonr(x, brack)
-        maxlog[1] = _mle(x, brack)
-        return maxlog
-
-    methods = {'pearsonr': _pearsonr,
-               'mle': _mle,
-               'all': _all}
-    if method not in methods.keys():
-        raise ValueError("Method %s not recognized." % method)
-
-    optimfunc = methods[method]
-    return optimfunc(x, brack)
-
-
-def boxcox_normplot(x, la, lb, plot=None, N=80):
-    """Compute parameters for a Box-Cox normality plot, optionally show it.
-
-    A Box-Cox normality plot shows graphically what the best transformation
-    parameter is to use in `boxcox` to obtain a distribution that is close
-    to normal.
-
-    Parameters
-    ----------
-    x : array_like
-        Input array.
-    la, lb : scalar
-        The lower and upper bounds for the ``lmbda`` values to pass to `boxcox`
-        for Box-Cox transformations.  These are also the limits of the
-        horizontal axis of the plot if that is generated.
-    plot : object, optional
-        If given, plots the quantiles and least squares fit.
-        `plot` is an object that has to have methods "plot" and "text".
-        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
-        or a custom object with the same methods.
-        Default is None, which means that no plot is created.
-    N : int, optional
-        Number of points on the horizontal axis (equally distributed from
-        `la` to `lb`).
-
-    Returns
-    -------
-    lmbdas : ndarray
-        The ``lmbda`` values for which a Box-Cox transform was done.
-    ppcc : ndarray
-        Probability Plot Correlelation Coefficient, as obtained from `probplot`
-        when fitting the Box-Cox transformed input `x` against a normal
-        distribution.
-
-    See Also
-    --------
-    probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max
-
-    Notes
-    -----
-    Even if `plot` is given, the figure is not shown or saved by
-    `boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
-    should be used after calling `probplot`.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import matplotlib.pyplot as plt
-
-    Generate some non-normally distributed data, and create a Box-Cox plot:
-
-    >>> x = stats.loggamma.rvs(5, size=500) + 5
-    >>> fig = plt.figure()
-    >>> ax = fig.add_subplot(111)
-    >>> stats.boxcox_normplot(x, -20, 20, plot=ax)
-
-    Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
-    the same plot:
-
-    >>> _, maxlog = stats.boxcox(x)
-    >>> ax.axvline(maxlog, color='r')
-
-    >>> plt.show()
-
-    """
-    x = np.asarray(x)
-    if x.size == 0:
-        return x
-
-    if lb <= la:
-        raise ValueError("`lb` has to be larger than `la`.")
-
-    lmbdas = np.linspace(la, lb, num=N)
-    ppcc = lmbdas * 0.0
-    for i, val in enumerate(lmbdas):
-        # Determine for each lmbda the correlation coefficient of transformed x
-        z = boxcox(x, lmbda=val)
-        _, r2 = probplot(z, dist='norm', fit=True)
-        ppcc[i] = r2[-1]
-
-    if plot is not None:
-        plot.plot(lmbdas, ppcc, 'x')
-        try:
-            if hasattr(plot, 'set_title'):
-                # Matplotlib Axes instance or something that looks like it
-                plot.set_title('Box-Cox Normality Plot')
-                plot.set_ylabel('Prob Plot Corr. Coef.')
-                plot.set_xlabel('$\lambda$')
-            else:
-                # matplotlib.pyplot module
-                plot.title('Box-Cox Normality Plot')
-                plot.ylabel('Prob Plot Corr. Coef.')
-                plot.xlabel('$\lambda$')
-        except Exception:
-            # Not an MPL object or something that looks (enough) like it.
-            # Don't crash on adding labels or title
-            pass
-
-    return lmbdas, ppcc
-
-
-def shapiro(x, a=None, reta=False):
-    """
-    Perform the Shapiro-Wilk test for normality.
-
-    The Shapiro-Wilk test tests the null hypothesis that the
-    data was drawn from a normal distribution.
-
-    Parameters
-    ----------
-    x : array_like
-        Array of sample data.
-    a : array_like, optional
-        Array of internal parameters used in the calculation.  If these
-        are not given, they will be computed internally.  If x has length
-        n, then a must have length n/2.
-    reta : bool, optional
-        Whether or not to return the internally computed a values.  The
-        default is False.
-
-    Returns
-    -------
-    W : float
-        The test statistic.
-    p-value : float
-        The p-value for the hypothesis test.
-    a : array_like, optional
-        If `reta` is True, then these are the internally computed "a"
-        values that may be passed into this function on future calls.
-
-    See Also
-    --------
-    anderson : The Anderson-Darling test for normality
-
-    References
-    ----------
-    .. [1] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
-
-    """
-    N = len(x)
-    if N < 3:
-        raise ValueError("Data must be at least length 3.")
-    if a is None:
-        a = zeros(N,'f')
-        init = 0
-    else:
-        if len(a) != N//2:
-            raise ValueError("len(a) must equal len(x)/2")
-        init = 1
-    y = sort(x)
-    a, w, pw, ifault = statlib.swilk(y, a[:N//2], init)
-    if ifault not in [0,2]:
-        warnings.warn(str(ifault))
-    if N > 5000:
-        warnings.warn("p-value may not be accurate for N > 5000.")
-    if reta:
-        return w, pw, a
-    else:
-        return w, pw
-
-# Values from Stephens, M A, "EDF Statistics for Goodness of Fit and
-#             Some Comparisons", Journal of he American Statistical
-#             Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737
-_Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092])
-_Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957])
-# From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution",
-#             Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588.
-_Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038])
-# From Stephens, M A, "Tests of Fit for the Logistic Distribution Based
-#             on the Empirical Distribution Function.", Biometrika,
-#             Vol. 66, Issue 3, Dec. 1979, pp 591-595.
-_Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010])
-
-
-def anderson(x,dist='norm'):
-    """
-    Anderson-Darling test for data coming from a particular distribution
-
-    The Anderson-Darling test is a modification of the Kolmogorov-
-    Smirnov test `kstest` for the null hypothesis that a sample is
-    drawn from a population that follows a particular distribution.
-    For the Anderson-Darling test, the critical values depend on
-    which distribution is being tested against.  This function works
-    for normal, exponential, logistic, or Gumbel (Extreme Value
-    Type I) distributions.
-
-    Parameters
-    ----------
-    x : array_like
-        array of sample data
-    dist : {'norm','expon','logistic','gumbel','extreme1'}, optional
-        the type of distribution to test against.  The default is 'norm'
-        and 'extreme1' is a synonym for 'gumbel'
-
-    Returns
-    -------
-    A2 : float
-        The Anderson-Darling test statistic
-    critical : list
-        The critical values for this distribution
-    sig : list
-        The significance levels for the corresponding critical values
-        in percents.  The function returns critical values for a
-        differing set of significance levels depending on the
-        distribution that is being tested against.
-
-    Notes
-    -----
-    Critical values provided are for the following significance levels:
-
-    normal/exponenential
-        15%, 10%, 5%, 2.5%, 1%
-    logistic
-        25%, 10%, 5%, 2.5%, 1%, 0.5%
-    Gumbel
-        25%, 10%, 5%, 2.5%, 1%
-
-    If A2 is larger than these critical values then for the corresponding
-    significance level, the null hypothesis that the data come from the
-    chosen distribution can be rejected.
-
-    References
-    ----------
-    .. [1] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
-    .. [2] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and
-           Some Comparisons, Journal of the American Statistical Association,
-           Vol. 69, pp. 730-737.
-    .. [3] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit
-           Statistics with Unknown Parameters, Annals of Statistics, Vol. 4,
-           pp. 357-369.
-    .. [4] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value
-           Distribution, Biometrika, Vol. 64, pp. 583-588.
-    .. [5] Stephens, M. A. (1977). Goodness of Fit with Special Reference
-           to Tests for Exponentiality , Technical Report No. 262,
-           Department of Statistics, Stanford University, Stanford, CA.
-    .. [6] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution
-           Based on the Empirical Distribution Function, Biometrika, Vol. 66,
-           pp. 591-595.
-
-    """
-    if dist not in ['norm','expon','gumbel','extreme1','logistic']:
-        raise ValueError("Invalid distribution; dist must be 'norm', "
-                            "'expon', 'gumbel', 'extreme1' or 'logistic'.")
-    y = sort(x)
-    xbar = np.mean(x, axis=0)
-    N = len(y)
-    if dist == 'norm':
-        s = np.std(x, ddof=1, axis=0)
-        w = (y-xbar)/s
-        z = distributions.norm.cdf(w)
-        sig = array([15,10,5,2.5,1])
-        critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N),3)
-    elif dist == 'expon':
-        w = y / xbar
-        z = distributions.expon.cdf(w)
-        sig = array([15,10,5,2.5,1])
-        critical = around(_Avals_expon / (1.0 + 0.6/N),3)
-    elif dist == 'logistic':
-        def rootfunc(ab,xj,N):
-            a,b = ab
-            tmp = (xj-a)/b
-            tmp2 = exp(tmp)
-            val = [sum(1.0/(1+tmp2),axis=0)-0.5*N,
-                   sum(tmp*(1.0-tmp2)/(1+tmp2),axis=0)+N]
-            return array(val)
-        sol0 = array([xbar,np.std(x, ddof=1, axis=0)])
-        sol = optimize.fsolve(rootfunc,sol0,args=(x,N),xtol=1e-5)
-        w = (y-sol[0])/sol[1]
-        z = distributions.logistic.cdf(w)
-        sig = array([25,10,5,2.5,1,0.5])
-        critical = around(_Avals_logistic / (1.0+0.25/N),3)
-    else:  # (dist == 'gumbel') or (dist == 'extreme1'):
-        # the following is incorrect, see ticket:1097
-        #def fixedsolve(th,xj,N):
-        #    val = stats.sum(xj)*1.0/N
-        #    tmp = exp(-xj/th)
-        #    term = sum(xj*tmp,axis=0)
-        #    term /= sum(tmp,axis=0)
-        #    return val - term
-        #s = optimize.fixed_point(fixedsolve, 1.0, args=(x,N),xtol=1e-5)
-        #xbar = -s*log(sum(exp(-x/s),axis=0)*1.0/N)
-        xbar, s = distributions.gumbel_l.fit(x)
-        w = (y-xbar)/s
-        z = distributions.gumbel_l.cdf(w)
-        sig = array([25,10,5,2.5,1])
-        critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)),3)
-
-    i = arange(1,N+1)
-    S = sum((2*i-1.0)/N*(log(z)+log(1-z[::-1])),axis=0)
-    A2 = -N-S
-    return A2, critical, sig
-
-
-def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N):
-    """
-    Compute A2akN equation 7 of Scholz and Stephens.
-
-    Parameters
-    ----------
-    samples : sequence of 1-D array_like
-        Array of sample arrays.
-    Z : array_like
-        Sorted array of all observations.
-    Zstar : array_like
-        Sorted array of unique observations.
-    k : int
-        Number of samples.
-    n : array_like
-        Number of observations in each sample.
-    N : int
-        Total number of observations.
-
-    Returns
-    -------
-    A2aKN : float
-        The A2aKN statistics of Scholz and Stephens 1987.
-    """
-
-    A2akN = 0.
-    Z_ssorted_left = Z.searchsorted(Zstar, 'left')
-    if N == Zstar.size:
-        lj = 1.
-    else:
-        lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left
-    Bj = Z_ssorted_left + lj / 2.
-    for i in arange(0, k):
-        s = np.sort(samples[i])
-        s_ssorted_right = s.searchsorted(Zstar, side='right')
-        Mij = s_ssorted_right.astype(np.float)
-        fij = s_ssorted_right - s.searchsorted(Zstar, 'left')
-        Mij -= fij / 2.
-        inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / \
-            (Bj * (N - Bj) - N * lj / 4.)
-        A2akN += inner.sum() / n[i]
-    A2akN *= (N - 1.) / N
-    return A2akN
-
-
-def _anderson_ksamp_right(samples, Z, Zstar, k, n, N):
-    """
-    Compute A2akN equation 6 of Scholz & Stephens.
-
-    Parameters
-    ----------
-    samples : sequence of 1-D array_like
-        Array of sample arrays.
-    Z : array_like
-        Sorted array of all observations.
-    Zstar : array_like
-        Sorted array of unique observations.
-    k : int
-        Number of samples.
-    n : array_like
-        Number of observations in each sample.
-    N : int
-        Total number of observations.
-
-    Returns
-    -------
-    A2KN : float
-        The A2KN statistics of Scholz and Stephens 1987.
-    """
-
-    A2kN = 0.
-    lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1],
-                                                              'left')
-    Bj = lj.cumsum()
-    for i in arange(0, k):
-        s = np.sort(samples[i])
-        Mij = s.searchsorted(Zstar[:-1], side='right')
-        inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj))
-        A2kN += inner.sum() / n[i]
-    return A2kN
-
-
-def anderson_ksamp(samples, midrank=True):
-    """The Anderson-Darling test for k-samples.
-
-    The k-sample Anderson-Darling test is a modification of the
-    one-sample Anderson-Darling test. It tests the null hypothesis
-    that k-samples are drawn from the same population without having
-    to specify the distribution function of that population. The
-    critical values depend on the number of samples.
-
-    Parameters
-    ----------
-    samples : sequence of 1-D array_like
-        Array of sample data in arrays.
-    midrank : bool, optional
-        Type of Anderson-Darling test which is computed. Default
-        (True) is the midrank test applicable to continuous and
-        discrete populations. If False, the right side empirical
-        distribution is used.
-
-    Returns
-    -------
-    A2 : float
-        Normalized k-sample Anderson-Darling test statistic.
-    critical : array
-        The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%.
-    p : float
-        An approximate significance level at which the null hypothesis for the
-        provided samples can be rejected.
-
-    Raises
-    ------
-    ValueError
-        If less than 2 samples are provided, a sample is empty, or no
-        distinct observations are in the samples.
-
-    See Also
-    --------
-    ks_2samp : 2 sample Kolmogorov-Smirnov test
-    anderson : 1 sample Anderson-Darling test
-
-    Notes
-    -----
-    [1]_ Defines three versions of the k-sample Anderson-Darling test:
-    one for continuous distributions and two for discrete
-    distributions, in which ties between samples may occur. The
-    default of this routine is to compute the version based on the
-    midrank empirical distribution function. This test is applicable
-    to continuous and discrete data. If midrank is set to False, the
-    right side empirical distribution is used for a test for discrete
-    data. According to [1]_, the two discrete test statistics differ
-    only slightly if a few collisions due to round-off errors occur in
-    the test not adjusted for ties between samples.
-
-    .. versionadded:: 0.14.0
-
-    References
-    ----------
-    .. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample
-           Anderson-Darling Tests, Journal of the American Statistical
-           Association, Vol. 82, pp. 918-924.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> np.random.seed(314159)
-
-    The null hypothesis that the two random samples come from the same
-    distribution can be rejected at the 5% level because the returned
-    test value is greater than the critical value for 5% (1.961) but
-    not at the 2.5% level. The interpolation gives an approximate
-    significance level of 3.1%:
-
-    >>> stats.anderson_ksamp([np.random.normal(size=50),
-    ... np.random.normal(loc=0.5, size=30)])
-    (2.4615796189876105,
-      array([ 0.325,  1.226,  1.961,  2.718,  3.752]),
-      0.03134990135800783)
-
-
-    The null hypothesis cannot be rejected for three samples from an
-    identical distribution. The approximate p-value (87%) has to be
-    computed by extrapolation and may not be very accurate:
-
-    >>> stats.anderson_ksamp([np.random.normal(size=50),
-    ... np.random.normal(size=30), np.random.normal(size=20)])
-    (-0.73091722665244196,
-      array([ 0.44925884,  1.3052767 ,  1.9434184 ,  2.57696569,  3.41634856]),
-      0.8789283903979661)
-
-    """
-    k = len(samples)
-    if (k < 2):
-        raise ValueError("anderson_ksamp needs at least two samples")
-
-    samples = list(map(np.asarray, samples))
-    Z = np.sort(np.hstack(samples))
-    N = Z.size
-    Zstar = np.unique(Z)
-    if Zstar.size < 2:
-        raise ValueError("anderson_ksamp needs more than one distinct "
-                         "observation")
-
-    n = np.array([sample.size for sample in samples])
-    if any(n == 0):
-        raise ValueError("anderson_ksamp encountered sample without "
-                         "observations")
-
-    if midrank:
-        A2kN = _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N)
-    else:
-        A2kN = _anderson_ksamp_right(samples, Z, Zstar, k, n, N)
-
-    h = (1. / arange(1, N)).sum()
-    H = (1. / n).sum()
-    g = 0
-    for l in arange(1, N-1):
-        inner = np.array([1. / ((N - l) * m) for m in arange(l+1, N)])
-        g += inner.sum()
-
-    a = (4*g - 6) * (k - 1) + (10 - 6*g)*H
-    b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6
-    c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h
-    d = (2*h + 6)*k**2 - 4*h*k
-    sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.))
-    m = k - 1
-    A2 = (A2kN - m) / math.sqrt(sigmasq)
-
-    # The b_i values are the interpolation coefficients from Table 2
-    # of Scholz and Stephens 1987
-    b0 = np.array([0.675, 1.281, 1.645, 1.96, 2.326])
-    b1 = np.array([-0.245, 0.25, 0.678, 1.149, 1.822])
-    b2 = np.array([-0.105, -0.305, -0.362, -0.391, -0.396])
-    critical = b0 + b1 / math.sqrt(m) + b2 / m
-    pf = np.polyfit(critical, log(np.array([0.25, 0.1, 0.05, 0.025, 0.01])), 2)
-    if A2 < critical.min() or A2 > critical.max():
-        warnings.warn("approximate p-value will be computed by extrapolation")
-
-    p = math.exp(np.polyval(pf, A2))
-    return A2, critical, p
-
-
-def ansari(x,y):
-    """
-    Perform the Ansari-Bradley test for equal scale parameters
-
-    The Ansari-Bradley test is a non-parametric test for the equality
-    of the scale parameter of the distributions from which two
-    samples were drawn.
-
-    Parameters
-    ----------
-    x, y : array_like
-        arrays of sample data
-
-    Returns
-    -------
-    AB : float
-        The Ansari-Bradley test statistic
-    p-value : float
-        The p-value of the hypothesis test
-
-    See Also
-    --------
-    fligner : A non-parametric test for the equality of k variances
-    mood : A non-parametric test for the equality of two scale parameters
-
-    Notes
-    -----
-    The p-value given is exact when the sample sizes are both less than
-    55 and there are no ties, otherwise a normal approximation for the
-    p-value is used.
-
-    References
-    ----------
-    .. [1] Sprent, Peter and N.C. Smeeton.  Applied nonparametric statistical
-           methods.  3rd ed. Chapman and Hall/CRC. 2001.  Section 5.8.2.
-
-    """
-    x,y = asarray(x),asarray(y)
-    n = len(x)
-    m = len(y)
-    if m < 1:
-        raise ValueError("Not enough other observations.")
-    if n < 1:
-        raise ValueError("Not enough test observations.")
-    N = m+n
-    xy = r_[x,y]  # combine
-    rank = stats.rankdata(xy)
-    symrank = amin(array((rank,N-rank+1)),0)
-    AB = sum(symrank[:n],axis=0)
-    uxy = unique(xy)
-    repeats = (len(uxy) != len(xy))
-    exact = ((m < 55) and (n < 55) and not repeats)
-    if repeats and ((m < 55) or (n < 55)):
-        warnings.warn("Ties preclude use of exact statistic.")
-    if exact:
-        astart, a1, ifault = statlib.gscale(n,m)
-        ind = AB-astart
-        total = sum(a1,axis=0)
-        if ind < len(a1)/2.0:
-            cind = int(ceil(ind))
-            if (ind == cind):
-                pval = 2.0*sum(a1[:cind+1],axis=0)/total
-            else:
-                pval = 2.0*sum(a1[:cind],axis=0)/total
-        else:
-            find = int(floor(ind))
-            if (ind == floor(ind)):
-                pval = 2.0*sum(a1[find:],axis=0)/total
-            else:
-                pval = 2.0*sum(a1[find+1:],axis=0)/total
-        return AB, min(1.0,pval)
-
-    # otherwise compute normal approximation
-    if N % 2:  # N odd
-        mnAB = n*(N+1.0)**2 / 4.0 / N
-        varAB = n*m*(N+1.0)*(3+N**2)/(48.0*N**2)
-    else:
-        mnAB = n*(N+2.0)/4.0
-        varAB = m*n*(N+2)*(N-2.0)/48/(N-1.0)
-    if repeats:   # adjust variance estimates
-        # compute sum(tj * rj**2,axis=0)
-        fac = sum(symrank**2,axis=0)
-        if N % 2:  # N odd
-            varAB = m*n*(16*N*fac-(N+1)**4)/(16.0 * N**2 * (N-1))
-        else:  # N even
-            varAB = m*n*(16*fac-N*(N+2)**2)/(16.0 * N * (N-1))
-    z = (AB - mnAB)/sqrt(varAB)
-    pval = distributions.norm.sf(abs(z)) * 2.0
-    return AB, pval
-
-
-def bartlett(*args):
-    """
-    Perform Bartlett's test for equal variances
-
-    Bartlett's test tests the null hypothesis that all input samples
-    are from populations with equal variances.  For samples
-    from significantly non-normal populations, Levene's test
-    `levene` is more robust.
-
-    Parameters
-    ----------
-    sample1, sample2,... : array_like
-        arrays of sample data.  May be different lengths.
-
-    Returns
-    -------
-    T : float
-        The test statistic.
-    p-value : float
-        The p-value of the test.
-
-    References
-    ----------
-    .. [1]  http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm
-
-    .. [2]  Snedecor, George W. and Cochran, William G. (1989), Statistical
-              Methods, Eighth Edition, Iowa State University Press.
-
-    """
-    k = len(args)
-    if k < 2:
-        raise ValueError("Must enter at least two input sample vectors.")
-    Ni = zeros(k)
-    ssq = zeros(k,'d')
-    for j in range(k):
-        Ni[j] = len(args[j])
-        ssq[j] = np.var(args[j], ddof=1)
-    Ntot = sum(Ni,axis=0)
-    spsq = sum((Ni-1)*ssq,axis=0)/(1.0*(Ntot-k))
-    numer = (Ntot*1.0-k)*log(spsq) - sum((Ni-1.0)*log(ssq),axis=0)
-    denom = 1.0 + (1.0/(3*(k-1)))*((sum(1.0/(Ni-1.0),axis=0))-1.0/(Ntot-k))
-    T = numer / denom
-    pval = distributions.chi2.sf(T,k-1)  # 1 - cdf
-    return T, pval
-
-
-def levene(*args, **kwds):
-    """
-    Perform Levene test for equal variances.
-
-    The Levene test tests the null hypothesis that all input samples
-    are from populations with equal variances.  Levene's test is an
-    alternative to Bartlett's test `bartlett` in the case where
-    there are significant deviations from normality.
-
-    Parameters
-    ----------
-    sample1, sample2, ... : array_like
-        The sample data, possibly with different lengths
-    center : {'mean', 'median', 'trimmed'}, optional
-        Which function of the data to use in the test.  The default
-        is 'median'.
-    proportiontocut : float, optional
-        When `center` is 'trimmed', this gives the proportion of data points
-        to cut from each end. (See `scipy.stats.trim_mean`.)
-        Default is 0.05.
-
-    Returns
-    -------
-    W : float
-        The test statistic.
-    p-value : float
-        The p-value for the test.
-
-    Notes
-    -----
-    Three variations of Levene's test are possible.  The possibilities
-    and their recommended usages are:
-
-      * 'median' : Recommended for skewed (non-normal) distributions>
-      * 'mean' : Recommended for symmetric, moderate-tailed distributions.
-      * 'trimmed' : Recommended for heavy-tailed distributions.
-
-    References
-    ----------
-    .. [1]  http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
-    .. [2]   Levene, H. (1960). In Contributions to Probability and Statistics:
-               Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,
-               Stanford University Press, pp. 278-292.
-    .. [3]  Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
-              Statistical Association, 69, 364-367
-
-    """
-    # Handle keyword arguments.
-    center = 'median'
-    proportiontocut = 0.05
-    for kw, value in kwds.items():
-        if kw not in ['center', 'proportiontocut']:
-            raise TypeError("levene() got an unexpected keyword "
-                            "argument '%s'" % kw)
-        if kw == 'center':
-            center = value
-        else:
-            proportiontocut = value
-
-    k = len(args)
-    if k < 2:
-        raise ValueError("Must enter at least two input sample vectors.")
-    Ni = zeros(k)
-    Yci = zeros(k, 'd')
-
-    if center not in ['mean', 'median', 'trimmed']:
-        raise ValueError("Keyword argument <center> must be 'mean', 'median'"
-              + "or 'trimmed'.")
-
-    if center == 'median':
-        func = lambda x: np.median(x, axis=0)
-    elif center == 'mean':
-        func = lambda x: np.mean(x, axis=0)
-    else:  # center == 'trimmed'
-        args = tuple(stats.trimboth(np.sort(arg), proportiontocut)
-                     for arg in args)
-        func = lambda x: np.mean(x, axis=0)
-
-    for j in range(k):
-        Ni[j] = len(args[j])
-        Yci[j] = func(args[j])
-    Ntot = sum(Ni, axis=0)
-
-    # compute Zij's
-    Zij = [None]*k
-    for i in range(k):
-        Zij[i] = abs(asarray(args[i])-Yci[i])
-    # compute Zbari
-    Zbari = zeros(k, 'd')
-    Zbar = 0.0
-    for i in range(k):
-        Zbari[i] = np.mean(Zij[i], axis=0)
-        Zbar += Zbari[i]*Ni[i]
-    Zbar /= Ntot
-
-    numer = (Ntot-k) * sum(Ni*(Zbari-Zbar)**2, axis=0)
-
-    # compute denom_variance
-    dvar = 0.0
-    for i in range(k):
-        dvar += sum((Zij[i]-Zbari[i])**2, axis=0)
-
-    denom = (k-1.0)*dvar
-
-    W = numer / denom
-    pval = distributions.f.sf(W, k-1, Ntot-k)  # 1 - cdf
-    return W, pval
-
-
-@setastest(False)
-def binom_test(x, n=None, p=0.5):
-    """
-    Perform a test that the probability of success is p.
-
-    This is an exact, two-sided test of the null hypothesis
-    that the probability of success in a Bernoulli experiment
-    is `p`.
-
-    Parameters
-    ----------
-    x : integer or array_like
-        the number of successes, or if x has length 2, it is the
-        number of successes and the number of failures.
-    n : integer
-        the number of trials.  This is ignored if x gives both the
-        number of successes and failures
-    p : float, optional
-        The hypothesized probability of success.  0 <= p <= 1. The
-        default value is p = 0.5
-
-    Returns
-    -------
-    p-value : float
-        The p-value of the hypothesis test
-
-    References
-    ----------
-    .. [1] http://en.wikipedia.org/wiki/Binomial_test
-
-    """
-    x = atleast_1d(x).astype(np.integer)
-    if len(x) == 2:
-        n = x[1]+x[0]
-        x = x[0]
-    elif len(x) == 1:
-        x = x[0]
-        if n is None or n < x:
-            raise ValueError("n must be >= x")
-        n = np.int_(n)
-    else:
-        raise ValueError("Incorrect length for x.")
-
-    if (p > 1.0) or (p < 0.0):
-        raise ValueError("p must be in range [0,1]")
-
-    d = distributions.binom.pmf(x, n, p)
-    rerr = 1+1e-7
-    if (x == p*n):
-        # special case as shortcut, would also be handled by `else` below
-        pval = 1.
-    elif (x < p*n):
-        i = np.arange(np.ceil(p*n), n+1)
-        y = np.sum(distributions.binom.pmf(i, n, p) <= d*rerr, axis=0)
-        pval = (distributions.binom.cdf(x, n, p) +
-                distributions.binom.sf(n-y, n, p))
-    else:
-        i = np.arange(np.floor(p*n) + 1)
-        y = np.sum(distributions.binom.pmf(i, n, p) <= d*rerr, axis=0)
-        pval = (distributions.binom.cdf(y-1, n, p) +
-                distributions.binom.sf(x-1, n, p))
-
-    return min(1.0, pval)
-
-
-def _apply_func(x, g, func):
-    # g is list of indices into x
-    #  separating x into different groups
-    #  func should be applied over the groups
-    g = unique(r_[0, g, len(x)])
-    output = []
-    for k in range(len(g)-1):
-        output.append(func(x[g[k]:g[k+1]]))
-    return asarray(output)
-
-
-def fligner(*args, **kwds):
-    """
-    Perform Fligner's test for equal variances.
-
-    Fligner's test tests the null hypothesis that all input samples
-    are from populations with equal variances.  Fligner's test is
-    non-parametric in contrast to Bartlett's test `bartlett` and
-    Levene's test `levene`.
-
-    Parameters
-    ----------
-    sample1, sample2, ... : array_like
-        Arrays of sample data.  Need not be the same length.
-    center : {'mean', 'median', 'trimmed'}, optional
-        Keyword argument controlling which function of the data is used in
-        computing the test statistic.  The default is 'median'.
-    proportiontocut : float, optional
-        When `center` is 'trimmed', this gives the proportion of data points
-        to cut from each end. (See `scipy.stats.trim_mean`.)
-        Default is 0.05.
-
-    Returns
-    -------
-    Xsq : float
-        The test statistic.
-    p-value : float
-        The p-value for the hypothesis test.
-
-    Notes
-    -----
-    As with Levene's test there are three variants of Fligner's test that
-    differ by the measure of central tendency used in the test.  See `levene`
-    for more information.
-
-    References
-    ----------
-    .. [1] http://www.stat.psu.edu/~bgl/center/tr/TR993.ps
-
-    .. [2] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample
-           tests for scale. 'Journal of the American Statistical Association.'
-           71(353), 210-213.
-
-    """
-    # Handle keyword arguments.
-    center = 'median'
-    proportiontocut = 0.05
-    for kw, value in kwds.items():
-        if kw not in ['center', 'proportiontocut']:
-            raise TypeError("fligner() got an unexpected keyword "
-                            "argument '%s'" % kw)
-        if kw == 'center':
-            center = value
-        else:
-            proportiontocut = value
-
-    k = len(args)
-    if k < 2:
-        raise ValueError("Must enter at least two input sample vectors.")
-
-    if center not in ['mean','median','trimmed']:
-        raise ValueError("Keyword argument <center> must be 'mean', 'median'"
-              + "or 'trimmed'.")
-
-    if center == 'median':
-        func = lambda x: np.median(x, axis=0)
-    elif center == 'mean':
-        func = lambda x: np.mean(x, axis=0)
-    else:  # center == 'trimmed'
-        args = tuple(stats.trimboth(arg, proportiontocut) for arg in args)
-        func = lambda x: np.mean(x, axis=0)
-
-    Ni = asarray([len(args[j]) for j in range(k)])
-    Yci = asarray([func(args[j]) for j in range(k)])
-    Ntot = sum(Ni, axis=0)
-    # compute Zij's
-    Zij = [abs(asarray(args[i]) - Yci[i]) for i in range(k)]
-    allZij = []
-    g = [0]
-    for i in range(k):
-        allZij.extend(list(Zij[i]))
-        g.append(len(allZij))
-
-    ranks = stats.rankdata(allZij)
-    a = distributions.norm.ppf(ranks/(2*(Ntot + 1.0)) + 0.5)
-
-    # compute Aibar
-    Aibar = _apply_func(a, g, sum) / Ni
-    anbar = np.mean(a, axis=0)
-    varsq = np.var(a, axis=0, ddof=1)
-    Xsq = sum(Ni*(asarray(Aibar) - anbar)**2.0, axis=0)/varsq
-    pval = distributions.chi2.sf(Xsq, k - 1)  # 1 - cdf
-    return Xsq, pval
-
-
-def mood(x, y, axis=0):
-    """
-    Perform Mood's test for equal scale parameters.
-
-    Mood's two-sample test for scale parameters is a non-parametric
-    test for the null hypothesis that two samples are drawn from the
-    same distribution with the same scale parameter.
-
-    Parameters
-    ----------
-    x, y : array_like
-        Arrays of sample data.
-    axis: int, optional
-        The axis along which the samples are tested.  `x` and `y` can be of
-        different length along `axis`.
-        If `axis` is None, `x` and `y` are flattened and the test is done on
-        all values in the flattened arrays.
-
-    Returns
-    -------
-    z : scalar or ndarray
-        The z-score for the hypothesis test.  For 1-D inputs a scalar is
-        returned.
-    p-value : scalar ndarray
-        The p-value for the hypothesis test.
-
-    See Also
-    --------
-    fligner : A non-parametric test for the equality of k variances
-    ansari : A non-parametric test for the equality of 2 variances
-    bartlett : A parametric test for equality of k variances in normal samples
-    levene : A parametric test for equality of k variances
-
-    Notes
-    -----
-    The data are assumed to be drawn from probability distributions ``f(x)``
-    and ``f(x/s) / s`` respectively, for some probability density function f.
-    The null hypothesis is that ``s == 1``.
-
-    For multi-dimensional arrays, if the inputs are of shapes
-    ``(n0, n1, n2, n3)``  and ``(n0, m1, n2, n3)``, then if ``axis=1``, the
-    resulting z and p values will have shape ``(n0, n2, n3)``.  Note that
-    ``n1`` and ``m1`` don't have to be equal, but the other dimensions do.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> x2 = np.random.randn(2, 45, 6, 7)
-    >>> x1 = np.random.randn(2, 30, 6, 7)
-    >>> z, p = stats.mood(x1, x2, axis=1)
-    >>> p.shape
-    (2, 6, 7)
-
-    Find the number of points where the difference in scale is not significant:
-
-    >>> (p > 0.1).sum()
-    74
-
-    Perform the test with different scales:
-
-    >>> x1 = np.random.randn(2, 30)
-    >>> x2 = np.random.randn(2, 35) * 10.0
-    >>> stats.mood(x1, x2, axis=1)
-    (array([-5.84332354, -5.6840814 ]), array([5.11694980e-09, 1.31517628e-08]))
-
-    """
-    x = np.asarray(x, dtype=float)
-    y = np.asarray(y, dtype=float)
-
-    if axis is None:
-        x = x.flatten()
-        y = y.flatten()
-        axis = 0
-
-    # Determine shape of the result arrays
-    res_shape = tuple([x.shape[ax] for ax in range(len(x.shape)) if ax != axis])
-    if not (res_shape == tuple([y.shape[ax] for ax in range(len(y.shape)) if
-                                ax != axis])):
-        raise ValueError("Dimensions of x and y on all axes except `axis` "
-                         "should match")
-
-    n = x.shape[axis]
-    m = y.shape[axis]
-    N = m + n
-    if N < 3:
-        raise ValueError("Not enough observations.")
-
-    xy = np.concatenate((x, y), axis=axis)
-    if axis != 0:
-        xy = np.rollaxis(xy, axis)
-
-    xy = xy.reshape(xy.shape[0], -1)
-
-    # Generalized to the n-dimensional case by adding the axis argument, and
-    # using for loops, since rankdata is not vectorized.  For improving
-    # performance consider vectorizing rankdata function.
-    all_ranks = np.zeros_like(xy)
-    for j in range(xy.shape[1]):
-        all_ranks[:, j] = stats.rankdata(xy[:, j])
-
-    Ri = all_ranks[:n]
-    M = sum((Ri - (N + 1.0) / 2) ** 2, axis=0)
-    # Approx stat.
-    mnM = n * (N * N - 1.0) / 12
-    varM = m * n * (N + 1.0) * (N + 2) * (N - 2) / 180
-    z = (M - mnM) / sqrt(varM)
-
-    # sf for right tail, cdf for left tail.  Factor 2 for two-sidedness
-    z_pos = z > 0
-    pval = np.zeros_like(z)
-    pval[z_pos] = 2 * distributions.norm.sf(z[z_pos])
-    pval[~z_pos] = 2 * distributions.norm.cdf(z[~z_pos])
-
-    if res_shape == ():
-        # Return scalars, not 0-D arrays
-        z = z[0]
-        pval = pval[0]
-    else:
-        z.shape = res_shape
-        pval.shape = res_shape
-
-    return z, pval
-
-
-def wilcoxon(x, y=None, zero_method="wilcox", correction=False):
-    """
-    Calculate the Wilcoxon signed-rank test.
-
-    The Wilcoxon signed-rank test tests the null hypothesis that two
-    related paired samples come from the same distribution. In particular,
-    it tests whether the distribution of the differences x - y is symmetric
-    about zero. It is a non-parametric version of the paired T-test.
-
-    Parameters
-    ----------
-    x : array_like
-        The first set of measurements.
-    y : array_like, optional
-        The second set of measurements.  If `y` is not given, then the `x`
-        array is considered to be the differences between the two sets of
-        measurements.
-    zero_method : string, {"pratt", "wilcox", "zsplit"}, optional
-        "pratt":
-            Pratt treatment: includes zero-differences in the ranking process
-            (more conservative)
-        "wilcox":
-            Wilcox treatment: discards all zero-differences
-        "zsplit":
-            Zero rank split: just like Pratt, but spliting the zero rank
-            between positive and negative ones
-    correction : bool, optional
-        If True, apply continuity correction by adjusting the Wilcoxon rank
-        statistic by 0.5 towards the mean value when computing the
-        z-statistic.  Default is False.
-
-    Returns
-    -------
-    T : float
-        The sum of the ranks of the differences above or below zero, whichever
-        is smaller.
-    p-value : float
-        The two-sided p-value for the test.
-
-    Notes
-    -----
-    Because the normal approximation is used for the calculations, the
-    samples used should be large.  A typical rule is to require that
-    n > 20.
-
-    References
-    ----------
-    .. [1] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
-
-    """
-
-    if zero_method not in ["wilcox", "pratt", "zsplit"]:
-        raise ValueError("Zero method should be either 'wilcox' \
-                          or 'pratt' or 'zsplit'")
-
-    if y is None:
-        d = x
-    else:
-        x, y = map(asarray, (x, y))
-        if len(x) != len(y):
-            raise ValueError('Unequal N in wilcoxon.  Aborting.')
-        d = x-y
-
-    if zero_method == "wilcox":
-        d = compress(not_equal(d, 0), d, axis=-1)  # Keep all non-zero differences
-
-    count = len(d)
-    if (count < 10):
-        warnings.warn("Warning: sample size too small for normal approximation.")
-    r = stats.rankdata(abs(d))
-    r_plus = sum((d > 0) * r, axis=0)
-    r_minus = sum((d < 0) * r, axis=0)
-
-    if zero_method == "zsplit":
-        r_zero = sum((d == 0) * r, axis=0)
-        r_plus += r_zero / 2.
-        r_minus += r_zero / 2.
-
-    T = min(r_plus, r_minus)
-    mn = count*(count + 1.) * 0.25
-    se = count*(count + 1.) * (2. * count + 1.)
-
-    if zero_method == "pratt":
-        r = r[d != 0]
-
-    replist, repnum = find_repeats(r)
-    if repnum.size != 0:
-        # Correction for repeated elements.
-        se -= 0.5 * (repnum * (repnum * repnum - 1)).sum()
-
-    se = sqrt(se / 24)
-    correction = 0.5 * int(bool(correction)) * np.sign(T - mn)
-    z = (T - mn - correction) / se
-    prob = 2. * distributions.norm.sf(abs(z))
-    return T, prob
-
-
-@setastest(False)
-def median_test(*args, **kwds):
-    """
-    Mood's median test.
-
-    Test that two or more samples come from populations with the same median.
-
-    Let ``n = len(args)`` be the number of samples.  The "grand median" of
-    all the data is computed, and a contingency table is formed by
-    classifying the values in each sample as being above or below the grand
-    median.  The contingency table, along with `correction` and `lambda_`,
-    are passed to `scipy.stats.chi2_contingency` to compute the test statistic
-    and p-value.
-
-    Parameters
-    ----------
-    sample1, sample2, ... : array_like
-        The set of samples.  There must be at least two samples.
-        Each sample must be a one-dimensional sequence containing at least
-        one value.  The samples are not required to have the same length.
-    ties : str, optional
-        Determines how values equal to the grand median are classified in
-        the contingency table.  The string must be one of::
-
-            "below":
-                Values equal to the grand median are counted as "below".
-            "above":
-                Values equal to the grand median are counted as "above".
-            "ignore":
-                Values equal to the grand median are not counted.
-
-        The default is "below".
-    correction : bool, optional
-        If True, *and* there are just two samples, apply Yates' correction
-        for continuity when computing the test statistic associated with
-        the contingency table.  Default is True.
-    lambda_ : float or str, optional.
-        By default, the statistic computed in this test is Pearson's
-        chi-squared statistic.  `lambda_` allows a statistic from the
-        Cressie-Read power divergence family to be used instead.  See
-        `power_divergence` for details.
-        Default is 1 (Pearson's chi-squared statistic).
-
-    Returns
-    -------
-    stat : float
-        The test statistic.  The statistic that is returned is determined by
-        `lambda_`.  The default is Pearson's chi-squared statistic.
-    p : float
-        The p-value of the test.
-    m : float
-        The grand median.
-    table : ndarray
-        The contingency table.  The shape of the table is (2, n), where
-        n is the number of samples.  The first row holds the counts of the
-        values above the grand median, and the second row holds the counts
-        of the values below the grand median.  The table allows further
-        analysis with, for example, `scipy.stats.chi2_contingency`, or with
-        `scipy.stats.fisher_exact` if there are two samples, without having
-        to recompute the table.
-
-    See Also
-    --------
-    kruskal : Compute the Kruskal-Wallis H-test for independent samples.
-    mannwhitneyu : Computes the Mann-Whitney rank test on samples x and y.
-
-    Notes
-    -----
-    .. versionadded:: 0.15.0
-
-    References
-    ----------
-    .. [1] Mood, A. M., Introduction to the Theory of Statistics. McGraw-Hill
-        (1950), pp. 394-399.
-    .. [2] Zar, J. H., Biostatistical Analysis, 5th ed. Prentice Hall (2010).
-        See Sections 8.12 and 10.15.
-
-    Examples
-    --------
-    A biologist runs an experiment in which there are three groups of plants.
-    Group 1 has 16 plants, group 2 has 15 plants, and group 3 has 17 plants.
-    Each plant produces a number of seeds.  The seed counts for each group
-    are::
-
-        Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
-        Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
-        Group 3:  0  3  9 22 23 25 25 33 34 34 40 45 46 48 62 67 84
-
-    The following code applies Mood's median test to these samples.
-
-    >>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
-    >>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
-    >>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
-    >>> stat, p, med, tbl = median_test(g1, g2, g3)
-
-    The median is
-
-    >>> med
-    34.0
-
-    and the contingency table is
-
-    >>> tbl
-    array([[ 5, 10,  7],
-           [11,  5, 10]])
-
-    `p` is too large to conclude that the medians are not the same:
-
-    >>> p
-    0.12609082774093244
-
-    The "G-test" can be performed by passing ``lambda_="log-likelihood"`` to
-    `median_test`.
-
-    >>> g, p, med, tbl = median_test(g1, g2, g3, lambda_="log-likelihood")
-    >>> p
-    0.12224779737117837
-
-    The median occurs several times in the data, so we'll get a different
-    result if, for example, ``ties="above"`` is used:
-
-    >>> stat, p, med, tbl = median_test(g1, g2, g3, ties="above")
-    >>> p
-    0.063873276069553273
-
-    >>> tbl
-    array([[ 5, 11,  9],
-           [11,  4,  8]])
-
-    This example demonstrates that if the data set is not large and there
-    are values equal to the median, the p-value can be sensitive to the
-    choice of `ties`.
-
-    """
-    ties = kwds.pop('ties', 'below')
-    correction = kwds.pop('correction', True)
-    lambda_ = kwds.pop('lambda_', None)
-
-    if len(kwds) > 0:
-        bad_kwd = kwds.keys()[0]
-        raise TypeError("median_test() got an unexpected keyword "
-                        "argument %r" % bad_kwd)
-
-    if len(args) < 2:
-        raise ValueError('median_test requires two or more samples.')
-
-    ties_options = ['below', 'above', 'ignore']
-    if ties not in ties_options:
-        raise ValueError("invalid 'ties' option '%s'; 'ties' must be one "
-                         "of: %s" % (ties, str(ties_options)[1:-1]))
-
-    data = [np.asarray(arg) for arg in args]
-
-    # Validate the sizes and shapes of the arguments.
-    for k, d in enumerate(data):
-        if d.size == 0:
-            raise ValueError("Sample %d is empty. All samples must "
-                             "contain at least one value." % (k + 1))
-        if d.ndim != 1:
-            raise ValueError("Sample %d has %d dimensions.  All "
-                             "samples must be one-dimensional sequences." %
-                             (k + 1, d.ndim))
-
-    grand_median = np.median(np.concatenate(data))
-
-    # Create the contingency table.
-    table = np.zeros((2, len(data)), dtype=np.int64)
-    for k, sample in enumerate(data):
-        nabove = count_nonzero(sample > grand_median)
-        nbelow = count_nonzero(sample < grand_median)
-        nequal = sample.size - (nabove + nbelow)
-        table[0, k] += nabove
-        table[1, k] += nbelow
-        if ties == "below":
-            table[1, k] += nequal
-        elif ties == "above":
-            table[0, k] += nequal
-
-    # Check that no row or column of the table is all zero.
-    # Such a table can not be given to chi2_contingency, because it would have
-    # a zero in the table of expected frequencies.
-    rowsums = table.sum(axis=1)
-    if rowsums[0] == 0:
-        raise ValueError("All values are below the grand median (%r)." %
-                         grand_median)
-    if rowsums[1] == 0:
-        raise ValueError("All values are above the grand median (%r)." %
-                         grand_median)
-    if ties == "ignore":
-        # We already checked that each sample has at least one value, but it
-        # is possible that all those values equal the grand median.  If `ties`
-        # is "ignore", that would result in a column of zeros in `table`.  We
-        # check for that case here.
-        zero_cols = np.where((table == 0).all(axis=0))[0]
-        if len(zero_cols) > 0:
-            msg = ("All values in sample %d are equal to the grand "
-                   "median (%r), so they are ignored, resulting in an "
-                   "empty sample." % (zero_cols[0] + 1, grand_median))
-            raise ValueError(msg)
-
-    stat, p, dof, expected = chi2_contingency(table, lambda_=lambda_,
-                                              correction=correction)
-    return stat, p, grand_median, table
-
-
-def _hermnorm(N):
-    # return the negatively normalized hermite polynomials up to order N-1
-    #  (inclusive)
-    #  using the recursive relationship
-    #  p_n+1 = p_n(x)' - x*p_n(x)
-    #   and p_0(x) = 1
-    plist = [None]*N
-    plist[0] = poly1d(1)
-    for n in range(1,N):
-        plist[n] = plist[n-1].deriv() - poly1d([1,0])*plist[n-1]
-    return plist
-
-
-def pdf_fromgamma(g1, g2, g3=0.0, g4=None):
-    if g4 is None:
-        g4 = 3*g2*g2
-    sigsq = 1.0/g2
-    sig = sqrt(sigsq)
-    mu = g1*sig**3.0
-    p12 = _hermnorm(13)
-    for k in range(13):
-        p12[k] = p12[k]/sig**k
-
-    # Add all of the terms to polynomial
-    totp = p12[0] - (g1/6.0*p12[3]) + \
-           (g2/24.0*p12[4] + g1*g1/72.0*p12[6]) - \
-           (g3/120.0*p12[5] + g1*g2/144.0*p12[7] + g1**3.0/1296.0*p12[9]) + \
-           (g4/720*p12[6] + (g2*g2/1152.0+g1*g3/720)*p12[8] +
-            g1*g1*g2/1728.0*p12[10] + g1**4.0/31104.0*p12[12])
-    # Final normalization
-    totp = totp / sqrt(2*pi)/sig
-
-    def thefunc(x):
-        xn = (x-mu)/sig
-        return totp(xn)*exp(-xn*xn/2.0)
-    return thefunc
-
-
-def _circfuncs_common(samples, high, low):
-    samples = np.asarray(samples)
-    if samples.size == 0:
-        return np.nan, np.nan
-
-    ang = (samples - low)*2*pi / (high-low)
-    return samples, ang
-
-
-def circmean(samples, high=2*pi, low=0, axis=None):
-    """
-    Compute the circular mean for samples in a range.
-
-    Parameters
-    ----------
-    samples : array_like
-        Input array.
-    high : float or int, optional
-        High boundary for circular mean range.  Default is ``2*pi``.
-    low : float or int, optional
-        Low boundary for circular mean range.  Default is 0.
-    axis : int, optional
-        Axis along which means are computed.  The default is to compute
-        the mean of the flattened array.
-
-    Returns
-    -------
-    circmean : float
-        Circular mean.
-
-    """
-    samples, ang = _circfuncs_common(samples, high, low)
-    res = angle(np.mean(exp(1j*ang), axis=axis))
-    mask = res < 0
-    if (mask.ndim > 0):
-        res[mask] += 2*pi
-    elif mask:
-        res = res + 2*pi
-
-    return res*(high-low)/2.0/pi + low
-
-
-def circvar(samples, high=2*pi, low=0, axis=None):
-    """
-    Compute the circular variance for samples assumed to be in a range
-
-    Parameters
-    ----------
-    samples : array_like
-        Input array.
-    low : float or int, optional
-        Low boundary for circular variance range.  Default is 0.
-    high : float or int, optional
-        High boundary for circular variance range.  Default is ``2*pi``.
-    axis : int, optional
-        Axis along which variances are computed.  The default is to compute
-        the variance of the flattened array.
-
-    Returns
-    -------
-    circvar : float
-        Circular variance.
-
-    Notes
-    -----
-    This uses a definition of circular variance that in the limit of small
-    angles returns a number close to the 'linear' variance.
-
-    """
-    samples, ang = _circfuncs_common(samples, high, low)
-    res = np.mean(exp(1j*ang), axis=axis)
-    R = abs(res)
-    return ((high-low)/2.0/pi)**2 * 2 * log(1/R)
-
-
-def circstd(samples, high=2*pi, low=0, axis=None):
-    """
-    Compute the circular standard deviation for samples assumed to be in the
-    range [low to high].
-
-    Parameters
-    ----------
-    samples : array_like
-        Input array.
-    low : float or int, optional
-        Low boundary for circular standard deviation range.  Default is 0.
-    high : float or int, optional
-        High boundary for circular standard deviation range.
-        Default is ``2*pi``.
-    axis : int, optional
-        Axis along which standard deviations are computed.  The default is
-        to compute the standard deviation of the flattened array.
-
-    Returns
-    -------
-    circstd : float
-        Circular standard deviation.
-
-    Notes
-    -----
-    This uses a definition of circular standard deviation that in the limit of
-    small angles returns a number close to the 'linear' standard deviation.
-
-    """
-    samples, ang = _circfuncs_common(samples, high, low)
-    res = np.mean(exp(1j*ang), axis=axis)
-    R = abs(res)
-    return ((high-low)/2.0/pi) * sqrt(-2*log(R))
-
-
-# Tests to include (from R) -- some of these already in stats.
-########
-# X Ansari-Bradley
-# X Bartlett (and Levene)
-# X Binomial
-# Y Pearson's Chi-squared (stats.chisquare)
-# Y Association Between Paired samples (stats.pearsonr, stats.spearmanr)
-#                       stats.kendalltau) -- these need work though
-# Fisher's exact test
-# X Fligner-Killeen Test
-# Y Friedman Rank Sum (stats.friedmanchisquare?)
-# Y Kruskal-Wallis
-# Y Kolmogorov-Smirnov
-# Cochran-Mantel-Haenszel Chi-Squared for Count
-# McNemar's Chi-squared for Count
-# X Mood Two-Sample
-# X Test For Equal Means in One-Way Layout (see stats.ttest also)
-# Pairwise Comparisons of proportions
-# Pairwise t tests
-# Tabulate p values for pairwise comparisons
-# Pairwise Wilcoxon rank sum tests
-# Power calculations two sample test of prop.
-# Power calculations for one and two sample t tests
-# Equal or Given Proportions
-# Trend in Proportions
-# Quade Test
-# Y Student's T Test
-# Y F Test to compare two variances
-# XY Wilcoxon Rank Sum and Signed Rank Tests
diff --git a/wafo/stats/mstats.py b/wafo/stats/mstats.py
deleted file mode 100644
index c5b62cc..0000000
--- a/wafo/stats/mstats.py
+++ /dev/null
@@ -1,79 +0,0 @@
-"""
-===================================================================
-Statistical functions for masked arrays (:mod:`scipy.stats.mstats`)
-===================================================================
-
-.. currentmodule:: scipy.stats.mstats
-
-This module contains a large number of statistical functions that can
-be used with masked arrays.
-
-Most of these functions are similar to those in scipy.stats but might
-have small differences in the API or in the algorithm used. Since this
-is a relatively new package, some API changes are still possible.
-
-.. autosummary::
-   :toctree: generated/
-
-   argstoarray
-   betai
-   chisquare
-   count_tied_groups
-   describe
-   f_oneway
-   f_value_wilks_lambda
-   find_repeats
-   friedmanchisquare
-   kendalltau
-   kendalltau_seasonal
-   kruskalwallis
-   ks_twosamp
-   kurtosis
-   kurtosistest
-   linregress
-   mannwhitneyu
-   plotting_positions
-   mode
-   moment
-   mquantiles
-   msign
-   normaltest
-   obrientransform
-   pearsonr
-   plotting_positions
-   pointbiserialr
-   rankdata
-   scoreatpercentile
-   sem
-   signaltonoise
-   skew
-   skewtest
-   spearmanr
-   theilslopes
-   threshold
-   tmax
-   tmean
-   tmin
-   trim
-   trima
-   trimboth
-   trimmed_stde
-   trimr
-   trimtail
-   tsem
-   ttest_onesamp
-   ttest_ind
-   ttest_onesamp
-   ttest_rel
-   tvar
-   variation
-   winsorize
-   zmap
-   zscore
-
-"""
-from __future__ import division, print_function, absolute_import
-
-from .mstats_basic import *
-from .mstats_extras import *
-from scipy.stats import gmean, hmean
diff --git a/wafo/stats/mstats_basic.py b/wafo/stats/mstats_basic.py
deleted file mode 100644
index 35de9e1..0000000
--- a/wafo/stats/mstats_basic.py
+++ /dev/null
@@ -1,2027 +0,0 @@
-"""
-An extension of scipy.stats.stats to support masked arrays
-
-"""
-# Original author (2007): Pierre GF Gerard-Marchant
-
-# TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ?
-# TODO : ttest_rel looks botched:  what are x1,x2,v1,v2 for ?
-# TODO : reimplement ksonesamp
-
-from __future__ import division, print_function, absolute_import
-
-
-__all__ = ['argstoarray',
-           'betai',
-           'chisquare','count_tied_groups',
-           'describe',
-           'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare',
-           'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis',
-           'ks_twosamp','ks_2samp','kurtosis','kurtosistest',
-           'linregress',
-           'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign',
-           'normaltest',
-           'obrientransform',
-           'pearsonr','plotting_positions','pointbiserialr',
-           'rankdata',
-           'scoreatpercentile','sem',
-           'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr',
-           'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth',
-           'trimtail','trima','trimr','trimmed_mean','trimmed_std',
-           'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp',
-           'ttest_ind','ttest_rel','tvar',
-           'variation',
-           'winsorize',
-           'zmap', 'zscore'
-           ]
-
-import numpy as np
-from numpy import ndarray
-import numpy.ma as ma
-from numpy.ma import masked, nomask
-
-from scipy._lib.six import iteritems
-
-import itertools
-import warnings
-
-from . import stats
-from . import distributions
-import scipy.special as special
-from . import futil
-
-
-genmissingvaldoc = """
-
-    Notes
-    -----
-    Missing values are considered pair-wise: if a value is missing in x,
-    the corresponding value in y is masked.
-    """
-
-
-def _chk_asarray(a, axis):
-    # Always returns a masked array, raveled for axis=None
-    a = ma.asanyarray(a)
-    if axis is None:
-        a = ma.ravel(a)
-        outaxis = 0
-    else:
-        outaxis = axis
-    return a, outaxis
-
-
-def _chk2_asarray(a, b, axis):
-    a = ma.asanyarray(a)
-    b = ma.asanyarray(b)
-    if axis is None:
-        a = ma.ravel(a)
-        b = ma.ravel(b)
-        outaxis = 0
-    else:
-        outaxis = axis
-    return a, b, outaxis
-
-
-def _chk_size(a,b):
-    a = ma.asanyarray(a)
-    b = ma.asanyarray(b)
-    (na, nb) = (a.size, b.size)
-    if na != nb:
-        raise ValueError("The size of the input array should match!"
-                         " (%s <> %s)" % (na, nb))
-    return (a, b, na)
-
-
-def argstoarray(*args):
-    """
-    Constructs a 2D array from a group of sequences.
-
-    Sequences are filled with missing values to match the length of the longest
-    sequence.
-
-    Parameters
-    ----------
-    args : sequences
-        Group of sequences.
-
-    Returns
-    -------
-    argstoarray : MaskedArray
-        A ( `m` x `n` ) masked array, where `m` is the number of arguments and
-        `n` the length of the longest argument.
-
-    Notes
-    -----
-    `numpy.ma.row_stack` has identical behavior, but is called with a sequence
-    of sequences.
-
-    """
-    if len(args) == 1 and not isinstance(args[0], ndarray):
-        output = ma.asarray(args[0])
-        if output.ndim != 2:
-            raise ValueError("The input should be 2D")
-    else:
-        n = len(args)
-        m = max([len(k) for k in args])
-        output = ma.array(np.empty((n,m), dtype=float), mask=True)
-        for (k,v) in enumerate(args):
-            output[k,:len(v)] = v
-
-    output[np.logical_not(np.isfinite(output._data))] = masked
-    return output
-
-
-def find_repeats(arr):
-    """Find repeats in arr and return a tuple (repeats, repeat_count).
-    Masked values are discarded.
-
-    Parameters
-    ----------
-    arr : sequence
-        Input array. The array is flattened if it is not 1D.
-
-    Returns
-    -------
-    repeats : ndarray
-        Array of repeated values.
-    counts : ndarray
-        Array of counts.
-
-    """
-    marr = ma.compressed(arr)
-    if not marr.size:
-        return (np.array(0), np.array(0))
-
-    (v1, v2, n) = futil.dfreps(ma.array(ma.compressed(arr), copy=True))
-    return (v1[:n], v2[:n])
-
-
-def count_tied_groups(x, use_missing=False):
-    """
-    Counts the number of tied values.
-
-    Parameters
-    ----------
-    x : sequence
-        Sequence of data on which to counts the ties
-    use_missing : boolean
-        Whether to consider missing values as tied.
-
-    Returns
-    -------
-    count_tied_groups : dict
-        Returns a dictionary (nb of ties: nb of groups).
-
-    Examples
-    --------
-    >>> from scipy.stats import mstats
-    >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
-    >>> mstats.count_tied_groups(z)
-    {2: 1, 3: 2}
-
-    In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).
-
-    >>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
-    >>> mstats.count_tied_groups(z)
-    {2: 2, 3: 1}
-    >>> z[[1,-1]] = np.ma.masked
-    >>> mstats.count_tied_groups(z, use_missing=True)
-    {2: 2, 3: 1}
-
-    """
-    nmasked = ma.getmask(x).sum()
-    # We need the copy as find_repeats will overwrite the initial data
-    data = ma.compressed(x).copy()
-    (ties, counts) = find_repeats(data)
-    nties = {}
-    if len(ties):
-        nties = dict(zip(np.unique(counts), itertools.repeat(1)))
-        nties.update(dict(zip(*find_repeats(counts))))
-
-    if nmasked and use_missing:
-        try:
-            nties[nmasked] += 1
-        except KeyError:
-            nties[nmasked] = 1
-
-    return nties
-
-
-def rankdata(data, axis=None, use_missing=False):
-    """Returns the rank (also known as order statistics) of each data point
-    along the given axis.
-
-    If some values are tied, their rank is averaged.
-    If some values are masked, their rank is set to 0 if use_missing is False,
-    or set to the average rank of the unmasked values if use_missing is True.
-
-    Parameters
-    ----------
-    data : sequence
-        Input data. The data is transformed to a masked array
-    axis : {None,int}, optional
-        Axis along which to perform the ranking.
-        If None, the array is first flattened. An exception is raised if
-        the axis is specified for arrays with a dimension larger than 2
-    use_missing : {boolean}, optional
-        Whether the masked values have a rank of 0 (False) or equal to the
-        average rank of the unmasked values (True).
-
-    """
-    def _rank1d(data, use_missing=False):
-        n = data.count()
-        rk = np.empty(data.size, dtype=float)
-        idx = data.argsort()
-        rk[idx[:n]] = np.arange(1,n+1)
-
-        if use_missing:
-            rk[idx[n:]] = (n+1)/2.
-        else:
-            rk[idx[n:]] = 0
-
-        repeats = find_repeats(data.copy())
-        for r in repeats[0]:
-            condition = (data == r).filled(False)
-            rk[condition] = rk[condition].mean()
-        return rk
-
-    data = ma.array(data, copy=False)
-    if axis is None:
-        if data.ndim > 1:
-            return _rank1d(data.ravel(), use_missing).reshape(data.shape)
-        else:
-            return _rank1d(data, use_missing)
-    else:
-        return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray)
-
-
-def mode(a, axis=0):
-    a, axis = _chk_asarray(a, axis)
-
-    def _mode1D(a):
-        (rep,cnt) = find_repeats(a)
-        if not cnt.ndim:
-            return (0, 0)
-        elif cnt.size:
-            return (rep[cnt.argmax()], cnt.max())
-        else:
-            not_masked_indices = ma.flatnotmasked_edges(a)
-            first_not_masked_index = not_masked_indices[0]
-            return (a[first_not_masked_index], 1)
-
-    if axis is None:
-        output = _mode1D(ma.ravel(a))
-        output = (ma.array(output[0]), ma.array(output[1]))
-    else:
-        output = ma.apply_along_axis(_mode1D, axis, a)
-        newshape = list(a.shape)
-        newshape[axis] = 1
-        slices = [slice(None)] * output.ndim
-        slices[axis] = 0
-        modes = output[tuple(slices)].reshape(newshape)
-        slices[axis] = 1
-        counts = output[tuple(slices)].reshape(newshape)
-        output = (modes, counts)
-    return output
-mode.__doc__ = stats.mode.__doc__
-
-
-def betai(a, b, x):
-    x = np.asanyarray(x)
-    x = ma.where(x < 1.0, x, 1.0)  # if x > 1 then return 1.0
-    return special.betainc(a, b, x)
-betai.__doc__ = stats.betai.__doc__
-
-
-def msign(x):
-    """Returns the sign of x, or 0 if x is masked."""
-    return ma.filled(np.sign(x), 0)
-
-
-def pearsonr(x,y):
-    """
-    Calculates a Pearson correlation coefficient and the p-value for testing
-    non-correlation.
-
-    The Pearson correlation coefficient measures the linear relationship
-    between two datasets. Strictly speaking, Pearson's correlation requires
-    that each dataset be normally distributed. Like other correlation
-    coefficients, this one varies between -1 and +1 with 0 implying no
-    correlation. Correlations of -1 or +1 imply an exact linear
-    relationship. Positive correlations imply that as `x` increases, so does
-    `y`. Negative correlations imply that as `x` increases, `y` decreases.
-
-    The p-value roughly indicates the probability of an uncorrelated system
-    producing datasets that have a Pearson correlation at least as extreme
-    as the one computed from these datasets. The p-values are not entirely
-    reliable but are probably reasonable for datasets larger than 500 or so.
-
-    Parameters
-    ----------
-    x : 1-D array_like
-        Input
-    y : 1-D array_like
-        Input
-
-    Returns
-    -------
-    pearsonr : float
-        Pearson's correlation coefficient, 2-tailed p-value.
-
-    References
-    ----------
-    http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
-
-    """
-    (x, y, n) = _chk_size(x, y)
-    (x, y) = (x.ravel(), y.ravel())
-    # Get the common mask and the total nb of unmasked elements
-    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
-    n -= m.sum()
-    df = n-2
-    if df < 0:
-        return (masked, masked)
-
-    (mx, my) = (x.mean(), y.mean())
-    (xm, ym) = (x-mx, y-my)
-
-    r_num = ma.add.reduce(xm*ym)
-    r_den = ma.sqrt(ma.dot(xm,xm) * ma.dot(ym,ym))
-    r = r_num / r_den
-    # Presumably, if r > 1, then it is only some small artifact of floating
-    # point arithmetic.
-    r = min(r, 1.0)
-    r = max(r, -1.0)
-    df = n - 2
-
-    if r is masked or abs(r) == 1.0:
-        prob = 0.
-    else:
-        t_squared = (df / ((1.0 - r) * (1.0 + r))) * r * r
-        prob = betai(0.5*df, 0.5, df/(df + t_squared))
-
-    return r, prob
-
-
-def spearmanr(x, y, use_ties=True):
-    """
-    Calculates a Spearman rank-order correlation coefficient and the p-value
-    to test for non-correlation.
-
-    The Spearman correlation is a nonparametric measure of the linear
-    relationship between two datasets. Unlike the Pearson correlation, the
-    Spearman correlation does not assume that both datasets are normally
-    distributed. Like other correlation coefficients, this one varies
-    between -1 and +1 with 0 implying no correlation. Correlations of -1 or
-    +1 imply an exact linear relationship. Positive correlations imply that
-    as `x` increases, so does `y`. Negative correlations imply that as `x`
-    increases, `y` decreases.
-
-    Missing values are discarded pair-wise: if a value is missing in `x`, the
-    corresponding value in `y` is masked.
-
-    The p-value roughly indicates the probability of an uncorrelated system
-    producing datasets that have a Spearman correlation at least as extreme
-    as the one computed from these datasets. The p-values are not entirely
-    reliable but are probably reasonable for datasets larger than 500 or so.
-
-    Parameters
-    ----------
-    x : array_like
-        The length of `x` must be > 2.
-    y : array_like
-        The length of `y` must be > 2.
-    use_ties : bool, optional
-        Whether the correction for ties should be computed.
-
-    Returns
-    -------
-    spearmanr : float
-        Spearman correlation coefficient, 2-tailed p-value.
-
-    References
-    ----------
-    [CRCProbStat2000] section 14.7
-
-    """
-    (x, y, n) = _chk_size(x, y)
-    (x, y) = (x.ravel(), y.ravel())
-
-    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
-    n -= m.sum()
-    if m is not nomask:
-        x = ma.array(x, mask=m, copy=True)
-        y = ma.array(y, mask=m, copy=True)
-    df = n-2
-    if df < 0:
-        raise ValueError("The input must have at least 3 entries!")
-
-    # Gets the ranks and rank differences
-    rankx = rankdata(x)
-    ranky = rankdata(y)
-    dsq = np.add.reduce((rankx-ranky)**2)
-    # Tie correction
-    if use_ties:
-        xties = count_tied_groups(x)
-        yties = count_tied_groups(y)
-        corr_x = np.sum(v*k*(k**2-1) for (k,v) in iteritems(xties))/12.
-        corr_y = np.sum(v*k*(k**2-1) for (k,v) in iteritems(yties))/12.
-    else:
-        corr_x = corr_y = 0
-
-    denom = n*(n**2 - 1)/6.
-    if corr_x != 0 or corr_y != 0:
-        rho = denom - dsq - corr_x - corr_y
-        rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y))
-    else:
-        rho = 1. - dsq/denom
-
-    t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho
-    if t is masked:
-        prob = 0.
-    else:
-        prob = betai(0.5*df,0.5,df/(df+t*t))
-
-    return rho, prob
-
-
-def kendalltau(x, y, use_ties=True, use_missing=False):
-    """
-    Computes Kendall's rank correlation tau on two variables *x* and *y*.
-
-    Parameters
-    ----------
-    xdata : sequence
-        First data list (for example, time).
-    ydata : sequence
-        Second data list.
-    use_ties : {True, False}, optional
-        Whether ties correction should be performed.
-    use_missing : {False, True}, optional
-        Whether missing data should be allocated a rank of 0 (False) or the
-        average rank (True)
-
-    Returns
-    -------
-    tau : float
-        Kendall tau
-    prob : float
-        Approximate 2-side p-value.
-
-    """
-    (x, y, n) = _chk_size(x, y)
-    (x, y) = (x.flatten(), y.flatten())
-    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
-    if m is not nomask:
-        x = ma.array(x, mask=m, copy=True)
-        y = ma.array(y, mask=m, copy=True)
-        n -= m.sum()
-
-    if n < 2:
-        return (np.nan, np.nan)
-
-    rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0)
-    ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0)
-    idx = rx.argsort()
-    (rx, ry) = (rx[idx], ry[idx])
-    C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum()
-                for i in range(len(ry)-1)], dtype=float)
-    D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum()
-                for i in range(len(ry)-1)], dtype=float)
-    if use_ties:
-        xties = count_tied_groups(x)
-        yties = count_tied_groups(y)
-        corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float)
-        corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float)
-        denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.)
-    else:
-        denom = n*(n-1)/2.
-    tau = (C-D) / denom
-
-    var_s = n*(n-1)*(2*n+5)
-    if use_ties:
-        var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties))
-        var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties))
-        v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\
-             np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float)
-        v1 /= 2.*n*(n-1)
-        if n > 2:
-            v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)],
-                        dtype=float) * \
-                 np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)],
-                        dtype=float)
-            v2 /= 9.*n*(n-1)*(n-2)
-        else:
-            v2 = 0
-    else:
-        v1 = v2 = 0
-
-    var_s /= 18.
-    var_s += (v1 + v2)
-    z = (C-D)/np.sqrt(var_s)
-    prob = special.erfc(abs(z)/np.sqrt(2))
-    return (tau, prob)
-
-
-def kendalltau_seasonal(x):
-    """
-    Computes a multivariate Kendall's rank correlation tau, for seasonal data.
-
-    Parameters
-    ----------
-    x : 2-D ndarray
-        Array of seasonal data, with seasons in columns.
-
-    """
-    x = ma.array(x, subok=True, copy=False, ndmin=2)
-    (n,m) = x.shape
-    n_p = x.count(0)
-
-    S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n))
-    S_tot = S_szn.sum()
-
-    n_tot = x.count()
-    ties = count_tied_groups(x.compressed())
-    corr_ties = np.sum(v*k*(k-1) for (k,v) in iteritems(ties))
-    denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2.
-
-    R = rankdata(x, axis=0, use_missing=True)
-    K = ma.empty((m,m), dtype=int)
-    covmat = ma.empty((m,m), dtype=float)
-    denom_szn = ma.empty(m, dtype=float)
-    for j in range(m):
-        ties_j = count_tied_groups(x[:,j].compressed())
-        corr_j = np.sum(v*k*(k-1) for (k,v) in iteritems(ties_j))
-        cmb = n_p[j]*(n_p[j]-1)
-        for k in range(j,m,1):
-            K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum()
-                               for i in range(n))
-            covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() -
-                           n*(n_p[j]+1)*(n_p[k]+1))/3.
-            K[k,j] = K[j,k]
-            covmat[k,j] = covmat[j,k]
-
-        denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2.
-
-    var_szn = covmat.diagonal()
-
-    z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn)
-    z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum())
-    z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum())
-
-    prob_szn = special.erfc(abs(z_szn)/np.sqrt(2))
-    prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2))
-    prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2))
-
-    chi2_tot = (z_szn*z_szn).sum()
-    chi2_trd = m * z_szn.mean()**2
-    output = {'seasonal tau': S_szn/denom_szn,
-              'global tau': S_tot/denom_tot,
-              'global tau (alt)': S_tot/denom_szn.sum(),
-              'seasonal p-value': prob_szn,
-              'global p-value (indep)': prob_tot_ind,
-              'global p-value (dep)': prob_tot_dep,
-              'chi2 total': chi2_tot,
-              'chi2 trend': chi2_trd,
-              }
-    return output
-
-
-def pointbiserialr(x, y):
-    x = ma.fix_invalid(x, copy=True).astype(bool)
-    y = ma.fix_invalid(y, copy=True).astype(float)
-    # Get rid of the missing data
-    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
-    if m is not nomask:
-        unmask = np.logical_not(m)
-        x = x[unmask]
-        y = y[unmask]
-
-    n = len(x)
-    # phat is the fraction of x values that are True
-    phat = x.sum() / float(n)
-    y0 = y[~x]  # y-values where x is False
-    y1 = y[x]  # y-values where x is True
-    y0m = y0.mean()
-    y1m = y1.mean()
-
-    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
-
-    df = n-2
-    t = rpb*ma.sqrt(df/(1.0-rpb**2))
-    prob = betai(0.5*df, 0.5, df/(df+t*t))
-    return rpb, prob
-
-if stats.pointbiserialr.__doc__:
-    pointbiserialr.__doc__ = stats.pointbiserialr.__doc__ + genmissingvaldoc
-
-
-def linregress(*args):
-    """
-    Linear regression calculation
-
-    Note that the non-masked version is used, and that this docstring is
-    replaced by the non-masked docstring + some info on missing data.
-
-    """
-    if len(args) == 1:
-        # Input is a single 2-D array containing x and y
-        args = ma.array(args[0], copy=True)
-        if len(args) == 2:
-            x = args[0]
-            y = args[1]
-        else:
-            x = args[:, 0]
-            y = args[:, 1]
-    else:
-        # Input is two 1-D arrays
-        x = ma.array(args[0]).flatten()
-        y = ma.array(args[1]).flatten()
-
-    m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
-    if m is not nomask:
-        x = ma.array(x, mask=m)
-        y = ma.array(y, mask=m)
-        if np.any(~m):
-            slope, intercept, r, prob, sterrest = stats.linregress(x.data[~m],
-                                                                   y.data[~m])
-        else:
-            # All data is masked
-            return None, None, None, None, None
-    else:
-        slope, intercept, r, prob, sterrest = stats.linregress(x.data, y.data)
-
-    return slope, intercept, r, prob, sterrest
-
-if stats.linregress.__doc__:
-    linregress.__doc__ = stats.linregress.__doc__ + genmissingvaldoc
-
-
-def theilslopes(y, x=None, alpha=0.95):
-    y = ma.asarray(y).flatten()
-    if x is None:
-        x = ma.arange(len(y), dtype=float)
-    else:
-        x = ma.asarray(x).flatten()
-        if len(x) != len(y):
-            raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x)))
-
-    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
-    y._mask = x._mask = m
-    # Disregard any masked elements of x or y
-    y = y.compressed()
-    x = x.compressed().astype(float)
-    # We now have unmasked arrays so can use `stats.theilslopes`
-    return stats.theilslopes(y, x, alpha=alpha)
-theilslopes.__doc__ = stats.theilslopes.__doc__
-
-
-def sen_seasonal_slopes(x):
-    x = ma.array(x, subok=True, copy=False, ndmin=2)
-    (n,_) = x.shape
-    # Get list of slopes per season
-    szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
-                            for i in range(n)])
-    szn_medslopes = ma.median(szn_slopes, axis=0)
-    medslope = ma.median(szn_slopes, axis=None)
-    return szn_medslopes, medslope
-
-
-def ttest_1samp(a, popmean, axis=0):
-    a, axis = _chk_asarray(a, axis)
-    if a.size == 0:
-        return (np.nan, np.nan)
-
-    x = a.mean(axis=axis)
-    v = a.var(axis=axis, ddof=1)
-    n = a.count(axis=axis)
-    df = n - 1.
-    svar = ((n - 1) * v) / df
-    t = (x - popmean) / ma.sqrt(svar / n)
-    prob = betai(0.5 * df, 0.5, df / (df + t*t))
-    return t, prob
-ttest_1samp.__doc__ = stats.ttest_1samp.__doc__
-ttest_onesamp = ttest_1samp
-
-
-def ttest_ind(a, b, axis=0):
-    a, b, axis = _chk2_asarray(a, b, axis)
-    if a.size == 0 or b.size == 0:
-        return (np.nan, np.nan)
-
-    (x1, x2) = (a.mean(axis), b.mean(axis))
-    (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
-    (n1, n2) = (a.count(axis), b.count(axis))
-    df = n1 + n2 - 2.
-    svar = ((n1-1)*v1+(n2-1)*v2) / df
-    t = (x1-x2)/ma.sqrt(svar*(1.0/n1 + 1.0/n2))  # n-D computation here!
-    t = ma.filled(t, 1)           # replace NaN t-values with 1.0
-    probs = betai(0.5 * df, 0.5, df/(df + t*t)).reshape(t.shape)
-    return t, probs.squeeze()
-ttest_ind.__doc__ = stats.ttest_ind.__doc__
-
-
-def ttest_rel(a, b, axis=0):
-    a, b, axis = _chk2_asarray(a, b, axis)
-    if len(a) != len(b):
-        raise ValueError('unequal length arrays')
-
-    if a.size == 0 or b.size == 0:
-        return (np.nan, np.nan)
-
-    (x1, x2) = (a.mean(axis), b.mean(axis))
-    (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
-    n = a.count(axis)
-    df = (n-1.0)
-    d = (a-b).astype('d')
-    denom = ma.sqrt((n*ma.add.reduce(d*d,axis) - ma.add.reduce(d,axis)**2) / df)
-    t = ma.add.reduce(d, axis) / denom
-    t = ma.filled(t, 1)
-    probs = betai(0.5*df,0.5,df/(df+t*t)).reshape(t.shape).squeeze()
-    return t, probs
-ttest_rel.__doc__ = stats.ttest_rel.__doc__
-
-
-# stats.chisquare works with masked arrays, so we don't need to
-# implement it here.
-# For backwards compatibilty, stats.chisquare is included in
-# the stats.mstats namespace.
-chisquare = stats.chisquare
-
-
-def mannwhitneyu(x,y, use_continuity=True):
-    """
-    Computes the Mann-Whitney statistic
-
-    Missing values in `x` and/or `y` are discarded.
-
-    Parameters
-    ----------
-    x : sequence
-        Input
-    y : sequence
-        Input
-    use_continuity : {True, False}, optional
-        Whether a continuity correction (1/2.) should be taken into account.
-
-    Returns
-    -------
-    u : float
-        The Mann-Whitney statistics
-    prob : float
-        Approximate p-value assuming a normal distribution.
-
-    """
-    x = ma.asarray(x).compressed().view(ndarray)
-    y = ma.asarray(y).compressed().view(ndarray)
-    ranks = rankdata(np.concatenate([x,y]))
-    (nx, ny) = (len(x), len(y))
-    nt = nx + ny
-    U = ranks[:nx].sum() - nx*(nx+1)/2.
-    U = max(U, nx*ny - U)
-    u = nx*ny - U
-
-    mu = (nx*ny)/2.
-    sigsq = (nt**3 - nt)/12.
-    ties = count_tied_groups(ranks)
-    sigsq -= np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/12.
-    sigsq *= nx*ny/float(nt*(nt-1))
-
-    if use_continuity:
-        z = (U - 1/2. - mu) / ma.sqrt(sigsq)
-    else:
-        z = (U - mu) / ma.sqrt(sigsq)
-
-    prob = special.erfc(abs(z)/np.sqrt(2))
-    return (u, prob)
-
-
-def kruskalwallis(*args):
-    output = argstoarray(*args)
-    ranks = ma.masked_equal(rankdata(output, use_missing=False), 0)
-    sumrk = ranks.sum(-1)
-    ngrp = ranks.count(-1)
-    ntot = ranks.count()
-    H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1)
-    # Tie correction
-    ties = count_tied_groups(ranks)
-    T = 1. - np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot)
-    if T == 0:
-        raise ValueError('All numbers are identical in kruskal')
-
-    H /= T
-    df = len(output) - 1
-    prob = stats.chisqprob(H,df)
-    return (H, prob)
-kruskal = kruskalwallis
-kruskalwallis.__doc__ = stats.kruskal.__doc__
-
-
-def ks_twosamp(data1, data2, alternative="two-sided"):
-    """
-    Computes the Kolmogorov-Smirnov test on two samples.
-
-    Missing values are discarded.
-
-    Parameters
-    ----------
-    data1 : array_like
-        First data set
-    data2 : array_like
-        Second data set
-    alternative : {'two-sided', 'less', 'greater'}, optional
-        Indicates the alternative hypothesis.  Default is 'two-sided'.
-
-    Returns
-    -------
-    d : float
-        Value of the Kolmogorov Smirnov test
-    p : float
-        Corresponding p-value.
-
-    """
-    (data1, data2) = (ma.asarray(data1), ma.asarray(data2))
-    (n1, n2) = (data1.count(), data2.count())
-    n = (n1*n2/float(n1+n2))
-    mix = ma.concatenate((data1.compressed(), data2.compressed()))
-    mixsort = mix.argsort(kind='mergesort')
-    csum = np.where(mixsort < n1, 1./n1, -1./n2).cumsum()
-    # Check for ties
-    if len(np.unique(mix)) < (n1+n2):
-        csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]]
-
-    alternative = str(alternative).lower()[0]
-    if alternative == 't':
-        d = ma.abs(csum).max()
-        prob = special.kolmogorov(np.sqrt(n)*d)
-    elif alternative == 'l':
-        d = -csum.min()
-        prob = np.exp(-2*n*d**2)
-    elif alternative == 'g':
-        d = csum.max()
-        prob = np.exp(-2*n*d**2)
-    else:
-        raise ValueError("Invalid value for the alternative hypothesis: "
-                         "should be in 'two-sided', 'less' or 'greater'")
-
-    return (d, prob)
-ks_2samp = ks_twosamp
-
-
-def ks_twosamp_old(data1, data2):
-    """ Computes the Kolmogorov-Smirnov statistic on 2 samples.
-
-    Returns
-    -------
-    KS D-value, p-value
-
-    """
-    (data1, data2) = [ma.asarray(d).compressed() for d in (data1,data2)]
-    return stats.ks_2samp(data1,data2)
-
-
-def threshold(a, threshmin=None, threshmax=None, newval=0):
-    """
-    Clip array to a given value.
-
-    Similar to numpy.clip(), except that values less than `threshmin` or
-    greater than `threshmax` are replaced by `newval`, instead of by
-    `threshmin` and `threshmax` respectively.
-
-    Parameters
-    ----------
-    a : ndarray
-        Input data
-    threshmin : {None, float}, optional
-        Lower threshold. If None, set to the minimum value.
-    threshmax : {None, float}, optional
-        Upper threshold. If None, set to the maximum value.
-    newval : {0, float}, optional
-        Value outside the thresholds.
-
-    Returns
-    -------
-    threshold : ndarray
-        Returns `a`, with values less then `threshmin` and values greater
-        `threshmax` replaced with `newval`.
-
-    """
-    a = ma.array(a, copy=True)
-    mask = np.zeros(a.shape, dtype=bool)
-    if threshmin is not None:
-        mask |= (a < threshmin).filled(False)
-
-    if threshmax is not None:
-        mask |= (a > threshmax).filled(False)
-
-    a[mask] = newval
-    return a
-
-
-def trima(a, limits=None, inclusive=(True,True)):
-    """
-    Trims an array by masking the data outside some given limits.
-
-    Returns a masked version of the input array.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-    limits : {None, tuple}, optional
-        Tuple of (lower limit, upper limit) in absolute values.
-        Values of the input array lower (greater) than the lower (upper) limit
-        will be masked.  A limit is None indicates an open interval.
-    inclusive : (bool, bool) tuple, optional
-        Tuple of (lower flag, upper flag), indicating whether values exactly
-        equal to the lower (upper) limit are allowed.
-
-    """
-    a = ma.asarray(a)
-    a.unshare_mask()
-    if (limits is None) or (limits == (None, None)):
-        return a
-
-    (lower_lim, upper_lim) = limits
-    (lower_in, upper_in) = inclusive
-    condition = False
-    if lower_lim is not None:
-        if lower_in:
-            condition |= (a < lower_lim)
-        else:
-            condition |= (a <= lower_lim)
-
-    if upper_lim is not None:
-        if upper_in:
-            condition |= (a > upper_lim)
-        else:
-            condition |= (a >= upper_lim)
-
-    a[condition.filled(True)] = masked
-    return a
-
-
-def trimr(a, limits=None, inclusive=(True, True), axis=None):
-    """
-    Trims an array by masking some proportion of the data on each end.
-    Returns a masked version of the input array.
-
-    Parameters
-    ----------
-    a : sequence
-        Input array.
-    limits : {None, tuple}, optional
-        Tuple of the percentages to cut on each side of the array, with respect
-        to the number of unmasked data, as floats between 0. and 1.
-        Noting n the number of unmasked data before trimming, the
-        (n*limits[0])th smallest data and the (n*limits[1])th largest data are
-        masked, and the total number of unmasked data after trimming is
-        n*(1.-sum(limits)).  The value of one limit can be set to None to
-        indicate an open interval.
-    inclusive : {(True,True) tuple}, optional
-        Tuple of flags indicating whether the number of data being masked on
-        the left (right) end should be truncated (True) or rounded (False) to
-        integers.
-    axis : {None,int}, optional
-        Axis along which to trim. If None, the whole array is trimmed, but its
-        shape is maintained.
-
-    """
-    def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
-        n = a.count()
-        idx = a.argsort()
-        if low_limit:
-            if low_inclusive:
-                lowidx = int(low_limit*n)
-            else:
-                lowidx = np.round(low_limit*n)
-            a[idx[:lowidx]] = masked
-        if up_limit is not None:
-            if up_inclusive:
-                upidx = n - int(n*up_limit)
-            else:
-                upidx = n - np.round(n*up_limit)
-            a[idx[upidx:]] = masked
-        return a
-
-    a = ma.asarray(a)
-    a.unshare_mask()
-    if limits is None:
-        return a
-
-    # Check the limits
-    (lolim, uplim) = limits
-    errmsg = "The proportion to cut from the %s should be between 0. and 1."
-    if lolim is not None:
-        if lolim > 1. or lolim < 0:
-            raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
-    if uplim is not None:
-        if uplim > 1. or uplim < 0:
-            raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
-
-    (loinc, upinc) = inclusive
-
-    if axis is None:
-        shp = a.shape
-        return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
-    else:
-        return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc)
-
-trimdoc = """
-    Parameters
-    ----------
-    a : sequence
-        Input array
-    limits : {None, tuple}, optional
-        If `relative` is False, tuple (lower limit, upper limit) in absolute values.
-        Values of the input array lower (greater) than the lower (upper) limit are
-        masked.
-
-        If `relative` is True, tuple (lower percentage, upper percentage) to cut
-        on each side of the  array, with respect to the number of unmasked data.
-
-        Noting n the number of unmasked data before trimming, the (n*limits[0])th
-        smallest data and the (n*limits[1])th largest data are masked, and the
-        total number of unmasked data after trimming is n*(1.-sum(limits))
-        In each case, the value of one limit can be set to None to indicate an
-        open interval.
-
-        If limits is None, no trimming is performed
-    inclusive : {(bool, bool) tuple}, optional
-        If `relative` is False, tuple indicating whether values exactly equal
-        to the absolute limits are allowed.
-        If `relative` is True, tuple indicating whether the number of data
-        being masked on each side should be rounded (True) or truncated
-        (False).
-    relative : bool, optional
-        Whether to consider the limits as absolute values (False) or proportions
-        to cut (True).
-    axis : int, optional
-        Axis along which to trim.
-"""
-
-
-def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None):
-    """
-    Trims an array by masking the data outside some given limits.
-
-    Returns a masked version of the input array.
-
-    %s
-
-    Examples
-    --------
-    >>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
-    >>> trim(z,(3,8))
-    [--,--, 3, 4, 5, 6, 7, 8,--,--]
-    >>> trim(z,(0.1,0.2),relative=True)
-    [--, 2, 3, 4, 5, 6, 7, 8,--,--]
-
-    """
-    if relative:
-        return trimr(a, limits=limits, inclusive=inclusive, axis=axis)
-    else:
-        return trima(a, limits=limits, inclusive=inclusive)
-
-if trim.__doc__ is not None:
-    trim.__doc__ = trim.__doc__ % trimdoc
-
-
-def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None):
-    """
-    Trims the smallest and largest data values.
-
-    Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and
-    ``int(proportiontocut * n)`` largest values of data along the given axis,
-    where n is the number of unmasked values before trimming.
-
-    Parameters
-    ----------
-    data : ndarray
-        Data to trim.
-    proportiontocut : float, optional
-        Percentage of trimming (as a float between 0 and 1).
-        If n is the number of unmasked values before trimming, the number of
-        values after trimming is ``(1 - 2*proportiontocut) * n``.
-        Default is 0.2.
-    inclusive : {(bool, bool) tuple}, optional
-        Tuple indicating whether the number of data being masked on each side
-        should be rounded (True) or truncated (False).
-    axis : int, optional
-        Axis along which to perform the trimming.
-        If None, the input array is first flattened.
-
-    """
-    return trimr(data, limits=(proportiontocut,proportiontocut),
-                 inclusive=inclusive, axis=axis)
-
-
-def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True),
-             axis=None):
-    """
-    Trims the data by masking values from one tail.
-
-    Parameters
-    ----------
-    data : array_like
-        Data to trim.
-    proportiontocut : float, optional
-        Percentage of trimming. If n is the number of unmasked values
-        before trimming, the number of values after trimming is
-        ``(1 - proportiontocut) * n``.  Default is 0.2.
-    tail : {'left','right'}, optional
-        If 'left' the `proportiontocut` lowest values will be masked.
-        If 'right' the `proportiontocut` highest values will be masked.
-        Default is 'left'.
-    inclusive : {(bool, bool) tuple}, optional
-        Tuple indicating whether the number of data being masked on each side
-        should be rounded (True) or truncated (False).  Default is
-        (True, True).
-    axis : int, optional
-        Axis along which to perform the trimming.
-        If None, the input array is first flattened.  Default is None.
-
-    Returns
-    -------
-    trimtail : ndarray
-        Returned array of same shape as `data` with masked tail values.
-
-    """
-    tail = str(tail).lower()[0]
-    if tail == 'l':
-        limits = (proportiontocut,None)
-    elif tail == 'r':
-        limits = (None, proportiontocut)
-    else:
-        raise TypeError("The tail argument should be in ('left','right')")
-
-    return trimr(data, limits=limits, axis=axis, inclusive=inclusive)
-
-trim1 = trimtail
-
-
-def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
-                 axis=None):
-    """Returns the trimmed mean of the data along the given axis.
-
-    %s
-
-    """ % trimdoc
-    if (not isinstance(limits,tuple)) and isinstance(limits,float):
-        limits = (limits, limits)
-    if relative:
-        return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis)
-    else:
-        return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis)
-
-
-def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
-                axis=None, ddof=0):
-    """Returns the trimmed variance of the data along the given axis.
-
-    %s
-    ddof : {0,integer}, optional
-        Means Delta Degrees of Freedom. The denominator used during computations
-        is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
-        biased estimate of the variance.
-
-    """ % trimdoc
-    if (not isinstance(limits,tuple)) and isinstance(limits,float):
-        limits = (limits, limits)
-    if relative:
-        out = trimr(a,limits=limits, inclusive=inclusive,axis=axis)
-    else:
-        out = trima(a,limits=limits,inclusive=inclusive)
-
-    return out.var(axis=axis, ddof=ddof)
-
-
-def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
-                axis=None, ddof=0):
-    """Returns the trimmed standard deviation of the data along the given axis.
-
-    %s
-    ddof : {0,integer}, optional
-        Means Delta Degrees of Freedom. The denominator used during computations
-        is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
-        biased estimate of the variance.
-
-    """ % trimdoc
-    if (not isinstance(limits,tuple)) and isinstance(limits,float):
-        limits = (limits, limits)
-    if relative:
-        out = trimr(a,limits=limits,inclusive=inclusive,axis=axis)
-    else:
-        out = trima(a,limits=limits,inclusive=inclusive)
-    return out.std(axis=axis,ddof=ddof)
-
-
-def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None):
-    """
-    Returns the standard error of the trimmed mean along the given axis.
-
-    Parameters
-    ----------
-    a : sequence
-        Input array
-    limits : {(0.1,0.1), tuple of float}, optional
-        tuple (lower percentage, upper percentage) to cut  on each side of the
-        array, with respect to the number of unmasked data.
-
-        If n is the number of unmasked data before trimming, the values
-        smaller than ``n * limits[0]`` and the values larger than
-        ``n * `limits[1]`` are masked, and the total number of unmasked
-        data after trimming is ``n * (1.-sum(limits))``.  In each case,
-        the value of one limit can be set to None to indicate an open interval.
-        If `limits` is None, no trimming is performed.
-    inclusive : {(bool, bool) tuple} optional
-        Tuple indicating whether the number of data being masked on each side
-        should be rounded (True) or truncated (False).
-    axis : int, optional
-        Axis along which to trim.
-
-    Returns
-    -------
-    trimmed_stde : scalar or ndarray
-
-    """
-    def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
-        "Returns the standard error of the trimmed mean for a 1D input data."
-        n = a.count()
-        idx = a.argsort()
-        if low_limit:
-            if low_inclusive:
-                lowidx = int(low_limit*n)
-            else:
-                lowidx = np.round(low_limit*n)
-            a[idx[:lowidx]] = masked
-        if up_limit is not None:
-            if up_inclusive:
-                upidx = n - int(n*up_limit)
-            else:
-                upidx = n - np.round(n*up_limit)
-            a[idx[upidx:]] = masked
-        a[idx[:lowidx]] = a[idx[lowidx]]
-        a[idx[upidx:]] = a[idx[upidx-1]]
-        winstd = a.std(ddof=1)
-        return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a)))
-
-    a = ma.array(a, copy=True, subok=True)
-    a.unshare_mask()
-    if limits is None:
-        return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis))
-    if (not isinstance(limits,tuple)) and isinstance(limits,float):
-        limits = (limits, limits)
-
-    # Check the limits
-    (lolim, uplim) = limits
-    errmsg = "The proportion to cut from the %s should be between 0. and 1."
-    if lolim is not None:
-        if lolim > 1. or lolim < 0:
-            raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
-    if uplim is not None:
-        if uplim > 1. or uplim < 0:
-            raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
-
-    (loinc, upinc) = inclusive
-    if (axis is None):
-        return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc)
-    else:
-        if a.ndim > 2:
-            raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim)
-        return ma.apply_along_axis(_trimmed_stde_1D, axis, a,
-                                   lolim,uplim,loinc,upinc)
-
-
-def tmean(a, limits=None, inclusive=(True,True)):
-    return trima(a, limits=limits, inclusive=inclusive).mean()
-tmean.__doc__ = stats.tmean.__doc__
-
-
-def tvar(a, limits=None, inclusive=(True,True)):
-    a = a.astype(float).ravel()
-    if limits is None:
-        n = (~a.mask).sum()  # todo: better way to do that?
-        r = trima(a, limits=limits, inclusive=inclusive).var() * (n/(n-1.))
-    else:
-        raise ValueError('mstats.tvar() with limits not implemented yet so far')
-
-    return r
-tvar.__doc__ = stats.tvar.__doc__
-
-
-def tmin(a, lowerlimit=None, axis=0, inclusive=True):
-    a, axis = _chk_asarray(a, axis)
-    am = trima(a, (lowerlimit, None), (inclusive, False))
-    return ma.minimum.reduce(am, axis)
-tmin.__doc__ = stats.tmin.__doc__
-
-
-def tmax(a, upperlimit, axis=0, inclusive=True):
-    a, axis = _chk_asarray(a, axis)
-    am = trima(a, (None, upperlimit), (False, inclusive))
-    return ma.maximum.reduce(am, axis)
-tmax.__doc__ = stats.tmax.__doc__
-
-
-def tsem(a, limits=None, inclusive=(True,True)):
-    a = ma.asarray(a).ravel()
-    if limits is None:
-        n = float(a.count())
-        return a.std(ddof=1)/ma.sqrt(n)
-
-    am = trima(a.ravel(), limits, inclusive)
-    sd = np.sqrt(am.var(ddof=1))
-    return sd / np.sqrt(am.count())
-tsem.__doc__ = stats.tsem.__doc__
-
-
-def winsorize(a, limits=None, inclusive=(True, True), inplace=False,
-              axis=None):
-    """Returns a Winsorized version of the input array.
-
-    The (limits[0])th lowest values are set to the (limits[0])th percentile,
-    and the (limits[1])th highest values are set to the (1 - limits[1])th
-    percentile.
-    Masked values are skipped.
-
-
-    Parameters
-    ----------
-    a : sequence
-        Input array.
-    limits : {None, tuple of float}, optional
-        Tuple of the percentages to cut on each side of the array, with respect
-        to the number of unmasked data, as floats between 0. and 1.
-        Noting n the number of unmasked data before trimming, the
-        (n*limits[0])th smallest data and the (n*limits[1])th largest data are
-        masked, and the total number of unmasked data after trimming
-        is n*(1.-sum(limits)) The value of one limit can be set to None to
-        indicate an open interval.
-    inclusive : {(True, True) tuple}, optional
-        Tuple indicating whether the number of data being masked on each side
-        should be rounded (True) or truncated (False).
-    inplace : {False, True}, optional
-        Whether to winsorize in place (True) or to use a copy (False)
-    axis : {None, int}, optional
-        Axis along which to trim. If None, the whole array is trimmed, but its
-        shape is maintained.
-
-    Notes
-    -----
-    This function is applied to reduce the effect of possibly spurious outliers
-    by limiting the extreme values.
-
-    """
-    def _winsorize1D(a, low_limit, up_limit, low_include, up_include):
-        n = a.count()
-        idx = a.argsort()
-        if low_limit:
-            if low_include:
-                lowidx = int(low_limit * n)
-            else:
-                lowidx = np.round(low_limit * n)
-            a[idx[:lowidx]] = a[idx[lowidx]]
-        if up_limit is not None:
-            if up_include:
-                upidx = n - int(n * up_limit)
-            else:
-                upidx = n - np.round(n * up_limit)
-            a[idx[upidx:]] = a[idx[upidx - 1]]
-        return a
-
-    # We are going to modify a: better make a copy
-    a = ma.array(a, copy=np.logical_not(inplace))
-
-    if limits is None:
-        return a
-    if (not isinstance(limits, tuple)) and isinstance(limits, float):
-        limits = (limits, limits)
-
-    # Check the limits
-    (lolim, uplim) = limits
-    errmsg = "The proportion to cut from the %s should be between 0. and 1."
-    if lolim is not None:
-        if lolim > 1. or lolim < 0:
-            raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
-    if uplim is not None:
-        if uplim > 1. or uplim < 0:
-            raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
-
-    (loinc, upinc) = inclusive
-
-    if axis is None:
-        shp = a.shape
-        return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc).reshape(shp)
-    else:
-        return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc,
-                                   upinc)
-
-
-def moment(a, moment=1, axis=0):
-    a, axis = _chk_asarray(a, axis)
-    if moment == 1:
-        # By definition the first moment about the mean is 0.
-        shape = list(a.shape)
-        del shape[axis]
-        if shape:
-            # return an actual array of the appropriate shape
-            return np.zeros(shape, dtype=float)
-        else:
-            # the input was 1D, so return a scalar instead of a rank-0 array
-            return np.float64(0.0)
-    else:
-        mn = ma.expand_dims(a.mean(axis=axis), axis)
-        s = ma.power((a-mn), moment)
-        return s.mean(axis=axis)
-moment.__doc__ = stats.moment.__doc__
-
-
-def variation(a, axis=0):
-    a, axis = _chk_asarray(a, axis)
-    return a.std(axis)/a.mean(axis)
-variation.__doc__ = stats.variation.__doc__
-
-
-def skew(a, axis=0, bias=True):
-    a, axis = _chk_asarray(a,axis)
-    n = a.count(axis)
-    m2 = moment(a, 2, axis)
-    m3 = moment(a, 3, axis)
-    olderr = np.seterr(all='ignore')
-    try:
-        vals = ma.where(m2 == 0, 0, m3 / m2**1.5)
-    finally:
-        np.seterr(**olderr)
-
-    if not bias:
-        can_correct = (n > 2) & (m2 > 0)
-        if can_correct.any():
-            m2 = np.extract(can_correct, m2)
-            m3 = np.extract(can_correct, m3)
-            nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
-            np.place(vals, can_correct, nval)
-    return vals
-skew.__doc__ = stats.skew.__doc__
-
-
-def kurtosis(a, axis=0, fisher=True, bias=True):
-    a, axis = _chk_asarray(a, axis)
-    m2 = moment(a, 2, axis)
-    m4 = moment(a, 4, axis)
-    olderr = np.seterr(all='ignore')
-    try:
-        vals = ma.where(m2 == 0, 0, m4 / m2**2.0)
-    finally:
-        np.seterr(**olderr)
-
-    if not bias:
-        n = a.count(axis)
-        can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0)
-        if can_correct.any():
-            n = np.extract(can_correct, n)
-            m2 = np.extract(can_correct, m2)
-            m4 = np.extract(can_correct, m4)
-            nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
-            np.place(vals, can_correct, nval+3.0)
-    if fisher:
-        return vals - 3
-    else:
-        return vals
-kurtosis.__doc__ = stats.kurtosis.__doc__
-
-
-def describe(a, axis=0,ddof=0):
-    """
-    Computes several descriptive statistics of the passed array.
-
-    Parameters
-    ----------
-    a : array
-
-    axis : int or None
-
-    ddof : int
-        degree of freedom (default 0); note that default ddof is different
-        from the same routine in stats.describe
-
-    Returns
-    -------
-    n : int
-        (size of the data (discarding missing values)
-    mm : (int, int)
-        min, max
-
-    arithmetic mean : float
-
-    unbiased variance : float
-
-    biased skewness : float
-
-    biased kurtosis : float
-
-    Examples
-    --------
-
-    >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
-    >>> describe(ma)
-    (array(3),
-     (0, 2),
-     1.0,
-     1.0,
-     masked_array(data = 0.0,
-                 mask = False,
-           fill_value = 1e+20)
-    ,
-     -1.5)
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = a.count(axis)
-    mm = (ma.minimum.reduce(a), ma.maximum.reduce(a))
-    m = a.mean(axis)
-    v = a.var(axis,ddof=ddof)
-    sk = skew(a, axis)
-    kurt = kurtosis(a, axis)
-    return n, mm, m, v, sk, kurt
-
-
-def stde_median(data, axis=None):
-    """Returns the McKean-Schrader estimate of the standard error of the sample
-    median along the given axis. masked values are discarded.
-
-    Parameters
-    ----------
-    data : ndarray
-        Data to trim.
-    axis : {None,int}, optional
-        Axis along which to perform the trimming.
-        If None, the input array is first flattened.
-
-    """
-    def _stdemed_1D(data):
-        data = np.sort(data.compressed())
-        n = len(data)
-        z = 2.5758293035489004
-        k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
-        return ((data[n-k] - data[k-1])/(2.*z))
-
-    data = ma.array(data, copy=False, subok=True)
-    if (axis is None):
-        return _stdemed_1D(data)
-    else:
-        if data.ndim > 2:
-            raise ValueError("Array 'data' must be at most two dimensional, "
-                             "but got data.ndim = %d" % data.ndim)
-        return ma.apply_along_axis(_stdemed_1D, axis, data)
-
-
-def skewtest(a, axis=0):
-    a, axis = _chk_asarray(a, axis)
-    if axis is None:
-        a = a.ravel()
-        axis = 0
-    b2 = skew(a,axis)
-    n = a.count(axis)
-    if np.min(n) < 8:
-        raise ValueError(
-            "skewtest is not valid with less than 8 samples; %i samples"
-            " were given." % np.min(n))
-
-    y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)))
-    beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9))
-    W2 = -1 + ma.sqrt(2*(beta2-1))
-    delta = 1/ma.sqrt(0.5*ma.log(W2))
-    alpha = ma.sqrt(2.0/(W2-1))
-    y = ma.where(y == 0, 1, y)
-    Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1))
-    return Z, 2 * distributions.norm.sf(np.abs(Z))
-skewtest.__doc__ = stats.skewtest.__doc__
-
-
-def kurtosistest(a, axis=0):
-    a, axis = _chk_asarray(a, axis)
-    n = a.count(axis=axis)
-    if np.min(n) < 5:
-        raise ValueError(
-            "kurtosistest requires at least 5 observations; %i observations"
-            " were given." % np.min(n))
-    if np.min(n) < 20:
-        warnings.warn(
-            "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
-            np.min(n))
-
-    b2 = kurtosis(a, axis, fisher=False)
-    E = 3.0*(n-1) / (n+1)
-    varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))
-    x = (b2-E)/ma.sqrt(varb2)
-    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
-                                                        (n*(n-2)*(n-3)))
-    A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
-    term1 = 1 - 2./(9.0*A)
-    denom = 1 + x*ma.sqrt(2/(A-4.0))
-    if np.ma.isMaskedArray(denom):
-        # For multi-dimensional array input
-        denom[denom < 0] = masked
-    elif denom < 0:
-        denom = masked
-
-    term2 = ma.power((1-2.0/A)/denom,1/3.0)
-    Z = (term1 - term2) / np.sqrt(2/(9.0*A))
-    return Z, 2 * distributions.norm.sf(np.abs(Z))
-kurtosistest.__doc__ = stats.kurtosistest.__doc__
-
-
-def normaltest(a, axis=0):
-    a, axis = _chk_asarray(a, axis)
-    s, _ = skewtest(a, axis)
-    k, _ = kurtosistest(a, axis)
-    k2 = s*s + k*k
-    return k2, stats.chisqprob(k2,2)
-normaltest.__doc__ = stats.normaltest.__doc__
-
-
-def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None,
-               limit=()):
-    """
-    Computes empirical quantiles for a data array.
-
-    Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``,
-    where ``x[j]`` is the j-th order statistic, and gamma is a function of
-    ``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and
-    ``g = n*p + m - j``.
-
-    Reinterpreting the above equations to compare to **R** lead to the
-    equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)``
-
-    Typical values of (alphap,betap) are:
-        - (0,1)    : ``p(k) = k/n`` : linear interpolation of cdf
-          (**R** type 4)
-        - (.5,.5)  : ``p(k) = (k - 1/2.)/n`` : piecewise linear function
-          (**R** type 5)
-        - (0,0)    : ``p(k) = k/(n+1)`` :
-          (**R** type 6)
-        - (1,1)    : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])].
-          (**R** type 7, **R** default)
-        - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])].
-          The resulting quantile estimates are approximately median-unbiased
-          regardless of the distribution of x.
-          (**R** type 8)
-        - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom.
-          The resulting quantile estimates are approximately unbiased
-          if x is normally distributed
-          (**R** type 9)
-        - (.4,.4)  : approximately quantile unbiased (Cunnane)
-        - (.35,.35): APL, used with PWM
-
-    Parameters
-    ----------
-    a : array_like
-        Input data, as a sequence or array of dimension at most 2.
-    prob : array_like, optional
-        List of quantiles to compute.
-    alphap : float, optional
-        Plotting positions parameter, default is 0.4.
-    betap : float, optional
-        Plotting positions parameter, default is 0.4.
-    axis : int, optional
-        Axis along which to perform the trimming.
-        If None (default), the input array is first flattened.
-    limit : tuple
-        Tuple of (lower, upper) values.
-        Values of `a` outside this open interval are ignored.
-
-    Returns
-    -------
-    mquantiles : MaskedArray
-        An array containing the calculated quantiles.
-
-    Notes
-    -----
-    This formulation is very similar to **R** except the calculation of
-    ``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined
-    with each type.
-
-    References
-    ----------
-    .. [1] *R* statistical software: http://www.r-project.org/
-    .. [2] *R* ``quantile`` function:
-            http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
-
-    Examples
-    --------
-    >>> from scipy.stats.mstats import mquantiles
-    >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
-    >>> mquantiles(a)
-    array([ 19.2,  40. ,  42.8])
-
-    Using a 2D array, specifying axis and limit.
-
-    >>> data = np.array([[   6.,    7.,    1.],
-                         [  47.,   15.,    2.],
-                         [  49.,   36.,    3.],
-                         [  15.,   39.,    4.],
-                         [  42.,   40., -999.],
-                         [  41.,   41., -999.],
-                         [   7., -999., -999.],
-                         [  39., -999., -999.],
-                         [  43., -999., -999.],
-                         [  40., -999., -999.],
-                         [  36., -999., -999.]])
-    >>> mquantiles(data, axis=0, limit=(0, 50))
-    array([[ 19.2 ,  14.6 ,   1.45],
-           [ 40.  ,  37.5 ,   2.5 ],
-           [ 42.8 ,  40.05,   3.55]])
-
-    >>> data[:, 2] = -999.
-    >>> mquantiles(data, axis=0, limit=(0, 50))
-    masked_array(data =
-     [[19.2 14.6 --]
-     [40.0 37.5 --]
-     [42.8 40.05 --]],
-                 mask =
-     [[False False  True]
-      [False False  True]
-      [False False  True]],
-           fill_value = 1e+20)
-
-    """
-    def _quantiles1D(data,m,p):
-        x = np.sort(data.compressed())
-        n = len(x)
-        if n == 0:
-            return ma.array(np.empty(len(p), dtype=float), mask=True)
-        elif n == 1:
-            return ma.array(np.resize(x, p.shape), mask=nomask)
-        aleph = (n*p + m)
-        k = np.floor(aleph.clip(1, n-1)).astype(int)
-        gamma = (aleph-k).clip(0,1)
-        return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
-
-    data = ma.array(a, copy=False)
-    if data.ndim > 2:
-        raise TypeError("Array should be 2D at most !")
-
-    if limit:
-        condition = (limit[0] < data) & (data < limit[1])
-        data[~condition.filled(True)] = masked
-
-    p = np.array(prob, copy=False, ndmin=1)
-    m = alphap + p*(1.-alphap-betap)
-    # Computes quantiles along axis (or globally)
-    if (axis is None):
-        return _quantiles1D(data, m, p)
-
-    return ma.apply_along_axis(_quantiles1D, axis, data, m, p)
-
-
-def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4):
-    """Calculate the score at the given 'per' percentile of the
-    sequence a.  For example, the score at per=50 is the median.
-
-    This function is a shortcut to mquantile
-
-    """
-    if (per < 0) or (per > 100.):
-        raise ValueError("The percentile should be between 0. and 100. !"
-                         " (got %s)" % per)
-
-    return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap,
-                      limit=limit, axis=0).squeeze()
-
-
-def plotting_positions(data, alpha=0.4, beta=0.4):
-    """
-    Returns plotting positions (or empirical percentile points) for the data.
-
-    Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where:
-        - i is the rank order statistics
-        - n is the number of unmasked values along the given axis
-        - `alpha` and `beta` are two parameters.
-
-    Typical values for `alpha` and `beta` are:
-        - (0,1)    : ``p(k) = k/n``, linear interpolation of cdf (R, type 4)
-        - (.5,.5)  : ``p(k) = (k-1/2.)/n``, piecewise linear function
-          (R, type 5)
-        - (0,0)    : ``p(k) = k/(n+1)``, Weibull (R type 6)
-        - (1,1)    : ``p(k) = (k-1)/(n-1)``, in this case,
-          ``p(k) = mode[F(x[k])]``. That's R default (R type 7)
-        - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then
-          ``p(k) ~ median[F(x[k])]``.
-          The resulting quantile estimates are approximately median-unbiased
-          regardless of the distribution of x. (R type 8)
-        - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom.
-          The resulting quantile estimates are approximately unbiased
-          if x is normally distributed (R type 9)
-        - (.4,.4)  : approximately quantile unbiased (Cunnane)
-        - (.35,.35): APL, used with PWM
-        - (.3175, .3175): used in scipy.stats.probplot
-
-    Parameters
-    ----------
-    data : array_like
-        Input data, as a sequence or array of dimension at most 2.
-    alpha : float, optional
-        Plotting positions parameter. Default is 0.4.
-    beta : float, optional
-        Plotting positions parameter. Default is 0.4.
-
-    Returns
-    -------
-    positions : MaskedArray
-        The calculated plotting positions.
-
-    """
-    data = ma.array(data, copy=False).reshape(1,-1)
-    n = data.count()
-    plpos = np.empty(data.size, dtype=float)
-    plpos[n:] = 0
-    plpos[data.argsort()[:n]] = ((np.arange(1, n+1) - alpha) /
-                                 (n + 1.0 - alpha - beta))
-    return ma.array(plpos, mask=data._mask)
-
-meppf = plotting_positions
-
-
-def obrientransform(*args):
-    """
-    Computes a transform on input data (any number of columns).  Used to
-    test for homogeneity of variance prior to running one-way stats.  Each
-    array in *args is one level of a factor.  If an F_oneway() run on the
-    transformed data and found significant, variances are unequal.   From
-    Maxwell and Delaney, p.112.
-
-    Returns: transformed data for use in an ANOVA
-    """
-    data = argstoarray(*args).T
-    v = data.var(axis=0,ddof=1)
-    m = data.mean(0)
-    n = data.count(0).astype(float)
-    # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2))
-    data -= m
-    data **= 2
-    data *= (n-1.5)*n
-    data -= 0.5*v*(n-1)
-    data /= (n-1.)*(n-2.)
-    if not ma.allclose(v,data.mean(0)):
-        raise ValueError("Lack of convergence in obrientransform.")
-
-    return data
-
-
-def signaltonoise(data, axis=0):
-    """Calculates the signal-to-noise ratio, as the ratio of the mean over
-    standard deviation along the given axis.
-
-    Parameters
-    ----------
-    data : sequence
-        Input data
-    axis : {0, int}, optional
-        Axis along which to compute. If None, the computation is performed
-        on a flat version of the array.
-    """
-    data = ma.array(data, copy=False)
-    m = data.mean(axis)
-    sd = data.std(axis, ddof=0)
-    return m/sd
-
-
-def sem(a, axis=0, ddof=1):
-    """
-    Calculates the standard error of the mean of the input array.
-
-    Also sometimes called standard error of measurement.
-
-    Parameters
-    ----------
-    a : array_like
-        An array containing the values for which the standard error is
-        returned.
-    axis : int or None, optional.
-        If axis is None, ravel `a` first. If axis is an integer, this will be
-        the axis over which to operate. Defaults to 0.
-    ddof : int, optional
-        Delta degrees-of-freedom. How many degrees of freedom to adjust
-        for bias in limited samples relative to the population estimate
-        of variance. Defaults to 1.
-
-    Returns
-    -------
-    s : ndarray or float
-        The standard error of the mean in the sample(s), along the input axis.
-
-    Notes
-    -----
-    The default value for `ddof` changed in scipy 0.15.0 to be consistent with
-    `stats.sem` as well as with the most common definition used (like in the R
-    documentation).
-
-    Examples
-    --------
-    Find standard error along the first axis:
-
-    >>> from scipy import stats
-    >>> a = np.arange(20).reshape(5,4)
-    >>> stats.sem(a)
-    array([ 2.8284,  2.8284,  2.8284,  2.8284])
-
-    Find standard error across the whole array, using n degrees of freedom:
-
-    >>> stats.sem(a, axis=None, ddof=0)
-    1.2893796958227628
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = a.count(axis=axis)
-    s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n)
-    return s
-
-
-zmap = stats.zmap
-zscore = stats.zscore
-
-
-def f_oneway(*args):
-    """
-    Performs a 1-way ANOVA, returning an F-value and probability given
-    any number of groups.  From Heiman, pp.394-7.
-
-    Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays,
-                                one per treatment group.
-    Returns: f-value, probability
-
-    """
-    # Construct a single array of arguments: each row is a group
-    data = argstoarray(*args)
-    ngroups = len(data)
-    ntot = data.count()
-    sstot = (data**2).sum() - (data.sum())**2/float(ntot)
-    ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum()
-    sswg = sstot-ssbg
-    dfbg = ngroups-1
-    dfwg = ntot - ngroups
-    msb = ssbg/float(dfbg)
-    msw = sswg/float(dfwg)
-    f = msb/msw
-    prob = special.fdtrc(dfbg, dfwg, f)  # equivalent to stats.f.sf
-    return f, prob
-
-
-def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
-    """Calculation of Wilks lambda F-statistic for multivariate data, per
-    Maxwell & Delaney p.657.
-    """
-    ER = ma.array(ER, copy=False, ndmin=2)
-    EF = ma.array(EF, copy=False, ndmin=2)
-    if ma.getmask(ER).any() or ma.getmask(EF).any():
-        raise NotImplementedError("Not implemented when the inputs "
-                                  "have missing data")
-
-    lmbda = np.linalg.det(EF) / np.linalg.det(ER)
-    q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
-    q = ma.filled(q, 1)
-    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
-    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
-    return n_um / d_en
-
-
-def friedmanchisquare(*args):
-    """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
-    This function calculates the Friedman Chi-square test for repeated measures
-    and returns the result, along with the associated probability value.
-
-    Each input is considered a given group. Ideally, the number of treatments
-    among each group should be equal. If this is not the case, only the first
-    n treatments are taken into account, where n is the number of treatments
-    of the smallest group.
-    If a group has some missing values, the corresponding treatments are masked
-    in the other groups.
-    The test statistic is corrected for ties.
-
-    Masked values in one group are propagated to the other groups.
-
-    Returns: chi-square statistic, associated p-value
-    """
-    data = argstoarray(*args).astype(float)
-    k = len(data)
-    if k < 3:
-        raise ValueError("Less than 3 groups (%i): " % k +
-                         "the Friedman test is NOT appropriate.")
-
-    ranked = ma.masked_values(rankdata(data, axis=0), 0)
-    if ranked._mask is not nomask:
-        ranked = ma.mask_cols(ranked)
-        ranked = ranked.compressed().reshape(k,-1).view(ndarray)
-    else:
-        ranked = ranked._data
-    (k,n) = ranked.shape
-    # Ties correction
-    repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object)
-    ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int)
-    tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k))
-
-    ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2)
-    chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction
-    return chisq, stats.chisqprob(chisq,k-1)
diff --git a/wafo/stats/mstats_extras.py b/wafo/stats/mstats_extras.py
deleted file mode 100644
index 1a0ddcc..0000000
--- a/wafo/stats/mstats_extras.py
+++ /dev/null
@@ -1,451 +0,0 @@
-"""
-Additional statistics functions with support for masked arrays.
-
-"""
-
-# Original author (2007): Pierre GF Gerard-Marchant
-
-
-from __future__ import division, print_function, absolute_import
-
-
-__all__ = ['compare_medians_ms',
-           'hdquantiles', 'hdmedian', 'hdquantiles_sd',
-           'idealfourths',
-           'median_cihs','mjci','mquantiles_cimj',
-           'rsh',
-           'trimmed_mean_ci',]
-
-
-import numpy as np
-from numpy import float_, int_, ndarray
-
-import numpy.ma as ma
-from numpy.ma import MaskedArray
-
-from . import mstats_basic as mstats
-
-from scipy.stats.distributions import norm, beta, t, binom
-
-
-def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
-    """
-    Computes quantile estimates with the Harrell-Davis method.
-
-    The quantile estimates are calculated as a weighted linear combination
-    of order statistics.
-
-    Parameters
-    ----------
-    data : array_like
-        Data array.
-    prob : sequence
-        Sequence of quantiles to compute.
-    axis : int
-        Axis along which to compute the quantiles. If None, use a flattened
-        array.
-    var : boolean
-        Whether to return the variance of the estimate.
-
-    Returns
-    -------
-    hdquantiles : MaskedArray
-        A (p,) array of quantiles (if `var` is False), or a (2,p) array of
-        quantiles and variances (if `var` is True), where ``p`` is the
-        number of quantiles.
-
-    """
-    def _hd_1D(data,prob,var):
-        "Computes the HD quantiles for a 1D array. Returns nan for invalid data."
-        xsorted = np.squeeze(np.sort(data.compressed().view(ndarray)))
-        # Don't use length here, in case we have a numpy scalar
-        n = xsorted.size
-
-        hd = np.empty((2,len(prob)), float_)
-        if n < 2:
-            hd.flat = np.nan
-            if var:
-                return hd
-            return hd[0]
-
-        v = np.arange(n+1) / float(n)
-        betacdf = beta.cdf
-        for (i,p) in enumerate(prob):
-            _w = betacdf(v, (n+1)*p, (n+1)*(1-p))
-            w = _w[1:] - _w[:-1]
-            hd_mean = np.dot(w, xsorted)
-            hd[0,i] = hd_mean
-            #
-            hd[1,i] = np.dot(w, (xsorted-hd_mean)**2)
-            #
-        hd[0, prob == 0] = xsorted[0]
-        hd[0, prob == 1] = xsorted[-1]
-        if var:
-            hd[1, prob == 0] = hd[1, prob == 1] = np.nan
-            return hd
-        return hd[0]
-    # Initialization & checks
-    data = ma.array(data, copy=False, dtype=float_)
-    p = np.array(prob, copy=False, ndmin=1)
-    # Computes quantiles along axis (or globally)
-    if (axis is None) or (data.ndim == 1):
-        result = _hd_1D(data, p, var)
-    else:
-        if data.ndim > 2:
-            raise ValueError("Array 'data' must be at most two dimensional, "
-                             "but got data.ndim = %d" % data.ndim)
-        result = ma.apply_along_axis(_hd_1D, axis, data, p, var)
-
-    return ma.fix_invalid(result, copy=False)
-
-
-def hdmedian(data, axis=-1, var=False):
-    """
-    Returns the Harrell-Davis estimate of the median along the given axis.
-
-    Parameters
-    ----------
-    data : ndarray
-        Data array.
-    axis : int
-        Axis along which to compute the quantiles. If None, use a flattened
-        array.
-    var : boolean
-        Whether to return the variance of the estimate.
-
-    """
-    result = hdquantiles(data,[0.5], axis=axis, var=var)
-    return result.squeeze()
-
-
-def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
-    """
-    The standard error of the Harrell-Davis quantile estimates by jackknife.
-
-    Parameters
-    ----------
-    data : array_like
-        Data array.
-    prob : sequence
-        Sequence of quantiles to compute.
-    axis : int
-        Axis along which to compute the quantiles. If None, use a flattened
-        array.
-
-    Returns
-    -------
-    hdquantiles_sd : MaskedArray
-        Standard error of the Harrell-Davis quantile estimates.
-
-    """
-    def _hdsd_1D(data,prob):
-        "Computes the std error for 1D arrays."
-        xsorted = np.sort(data.compressed())
-        n = len(xsorted)
-        #.........
-        hdsd = np.empty(len(prob), float_)
-        if n < 2:
-            hdsd.flat = np.nan
-
-        vv = np.arange(n) / float(n-1)
-        betacdf = beta.cdf
-
-        for (i,p) in enumerate(prob):
-            _w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
-            w = _w[1:] - _w[:-1]
-            mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
-                                                      list(range(k+1,n))].astype(int_)])
-                                  for k in range(n)], dtype=float_)
-            mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
-            hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
-        return hdsd
-    # Initialization & checks
-    data = ma.array(data, copy=False, dtype=float_)
-    p = np.array(prob, copy=False, ndmin=1)
-    # Computes quantiles along axis (or globally)
-    if (axis is None):
-        result = _hdsd_1D(data, p)
-    else:
-        if data.ndim > 2:
-            raise ValueError("Array 'data' must be at most two dimensional, "
-                             "but got data.ndim = %d" % data.ndim)
-        result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
-
-    return ma.fix_invalid(result, copy=False).ravel()
-
-
-def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True),
-                    alpha=0.05, axis=None):
-    """
-    Selected confidence interval of the trimmed mean along the given axis.
-
-    Parameters
-    ----------
-    data : array_like
-        Input data.
-    limits : {None, tuple}, optional
-        None or a two item tuple.
-        Tuple of the percentages to cut on each side of the array, with respect
-        to the number of unmasked data, as floats between 0. and 1. If ``n``
-        is the number of unmasked data before trimming, then
-        (``n * limits[0]``)th smallest data and (``n * limits[1]``)th
-        largest data are masked.  The total number of unmasked data after
-        trimming is ``n * (1. - sum(limits))``.
-        The value of one limit can be set to None to indicate an open interval.
-
-        Defaults to (0.2, 0.2).
-    inclusive : (2,) tuple of boolean, optional
-        If relative==False, tuple indicating whether values exactly equal to
-        the absolute limits are allowed.
-        If relative==True, tuple indicating whether the number of data being
-        masked on each side should be rounded (True) or truncated (False).
-
-        Defaults to (True, True).
-    alpha : float, optional
-        Confidence level of the intervals.
-
-        Defaults to 0.05.
-    axis : int, optional
-        Axis along which to cut. If None, uses a flattened version of `data`.
-
-        Defaults to None.
-
-    Returns
-    -------
-    trimmed_mean_ci : (2,) ndarray
-        The lower and upper confidence intervals of the trimmed data.
-
-    """
-    data = ma.array(data, copy=False)
-    trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis)
-    tmean = trimmed.mean(axis)
-    tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis)
-    df = trimmed.count(axis) - 1
-    tppf = t.ppf(1-alpha/2.,df)
-    return np.array((tmean - tppf*tstde, tmean+tppf*tstde))
-
-
-def mjci(data, prob=[0.25,0.5,0.75], axis=None):
-    """
-    Returns the Maritz-Jarrett estimators of the standard error of selected
-    experimental quantiles of the data.
-
-    Parameters
-    ----------
-    data: ndarray
-        Data array.
-    prob: sequence
-        Sequence of quantiles to compute.
-    axis : int
-        Axis along which to compute the quantiles. If None, use a flattened
-        array.
-
-    """
-    def _mjci_1D(data, p):
-        data = np.sort(data.compressed())
-        n = data.size
-        prob = (np.array(p) * n + 0.5).astype(int_)
-        betacdf = beta.cdf
-
-        mj = np.empty(len(prob), float_)
-        x = np.arange(1,n+1, dtype=float_) / n
-        y = x - 1./n
-        for (i,m) in enumerate(prob):
-            (m1,m2) = (m-1, n-m)
-            W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
-            C1 = np.dot(W,data)
-            C2 = np.dot(W,data**2)
-            mj[i] = np.sqrt(C2 - C1**2)
-        return mj
-
-    data = ma.array(data, copy=False)
-    if data.ndim > 2:
-        raise ValueError("Array 'data' must be at most two dimensional, "
-                         "but got data.ndim = %d" % data.ndim)
-
-    p = np.array(prob, copy=False, ndmin=1)
-    # Computes quantiles along axis (or globally)
-    if (axis is None):
-        return _mjci_1D(data, p)
-    else:
-        return ma.apply_along_axis(_mjci_1D, axis, data, p)
-
-
-def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
-    """
-    Computes the alpha confidence interval for the selected quantiles of the
-    data, with Maritz-Jarrett estimators.
-
-    Parameters
-    ----------
-    data : ndarray
-        Data array.
-    prob : sequence
-        Sequence of quantiles to compute.
-    alpha : float
-        Confidence level of the intervals.
-    axis : integer
-        Axis along which to compute the quantiles.
-        If None, use a flattened array.
-
-    """
-    alpha = min(alpha, 1-alpha)
-    z = norm.ppf(1-alpha/2.)
-    xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis)
-    smj = mjci(data, prob, axis=axis)
-    return (xq - z * smj, xq + z * smj)
-
-
-def median_cihs(data, alpha=0.05, axis=None):
-    """
-    Computes the alpha-level confidence interval for the median of the data.
-
-    Uses the Hettmasperger-Sheather method.
-
-    Parameters
-    ----------
-    data : array_like
-        Input data. Masked values are discarded. The input should be 1D only,
-        or `axis` should be set to None.
-    alpha : float
-        Confidence level of the intervals.
-    axis : integer
-        Axis along which to compute the quantiles. If None, use a flattened
-        array.
-
-    Returns
-    -------
-    median_cihs :
-        Alpha level confidence interval.
-
-    """
-    def _cihs_1D(data, alpha):
-        data = np.sort(data.compressed())
-        n = len(data)
-        alpha = min(alpha, 1-alpha)
-        k = int(binom._ppf(alpha/2., n, 0.5))
-        gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
-        if gk < 1-alpha:
-            k -= 1
-            gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
-        gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
-        I = (gk - 1 + alpha)/(gk - gkk)
-        lambd = (n-k) * I / float(k + (n-2*k)*I)
-        lims = (lambd*data[k] + (1-lambd)*data[k-1],
-                lambd*data[n-k-1] + (1-lambd)*data[n-k])
-        return lims
-    data = ma.rray(data, copy=False)
-    # Computes quantiles along axis (or globally)
-    if (axis is None):
-        result = _cihs_1D(data.compressed(), alpha)
-    else:
-        if data.ndim > 2:
-            raise ValueError("Array 'data' must be at most two dimensional, "
-                             "but got data.ndim = %d" % data.ndim)
-        result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)
-
-    return result
-
-
-def compare_medians_ms(group_1, group_2, axis=None):
-    """
-    Compares the medians from two independent groups along the given axis.
-
-    The comparison is performed using the McKean-Schrader estimate of the
-    standard error of the medians.
-
-    Parameters
-    ----------
-    group_1 : array_like
-        First dataset.
-    group_2 : array_like
-        Second dataset.
-    axis : int, optional
-        Axis along which the medians are estimated. If None, the arrays are
-        flattened.  If `axis` is not None, then `group_1` and `group_2`
-        should have the same shape.
-
-    Returns
-    -------
-    compare_medians_ms : {float, ndarray}
-        If `axis` is None, then returns a float, otherwise returns a 1-D
-        ndarray of floats with a length equal to the length of `group_1`
-        along `axis`.
-
-    """
-    (med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
-    (std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
-                      mstats.stde_median(group_2, axis=axis))
-    W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
-    return 1 - norm.cdf(W)
-
-
-def idealfourths(data, axis=None):
-    """
-    Returns an estimate of the lower and upper quartiles.
-
-    Uses the ideal fourths algorithm.
-
-    Parameters
-    ----------
-    data : array_like
-        Input array.
-    axis : int, optional
-        Axis along which the quartiles are estimated. If None, the arrays are
-        flattened.
-
-    Returns
-    -------
-    idealfourths : {list of floats, masked array}
-        Returns the two internal values that divide `data` into four parts
-        using the ideal fourths algorithm either along the flattened array
-        (if `axis` is None) or along `axis` of `data`.
-
-    """
-    def _idf(data):
-        x = data.compressed()
-        n = len(x)
-        if n < 3:
-            return [np.nan,np.nan]
-        (j,h) = divmod(n/4. + 5/12.,1)
-        j = int(j)
-        qlo = (1-h)*x[j-1] + h*x[j]
-        k = n - j
-        qup = (1-h)*x[k] + h*x[k-1]
-        return [qlo, qup]
-    data = ma.sort(data, axis=axis).view(MaskedArray)
-    if (axis is None):
-        return _idf(data)
-    else:
-        return ma.apply_along_axis(_idf, axis, data)
-
-
-def rsh(data, points=None):
-    """
-    Evaluates Rosenblatt's shifted histogram estimators for each point
-    on the dataset 'data'.
-
-    Parameters
-    ----------
-    data : sequence
-        Input data. Masked values are ignored.
-    points : sequence
-        Sequence of points where to evaluate Rosenblatt shifted histogram.
-        If None, use the data.
-
-    """
-    data = ma.array(data, copy=False)
-    if points is None:
-        points = data
-    else:
-        points = np.array(points, copy=False, ndmin=1)
-
-    if data.ndim != 1:
-        raise AttributeError("The input array should be 1D only !")
-
-    n = data.count()
-    r = idealfourths(data, axis=None)
-    h = 1.2 * (r[-1]-r[0]) / n**(1./5)
-    nhi = (data[:,None] <= points[None,:] + h).sum(0)
-    nlo = (data[:,None] < points[None,:] - h).sum(0)
-    return (nhi-nlo) / (2.*n*h)
diff --git a/wafo/stats/rv.py b/wafo/stats/rv.py
deleted file mode 100644
index 1ef8b36..0000000
--- a/wafo/stats/rv.py
+++ /dev/null
@@ -1,76 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-from numpy import vectorize, deprecate
-from numpy.random import random_sample
-
-__all__ = ['randwppf', 'randwcdf']
-
-# XXX: Are these needed anymore?
-
-#####################################
-# General purpose continuous
-######################################
-
-
-@deprecate(message="Deprecated in scipy 0.14.0, use "
-                   "distribution-specific rvs() method instead")
-def randwppf(ppf, args=(), size=None):
-    """
-    returns an array of randomly distributed integers of a distribution
-    whose percent point function (inverse of the CDF or quantile function)
-    is given.
-
-    args is a tuple of extra arguments to the ppf function (i.e. shape,
-    location, scale), and size is the size of the output.  Note the ppf
-    function must accept an array of q values to compute over.
-
-    """
-    U = random_sample(size=size)
-    return ppf(*(U,)+args)
-
-
-@deprecate(message="Deprecated in scipy 0.14.0, use "
-                   "distribution-specific rvs() method instead")
-def randwcdf(cdf, mean=1.0, args=(), size=None):
-    """
-    Returns an array of randomly distributed integers given a CDF.
-
-    Given a cumulative distribution function (CDF) returns an array of
-    randomly distributed integers that would satisfy the CDF.
-
-    Parameters
-    ----------
-    cdf : function
-        CDF function that accepts a single value and `args`, and returns
-        an single value.
-    mean : float, optional
-        The mean of the distribution which helps the solver.  Defaults
-        to 1.0.
-    args : tuple, optional
-        Extra arguments to the cdf function (i.e. shape, location, scale)
-    size : {int, None}, optional
-        Is the size of the output.  If None, only 1 value will be returned.
-
-    Returns
-    -------
-    randwcdf : ndarray
-        Array of random numbers.
-
-    Notes
-    -----
-    Can use the ``scipy.stats.distributions.*.cdf`` functions for the
-    `cdf` parameter.
-
-    """
-    import scipy.optimize as optimize
-
-    def _ppfopt(x, q, *nargs):
-        newargs = (x,)+nargs
-        return cdf(*newargs) - q
-
-    def _ppf(q, *nargs):
-        return optimize.fsolve(_ppfopt, mean, args=(q,)+nargs)
-
-    _vppf = vectorize(_ppf)
-    U = random_sample(size=size)
-    return _vppf(*(U,)+args)
diff --git a/wafo/stats/six.py b/wafo/stats/six.py
deleted file mode 100644
index f0bc0b6..0000000
--- a/wafo/stats/six.py
+++ /dev/null
@@ -1,389 +0,0 @@
-"""Utilities for writing code that runs on Python 2 and 3"""
-
-# Copyright (c) 2010-2012 Benjamin Peterson
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy of
-# this software and associated documentation files (the "Software"), to deal in
-# the Software without restriction, including without limitation the rights to
-# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
-# the Software, and to permit persons to whom the Software is furnished to do so,
-# subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
-# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
-# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
-# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
-import operator
-import sys
-import types
-
-__author__ = "Benjamin Peterson <benjamin@python.org>"
-__version__ = "1.2.0"
-
-
-# True if we are running on Python 3.
-PY3 = sys.version_info[0] == 3
-
-if PY3:
-    string_types = str,
-    integer_types = int,
-    class_types = type,
-    text_type = str
-    binary_type = bytes
-
-    MAXSIZE = sys.maxsize
-else:
-    string_types = basestring,
-    integer_types = (int, long)
-    class_types = (type, types.ClassType)
-    text_type = unicode
-    binary_type = str
-
-    if sys.platform.startswith("java"):
-        # Jython always uses 32 bits.
-        MAXSIZE = int((1 << 31) - 1)
-    else:
-        # It's possible to have sizeof(long) != sizeof(Py_ssize_t).
-        class X(object):
-            def __len__(self):
-                return 1 << 31
-        try:
-            len(X())
-        except OverflowError:
-            # 32-bit
-            MAXSIZE = int((1 << 31) - 1)
-        else:
-            # 64-bit
-            MAXSIZE = int((1 << 63) - 1)
-            del X
-
-
-def _add_doc(func, doc):
-    """Add documentation to a function."""
-    func.__doc__ = doc
-
-
-def _import_module(name):
-    """Import module, returning the module after the last dot."""
-    __import__(name)
-    return sys.modules[name]
-
-
-class _LazyDescr(object):
-
-    def __init__(self, name):
-        self.name = name
-
-    def __get__(self, obj, tp):
-        result = self._resolve()
-        setattr(obj, self.name, result)
-        # This is a bit ugly, but it avoids running this again.
-        delattr(tp, self.name)
-        return result
-
-
-class MovedModule(_LazyDescr):
-
-    def __init__(self, name, old, new=None):
-        super(MovedModule, self).__init__(name)
-        if PY3:
-            if new is None:
-                new = name
-            self.mod = new
-        else:
-            self.mod = old
-
-    def _resolve(self):
-        return _import_module(self.mod)
-
-
-class MovedAttribute(_LazyDescr):
-
-    def __init__(self, name, old_mod, new_mod, old_attr=None, new_attr=None):
-        super(MovedAttribute, self).__init__(name)
-        if PY3:
-            if new_mod is None:
-                new_mod = name
-            self.mod = new_mod
-            if new_attr is None:
-                if old_attr is None:
-                    new_attr = name
-                else:
-                    new_attr = old_attr
-            self.attr = new_attr
-        else:
-            self.mod = old_mod
-            if old_attr is None:
-                old_attr = name
-            self.attr = old_attr
-
-    def _resolve(self):
-        module = _import_module(self.mod)
-        return getattr(module, self.attr)
-
-
-class _MovedItems(types.ModuleType):
-    """Lazy loading of moved objects"""
-
-
-_moved_attributes = [
-    MovedAttribute("cStringIO", "cStringIO", "io", "StringIO"),
-    MovedAttribute("filter", "itertools", "builtins", "ifilter", "filter"),
-    MovedAttribute("input", "__builtin__", "builtins", "raw_input", "input"),
-    MovedAttribute("map", "itertools", "builtins", "imap", "map"),
-    MovedAttribute("reload_module", "__builtin__", "imp", "reload"),
-    MovedAttribute("reduce", "__builtin__", "functools"),
-    MovedAttribute("StringIO", "StringIO", "io"),
-    MovedAttribute("xrange", "__builtin__", "builtins", "xrange", "range"),
-    MovedAttribute("zip", "itertools", "builtins", "izip", "zip"),
-
-    MovedModule("builtins", "__builtin__"),
-    MovedModule("configparser", "ConfigParser"),
-    MovedModule("copyreg", "copy_reg"),
-    MovedModule("http_cookiejar", "cookielib", "http.cookiejar"),
-    MovedModule("http_cookies", "Cookie", "http.cookies"),
-    MovedModule("html_entities", "htmlentitydefs", "html.entities"),
-    MovedModule("html_parser", "HTMLParser", "html.parser"),
-    MovedModule("http_client", "httplib", "http.client"),
-    MovedModule("email_mime_multipart", "email.MIMEMultipart", "email.mime.multipart"),
-    MovedModule("email_mime_text", "email.MIMEText", "email.mime.text"),
-    MovedModule("email_mime_base", "email.MIMEBase", "email.mime.base"),
-    MovedModule("BaseHTTPServer", "BaseHTTPServer", "http.server"),
-    MovedModule("CGIHTTPServer", "CGIHTTPServer", "http.server"),
-    MovedModule("SimpleHTTPServer", "SimpleHTTPServer", "http.server"),
-    MovedModule("cPickle", "cPickle", "pickle"),
-    MovedModule("queue", "Queue"),
-    MovedModule("reprlib", "repr"),
-    MovedModule("socketserver", "SocketServer"),
-    MovedModule("tkinter", "Tkinter"),
-    MovedModule("tkinter_dialog", "Dialog", "tkinter.dialog"),
-    MovedModule("tkinter_filedialog", "FileDialog", "tkinter.filedialog"),
-    MovedModule("tkinter_scrolledtext", "ScrolledText", "tkinter.scrolledtext"),
-    MovedModule("tkinter_simpledialog", "SimpleDialog", "tkinter.simpledialog"),
-    MovedModule("tkinter_tix", "Tix", "tkinter.tix"),
-    MovedModule("tkinter_constants", "Tkconstants", "tkinter.constants"),
-    MovedModule("tkinter_dnd", "Tkdnd", "tkinter.dnd"),
-    MovedModule("tkinter_colorchooser", "tkColorChooser",
-                "tkinter.colorchooser"),
-    MovedModule("tkinter_commondialog", "tkCommonDialog",
-                "tkinter.commondialog"),
-    MovedModule("tkinter_tkfiledialog", "tkFileDialog", "tkinter.filedialog"),
-    MovedModule("tkinter_font", "tkFont", "tkinter.font"),
-    MovedModule("tkinter_messagebox", "tkMessageBox", "tkinter.messagebox"),
-    MovedModule("tkinter_tksimpledialog", "tkSimpleDialog",
-                "tkinter.simpledialog"),
-    MovedModule("urllib_robotparser", "robotparser", "urllib.robotparser"),
-    MovedModule("winreg", "_winreg"),
-]
-for attr in _moved_attributes:
-    setattr(_MovedItems, attr.name, attr)
-del attr
-
-moves = sys.modules[__name__ + ".moves"] = _MovedItems("moves")
-
-
-def add_move(move):
-    """Add an item to six.moves."""
-    setattr(_MovedItems, move.name, move)
-
-
-def remove_move(name):
-    """Remove item from six.moves."""
-    try:
-        delattr(_MovedItems, name)
-    except AttributeError:
-        try:
-            del moves.__dict__[name]
-        except KeyError:
-            raise AttributeError("no such move, %r" % (name,))
-
-
-if PY3:
-    _meth_func = "__func__"
-    _meth_self = "__self__"
-
-    _func_code = "__code__"
-    _func_defaults = "__defaults__"
-
-    _iterkeys = "keys"
-    _itervalues = "values"
-    _iteritems = "items"
-else:
-    _meth_func = "im_func"
-    _meth_self = "im_self"
-
-    _func_code = "func_code"
-    _func_defaults = "func_defaults"
-
-    _iterkeys = "iterkeys"
-    _itervalues = "itervalues"
-    _iteritems = "iteritems"
-
-
-try:
-    advance_iterator = next
-except NameError:
-    def advance_iterator(it):
-        return it.next()
-next = advance_iterator
-
-
-if PY3:
-    def get_unbound_function(unbound):
-        return unbound
-
-    Iterator = object
-
-    def callable(obj):
-        return any("__call__" in klass.__dict__ for klass in type(obj).__mro__)
-else:
-    def get_unbound_function(unbound):
-        return unbound.im_func
-
-    class Iterator(object):
-
-        def next(self):
-            return type(self).__next__(self)
-
-    callable = callable
-_add_doc(get_unbound_function,
-         """Get the function out of a possibly unbound function""")
-
-
-get_method_function = operator.attrgetter(_meth_func)
-get_method_self = operator.attrgetter(_meth_self)
-get_function_code = operator.attrgetter(_func_code)
-get_function_defaults = operator.attrgetter(_func_defaults)
-
-
-def iterkeys(d):
-    """Return an iterator over the keys of a dictionary."""
-    return iter(getattr(d, _iterkeys)())
-
-
-def itervalues(d):
-    """Return an iterator over the values of a dictionary."""
-    return iter(getattr(d, _itervalues)())
-
-
-def iteritems(d):
-    """Return an iterator over the (key, value) pairs of a dictionary."""
-    return iter(getattr(d, _iteritems)())
-
-
-if PY3:
-    def b(s):
-        return s.encode("latin-1")
-
-    def u(s):
-        return s
-
-    if sys.version_info[1] <= 1:
-        def int2byte(i):
-            return bytes((i,))
-    else:
-        # This is about 2x faster than the implementation above on 3.2+
-        int2byte = operator.methodcaller("to_bytes", 1, "big")
-    import io
-    StringIO = io.StringIO
-    BytesIO = io.BytesIO
-else:
-    def b(s):
-        return s
-
-    def u(s):
-        return unicode(s, "unicode_escape")
-    int2byte = chr
-    import StringIO
-    StringIO = BytesIO = StringIO.StringIO
-_add_doc(b, """Byte literal""")
-_add_doc(u, """Text literal""")
-
-
-if PY3:
-    import builtins  # @UnresolvedImport
-    exec_ = getattr(builtins, "exec")
-
-    def reraise(tp, value, tb=None):
-        if value.__traceback__ is not tb:
-            raise value.with_traceback(tb)
-        raise value
-
-    print_ = getattr(builtins, "print")
-    del builtins
-
-else:
-    def exec_(code, globs=None, locs=None):
-        """Execute code in a namespace."""
-        if globs is None:
-            frame = sys._getframe(1)
-            globs = frame.f_globals
-            if locs is None:
-                locs = frame.f_locals
-            del frame
-        elif locs is None:
-            locs = globs
-        exec("""exec code in globs, locs""")
-
-    exec_("""def reraise(tp, value, tb=None):
-    raise tp, value, tb
-""")
-
-    def print_(*args, **kwargs):
-        """The new-style print function."""
-        fp = kwargs.pop("file", sys.stdout)
-        if fp is None:
-            return
-
-        def write(data):
-            if not isinstance(data, basestring):
-                data = str(data)
-            fp.write(data)
-        want_unicode = False
-        sep = kwargs.pop("sep", None)
-        if sep is not None:
-            if isinstance(sep, unicode):
-                want_unicode = True
-            elif not isinstance(sep, str):
-                raise TypeError("sep must be None or a string")
-        end = kwargs.pop("end", None)
-        if end is not None:
-            if isinstance(end, unicode):
-                want_unicode = True
-            elif not isinstance(end, str):
-                raise TypeError("end must be None or a string")
-        if kwargs:
-            raise TypeError("invalid keyword arguments to print()")
-        if not want_unicode:
-            for arg in args:
-                if isinstance(arg, unicode):
-                    want_unicode = True
-                    break
-        if want_unicode:
-            newline = unicode("\n")
-            space = unicode(" ")
-        else:
-            newline = "\n"
-            space = " "
-        if sep is None:
-            sep = space
-        if end is None:
-            end = newline
-        for i, arg in enumerate(args):
-            if i:
-                write(sep)
-            write(arg)
-        write(end)
-
-_add_doc(reraise, """Reraise an exception.""")
-
-
-def with_metaclass(meta, base=object):
-    """Create a base class with a metaclass."""
-    return meta("NewBase", (base,), {})
diff --git a/wafo/stats/stats.py b/wafo/stats/stats.py
deleted file mode 100644
index ddf779b..0000000
--- a/wafo/stats/stats.py
+++ /dev/null
@@ -1,4508 +0,0 @@
-# Copyright (c) Gary Strangman.  All rights reserved
-#
-# Disclaimer
-#
-# This software is provided "as-is".  There are no expressed or implied
-# warranties of any kind, including, but not limited to, the warranties
-# of merchantability and fitness for a given application.  In no event
-# shall Gary Strangman be liable for any direct, indirect, incidental,
-# special, exemplary or consequential damages (including, but not limited
-# to, loss of use, data or profits, or business interruption) however
-# caused and on any theory of liability, whether in contract, strict
-# liability or tort (including negligence or otherwise) arising in any way
-# out of the use of this software, even if advised of the possibility of
-# such damage.
-#
-
-#
-# Heavily adapted for use by SciPy 2002 by Travis Oliphant
-"""
-A collection of basic statistical functions for python.  The function
-names appear below.
-
- Some scalar functions defined here are also available in the scipy.special
- package where they work on arbitrary sized arrays.
-
-Disclaimers:  The function list is obviously incomplete and, worse, the
-functions are not optimized.  All functions have been tested (some more
-so than others), but they are far from bulletproof.  Thus, as with any
-free software, no warranty or guarantee is expressed or implied. :-)  A
-few extra functions that don't appear in the list below can be found by
-interested treasure-hunters.  These functions don't necessarily have
-both list and array versions but were deemed useful.
-
-Central Tendency
-----------------
-.. autosummary::
-   :toctree: generated/
-
-    gmean
-    hmean
-    mode
-
-Moments
--------
-.. autosummary::
-   :toctree: generated/
-
-    moment
-    variation
-    skew
-    kurtosis
-    normaltest
-
-Moments Handling NaN:
-
-.. autosummary::
-   :toctree: generated/
-
-    nanmean
-    nanmedian
-    nanstd
-
-Altered Versions
-----------------
-.. autosummary::
-   :toctree: generated/
-
-    tmean
-    tvar
-    tstd
-    tsem
-    describe
-
-Frequency Stats
----------------
-.. autosummary::
-   :toctree: generated/
-
-    itemfreq
-    scoreatpercentile
-    percentileofscore
-    histogram
-    cumfreq
-    relfreq
-
-Variability
------------
-.. autosummary::
-   :toctree: generated/
-
-    obrientransform
-    signaltonoise
-    sem
-
-Trimming Functions
-------------------
-.. autosummary::
-   :toctree: generated/
-
-   threshold
-   trimboth
-   trim1
-
-Correlation Functions
----------------------
-.. autosummary::
-   :toctree: generated/
-
-   pearsonr
-   fisher_exact
-   spearmanr
-   pointbiserialr
-   kendalltau
-   linregress
-   theilslopes
-
-Inferential Stats
------------------
-.. autosummary::
-   :toctree: generated/
-
-   ttest_1samp
-   ttest_ind
-   ttest_rel
-   chisquare
-   power_divergence
-   ks_2samp
-   mannwhitneyu
-   ranksums
-   wilcoxon
-   kruskal
-   friedmanchisquare
-
-Probability Calculations
-------------------------
-.. autosummary::
-   :toctree: generated/
-
-   chisqprob
-   zprob
-   fprob
-   betai
-
-ANOVA Functions
----------------
-.. autosummary::
-   :toctree: generated/
-
-   f_oneway
-   f_value
-
-Support Functions
------------------
-.. autosummary::
-   :toctree: generated/
-
-   ss
-   square_of_sums
-   rankdata
-
-References
-----------
-.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
-   Probability and Statistics Tables and Formulae. Chapman & Hall: New
-   York. 2000.
-
-"""
-
-from __future__ import division, print_function, absolute_import
-
-import warnings
-import math
-
-from scipy._lib.six import xrange
-
-# friedmanchisquare patch uses python sum
-pysum = sum  # save it before it gets overwritten
-
-# Scipy imports.
-from scipy._lib.six import callable, string_types
-from numpy import array, asarray, ma, zeros, sum
-import scipy.special as special
-import scipy.linalg as linalg
-import numpy as np
-
-from . import futil
-from . import distributions
-try:
-    from scipy.stats._rank import rankdata, tiecorrect
-except:
-    rankdata = tiecorrect = None
-__all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar',
-           'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation',
-           'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
-           'normaltest', 'jarque_bera', 'itemfreq',
-           'scoreatpercentile', 'percentileofscore', 'histogram',
-           'histogram2', 'cumfreq', 'relfreq', 'obrientransform',
-           'signaltonoise', 'sem', 'zmap', 'zscore', 'threshold',
-           'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway',
-           'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr',
-           'kendalltau', 'linregress', 'theilslopes', 'ttest_1samp',
-           'ttest_ind', 'ttest_rel', 'kstest', 'chisquare',
-           'power_divergence', 'ks_2samp', 'mannwhitneyu',
-           'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
-           'zprob', 'chisqprob', 'ksprob', 'fprob', 'betai',
-           'f_value_wilks_lambda', 'f_value', 'f_value_multivariate',
-           'ss', 'square_of_sums', 'fastsort', 'rankdata', 'nanmean',
-           'nanstd', 'nanmedian', ]
-
-
-def _chk_asarray(a, axis):
-    if axis is None:
-        a = np.ravel(a)
-        outaxis = 0
-    else:
-        a = np.asarray(a)
-        outaxis = axis
-    return a, outaxis
-
-
-def _chk2_asarray(a, b, axis):
-    if axis is None:
-        a = np.ravel(a)
-        b = np.ravel(b)
-        outaxis = 0
-    else:
-        a = np.asarray(a)
-        b = np.asarray(b)
-        outaxis = axis
-    return a, b, outaxis
-
-
-def find_repeats(arr):
-    """
-    Find repeats and repeat counts.
-
-    Parameters
-    ----------
-    arr : array_like
-        Input array
-
-    Returns
-    -------
-    find_repeats : tuple
-        Returns a tuple of two 1-D ndarrays.  The first ndarray are the repeats
-        as sorted, unique values that are repeated in `arr`.  The second
-        ndarray are the counts mapped one-to-one of the repeated values
-        in the first ndarray.
-
-    Examples
-    --------
-    >>> import scipy.stats as stats
-    >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
-    (array([ 2. ]), array([ 4 ], dtype=int32)
-
-    >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
-    (array([ 4., 5.]), array([2, 2], dtype=int32))
-
-    """
-    v1,v2, n = futil.dfreps(arr)
-    return v1[:n],v2[:n]
-
-#######
-### NAN friendly functions
-########
-
-
-def nanmean(x, axis=0):
-    """
-    Compute the mean over the given axis ignoring nans.
-
-    Parameters
-    ----------
-    x : ndarray
-        Input array.
-    axis : int, optional
-        Axis along which the mean is computed. Default is 0, i.e. the
-        first axis.
-
-    Returns
-    -------
-    m : float
-        The mean of `x`, ignoring nans.
-
-    See Also
-    --------
-    nanstd, nanmedian
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.linspace(0, 4, 3)
-    >>> a
-    array([ 0.,  2.,  4.])
-    >>> a[-1] = np.nan
-    >>> stats.nanmean(a)
-    1.0
-
-    """
-    x, axis = _chk_asarray(x, axis)
-    x = x.copy()
-    Norig = x.shape[axis]
-    mask = np.isnan(x)
-    factor = 1.0 - np.sum(mask, axis) / Norig
-
-    x[mask] = 0.0
-    return np.mean(x, axis) / factor
-
-
-def nanstd(x, axis=0, bias=False):
-    """
-    Compute the standard deviation over the given axis, ignoring nans.
-
-    Parameters
-    ----------
-    x : array_like
-        Input array.
-    axis : int or None, optional
-        Axis along which the standard deviation is computed. Default is 0.
-        If None, compute over the whole array `x`.
-    bias : bool, optional
-        If True, the biased (normalized by N) definition is used. If False
-        (default), the unbiased definition is used.
-
-    Returns
-    -------
-    s : float
-        The standard deviation.
-
-    See Also
-    --------
-    nanmean, nanmedian
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.arange(10, dtype=float)
-    >>> a[1:3] = np.nan
-    >>> np.std(a)
-    nan
-    >>> stats.nanstd(a)
-    2.9154759474226504
-    >>> stats.nanstd(a.reshape(2, 5), axis=1)
-    array([ 2.0817,  1.5811])
-    >>> stats.nanstd(a.reshape(2, 5), axis=None)
-    2.9154759474226504
-
-    """
-    x, axis = _chk_asarray(x, axis)
-    x = x.copy()
-    Norig = x.shape[axis]
-
-    mask = np.isnan(x)
-    Nnan = np.sum(mask, axis) * 1.0
-    n = Norig - Nnan
-
-    x[mask] = 0.0
-    m1 = np.sum(x, axis) / n
-
-    if axis:
-        d = x - np.expand_dims(m1, axis)
-    else:
-        d = x - m1
-
-    d *= d
-
-    m2 = np.sum(d, axis) - m1 * m1 * Nnan
-
-    if bias:
-        m2c = m2 / n
-    else:
-        m2c = m2 / (n - 1.0)
-
-    return np.sqrt(m2c)
-
-
-def _nanmedian(arr1d):  # This only works on 1d arrays
-    """Private function for rank a arrays. Compute the median ignoring Nan.
-
-    Parameters
-    ----------
-    arr1d : ndarray
-        Input array, of rank 1.
-
-    Results
-    -------
-    m : float
-        The median.
-    """
-    x = arr1d.copy()
-    c = np.isnan(x)
-    s = np.where(c)[0]
-    if s.size == x.size:
-        warnings.warn("All-NaN slice encountered", RuntimeWarning)
-        return np.nan
-    elif s.size != 0:
-        # select non-nans at end of array
-        enonan = x[-s.size:][~c[-s.size:]]
-        # fill nans in beginning of array with non-nans of end
-        x[s[:enonan.size]] = enonan
-        # slice nans away
-        x = x[:-s.size]
-    return np.median(x, overwrite_input=True)
-
-
-def nanmedian(x, axis=0):
-    """
-    Compute the median along the given axis ignoring nan values.
-
-    Parameters
-    ----------
-    x : array_like
-        Input array.
-    axis : int, optional
-        Axis along which the median is computed. Default is 0, i.e. the
-        first axis.
-
-    Returns
-    -------
-    m : float
-        The median of `x` along `axis`.
-
-    See Also
-    --------
-    nanstd, nanmean, numpy.nanmedian
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.array([0, 3, 1, 5, 5, np.nan])
-    >>> stats.nanmedian(a)
-    array(3.0)
-
-    >>> b = np.array([0, 3, 1, 5, 5, np.nan, 5])
-    >>> stats.nanmedian(b)
-    array(4.0)
-
-    Example with axis:
-
-    >>> c = np.arange(30.).reshape(5,6)
-    >>> idx = np.array([False, False, False, True, False] * 6).reshape(5,6)
-    >>> c[idx] = np.nan
-    >>> c
-    array([[  0.,   1.,   2.,  nan,   4.,   5.],
-           [  6.,   7.,  nan,   9.,  10.,  11.],
-           [ 12.,  nan,  14.,  15.,  16.,  17.],
-           [ nan,  19.,  20.,  21.,  22.,  nan],
-           [ 24.,  25.,  26.,  27.,  nan,  29.]])
-    >>> stats.nanmedian(c, axis=1)
-    array([  2. ,   9. ,  15. ,  20.5,  26. ])
-
-    """
-    x, axis = _chk_asarray(x, axis)
-    if x.ndim == 0:
-        return float(x.item())
-    if hasattr(np, 'nanmedian'):  # numpy 1.9 faster for some cases
-        return np.nanmedian(x, axis)
-    x = np.apply_along_axis(_nanmedian, axis, x)
-    if x.ndim == 0:
-        x = float(x.item())
-    return x
-
-
-#####################################
-########  CENTRAL TENDENCY  ########
-#####################################
-
-
-def gmean(a, axis=0, dtype=None):
-    """
-    Compute the geometric mean along the specified axis.
-
-    Returns the geometric average of the array elements.
-    That is:  n-th root of (x1 * x2 * ... * xn)
-
-    Parameters
-    ----------
-    a : array_like
-        Input array or object that can be converted to an array.
-    axis : int, optional, default axis=0
-        Axis along which the geometric mean is computed.
-    dtype : dtype, optional
-        Type of the returned array and of the accumulator in which the
-        elements are summed. If dtype is not specified, it defaults to the
-        dtype of a, unless a has an integer dtype with a precision less than
-        that of the default platform integer. In that case, the default
-        platform integer is used.
-
-    Returns
-    -------
-    gmean : ndarray
-        see dtype parameter above
-
-    See Also
-    --------
-    numpy.mean : Arithmetic average
-    numpy.average : Weighted average
-    hmean : Harmonic mean
-
-    Notes
-    -----
-    The geometric average is computed over a single dimension of the input
-    array, axis=0 by default, or all values in the array if axis=None.
-    float64 intermediate and return values are used for integer inputs.
-
-    Use masked arrays to ignore any non-finite values in the input or that
-    arise in the calculations such as Not a Number and infinity because masked
-    arrays automatically mask any non-finite values.
-
-    """
-    if not isinstance(a, np.ndarray):  # if not an ndarray object attempt to convert it
-        log_a = np.log(np.array(a, dtype=dtype))
-    elif dtype:  # Must change the default dtype allowing array type
-        if isinstance(a,np.ma.MaskedArray):
-            log_a = np.log(np.ma.asarray(a, dtype=dtype))
-        else:
-            log_a = np.log(np.asarray(a, dtype=dtype))
-    else:
-        log_a = np.log(a)
-    return np.exp(log_a.mean(axis=axis))
-
-
-def hmean(a, axis=0, dtype=None):
-    """
-    Calculates the harmonic mean along the specified axis.
-
-    That is:  n / (1/x1 + 1/x2 + ... + 1/xn)
-
-    Parameters
-    ----------
-    a : array_like
-        Input array, masked array or object that can be converted to an array.
-    axis : int, optional, default axis=0
-        Axis along which the harmonic mean is computed.
-    dtype : dtype, optional
-        Type of the returned array and of the accumulator in which the
-        elements are summed. If `dtype` is not specified, it defaults to the
-        dtype of `a`, unless `a` has an integer `dtype` with a precision less
-        than that of the default platform integer. In that case, the default
-        platform integer is used.
-
-    Returns
-    -------
-    hmean : ndarray
-        see `dtype` parameter above
-
-    See Also
-    --------
-    numpy.mean : Arithmetic average
-    numpy.average : Weighted average
-    gmean : Geometric mean
-
-    Notes
-    -----
-    The harmonic mean is computed over a single dimension of the input
-    array, axis=0 by default, or all values in the array if axis=None.
-    float64 intermediate and return values are used for integer inputs.
-
-    Use masked arrays to ignore any non-finite values in the input or that
-    arise in the calculations such as Not a Number and infinity.
-
-    """
-    if not isinstance(a, np.ndarray):
-        a = np.array(a, dtype=dtype)
-    if np.all(a > 0):  # Harmonic mean only defined if greater than zero
-        if isinstance(a, np.ma.MaskedArray):
-            size = a.count(axis)
-        else:
-            if axis is None:
-                a = a.ravel()
-                size = a.shape[0]
-            else:
-                size = a.shape[axis]
-        return size / np.sum(1.0/a, axis=axis, dtype=dtype)
-    else:
-        raise ValueError("Harmonic mean only defined if all elements greater than zero")
-
-
-def mode(a, axis=0):
-    """
-    Returns an array of the modal (most common) value in the passed array.
-
-    If there is more than one such value, only the first is returned.
-    The bin-count for the modal bins is also returned.
-
-    Parameters
-    ----------
-    a : array_like
-        n-dimensional array of which to find mode(s).
-    axis : int, optional
-        Axis along which to operate. Default is 0, i.e. the first axis.
-
-    Returns
-    -------
-    vals : ndarray
-        Array of modal values.
-    counts : ndarray
-        Array of counts for each mode.
-
-    Examples
-    --------
-    >>> a = np.array([[6, 8, 3, 0],
-                      [3, 2, 1, 7],
-                      [8, 1, 8, 4],
-                      [5, 3, 0, 5],
-                      [4, 7, 5, 9]])
-    >>> from scipy import stats
-    >>> stats.mode(a)
-    (array([[ 3.,  1.,  0.,  0.]]), array([[ 1.,  1.,  1.,  1.]]))
-
-    To get mode of whole array, specify axis=None:
-
-    >>> stats.mode(a, axis=None)
-    (array([ 3.]), array([ 3.]))
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    scores = np.unique(np.ravel(a))       # get ALL unique values
-    testshape = list(a.shape)
-    testshape[axis] = 1
-    oldmostfreq = np.zeros(testshape, dtype=a.dtype)
-    oldcounts = np.zeros(testshape)
-    for score in scores:
-        template = (a == score)
-        counts = np.expand_dims(np.sum(template, axis),axis)
-        mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
-        oldcounts = np.maximum(counts, oldcounts)
-        oldmostfreq = mostfrequent
-    return mostfrequent, oldcounts
-
-
-def mask_to_limits(a, limits, inclusive):
-    """Mask an array for values outside of given limits.
-
-    This is primarily a utility function.
-
-    Parameters
-    ----------
-    a : array
-    limits : (float or None, float or None)
-        A tuple consisting of the (lower limit, upper limit).  Values in the
-        input array less than the lower limit or greater than the upper limit
-        will be masked out. None implies no limit.
-    inclusive : (bool, bool)
-        A tuple consisting of the (lower flag, upper flag).  These flags
-        determine whether values exactly equal to lower or upper are allowed.
-
-    Returns
-    -------
-    A MaskedArray.
-
-    Raises
-    ------
-    A ValueError if there are no values within the given limits.
-    """
-    lower_limit, upper_limit = limits
-    lower_include, upper_include = inclusive
-    am = ma.MaskedArray(a)
-    if lower_limit is not None:
-        if lower_include:
-            am = ma.masked_less(am, lower_limit)
-        else:
-            am = ma.masked_less_equal(am, lower_limit)
-
-    if upper_limit is not None:
-        if upper_include:
-            am = ma.masked_greater(am, upper_limit)
-        else:
-            am = ma.masked_greater_equal(am, upper_limit)
-
-    if am.count() == 0:
-        raise ValueError("No array values within given limits")
-
-    return am
-
-
-def tmean(a, limits=None, inclusive=(True, True)):
-    """
-    Compute the trimmed mean.
-
-    This function finds the arithmetic mean of given values, ignoring values
-    outside the given `limits`.
-
-    Parameters
-    ----------
-    a : array_like
-        Array of values.
-    limits : None or (lower limit, upper limit), optional
-        Values in the input array less than the lower limit or greater than the
-        upper limit will be ignored.  When limits is None (default), then all
-        values are used.  Either of the limit values in the tuple can also be
-        None representing a half-open interval.
-    inclusive : (bool, bool), optional
-        A tuple consisting of the (lower flag, upper flag).  These flags
-        determine whether values exactly equal to the lower or upper limits
-        are included.  The default value is (True, True).
-
-    Returns
-    -------
-    tmean : float
-
-    """
-    a = asarray(a)
-    if limits is None:
-        return np.mean(a, None)
-
-    am = mask_to_limits(a.ravel(), limits, inclusive)
-    return am.mean()
-
-
-def masked_var(am):
-    m = am.mean()
-    s = ma.add.reduce((am - m)**2)
-    n = am.count() - 1.0
-    return s / n
-
-
-def tvar(a, limits=None, inclusive=(True, True)):
-    """
-    Compute the trimmed variance
-
-    This function computes the sample variance of an array of values,
-    while ignoring values which are outside of given `limits`.
-
-    Parameters
-    ----------
-    a : array_like
-        Array of values.
-    limits : None or (lower limit, upper limit), optional
-        Values in the input array less than the lower limit or greater than the
-        upper limit will be ignored. When limits is None, then all values are
-        used. Either of the limit values in the tuple can also be None
-        representing a half-open interval.  The default value is None.
-    inclusive : (bool, bool), optional
-        A tuple consisting of the (lower flag, upper flag).  These flags
-        determine whether values exactly equal to the lower or upper limits
-        are included.  The default value is (True, True).
-
-    Returns
-    -------
-    tvar : float
-        Trimmed variance.
-
-    Notes
-    -----
-    `tvar` computes the unbiased sample variance, i.e. it uses a correction
-    factor ``n / (n - 1)``.
-
-    """
-    a = asarray(a)
-    a = a.astype(float).ravel()
-    if limits is None:
-        n = len(a)
-        return a.var()*(n/(n-1.))
-    am = mask_to_limits(a, limits, inclusive)
-    return masked_var(am)
-
-
-def tmin(a, lowerlimit=None, axis=0, inclusive=True):
-    """
-    Compute the trimmed minimum
-
-    This function finds the miminum value of an array `a` along the
-    specified axis, but only considering values greater than a specified
-    lower limit.
-
-    Parameters
-    ----------
-    a : array_like
-        array of values
-    lowerlimit : None or float, optional
-        Values in the input array less than the given limit will be ignored.
-        When lowerlimit is None, then all values are used. The default value
-        is None.
-    axis : None or int, optional
-        Operate along this axis.  None means to use the flattened array and
-        the default is zero
-    inclusive : {True, False}, optional
-        This flag determines whether values exactly equal to the lower limit
-        are included.  The default value is True.
-
-    Returns
-    -------
-    tmin : float
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    am = mask_to_limits(a, (lowerlimit, None), (inclusive, False))
-    return ma.minimum.reduce(am, axis)
-
-
-def tmax(a, upperlimit=None, axis=0, inclusive=True):
-    """
-    Compute the trimmed maximum
-
-    This function computes the maximum value of an array along a given axis,
-    while ignoring values larger than a specified upper limit.
-
-    Parameters
-    ----------
-    a : array_like
-        array of values
-    upperlimit : None or float, optional
-        Values in the input array greater than the given limit will be ignored.
-        When upperlimit is None, then all values are used. The default value
-        is None.
-    axis : None or int, optional
-        Operate along this axis.  None means to use the flattened array and
-        the default is zero.
-    inclusive : {True, False}, optional
-        This flag determines whether values exactly equal to the upper limit
-        are included.  The default value is True.
-
-    Returns
-    -------
-    tmax : float
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    am = mask_to_limits(a, (None, upperlimit), (False, inclusive))
-    return ma.maximum.reduce(am, axis)
-
-
-def tstd(a, limits=None, inclusive=(True, True)):
-    """
-    Compute the trimmed sample standard deviation
-
-    This function finds the sample standard deviation of given values,
-    ignoring values outside the given `limits`.
-
-    Parameters
-    ----------
-    a : array_like
-        array of values
-    limits : None or (lower limit, upper limit), optional
-        Values in the input array less than the lower limit or greater than the
-        upper limit will be ignored. When limits is None, then all values are
-        used. Either of the limit values in the tuple can also be None
-        representing a half-open interval.  The default value is None.
-    inclusive : (bool, bool), optional
-        A tuple consisting of the (lower flag, upper flag).  These flags
-        determine whether values exactly equal to the lower or upper limits
-        are included.  The default value is (True, True).
-
-    Returns
-    -------
-    tstd : float
-
-    Notes
-    -----
-    `tstd` computes the unbiased sample standard deviation, i.e. it uses a
-    correction factor ``n / (n - 1)``.
-
-    """
-    return np.sqrt(tvar(a, limits, inclusive))
-
-
-def tsem(a, limits=None, inclusive=(True, True)):
-    """
-    Compute the trimmed standard error of the mean.
-
-    This function finds the standard error of the mean for given
-    values, ignoring values outside the given `limits`.
-
-    Parameters
-    ----------
-    a : array_like
-        array of values
-    limits : None or (lower limit, upper limit), optional
-        Values in the input array less than the lower limit or greater than the
-        upper limit will be ignored. When limits is None, then all values are
-        used. Either of the limit values in the tuple can also be None
-        representing a half-open interval.  The default value is None.
-    inclusive : (bool, bool), optional
-        A tuple consisting of the (lower flag, upper flag).  These flags
-        determine whether values exactly equal to the lower or upper limits
-        are included.  The default value is (True, True).
-
-    Returns
-    -------
-    tsem : float
-
-    Notes
-    -----
-    `tsem` uses unbiased sample standard deviation, i.e. it uses a
-    correction factor ``n / (n - 1)``.
-
-    """
-    a = np.asarray(a).ravel()
-    if limits is None:
-        return a.std(ddof=1) / np.sqrt(a.size)
-
-    am = mask_to_limits(a, limits, inclusive)
-    sd = np.sqrt(masked_var(am))
-    return sd / np.sqrt(am.count())
-
-
-#####################################
-############  MOMENTS  #############
-#####################################
-
-def moment(a, moment=1, axis=0):
-    """
-    Calculates the nth moment about the mean for a sample.
-
-    Generally used to calculate coefficients of skewness and
-    kurtosis.
-
-    Parameters
-    ----------
-    a : array_like
-       data
-    moment : int
-       order of central moment that is returned
-    axis : int or None
-       Axis along which the central moment is computed. If None, then the data
-       array is raveled. The default axis is zero.
-
-    Returns
-    -------
-    n-th central moment : ndarray or float
-       The appropriate moment along the given axis or over all values if axis
-       is None. The denominator for the moment calculation is the number of
-       observations, no degrees of freedom correction is done.
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    if moment == 1:
-        # By definition the first moment about the mean is 0.
-        shape = list(a.shape)
-        del shape[axis]
-        if shape:
-            # return an actual array of the appropriate shape
-            return np.zeros(shape, dtype=float)
-        else:
-            # the input was 1D, so return a scalar instead of a rank-0 array
-            return np.float64(0.0)
-    else:
-        mn = np.expand_dims(np.mean(a,axis), axis)
-        s = np.power((a-mn), moment)
-        return np.mean(s, axis)
-
-
-def variation(a, axis=0):
-    """
-    Computes the coefficient of variation, the ratio of the biased standard
-    deviation to the mean.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-    axis : int or None
-        Axis along which to calculate the coefficient of variation.
-
-    References
-    ----------
-    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
-       Probability and Statistics Tables and Formulae. Chapman & Hall: New
-       York. 2000.
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    return a.std(axis)/a.mean(axis)
-
-
-def skew(a, axis=0, bias=True):
-    """
-    Computes the skewness of a data set.
-
-    For normally distributed data, the skewness should be about 0. A skewness
-    value > 0 means that there is more weight in the left tail of the
-    distribution. The function `skewtest` can be used to determine if the
-    skewness value is close enough to 0, statistically speaking.
-
-    Parameters
-    ----------
-    a : ndarray
-        data
-    axis : int or None
-        axis along which skewness is calculated
-    bias : bool
-        If False, then the calculations are corrected for statistical bias.
-
-    Returns
-    -------
-    skewness : ndarray
-        The skewness of values along an axis, returning 0 where all values are
-        equal.
-
-    References
-    ----------
-    [CRCProbStat2000]_ Section 2.2.24.1
-
-    .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
-       Probability and Statistics Tables and Formulae. Chapman & Hall: New
-       York. 2000.
-
-    """
-    a, axis = _chk_asarray(a,axis)
-    n = a.shape[axis]
-    m2 = moment(a, 2, axis)
-    m3 = moment(a, 3, axis)
-    zero = (m2 == 0)
-    vals = np.where(zero, 0, m3 / m2**1.5)
-    if not bias:
-        can_correct = (n > 2) & (m2 > 0)
-        if can_correct.any():
-            m2 = np.extract(can_correct, m2)
-            m3 = np.extract(can_correct, m3)
-            nval = np.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
-            np.place(vals, can_correct, nval)
-    if vals.ndim == 0:
-        return vals.item()
-    return vals
-
-
-def kurtosis(a, axis=0, fisher=True, bias=True):
-    """
-    Computes the kurtosis (Fisher or Pearson) of a dataset.
-
-    Kurtosis is the fourth central moment divided by the square of the
-    variance. If Fisher's definition is used, then 3.0 is subtracted from
-    the result to give 0.0 for a normal distribution.
-
-    If bias is False then the kurtosis is calculated using k statistics to
-    eliminate bias coming from biased moment estimators
-
-    Use `kurtosistest` to see if result is close enough to normal.
-
-    Parameters
-    ----------
-    a : array
-        data for which the kurtosis is calculated
-    axis : int or None
-        Axis along which the kurtosis is calculated
-    fisher : bool
-        If True, Fisher's definition is used (normal ==> 0.0). If False,
-        Pearson's definition is used (normal ==> 3.0).
-    bias : bool
-        If False, then the calculations are corrected for statistical bias.
-
-    Returns
-    -------
-    kurtosis : array
-        The kurtosis of values along an axis. If all values are equal,
-        return -3 for Fisher's definition and 0 for Pearson's definition.
-
-    References
-    ----------
-    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
-       Probability and Statistics Tables and Formulae. Chapman & Hall: New
-       York. 2000.
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = a.shape[axis]
-    m2 = moment(a,2,axis)
-    m4 = moment(a,4,axis)
-    zero = (m2 == 0)
-    olderr = np.seterr(all='ignore')
-    try:
-        vals = np.where(zero, 0, m4 / m2**2.0)
-    finally:
-        np.seterr(**olderr)
-
-    if not bias:
-        can_correct = (n > 3) & (m2 > 0)
-        if can_correct.any():
-            m2 = np.extract(can_correct, m2)
-            m4 = np.extract(can_correct, m4)
-            nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
-            np.place(vals, can_correct, nval+3.0)
-
-    if vals.ndim == 0:
-        vals = vals.item()  # array scalar
-
-    if fisher:
-        return vals - 3
-    else:
-        return vals
-
-
-def describe(a, axis=0, ddof=1):
-    """
-    Computes several descriptive statistics of the passed array.
-
-    Parameters
-    ----------
-    a : array_like
-       Input data.
-    axis : int, optional
-       Axis along which statistics are calculated.  If axis is None, then data
-       array is raveled.  The default axis is zero.
-    ddof : int, optional
-        Delta degrees of freedom.  Default is 1.
-
-    Returns
-    -------
-    size of the data : int
-       length of data along axis
-    (min, max): tuple of ndarrays or floats
-       minimum and maximum value of data array
-    arithmetic mean : ndarray or float
-       mean of data along axis
-    unbiased variance : ndarray or float
-       variance of the data along axis, denominator is number of observations
-       minus one.
-    biased skewness : ndarray or float
-       skewness, based on moment calculations with denominator equal to the
-       number of observations, i.e. no degrees of freedom correction
-    biased kurtosis : ndarray or float
-       kurtosis (Fisher), the kurtosis is normalized so that it is zero for the
-       normal distribution. No degrees of freedom or bias correction is used.
-
-    See Also
-    --------
-    skew, kurtosis
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = a.shape[axis]
-    mm = (np.min(a, axis=axis), np.max(a, axis=axis))
-    m = np.mean(a, axis=axis)
-    v = np.var(a, axis=axis, ddof=ddof)
-    sk = skew(a, axis)
-    kurt = kurtosis(a, axis)
-    return n, mm, m, v, sk, kurt
-
-#####################################
-########  NORMALITY TESTS  ##########
-#####################################
-
-
-def skewtest(a, axis=0):
-    """
-    Tests whether the skew is different from the normal distribution.
-
-    This function tests the null hypothesis that the skewness of
-    the population that the sample was drawn from is the same
-    as that of a corresponding normal distribution.
-
-    Parameters
-    ----------
-    a : array
-    axis : int or None
-
-    Returns
-    -------
-    z-score : float
-        The computed z-score for this test.
-    p-value : float
-        a 2-sided p-value for the hypothesis test
-
-    Notes
-    -----
-    The sample size must be at least 8.
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    if axis is None:
-        a = np.ravel(a)
-        axis = 0
-    b2 = skew(a, axis)
-    n = float(a.shape[axis])
-    if n < 8:
-        raise ValueError(
-            "skewtest is not valid with less than 8 samples; %i samples"
-            " were given." % int(n))
-    y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
-    beta2 = (3.0 * (n * n + 27 * n - 70) * (n + 1) * (n + 3) /
-            ((n - 2.0) * (n + 5) * (n + 7) * (n + 9)))
-    W2 = -1 + math.sqrt(2 * (beta2 - 1))
-    delta = 1 / math.sqrt(0.5 * math.log(W2))
-    alpha = math.sqrt(2.0 / (W2 - 1))
-    y = np.where(y == 0, 1, y)
-    Z = delta * np.log(y / alpha + np.sqrt((y / alpha) ** 2 + 1))
-    return Z, 2 * distributions.norm.sf(np.abs(Z))
-
-
-def kurtosistest(a, axis=0):
-    """
-    Tests whether a dataset has normal kurtosis
-
-    This function tests the null hypothesis that the kurtosis
-    of the population from which the sample was drawn is that
-    of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.
-
-    Parameters
-    ----------
-    a : array
-        array of the sample data
-    axis : int or None
-        the axis to operate along, or None to work on the whole array.
-        The default is the first axis.
-
-    Returns
-    -------
-    z-score : float
-        The computed z-score for this test.
-    p-value : float
-        The 2-sided p-value for the hypothesis test
-
-    Notes
-    -----
-    Valid only for n>20.  The Z-score is set to 0 for bad entries.
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = float(a.shape[axis])
-    if n < 5:
-        raise ValueError(
-            "kurtosistest requires at least 5 observations; %i observations"
-            " were given." % int(n))
-    if n < 20:
-        warnings.warn(
-            "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
-            int(n))
-    b2 = kurtosis(a, axis, fisher=False)
-    E = 3.0*(n-1) / (n+1)
-    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))
-    x = (b2-E)/np.sqrt(varb2)
-    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
-                                                       (n*(n-2)*(n-3)))
-    A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
-    term1 = 1 - 2/(9.0*A)
-    denom = 1 + x*np.sqrt(2/(A-4.0))
-    denom = np.where(denom < 0, 99, denom)
-    term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom,1/3.0))
-    Z = (term1 - term2) / np.sqrt(2/(9.0*A))
-    Z = np.where(denom == 99, 0, Z)
-    if Z.ndim == 0:
-        Z = Z[()]
-    # JPNote: p-value sometimes larger than 1
-    # zprob uses upper tail, so Z needs to be positive
-    return Z, 2 * distributions.norm.sf(np.abs(Z))
-
-
-def normaltest(a, axis=0):
-    """
-    Tests whether a sample differs from a normal distribution.
-
-    This function tests the null hypothesis that a sample comes
-    from a normal distribution.  It is based on D'Agostino and
-    Pearson's [1]_, [2]_ test that combines skew and kurtosis to
-    produce an omnibus test of normality.
-
-
-    Parameters
-    ----------
-    a : array_like
-        The array containing the data to be tested.
-    axis : int or None
-        If None, the array is treated as a single data set, regardless of
-        its shape.  Otherwise, each 1-d array along axis `axis` is tested.
-
-    Returns
-    -------
-    k2 : float or array
-        `s^2 + k^2`, where `s` is the z-score returned by `skewtest` and
-        `k` is the z-score returned by `kurtosistest`.
-    p-value : float or array
-       A 2-sided chi squared probability for the hypothesis test.
-
-    References
-    ----------
-    .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
-           moderate and large sample size," Biometrika, 58, 341-348
-
-    .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Testing for
-           departures from normality," Biometrika, 60, 613-622
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    s, _ = skewtest(a, axis)
-    k, _ = kurtosistest(a, axis)
-    k2 = s*s + k*k
-    return k2, chisqprob(k2,2)
-
-
-def jarque_bera(x):
-    """
-    Perform the Jarque-Bera goodness of fit test on sample data.
-
-    The Jarque-Bera test tests whether the sample data has the skewness and
-    kurtosis matching a normal distribution.
-
-    Note that this test only works for a large enough number of data samples
-    (>2000) as the test statistic asymptotically has a Chi-squared distribution
-    with 2 degrees of freedom.
-
-    Parameters
-    ----------
-    x : array_like
-        Observations of a random variable.
-
-    Returns
-    -------
-    jb_value : float
-        The test statistic.
-    p : float
-        The p-value for the hypothesis test.
-
-    References
-    ----------
-    .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
-           homoscedasticity and serial independence of regression residuals",
-           6 Econometric Letters 255-259.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> np.random.seed(987654321)
-    >>> x = np.random.normal(0, 1, 100000)
-    >>> y = np.random.rayleigh(1, 100000)
-    >>> stats.jarque_bera(x)
-    (4.7165707989581342, 0.09458225503041906)
-    >>> stats.jarque_bera(y)
-    (6713.7098548143422, 0.0)
-
-    """
-    x = np.asarray(x)
-    n = float(x.size)
-    if n == 0:
-        raise ValueError('At least one observation is required.')
-
-    mu = x.mean()
-    diffx = x - mu
-    skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.)
-    kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2
-    jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4)
-    p = 1 - distributions.chi2.cdf(jb_value, 2)
-
-    return jb_value, p
-
-
-#####################################
-######  FREQUENCY FUNCTIONS  #######
-#####################################
-
-def itemfreq(a):
-    """
-    Returns a 2-D array of item frequencies.
-
-    Parameters
-    ----------
-    a : (N,) array_like
-        Input array.
-
-    Returns
-    -------
-    itemfreq : (K, 2) ndarray
-        A 2-D frequency table.  Column 1 contains sorted, unique values from
-        `a`, column 2 contains their respective counts.
-
-    Examples
-    --------
-    >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
-    >>> stats.itemfreq(a)
-    array([[ 0.,  2.],
-           [ 1.,  4.],
-           [ 2.,  2.],
-           [ 4.,  1.],
-           [ 5.,  1.]])
-    >>> np.bincount(a)
-    array([2, 4, 2, 0, 1, 1])
-
-    >>> stats.itemfreq(a/10.)
-    array([[ 0. ,  2. ],
-           [ 0.1,  4. ],
-           [ 0.2,  2. ],
-           [ 0.4,  1. ],
-           [ 0.5,  1. ]])
-
-    """
-    items, inv = np.unique(a, return_inverse=True)
-    freq = np.bincount(inv)
-    return np.array([items, freq]).T
-
-
-def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
-                      axis=None):
-    """
-    Calculate the score at a given percentile of the input sequence.
-
-    For example, the score at `per=50` is the median. If the desired quantile
-    lies between two data points, we interpolate between them, according to
-    the value of `interpolation`. If the parameter `limit` is provided, it
-    should be a tuple (lower, upper) of two values.
-
-    Parameters
-    ----------
-    a : array_like
-        A 1-D array of values from which to extract score.
-    per : array_like
-        Percentile(s) at which to extract score.  Values should be in range
-        [0,100].
-    limit : tuple, optional
-        Tuple of two scalars, the lower and upper limits within which to
-        compute the percentile. Values of `a` outside
-        this (closed) interval will be ignored.
-    interpolation : {'fraction', 'lower', 'higher'}, optional
-        This optional parameter specifies the interpolation method to use,
-        when the desired quantile lies between two data points `i` and `j`
-
-          - fraction: ``i + (j - i) * fraction`` where ``fraction`` is the
-            fractional part of the index surrounded by ``i`` and ``j``.
-          - lower: ``i``.
-          - higher: ``j``.
-
-    axis : int, optional
-        Axis along which the percentiles are computed. The default (None)
-        is to compute the median along a flattened version of the array.
-
-    Returns
-    -------
-    score : float or ndarray
-        Score at percentile(s).
-
-    See Also
-    --------
-    percentileofscore, numpy.percentile
-
-    Notes
-    -----
-    This function will become obsolete in the future.
-    For Numpy 1.9 and higher, `numpy.percentile` provides all the functionality
-    that `scoreatpercentile` provides.  And it's significantly faster.
-    Therefore it's recommended to use `numpy.percentile` for users that have
-    numpy >= 1.9.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.arange(100)
-    >>> stats.scoreatpercentile(a, 50)
-    49.5
-
-    """
-    # adapted from NumPy's percentile function.  When we require numpy >= 1.8,
-    # the implementation of this function can be replaced by np.percentile.
-    a = np.asarray(a)
-    if a.size == 0:
-        # empty array, return nan(s) with shape matching `per`
-        if np.isscalar(per):
-            return np.nan
-        else:
-            return np.ones(np.asarray(per).shape, dtype=np.float64) * np.nan
-
-    if limit:
-        a = a[(limit[0] <= a) & (a <= limit[1])]
-
-    sorted = np.sort(a, axis=axis)
-    if axis is None:
-        axis = 0
-
-    return _compute_qth_percentile(sorted, per, interpolation_method, axis)
-
-
-# handle sequence of per's without calling sort multiple times
-def _compute_qth_percentile(sorted, per, interpolation_method, axis):
-    if not np.isscalar(per):
-        score = [_compute_qth_percentile(sorted, i, interpolation_method, axis)
-                 for i in per]
-        return np.array(score)
-
-    if (per < 0) or (per > 100):
-        raise ValueError("percentile must be in the range [0, 100]")
-
-    indexer = [slice(None)] * sorted.ndim
-    idx = per / 100. * (sorted.shape[axis] - 1)
-
-    if int(idx) != idx:
-        # round fractional indices according to interpolation method
-        if interpolation_method == 'lower':
-            idx = int(np.floor(idx))
-        elif interpolation_method == 'higher':
-            idx = int(np.ceil(idx))
-        elif interpolation_method == 'fraction':
-            pass  # keep idx as fraction and interpolate
-        else:
-            raise ValueError("interpolation_method can only be 'fraction', "
-                             "'lower' or 'higher'")
-
-    i = int(idx)
-    if i == idx:
-        indexer[axis] = slice(i, i + 1)
-        weights = array(1)
-        sumval = 1.0
-    else:
-        indexer[axis] = slice(i, i + 2)
-        j = i + 1
-        weights = array([(j - idx), (idx - i)], float)
-        wshape = [1] * sorted.ndim
-        wshape[axis] = 2
-        weights.shape = wshape
-        sumval = weights.sum()
-
-    # Use np.add.reduce (== np.sum but a little faster) to coerce data type
-    return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
-
-
-def percentileofscore(a, score, kind='rank'):
-    """
-    The percentile rank of a score relative to a list of scores.
-
-    A `percentileofscore` of, for example, 80% means that 80% of the
-    scores in `a` are below the given score. In the case of gaps or
-    ties, the exact definition depends on the optional keyword, `kind`.
-
-    Parameters
-    ----------
-    a : array_like
-        Array of scores to which `score` is compared.
-    score : int or float
-        Score that is compared to the elements in `a`.
-    kind : {'rank', 'weak', 'strict', 'mean'}, optional
-        This optional parameter specifies the interpretation of the
-        resulting score:
-
-        - "rank": Average percentage ranking of score.  In case of
-                  multiple matches, average the percentage rankings of
-                  all matching scores.
-        - "weak": This kind corresponds to the definition of a cumulative
-                  distribution function.  A percentileofscore of 80%
-                  means that 80% of values are less than or equal
-                  to the provided score.
-        - "strict": Similar to "weak", except that only values that are
-                    strictly less than the given score are counted.
-        - "mean": The average of the "weak" and "strict" scores, often used in
-                  testing.  See
-
-                  http://en.wikipedia.org/wiki/Percentile_rank
-
-    Returns
-    -------
-    pcos : float
-        Percentile-position of score (0-100) relative to `a`.
-
-    Examples
-    --------
-    Three-quarters of the given values lie below a given score:
-
-    >>> percentileofscore([1, 2, 3, 4], 3)
-    75.0
-
-    With multiple matches, note how the scores of the two matches, 0.6
-    and 0.8 respectively, are averaged:
-
-    >>> percentileofscore([1, 2, 3, 3, 4], 3)
-    70.0
-
-    Only 2/5 values are strictly less than 3:
-
-    >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
-    40.0
-
-    But 4/5 values are less than or equal to 3:
-
-    >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
-    80.0
-
-    The average between the weak and the strict scores is
-
-    >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
-    60.0
-
-    """
-    a = np.array(a)
-    n = len(a)
-
-    if kind == 'rank':
-        if not(np.any(a == score)):
-            a = np.append(a, score)
-            a_len = np.array(list(range(len(a))))
-        else:
-            a_len = np.array(list(range(len(a)))) + 1.0
-
-        a = np.sort(a)
-        idx = [a == score]
-        pct = (np.mean(a_len[idx]) / n) * 100.0
-        return pct
-
-    elif kind == 'strict':
-        return sum(a < score) / float(n) * 100
-    elif kind == 'weak':
-        return sum(a <= score) / float(n) * 100
-    elif kind == 'mean':
-        return (sum(a < score) + sum(a <= score)) * 50 / float(n)
-    else:
-        raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'")
-
-
-def histogram2(a, bins):
-    """
-    Compute histogram using divisions in bins.
-
-    Count the number of times values from array `a` fall into
-    numerical ranges defined by `bins`.  Range x is given by
-    bins[x] <= range_x < bins[x+1] where x =0,N and N is the
-    length of the `bins` array.  The last range is given by
-    bins[N] <= range_N < infinity.  Values less than bins[0] are
-    not included in the histogram.
-
-    Parameters
-    ----------
-    a : array_like of rank 1
-        The array of values to be assigned into bins
-    bins : array_like of rank 1
-        Defines the ranges of values to use during histogramming.
-
-    Returns
-    -------
-    histogram2 : ndarray of rank 1
-        Each value represents the occurrences for a given bin (range) of
-        values.
-
-    """
-    # comment: probably obsoleted by numpy.histogram()
-    n = np.searchsorted(np.sort(a), bins)
-    n = np.concatenate([n, [len(a)]])
-    return n[1:]-n[:-1]
-
-
-def histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
-    """
-    Separates the range into several bins and returns the number of instances
-    in each bin.
-
-    Parameters
-    ----------
-    a : array_like
-        Array of scores which will be put into bins.
-    numbins : int, optional
-        The number of bins to use for the histogram. Default is 10.
-    defaultlimits : tuple (lower, upper), optional
-        The lower and upper values for the range of the histogram.
-        If no value is given, a range slightly larger then the range of the
-        values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
-        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
-    weights : array_like, optional
-        The weights for each value in `a`. Default is None, which gives each
-        value a weight of 1.0
-    printextras : bool, optional
-        If True, if there are extra points (i.e. the points that fall outside
-        the bin limits) a warning is raised saying how many of those points
-        there are.  Default is False.
-
-    Returns
-    -------
-    histogram : ndarray
-        Number of points (or sum of weights) in each bin.
-    low_range : float
-        Lowest value of histogram, the lower limit of the first bin.
-    binsize : float
-        The size of the bins (all bins have the same size).
-    extrapoints : int
-        The number of points outside the range of the histogram.
-
-    See Also
-    --------
-    numpy.histogram
-
-    Notes
-    -----
-    This histogram is based on numpy's histogram but has a larger range by
-    default if default limits is not set.
-
-    """
-    a = np.ravel(a)
-    if defaultlimits is None:
-        # no range given, so use values in `a`
-        data_min = a.min()
-        data_max = a.max()
-        # Have bins extend past min and max values slightly
-        s = (data_max - data_min) / (2. * (numbins - 1.))
-        defaultlimits = (data_min - s, data_max + s)
-    # use numpy's histogram method to compute bins
-    hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
-                                   weights=weights)
-    # hist are not always floats, convert to keep with old output
-    hist = np.array(hist, dtype=float)
-    # fixed width for bins is assumed, as numpy's histogram gives
-    # fixed width bins for int values for 'bins'
-    binsize = bin_edges[1] - bin_edges[0]
-    # calculate number of extra points
-    extrapoints = len([v for v in a
-                       if defaultlimits[0] > v or v > defaultlimits[1]])
-    if extrapoints > 0 and printextras:
-        warnings.warn("Points outside given histogram range = %s"
-                      % extrapoints)
-    return (hist, defaultlimits[0], binsize, extrapoints)
-
-
-def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
-    """
-    Returns a cumulative frequency histogram, using the histogram function.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-    numbins : int, optional
-        The number of bins to use for the histogram. Default is 10.
-    defaultlimits : tuple (lower, upper), optional
-        The lower and upper values for the range of the histogram.
-        If no value is given, a range slightly larger than the range of the
-        values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
-        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
-    weights : array_like, optional
-        The weights for each value in `a`. Default is None, which gives each
-        value a weight of 1.0
-
-    Returns
-    -------
-    cumfreq : ndarray
-        Binned values of cumulative frequency.
-    lowerreallimit : float
-        Lower real limit
-    binsize : float
-        Width of each bin.
-    extrapoints : int
-        Extra points.
-
-    Examples
-    --------
-    >>> import scipy.stats as stats
-    >>> x = [1, 4, 2, 1, 3, 1]
-    >>> cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4)
-    >>> cumfreqs
-    array([ 3.,  4.,  5.,  6.])
-    >>> cumfreqs, lowlim, binsize, extrapoints = \
-    ...     stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
-    >>> cumfreqs
-    array([ 1.,  2.,  3.,  3.])
-    >>> extrapoints
-    3
-
-    """
-    h,l,b,e = histogram(a, numbins, defaultreallimits, weights=weights)
-    cumhist = np.cumsum(h*1, axis=0)
-    return cumhist,l,b,e
-
-
-def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
-    """
-    Returns a relative frequency histogram, using the histogram function.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-    numbins : int, optional
-        The number of bins to use for the histogram. Default is 10.
-    defaultreallimits : tuple (lower, upper), optional
-        The lower and upper values for the range of the histogram.
-        If no value is given, a range slightly larger then the range of the
-        values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
-        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
-    weights : array_like, optional
-        The weights for each value in `a`. Default is None, which gives each
-        value a weight of 1.0
-
-    Returns
-    -------
-    relfreq : ndarray
-        Binned values of relative frequency.
-    lowerreallimit : float
-        Lower real limit
-    binsize : float
-        Width of each bin.
-    extrapoints : int
-        Extra points.
-
-    Examples
-    --------
-    >>> import scipy.stats as stats
-    >>> a = np.array([1, 4, 2, 1, 3, 1])
-    >>> relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4)
-    >>> relfreqs
-    array([ 0.5       ,  0.16666667,  0.16666667,  0.16666667])
-    >>> np.sum(relfreqs)  # relative frequencies should add up to 1
-    0.99999999999999989
-
-    """
-    h, l, b, e = histogram(a, numbins, defaultreallimits, weights=weights)
-    h = np.array(h / float(np.array(a).shape[0]))
-    return h, l, b, e
-
-
-#####################################
-######  VARIABILITY FUNCTIONS  #####
-#####################################
-
-def obrientransform(*args):
-    """
-    Computes the O'Brien transform on input data (any number of arrays).
-
-    Used to test for homogeneity of variance prior to running one-way stats.
-    Each array in ``*args`` is one level of a factor.
-    If `f_oneway` is run on the transformed data and found significant,
-    the variances are unequal.  From Maxwell and Delaney [1]_, p.112.
-
-    Parameters
-    ----------
-    args : tuple of array_like
-        Any number of arrays.
-
-    Returns
-    -------
-    obrientransform : ndarray
-        Transformed data for use in an ANOVA.  The first dimension
-        of the result corresponds to the sequence of transformed
-        arrays.  If the arrays given are all 1-D of the same length,
-        the return value is a 2-D array; otherwise it is a 1-D array
-        of type object, with each element being an ndarray.
-
-    References
-    ----------
-    .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
-           Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.
-
-    Examples
-    --------
-    We'll test the following data sets for differences in their variance.
-
-    >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
-    >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]
-
-    Apply the O'Brien transform to the data.
-
-    >>> tx, ty = obrientransform(x, y)
-
-    Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
-    transformed data.
-
-    >>> from scipy.stats import f_oneway
-    >>> F, p = f_oneway(tx, ty)
-    >>> p
-    0.1314139477040335
-
-    If we require that ``p < 0.05`` for significance, we cannot conclude
-    that the variances are different.
-    """
-    TINY = np.sqrt(np.finfo(float).eps)
-
-    # `arrays` will hold the transformed arguments.
-    arrays = []
-
-    for arg in args:
-        a = np.asarray(arg)
-        n = len(a)
-        mu = np.mean(a)
-        sq = (a - mu)**2
-        sumsq = sq.sum()
-
-        # The O'Brien transform.
-        t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))
-
-        # Check that the mean of the transformed data is equal to the
-        # original variance.
-        var = sumsq / (n - 1)
-        if abs(var - np.mean(t)) > TINY:
-            raise ValueError('Lack of convergence in obrientransform.')
-
-        arrays.append(t)
-
-    # If the arrays are not all the same shape, calling np.array(arrays)
-    # creates a 1-D array with dtype `object` in numpy 1.6+. In numpy
-    # 1.5.x, it raises an exception.  To work around this, we explicitly
-    # set the dtype to `object` when the arrays are not all the same shape.
-    if len(arrays) < 2 or all(x.shape == arrays[0].shape for x in arrays[1:]):
-        dt = None
-    else:
-        dt = object
-    return np.array(arrays, dtype=dt)
-
-
-def signaltonoise(a, axis=0, ddof=0):
-    """
-    The signal-to-noise ratio of the input data.
-
-    Returns the signal-to-noise ratio of `a`, here defined as the mean
-    divided by the standard deviation.
-
-    Parameters
-    ----------
-    a : array_like
-        An array_like object containing the sample data.
-    axis : int or None, optional
-        If axis is equal to None, the array is first ravel'd. If axis is an
-        integer, this is the axis over which to operate. Default is 0.
-    ddof : int, optional
-        Degrees of freedom correction for standard deviation. Default is 0.
-
-    Returns
-    -------
-    s2n : ndarray
-        The mean to standard deviation ratio(s) along `axis`, or 0 where the
-        standard deviation is 0.
-
-    """
-    a = np.asanyarray(a)
-    m = a.mean(axis)
-    sd = a.std(axis=axis, ddof=ddof)
-    return np.where(sd == 0, 0, m/sd)
-
-
-def sem(a, axis=0, ddof=1):
-    """
-    Calculates the standard error of the mean (or standard error of
-    measurement) of the values in the input array.
-
-    Parameters
-    ----------
-    a : array_like
-        An array containing the values for which the standard error is
-        returned.
-    axis : int or None, optional.
-        If axis is None, ravel `a` first. If axis is an integer, this will be
-        the axis over which to operate. Defaults to 0.
-    ddof : int, optional
-        Delta degrees-of-freedom. How many degrees of freedom to adjust
-        for bias in limited samples relative to the population estimate
-        of variance. Defaults to 1.
-
-    Returns
-    -------
-    s : ndarray or float
-        The standard error of the mean in the sample(s), along the input axis.
-
-    Notes
-    -----
-    The default value for `ddof` is different to the default (0) used by other
-    ddof containing routines, such as np.std nd stats.nanstd.
-
-    Examples
-    --------
-    Find standard error along the first axis:
-
-    >>> from scipy import stats
-    >>> a = np.arange(20).reshape(5,4)
-    >>> stats.sem(a)
-    array([ 2.8284,  2.8284,  2.8284,  2.8284])
-
-    Find standard error across the whole array, using n degrees of freedom:
-
-    >>> stats.sem(a, axis=None, ddof=0)
-    1.2893796958227628
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = a.shape[axis]
-    s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
-    return s
-
-
-def zscore(a, axis=0, ddof=0):
-    """
-    Calculates the z score of each value in the sample, relative to the sample
-    mean and standard deviation.
-
-    Parameters
-    ----------
-    a : array_like
-        An array like object containing the sample data.
-    axis : int or None, optional
-        If `axis` is equal to None, the array is first raveled. If `axis` is
-        an integer, this is the axis over which to operate. Default is 0.
-    ddof : int, optional
-        Degrees of freedom correction in the calculation of the
-        standard deviation. Default is 0.
-
-    Returns
-    -------
-    zscore : array_like
-        The z-scores, standardized by mean and standard deviation of input
-        array `a`.
-
-    Notes
-    -----
-    This function preserves ndarray subclasses, and works also with
-    matrices and masked arrays (it uses `asanyarray` instead of `asarray`
-    for parameters).
-
-    Examples
-    --------
-    >>> a = np.array([ 0.7972,  0.0767,  0.4383,  0.7866,  0.8091,  0.1954,
-                       0.6307, 0.6599,  0.1065,  0.0508])
-    >>> from scipy import stats
-    >>> stats.zscore(a)
-    array([ 1.1273, -1.247 , -0.0552,  1.0923,  1.1664, -0.8559,  0.5786,
-            0.6748, -1.1488, -1.3324])
-
-    Computing along a specified axis, using n-1 degrees of freedom (``ddof=1``)
-    to calculate the standard deviation:
-
-    >>> b = np.array([[ 0.3148,  0.0478,  0.6243,  0.4608],
-                      [ 0.7149,  0.0775,  0.6072,  0.9656],
-                      [ 0.6341,  0.1403,  0.9759,  0.4064],
-                      [ 0.5918,  0.6948,  0.904 ,  0.3721],
-                      [ 0.0921,  0.2481,  0.1188,  0.1366]])
-    >>> stats.zscore(b, axis=1, ddof=1)
-    array([[-0.19264823, -1.28415119,  1.07259584,  0.40420358],
-           [ 0.33048416, -1.37380874,  0.04251374,  1.00081084],
-           [ 0.26796377, -1.12598418,  1.23283094, -0.37481053],
-           [-0.22095197,  0.24468594,  1.19042819, -1.21416216],
-           [-0.82780366,  1.4457416 , -0.43867764, -0.1792603 ]])
-    """
-    a = np.asanyarray(a)
-    mns = a.mean(axis=axis)
-    sstd = a.std(axis=axis, ddof=ddof)
-    if axis and mns.ndim < a.ndim:
-        return ((a - np.expand_dims(mns, axis=axis)) /
-                 np.expand_dims(sstd,axis=axis))
-    else:
-        return (a - mns) / sstd
-
-
-def zmap(scores, compare, axis=0, ddof=0):
-    """
-    Calculates the relative z-scores.
-
-    Returns an array of z-scores, i.e., scores that are standardized to zero
-    mean and unit variance, where mean and variance are calculated from the
-    comparison array.
-
-    Parameters
-    ----------
-    scores : array_like
-        The input for which z-scores are calculated.
-    compare : array_like
-        The input from which the mean and standard deviation of the
-        normalization are taken; assumed to have the same dimension as
-        `scores`.
-    axis : int or None, optional
-        Axis over which mean and variance of `compare` are calculated.
-        Default is 0.
-    ddof : int, optional
-        Degrees of freedom correction in the calculation of the
-        standard deviation. Default is 0.
-
-    Returns
-    -------
-    zscore : array_like
-        Z-scores, in the same shape as `scores`.
-
-    Notes
-    -----
-    This function preserves ndarray subclasses, and works also with
-    matrices and masked arrays (it uses `asanyarray` instead of `asarray`
-    for parameters).
-
-    Examples
-    --------
-    >>> a = [0.5, 2.0, 2.5, 3]
-    >>> b = [0, 1, 2, 3, 4]
-    >>> zmap(a, b)
-    array([-1.06066017,  0.        ,  0.35355339,  0.70710678])
-    """
-    scores, compare = map(np.asanyarray, [scores, compare])
-    mns = compare.mean(axis=axis)
-    sstd = compare.std(axis=axis, ddof=ddof)
-    if axis and mns.ndim < compare.ndim:
-        return ((scores - np.expand_dims(mns, axis=axis)) /
-                 np.expand_dims(sstd,axis=axis))
-    else:
-        return (scores - mns) / sstd
-
-
-#####################################
-#######  TRIMMING FUNCTIONS  #######
-#####################################
-
-def threshold(a, threshmin=None, threshmax=None, newval=0):
-    """
-    Clip array to a given value.
-
-    Similar to numpy.clip(), except that values less than `threshmin` or
-    greater than `threshmax` are replaced by `newval`, instead of by
-    `threshmin` and `threshmax` respectively.
-
-    Parameters
-    ----------
-    a : array_like
-        Data to threshold.
-    threshmin : float, int or None, optional
-        Minimum threshold, defaults to None.
-    threshmax : float, int or None, optional
-        Maximum threshold, defaults to None.
-    newval : float or int, optional
-        Value to put in place of values in `a` outside of bounds.
-        Defaults to 0.
-
-    Returns
-    -------
-    out : ndarray
-        The clipped input array, with values less than `threshmin` or
-        greater than `threshmax` replaced with `newval`.
-
-    Examples
-    --------
-    >>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8])
-    >>> from scipy import stats
-    >>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1)
-    array([-1, -1,  6,  3, -1,  6, -1, -1, -1,  8])
-
-    """
-    a = asarray(a).copy()
-    mask = zeros(a.shape, dtype=bool)
-    if threshmin is not None:
-        mask |= (a < threshmin)
-    if threshmax is not None:
-        mask |= (a > threshmax)
-    a[mask] = newval
-    return a
-
-
-def sigmaclip(a, low=4., high=4.):
-    """
-    Iterative sigma-clipping of array elements.
-
-    The output array contains only those elements of the input array `c`
-    that satisfy the conditions ::
-
-        mean(c) - std(c)*low < c < mean(c) + std(c)*high
-
-    Starting from the full sample, all elements outside the critical range are
-    removed. The iteration continues with a new critical range until no
-    elements are outside the range.
-
-    Parameters
-    ----------
-    a : array_like
-        Data array, will be raveled if not 1-D.
-    low : float, optional
-        Lower bound factor of sigma clipping. Default is 4.
-    high : float, optional
-        Upper bound factor of sigma clipping. Default is 4.
-
-    Returns
-    -------
-    c : ndarray
-        Input array with clipped elements removed.
-    critlower : float
-        Lower threshold value use for clipping.
-    critlupper : float
-        Upper threshold value use for clipping.
-
-    Examples
-    --------
-    >>> a = np.concatenate((np.linspace(9.5,10.5,31), np.linspace(0,20,5)))
-    >>> fact = 1.5
-    >>> c, low, upp = sigmaclip(a, fact, fact)
-    >>> c
-    array([  9.96666667,  10.        ,  10.03333333,  10.        ])
-    >>> c.var(), c.std()
-    (0.00055555555555555165, 0.023570226039551501)
-    >>> low, c.mean() - fact*c.std(), c.min()
-    (9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
-    >>> upp, c.mean() + fact*c.std(), c.max()
-    (10.035355339059327, 10.035355339059327, 10.033333333333333)
-
-    >>> a = np.concatenate((np.linspace(9.5,10.5,11),
-        np.linspace(-100,-50,3)))
-    >>> c, low, upp = sigmaclip(a, 1.8, 1.8)
-    >>> (c == np.linspace(9.5,10.5,11)).all()
-    True
-
-    """
-    c = np.asarray(a).ravel()
-    delta = 1
-    while delta:
-        c_std = c.std()
-        c_mean = c.mean()
-        size = c.size
-        critlower = c_mean - c_std*low
-        critupper = c_mean + c_std*high
-        c = c[(c > critlower) & (c < critupper)]
-        delta = size-c.size
-    return c, critlower, critupper
-
-
-def trimboth(a, proportiontocut, axis=0):
-    """
-    Slices off a proportion of items from both ends of an array.
-
-    Slices off the passed proportion of items from both ends of the passed
-    array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
-    rightmost 10% of scores).  You must pre-sort the array if you want
-    'proper' trimming.  Slices off less if proportion results in a
-    non-integer slice index (i.e., conservatively slices off
-    `proportiontocut`).
-
-    Parameters
-    ----------
-    a : array_like
-        Data to trim.
-    proportiontocut : float
-        Proportion (in range 0-1) of total data set to trim of each end.
-    axis : int or None, optional
-        Axis along which the observations are trimmed. The default is to trim
-        along axis=0. If axis is None then the array will be flattened before
-        trimming.
-
-    Returns
-    -------
-    out : ndarray
-        Trimmed version of array `a`.
-
-    See Also
-    --------
-    trim_mean
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.arange(20)
-    >>> b = stats.trimboth(a, 0.1)
-    >>> b.shape
-    (16,)
-
-    """
-    a = np.asarray(a)
-    if axis is None:
-        a = a.ravel()
-        axis = 0
-
-    nobs = a.shape[axis]
-    lowercut = int(proportiontocut * nobs)
-    uppercut = nobs - lowercut
-    if (lowercut >= uppercut):
-        raise ValueError("Proportion too big.")
-
-    sl = [slice(None)] * a.ndim
-    sl[axis] = slice(lowercut, uppercut)
-    return a[sl]
-
-
-def trim1(a, proportiontocut, tail='right'):
-    """
-    Slices off a proportion of items from ONE end of the passed array
-    distribution.
-
-    If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
-    10% of scores.  Slices off LESS if proportion results in a non-integer
-    slice index (i.e., conservatively slices off `proportiontocut` ).
-
-    Parameters
-    ----------
-    a : array_like
-        Input array
-    proportiontocut : float
-        Fraction to cut off of 'left' or 'right' of distribution
-    tail : {'left', 'right'}, optional
-        Defaults to 'right'.
-
-    Returns
-    -------
-    trim1 : ndarray
-        Trimmed version of array `a`
-
-    """
-    a = asarray(a)
-    if tail.lower() == 'right':
-        lowercut = 0
-        uppercut = len(a) - int(proportiontocut*len(a))
-    elif tail.lower() == 'left':
-        lowercut = int(proportiontocut*len(a))
-        uppercut = len(a)
-
-    return a[lowercut:uppercut]
-
-
-def trim_mean(a, proportiontocut, axis=0):
-    """
-    Return mean of array after trimming distribution from both lower and upper
-    tails.
-
-    If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
-    scores. Slices off LESS if proportion results in a non-integer slice
-    index (i.e., conservatively slices off `proportiontocut` ).
-
-    Parameters
-    ----------
-    a : array_like
-        Input array
-    proportiontocut : float
-        Fraction to cut off of both tails of the distribution
-    axis : int or None, optional
-        Axis along which the trimmed means are computed. The default is axis=0.
-        If axis is None then the trimmed mean will be computed for the
-        flattened array.
-
-    Returns
-    -------
-    trim_mean : ndarray
-        Mean of trimmed array.
-
-    See Also
-    --------
-    trimboth
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> x = np.arange(20)
-    >>> stats.trim_mean(x, 0.1)
-    9.5
-    >>> x2 = x.reshape(5, 4)
-    >>> x2
-    array([[ 0,  1,  2,  3],
-           [ 4,  5,  6,  7],
-           [ 8,  9, 10, 11],
-           [12, 13, 14, 15],
-           [16, 17, 18, 19]])
-    >>> stats.trim_mean(x2, 0.25)
-    array([  8.,   9.,  10.,  11.])
-    >>> stats.trim_mean(x2, 0.25, axis=1)
-    array([  1.5,   5.5,   9.5,  13.5,  17.5])
-
-    """
-    a = np.asarray(a)
-    if axis is None:
-        nobs = a.size
-    else:
-        nobs = a.shape[axis]
-    lowercut = int(proportiontocut * nobs)
-    uppercut = nobs - lowercut - 1
-    if (lowercut > uppercut):
-        raise ValueError("Proportion too big.")
-
-    try:
-        atmp = np.partition(a, (lowercut, uppercut), axis)
-    except AttributeError:
-        atmp = np.sort(a, axis)
-
-    newa = trimboth(atmp, proportiontocut, axis=axis)
-    return np.mean(newa, axis=axis)
-
-
-def f_oneway(*args):
-    """
-    Performs a 1-way ANOVA.
-
-    The one-way ANOVA tests the null hypothesis that two or more groups have
-    the same population mean.  The test is applied to samples from two or
-    more groups, possibly with differing sizes.
-
-    Parameters
-    ----------
-    sample1, sample2, ... : array_like
-        The sample measurements for each group.
-
-    Returns
-    -------
-    F-value : float
-        The computed F-value of the test.
-    p-value : float
-        The associated p-value from the F-distribution.
-
-    Notes
-    -----
-    The ANOVA test has important assumptions that must be satisfied in order
-    for the associated p-value to be valid.
-
-    1. The samples are independent.
-    2. Each sample is from a normally distributed population.
-    3. The population standard deviations of the groups are all equal.  This
-       property is known as homoscedasticity.
-
-    If these assumptions are not true for a given set of data, it may still be
-    possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although
-    with some loss of power.
-
-    The algorithm is from Heiman[2], pp.394-7.
-
-
-    References
-    ----------
-    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
-           Statistics". Chapter 14.
-           http://faculty.vassar.edu/lowry/ch14pt1.html
-
-    .. [2] Heiman, G.W.  Research Methods in Statistics. 2002.
-
-    """
-    args = [np.asarray(arg, dtype=float) for arg in args]
-    na = len(args)    # ANOVA on 'na' groups, each in it's own array
-    alldata = np.concatenate(args)
-    bign = len(alldata)
-    sstot = ss(alldata) - (square_of_sums(alldata) / float(bign))
-    ssbn = 0
-    for a in args:
-        ssbn += square_of_sums(a) / float(len(a))
-
-    ssbn -= (square_of_sums(alldata) / float(bign))
-    sswn = sstot - ssbn
-    dfbn = na - 1
-    dfwn = bign - na
-    msb = ssbn / float(dfbn)
-    msw = sswn / float(dfwn)
-    f = msb / msw
-    prob = special.fdtrc(dfbn, dfwn, f)   # equivalent to stats.f.sf
-    return f, prob
-
-
-def pearsonr(x, y):
-    """
-    Calculates a Pearson correlation coefficient and the p-value for testing
-    non-correlation.
-
-    The Pearson correlation coefficient measures the linear relationship
-    between two datasets. Strictly speaking, Pearson's correlation requires
-    that each dataset be normally distributed. Like other correlation
-    coefficients, this one varies between -1 and +1 with 0 implying no
-    correlation. Correlations of -1 or +1 imply an exact linear
-    relationship. Positive correlations imply that as x increases, so does
-    y. Negative correlations imply that as x increases, y decreases.
-
-    The p-value roughly indicates the probability of an uncorrelated system
-    producing datasets that have a Pearson correlation at least as extreme
-    as the one computed from these datasets. The p-values are not entirely
-    reliable but are probably reasonable for datasets larger than 500 or so.
-
-    Parameters
-    ----------
-    x : (N,) array_like
-        Input
-    y : (N,) array_like
-        Input
-
-    Returns
-    -------
-    (Pearson's correlation coefficient,
-     2-tailed p-value)
-
-    References
-    ----------
-    http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
-
-    """
-    # x and y should have same length.
-    x = np.asarray(x)
-    y = np.asarray(y)
-    n = len(x)
-    mx = x.mean()
-    my = y.mean()
-    xm, ym = x-mx, y-my
-    r_num = np.add.reduce(xm * ym)
-    r_den = np.sqrt(ss(xm) * ss(ym))
-    r = r_num / r_den
-
-    # Presumably, if abs(r) > 1, then it is only some small artifact of floating
-    # point arithmetic.
-    r = max(min(r, 1.0), -1.0)
-    df = n-2
-    if abs(r) == 1.0:
-        prob = 0.0
-    else:
-        t_squared = r*r * (df / ((1.0 - r) * (1.0 + r)))
-        prob = betai(0.5*df, 0.5, df / (df + t_squared))
-    return r, prob
-
-
-def fisher_exact(table, alternative='two-sided'):
-    """Performs a Fisher exact test on a 2x2 contingency table.
-
-    Parameters
-    ----------
-    table : array_like of ints
-        A 2x2 contingency table.  Elements should be non-negative integers.
-    alternative : {'two-sided', 'less', 'greater'}, optional
-        Which alternative hypothesis to the null hypothesis the test uses.
-        Default is 'two-sided'.
-
-    Returns
-    -------
-    oddsratio : float
-        This is prior odds ratio and not a posterior estimate.
-    p_value : float
-        P-value, the probability of obtaining a distribution at least as
-        extreme as the one that was actually observed, assuming that the
-        null hypothesis is true.
-
-    See Also
-    --------
-    chi2_contingency : Chi-square test of independence of variables in a
-        contingency table.
-
-    Notes
-    -----
-    The calculated odds ratio is different from the one R uses. In R language,
-    this implementation returns the (more common) "unconditional Maximum
-    Likelihood Estimate", while R uses the "conditional Maximum Likelihood
-    Estimate".
-
-    For tables with large numbers the (inexact) chi-square test implemented
-    in the function `chi2_contingency` can also be used.
-
-    Examples
-    --------
-    Say we spend a few days counting whales and sharks in the Atlantic and
-    Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
-    Indian ocean 2 whales and 5 sharks. Then our contingency table is::
-
-                Atlantic  Indian
-        whales     8        2
-        sharks     1        5
-
-    We use this table to find the p-value:
-
-    >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
-    >>> pvalue
-    0.0349...
-
-    The probability that we would observe this or an even more imbalanced ratio
-    by chance is about 3.5%.  A commonly used significance level is 5%, if we
-    adopt that we can therefore conclude that our observed imbalance is
-    statistically significant; whales prefer the Atlantic while sharks prefer
-    the Indian ocean.
-
-    """
-    hypergeom = distributions.hypergeom
-    c = np.asarray(table, dtype=np.int64)  # int32 is not enough for the algorithm
-    if not c.shape == (2, 2):
-        raise ValueError("The input `table` must be of shape (2, 2).")
-
-    if np.any(c < 0):
-        raise ValueError("All values in `table` must be nonnegative.")
-
-    if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
-        # If both values in a row or column are zero, the p-value is 1 and
-        # the odds ratio is NaN.
-        return np.nan, 1.0
-
-    if c[1,0] > 0 and c[0,1] > 0:
-        oddsratio = c[0,0] * c[1,1] / float(c[1,0] * c[0,1])
-    else:
-        oddsratio = np.inf
-
-    n1 = c[0,0] + c[0,1]
-    n2 = c[1,0] + c[1,1]
-    n = c[0,0] + c[1,0]
-
-    def binary_search(n, n1, n2, side):
-        """Binary search for where to begin lower/upper halves in two-sided
-        test.
-        """
-        if side == "upper":
-            minval = mode
-            maxval = n
-        else:
-            minval = 0
-            maxval = mode
-        guess = -1
-        while maxval - minval > 1:
-            if maxval == minval + 1 and guess == minval:
-                guess = maxval
-            else:
-                guess = (maxval + minval) // 2
-            pguess = hypergeom.pmf(guess, n1 + n2, n1, n)
-            if side == "upper":
-                ng = guess - 1
-            else:
-                ng = guess + 1
-            if pguess <= pexact and hypergeom.pmf(ng, n1 + n2, n1, n) > pexact:
-                break
-            elif pguess < pexact:
-                maxval = guess
-            else:
-                minval = guess
-        if guess == -1:
-            guess = minval
-        if side == "upper":
-            while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
-                guess -= 1
-            while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
-                guess += 1
-        else:
-            while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
-                guess += 1
-            while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
-                guess -= 1
-        return guess
-
-    if alternative == 'less':
-        pvalue = hypergeom.cdf(c[0,0], n1 + n2, n1, n)
-    elif alternative == 'greater':
-        # Same formula as the 'less' case, but with the second column.
-        pvalue = hypergeom.cdf(c[0,1], n1 + n2, n1, c[0,1] + c[1,1])
-    elif alternative == 'two-sided':
-        mode = int(float((n + 1) * (n1 + 1)) / (n1 + n2 + 2))
-        pexact = hypergeom.pmf(c[0,0], n1 + n2, n1, n)
-        pmode = hypergeom.pmf(mode, n1 + n2, n1, n)
-
-        epsilon = 1 - 1e-4
-        if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon:
-            return oddsratio, 1.
-
-        elif c[0,0] < mode:
-            plower = hypergeom.cdf(c[0,0], n1 + n2, n1, n)
-            if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon:
-                return oddsratio, plower
-
-            guess = binary_search(n, n1, n2, "upper")
-            pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n)
-        else:
-            pupper = hypergeom.sf(c[0,0] - 1, n1 + n2, n1, n)
-            if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon:
-                return oddsratio, pupper
-
-            guess = binary_search(n, n1, n2, "lower")
-            pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
-    else:
-        msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
-        raise ValueError(msg)
-
-    if pvalue > 1.0:
-        pvalue = 1.0
-    return oddsratio, pvalue
-
-
-def spearmanr(a, b=None, axis=0):
-    """
-    Calculates a Spearman rank-order correlation coefficient and the p-value
-    to test for non-correlation.
-
-    The Spearman correlation is a nonparametric measure of the monotonicity
-    of the relationship between two datasets. Unlike the Pearson correlation,
-    the Spearman correlation does not assume that both datasets are normally
-    distributed. Like other correlation coefficients, this one varies
-    between -1 and +1 with 0 implying no correlation. Correlations of -1 or
-    +1 imply an exact monotonic relationship. Positive correlations imply that
-    as x increases, so does y. Negative correlations imply that as x
-    increases, y decreases.
-
-    The p-value roughly indicates the probability of an uncorrelated system
-    producing datasets that have a Spearman correlation at least as extreme
-    as the one computed from these datasets. The p-values are not entirely
-    reliable but are probably reasonable for datasets larger than 500 or so.
-
-    Parameters
-    ----------
-    a, b : 1D or 2D array_like, b is optional
-        One or two 1-D or 2-D arrays containing multiple variables and
-        observations. Each column of `a` and `b` represents a variable, and
-        each row entry a single observation of those variables. See also
-        `axis`. Both arrays need to have the same length in the `axis`
-        dimension.
-    axis : int or None, optional
-        If axis=0 (default), then each column represents a variable, with
-        observations in the rows. If axis=0, the relationship is transposed:
-        each row represents a variable, while the columns contain observations.
-        If axis=None, then both arrays will be raveled.
-
-    Returns
-    -------
-    rho : float or ndarray (2-D square)
-        Spearman correlation matrix or correlation coefficient (if only 2
-        variables are given as parameters. Correlation matrix is square with
-        length equal to total number of variables (columns or rows) in a and b
-        combined.
-    p-value : float
-        The two-sided p-value for a hypothesis test whose null hypothesis is
-        that two sets of data are uncorrelated, has same dimension as rho.
-
-    Notes
-    -----
-    Changes in scipy 0.8.0: rewrite to add tie-handling, and axis.
-
-    References
-    ----------
-    [CRCProbStat2000]_ Section  14.7
-
-    .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
-       Probability and Statistics Tables and Formulae. Chapman & Hall: New
-       York. 2000.
-
-    Examples
-    --------
-    >>> spearmanr([1,2,3,4,5],[5,6,7,8,7])
-    (0.82078268166812329, 0.088587005313543798)
-    >>> np.random.seed(1234321)
-    >>> x2n=np.random.randn(100,2)
-    >>> y2n=np.random.randn(100,2)
-    >>> spearmanr(x2n)
-    (0.059969996999699973, 0.55338590803773591)
-    >>> spearmanr(x2n[:,0], x2n[:,1])
-    (0.059969996999699973, 0.55338590803773591)
-    >>> rho, pval = spearmanr(x2n,y2n)
-    >>> rho
-    array([[ 1.        ,  0.05997   ,  0.18569457,  0.06258626],
-           [ 0.05997   ,  1.        ,  0.110003  ,  0.02534653],
-           [ 0.18569457,  0.110003  ,  1.        ,  0.03488749],
-           [ 0.06258626,  0.02534653,  0.03488749,  1.        ]])
-    >>> pval
-    array([[ 0.        ,  0.55338591,  0.06435364,  0.53617935],
-           [ 0.55338591,  0.        ,  0.27592895,  0.80234077],
-           [ 0.06435364,  0.27592895,  0.        ,  0.73039992],
-           [ 0.53617935,  0.80234077,  0.73039992,  0.        ]])
-    >>> rho, pval = spearmanr(x2n.T, y2n.T, axis=1)
-    >>> rho
-    array([[ 1.        ,  0.05997   ,  0.18569457,  0.06258626],
-           [ 0.05997   ,  1.        ,  0.110003  ,  0.02534653],
-           [ 0.18569457,  0.110003  ,  1.        ,  0.03488749],
-           [ 0.06258626,  0.02534653,  0.03488749,  1.        ]])
-    >>> spearmanr(x2n, y2n, axis=None)
-    (0.10816770419260482, 0.1273562188027364)
-    >>> spearmanr(x2n.ravel(), y2n.ravel())
-    (0.10816770419260482, 0.1273562188027364)
-
-    >>> xint = np.random.randint(10,size=(100,2))
-    >>> spearmanr(xint)
-    (0.052760927029710199, 0.60213045837062351)
-
-    """
-    a, axisout = _chk_asarray(a, axis)
-    ar = np.apply_along_axis(rankdata,axisout,a)
-
-    br = None
-    if b is not None:
-        b, axisout = _chk_asarray(b, axis)
-        br = np.apply_along_axis(rankdata,axisout,b)
-    n = a.shape[axisout]
-    rs = np.corrcoef(ar,br,rowvar=axisout)
-
-    olderr = np.seterr(divide='ignore')  # rs can have elements equal to 1
-    try:
-        t = rs * np.sqrt((n-2) / ((rs+1.0)*(1.0-rs)))
-    finally:
-        np.seterr(**olderr)
-    prob = distributions.t.sf(np.abs(t),n-2)*2
-
-    if rs.shape == (2,2):
-        return rs[1,0], prob[1,0]
-    else:
-        return rs, prob
-
-
-def pointbiserialr(x, y):
-    """Calculates a point biserial correlation coefficient and the associated
-    p-value.
-
-    The point biserial correlation is used to measure the relationship
-    between a binary variable, x, and a continuous variable, y. Like other
-    correlation coefficients, this one varies between -1 and +1 with 0
-    implying no correlation. Correlations of -1 or +1 imply a determinative
-    relationship.
-
-    This function uses a shortcut formula but produces the same result as
-    `pearsonr`.
-
-    Parameters
-    ----------
-    x : array_like of bools
-        Input array.
-    y : array_like
-        Input array.
-
-    Returns
-    -------
-    r : float
-        R value
-    p-value : float
-        2-tailed p-value
-
-    References
-    ----------
-    http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.array([0, 0, 0, 1, 1, 1, 1])
-    >>> b = np.arange(7)
-    >>> stats.pointbiserialr(a, b)
-    (0.8660254037844386, 0.011724811003954652)
-    >>> stats.pearsonr(a, b)
-    (0.86602540378443871, 0.011724811003954626)
-    >>> np.corrcoef(a, b)
-    array([[ 1.       ,  0.8660254],
-           [ 0.8660254,  1.       ]])
-
-    """
-    x = np.asarray(x, dtype=bool)
-    y = np.asarray(y, dtype=float)
-    n = len(x)
-
-    # phat is the fraction of x values that are True
-    phat = x.sum() / float(len(x))
-    y0 = y[~x]  # y-values where x is False
-    y1 = y[x]  # y-values where x is True
-    y0m = y0.mean()
-    y1m = y1.mean()
-
-    # phat - phat**2 is more stable than phat*(1-phat)
-    rpb = (y1m - y0m) * np.sqrt(phat - phat**2) / y.std()
-
-    df = n-2
-    # fixme: see comment about TINY in pearsonr()
-    TINY = 1e-20
-    t = rpb*np.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY)))
-    prob = betai(0.5*df, 0.5, df/(df+t*t))
-    return rpb, prob
-
-
-def kendalltau(x, y, initial_lexsort=True):
-    """
-    Calculates Kendall's tau, a correlation measure for ordinal data.
-
-    Kendall's tau is a measure of the correspondence between two rankings.
-    Values close to 1 indicate strong agreement, values close to -1 indicate
-    strong disagreement.  This is the tau-b version of Kendall's tau which
-    accounts for ties.
-
-    Parameters
-    ----------
-    x, y : array_like
-        Arrays of rankings, of the same shape. If arrays are not 1-D, they will
-        be flattened to 1-D.
-    initial_lexsort : bool, optional
-        Whether to use lexsort or quicksort as the sorting method for the
-        initial sort of the inputs. Default is lexsort (True), for which
-        `kendalltau` is of complexity O(n log(n)). If False, the complexity is
-        O(n^2), but with a smaller pre-factor (so quicksort may be faster for
-        small arrays).
-
-    Returns
-    -------
-    Kendall's tau : float
-       The tau statistic.
-    p-value : float
-       The two-sided p-value for a hypothesis test whose null hypothesis is
-       an absence of association, tau = 0.
-
-    Notes
-    -----
-    The definition of Kendall's tau that is used is::
-
-      tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))
-
-    where P is the number of concordant pairs, Q the number of discordant
-    pairs, T the number of ties only in `x`, and U the number of ties only in
-    `y`.  If a tie occurs for the same pair in both `x` and `y`, it is not
-    added to either T or U.
-
-    References
-    ----------
-    W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
-    Ungrouped Data", Journal of the American Statistical Association, Vol. 61,
-    No. 314, Part 1, pp. 436-439, 1966.
-
-    Examples
-    --------
-    >>> import scipy.stats as stats
-    >>> x1 = [12, 2, 1, 12, 2]
-    >>> x2 = [1, 4, 7, 1, 0]
-    >>> tau, p_value = stats.kendalltau(x1, x2)
-    >>> tau
-    -0.47140452079103173
-    >>> p_value
-    0.24821309157521476
-
-    """
-
-    x = np.asarray(x).ravel()
-    y = np.asarray(y).ravel()
-
-    if not x.size or not y.size:
-        return (np.nan, np.nan)  # Return NaN if arrays are empty
-
-    n = np.int64(len(x))
-    temp = list(range(n))  # support structure used by mergesort
-    # this closure recursively sorts sections of perm[] by comparing
-    # elements of y[perm[]] using temp[] as support
-    # returns the number of swaps required by an equivalent bubble sort
-
-    def mergesort(offs, length):
-        exchcnt = 0
-        if length == 1:
-            return 0
-        if length == 2:
-            if y[perm[offs]] <= y[perm[offs+1]]:
-                return 0
-            t = perm[offs]
-            perm[offs] = perm[offs+1]
-            perm[offs+1] = t
-            return 1
-        length0 = length // 2
-        length1 = length - length0
-        middle = offs + length0
-        exchcnt += mergesort(offs, length0)
-        exchcnt += mergesort(middle, length1)
-        if y[perm[middle - 1]] < y[perm[middle]]:
-            return exchcnt
-        # merging
-        i = j = k = 0
-        while j < length0 or k < length1:
-            if k >= length1 or (j < length0 and y[perm[offs + j]] <=
-                                                y[perm[middle + k]]):
-                temp[i] = perm[offs + j]
-                d = i - j
-                j += 1
-            else:
-                temp[i] = perm[middle + k]
-                d = (offs + i) - (middle + k)
-                k += 1
-            if d > 0:
-                exchcnt += d
-            i += 1
-        perm[offs:offs+length] = temp[0:length]
-        return exchcnt
-
-    # initial sort on values of x and, if tied, on values of y
-    if initial_lexsort:
-        # sort implemented as mergesort, worst case: O(n log(n))
-        perm = np.lexsort((y, x))
-    else:
-        # sort implemented as quicksort, 30% faster but with worst case: O(n^2)
-        perm = list(range(n))
-        perm.sort(key=lambda a: (x[a], y[a]))
-
-    # compute joint ties
-    first = 0
-    t = 0
-    for i in xrange(1, n):
-        if x[perm[first]] != x[perm[i]] or y[perm[first]] != y[perm[i]]:
-            t += ((i - first) * (i - first - 1)) // 2
-            first = i
-    t += ((n - first) * (n - first - 1)) // 2
-
-    # compute ties in x
-    first = 0
-    u = 0
-    for i in xrange(1,n):
-        if x[perm[first]] != x[perm[i]]:
-            u += ((i - first) * (i - first - 1)) // 2
-            first = i
-    u += ((n - first) * (n - first - 1)) // 2
-
-    # count exchanges
-    exchanges = mergesort(0, n)
-    # compute ties in y after mergesort with counting
-    first = 0
-    v = 0
-    for i in xrange(1,n):
-        if y[perm[first]] != y[perm[i]]:
-            v += ((i - first) * (i - first - 1)) // 2
-            first = i
-    v += ((n - first) * (n - first - 1)) // 2
-
-    tot = (n * (n - 1)) // 2
-    if tot == u or tot == v:
-        return (np.nan, np.nan)    # Special case for all ties in both ranks
-
-    # Prevent overflow; equal to np.sqrt((tot - u) * (tot - v))
-    denom = np.exp(0.5 * (np.log(tot - u) + np.log(tot - v)))
-    tau = ((tot - (v + u - t)) - 2.0 * exchanges) / denom
-
-    # what follows reproduces the ending of Gary Strangman's original
-    # stats.kendalltau() in SciPy
-    svar = (4.0 * n + 10.0) / (9.0 * n * (n - 1))
-    z = tau / np.sqrt(svar)
-    prob = special.erfc(np.abs(z) / 1.4142136)
-
-    return tau, prob
-
-
-def linregress(x, y=None):
-    """
-    Calculate a regression line
-
-    This computes a least-squares regression for two sets of measurements.
-
-    Parameters
-    ----------
-    x, y : array_like
-        two sets of measurements.  Both arrays should have the same length.
-        If only x is given (and y=None), then it must be a two-dimensional
-        array where one dimension has length 2.  The two sets of measurements
-        are then found by splitting the array along the length-2 dimension.
-
-    Returns
-    -------
-    slope : float
-        slope of the regression line
-    intercept : float
-        intercept of the regression line
-    r-value : float
-        correlation coefficient
-    p-value : float
-        two-sided p-value for a hypothesis test whose null hypothesis is
-        that the slope is zero.
-    stderr : float
-        Standard error of the estimate
-
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import numpy as np
-    >>> x = np.random.random(10)
-    >>> y = np.random.random(10)
-    >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
-
-    # To get coefficient of determination (r_squared)
-
-    >>> print "r-squared:", r_value**2
-    r-squared: 0.15286643777
-
-    """
-    TINY = 1.0e-20
-    if y is None:  # x is a (2, N) or (N, 2) shaped array_like
-        x = asarray(x)
-        if x.shape[0] == 2:
-            x, y = x
-        elif x.shape[1] == 2:
-            x, y = x.T
-        else:
-            msg = "If only `x` is given as input, it has to be of shape (2, N) \
-            or (N, 2), provided shape was %s" % str(x.shape)
-            raise ValueError(msg)
-    else:
-        x = asarray(x)
-        y = asarray(y)
-    n = len(x)
-    xmean = np.mean(x,None)
-    ymean = np.mean(y,None)
-
-    # average sum of squares:
-    ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat
-    r_num = ssxym
-    r_den = np.sqrt(ssxm*ssym)
-    if r_den == 0.0:
-        r = 0.0
-    else:
-        r = r_num / r_den
-        # test for numerical error propagation
-        if (r > 1.0):
-            r = 1.0
-        elif (r < -1.0):
-            r = -1.0
-
-    df = n-2
-    t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
-    prob = distributions.t.sf(np.abs(t),df)*2
-    slope = r_num / ssxm
-    intercept = ymean - slope*xmean
-    sterrest = np.sqrt((1-r*r)*ssym / ssxm / df)
-    return slope, intercept, r, prob, sterrest
-
-
-def theilslopes(y, x=None, alpha=0.95):
-    r"""
-    Computes the Theil-Sen estimator for a set of points (x, y).
-
-    `theilslopes` implements a method for robust linear regression.  It
-    computes the slope as the median of all slopes between paired values.
-
-    Parameters
-    ----------
-    y : array_like
-        Dependent variable.
-    x : {None, array_like}, optional
-        Independent variable. If None, use ``arange(len(y))`` instead.
-    alpha : float
-        Confidence degree between 0 and 1. Default is 95% confidence.
-        Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
-        interpreted as "find the 90% confidence interval".
-
-    Returns
-    -------
-    medslope : float
-        Theil slope.
-    medintercept : float
-        Intercept of the Theil line, as ``median(y) - medslope*median(x)``.
-    lo_slope : float
-        Lower bound of the confidence interval on `medslope`.
-    up_slope : float
-        Upper bound of the confidence interval on `medslope`.
-
-    Notes
-    -----
-    The implementation of `theilslopes` follows [1]_. The intercept is
-    not defined in [1]_, and here it is defined as ``median(y) -
-    medslope*median(x)``, which is given in [3]_. Other definitions of
-    the intercept exist in the literature. A confidence interval for
-    the intercept is not given as this question is not addressed in
-    [1]_.
-
-    References
-    ----------
-    .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau",
-           J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968.
-    .. [2] H. Theil, "A rank-invariant method of linear and polynomial
-           regression analysis I, II and III",  Nederl. Akad. Wetensch., Proc.
-           53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950.
-    .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed.,
-           John Wiley and Sons, New York, pp. 493.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> import matplotlib.pyplot as plt
-
-    >>> x = np.linspace(-5, 5, num=150)
-    >>> y = x + np.random.normal(size=x.size)
-    >>> y[11:15] += 10  # add outliers
-    >>> y[-5:] -= 7
-
-    Compute the slope, intercept and 90% confidence interval.  For comparison,
-    also compute the least-squares fit with `linregress`:
-
-    >>> res = stats.theilslopes(y, x, 0.90)
-    >>> lsq_res = stats.linregress(x, y)
-
-    Plot the results. The Theil-Sen regression line is shown in red, with the
-    dashed red lines illustrating the confidence interval of the slope (note
-    that the dashed red lines are not the confidence interval of the regression
-    as the confidence interval of the intercept is not included). The green
-    line shows the least-squares fit for comparison.
-
-    >>> fig = plt.figure()
-    >>> ax = fig.add_subplot(111)
-    >>> ax.plot(x, y, 'b.')
-    >>> ax.plot(x, res[1] + res[0] * x, 'r-')
-    >>> ax.plot(x, res[1] + res[2] * x, 'r--')
-    >>> ax.plot(x, res[1] + res[3] * x, 'r--')
-    >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
-    >>> plt.show()
-
-    """
-    y = np.asarray(y).flatten()
-    if x is None:
-        x = np.arange(len(y), dtype=float)
-    else:
-        x = np.asarray(x, dtype=float).flatten()
-        if len(x) != len(y):
-            raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x)))
-
-    # Compute sorted slopes only when deltax > 0
-    deltax = x[:, np.newaxis] - x
-    deltay = y[:, np.newaxis] - y
-    slopes = deltay[deltax > 0] / deltax[deltax > 0]
-    slopes.sort()
-    medslope = np.median(slopes)
-    medinter = np.median(y) - medslope * np.median(x)
-    # Now compute confidence intervals
-    if alpha > 0.5:
-        alpha = 1. - alpha
-
-    z = distributions.norm.ppf(alpha / 2.)
-    # This implements (2.6) from Sen (1968)
-    _, nxreps = find_repeats(x)
-    _, nyreps = find_repeats(y)
-    nt = len(slopes)       # N in Sen (1968)
-    ny = len(y)            # n in Sen (1968)
-    # Equation 2.6 in Sen (1968):
-    sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) -
-                     np.sum(k * (k-1) * (2*k + 5) for k in nxreps) -
-                     np.sum(k * (k-1) * (2*k + 5) for k in nyreps))
-    # Find the confidence interval indices in `slopes`
-    sigma = np.sqrt(sigsq)
-    Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1)
-    Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0)
-    delta = slopes[[Rl, Ru]]
-    return medslope, medinter, delta[0], delta[1]
-
-
-#####################################
-#####  INFERENTIAL STATISTICS  #####
-#####################################
-
-def ttest_1samp(a, popmean, axis=0):
-    """
-    Calculates the T-test for the mean of ONE group of scores.
-
-    This is a two-sided test for the null hypothesis that the expected value
-    (mean) of a sample of independent observations `a` is equal to the given
-    population mean, `popmean`.
-
-    Parameters
-    ----------
-    a : array_like
-        sample observation
-    popmean : float or array_like
-        expected value in null hypothesis, if array_like than it must have the
-        same shape as `a` excluding the axis dimension
-    axis : int, optional, (default axis=0)
-        Axis can equal None (ravel array first), or an integer (the axis
-        over which to operate on a).
-
-    Returns
-    -------
-    t : float or array
-        t-statistic
-    prob : float or array
-        two-tailed p-value
-
-    Examples
-    --------
-    >>> from scipy import stats
-
-    >>> np.random.seed(7654567)  # fix seed to get the same result
-    >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))
-
-    Test if mean of random sample is equal to true mean, and different mean.
-    We reject the null hypothesis in the second case and don't reject it in
-    the first case.
-
-    >>> stats.ttest_1samp(rvs,5.0)
-    (array([-0.68014479, -0.04323899]), array([ 0.49961383,  0.96568674]))
-    >>> stats.ttest_1samp(rvs,0.0)
-    (array([ 2.77025808,  4.11038784]), array([ 0.00789095,  0.00014999]))
-
-    Examples using axis and non-scalar dimension for population mean.
-
-    >>> stats.ttest_1samp(rvs,[5.0,0.0])
-    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
-    >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
-    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
-    >>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
-    (array([[-0.68014479, -0.04323899],
-           [ 2.77025808,  4.11038784]]), array([[  4.99613833e-01,   9.65686743e-01],
-           [  7.89094663e-03,   1.49986458e-04]]))
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    n = a.shape[axis]
-    df = n - 1
-
-    d = np.mean(a, axis) - popmean
-    v = np.var(a, axis, ddof=1)
-    denom = np.sqrt(v / float(n))
-
-    t = np.divide(d, denom)
-    t, prob = _ttest_finish(df, t)
-
-    return t, prob
-
-
-def _ttest_finish(df,t):
-    """Common code between all 3 t-test functions."""
-    prob = distributions.t.sf(np.abs(t), df) * 2  # use np.abs to get upper tail
-    if t.ndim == 0:
-        t = t[()]
-
-    return t, prob
-
-
-def ttest_ind(a, b, axis=0, equal_var=True):
-    """
-    Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
-
-    This is a two-sided test for the null hypothesis that 2 independent samples
-    have identical average (expected) values. This test assumes that the
-    populations have identical variances.
-
-    Parameters
-    ----------
-    a, b : array_like
-        The arrays must have the same shape, except in the dimension
-        corresponding to `axis` (the first, by default).
-    axis : int, optional
-        Axis can equal None (ravel array first), or an integer (the axis
-        over which to operate on a and b).
-    equal_var : bool, optional
-        If True (default), perform a standard independent 2 sample test
-        that assumes equal population variances [1]_.
-        If False, perform Welch's t-test, which does not assume equal
-        population variance [2]_.
-
-        .. versionadded:: 0.11.0
-
-    Returns
-    -------
-    t : float or array
-        The calculated t-statistic.
-    prob : float or array
-        The two-tailed p-value.
-
-    Notes
-    -----
-    We can use this test, if we observe two independent samples from
-    the same or different population, e.g. exam scores of boys and
-    girls or of two ethnic groups. The test measures whether the
-    average (expected) value differs significantly across samples. If
-    we observe a large p-value, for example larger than 0.05 or 0.1,
-    then we cannot reject the null hypothesis of identical average scores.
-    If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
-    then we reject the null hypothesis of equal averages.
-
-    References
-    ----------
-    .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
-
-    .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> np.random.seed(12345678)
-
-    Test with sample with identical means:
-
-    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
-    >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
-    >>> stats.ttest_ind(rvs1,rvs2)
-    (0.26833823296239279, 0.78849443369564776)
-    >>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
-    (0.26833823296239279, 0.78849452749500748)
-
-    `ttest_ind` underestimates p for unequal variances:
-
-    >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
-    >>> stats.ttest_ind(rvs1, rvs3)
-    (-0.46580283298287162, 0.64145827413436174)
-    >>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
-    (-0.46580283298287162, 0.64149646246569292)
-
-    When n1 != n2, the equal variance t-statistic is no longer equal to the
-    unequal variance t-statistic:
-
-    >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
-    >>> stats.ttest_ind(rvs1, rvs4)
-    (-0.99882539442782481, 0.3182832709103896)
-    >>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
-    (-0.69712570584654099, 0.48716927725402048)
-
-    T-test with different means, variance, and n:
-
-    >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
-    >>> stats.ttest_ind(rvs1, rvs5)
-    (-1.4679669854490653, 0.14263895620529152)
-    >>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
-    (-0.94365973617132992, 0.34744170334794122)
-
-    """
-    a, b, axis = _chk2_asarray(a, b, axis)
-    if a.size == 0 or b.size == 0:
-        return (np.nan, np.nan)
-
-    v1 = np.var(a, axis, ddof=1)
-    v2 = np.var(b, axis, ddof=1)
-    n1 = a.shape[axis]
-    n2 = b.shape[axis]
-
-    if (equal_var):
-        df = n1 + n2 - 2
-        svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / float(df)
-        denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
-    else:
-        vn1 = v1 / n1
-        vn2 = v2 / n2
-        df = ((vn1 + vn2)**2) / ((vn1**2) / (n1 - 1) + (vn2**2) / (n2 - 1))
-
-        # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
-        # Hence it doesn't matter what df is as long as it's not NaN.
-        df = np.where(np.isnan(df), 1, df)
-        denom = np.sqrt(vn1 + vn2)
-
-    d = np.mean(a, axis) - np.mean(b, axis)
-    t = np.divide(d, denom)
-    t, prob = _ttest_finish(df, t)
-
-    return t, prob
-
-
-def ttest_rel(a, b, axis=0):
-    """
-    Calculates the T-test on TWO RELATED samples of scores, a and b.
-
-    This is a two-sided test for the null hypothesis that 2 related or
-    repeated samples have identical average (expected) values.
-
-    Parameters
-    ----------
-    a, b : array_like
-        The arrays must have the same shape.
-    axis : int, optional, (default axis=0)
-        Axis can equal None (ravel array first), or an integer (the axis
-        over which to operate on a and b).
-
-    Returns
-    -------
-    t : float or array
-        t-statistic
-    prob : float or array
-        two-tailed p-value
-
-    Notes
-    -----
-    Examples for the use are scores of the same set of student in
-    different exams, or repeated sampling from the same units. The
-    test measures whether the average score differs significantly
-    across samples (e.g. exams). If we observe a large p-value, for
-    example greater than 0.05 or 0.1 then we cannot reject the null
-    hypothesis of identical average scores. If the p-value is smaller
-    than the threshold, e.g. 1%, 5% or 10%, then we reject the null
-    hypothesis of equal averages. Small p-values are associated with
-    large t-statistics.
-
-    References
-    ----------
-    http://en.wikipedia.org/wiki/T-test#Dependent_t-test
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> np.random.seed(12345678) # fix random seed to get same numbers
-
-    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
-    >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
-    ...         stats.norm.rvs(scale=0.2,size=500))
-    >>> stats.ttest_rel(rvs1,rvs2)
-    (0.24101764965300962, 0.80964043445811562)
-    >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
-    ...         stats.norm.rvs(scale=0.2,size=500))
-    >>> stats.ttest_rel(rvs1,rvs3)
-    (-3.9995108708727933, 7.3082402191726459e-005)
-
-    """
-    a, b, axis = _chk2_asarray(a, b, axis)
-    if a.shape[axis] != b.shape[axis]:
-        raise ValueError('unequal length arrays')
-
-    if a.size == 0 or b.size == 0:
-        return (np.nan, np.nan)
-
-    n = a.shape[axis]
-    df = float(n - 1)
-
-    d = (a - b).astype(np.float64)
-    v = np.var(d, axis, ddof=1)
-    dm = np.mean(d, axis)
-    denom = np.sqrt(v / float(n))
-
-    t = np.divide(dm, denom)
-    t, prob = _ttest_finish(df, t)
-
-    return t, prob
-
-
-def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):
-    """
-    Perform the Kolmogorov-Smirnov test for goodness of fit.
-
-    This performs a test of the distribution G(x) of an observed
-    random variable against a given distribution F(x). Under the null
-    hypothesis the two distributions are identical, G(x)=F(x). The
-    alternative hypothesis can be either 'two-sided' (default), 'less'
-    or 'greater'. The KS test is only valid for continuous distributions.
-
-    Parameters
-    ----------
-    rvs : str, array or callable
-        If a string, it should be the name of a distribution in `scipy.stats`.
-        If an array, it should be a 1-D array of observations of random
-        variables.
-        If a callable, it should be a function to generate random variables;
-        it is required to have a keyword argument `size`.
-    cdf : str or callable
-        If a string, it should be the name of a distribution in `scipy.stats`.
-        If `rvs` is a string then `cdf` can be False or the same as `rvs`.
-        If a callable, that callable is used to calculate the cdf.
-    args : tuple, sequence, optional
-        Distribution parameters, used if `rvs` or `cdf` are strings.
-    N : int, optional
-        Sample size if `rvs` is string or callable.  Default is 20.
-    alternative : {'two-sided', 'less','greater'}, optional
-        Defines the alternative hypothesis (see explanation above).
-        Default is 'two-sided'.
-    mode : 'approx' (default) or 'asymp', optional
-        Defines the distribution used for calculating the p-value.
-
-          - 'approx' : use approximation to exact distribution of test statistic
-          - 'asymp' : use asymptotic distribution of test statistic
-
-    Returns
-    -------
-    D : float
-        KS test statistic, either D, D+ or D-.
-    p-value :  float
-        One-tailed or two-tailed p-value.
-
-    Notes
-    -----
-    In the one-sided test, the alternative is that the empirical
-    cumulative distribution function of the random variable is "less"
-    or "greater" than the cumulative distribution function F(x) of the
-    hypothesis, ``G(x)<=F(x)``, resp. ``G(x)>=F(x)``.
-
-    Examples
-    --------
-    >>> from scipy import stats
-
-    >>> x = np.linspace(-15, 15, 9)
-    >>> stats.kstest(x, 'norm')
-    (0.44435602715924361, 0.038850142705171065)
-
-    >>> np.random.seed(987654321) # set random seed to get the same result
-    >>> stats.kstest('norm', False, N=100)
-    (0.058352892479417884, 0.88531190944151261)
-
-    The above lines are equivalent to:
-
-    >>> np.random.seed(987654321)
-    >>> stats.kstest(stats.norm.rvs(size=100), 'norm')
-    (0.058352892479417884, 0.88531190944151261)
-
-    *Test against one-sided alternative hypothesis*
-
-    Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``:
-
-    >>> np.random.seed(987654321)
-    >>> x = stats.norm.rvs(loc=0.2, size=100)
-    >>> stats.kstest(x,'norm', alternative = 'less')
-    (0.12464329735846891, 0.040989164077641749)
-
-    Reject equal distribution against alternative hypothesis: less
-
-    >>> stats.kstest(x,'norm', alternative = 'greater')
-    (0.0072115233216311081, 0.98531158590396395)
-
-    Don't reject equal distribution against alternative hypothesis: greater
-
-    >>> stats.kstest(x,'norm', mode='asymp')
-    (0.12464329735846891, 0.08944488871182088)
-
-    *Testing t distributed random variables against normal distribution*
-
-    With 100 degrees of freedom the t distribution looks close to the normal
-    distribution, and the K-S test does not reject the hypothesis that the
-    sample came from the normal distribution:
-
-    >>> np.random.seed(987654321)
-    >>> stats.kstest(stats.t.rvs(100,size=100),'norm')
-    (0.072018929165471257, 0.67630062862479168)
-
-    With 3 degrees of freedom the t distribution looks sufficiently different
-    from the normal distribution, that we can reject the hypothesis that the
-    sample came from the normal distribution at the 10% level:
-
-    >>> np.random.seed(987654321)
-    >>> stats.kstest(stats.t.rvs(3,size=100),'norm')
-    (0.131016895759829, 0.058826222555312224)
-
-    """
-    if isinstance(rvs, string_types):
-        if (not cdf) or (cdf == rvs):
-            cdf = getattr(distributions, rvs).cdf
-            rvs = getattr(distributions, rvs).rvs
-        else:
-            raise AttributeError("if rvs is string, cdf has to be the "
-                                 "same distribution")
-
-    if isinstance(cdf, string_types):
-        cdf = getattr(distributions, cdf).cdf
-    if callable(rvs):
-        kwds = {'size':N}
-        vals = np.sort(rvs(*args,**kwds))
-    else:
-        vals = np.sort(rvs)
-        N = len(vals)
-    cdfvals = cdf(vals, *args)
-
-    # to not break compatibility with existing code
-    if alternative == 'two_sided':
-        alternative = 'two-sided'
-
-    if alternative in ['two-sided', 'greater']:
-        Dplus = (np.arange(1.0, N+1)/N - cdfvals).max()
-        if alternative == 'greater':
-            return Dplus, distributions.ksone.sf(Dplus,N)
-
-    if alternative in ['two-sided', 'less']:
-        Dmin = (cdfvals - np.arange(0.0, N)/N).max()
-        if alternative == 'less':
-            return Dmin, distributions.ksone.sf(Dmin,N)
-
-    if alternative == 'two-sided':
-        D = np.max([Dplus,Dmin])
-        if mode == 'asymp':
-            return D, distributions.kstwobign.sf(D*np.sqrt(N))
-        if mode == 'approx':
-            pval_two = distributions.kstwobign.sf(D*np.sqrt(N))
-            if N > 2666 or pval_two > 0.80 - N*0.3/1000.0:
-                return D, distributions.kstwobign.sf(D*np.sqrt(N))
-            else:
-                return D, distributions.ksone.sf(D,N)*2
-
-
-# Map from names to lambda_ values used in power_divergence().
-_power_div_lambda_names = {
-    "pearson": 1,
-    "log-likelihood": 0,
-    "freeman-tukey": -0.5,
-    "mod-log-likelihood": -1,
-    "neyman": -2,
-    "cressie-read": 2/3,
-}
-
-
-def _count(a, axis=None):
-    """
-    Count the number of non-masked elements of an array.
-
-    This function behaves like np.ma.count(), but is much faster
-    for ndarrays.
-    """
-    if hasattr(a, 'count'):
-        num = a.count(axis=axis)
-        if isinstance(num, np.ndarray) and num.ndim == 0:
-            # In some cases, the `count` method returns a scalar array (e.g.
-            # np.array(3)), but we want a plain integer.
-            num = int(num)
-    else:
-        if axis is None:
-            num = a.size
-        else:
-            num = a.shape[axis]
-    return num
-
-
-def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
-    """
-    Cressie-Read power divergence statistic and goodness of fit test.
-
-    This function tests the null hypothesis that the categorical data
-    has the given frequencies, using the Cressie-Read power divergence
-    statistic.
-
-    Parameters
-    ----------
-    f_obs : array_like
-        Observed frequencies in each category.
-    f_exp : array_like, optional
-        Expected frequencies in each category.  By default the categories are
-        assumed to be equally likely.
-    ddof : int, optional
-        "Delta degrees of freedom": adjustment to the degrees of freedom
-        for the p-value.  The p-value is computed using a chi-squared
-        distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
-        is the number of observed frequencies.  The default value of `ddof`
-        is 0.
-    axis : int or None, optional
-        The axis of the broadcast result of `f_obs` and `f_exp` along which to
-        apply the test.  If axis is None, all values in `f_obs` are treated
-        as a single data set.  Default is 0.
-    lambda_ : float or str, optional
-        `lambda_` gives the power in the Cressie-Read power divergence
-        statistic.  The default is 1.  For convenience, `lambda_` may be
-        assigned one of the following strings, in which case the
-        corresponding numerical value is used::
-
-            String              Value   Description
-            "pearson"             1     Pearson's chi-squared statistic.
-                                        In this case, the function is
-                                        equivalent to `stats.chisquare`.
-            "log-likelihood"      0     Log-likelihood ratio. Also known as
-                                        the G-test [3]_.
-            "freeman-tukey"      -1/2   Freeman-Tukey statistic.
-            "mod-log-likelihood" -1     Modified log-likelihood ratio.
-            "neyman"             -2     Neyman's statistic.
-            "cressie-read"        2/3   The power recommended in [5]_.
-
-    Returns
-    -------
-    stat : float or ndarray
-        The Cressie-Read power divergence test statistic.  The value is
-        a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
-    p : float or ndarray
-        The p-value of the test.  The value is a float if `ddof` and the
-        return value `stat` are scalars.
-
-    See Also
-    --------
-    chisquare
-
-    Notes
-    -----
-    This test is invalid when the observed or expected frequencies in each
-    category are too small.  A typical rule is that all of the observed
-    and expected frequencies should be at least 5.
-
-    When `lambda_` is less than zero, the formula for the statistic involves
-    dividing by `f_obs`, so a warning or error may be generated if any value
-    in `f_obs` is 0.
-
-    Similarly, a warning or error may be generated if any value in `f_exp` is
-    zero when `lambda_` >= 0.
-
-    The default degrees of freedom, k-1, are for the case when no parameters
-    of the distribution are estimated. If p parameters are estimated by
-    efficient maximum likelihood then the correct degrees of freedom are
-    k-1-p. If the parameters are estimated in a different way, then the
-    dof can be between k-1-p and k-1. However, it is also possible that
-    the asymptotic distribution is not a chisquare, in which case this
-    test is not appropriate.
-
-    This function handles masked arrays.  If an element of `f_obs` or `f_exp`
-    is masked, then data at that position is ignored, and does not count
-    towards the size of the data set.
-
-    .. versionadded:: 0.13.0
-
-    References
-    ----------
-    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
-           Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
-    .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test
-    .. [3] "G-test", http://en.wikipedia.org/wiki/G-test
-    .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
-           practice of statistics in biological research", New York: Freeman
-           (1981)
-    .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
-           Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
-           pp. 440-464.
-
-    Examples
-    --------
-
-    (See `chisquare` for more examples.)
-
-    When just `f_obs` is given, it is assumed that the expected frequencies
-    are uniform and given by the mean of the observed frequencies.  Here we
-    perform a G-test (i.e. use the log-likelihood ratio statistic):
-
-    >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
-    (2.006573162632538, 0.84823476779463769)
-
-    The expected frequencies can be given with the `f_exp` argument:
-
-    >>> power_divergence([16, 18, 16, 14, 12, 12],
-    ...                  f_exp=[16, 16, 16, 16, 16, 8],
-    ...                  lambda_='log-likelihood')
-    (3.5, 0.62338762774958223)
-
-    When `f_obs` is 2-D, by default the test is applied to each column.
-
-    >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
-    >>> obs.shape
-    (6, 2)
-    >>> power_divergence(obs, lambda_="log-likelihood")
-    (array([ 2.00657316,  6.77634498]), array([ 0.84823477,  0.23781225]))
-
-    By setting ``axis=None``, the test is applied to all data in the array,
-    which is equivalent to applying the test to the flattened array.
-
-    >>> power_divergence(obs, axis=None)
-    (23.31034482758621, 0.015975692534127565)
-    >>> power_divergence(obs.ravel())
-    (23.31034482758621, 0.015975692534127565)
-
-    `ddof` is the change to make to the default degrees of freedom.
-
-    >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
-    (2.0, 0.73575888234288467)
-
-    The calculation of the p-values is done by broadcasting the
-    test statistic with `ddof`.
-
-    >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
-    (2.0, array([ 0.84914504,  0.73575888,  0.5724067 ]))
-
-    `f_obs` and `f_exp` are also broadcast.  In the following, `f_obs` has
-    shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
-    `f_obs` and `f_exp` has shape (2, 6).  To compute the desired chi-squared
-    statistics, we must use ``axis=1``:
-
-    >>> power_divergence([16, 18, 16, 14, 12, 12],
-    ...                  f_exp=[[16, 16, 16, 16, 16, 8],
-    ...                         [8, 20, 20, 16, 12, 12]],
-    ...                  axis=1)
-    (array([ 3.5 ,  9.25]), array([ 0.62338763,  0.09949846]))
-
-    """
-    # Convert the input argument `lambda_` to a numerical value.
-    if isinstance(lambda_, string_types):
-        if lambda_ not in _power_div_lambda_names:
-            names = repr(list(_power_div_lambda_names.keys()))[1:-1]
-            raise ValueError("invalid string for lambda_: {0!r}.  Valid strings "
-                "are {1}".format(lambda_, names))
-        lambda_ = _power_div_lambda_names[lambda_]
-    elif lambda_ is None:
-        lambda_ = 1
-
-    f_obs = np.asanyarray(f_obs)
-
-    if f_exp is not None:
-        f_exp = np.atleast_1d(np.asanyarray(f_exp))
-    else:
-        # Compute the equivalent of
-        #   f_exp = f_obs.mean(axis=axis, keepdims=True)
-        # Older versions of numpy do not have the 'keepdims' argument, so
-        # we have to do a little work to achieve the same result.
-        # Ignore 'invalid' errors so the edge case of a data set with length 0
-        # is handled without spurious warnings.
-        with np.errstate(invalid='ignore'):
-            f_exp = np.atleast_1d(f_obs.mean(axis=axis))
-        if axis is not None:
-            reduced_shape = list(f_obs.shape)
-            reduced_shape[axis] = 1
-            f_exp.shape = reduced_shape
-
-    # `terms` is the array of terms that are summed along `axis` to create
-    # the test statistic.  We use some specialized code for a few special
-    # cases of lambda_.
-    if lambda_ == 1:
-        # Pearson's chi-squared statistic
-        terms = (f_obs - f_exp)**2 / f_exp
-    elif lambda_ == 0:
-        # Log-likelihood ratio (i.e. G-test)
-        terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
-    elif lambda_ == -1:
-        # Modified log-likelihood ratio
-        terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
-    else:
-        # General Cressie-Read power divergence.
-        terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
-        terms /= 0.5 * lambda_ * (lambda_ + 1)
-
-    stat = terms.sum(axis=axis)
-
-    num_obs = _count(terms, axis=axis)
-    ddof = asarray(ddof)
-    p = chisqprob(stat, num_obs - 1 - ddof)
-
-    return stat, p
-
-
-def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
-    """
-    Calculates a one-way chi square test.
-
-    The chi square test tests the null hypothesis that the categorical data
-    has the given frequencies.
-
-    Parameters
-    ----------
-    f_obs : array_like
-        Observed frequencies in each category.
-    f_exp : array_like, optional
-        Expected frequencies in each category.  By default the categories are
-        assumed to be equally likely.
-    ddof : int, optional
-        "Delta degrees of freedom": adjustment to the degrees of freedom
-        for the p-value.  The p-value is computed using a chi-squared
-        distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
-        is the number of observed frequencies.  The default value of `ddof`
-        is 0.
-    axis : int or None, optional
-        The axis of the broadcast result of `f_obs` and `f_exp` along which to
-        apply the test.  If axis is None, all values in `f_obs` are treated
-        as a single data set.  Default is 0.
-
-    Returns
-    -------
-    chisq : float or ndarray
-        The chi-squared test statistic.  The value is a float if `axis` is
-        None or `f_obs` and `f_exp` are 1-D.
-    p : float or ndarray
-        The p-value of the test.  The value is a float if `ddof` and the
-        return value `chisq` are scalars.
-
-    See Also
-    --------
-    power_divergence
-    mstats.chisquare
-
-    Notes
-    -----
-    This test is invalid when the observed or expected frequencies in each
-    category are too small.  A typical rule is that all of the observed
-    and expected frequencies should be at least 5.
-
-    The default degrees of freedom, k-1, are for the case when no parameters
-    of the distribution are estimated. If p parameters are estimated by
-    efficient maximum likelihood then the correct degrees of freedom are
-    k-1-p. If the parameters are estimated in a different way, then the
-    dof can be between k-1-p and k-1. However, it is also possible that
-    the asymptotic distribution is not a chisquare, in which case this
-    test is not appropriate.
-
-    References
-    ----------
-    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
-           Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
-    .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test
-
-    Examples
-    --------
-    When just `f_obs` is given, it is assumed that the expected frequencies
-    are uniform and given by the mean of the observed frequencies.
-
-    >>> chisquare([16, 18, 16, 14, 12, 12])
-    (2.0, 0.84914503608460956)
-
-    With `f_exp` the expected frequencies can be given.
-
-    >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
-    (3.5, 0.62338762774958223)
-
-    When `f_obs` is 2-D, by default the test is applied to each column.
-
-    >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
-    >>> obs.shape
-    (6, 2)
-    >>> chisquare(obs)
-    (array([ 2.        ,  6.66666667]), array([ 0.84914504,  0.24663415]))
-
-    By setting ``axis=None``, the test is applied to all data in the array,
-    which is equivalent to applying the test to the flattened array.
-
-    >>> chisquare(obs, axis=None)
-    (23.31034482758621, 0.015975692534127565)
-    >>> chisquare(obs.ravel())
-    (23.31034482758621, 0.015975692534127565)
-
-    `ddof` is the change to make to the default degrees of freedom.
-
-    >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
-    (2.0, 0.73575888234288467)
-
-    The calculation of the p-values is done by broadcasting the
-    chi-squared statistic with `ddof`.
-
-    >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
-    (2.0, array([ 0.84914504,  0.73575888,  0.5724067 ]))
-
-    `f_obs` and `f_exp` are also broadcast.  In the following, `f_obs` has
-    shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
-    `f_obs` and `f_exp` has shape (2, 6).  To compute the desired chi-squared
-    statistics, we use ``axis=1``:
-
-    >>> chisquare([16, 18, 16, 14, 12, 12],
-    ...           f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
-    ...           axis=1)
-    (array([ 3.5 ,  9.25]), array([ 0.62338763,  0.09949846]))
-
-    """
-    return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
-                            lambda_="pearson")
-
-
-def ks_2samp(data1, data2):
-    """
-    Computes the Kolmogorov-Smirnov statistic on 2 samples.
-
-    This is a two-sided test for the null hypothesis that 2 independent samples
-    are drawn from the same continuous distribution.
-
-    Parameters
-    ----------
-    a, b : sequence of 1-D ndarrays
-        two arrays of sample observations assumed to be drawn from a continuous
-        distribution, sample sizes can be different
-
-    Returns
-    -------
-    D : float
-        KS statistic
-    p-value : float
-        two-tailed p-value
-
-    Notes
-    -----
-    This tests whether 2 samples are drawn from the same distribution. Note
-    that, like in the case of the one-sample K-S test, the distribution is
-    assumed to be continuous.
-
-    This is the two-sided test, one-sided tests are not implemented.
-    The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution.
-
-    If the K-S statistic is small or the p-value is high, then we cannot
-    reject the hypothesis that the distributions of the two samples
-    are the same.
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> np.random.seed(12345678)  #fix random seed to get the same result
-    >>> n1 = 200  # size of first sample
-    >>> n2 = 300  # size of second sample
-
-    For a different distribution, we can reject the null hypothesis since the
-    pvalue is below 1%:
-
-    >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
-    >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
-    >>> stats.ks_2samp(rvs1, rvs2)
-    (0.20833333333333337, 4.6674975515806989e-005)
-
-    For a slightly different distribution, we cannot reject the null hypothesis
-    at a 10% or lower alpha since the p-value at 0.144 is higher than 10%
-
-    >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
-    >>> stats.ks_2samp(rvs1, rvs3)
-    (0.10333333333333333, 0.14498781825751686)
-
-    For an identical distribution, we cannot reject the null hypothesis since
-    the p-value is high, 41%:
-
-    >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
-    >>> stats.ks_2samp(rvs1, rvs4)
-    (0.07999999999999996, 0.41126949729859719)
-
-    """
-    data1, data2 = map(asarray, (data1, data2))
-    n1 = data1.shape[0]
-    n2 = data2.shape[0]
-    n1 = len(data1)
-    n2 = len(data2)
-    data1 = np.sort(data1)
-    data2 = np.sort(data2)
-    data_all = np.concatenate([data1,data2])
-    cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1)
-    cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2)
-    d = np.max(np.absolute(cdf1-cdf2))
-    # Note: d absolute not signed distance
-    en = np.sqrt(n1*n2/float(n1+n2))
-    try:
-        prob = distributions.kstwobign.sf((en + 0.12 + 0.11 / en) * d)
-    except:
-        prob = 1.0
-    return d, prob
-
-
-def mannwhitneyu(x, y, use_continuity=True):
-    """
-    Computes the Mann-Whitney rank test on samples x and y.
-
-    Parameters
-    ----------
-    x, y : array_like
-        Array of samples, should be one-dimensional.
-    use_continuity : bool, optional
-            Whether a continuity correction (1/2.) should be taken into
-            account. Default is True.
-
-    Returns
-    -------
-    u : float
-        The Mann-Whitney statistics.
-    prob : float
-        One-sided p-value assuming a asymptotic normal distribution.
-
-    Notes
-    -----
-    Use only when the number of observation in each sample is > 20 and
-    you have 2 independent samples of ranks. Mann-Whitney U is
-    significant if the u-obtained is LESS THAN or equal to the critical
-    value of U.
-
-    This test corrects for ties and by default uses a continuity correction.
-    The reported p-value is for a one-sided hypothesis, to get the two-sided
-    p-value multiply the returned p-value by 2.
-
-    """
-    x = asarray(x)
-    y = asarray(y)
-    n1 = len(x)
-    n2 = len(y)
-    ranked = rankdata(np.concatenate((x,y)))
-    rankx = ranked[0:n1]       # get the x-ranks
-    u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx,axis=0)  # calc U for x
-    u2 = n1*n2 - u1                            # remainder is U for y
-    bigu = max(u1,u2)
-    smallu = min(u1,u2)
-    T = tiecorrect(ranked)
-    if T == 0:
-        raise ValueError('All numbers are identical in amannwhitneyu')
-    sd = np.sqrt(T*n1*n2*(n1+n2+1)/12.0)
-
-    if use_continuity:
-        # normal approximation for prob calc with continuity correction
-        z = abs((bigu-0.5-n1*n2/2.0) / sd)
-    else:
-        z = abs((bigu-n1*n2/2.0) / sd)  # normal approximation for prob calc
-    return smallu, distributions.norm.sf(z)  # (1.0 - zprob(z))
-
-
-def ranksums(x, y):
-    """
-    Compute the Wilcoxon rank-sum statistic for two samples.
-
-    The Wilcoxon rank-sum test tests the null hypothesis that two sets
-    of measurements are drawn from the same distribution.  The alternative
-    hypothesis is that values in one sample are more likely to be
-    larger than the values in the other sample.
-
-    This test should be used to compare two samples from continuous
-    distributions.  It does not handle ties between measurements
-    in x and y.  For tie-handling and an optional continuity correction
-    see `scipy.stats.mannwhitneyu`.
-
-    Parameters
-    ----------
-    x,y : array_like
-        The data from the two samples
-
-    Returns
-    -------
-    z-statistic : float
-        The test statistic under the large-sample approximation that the
-        rank sum statistic is normally distributed
-    p-value : float
-        The two-sided p-value of the test
-
-    References
-    ----------
-    .. [1] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
-
-    """
-    x,y = map(np.asarray, (x, y))
-    n1 = len(x)
-    n2 = len(y)
-    alldata = np.concatenate((x,y))
-    ranked = rankdata(alldata)
-    x = ranked[:n1]
-    y = ranked[n1:]
-    s = np.sum(x,axis=0)
-    expected = n1*(n1+n2+1) / 2.0
-    z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
-    prob = 2 * distributions.norm.sf(abs(z))
-    return z, prob
-
-
-def kruskal(*args):
-    """
-    Compute the Kruskal-Wallis H-test for independent samples
-
-    The Kruskal-Wallis H-test tests the null hypothesis that the population
-    median of all of the groups are equal.  It is a non-parametric version of
-    ANOVA.  The test works on 2 or more independent samples, which may have
-    different sizes.  Note that rejecting the null hypothesis does not
-    indicate which of the groups differs.  Post-hoc comparisons between
-    groups are required to determine which groups are different.
-
-    Parameters
-    ----------
-    sample1, sample2, ... : array_like
-       Two or more arrays with the sample measurements can be given as
-       arguments.
-
-    Returns
-    -------
-    H-statistic : float
-       The Kruskal-Wallis H statistic, corrected for ties
-    p-value : float
-       The p-value for the test using the assumption that H has a chi
-       square distribution
-
-    Notes
-    -----
-    Due to the assumption that H has a chi square distribution, the number
-    of samples in each group must not be too small.  A typical rule is
-    that each sample must have at least 5 measurements.
-
-    References
-    ----------
-    .. [1] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
-
-    """
-    args = list(map(np.asarray, args))  # convert to a numpy array
-    na = len(args)     # Kruskal-Wallis on 'na' groups, each in it's own array
-    if na < 2:
-        raise ValueError("Need at least two groups in stats.kruskal()")
-    n = np.asarray(list(map(len, args)))
-
-    alldata = np.concatenate(args)
-
-    ranked = rankdata(alldata)  # Rank the data
-    T = tiecorrect(ranked)      # Correct for ties
-    if T == 0:
-        raise ValueError('All numbers are identical in kruskal')
-
-    # Compute sum^2/n for each group and sum
-    j = np.insert(np.cumsum(n), 0, 0)
-    ssbn = 0
-    for i in range(na):
-        ssbn += square_of_sums(ranked[j[i]:j[i+1]]) / float(n[i])
-
-    totaln = np.sum(n)
-    h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
-    df = na - 1
-    h = h / float(T)
-    return h, chisqprob(h, df)
-
-
-def friedmanchisquare(*args):
-    """
-    Computes the Friedman test for repeated measurements
-
-    The Friedman test tests the null hypothesis that repeated measurements of
-    the same individuals have the same distribution.  It is often used
-    to test for consistency among measurements obtained in different ways.
-    For example, if two measurement techniques are used on the same set of
-    individuals, the Friedman test can be used to determine if the two
-    measurement techniques are consistent.
-
-    Parameters
-    ----------
-    measurements1, measurements2, measurements3... : array_like
-        Arrays of measurements.  All of the arrays must have the same number
-        of elements.  At least 3 sets of measurements must be given.
-
-    Returns
-    -------
-    friedman chi-square statistic : float
-        the test statistic, correcting for ties
-    p-value : float
-        the associated p-value assuming that the test statistic has a chi
-        squared distribution
-
-    Notes
-    -----
-    Due to the assumption that the test statistic has a chi squared
-    distribution, the p-value is only reliable for n > 10 and more than
-    6 repeated measurements.
-
-    References
-    ----------
-    .. [1] http://en.wikipedia.org/wiki/Friedman_test
-
-    """
-    k = len(args)
-    if k < 3:
-        raise ValueError('\nLess than 3 levels.  Friedman test not appropriate.\n')
-
-    n = len(args[0])
-    for i in range(1, k):
-        if len(args[i]) != n:
-            raise ValueError('Unequal N in friedmanchisquare.  Aborting.')
-
-    # Rank data
-    data = np.vstack(args).T
-    data = data.astype(float)
-    for i in range(len(data)):
-        data[i] = rankdata(data[i])
-
-    # Handle ties
-    ties = 0
-    for i in range(len(data)):
-        replist, repnum = find_repeats(array(data[i]))
-        for t in repnum:
-            ties += t*(t*t-1)
-    c = 1 - ties / float(k*(k*k-1)*n)
-
-    ssbn = pysum(pysum(data)**2)
-    chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c
-    return chisq, chisqprob(chisq,k-1)
-
-
-#####################################
-####  PROBABILITY CALCULATIONS  ####
-#####################################
-
-zprob = np.deprecate(message='zprob is deprecated in scipy 0.14, '
-        'use norm.cdf or special.ndtr instead\n',
-        old_name='zprob')(special.ndtr)
-
-
-def chisqprob(chisq, df):
-    """
-    Probability value (1-tail) for the Chi^2 probability distribution.
-
-    Broadcasting rules apply.
-
-    Parameters
-    ----------
-    chisq : array_like or float > 0
-
-    df : array_like or float, probably int >= 1
-
-    Returns
-    -------
-    chisqprob : ndarray
-        The area from `chisq` to infinity under the Chi^2 probability
-        distribution with degrees of freedom `df`.
-
-    """
-    return special.chdtrc(df,chisq)
-
-ksprob = np.deprecate(message='ksprob is deprecated in scipy 0.14, '
-        'use stats.kstwobign.sf or special.kolmogorov instead\n',
-        old_name='ksprob')(special.kolmogorov)
-
-fprob = np.deprecate(message='fprob is deprecated in scipy 0.14, '
-        'use stats.f.sf or special.fdtrc instead\n',
-        old_name='fprob')(special.fdtrc)
-
-
-def betai(a, b, x):
-    """
-    Returns the incomplete beta function.
-
-    I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
-
-    where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
-    function of a.
-
-    The standard broadcasting rules apply to a, b, and x.
-
-    Parameters
-    ----------
-    a : array_like or float > 0
-
-    b : array_like or float > 0
-
-    x : array_like or float
-        x will be clipped to be no greater than 1.0 .
-
-    Returns
-    -------
-    betai : ndarray
-        Incomplete beta function.
-
-    """
-    x = np.asarray(x)
-    x = np.where(x < 1.0, x, 1.0)  # if x > 1 then return 1.0
-    return special.betainc(a, b, x)
-
-
-#####################################
-#######  ANOVA CALCULATIONS  #######
-#####################################
-
-def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
-    """Calculation of Wilks lambda F-statistic for multivarite data, per
-    Maxwell & Delaney p.657.
-    """
-    if isinstance(ER, (int, float)):
-        ER = array([[ER]])
-    if isinstance(EF, (int, float)):
-        EF = array([[EF]])
-    lmbda = linalg.det(EF) / linalg.det(ER)
-    if (a-1)**2 + (b-1)**2 == 5:
-        q = 1
-    else:
-        q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
-    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
-    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
-    return n_um / d_en
-
-
-def f_value(ER, EF, dfR, dfF):
-    """
-    Returns an F-statistic for a restricted vs. unrestricted model.
-
-    Parameters
-    ----------
-    ER : float
-         `ER` is the sum of squared residuals for the restricted model
-          or null hypothesis
-
-    EF : float
-         `EF` is the sum of squared residuals for the unrestricted model
-          or alternate hypothesis
-
-    dfR : int
-          `dfR` is the degrees of freedom in the restricted model
-
-    dfF : int
-          `dfF` is the degrees of freedom in the unrestricted model
-
-    Returns
-    -------
-    F-statistic : float
-
-    """
-    return ((ER-EF)/float(dfR-dfF) / (EF/float(dfF)))
-
-
-def f_value_multivariate(ER, EF, dfnum, dfden):
-    """
-    Returns a multivariate F-statistic.
-
-    Parameters
-    ----------
-    ER : ndarray
-        Error associated with the null hypothesis (the Restricted model).
-        From a multivariate F calculation.
-    EF : ndarray
-        Error associated with the alternate hypothesis (the Full model)
-        From a multivariate F calculation.
-    dfnum : int
-        Degrees of freedom the Restricted model.
-    dfden : int
-        Degrees of freedom associated with the Restricted model.
-
-    Returns
-    -------
-    fstat : float
-        The computed F-statistic.
-
-    """
-    if isinstance(ER, (int, float)):
-        ER = array([[ER]])
-    if isinstance(EF, (int, float)):
-        EF = array([[EF]])
-    n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum)
-    d_en = linalg.det(EF) / float(dfden)
-    return n_um / d_en
-
-
-#####################################
-#######  SUPPORT FUNCTIONS  ########
-#####################################
-
-def ss(a, axis=0):
-    """
-    Squares each element of the input array, and returns the sum(s) of that.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-    axis : int or None, optional
-        The axis along which to calculate. If None, use whole array.
-        Default is 0, i.e. along the first axis.
-
-    Returns
-    -------
-    ss : ndarray
-        The sum along the given axis for (a**2).
-
-    See also
-    --------
-    square_of_sums : The square(s) of the sum(s) (the opposite of `ss`).
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.array([1., 2., 5.])
-    >>> stats.ss(a)
-    30.0
-
-    And calculating along an axis:
-
-    >>> b = np.array([[1., 2., 5.], [2., 5., 6.]])
-    >>> stats.ss(b, axis=1)
-    array([ 30., 65.])
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    return np.sum(a*a, axis)
-
-
-def square_of_sums(a, axis=0):
-    """
-    Sums elements of the input array, and returns the square(s) of that sum.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-    axis : int or None, optional
-        If axis is None, ravel `a` first. If `axis` is an integer, this will
-        be the axis over which to operate. Defaults to 0.
-
-    Returns
-    -------
-    square_of_sums : float or ndarray
-        The square of the sum over `axis`.
-
-    See also
-    --------
-    ss : The sum of squares (the opposite of `square_of_sums`).
-
-    Examples
-    --------
-    >>> from scipy import stats
-    >>> a = np.arange(20).reshape(5,4)
-    >>> stats.square_of_sums(a)
-    array([ 1600.,  2025.,  2500.,  3025.])
-    >>> stats.square_of_sums(a, axis=None)
-    36100.0
-
-    """
-    a, axis = _chk_asarray(a, axis)
-    s = np.sum(a,axis)
-    if not np.isscalar(s):
-        return s.astype(float)*s
-    else:
-        return float(s)*s
-
-
-def fastsort(a):
-    """
-    Sort an array and provide the argsort.
-
-    Parameters
-    ----------
-    a : array_like
-        Input array.
-
-    Returns
-    -------
-    fastsort : ndarray of type int
-        sorted indices into the original array
-
-    """
-    # TODO: the wording in the docstring is nonsense.
-    it = np.argsort(a)
-    as_ = a[it]
-    return as_, it
diff --git a/wafo/stats/tests/common_tests.py b/wafo/stats/tests/common_tests.py
index 3ddf534..c4c0129 100644
--- a/wafo/stats/tests/common_tests.py
+++ b/wafo/stats/tests/common_tests.py
@@ -1,16 +1,23 @@
 from __future__ import division, print_function, absolute_import
 
-import inspect
 import warnings
+import pickle
 
 import numpy as np
 import numpy.testing as npt
+from numpy.testing import assert_allclose
+import numpy.ma.testutils as ma_npt
 
-from scipy._lib._version import NumpyVersion
+from wafo.stats._util import getargspec_no_self as _getargspec
 from wafo import stats
 
 
-NUMPY_BELOW_1_7 = NumpyVersion(np.__version__) < '1.7.0'
+def check_named_results(res, attributes, ma=False):
+    for i, attr in enumerate(attributes):
+        if ma:
+            ma_npt.assert_equal(res[i], getattr(res, attr))
+        else:
+            npt.assert_equal(res[i], getattr(res, attr))
 
 
 def check_normalization(distfn, args, distname):
@@ -94,17 +101,19 @@ def check_private_entropy(distfn, args, superclass):
 
 
 def check_edge_support(distfn, args):
-    # Make sure the x=self.a and self.b are handled correctly.
+    # Make sure that x=self.a and self.b are handled correctly.
     x = [distfn.a, distfn.b]
-    if isinstance(distfn, stats.rv_continuous):
-        npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
-        npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
+    if isinstance(distfn, stats.rv_discrete):
+        x = [distfn.a - 1, distfn.b]
+
+    npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
+    npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
 
-        npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
+    if distfn.name not in ('skellam', 'dlaplace'):
+        # with a = -inf, log(0) generates warnings
+        npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
         npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
 
-    if isinstance(distfn, stats.rv_discrete):
-        x = [distfn.a-1, distfn.b]
     npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
     npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
 
@@ -117,12 +126,12 @@ def check_named_args(distfn, x, shape_args, defaults, meths):
     ## Check calling w/ named arguments.
 
     # check consistency of shapes, numargs and _parse signature
-    signature = inspect.getargspec(distfn._parse_args)
+    signature = _getargspec(distfn._parse_args)
     npt.assert_(signature.varargs is None)
     npt.assert_(signature.keywords is None)
-    npt.assert_(signature.defaults == defaults)
+    npt.assert_(list(signature.defaults) == list(defaults))
 
-    shape_argnames = signature.args[1:-len(defaults)]  # self, a, b, loc=0, scale=1
+    shape_argnames = signature.args[:-len(defaults)]  # a, b, loc=0, scale=1
     if distfn.shapes:
         shapes_ = distfn.shapes.replace(',', ' ').split()
     else:
@@ -152,3 +161,115 @@ def check_named_args(distfn, x, shape_args, defaults, meths):
     k.update({'kaboom': 42})
     npt.assert_raises(TypeError, distfn.cdf, x, **k)
 
+
+def check_random_state_property(distfn, args):
+    # check the random_state attribute of a distribution *instance*
+
+    # This test fiddles with distfn.random_state. This breaks other tests,
+    # hence need to save it and then restore.
+    rndm = distfn.random_state
+
+    # baseline: this relies on the global state
+    np.random.seed(1234)
+    distfn.random_state = None
+    r0 = distfn.rvs(*args, size=8)
+
+    # use an explicit instance-level random_state
+    distfn.random_state = 1234
+    r1 = distfn.rvs(*args, size=8)
+    npt.assert_equal(r0, r1)
+
+    distfn.random_state = np.random.RandomState(1234)
+    r2 = distfn.rvs(*args, size=8)
+    npt.assert_equal(r0, r2)
+
+    # can override the instance-level random_state for an individual .rvs call
+    distfn.random_state = 2
+    orig_state = distfn.random_state.get_state()
+
+    r3 = distfn.rvs(*args, size=8, random_state=np.random.RandomState(1234))
+    npt.assert_equal(r0, r3)
+
+    # ... and that does not alter the instance-level random_state!
+    npt.assert_equal(distfn.random_state.get_state(), orig_state)
+
+    # finally, restore the random_state
+    distfn.random_state = rndm
+
+
+def check_meth_dtype(distfn, arg, meths):
+    q0 = [0.25, 0.5, 0.75]
+    x0 = distfn.ppf(q0, *arg)
+    x_cast = [x0.astype(tp) for tp in
+                        (np.int_, np.float16, np.float32, np.float64)]
+
+    for x in x_cast:
+        # casting may have clipped the values, exclude those
+        distfn._argcheck(*arg)
+        x = x[(distfn.a < x) & (x < distfn.b)]
+        for meth in meths:
+            val = meth(x, *arg)
+            npt.assert_(val.dtype == np.float_)
+
+
+def check_ppf_dtype(distfn, arg):
+    q0 = np.asarray([0.25, 0.5, 0.75])
+    q_cast = [q0.astype(tp) for tp in (np.float16, np.float32, np.float64)]
+    for q in q_cast:
+        for meth in [distfn.ppf, distfn.isf]:
+            val = meth(q, *arg)
+            npt.assert_(val.dtype == np.float_)
+
+
+def check_cmplx_deriv(distfn, arg):
+    # Distributions allow complex arguments.
+    def deriv(f, x, *arg):
+        x = np.asarray(x)
+        h = 1e-10
+        return (f(x + h*1j, *arg)/h).imag
+
+    x0 = distfn.ppf([0.25, 0.51, 0.75], *arg)
+    x_cast = [x0.astype(tp) for tp in
+                        (np.int_, np.float16, np.float32, np.float64)]
+
+    for x in x_cast:
+        # casting may have clipped the values, exclude those
+        distfn._argcheck(*arg)
+        x = x[(distfn.a < x) & (x < distfn.b)]
+
+        pdf, cdf, sf = distfn.pdf(x, *arg), distfn.cdf(x, *arg), distfn.sf(x, *arg)
+        assert_allclose(deriv(distfn.cdf, x, *arg), pdf, rtol=1e-5)
+        assert_allclose(deriv(distfn.logcdf, x, *arg), pdf/cdf, rtol=1e-5)
+
+        assert_allclose(deriv(distfn.sf, x, *arg), -pdf, rtol=1e-5)
+        assert_allclose(deriv(distfn.logsf, x, *arg), -pdf/sf, rtol=1e-5)
+
+        assert_allclose(deriv(distfn.logpdf, x, *arg), 
+                        deriv(distfn.pdf, x, *arg) / distfn.pdf(x, *arg),
+                        rtol=1e-5)
+
+
+def check_pickling(distfn, args):
+    # check that a distribution instance pickles and unpickles
+    # pay special attention to the random_state property
+
+    # save the random_state (restore later)
+    rndm = distfn.random_state
+
+    distfn.random_state = 1234
+    distfn.rvs(*args, size=8)
+    s = pickle.dumps(distfn)
+    r0 = distfn.rvs(*args, size=8)
+
+    unpickled = pickle.loads(s)
+    r1 = unpickled.rvs(*args, size=8)
+    npt.assert_equal(r0, r1)
+
+    # also smoke test some methods
+    medians = [distfn.ppf(0.5, *args), unpickled.ppf(0.5, *args)]
+    npt.assert_equal(medians[0], medians[1])
+    npt.assert_equal(distfn.cdf(medians[0], *args),
+                     unpickled.cdf(medians[1], *args))
+
+    # restore the random_state
+    distfn.random_state = rndm
diff --git a/wafo/stats/tests/test_binned_statistic.py b/wafo/stats/tests/test_binned_statistic.py
deleted file mode 100644
index 26cc4be..0000000
--- a/wafo/stats/tests/test_binned_statistic.py
+++ /dev/null
@@ -1,238 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-from numpy.testing import assert_array_almost_equal, run_module_suite
-from scipy.stats import \
-    binned_statistic, binned_statistic_2d, binned_statistic_dd
-
-
-class TestBinnedStatistic(object):
-
-    @classmethod
-    def setup_class(cls):
-        np.random.seed(9865)
-        cls.x = np.random.random(100)
-        cls.y = np.random.random(100)
-        cls.v = np.random.random(100)
-        cls.X = np.random.random((100, 3))
-
-    def test_1d_count(self):
-        x = self.x
-        v = self.v
-
-        count1, edges1, bc = binned_statistic(x, v, 'count', bins=10)
-        count2, edges2 = np.histogram(x, bins=10)
-
-        assert_array_almost_equal(count1, count2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_1d_sum(self):
-        x = self.x
-        v = self.v
-
-        sum1, edges1, bc = binned_statistic(x, v, 'sum', bins=10)
-        sum2, edges2 = np.histogram(x, bins=10, weights=v)
-
-        assert_array_almost_equal(sum1, sum2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_1d_mean(self):
-        x = self.x
-        v = self.v
-
-        stat1, edges1, bc = binned_statistic(x, v, 'mean', bins=10)
-        stat2, edges2, bc = binned_statistic(x, v, np.mean, bins=10)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_1d_std(self):
-        x = self.x
-        v = self.v
-
-        stat1, edges1, bc = binned_statistic(x, v, 'std', bins=10)
-        stat2, edges2, bc = binned_statistic(x, v, np.std, bins=10)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_1d_median(self):
-        x = self.x
-        v = self.v
-
-        stat1, edges1, bc = binned_statistic(x, v, 'median', bins=10)
-        stat2, edges2, bc = binned_statistic(x, v, np.median, bins=10)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_1d_bincode(self):
-        x = self.x[:20]
-        v = self.v[:20]
-
-        count1, edges1, bc = binned_statistic(x, v, 'count', bins=3)
-        bc2 = np.array([3, 2, 1, 3, 2, 3, 3, 3, 3, 1, 1, 3, 3, 1, 2, 3, 1,
-                        1, 2, 1])
-
-        bcount = [(bc == i).sum() for i in np.unique(bc)]
-
-        assert_array_almost_equal(bc, bc2)
-        assert_array_almost_equal(bcount, count1)
-
-    def test_1d_range_keyword(self):
-        # Regression test for gh-3063, range can be (min, max) or [(min, max)]
-        np.random.seed(9865)
-        x = np.arange(30)
-        data = np.random.random(30)
-
-        mean, bins, _ = binned_statistic(x[:15], data[:15])
-        mean_range, bins_range, _ = binned_statistic(x, data, range=[(0, 14)])
-        mean_range2, bins_range2, _ = binned_statistic(x, data, range=(0, 14))
-
-        assert_array_almost_equal(mean, mean_range)
-        assert_array_almost_equal(bins, bins_range)
-        assert_array_almost_equal(mean, mean_range2)
-        assert_array_almost_equal(bins, bins_range2)
-
-    def test_2d_count(self):
-        x = self.x
-        y = self.y
-        v = self.v
-
-        count1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'count', bins=5)
-        count2, binx2, biny2 = np.histogram2d(x, y, bins=5)
-
-        assert_array_almost_equal(count1, count2)
-        assert_array_almost_equal(binx1, binx2)
-        assert_array_almost_equal(biny1, biny2)
-
-    def test_2d_sum(self):
-        x = self.x
-        y = self.y
-        v = self.v
-
-        sum1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'sum', bins=5)
-        sum2, binx2, biny2 = np.histogram2d(x, y, bins=5, weights=v)
-
-        assert_array_almost_equal(sum1, sum2)
-        assert_array_almost_equal(binx1, binx2)
-        assert_array_almost_equal(biny1, biny2)
-
-    def test_2d_mean(self):
-        x = self.x
-        y = self.y
-        v = self.v
-
-        stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'mean', bins=5)
-        stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.mean, bins=5)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(binx1, binx2)
-        assert_array_almost_equal(biny1, biny2)
-
-    def test_2d_std(self):
-        x = self.x
-        y = self.y
-        v = self.v
-
-        stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'std', bins=5)
-        stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.std, bins=5)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(binx1, binx2)
-        assert_array_almost_equal(biny1, biny2)
-
-    def test_2d_median(self):
-        x = self.x
-        y = self.y
-        v = self.v
-
-        stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'median', bins=5)
-        stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.median, bins=5)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(binx1, binx2)
-        assert_array_almost_equal(biny1, biny2)
-
-    def test_2d_bincode(self):
-        x = self.x[:20]
-        y = self.y[:20]
-        v = self.v[:20]
-
-        count1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'count', bins=3)
-        bc2 = np.array([17, 11, 6, 16, 11, 17, 18, 17, 17, 7, 6, 18, 16,
-                        6, 11, 16, 6, 6, 11, 8])
-
-        bcount = [(bc == i).sum() for i in np.unique(bc)]
-
-        assert_array_almost_equal(bc, bc2)
-        count1adj = count1[count1.nonzero()]
-        assert_array_almost_equal(bcount, count1adj)
-
-    def test_dd_count(self):
-        X = self.X
-        v = self.v
-
-        count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3)
-        count2, edges2 = np.histogramdd(X, bins=3)
-
-        assert_array_almost_equal(count1, count2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_dd_sum(self):
-        X = self.X
-        v = self.v
-
-        sum1, edges1, bc = binned_statistic_dd(X, v, 'sum', bins=3)
-        sum2, edges2 = np.histogramdd(X, bins=3, weights=v)
-
-        assert_array_almost_equal(sum1, sum2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_dd_mean(self):
-        X = self.X
-        v = self.v
-
-        stat1, edges1, bc = binned_statistic_dd(X, v, 'mean', bins=3)
-        stat2, edges2, bc = binned_statistic_dd(X, v, np.mean, bins=3)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_dd_std(self):
-        X = self.X
-        v = self.v
-
-        stat1, edges1, bc = binned_statistic_dd(X, v, 'std', bins=3)
-        stat2, edges2, bc = binned_statistic_dd(X, v, np.std, bins=3)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_dd_median(self):
-        X = self.X
-        v = self.v
-
-        stat1, edges1, bc = binned_statistic_dd(X, v, 'median', bins=3)
-        stat2, edges2, bc = binned_statistic_dd(X, v, np.median, bins=3)
-
-        assert_array_almost_equal(stat1, stat2)
-        assert_array_almost_equal(edges1, edges2)
-
-    def test_dd_bincode(self):
-        X = self.X[:20]
-        v = self.v[:20]
-
-        count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3)
-        bc2 = np.array([63, 33, 86, 83, 88, 67, 57, 33, 42, 41, 82, 83, 92,
-                        32, 36, 91, 43, 87, 81, 81])
-
-        bcount = [(bc == i).sum() for i in np.unique(bc)]
-
-        assert_array_almost_equal(bc, bc2)
-        count1adj = count1[count1.nonzero()]
-        assert_array_almost_equal(bcount, count1adj)
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_contingency.py b/wafo/stats/tests/test_contingency.py
deleted file mode 100644
index 23eee17..0000000
--- a/wafo/stats/tests/test_contingency.py
+++ /dev/null
@@ -1,202 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-from numpy.testing import (run_module_suite, assert_equal, assert_array_equal,
-         assert_array_almost_equal, assert_approx_equal, assert_raises,
-         assert_allclose)
-from scipy.special import xlogy
-from scipy.stats.contingency import margins, expected_freq, chi2_contingency
-
-
-def test_margins():
-    a = np.array([1])
-    m = margins(a)
-    assert_equal(len(m), 1)
-    m0 = m[0]
-    assert_array_equal(m0, np.array([1]))
-
-    a = np.array([[1]])
-    m0, m1 = margins(a)
-    expected0 = np.array([[1]])
-    expected1 = np.array([[1]])
-    assert_array_equal(m0, expected0)
-    assert_array_equal(m1, expected1)
-
-    a = np.arange(12).reshape(2, 6)
-    m0, m1 = margins(a)
-    expected0 = np.array([[15], [51]])
-    expected1 = np.array([[6, 8, 10, 12, 14, 16]])
-    assert_array_equal(m0, expected0)
-    assert_array_equal(m1, expected1)
-
-    a = np.arange(24).reshape(2, 3, 4)
-    m0, m1, m2 = margins(a)
-    expected0 = np.array([[[66]], [[210]]])
-    expected1 = np.array([[[60], [92], [124]]])
-    expected2 = np.array([[[60, 66, 72, 78]]])
-    assert_array_equal(m0, expected0)
-    assert_array_equal(m1, expected1)
-    assert_array_equal(m2, expected2)
-
-
-def test_expected_freq():
-    assert_array_equal(expected_freq([1]), np.array([1.0]))
-
-    observed = np.array([[[2, 0], [0, 2]], [[0, 2], [2, 0]], [[1, 1], [1, 1]]])
-    e = expected_freq(observed)
-    assert_array_equal(e, np.ones_like(observed))
-
-    observed = np.array([[10, 10, 20], [20, 20, 20]])
-    e = expected_freq(observed)
-    correct = np.array([[12., 12., 16.], [18., 18., 24.]])
-    assert_array_almost_equal(e, correct)
-
-
-def test_chi2_contingency_trivial():
-    # Some very simple tests for chi2_contingency.
-
-    # A trivial case
-    obs = np.array([[1, 2], [1, 2]])
-    chi2, p, dof, expected = chi2_contingency(obs, correction=False)
-    assert_equal(chi2, 0.0)
-    assert_equal(p, 1.0)
-    assert_equal(dof, 1)
-    assert_array_equal(obs, expected)
-
-    # A *really* trivial case: 1-D data.
-    obs = np.array([1, 2, 3])
-    chi2, p, dof, expected = chi2_contingency(obs, correction=False)
-    assert_equal(chi2, 0.0)
-    assert_equal(p, 1.0)
-    assert_equal(dof, 0)
-    assert_array_equal(obs, expected)
-
-
-def test_chi2_contingency_R():
-    # Some test cases that were computed independently, using R.
-
-    Rcode = \
-    """
-    # Data vector.
-    data <- c(
-      12, 34, 23,     4,  47,  11,
-      35, 31, 11,    34,  10,  18,
-      12, 32,  9,    18,  13,  19,
-      12, 12, 14,     9,  33,  25
-      )
-
-    # Create factor tags:r=rows, c=columns, t=tiers
-    r <- factor(gl(4, 2*3, 2*3*4, labels=c("r1", "r2", "r3", "r4")))
-    c <- factor(gl(3, 1,   2*3*4, labels=c("c1", "c2", "c3")))
-    t <- factor(gl(2, 3,   2*3*4, labels=c("t1", "t2")))
-
-    # 3-way Chi squared test of independence
-    s = summary(xtabs(data~r+c+t))
-    print(s)
-    """
-    Routput = \
-    """
-    Call: xtabs(formula = data ~ r + c + t)
-    Number of cases in table: 478
-    Number of factors: 3
-    Test for independence of all factors:
-            Chisq = 102.17, df = 17, p-value = 3.514e-14
-    """
-    obs = np.array(
-        [[[12, 34, 23],
-          [35, 31, 11],
-          [12, 32, 9],
-          [12, 12, 14]],
-         [[4, 47, 11],
-          [34, 10, 18],
-          [18, 13, 19],
-          [9, 33, 25]]])
-    chi2, p, dof, expected = chi2_contingency(obs)
-    assert_approx_equal(chi2, 102.17, significant=5)
-    assert_approx_equal(p, 3.514e-14, significant=4)
-    assert_equal(dof, 17)
-
-    Rcode = \
-    """
-    # Data vector.
-    data <- c(
-        #
-        12, 17,
-        11, 16,
-        #
-        11, 12,
-        15, 16,
-        #
-        23, 15,
-        30, 22,
-        #
-        14, 17,
-        15, 16
-        )
-
-    # Create factor tags:r=rows, c=columns, d=depths(?), t=tiers
-    r <- factor(gl(2, 2,  2*2*2*2, labels=c("r1", "r2")))
-    c <- factor(gl(2, 1,  2*2*2*2, labels=c("c1", "c2")))
-    d <- factor(gl(2, 4,  2*2*2*2, labels=c("d1", "d2")))
-    t <- factor(gl(2, 8,  2*2*2*2, labels=c("t1", "t2")))
-
-    # 4-way Chi squared test of independence
-    s = summary(xtabs(data~r+c+d+t))
-    print(s)
-    """
-    Routput = \
-    """
-    Call: xtabs(formula = data ~ r + c + d + t)
-    Number of cases in table: 262
-    Number of factors: 4
-    Test for independence of all factors:
-            Chisq = 8.758, df = 11, p-value = 0.6442
-    """
-    obs = np.array(
-        [[[[12, 17],
-           [11, 16]],
-          [[11, 12],
-           [15, 16]]],
-         [[[23, 15],
-           [30, 22]],
-          [[14, 17],
-           [15, 16]]]])
-    chi2, p, dof, expected = chi2_contingency(obs)
-    assert_approx_equal(chi2, 8.758, significant=4)
-    assert_approx_equal(p, 0.6442, significant=4)
-    assert_equal(dof, 11)
-
-
-def test_chi2_contingency_g():
-    c = np.array([[15, 60], [15, 90]])
-    g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', correction=False)
-    assert_allclose(g, 2*xlogy(c, c/e).sum())
-
-    g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', correction=True)
-    c_corr = c + np.array([[-0.5, 0.5], [0.5, -0.5]])
-    assert_allclose(g, 2*xlogy(c_corr, c_corr/e).sum())
-
-    c = np.array([[10, 12, 10], [12, 10, 10]])
-    g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood')
-    assert_allclose(g, 2*xlogy(c, c/e).sum())
-
-
-def test_chi2_contingency_bad_args():
-    # Test that "bad" inputs raise a ValueError.
-
-    # Negative value in the array of observed frequencies.
-    obs = np.array([[-1, 10], [1, 2]])
-    assert_raises(ValueError, chi2_contingency, obs)
-
-    # The zeros in this will result in zeros in the array
-    # of expected frequencies.
-    obs = np.array([[0, 1], [0, 1]])
-    assert_raises(ValueError, chi2_contingency, obs)
-
-    # A degenerate case: `observed` has size 0.
-    obs = np.empty((0, 8))
-    assert_raises(ValueError, chi2_contingency, obs)
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_continuous_basic.py b/wafo/stats/tests/test_continuous_basic.py
index 9a4d662..5d2ebd8 100644
--- a/wafo/stats/tests/test_continuous_basic.py
+++ b/wafo/stats/tests/test_continuous_basic.py
@@ -7,11 +7,16 @@ import numpy.testing as npt
 
 from scipy import integrate
 from wafo import stats
-from wafo.stats.tests.common_tests import (check_normalization, check_moment,
-                           check_mean_expect,
-        check_var_expect, check_skew_expect, check_kurt_expect,
-        check_entropy, check_private_entropy, NUMPY_BELOW_1_7,
-        check_edge_support, check_named_args)
+
+from wafo.stats.tests.common_tests import (check_normalization, check_moment, check_mean_expect,
+                          check_var_expect, check_skew_expect,
+                          check_kurt_expect, check_entropy,
+                          check_private_entropy,
+                          check_edge_support, check_named_args,
+                          check_random_state_property,
+                          check_meth_dtype, check_ppf_dtype, check_cmplx_deriv,
+                          check_pickling)
+
 
 from wafo.stats._distr_params import distcont
 
@@ -26,9 +31,12 @@ These tests currently check only/mostly for serious errors and exceptions,
 not for numerically exact results.
 """
 
+# Note that you need to add new distributions you want tested
+# to _distr_params
+
 DECIMAL = 5  # specify the precision of the tests  # increased from 0 to 5
 
-## Last four of these fail all around. Need to be checked
+# Last four of these fail all around. Need to be checked
 distcont_extra = [
     ['betaprime', (100, 86)],
     ['fatiguelife', (5,)],
@@ -41,58 +49,37 @@ distcont_extra = [
 ]
 
 
-# for testing only specific functions
-# distcont = [
-##    ['fatiguelife', (29,)],   #correction numargs = 1
-##    ['loggamma', (0.41411931826052117,)]]
-
-# for testing ticket:767
-# distcont = [
-##    ['genextreme', (3.3184017469423535,)],
-##    ['genextreme', (0.01,)],
-##    ['genextreme', (0.00001,)],
-##    ['genextreme', (0.0,)],
-##    ['genextreme', (-0.01,)]
-##    ]
-
-# distcont = [['gumbel_l', ()],
-##            ['gumbel_r', ()],
-##            ['norm', ()]
-##            ]
-
-# distcont = [['norm', ()]]
-
-distmissing = ['wald', 'gausshyper', 'genexpon', 'rv_continuous',
-    'loglaplace', 'rdist', 'semicircular', 'invweibull', 'ksone',
-    'cosine', 'kstwobign', 'truncnorm', 'mielke', 'recipinvgauss', 'levy',
-    'johnsonsu', 'levy_l', 'powernorm', 'wrapcauchy',
-    'johnsonsb', 'truncexpon', 'rice', 'invgauss', 'invgamma',
-    'powerlognorm']
-
-distmiss = [[dist,args] for dist,args in distcont if dist in distmissing]
 distslow = ['rdist', 'gausshyper', 'recipinvgauss', 'ksone', 'genexpon',
             'vonmises', 'vonmises_line', 'mielke', 'semicircular',
             'cosine', 'invweibull', 'powerlognorm', 'johnsonsu', 'kstwobign']
 # distslow are sorted by speed (very slow to slow)
 
 
-# NB: not needed anymore?
-def _silence_fp_errors(func):
-    # warning: don't apply to test_ functions as is, then those will be skipped
-    def wrap(*a, **kw):
-        olderr = np.seterr(all='ignore')
-        try:
-            return func(*a, **kw)
-        finally:
-            np.seterr(**olderr)
-    wrap.__name__ = func.__name__
-    return wrap
+# These distributions fail the complex derivative test below.
+# Here 'fail' mean produce wrong results and/or raise exceptions, depending
+# on the implementation details of corresponding special functions.
+# cf https://github.com/scipy/scipy/pull/4979 for a discussion.
+fails_cmplx = set(['alpha', 'beta', 'betaprime', 'burr12', 'chi', 'chi2', 'dgamma',
+                   'dweibull', 'erlang', 'expon', 'exponnorm', 'exponpow',
+                   'exponweib', 'f', 'fatiguelife', 'foldnorm', 'frechet_l',
+                   'frechet_r', 'gamma', 'gausshyper', 'genexpon',
+                   'genextreme', 'gengamma', 'genlogistic', 'gennorm',
+                   'genpareto', 'gilbrat', 'gompertz', 'halfcauchy',
+                   'halfgennorm', 'halflogistic', 'halfnorm', 'invgamma',
+                   'invgauss', 'johnsonsb', 'johnsonsu', 'ksone', 'kstwobign',
+                   'levy_l', 'loggamma', 'logistic', 'lognorm', 'lomax',
+                   'maxwell', 'nakagami', 'ncf', 'nct', 'ncx2', 'norm',
+                   'pearson3', 'powerlognorm', 'powernorm', 'rayleigh',
+                   'recipinvgauss', 'rice', 'skewnorm', 't', 'truncexpon', 'truncnorm',
+                   'tukeylambda', 'vonmises', 'vonmises_line', 'wald',
+                   'weibull_min'])
 
 
 def test_cont_basic():
     # this test skips slow distributions
     with warnings.catch_warnings():
-        warnings.filterwarnings('ignore', category=integrate.IntegrationWarning)
+        warnings.filterwarnings('ignore',
+                                category=integrate.IntegrationWarning)
         for distname, arg in distcont[:]:
             if distname in distslow:
                 continue
@@ -106,17 +93,17 @@ def test_cont_basic():
             sv = rvs.var()
             m, v = distfn.stats(*arg)
 
-            yield check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn, \
-                   distname + 'sample mean test'
+            yield (check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn,
+                   distname + 'sample mean test')
             yield check_cdf_ppf, distfn, arg, distname
             yield check_sf_isf, distfn, arg, distname
             yield check_pdf, distfn, arg, distname
             yield check_pdf_logpdf, distfn, arg, distname
             yield check_cdf_logcdf, distfn, arg, distname
             yield check_sf_logsf, distfn, arg, distname
-            if distname in distmissing:
-                alpha = 0.01
-                yield check_distribution_rvs, distname, arg, alpha, rvs
+
+            alpha = 0.01
+            yield check_distribution_rvs, distname, arg, alpha, rvs
 
             locscale_defaults = (0, 1)
             meths = [distfn.pdf, distfn.logpdf, distfn.cdf, distfn.logcdf,
@@ -126,28 +113,35 @@ def test_cont_basic():
                       'pareto': 1.5, 'tukeylambda': 0.3}
             x = spec_x.get(distname, 0.5)
             yield check_named_args, distfn, x, arg, locscale_defaults, meths
+            yield check_random_state_property, distfn, arg
+            # yield check_pickling, distfn, arg
 
             # Entropy
             skp = npt.dec.skipif
             yield check_entropy, distfn, arg, distname
 
             if distfn.numargs == 0:
-                yield skp(NUMPY_BELOW_1_7)(check_vecentropy), distfn, arg
+                yield check_vecentropy, distfn, arg
             if distfn.__class__._entropy != stats.rv_continuous._entropy:
                 yield check_private_entropy, distfn, arg, stats.rv_continuous
 
             yield check_edge_support, distfn, arg
 
+            yield check_meth_dtype, distfn, arg, meths
+            yield check_ppf_dtype, distfn, arg
+            yield skp(distname in fails_cmplx)(check_cmplx_deriv), distfn, arg
+
             knf = npt.dec.knownfailureif
-            yield knf(distname == 'truncnorm')(check_ppf_private), distfn, \
-                      arg, distname
+            yield (knf(distname == 'truncnorm')(check_ppf_private), distfn,
+                   arg, distname)
 
 
 @npt.dec.slow
 def test_cont_basic_slow():
     # same as above for slow distributions
     with warnings.catch_warnings():
-        warnings.filterwarnings('ignore', category=integrate.IntegrationWarning)
+        warnings.filterwarnings('ignore',
+                                category=integrate.IntegrationWarning)
         for distname, arg in distcont[:]:
             if distname not in distslow:
                 continue
@@ -156,12 +150,12 @@ def test_cont_basic_slow():
             distfn = getattr(stats, distname)
             np.random.seed(765456)
             sn = 500
-            rvs = distfn.rvs(size=sn,*arg)
+            rvs = distfn.rvs(size=sn, *arg)
             sm = rvs.mean()
             sv = rvs.var()
             m, v = distfn.stats(*arg)
-            yield check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn, \
-                  distname + 'sample mean test'
+            yield (check_sample_meanvar_, distfn, arg, m, v, sm, sv, sn,
+                   distname + 'sample mean test')
             yield check_cdf_ppf, distfn, arg, distname
             yield check_sf_isf, distfn, arg, distname
             yield check_pdf, distfn, arg, distname
@@ -169,9 +163,9 @@ def test_cont_basic_slow():
             yield check_cdf_logcdf, distfn, arg, distname
             yield check_sf_logsf, distfn, arg, distname
             # yield check_oth, distfn, arg # is still missing
-            if distname in distmissing:
-                alpha = 0.01
-                yield check_distribution_rvs, distname, arg, alpha, rvs
+
+            alpha = 0.01
+            yield check_distribution_rvs, distname, arg, alpha, rvs
 
             locscale_defaults = (0, 1)
             meths = [distfn.pdf, distfn.logpdf, distfn.cdf, distfn.logcdf,
@@ -183,6 +177,8 @@ def test_cont_basic_slow():
             elif distname == 'ksone':
                 arg = (3,)
             yield check_named_args, distfn, x, arg, locscale_defaults, meths
+            yield check_random_state_property, distfn, arg
+            # yield check_pickling, distfn, arg
 
             # Entropy
             skp = npt.dec.skipif
@@ -190,17 +186,22 @@ def test_cont_basic_slow():
             yield skp(ks_cond)(check_entropy), distfn, arg, distname
 
             if distfn.numargs == 0:
-                yield skp(NUMPY_BELOW_1_7)(check_vecentropy), distfn, arg
+                yield check_vecentropy, distfn, arg
             if distfn.__class__._entropy != stats.rv_continuous._entropy:
                 yield check_private_entropy, distfn, arg, stats.rv_continuous
 
             yield check_edge_support, distfn, arg
 
+            yield check_meth_dtype, distfn, arg, meths
+            yield check_ppf_dtype, distfn, arg
+            yield skp(distname in fails_cmplx)(check_cmplx_deriv), distfn, arg
+
 
 @npt.dec.slow
 def test_moments():
     with warnings.catch_warnings():
-        warnings.filterwarnings('ignore', category=integrate.IntegrationWarning)
+        warnings.filterwarnings('ignore',
+                                category=integrate.IntegrationWarning)
         knf = npt.dec.knownfailureif
         fail_normalization = set(['vonmises', 'ksone'])
         fail_higher = set(['vonmises', 'ksone', 'ncf'])
@@ -209,28 +210,30 @@ def test_moments():
                 continue
             distfn = getattr(stats, distname)
             m, v, s, k = distfn.stats(*arg, moments='mvsk')
-            cond1, cond2 = distname in fail_normalization, distname in fail_higher
+            cond1 = distname in fail_normalization
+            cond2 = distname in fail_higher
             msg = distname + ' fails moments'
             yield knf(cond1, msg)(check_normalization), distfn, arg, distname
             yield knf(cond2, msg)(check_mean_expect), distfn, arg, m, distname
-            yield knf(cond2, msg)(check_var_expect), distfn, arg, m, v, distname
-            yield knf(cond2, msg)(check_skew_expect), distfn, arg, m, v, s, \
-                  distname
-            yield knf(cond2, msg)(check_kurt_expect), distfn, arg, m, v, k, \
-                  distname
+            yield (knf(cond2, msg)(check_var_expect), distfn, arg, m, v,
+                   distname)
+            yield (knf(cond2, msg)(check_skew_expect), distfn, arg, m, v, s,
+                   distname)
+            yield (knf(cond2, msg)(check_kurt_expect), distfn, arg, m, v, k,
+                   distname)
             yield check_loc_scale, distfn, arg, m, v, distname
             yield check_moment, distfn, arg, m, v, distname
 
 
 def check_sample_meanvar_(distfn, arg, m, v, sm, sv, sn, msg):
     # this did not work, skipped silently by nose
-    if not np.isinf(m):
+    if np.isfinite(m):
         check_sample_mean(sm, sv, sn, m)
-    if not np.isinf(v):
+    if np.isfinite(v):
         check_sample_var(sv, sn, v)
 
 
-def check_sample_mean(sm,v,n, popmean):
+def check_sample_mean(sm, v, n, popmean):
     # from stats.stats.ttest_1samp(a, popmean):
     # Calculates the t-obtained for the independent samples T-test on ONE group
     # of scores a, given a population mean.
@@ -243,31 +246,32 @@ def check_sample_mean(sm,v,n, popmean):
 
     # return t,prob
     npt.assert_(prob > 0.01, 'mean fail, t,prob = %f, %f, m, sm=%f,%f' %
-            (t, prob, popmean, sm))
+                (t, prob, popmean, sm))
 
 
-def check_sample_var(sv,n, popvar):
-    # two-sided chisquare test for sample variance equal to hypothesized variance
+def check_sample_var(sv, n, popvar):
+    # two-sided chisquare test for sample variance equal to
+    # hypothesized variance
     df = n-1
     chi2 = (n-1)*popvar/float(popvar)
-    pval = stats.chisqprob(chi2,df)*2
+    pval = stats.distributions.chi2.sf(chi2, df) * 2
     npt.assert_(pval > 0.01, 'var fail, t, pval = %f, %f, v, sv=%f, %f' %
-            (chi2,pval,popvar,sv))
+                (chi2, pval, popvar, sv))
 
 
-def check_cdf_ppf(distfn,arg,msg):
+def check_cdf_ppf(distfn, arg, msg):
     values = [0.001, 0.5, 0.999]
     npt.assert_almost_equal(distfn.cdf(distfn.ppf(values, *arg), *arg),
                             values, decimal=DECIMAL, err_msg=msg +
                             ' - cdf-ppf roundtrip')
 
 
-def check_sf_isf(distfn,arg,msg):
-    npt.assert_almost_equal(distfn.sf(distfn.isf([0.1,0.5,0.9], *arg), *arg),
-                            [0.1,0.5,0.9], decimal=DECIMAL, err_msg=msg +
+def check_sf_isf(distfn, arg, msg):
+    npt.assert_almost_equal(distfn.sf(distfn.isf([0.1, 0.5, 0.9], *arg), *arg),
+                            [0.1, 0.5, 0.9], decimal=DECIMAL, err_msg=msg +
                             ' - sf-isf roundtrip')
-    npt.assert_almost_equal(distfn.cdf([0.1,0.9], *arg),
-                            1.0-distfn.sf([0.1,0.9], *arg),
+    npt.assert_almost_equal(distfn.cdf([0.1, 0.9], *arg),
+                            1.0 - distfn.sf([0.1, 0.9], *arg),
                             decimal=DECIMAL, err_msg=msg +
                             ' - cdf-sf relationship')
 
@@ -278,15 +282,16 @@ def check_pdf(distfn, arg, msg):
     eps = 1e-6
     pdfv = distfn.pdf(median, *arg)
     if (pdfv < 1e-4) or (pdfv > 1e4):
-        # avoid checking a case where pdf is close to zero or huge (singularity)
+        # avoid checking a case where pdf is close to zero or
+        # huge (singularity)
         median = median + 0.1
         pdfv = distfn.pdf(median, *arg)
     cdfdiff = (distfn.cdf(median + eps, *arg) -
                distfn.cdf(median - eps, *arg))/eps/2.0
     # replace with better diff and better test (more points),
     # actually, this works pretty well
-    npt.assert_almost_equal(pdfv, cdfdiff,
-                decimal=DECIMAL, err_msg=msg + ' - cdf-pdf relationship')
+    msg += ' - cdf-pdf relationship'
+    npt.assert_almost_equal(pdfv, cdfdiff, decimal=DECIMAL, err_msg=msg)
 
 
 def check_pdf_logpdf(distfn, args, msg):
@@ -297,7 +302,8 @@ def check_pdf_logpdf(distfn, args, msg):
     logpdf = distfn.logpdf(vals, *args)
     pdf = pdf[pdf != 0]
     logpdf = logpdf[np.isfinite(logpdf)]
-    npt.assert_almost_equal(np.log(pdf), logpdf, decimal=7, err_msg=msg + " - logpdf-log(pdf) relationship")
+    msg += " - logpdf-log(pdf) relationship"
+    npt.assert_almost_equal(np.log(pdf), logpdf, decimal=7, err_msg=msg)
 
 
 def check_sf_logsf(distfn, args, msg):
@@ -308,7 +314,8 @@ def check_sf_logsf(distfn, args, msg):
     logsf = distfn.logsf(vals, *args)
     sf = sf[sf != 0]
     logsf = logsf[np.isfinite(logsf)]
-    npt.assert_almost_equal(np.log(sf), logsf, decimal=7, err_msg=msg + " - logsf-log(sf) relationship")
+    msg += " - logsf-log(sf) relationship"
+    npt.assert_almost_equal(np.log(sf), logsf, decimal=7, err_msg=msg)
 
 
 def check_cdf_logcdf(distfn, args, msg):
@@ -319,24 +326,24 @@ def check_cdf_logcdf(distfn, args, msg):
     logcdf = distfn.logcdf(vals, *args)
     cdf = cdf[cdf != 0]
     logcdf = logcdf[np.isfinite(logcdf)]
-    npt.assert_almost_equal(np.log(cdf), logcdf, decimal=7, err_msg=msg + " - logcdf-log(cdf) relationship")
+    msg += " - logcdf-log(cdf) relationship"
+    npt.assert_almost_equal(np.log(cdf), logcdf, decimal=7, err_msg=msg)
 
 
 def check_distribution_rvs(dist, args, alpha, rvs):
     # test from scipy.stats.tests
     # this version reuses existing random variables
-    D,pval = stats.kstest(rvs, dist, args=args, N=1000)
+    D, pval = stats.kstest(rvs, dist, args=args, N=1000)
     if (pval < alpha):
-        D,pval = stats.kstest(dist,'',args=args, N=1000)
+        D, pval = stats.kstest(dist, '', args=args, N=1000)
         npt.assert_(pval > alpha, "D = " + str(D) + "; pval = " + str(pval) +
-               "; alpha = " + str(alpha) + "\nargs = " + str(args))
+                    "; alpha = " + str(alpha) + "\nargs = " + str(args))
 
 
 def check_vecentropy(distfn, args):
     npt.assert_equal(distfn.vecentropy(*args), distfn._entropy(*args))
 
 
-@npt.dec.skipif(NUMPY_BELOW_1_7)
 def check_loc_scale(distfn, arg, m, v, msg):
     loc, scale = 10.0, 10.0
     mt, vt = distfn.stats(loc=loc, scale=scale, *arg)
@@ -345,7 +352,7 @@ def check_loc_scale(distfn, arg, m, v, msg):
 
 
 def check_ppf_private(distfn, arg, msg):
-    #fails by design for truncnorm self.nb not defined
+    # fails by design for truncnorm self.nb not defined
     ppfs = distfn._ppf(np.array([0.1, 0.5, 0.9]), *arg)
     npt.assert_(not np.any(np.isnan(ppfs)), msg + 'ppf private is nan')
 
diff --git a/wafo/stats/tests/test_discrete_basic.py b/wafo/stats/tests/test_discrete_basic.py
index 942a76f..9f4169f 100644
--- a/wafo/stats/tests/test_discrete_basic.py
+++ b/wafo/stats/tests/test_discrete_basic.py
@@ -5,18 +5,26 @@ import numpy as np
 from scipy._lib.six import xrange
 
 from wafo import stats
-from wafo.stats.tests.common_tests import (check_normalization, check_moment,
-                                           check_mean_expect,
-        check_var_expect, check_skew_expect, check_kurt_expect,
-        check_entropy, check_private_entropy, check_edge_support,
-        check_named_args)
+from wafo.stats.tests.common_tests import (check_normalization, check_moment, check_mean_expect,
+                          check_var_expect, check_skew_expect,
+                          check_kurt_expect, check_entropy,
+                          check_private_entropy, check_edge_support,
+                          check_named_args, check_random_state_property,
+                          check_pickling)
 from wafo.stats._distr_params import distdiscrete
 knf = npt.dec.knownfailureif
 
+vals = ([1, 2, 3, 4], [0.1, 0.2, 0.3, 0.4])
+distdiscrete += [[stats.rv_discrete(values=vals), ()]]
+
 
 def test_discrete_basic():
     for distname, arg in distdiscrete:
-        distfn = getattr(stats, distname)
+        try:
+            distfn = getattr(stats, distname)
+        except TypeError:
+            distfn = distname
+            distname = 'sample distribution'
         np.random.seed(9765456)
         rvs = distfn.rvs(size=2000, *arg)
         supp = np.unique(rvs)
@@ -28,15 +36,19 @@ def test_discrete_basic():
         yield check_edge_support, distfn, arg
 
         alpha = 0.01
-        yield check_discrete_chisquare, distfn, arg, rvs, alpha, \
-                      distname + ' chisquare'
+        yield (check_discrete_chisquare, distfn, arg, rvs, alpha,
+               distname + ' chisquare')
 
     seen = set()
     for distname, arg in distdiscrete:
         if distname in seen:
             continue
         seen.add(distname)
-        distfn = getattr(stats,distname)
+        try:
+            distfn = getattr(stats, distname)
+        except TypeError:
+            distfn = distname
+            distname = 'sample distribution'
         locscale_defaults = (0,)
         meths = [distfn.pmf, distfn.logpmf, distfn.cdf, distfn.logcdf,
                  distfn.logsf]
@@ -44,7 +56,10 @@ def test_discrete_basic():
         spec_k = {'randint': 11, 'hypergeom': 4, 'bernoulli': 0, }
         k = spec_k.get(distname, 1)
         yield check_named_args, distfn, k, arg, locscale_defaults, meths
-        yield check_scale_docstring, distfn
+        if distname != 'sample distribution':
+            yield check_scale_docstring, distfn
+        yield check_random_state_property, distfn, arg
+        yield check_pickling, distfn, arg
 
         # Entropy
         yield check_entropy, distfn, arg, distname
@@ -54,7 +69,11 @@ def test_discrete_basic():
 
 def test_moments():
     for distname, arg in distdiscrete:
-        distfn = getattr(stats,distname)
+        try:
+            distfn = getattr(stats, distname)
+        except TypeError:
+            distfn = distname
+            distname = 'sample distribution'
         m, v, s, k = distfn.stats(*arg, moments='mvsk')
         yield check_normalization, distfn, arg, distname
 
@@ -64,7 +83,7 @@ def test_moments():
         yield check_var_expect, distfn, arg, m, v, distname
         yield check_skew_expect, distfn, arg, m, v, s, distname
 
-        cond = False #distname in ['zipf']
+        cond = distname in ['zipf']
         msg = distname + ' fails kurtosis'
         yield knf(cond, msg)(check_kurt_expect), distfn, arg, m, v, k, distname
 
@@ -81,35 +100,36 @@ def check_cdf_ppf(distfn, arg, supp, msg):
                            supp, msg + '-roundtrip')
     supp1 = supp[supp < distfn.b]
     npt.assert_array_equal(distfn.ppf(distfn.cdf(supp1, *arg) + 1e-8, *arg),
-                     supp1 + distfn.inc, msg + 'ppf-cdf-next')
+                           supp1 + distfn.inc, msg + 'ppf-cdf-next')
     # -1e-8 could cause an error if pmf < 1e-8
 
 
 def check_pmf_cdf(distfn, arg, distname):
-    startind = np.int(distfn.ppf(0.01, *arg) - 1)
+    startind = int(distfn.ppf(0.01, *arg) - 1)
     index = list(range(startind, startind + 10))
-    cdfs, pmfs_cum = distfn.cdf(index,*arg), distfn.pmf(index, *arg).cumsum()
+    cdfs = distfn.cdf(index, *arg)
+    pmfs_cum = distfn.pmf(index, *arg).cumsum()
 
     atol, rtol = 1e-10, 1e-10
     if distname == 'skellam':    # ncx2 accuracy
         atol, rtol = 1e-5, 1e-5
     npt.assert_allclose(cdfs - cdfs[0], pmfs_cum - pmfs_cum[0],
-            atol=atol, rtol=rtol)
+                        atol=atol, rtol=rtol)
 
 
 def check_moment_frozen(distfn, arg, m, k):
     npt.assert_allclose(distfn(*arg).moment(k), m,
-            atol=1e-10, rtol=1e-10)
+                        atol=1e-10, rtol=1e-10)
 
 
 def check_oth(distfn, arg, supp, msg):
     # checking other methods of distfn
     npt.assert_allclose(distfn.sf(supp, *arg), 1. - distfn.cdf(supp, *arg),
-            atol=1e-10, rtol=1e-10)
+                        atol=1e-10, rtol=1e-10)
 
     q = np.linspace(0.01, 0.99, 20)
     npt.assert_allclose(distfn.isf(q, *arg), distfn.ppf(1. - q, *arg),
-            atol=1e-10, rtol=1e-10)
+                        atol=1e-10, rtol=1e-10)
 
     median_sf = distfn.isf(0.5, *arg)
     npt.assert_(distfn.sf(median_sf - 1, *arg) > 0.5)
@@ -133,44 +153,41 @@ def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
     result : bool
         0 if test passes, 1 if test fails
 
-    uses global variable debug for printing results
-
     """
-    n = len(rvs)
-    nsupp = 20
-    wsupp = 1.0/nsupp
+    wsupp = 0.05
 
-    # construct intervals with minimum mass 1/nsupp
+    # construct intervals with minimum mass `wsupp`.
     # intervals are left-half-open as in a cdf difference
-    distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
+    lo = max(distfn.a, -1000)
+    distsupport = xrange(lo, min(distfn.b, 1000) + 1)
     last = 0
-    distsupp = [max(distfn.a, -1000)]
+    distsupp = [lo]
     distmass = []
     for ii in distsupport:
-        current = distfn.cdf(ii,*arg)
-        if current - last >= wsupp-1e-14:
+        current = distfn.cdf(ii, *arg)
+        if current - last >= wsupp - 1e-14:
             distsupp.append(ii)
             distmass.append(current - last)
             last = current
-            if current > (1-wsupp):
+            if current > (1 - wsupp):
                 break
     if distsupp[-1] < distfn.b:
         distsupp.append(distfn.b)
-        distmass.append(1-last)
+        distmass.append(1 - last)
     distsupp = np.array(distsupp)
     distmass = np.array(distmass)
 
     # convert intervals to right-half-open as required by histogram
-    histsupp = distsupp+1e-8
+    histsupp = distsupp + 1e-8
     histsupp[0] = distfn.a
 
     # find sample frequencies and perform chisquare test
-    freq,hsupp = np.histogram(rvs,histsupp)
-    cdfs = distfn.cdf(distsupp,*arg)
-    (chis,pval) = stats.chisquare(np.array(freq),n*distmass)
+    freq, hsupp = np.histogram(rvs, histsupp)
+    chis, pval = stats.chisquare(np.array(freq), len(rvs)*distmass)
 
-    npt.assert_(pval > alpha, 'chisquare - test for %s'
-           ' at arg = %s with pval = %s' % (msg,str(arg),str(pval)))
+    npt.assert_(pval > alpha,
+                'chisquare - test for %s at arg = %s with pval = %s' %
+                (msg, str(arg), str(pval)))
 
 
 def check_scale_docstring(distfn):
diff --git a/wafo/stats/tests/test_distributions.py b/wafo/stats/tests/test_distributions.py
index 2fcb252..9025317 100644
--- a/wafo/stats/tests/test_distributions.py
+++ b/wafo/stats/tests/test_distributions.py
@@ -6,16 +6,16 @@ from __future__ import division, print_function, absolute_import
 import warnings
 import re
 import sys
+import pickle
 
 from numpy.testing import (TestCase, run_module_suite, assert_equal,
     assert_array_equal, assert_almost_equal, assert_array_almost_equal,
-    assert_allclose, assert_, assert_raises, rand, dec)
+    assert_allclose, assert_, assert_raises, assert_warns, dec)
 from nose import SkipTest
 
 import numpy
 import numpy as np
 from numpy import typecodes, array
-from scipy._lib._version import NumpyVersion
 from scipy import special
 import wafo.stats as stats
 from wafo.stats._distn_infrastructure import argsreduce
@@ -30,18 +30,19 @@ DOCSTRINGS_STRIPPED = sys.flags.optimize > 1
 
 # Generate test cases to test cdf and distribution consistency.
 # Note that this list does not include all distributions.
-dists = ['uniform','norm','lognorm','expon','beta',
-         'powerlaw','bradford','burr','fisk','cauchy','halfcauchy',
-         'foldcauchy','gamma','gengamma','loggamma',
-         'alpha','anglit','arcsine','betaprime',
-         'dgamma','exponweib','exponpow','frechet_l','frechet_r',
-         'gilbrat','f','ncf','chi2','chi','nakagami','genpareto',
-         'genextreme','genhalflogistic','pareto','lomax','halfnorm',
-         'halflogistic','fatiguelife','foldnorm','ncx2','t','nct',
-         'weibull_min','weibull_max','dweibull','maxwell','rayleigh',
-         'genlogistic', 'logistic','gumbel_l','gumbel_r','gompertz',
-         'hypsecant', 'laplace', 'reciprocal','triang','tukeylambda',
-         'vonmises', 'vonmises_line', 'pearson3']
+dists = ['uniform', 'norm', 'lognorm', 'expon', 'beta',
+         'powerlaw', 'bradford', 'burr', 'fisk', 'cauchy', 'halfcauchy',
+         'foldcauchy', 'gamma', 'gengamma', 'loggamma',
+         'alpha', 'anglit', 'arcsine', 'betaprime', 'dgamma',
+         'exponnorm', 'exponweib', 'exponpow', 'frechet_l', 'frechet_r',
+         'gilbrat', 'f', 'ncf', 'chi2', 'chi', 'nakagami', 'genpareto',
+         'genextreme', 'genhalflogistic', 'pareto', 'lomax', 'halfnorm',
+         'halflogistic', 'fatiguelife', 'foldnorm', 'ncx2', 't', 'nct',
+         'weibull_min', 'weibull_max', 'dweibull', 'maxwell', 'rayleigh',
+         'genlogistic', 'logistic', 'gumbel_l', 'gumbel_r', 'gompertz',
+         'hypsecant', 'laplace', 'reciprocal', 'triang', 'tukeylambda',
+         'vonmises', 'vonmises_line', 'pearson3', 'gennorm', 'halfgennorm',
+         'rice']
 
 
 def _assert_hasattr(a, b, msg=None):
@@ -56,20 +57,15 @@ def test_api_regression():
 
 
 # check function for test generator
-
-
 def check_distribution(dist, args, alpha):
-    D,pval = stats.kstest(dist,'', args=args, N=1000)
+    D, pval = stats.kstest(dist, '', args=args, N=1000)
     if (pval < alpha):
-        D,pval = stats.kstest(dist,'',args=args, N=1000)
-        # if (pval < alpha):
-        #    D,pval = stats.kstest(dist,'',args=args, N=1000)
+        D, pval = stats.kstest(dist, '', args=args, N=1000)
         assert_(pval > alpha, msg="D = " + str(D) + "; pval = " + str(pval) +
-               "; alpha = " + str(alpha) + "\nargs = " + str(args))
-
-# nose test generator
+                "; alpha = " + str(alpha) + "\nargs = " + str(args))
 
 
+# nose test generator
 def test_all_distributions():
     for dist in dists:
         distfunc = getattr(stats, dist)
@@ -78,37 +74,35 @@ def test_all_distributions():
         if dist == 'fatiguelife':
             alpha = 0.001
 
-        if dist == 'frechet':
-            args = tuple(2*rand(1))+(0,)+tuple(2*rand(2))
-        elif dist == 'triang':
-            args = tuple(rand(nargs))
+        if dist == 'triang':
+            args = tuple(np.random.random(nargs))
         elif dist == 'reciprocal':
-            vals = rand(nargs)
+            vals = np.random.random(nargs)
             vals[1] = vals[0] + 1.0
             args = tuple(vals)
         elif dist == 'vonmises':
             yield check_distribution, dist, (10,), alpha
             yield check_distribution, dist, (101,), alpha
-            args = tuple(1.0+rand(nargs))
+            args = tuple(1.0 + np.random.random(nargs))
         else:
-            args = tuple(1.0+rand(nargs))
+            args = tuple(1.0 + np.random.random(nargs))
 
         yield check_distribution, dist, args, alpha
 
 
-def check_vonmises_pdf_periodic(k,l,s,x):
-    vm = stats.vonmises(k,loc=l,scale=s)
-    assert_almost_equal(vm.pdf(x),vm.pdf(x % (2*numpy.pi*s)))
+def check_vonmises_pdf_periodic(k, l, s, x):
+    vm = stats.vonmises(k, loc=l, scale=s)
+    assert_almost_equal(vm.pdf(x), vm.pdf(x % (2*numpy.pi*s)))
 
 
-def check_vonmises_cdf_periodic(k,l,s,x):
-    vm = stats.vonmises(k,loc=l,scale=s)
-    assert_almost_equal(vm.cdf(x) % 1,vm.cdf(x % (2*numpy.pi*s)) % 1)
+def check_vonmises_cdf_periodic(k, l, s, x):
+    vm = stats.vonmises(k, loc=l, scale=s)
+    assert_almost_equal(vm.cdf(x) % 1, vm.cdf(x % (2*numpy.pi*s)) % 1)
 
 
 def test_vonmises_pdf_periodic():
     for k in [0.1, 1, 101]:
-        for x in [0,1,numpy.pi,10,100]:
+        for x in [0, 1, numpy.pi, 10, 100]:
             yield check_vonmises_pdf_periodic, k, 0, 1, x
             yield check_vonmises_pdf_periodic, k, 1, 1, x
             yield check_vonmises_pdf_periodic, k, 0, 10, x
@@ -123,31 +117,36 @@ def test_vonmises_line_support():
     assert_equal(stats.vonmises_line.b, np.pi)
 
 
+def test_vonmises_numerical():
+    vm = stats.vonmises(800)
+    assert_almost_equal(vm.cdf(0), 0.5)
+
+
 class TestRandInt(TestCase):
     def test_rvs(self):
-        vals = stats.randint.rvs(5,30,size=100)
+        vals = stats.randint.rvs(5, 30, size=100)
         assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
         assert_(len(vals) == 100)
-        vals = stats.randint.rvs(5,30,size=(2,50))
-        assert_(numpy.shape(vals) == (2,50))
+        vals = stats.randint.rvs(5, 30, size=(2, 50))
+        assert_(numpy.shape(vals) == (2, 50))
         assert_(vals.dtype.char in typecodes['AllInteger'])
-        val = stats.randint.rvs(15,46)
+        val = stats.randint.rvs(15, 46)
         assert_((val >= 15) & (val < 46))
         assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
-        val = stats.randint(15,46).rvs(3)
+        val = stats.randint(15, 46).rvs(3)
         assert_(val.dtype.char in typecodes['AllInteger'])
 
     def test_pdf(self):
         k = numpy.r_[0:36]
         out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
-        vals = stats.randint.pmf(k,5,30)
-        assert_array_almost_equal(vals,out)
+        vals = stats.randint.pmf(k, 5, 30)
+        assert_array_almost_equal(vals, out)
 
     def test_cdf(self):
         x = numpy.r_[0:36:100j]
         k = numpy.floor(x)
-        out = numpy.select([k >= 30,k >= 5],[1.0,(k-5.0+1)/(30-5.0)],0)
-        vals = stats.randint.cdf(x,5,30)
+        out = numpy.select([k >= 30, k >= 5], [1.0, (k-5.0+1)/(30-5.0)], 0)
+        vals = stats.randint.cdf(x, 5, 30)
         assert_array_almost_equal(vals, out, decimal=12)
 
 
@@ -165,8 +164,8 @@ class TestBinom(TestCase):
 
     def test_pmf(self):
         # regression test for Ticket #1842
-        vals1 = stats.binom.pmf(100, 100,1)
-        vals2 = stats.binom.pmf(0, 100,0)
+        vals1 = stats.binom.pmf(100, 100, 1)
+        vals2 = stats.binom.pmf(0, 100, 0)
         assert_allclose(vals1, 1.0, rtol=1e-15, atol=0)
         assert_allclose(vals2, 1.0, rtol=1e-15, atol=0)
 
@@ -238,6 +237,9 @@ class TestNBinom(TestCase):
         # regression test for ticket 1779
         assert_allclose(np.exp(stats.nbinom.logpmf(700, 721, 0.52)),
                         stats.nbinom.pmf(700, 721, 0.52))
+        # logpmf(0,1,1) shouldn't return nan (regression test for gh-4029)
+        val = stats.nbinom.logpmf(0, 1, 1)
+        assert_equal(val, 0)
 
 
 class TestGeom(TestCase):
@@ -253,15 +255,19 @@ class TestGeom(TestCase):
         assert_(val.dtype.char in typecodes['AllInteger'])
 
     def test_pmf(self):
-        vals = stats.geom.pmf([1,2,3],0.5)
-        assert_array_almost_equal(vals,[0.5,0.25,0.125])
+        vals = stats.geom.pmf([1, 2, 3], 0.5)
+        assert_array_almost_equal(vals, [0.5, 0.25, 0.125])
 
     def test_logpmf(self):
         # regression test for ticket 1793
-        vals1 = np.log(stats.geom.pmf([1,2,3], 0.5))
-        vals2 = stats.geom.logpmf([1,2,3], 0.5)
+        vals1 = np.log(stats.geom.pmf([1, 2, 3], 0.5))
+        vals2 = stats.geom.logpmf([1, 2, 3], 0.5)
         assert_allclose(vals1, vals2, rtol=1e-15, atol=0)
 
+        # regression test for gh-4028
+        val = stats.geom.logpmf(1, 1)
+        assert_equal(val, 0.0)
+
     def test_cdf_sf(self):
         vals = stats.geom.cdf([1, 2, 3], 0.5)
         vals_sf = stats.geom.sf([1, 2, 3], 0.5)
@@ -282,15 +288,54 @@ class TestGeom(TestCase):
         assert_array_almost_equal(vals, expected)
 
 
+class TestGennorm(TestCase):
+    def test_laplace(self):
+        # test against Laplace (special case for beta=1)
+        points = [1, 2, 3]
+        pdf1 = stats.gennorm.pdf(points, 1)
+        pdf2 = stats.laplace.pdf(points)
+        assert_almost_equal(pdf1, pdf2)
+
+    def test_norm(self):
+        # test against normal (special case for beta=2)
+        points = [1, 2, 3]
+        pdf1 = stats.gennorm.pdf(points, 2)
+        pdf2 = stats.norm.pdf(points, scale=2**-.5)
+        assert_almost_equal(pdf1, pdf2)
+
+
+class TestHalfgennorm(TestCase):
+    def test_expon(self):
+        # test against exponential (special case for beta=1)
+        points = [1, 2, 3]
+        pdf1 = stats.halfgennorm.pdf(points, 1)
+        pdf2 = stats.expon.pdf(points)
+        assert_almost_equal(pdf1, pdf2)
+
+    def test_halfnorm(self):
+        # test against half normal (special case for beta=2)
+        points = [1, 2, 3]
+        pdf1 = stats.halfgennorm.pdf(points, 2)
+        pdf2 = stats.halfnorm.pdf(points, scale=2**-.5)
+        assert_almost_equal(pdf1, pdf2)
+
+    def test_gennorm(self):
+        # test against generalized normal
+        points = [1, 2, 3]
+        pdf1 = stats.halfgennorm.pdf(points, .497324)
+        pdf2 = stats.gennorm.pdf(points, .497324)
+        assert_almost_equal(pdf1, 2*pdf2)
+
+
 class TestTruncnorm(TestCase):
     def test_ppf_ticket1131(self):
-        vals = stats.truncnorm.ppf([-0.5,0,1e-4,0.5, 1-1e-4,1,2], -1., 1.,
-                               loc=[3]*7, scale=2)
+        vals = stats.truncnorm.ppf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1.,
+                                   loc=[3]*7, scale=2)
         expected = np.array([np.nan, 1, 1.00056419, 3, 4.99943581, 5, np.nan])
         assert_array_almost_equal(vals, expected)
 
     def test_isf_ticket1131(self):
-        vals = stats.truncnorm.isf([-0.5,0,1e-4,0.5, 1-1e-4,1,2], -1., 1.,
+        vals = stats.truncnorm.isf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1.,
                                    loc=[3]*7, scale=2)
         expected = np.array([np.nan, 5, 4.99943581, 3, 1.00056419, 1, np.nan])
         assert_array_almost_equal(vals, expected)
@@ -323,7 +368,7 @@ class TestHypergeom(TestCase):
     def test_rvs(self):
         vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
         assert_(numpy.all(vals >= 0) &
-               numpy.all(vals <= 3))
+                numpy.all(vals <= 3))
         assert_(numpy.shape(vals) == (2, 50))
         assert_(vals.dtype.char in typecodes['AllInteger'])
         val = stats.hypergeom.rvs(20, 3, 10)
@@ -342,6 +387,15 @@ class TestHypergeom(TestCase):
         hgpmf = stats.hypergeom.pmf(2, tot, good, N)
         assert_almost_equal(hgpmf, 0.0010114963068932233, 11)
 
+    def test_args(self):
+        # test correct output for corner cases of arguments
+        # see gh-2325
+        assert_almost_equal(stats.hypergeom.pmf(0, 2, 1, 0), 1.0, 11)
+        assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11)
+
+        assert_almost_equal(stats.hypergeom.pmf(0, 2, 0, 2), 1.0, 11)
+        assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11)
+
     def test_cdf_above_one(self):
         # for some values of parameters, hypergeom cdf was >1, see gh-2238
         assert_(0 <= stats.hypergeom.cdf(30, 13397950, 4363, 12390) <= 1.0)
@@ -355,7 +409,8 @@ class TestHypergeom(TestCase):
         quantile = 2e4
         res = []
         for eaten in fruits_eaten:
-            res.append(stats.hypergeom.sf(quantile, oranges + pears, oranges, eaten))
+            res.append(stats.hypergeom.sf(quantile, oranges + pears, oranges,
+                                          eaten))
         expected = np.array([0, 1.904153e-114, 2.752693e-66, 4.931217e-32,
                              8.265601e-11, 0.1237904, 1])
         assert_allclose(res, expected, atol=0, rtol=5e-7)
@@ -378,6 +433,21 @@ class TestHypergeom(TestCase):
         h = hg.entropy()
         assert_equal(h, 0.0)
 
+    def test_logsf(self):
+        # Test logsf for very large numbers. See issue #4982
+        # Results compare with those from R (v3.2.0):
+        # phyper(k, n, M-n, N, lower.tail=FALSE, log.p=TRUE)
+        # -2239.771
+
+        k = 1e4
+        M = 1e7
+        n = 1e6
+        N = 5e4
+
+        result = stats.hypergeom.logsf(k, M, n, N)
+        exspected = -2239.771   # From R
+        assert_almost_equal(result, exspected, decimal=3)
+
 
 class TestLoggamma(TestCase):
 
@@ -566,7 +636,11 @@ class TestGenpareto(TestCase):
                   1. - np.logspace(1e-12, 0.01, base=0.1)]
         for c in [1e-8, -1e-18, 1e-15, -1e-15]:
             assert_allclose(stats.genpareto.cdf(stats.genpareto.ppf(q, c), c),
-                    q, atol=1e-15)
+                            q, atol=1e-15)
+
+    def test_logsf(self):
+        logp = stats.genpareto.logsf(1e10, .01, 0, 1)
+        assert_allclose(logp, -1842.0680753952365)
 
 
 class TestPearson3(TestCase):
@@ -587,7 +661,7 @@ class TestPearson3(TestCase):
                         atol=1e-6)
         vals = stats.pearson3.pdf(-3, 0.1)
         assert_allclose(vals, np.array([0.00313791]), atol=1e-6)
-        vals = stats.pearson3.pdf([-3,-2,-1,0,1], 0.1)
+        vals = stats.pearson3.pdf([-3, -2, -1, 0, 1], 0.1)
         assert_allclose(vals, np.array([0.00313791, 0.05192304, 0.25028092,
                                         0.39885918, 0.23413173]), atol=1e-6)
 
@@ -597,12 +671,29 @@ class TestPearson3(TestCase):
                         atol=1e-6)
         vals = stats.pearson3.cdf(-3, 0.1)
         assert_allclose(vals, [0.00082256], atol=1e-6)
-        vals = stats.pearson3.cdf([-3,-2,-1,0,1], 0.1)
+        vals = stats.pearson3.cdf([-3, -2, -1, 0, 1], 0.1)
         assert_allclose(vals, [8.22563821e-04, 1.99860448e-02, 1.58550710e-01,
                                5.06649130e-01, 8.41442111e-01], atol=1e-6)
 
 
 class TestPoisson(TestCase):
+
+    def test_pmf_basic(self):
+        # Basic case
+        ln2 = np.log(2)
+        vals = stats.poisson.pmf([0, 1, 2], ln2)
+        expected = [0.5, ln2/2, ln2**2/4]
+        assert_allclose(vals, expected)
+
+    def test_mu0(self):
+        # Edge case: mu=0
+        vals = stats.poisson.pmf([0, 1, 2], 0)
+        expected = [1, 0, 0]
+        assert_array_equal(vals, expected)
+
+        interval = stats.poisson.interval(0.95, 0)
+        assert_equal(interval, (0, 0))
+
     def test_rvs(self):
         vals = stats.poisson.rvs(0.5, size=(2, 50))
         assert_(numpy.all(vals >= 0))
@@ -619,6 +710,11 @@ class TestPoisson(TestCase):
         result = stats.poisson.stats(mu, moments='mvsk')
         assert_allclose(result, [mu, mu, np.sqrt(1.0/mu), 1.0/mu])
 
+        mu = np.array([0.0, 1.0, 2.0])
+        result = stats.poisson.stats(mu, moments='mvsk')
+        expected = (mu, mu, [np.inf, 1, 1/np.sqrt(2)], [np.inf, 1, 0.5])
+        assert_allclose(result, expected)
+
 
 class TestZipf(TestCase):
     def test_rvs(self):
@@ -664,28 +760,27 @@ class TestDLaplace(TestCase):
         xx = np.arange(-N, N+1)
         pp = dl.pmf(xx)
         m2, m4 = np.sum(pp*xx**2), np.sum(pp*xx**4)
-        assert_equal((m, s), (0,0))
+        assert_equal((m, s), (0, 0))
         assert_allclose((v, k), (m2, m4/m2**2 - 3.), atol=1e-14, rtol=1e-8)
 
     def test_stats2(self):
         a = np.log(2.)
         dl = stats.dlaplace(a)
         m, v, s, k = dl.stats('mvsk')
-        assert_equal((m, s), (0.,0.))
+        assert_equal((m, s), (0., 0.))
         assert_allclose((v, k), (4., 3.25))
 
 
 class TestInvGamma(TestCase):
-    @dec.skipif(NumpyVersion(np.__version__) < '1.7.0',
-                "assert_* funcs broken with inf/nan")
     def test_invgamma_inf_gh_1866(self):
         # invgamma's moments are only finite for a>n
         # specific numbers checked w/ boost 1.54
         with warnings.catch_warnings():
             warnings.simplefilter('error', RuntimeWarning)
             mvsk = stats.invgamma.stats(a=19.31, moments='mvsk')
-            assert_allclose(mvsk,
-                [0.05461496450, 0.0001723162534, 1.020362676, 2.055616582])
+            expected = [0.05461496450, 0.0001723162534, 1.020362676,
+                        2.055616582]
+            assert_allclose(mvsk, expected)
 
             a = [1.1, 3.1, 5.6]
             mvsk = stats.invgamma.stats(a=a, moments='mvsk')
@@ -712,11 +807,10 @@ class TestF(TestCase):
             warnings.simplefilter('error', RuntimeWarning)
             stats.f.stats(dfn=[11]*4, dfd=[2, 4, 6, 8], moments='mvsk')
 
-    @dec.knownfailureif(True, 'f stats does not properly broadcast')
     def test_stats_broadcast(self):
-        # stats do not fully broadcast just yet
-        mv = stats.f.stats(dfn=11, dfd=[11, 12])
-
+        m, v = stats.f.stats(dfn=11, dfd=[11, 12])
+        assert_array_almost_equal(m, [1.22222222,  1.2])
+        assert_array_almost_equal(v, [0.77601411,  0.68727273])
 
 def test_rvgeneric_std():
     # Regression test for #1191
@@ -725,14 +819,14 @@ def test_rvgeneric_std():
 
 class TestRvDiscrete(TestCase):
     def test_rvs(self):
-        states = [-1,0,1,2,3,4]
-        probability = [0.0,0.3,0.4,0.0,0.3,0.0]
+        states = [-1, 0, 1, 2, 3, 4]
+        probability = [0.0, 0.3, 0.4, 0.0, 0.3, 0.0]
         samples = 1000
-        r = stats.rv_discrete(name='sample',values=(states,probability))
+        r = stats.rv_discrete(name='sample', values=(states, probability))
         x = r.rvs(size=samples)
         assert_(isinstance(x, numpy.ndarray))
 
-        for s,p in zip(states,probability):
+        for s, p in zip(states, probability):
             assert_(abs(sum(x == s)/float(samples) - p) < 0.05)
 
         x = r.rvs()
@@ -751,22 +845,82 @@ class TestRvDiscrete(TestCase):
         assert_equal(h, 0.0)
 
 
+class TestSkewNorm(TestCase):
+
+    def test_normal(self):
+        # When the skewness is 0 the distribution is normal
+        x = np.linspace(-5, 5, 100)
+        assert_array_almost_equal(stats.skewnorm.pdf(x, a=0),
+                                  stats.norm.pdf(x))
+
+    def test_rvs(self):
+        shape = (3, 4, 5)
+        x = stats.skewnorm.rvs(a=0.75, size=shape)
+        assert_equal(shape, x.shape)
+
+        x = stats.skewnorm.rvs(a=-3, size=shape)
+        assert_equal(shape, x.shape)
+
+    def test_moments(self):
+        X = stats.skewnorm.rvs(a=4, size=int(1e6), loc=5, scale=2)
+        assert_array_almost_equal([np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)],
+                                   stats.skewnorm.stats(a=4, loc=5, scale=2, moments='mvsk'),
+                                   decimal=2)
+
+        X = stats.skewnorm.rvs(a=-4, size=int(1e6), loc=5, scale=2)
+        assert_array_almost_equal([np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)],
+                                   stats.skewnorm.stats(a=-4, loc=5, scale=2, moments='mvsk'),
+                                   decimal=2)
+
 class TestExpon(TestCase):
     def test_zero(self):
-        assert_equal(stats.expon.pdf(0),1)
+        assert_equal(stats.expon.pdf(0), 1)
 
     def test_tail(self):  # Regression test for ticket 807
         assert_equal(stats.expon.cdf(1e-18), 1e-18)
         assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)
 
 
+class TestExponNorm(TestCase):
+    def test_moments(self):
+        # Some moment test cases based on non-loc/scaled formula
+        def get_moms(lam, sig, mu):
+            # See wikipedia for these formulae
+            #  where it is listed as an exponentially modified gaussian
+            opK2 = 1.0 + 1 / (lam*sig)**2
+            exp_skew = 2 / (lam * sig)**3 * opK2**(-1.5)
+            exp_kurt = 6.0 * (1 + (lam * sig)**2)**(-2)
+            return [mu + 1/lam, sig*sig + 1.0/(lam*lam), exp_skew, exp_kurt]
+
+        mu, sig, lam = 0, 1, 1
+        K = 1.0 / (lam * sig)
+        sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
+        assert_almost_equal(sts, get_moms(lam, sig, mu))
+        mu, sig, lam = -3, 2, 0.1
+        K = 1.0 / (lam * sig)
+        sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
+        assert_almost_equal(sts, get_moms(lam, sig, mu))
+        mu, sig, lam = 0, 3, 1
+        K = 1.0 / (lam * sig)
+        sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
+        assert_almost_equal(sts, get_moms(lam, sig, mu))
+        mu, sig, lam = -5, 11, 3.5
+        K = 1.0 / (lam * sig)
+        sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
+        assert_almost_equal(sts, get_moms(lam, sig, mu))
+
+    def test_extremes_x(self):
+        # Test for extreme values against overflows
+        assert_almost_equal(stats.exponnorm.pdf(-900, 1), 0.0)
+        assert_almost_equal(stats.exponnorm.pdf(+900, 1), 0.0)
+
+
 class TestGenExpon(TestCase):
     def test_pdf_unity_area(self):
         from scipy.integrate import simps
         # PDF should integrate to one
-        assert_almost_equal(simps(stats.genexpon.pdf(numpy.arange(0,10,0.01),
-                                                     0.5, 0.5, 2.0),
-                                  dx=0.01), 1, 1)
+        p = stats.genexpon.pdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
+        assert_almost_equal(simps(p, dx=0.01), 1, 1)
 
     def test_cdf_bounds(self):
         # CDF should always be positive
@@ -777,7 +931,8 @@ class TestGenExpon(TestCase):
 class TestExponpow(TestCase):
     def test_tail(self):
         assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
-        assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8), 5)
+        assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8),
+                            5)
 
 
 class TestSkellam(TestCase):
@@ -827,7 +982,9 @@ class TestSkellam(TestCase):
 class TestLognorm(TestCase):
     def test_pdf(self):
         # Regression test for Ticket #1471: avoid nan with 0/0 situation
-        with np.errstate(divide='ignore'):
+        # Also make sure there are no warnings at x=0, cf gh-5202
+        with warnings.catch_warnings():
+            warnings.simplefilter('error', RuntimeWarning)
             pdf = stats.lognorm.pdf([0, 0.5, 1], 1)
             assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228])
 
@@ -835,9 +992,9 @@ class TestLognorm(TestCase):
 class TestBeta(TestCase):
     def test_logpdf(self):
         # Regression test for Ticket #1326: avoid nan with 0*log(0) situation
-        logpdf = stats.beta.logpdf(0,1,0.5)
+        logpdf = stats.beta.logpdf(0, 1, 0.5)
         assert_almost_equal(logpdf, -0.69314718056)
-        logpdf = stats.beta.logpdf(0,0.5,1)
+        logpdf = stats.beta.logpdf(0, 0.5, 1)
         assert_almost_equal(logpdf, np.inf)
 
     def test_logpdf_ticket_1866(self):
@@ -856,6 +1013,22 @@ class TestBetaPrime(TestCase):
         assert_(np.isfinite(b.logpdf(x)).all())
         assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))
 
+    def test_cdf(self):
+        # regression test for gh-4030: Implementation of
+        # scipy.stats.betaprime.cdf()
+        x = stats.betaprime.cdf(0, 0.2, 0.3)
+        assert_equal(x, 0.0)
+
+        alpha, beta = 267, 1472
+        x = np.array([0.2, 0.5, 0.6])
+        cdfs = stats.betaprime.cdf(x, alpha, beta)
+        assert_(np.isfinite(cdfs).all())
+
+        # check the new cdf implementation vs generic one:
+        gen_cdf = stats.rv_continuous._cdf_single
+        cdfs_g = [gen_cdf(stats.betaprime, val, alpha, beta) for val in x]
+        assert_allclose(cdfs, cdfs_g, atol=0, rtol=2e-12)
+
 
 class TestGamma(TestCase):
     def test_pdf(self):
@@ -869,21 +1042,24 @@ class TestGamma(TestCase):
     def test_logpdf(self):
         # Regression test for Ticket #1326: cornercase avoid nan with 0*log(0)
         # situation
-        logpdf = stats.gamma.logpdf(0,1)
+        logpdf = stats.gamma.logpdf(0, 1)
         assert_almost_equal(logpdf, 0)
 
 
 class TestChi2(TestCase):
     # regression tests after precision improvements, ticket:1041, not verified
     def test_precision(self):
-        assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003, 14)
-        assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778, 14)
+        assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003,
+                            decimal=14)
+        assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778,
+                            decimal=14)
 
 
 class TestArrayArgument(TestCase):  # test for ticket:992
     def test_noexception(self):
-        rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5), size=(10,5))
-        assert_equal(rvs.shape, (10,5))
+        rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5),
+                             size=(10, 5))
+        assert_equal(rvs.shape, (10, 5))
 
 
 class TestDocstring(TestCase):
@@ -903,10 +1079,10 @@ class TestDocstring(TestCase):
 class TestEntropy(TestCase):
     def test_entropy_positive(self):
         # See ticket #497
-        pk = [0.5,0.2,0.3]
-        qk = [0.1,0.25,0.65]
-        eself = stats.entropy(pk,pk)
-        edouble = stats.entropy(pk,qk)
+        pk = [0.5, 0.2, 0.3]
+        qk = [0.1, 0.25, 0.65]
+        eself = stats.entropy(pk, pk)
+        edouble = stats.entropy(pk, qk)
         assert_(0.0 == eself)
         assert_(edouble >= 0.0)
 
@@ -930,33 +1106,31 @@ class TestEntropy(TestCase):
         pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
         qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
         assert_array_almost_equal(stats.entropy(pk, qk),
-                [0.1933259, 0.18609809])
+                                  [0.1933259, 0.18609809])
 
-    @dec.skipif(NumpyVersion(np.__version__) < '1.7.0',
-                "assert_* funcs broken with inf/nan")
     def test_entropy_2d_zero(self):
         pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
         qk = [[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]]
         assert_array_almost_equal(stats.entropy(pk, qk),
-                [np.inf, 0.18609809])
+                                  [np.inf, 0.18609809])
 
         pk[0][0] = 0.0
         assert_array_almost_equal(stats.entropy(pk, qk),
-                [0.17403988, 0.18609809])
+                                  [0.17403988, 0.18609809])
 
 
 def TestArgsreduce():
-    a = array([1,3,2,1,2,3,3])
-    b,c = argsreduce(a > 1, a, 2)
+    a = array([1, 3, 2, 1, 2, 3, 3])
+    b, c = argsreduce(a > 1, a, 2)
 
-    assert_array_equal(b, [3,2,2,3,3])
-    assert_array_equal(c, [2,2,2,2,2])
+    assert_array_equal(b, [3, 2, 2, 3, 3])
+    assert_array_equal(c, [2, 2, 2, 2, 2])
 
-    b,c = argsreduce(2 > 1, a, 2)
+    b, c = argsreduce(2 > 1, a, 2)
     assert_array_equal(b, a[0])
     assert_array_equal(c, [2])
 
-    b,c = argsreduce(a > 0, a, 2)
+    b, c = argsreduce(a > 0, a, 2)
     assert_array_equal(b, a)
     assert_array_equal(c, [2] * numpy.size(a))
 
@@ -971,7 +1145,7 @@ class TestFitMethod(object):
                 raise SkipTest("%s fit known to fail" % dist)
             distfunc = getattr(stats, dist)
             with np.errstate(all='ignore'):
-                res = distfunc.rvs(*args, **{'size':200})
+                res = distfunc.rvs(*args, **{'size': 200})
                 vals = distfunc.fit(res)
                 vals2 = distfunc.fit(res, optimizer='powell')
             # Only check the length of the return
@@ -996,9 +1170,9 @@ class TestFitMethod(object):
                 raise SkipTest("%s fit known to fail" % dist)
             distfunc = getattr(stats, dist)
             with np.errstate(all='ignore'):
-                res = distfunc.rvs(*args, **{'size':200})
-                vals = distfunc.fit(res,floc=0)
-                vals2 = distfunc.fit(res,fscale=1)
+                res = distfunc.rvs(*args, **{'size': 200})
+                vals = distfunc.fit(res, floc=0)
+                vals2 = distfunc.fit(res, fscale=1)
                 assert_(len(vals) == 2+len(args))
                 assert_(vals[-2] == 0)
                 assert_(vals2[-1] == 1)
@@ -1023,9 +1197,9 @@ class TestFitMethod(object):
         # Regression test for #1551.
         np.random.seed(12345)
         with np.errstate(all='ignore'):
-            x = stats.lognorm.rvs(0.25, 0., 20.0, size=20)
+            x = stats.lognorm.rvs(0.25, 0., 20.0, size=50000)
             assert_allclose(np.array(stats.lognorm.fit(x, floc=0, fscale=20)),
-                            [0.25888672, 0, 20], atol=1e-5)
+                            [0.25, 0, 20], atol=1e-2)
 
     def test_fix_fit_norm(self):
         x = np.arange(1, 6)
@@ -1099,7 +1273,7 @@ class TestFitMethod(object):
         a, b, loc, scale = stats.beta.fit(x, floc=0, fscale=1)
         assert_equal(loc, 0)
         assert_equal(scale, 1)
-        assert_allclose(mlefunc(a, b, x), [0,0], atol=1e-6)
+        assert_allclose(mlefunc(a, b, x), [0, 0], atol=1e-6)
 
         # Basic test with f0, floc and fscale given.
         # This is also a regression test for gh-2514.
@@ -1133,11 +1307,57 @@ class TestFitMethod(object):
 
         # Check that attempting to fix all the parameters raises a ValueError.
         assert_raises(ValueError, stats.beta.fit, y, f0=0, f1=1,
-                                                     floc=2, fscale=3)
+                      floc=2, fscale=3)
+
+    def test_fshapes(self):
+        # take a beta distribution, with shapes='a, b', and make sure that
+        # fa is equivalent to f0, and fb is equivalent to f1
+        a, b = 3., 4.
+        x = stats.beta.rvs(a, b, size=100, random_state=1234)
+        res_1 = stats.beta.fit(x, f0=3.)
+        res_2 = stats.beta.fit(x, fa=3.)
+        assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12)
+
+        res_2 = stats.beta.fit(x, fix_a=3.)
+        assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12)
+
+        res_3 = stats.beta.fit(x, f1=4.)
+        res_4 = stats.beta.fit(x, fb=4.)
+        assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12)
+
+        res_4 = stats.beta.fit(x, fix_b=4.)
+        assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12)
+
+        # cannot specify both positional and named args at the same time
+        assert_raises(ValueError, stats.beta.fit, x, fa=1, f0=2)
+
+        # check that attempting to fix all parameters raises a ValueError
+        assert_raises(ValueError, stats.beta.fit, x, fa=0, f1=1,
+                      floc=2, fscale=3)
+
+        # check that specifying floc, fscale and fshapes works for
+        # beta and gamma which override the generic fit method
+        res_5 = stats.beta.fit(x, fa=3., floc=0, fscale=1)
+        aa, bb, ll, ss = res_5
+        assert_equal([aa, ll, ss], [3., 0, 1])
+
+        # gamma distribution
+        a = 3.
+        data = stats.gamma.rvs(a, size=100)
+        aa, ll, ss = stats.gamma.fit(data, fa=a)
+        assert_equal(aa, a)
+
+    def test_extra_params(self):
+        # unknown parameters should raise rather than be silently ignored
+        dist = stats.exponnorm
+        data = dist.rvs(K=2, size=100)
+        dct = dict(enikibeniki=-101)
+        assert_raises(TypeError, dist.fit, data, **dct)
 
 
 class TestFrozen(TestCase):
-    # Test that a frozen distribution gives the same results as the original object.
+    # Test that a frozen distribution gives the same results as the original
+    # object.
     #
     # Only tested for the normal distribution (with loc and scale specified)
     # and for the gamma distribution (with a shape parameter specified).
@@ -1186,9 +1406,12 @@ class TestFrozen(TestCase):
         assert_equal(result_f, result)
 
         result_f = frozen.moment(2)
-        result = dist.moment(2,loc=10.0, scale=3.0)
+        result = dist.moment(2, loc=10.0, scale=3.0)
         assert_equal(result_f, result)
 
+        assert_equal(frozen.a, dist.a)
+        assert_equal(frozen.b, dist.b)
+
     def test_gamma(self):
         a = 2.0
         dist = stats.gamma
@@ -1238,6 +1461,9 @@ class TestFrozen(TestCase):
         result = dist.moment(2, a)
         assert_equal(result_f, result)
 
+        assert_equal(frozen.a, frozen.dist.a)
+        assert_equal(frozen.b, frozen.dist.b)
+
     def test_regression_ticket_1293(self):
         # Create a frozen distribution.
         frozen = stats.lognorm(1)
@@ -1264,10 +1490,12 @@ class TestFrozen(TestCase):
         # for c < 0: a, b = 0, -1/c
         rv = stats.genpareto(c=-0.1)
         a, b = rv.dist.a, rv.dist.b
-        assert_equal([a, b], [0., 10.])
+        assert_array_equal([a, b], [0., 10.])
+        assert_array_equal([rv.a, rv.b], [0., 10.])
 
         stats.genpareto.pdf(0, c=0.1)  # this changes genpareto.b
-        assert_equal([rv.dist.a, rv.dist.b], [a, b])
+        assert_array_equal([rv.dist.a, rv.dist.b], [a, b])
+        assert_array_equal([rv.a, rv.b], [a, b])
 
         rv1 = stats.genpareto(c=0.1)
         assert_(rv1.dist is not rv.dist)
@@ -1276,6 +1504,61 @@ class TestFrozen(TestCase):
         # Regression test for gh-3522
         assert_(hasattr(stats.distributions, 'rv_frozen'))
 
+    def test_random_state(self):
+        # only check that the random_state attribute exists,
+        frozen = stats.norm()
+        assert_(hasattr(frozen, 'random_state'))
+
+        # ... that it can be set,
+        frozen.random_state = 42
+        assert_equal(frozen.random_state.get_state(),
+                     np.random.RandomState(42).get_state())
+
+        # ... and that .rvs method accepts it as an argument
+        rndm = np.random.RandomState(1234)
+        frozen.rvs(size=8, random_state=rndm)
+
+#     def test_pickling(self):
+#         # test that a frozen instance pickles and unpickles
+#         # (this method is a clone of common_tests.check_pickling)
+#         beta = stats.beta(2.3098496451481823, 0.62687954300963677)
+#         poiss = stats.poisson(3.)
+#         sample = stats.rv_discrete(values=([0, 1, 2, 3],
+#                                            [0.1, 0.2, 0.3, 0.4]))
+#
+#         for distfn in [beta, poiss, sample]:
+#             distfn.random_state = 1234
+#             distfn.rvs(size=8)
+#             s = pickle.dumps(distfn)
+#             r0 = distfn.rvs(size=8)
+#
+#             unpickled = pickle.loads(s)
+#             r1 = unpickled.rvs(size=8)
+#             assert_equal(r0, r1)
+#
+#             # also smoke test some methods
+#             medians = [distfn.ppf(0.5), unpickled.ppf(0.5)]
+#             assert_equal(medians[0], medians[1])
+#             assert_equal(distfn.cdf(medians[0]),
+#                          unpickled.cdf(medians[1]))
+
+    def test_expect(self):
+        # smoke test the expect method of the frozen distribution
+        # only take a gamma w/loc and scale and poisson with loc specified
+        def func(x):
+            return x
+
+        gm = stats.gamma(2, loc=3, scale=4)
+        gm_val = gm.expect(func, lb=1, ub=2, conditional=True)
+        gamma_val = stats.gamma.expect(func, args=(2,), loc=3, scale=4,
+                                       lb=1, ub=2, conditional=True)
+        assert_allclose(gm_val, gamma_val)
+
+        p = stats.poisson(3, loc=4)
+        p_val = p.expect(func)
+        poisson_val = stats.poisson.expect(func, args=(3,), loc=4)
+        assert_allclose(p_val, poisson_val)
+
 
 class TestExpect(TestCase):
     # Test for expect method.
@@ -1300,20 +1583,20 @@ class TestExpect(TestCase):
 
     def test_beta(self):
         # case with finite support interval
-        v = stats.beta.expect(lambda x: (x-19/3.)*(x-19/3.), args=(10,5),
+        v = stats.beta.expect(lambda x: (x-19/3.)*(x-19/3.), args=(10, 5),
                               loc=5, scale=2)
         assert_almost_equal(v, 1./18., decimal=13)
 
-        m = stats.beta.expect(lambda x: x, args=(10,5), loc=5., scale=2.)
+        m = stats.beta.expect(lambda x: x, args=(10, 5), loc=5., scale=2.)
         assert_almost_equal(m, 19/3., decimal=13)
 
         ub = stats.beta.ppf(0.95, 10, 10, loc=5, scale=2)
         lb = stats.beta.ppf(0.05, 10, 10, loc=5, scale=2)
-        prob90 = stats.beta.expect(lambda x: 1., args=(10,10), loc=5.,
-                                   scale=2.,lb=lb, ub=ub, conditional=False)
+        prob90 = stats.beta.expect(lambda x: 1., args=(10, 10), loc=5.,
+                                   scale=2., lb=lb, ub=ub, conditional=False)
         assert_almost_equal(prob90, 0.9, decimal=13)
 
-        prob90c = stats.beta.expect(lambda x: 1, args=(10,10), loc=5,
+        prob90c = stats.beta.expect(lambda x: 1, args=(10, 10), loc=5,
                                     scale=2, lb=lb, ub=ub, conditional=True)
         assert_almost_equal(prob90c, 1., decimal=13)
 
@@ -1330,19 +1613,20 @@ class TestExpect(TestCase):
         assert_almost_equal(v, v_true, decimal=14)
 
         # with bounds, bounds equal to shifted support
-        v_bounds = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8),
+        v_bounds = stats.hypergeom.expect(lambda x: (x-9.)**2,
+                                          args=(20, 10, 8),
                                           loc=5., lb=5, ub=13)
         assert_almost_equal(v_bounds, v_true, decimal=14)
 
         # drop boundary points
         prob_true = 1-stats.hypergeom.pmf([5, 13], 20, 10, 8, loc=5).sum()
         prob_bounds = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
-                                          loc=5., lb=6, ub=12)
+                                             loc=5., lb=6, ub=12)
         assert_almost_equal(prob_bounds, prob_true, decimal=13)
 
         # conditional
         prob_bc = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), loc=5.,
-                                           lb=6, ub=12, conditional=True)
+                                         lb=6, ub=12, conditional=True)
         assert_almost_equal(prob_bc, 1, decimal=14)
 
         # check simple integral
@@ -1353,8 +1637,8 @@ class TestExpect(TestCase):
     def test_poisson(self):
         # poisson, use lower bound only
         prob_bounds = stats.poisson.expect(lambda x: 1, args=(2,), lb=3,
-                                      conditional=False)
-        prob_b_true = 1-stats.poisson.cdf(2,2)
+                                           conditional=False)
+        prob_b_true = 1-stats.poisson.cdf(2, 2)
         assert_almost_equal(prob_bounds, prob_b_true, decimal=14)
 
         prob_lb = stats.poisson.expect(lambda x: 1, args=(2,), lb=2,
@@ -1380,6 +1664,56 @@ class TestExpect(TestCase):
         assert_(np.isfinite(stats.rice.expect(lambda x: 2, args=(0.74,))))
         assert_(np.isfinite(stats.rice.expect(lambda x: 3, args=(0.74,))))
 
+    def test_logser(self):
+        # test a discrete distribution with infinite support and loc
+        p, loc = 0.3, 3
+        res_0 = stats.logser.expect(lambda k: k, args=(p,))
+        # check against the correct answer (sum of a geom series)
+        assert_allclose(res_0,
+                        p / (p - 1.) / np.log(1. - p), atol=1e-15)
+
+        # now check it with `loc`
+        res_l = stats.logser.expect(lambda k: k, args=(p,), loc=loc)
+        assert_allclose(res_l, res_0 + loc, atol=1e-15)
+
+    def test_skellam(self):
+        # Use a discrete distribution w/ bi-infinite support. Compute two first
+        # moments and compare to known values (cf skellam.stats)
+        p1, p2 = 18, 22
+        m1 = stats.skellam.expect(lambda x: x, args=(p1, p2))
+        m2 = stats.skellam.expect(lambda x: x**2, args=(p1, p2))
+        assert_allclose(m1, p1 - p2, atol=1e-12)
+        assert_allclose(m2 - m1**2, p1 + p2, atol=1e-12)
+
+    def test_randint(self):
+        # Use a discrete distribution w/ parameter-dependent support, which
+        # is larger than the default chunksize
+        lo, hi = 0, 113
+        res = stats.randint.expect(lambda x: x, (lo, hi))
+        assert_allclose(res,
+            sum(_ for _ in range(lo, hi)) / (hi - lo), atol=1e-15)
+
+    def test_zipf(self):
+        # Test that there is no infinite loop even if the sum diverges
+        assert_warns(RuntimeWarning, stats.zipf.expect,
+            lambda x: x**2, (2,))
+
+    def test_discrete_kwds(self):
+        # check that discrete expect accepts keywords to control the summation
+        n0 = stats.poisson.expect(lambda x: 1, args=(2,))
+
+        assert_almost_equal(n0, 1, decimal=14)
+
+    def test_moment(self):
+        # test the .moment() method: compute a higher moment and compare to
+        # a known value
+        def poiss_moment5(mu):
+            return mu**5 + 10*mu**4 + 25*mu**3 + 15*mu**2 + mu
+
+        for mu in [5, 7]:
+            m5 = stats.poisson.moment(5, mu)
+            assert_allclose(m5, poiss_moment5(mu), rtol=1e-10)
+
 
 class TestNct(TestCase):
     def test_nc_parameter(self):
@@ -1391,7 +1725,8 @@ class TestNct(TestCase):
         assert_almost_equal(rv.cdf(0), 0.841344746069, decimal=10)
 
     def test_broadcasting(self):
-        res = stats.nct.pdf(5, np.arange(4,7)[:,None], np.linspace(0.1, 1, 4))
+        res = stats.nct.pdf(5, np.arange(4, 7)[:, None],
+                            np.linspace(0.1, 1, 4))
         expected = array([[0.00321886, 0.00557466, 0.00918418, 0.01442997],
                           [0.00217142, 0.00395366, 0.00683888, 0.01126276],
                           [0.00153078, 0.00291093, 0.00525206, 0.00900815]])
@@ -1436,7 +1771,7 @@ class TestRice(TestCase):
         # see e.g. Abramovich & Stegun 9.6.7 & 9.6.10
         b = 1e-8
         assert_allclose(stats.rice.pdf(x, 0), stats.rice.pdf(x, b),
-                atol=b, rtol=0)
+                        atol=b, rtol=0)
 
     def test_rice_rvs(self):
         rvs = stats.rice.rvs
@@ -1451,9 +1786,10 @@ class TestErlang(TestCase):
         with warnings.catch_warnings():
             warnings.simplefilter("error", RuntimeWarning)
 
-            # The non-integer shape parameter 1.3 should trigger a RuntimeWarning
+            # The non-integer shape parameter 1.3 should trigger a
+            # RuntimeWarning
             assert_raises(RuntimeWarning,
-                              stats.erlang.rvs, 1.3, loc=0, scale=1, size=4)
+                          stats.erlang.rvs, 1.3, loc=0, scale=1, size=4)
 
             # Calling the fit method with `f0` set to an integer should
             # *not* trigger a RuntimeWarning.  It should return the same
@@ -1515,18 +1851,19 @@ class TestRdist(TestCase):
         distfn = stats.rdist
         values = [0.001, 0.5, 0.999]
         assert_almost_equal(distfn.cdf(distfn.ppf(values, 541.0), 541.0),
-                                values, decimal=5)
+                            values, decimal=5)
 
 
 def test_540_567():
     # test for nan returned in tickets 540, 567
-    assert_almost_equal(stats.norm.cdf(-1.7624320982),0.03899815971089126,
-                            decimal=10, err_msg='test_540_567')
-    assert_almost_equal(stats.norm.cdf(-1.7624320983),0.038998159702449846,
-                            decimal=10, err_msg='test_540_567')
+    assert_almost_equal(stats.norm.cdf(-1.7624320982), 0.03899815971089126,
+                        decimal=10, err_msg='test_540_567')
+    assert_almost_equal(stats.norm.cdf(-1.7624320983), 0.038998159702449846,
+                        decimal=10, err_msg='test_540_567')
     assert_almost_equal(stats.norm.cdf(1.38629436112, loc=0.950273420309,
-                            scale=0.204423758009),0.98353464004309321,
-                            decimal=10, err_msg='test_540_567')
+                                       scale=0.204423758009),
+                        0.98353464004309321,
+                        decimal=10, err_msg='test_540_567')
 
 
 def test_regression_ticket_1316():
@@ -1541,7 +1878,8 @@ def test_regression_ticket_1326():
 
 
 def test_regression_tukey_lambda():
-    # Make sure that Tukey-Lambda distribution correctly handles non-positive lambdas.
+    # Make sure that Tukey-Lambda distribution correctly handles
+    # non-positive lambdas.
     x = np.linspace(-5.0, 5.0, 101)
 
     olderr = np.seterr(divide='ignore')
@@ -1630,6 +1968,16 @@ def test_regression_ticket_1530():
     assert_almost_equal(params, expected, decimal=1)
 
 
+def test_gh_pr_4806():
+    # Check starting values for Cauchy distribution fit.
+    np.random.seed(1234)
+    x = np.random.randn(42)
+    for offset in 10000.0, 1222333444.0:
+        loc, scale = stats.cauchy.fit(x + offset)
+        assert_allclose(loc, offset, atol=1.0)
+        assert_allclose(scale, 0.6, atol=1.0)
+
+
 def test_tukeylambda_stats_ticket_1545():
     # Some test for the variance and kurtosis of the Tukey Lambda distr.
     # See test_tukeylamdba_stats.py for more tests.
@@ -1692,6 +2040,37 @@ def test_powerlaw_stats():
         assert_array_almost_equal(mvsk, exact_mvsk)
 
 
+def test_powerlaw_edge():
+    # Regression test for gh-3986.
+    p = stats.powerlaw.logpdf(0, 1)
+    assert_equal(p, 0.0)
+
+
+def test_exponpow_edge():
+    # Regression test for gh-3982.
+    p = stats.exponpow.logpdf(0, 1)
+    assert_equal(p, 0.0)
+
+    # Check pdf and logpdf at x = 0 for other values of b.
+    p = stats.exponpow.pdf(0, [0.25, 1.0, 1.5])
+    assert_equal(p, [np.inf, 1.0, 0.0])
+    p = stats.exponpow.logpdf(0, [0.25, 1.0, 1.5])
+    assert_equal(p, [np.inf, 0.0, -np.inf])
+
+
+def test_gengamma_edge():
+    # Regression test for gh-3985.
+    p = stats.gengamma.pdf(0, 1, 1)
+    assert_equal(p, 1.0)
+
+    # Regression tests for gh-4724.
+    p = stats.gengamma._munp(-2, 200, 1.)
+    assert_almost_equal(p, 1./199/198)
+
+    p = stats.gengamma._munp(-2, 10, 1.)
+    assert_almost_equal(p, 1./9/8)
+
+
 def test_ksone_fit_freeze():
     # Regression test for ticket #1638.
     d = np.array(
@@ -1822,6 +2201,16 @@ def test_ncx2_tails_ticket_955():
     assert_allclose(a, b, rtol=1e-3, atol=0)
 
 
+def test_ncx2_tails_pdf():
+    # ncx2.pdf does not return nans in extreme tails(example from gh-1577)
+    # NB: this is to check that nan_to_num is not needed in ncx2.pdf
+    with warnings.catch_warnings():
+        warnings.simplefilter("ignore", RuntimeWarning)
+        assert_equal(stats.ncx2.pdf(1, np.arange(340, 350), 2), 0)
+        # logval = stats.ncx2.logpdf(1, np.arange(340, 350), 2)
+        # assert_(np.isneginf(logval).all())
+
+
 def test_foldnorm_zero():
     # Parameter value c=0 was not enabled, see gh-2399.
     rv = stats.foldnorm(0, scale=1)
@@ -1836,7 +2225,8 @@ def test_stats_shapes_argcheck():
     mv2_augmented = tuple(np.r_[np.nan, _] for _ in mv2)
     assert_equal(mv2_augmented, mv3)
 
-    mv3 = stats.lognorm.stats([2, 2.4, -1])  # -1 is not a legal shape parameter
+    # -1 is not a legal shape parameter
+    mv3 = stats.lognorm.stats([2, 2.4, -1])
     mv2 = stats.lognorm.stats([2, 2.4])
     mv2_augmented = tuple(np.r_[_, np.nan] for _ in mv2)
     assert_equal(mv2_augmented, mv3)
@@ -1846,7 +2236,7 @@ def test_stats_shapes_argcheck():
     # anyway, so some distributions may or may not fail.
 
 
-## Test subclassing distributions w/ explicit shapes
+# Test subclassing distributions w/ explicit shapes
 
 class _distr_gen(stats.rv_continuous):
     def _pdf(self, x, a):
@@ -1978,8 +2368,9 @@ class TestSubclassingExplicitShapes(TestCase):
         # this is a limitation of the framework (_pdf(x, *goodargs))
         class _distr_gen(stats.rv_continuous):
             def _pdf(self, x, *args, **kwargs):
-                # _pdf should handle *args, **kwargs itself.  Here "handling" is
-                # ignoring *args and looking for ``extra_kwarg`` and using that.
+                # _pdf should handle *args, **kwargs itself.  Here "handling"
+                # is ignoring *args and looking for ``extra_kwarg`` and using
+                # that.
                 extra_kwarg = kwargs.pop('extra_kwarg', 1)
                 return stats.norm._pdf(x) * extra_kwarg
 
@@ -2075,5 +2466,52 @@ def test_infinite_input():
     assert_almost_equal(stats.ncx2._cdf(np.inf, 8, 0.1), 1)
 
 
+def test_lomax_accuracy():
+    # regression test for gh-4033
+    p = stats.lomax.ppf(stats.lomax.cdf(1e-100, 1), 1)
+    assert_allclose(p, 1e-100)
+
+
+def test_gompertz_accuracy():
+    # Regression test for gh-4031
+    p = stats.gompertz.ppf(stats.gompertz.cdf(1e-100, 1), 1)
+    assert_allclose(p, 1e-100)
+
+
+def test_truncexpon_accuracy():
+    # regression test for gh-4035
+    p = stats.truncexpon.ppf(stats.truncexpon.cdf(1e-100, 1), 1)
+    assert_allclose(p, 1e-100)
+
+
+def test_rayleigh_accuracy():
+    # regression test for gh-4034
+    p = stats.rayleigh.isf(stats.rayleigh.sf(9, 1), 1)
+    assert_almost_equal(p, 9.0, decimal=15)
+
+
+def test_genextreme_entropy():
+    # regression test for gh-5181
+    euler_gamma = 0.5772156649015329
+
+    h = stats.genextreme.entropy(-1.0)
+    assert_allclose(h, 2*euler_gamma + 1, rtol=1e-14)
+
+    h = stats.genextreme.entropy(0)
+    assert_allclose(h, euler_gamma + 1, rtol=1e-14)
+
+    h = stats.genextreme.entropy(1.0)
+    assert_equal(h, 1)
+
+    h = stats.genextreme.entropy(-2.0, scale=10)
+    assert_allclose(h, euler_gamma*3 + np.log(10) + 1, rtol=1e-14)
+
+    h = stats.genextreme.entropy(10)
+    assert_allclose(h, -9*euler_gamma + 1, rtol=1e-14)
+
+    h = stats.genextreme.entropy(-10)
+    assert_allclose(h, 11*euler_gamma + 1, rtol=1e-14)
+
+
 if __name__ == "__main__":
     run_module_suite()
diff --git a/wafo/stats/tests/test_fit.py b/wafo/stats/tests/test_fit.py
index 45fd567..c304563 100644
--- a/wafo/stats/tests/test_fit.py
+++ b/wafo/stats/tests/test_fit.py
@@ -3,7 +3,7 @@ from __future__ import division, print_function, absolute_import
 import os
 
 import numpy as np
-from numpy.testing import dec
+from numpy.testing import dec, assert_allclose
 
 from wafo import stats
 
@@ -13,12 +13,12 @@ from wafo.stats.tests.test_continuous_basic import distcont
 # verifies that the estimate and true values don't differ by too much
 
 fit_sizes = [1000, 5000]  # sample sizes to try
+
 thresh_percent = 0.25  # percent of true parameters for fail cut-off
 thresh_min = 0.75  # minimum difference estimate - true to fail test
 
 failing_fits = [
         'burr',
-        'chi',
         'chi2',
         'gausshyper',
         'genexpon',
@@ -107,5 +107,18 @@ def check_cont_fit(distname,arg):
         raise AssertionError('fit not very good in %s\n' % distfn.name + txt)
 
 
+def _check_loc_scale_mle_fit(name, data, desired, atol=None):
+    d = getattr(stats, name)
+    actual = d.fit(data)[-2:]
+    assert_allclose(actual, desired, atol=atol,
+                    err_msg='poor mle fit of (loc, scale) in %s' % name)
+
+
+def test_non_default_loc_scale_mle_fit():
+    data = np.array([1.01, 1.78, 1.78, 1.78, 1.88, 1.88, 1.88, 2.00])
+    yield _check_loc_scale_mle_fit, 'uniform', data, [1.01, 0.99], 1e-3
+    yield _check_loc_scale_mle_fit, 'expon', data, [1.01, 0.73875], 1e-3
+
+
 if __name__ == "__main__":
     np.testing.run_module_suite()
diff --git a/wafo/stats/tests/test_kdeoth.py b/wafo/stats/tests/test_kdeoth.py
deleted file mode 100644
index 9b2941d..0000000
--- a/wafo/stats/tests/test_kdeoth.py
+++ /dev/null
@@ -1,202 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-from wafo import stats
-import numpy as np
-from numpy.testing import assert_almost_equal, assert_, assert_raises, \
-    assert_array_almost_equal, assert_array_almost_equal_nulp, run_module_suite
-
-
-def test_kde_1d():
-    #some basic tests comparing to normal distribution
-    np.random.seed(8765678)
-    n_basesample = 500
-    xn = np.random.randn(n_basesample)
-    xnmean = xn.mean()
-    xnstd = xn.std(ddof=1)
-
-    # get kde for original sample
-    gkde = stats.gaussian_kde(xn)
-
-    # evaluate the density function for the kde for some points
-    xs = np.linspace(-7,7,501)
-    kdepdf = gkde.evaluate(xs)
-    normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd)
-    intervall = xs[1] - xs[0]
-
-    assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01)
-    prob1 = gkde.integrate_box_1d(xnmean, np.inf)
-    prob2 = gkde.integrate_box_1d(-np.inf, xnmean)
-    assert_almost_equal(prob1, 0.5, decimal=1)
-    assert_almost_equal(prob2, 0.5, decimal=1)
-    assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13)
-    assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13)
-
-    assert_almost_equal(gkde.integrate_kde(gkde),
-                        (kdepdf**2).sum()*intervall, decimal=2)
-    assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2),
-                        (kdepdf*normpdf).sum()*intervall, decimal=2)
-
-
-def test_kde_bandwidth_method():
-    def scotts_factor(kde_obj):
-        """Same as default, just check that it works."""
-        return np.power(kde_obj.n, -1./(kde_obj.d+4))
-
-    np.random.seed(8765678)
-    n_basesample = 50
-    xn = np.random.randn(n_basesample)
-
-    # Default
-    gkde = stats.gaussian_kde(xn)
-    # Supply a callable
-    gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor)
-    # Supply a scalar
-    gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor)
-
-    xs = np.linspace(-7,7,51)
-    kdepdf = gkde.evaluate(xs)
-    kdepdf2 = gkde2.evaluate(xs)
-    assert_almost_equal(kdepdf, kdepdf2)
-    kdepdf3 = gkde3.evaluate(xs)
-    assert_almost_equal(kdepdf, kdepdf3)
-
-    assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring')
-
-
-# Subclasses that should stay working (extracted from various sources).
-# Unfortunately the earlier design of gaussian_kde made it necessary for users
-# to create these kinds of subclasses, or call _compute_covariance() directly.
-
-class _kde_subclass1(stats.gaussian_kde):
-    def __init__(self, dataset):
-        self.dataset = np.atleast_2d(dataset)
-        self.d, self.n = self.dataset.shape
-        self.covariance_factor = self.scotts_factor
-        self._compute_covariance()
-
-
-class _kde_subclass2(stats.gaussian_kde):
-    def __init__(self, dataset):
-        self.covariance_factor = self.scotts_factor
-        super(_kde_subclass2, self).__init__(dataset)
-
-
-class _kde_subclass3(stats.gaussian_kde):
-    def __init__(self, dataset, covariance):
-        self.covariance = covariance
-        stats.gaussian_kde.__init__(self, dataset)
-
-    def _compute_covariance(self):
-        self.inv_cov = np.linalg.inv(self.covariance)
-        self._norm_factor = np.sqrt(np.linalg.det(2*np.pi * self.covariance)) \
-                                   * self.n
-
-
-class _kde_subclass4(stats.gaussian_kde):
-    def covariance_factor(self):
-        return 0.5 * self.silverman_factor()
-
-
-def test_gaussian_kde_subclassing():
-    x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
-    xs = np.linspace(-10, 10, num=50)
-
-    # gaussian_kde itself
-    kde = stats.gaussian_kde(x1)
-    ys = kde(xs)
-
-    # subclass 1
-    kde1 = _kde_subclass1(x1)
-    y1 = kde1(xs)
-    assert_array_almost_equal_nulp(ys, y1, nulp=10)
-
-    # subclass 2
-    kde2 = _kde_subclass2(x1)
-    y2 = kde2(xs)
-    assert_array_almost_equal_nulp(ys, y2, nulp=10)
-
-    # subclass 3
-    kde3 = _kde_subclass3(x1, kde.covariance)
-    y3 = kde3(xs)
-    assert_array_almost_equal_nulp(ys, y3, nulp=10)
-
-    # subclass 4
-    kde4 = _kde_subclass4(x1)
-    y4 = kde4(x1)
-    y_expected = [0.06292987, 0.06346938, 0.05860291, 0.08657652, 0.07904017]
-
-    assert_array_almost_equal(y_expected, y4, decimal=6)
-
-    # Not a subclass, but check for use of _compute_covariance()
-    kde5 = kde
-    kde5.covariance_factor = lambda: kde.factor
-    kde5._compute_covariance()
-    y5 = kde5(xs)
-    assert_array_almost_equal_nulp(ys, y5, nulp=10)
-
-
-def test_gaussian_kde_covariance_caching():
-    x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
-    xs = np.linspace(-10, 10, num=5)
-    # These expected values are from scipy 0.10, before some changes to
-    # gaussian_kde.  They were not compared with any external reference.
-    y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475]
-
-    # Set the bandwidth, then reset it to the default.
-    kde = stats.gaussian_kde(x1)
-    kde.set_bandwidth(bw_method=0.5)
-    kde.set_bandwidth(bw_method='scott')
-    y2 = kde(xs)
-
-    assert_array_almost_equal(y_expected, y2, decimal=7)
-
-
-def test_gaussian_kde_monkeypatch():
-    """Ugly, but people may rely on this.  See scipy pull request 123,
-    specifically the linked ML thread "Width of the Gaussian in stats.kde".
-    If it is necessary to break this later on, that is to be discussed on ML.
-    """
-    x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
-    xs = np.linspace(-10, 10, num=50)
-
-    # The old monkeypatched version to get at Silverman's Rule.
-    kde = stats.gaussian_kde(x1)
-    kde.covariance_factor = kde.silverman_factor
-    kde._compute_covariance()
-    y1 = kde(xs)
-
-    # The new saner version.
-    kde2 = stats.gaussian_kde(x1, bw_method='silverman')
-    y2 = kde2(xs)
-
-    assert_array_almost_equal_nulp(y1, y2, nulp=10)
-
-
-def test_kde_integer_input():
-    """Regression test for #1181."""
-    x1 = np.arange(5)
-    kde = stats.gaussian_kde(x1)
-    y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721]
-    assert_array_almost_equal(kde(x1), y_expected, decimal=6)
-
-
-def test_pdf_logpdf():
-    np.random.seed(1)
-    n_basesample = 50
-    xn = np.random.randn(n_basesample)
-
-    # Default
-    gkde = stats.gaussian_kde(xn)
-
-    xs = np.linspace(-15, 12, 25)
-    pdf = gkde.evaluate(xs)
-    pdf2 = gkde.pdf(xs)
-    assert_almost_equal(pdf, pdf2, decimal=12)
-
-    logpdf = np.log(pdf)
-    logpdf2 = gkde.logpdf(xs)
-    assert_almost_equal(logpdf, logpdf2, decimal=12)
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_morestats.py b/wafo/stats/tests/test_morestats.py
deleted file mode 100644
index 3813d57..0000000
--- a/wafo/stats/tests/test_morestats.py
+++ /dev/null
@@ -1,1009 +0,0 @@
-# Author:  Travis Oliphant, 2002
-#
-# Further enhancements and tests added by numerous SciPy developers.
-#
-from __future__ import division, print_function, absolute_import
-
-import warnings
-
-import numpy as np
-from numpy.random import RandomState
-from numpy.testing import (TestCase, run_module_suite, assert_array_equal,
-    assert_almost_equal, assert_array_less, assert_array_almost_equal,
-    assert_raises, assert_, assert_allclose, assert_equal, dec, assert_warns)
-
-from wafo import stats
-
-# Matplotlib is not a scipy dependency but is optionally used in probplot, so
-# check if it's available
-try:
-    import matplotlib.pyplot as plt
-    have_matplotlib = True
-except:
-    have_matplotlib = False
-
-
-g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000]
-g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988]
-g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996]
-g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996]
-g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996]
-g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996]
-g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002]
-g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006]
-g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991]
-g10 = [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]
-
-
-class TestShapiro(TestCase):
-    def test_basic(self):
-        x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
-              4.43,0.21,4.75,0.71,1.52,3.24,
-              0.93,0.42,4.97,9.53,4.55,0.47,6.66]
-        w,pw = stats.shapiro(x1)
-        assert_almost_equal(w,0.90047299861907959,6)
-        assert_almost_equal(pw,0.042089745402336121,6)
-        x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
-              3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
-              0.08,3.67,2.81,3.49]
-        w,pw = stats.shapiro(x2)
-        assert_almost_equal(w,0.9590270,6)
-        assert_almost_equal(pw,0.52460,3)
-
-    def test_bad_arg(self):
-        # Length of x is less than 3.
-        x = [1]
-        assert_raises(ValueError, stats.shapiro, x)
-
-
-class TestAnderson(TestCase):
-    def test_normal(self):
-        rs = RandomState(1234567890)
-        x1 = rs.standard_exponential(size=50)
-        x2 = rs.standard_normal(size=50)
-        A,crit,sig = stats.anderson(x1)
-        assert_array_less(crit[:-1], A)
-        A,crit,sig = stats.anderson(x2)
-        assert_array_less(A, crit[-2:])
-
-    def test_expon(self):
-        rs = RandomState(1234567890)
-        x1 = rs.standard_exponential(size=50)
-        x2 = rs.standard_normal(size=50)
-        A,crit,sig = stats.anderson(x1,'expon')
-        assert_array_less(A, crit[-2:])
-        olderr = np.seterr(all='ignore')
-        try:
-            A,crit,sig = stats.anderson(x2,'expon')
-        finally:
-            np.seterr(**olderr)
-        assert_(A > crit[-1])
-
-    def test_bad_arg(self):
-        assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp')
-
-
-class TestAndersonKSamp(TestCase):
-    def test_example1a(self):
-        # Example data from Scholz & Stephens (1987), originally
-        # published in Lehmann (1995, Nonparametrics, Statistical
-        # Methods Based on Ranks, p. 309)
-        # Pass a mixture of lists and arrays
-        t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]
-        t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
-        t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
-        t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
-        assert_warns(UserWarning, stats.anderson_ksamp, (t1, t2, t3, t4),
-                     midrank=False)
-        with warnings.catch_warnings():
-            warnings.filterwarnings('ignore', message='approximate p-value')
-            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False)
-
-        assert_almost_equal(Tk, 4.449, 3)
-        assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
-                                  tm, 4)
-        assert_almost_equal(p, 0.0021, 4)
-
-    def test_example1b(self):
-        # Example data from Scholz & Stephens (1987), originally
-        # published in Lehmann (1995, Nonparametrics, Statistical
-        # Methods Based on Ranks, p. 309)
-        # Pass arrays
-        t1 = np.array([38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0])
-        t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
-        t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
-        t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
-        with warnings.catch_warnings():
-            warnings.filterwarnings('ignore', message='approximate p-value')
-            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=True)
-
-        assert_almost_equal(Tk, 4.480, 3)
-        assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
-                                  tm, 4)
-        assert_almost_equal(p, 0.0020, 4)
-
-    def test_example2a(self):
-        # Example data taken from an earlier technical report of
-        # Scholz and Stephens
-        # Pass lists instead of arrays
-        t1 = [194, 15, 41, 29, 33, 181]
-        t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
-        t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
-        t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
-              118, 25, 156, 310, 76, 26, 44, 23, 62]
-        t5 = [130, 208, 70, 101, 208]
-        t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
-        t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
-        t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
-              12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
-        t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
-              54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
-        t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
-               22, 139, 210, 97, 30, 23, 13, 14]
-        t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
-        t12 = [50, 254, 5, 283, 35, 12]
-        t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
-        t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
-               61, 34]
-        with warnings.catch_warnings():
-            warnings.filterwarnings('ignore', message='approximate p-value')
-            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
-                                              t9, t10, t11, t12, t13, t14),
-                                             midrank=False)
-
-        assert_almost_equal(Tk, 3.288, 3)
-        assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
-                                  tm, 4)
-        assert_almost_equal(p, 0.0041, 4)
-
-    def test_example2b(self):
-        # Example data taken from an earlier technical report of
-        # Scholz and Stephens
-        t1 = [194, 15, 41, 29, 33, 181]
-        t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
-        t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
-        t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
-              118, 25, 156, 310, 76, 26, 44, 23, 62]
-        t5 = [130, 208, 70, 101, 208]
-        t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
-        t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
-        t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
-              12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
-        t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
-              54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
-        t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
-               22, 139, 210, 97, 30, 23, 13, 14]
-        t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
-        t12 = [50, 254, 5, 283, 35, 12]
-        t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
-        t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
-               61, 34]
-        with warnings.catch_warnings():
-            warnings.filterwarnings('ignore', message='approximate p-value')
-            Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
-                                              t9, t10, t11, t12, t13, t14),
-                                             midrank=True)
-
-        assert_almost_equal(Tk, 3.294, 3)
-        assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
-                                  tm, 4)
-        assert_almost_equal(p, 0.0041, 4)
-
-    def test_not_enough_samples(self):
-        assert_raises(ValueError, stats.anderson_ksamp, np.ones(5))
-
-    def test_no_distinct_observations(self):
-        assert_raises(ValueError, stats.anderson_ksamp,
-                      (np.ones(5), np.ones(5)))
-
-    def test_empty_sample(self):
-        assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), []))
-
-
-class TestAnsari(TestCase):
-
-    def test_small(self):
-        x = [1,2,3,3,4]
-        y = [3,2,6,1,6,1,4,1]
-        W, pval = stats.ansari(x,y)
-        assert_almost_equal(W,23.5,11)
-        assert_almost_equal(pval,0.13499256881897437,11)
-
-    def test_approx(self):
-        ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
-                           101, 96, 97, 102, 107, 113, 116, 113, 110, 98))
-        parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104,
-                           100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99))
-
-        with warnings.catch_warnings():
-            warnings.filterwarnings('ignore',
-                        message="Ties preclude use of exact statistic.")
-            W, pval = stats.ansari(ramsay, parekh)
-
-        assert_almost_equal(W,185.5,11)
-        assert_almost_equal(pval,0.18145819972867083,11)
-
-    def test_exact(self):
-        W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12])
-        assert_almost_equal(W,10.0,11)
-        assert_almost_equal(pval,0.533333333333333333,7)
-
-    def test_bad_arg(self):
-        assert_raises(ValueError, stats.ansari, [], [1])
-        assert_raises(ValueError, stats.ansari, [1], [])
-
-
-class TestBartlett(TestCase):
-
-    def test_data(self):
-        args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
-        T, pval = stats.bartlett(*args)
-        assert_almost_equal(T,20.78587342806484,7)
-        assert_almost_equal(pval,0.0136358632781,7)
-
-    def test_bad_arg(self):
-        # Too few args raises ValueError.
-        assert_raises(ValueError, stats.bartlett, [1])
-
-
-class TestLevene(TestCase):
-
-    def test_data(self):
-        args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
-        W, pval = stats.levene(*args)
-        assert_almost_equal(W,1.7059176930008939,7)
-        assert_almost_equal(pval,0.0990829755522,7)
-
-    def test_trimmed1(self):
-        # Test that center='trimmed' gives the same result as center='mean'
-        # when proportiontocut=0.
-        W1, pval1 = stats.levene(g1, g2, g3, center='mean')
-        W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
-        assert_almost_equal(W1, W2)
-        assert_almost_equal(pval1, pval2)
-
-    def test_trimmed2(self):
-        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
-        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
-        np.random.seed(1234)
-        x2 = np.random.permutation(x)
-
-        # Use center='trimmed'
-        W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
-        W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125)
-        # Trim the data here, and use center='mean'
-        W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
-        # Result should be the same.
-        assert_almost_equal(W0, W2)
-        assert_almost_equal(W1, W2)
-        assert_almost_equal(pval1, pval2)
-
-    def test_equal_mean_median(self):
-        x = np.linspace(-1,1,21)
-        np.random.seed(1234)
-        x2 = np.random.permutation(x)
-        y = x**3
-        W1, pval1 = stats.levene(x, y, center='mean')
-        W2, pval2 = stats.levene(x2, y, center='median')
-        assert_almost_equal(W1, W2)
-        assert_almost_equal(pval1, pval2)
-
-    def test_bad_keyword(self):
-        x = np.linspace(-1,1,21)
-        assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1)
-
-    def test_bad_center_value(self):
-        x = np.linspace(-1,1,21)
-        assert_raises(ValueError, stats.levene, x, x, center='trim')
-
-    def test_too_few_args(self):
-        assert_raises(ValueError, stats.levene, [1])
-
-
-class TestBinomP(TestCase):
-
-    def test_data(self):
-        pval = stats.binom_test(100,250)
-        assert_almost_equal(pval,0.0018833009350757682,11)
-        pval = stats.binom_test(201,405)
-        assert_almost_equal(pval,0.92085205962670713,11)
-        pval = stats.binom_test([682,243],p=3.0/4)
-        assert_almost_equal(pval,0.38249155957481695,11)
-
-    def test_bad_len_x(self):
-        # Length of x must be 1 or 2.
-        assert_raises(ValueError, stats.binom_test, [1,2,3])
-
-    def test_bad_n(self):
-        # len(x) is 1, but n is invalid.
-        # Missing n
-        assert_raises(ValueError, stats.binom_test, [100])
-        # n less than x[0]
-        assert_raises(ValueError, stats.binom_test, [100], n=50)
-
-    def test_bad_p(self):
-        assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)
-
-
-class TestFindRepeats(TestCase):
-
-    def test_basic(self):
-        a = [1,2,3,4,1,2,3,4,1,2,5]
-        res,nums = stats.find_repeats(a)
-        assert_array_equal(res,[1,2,3,4])
-        assert_array_equal(nums,[3,3,2,2])
-
-    def test_empty_result(self):
-        # Check that empty arrays are returned when there are no repeats.
-        a = [10, 20, 50, 30, 40]
-        repeated, counts = stats.find_repeats(a)
-        assert_array_equal(repeated, [])
-        assert_array_equal(counts, [])
-
-
-class TestFligner(TestCase):
-
-    def test_data(self):
-        # numbers from R: fligner.test in package stats
-        x1 = np.arange(5)
-        assert_array_almost_equal(stats.fligner(x1,x1**2),
-                           (3.2282229927203536, 0.072379187848207877), 11)
-
-    def test_trimmed1(self):
-        # Test that center='trimmed' gives the same result as center='mean'
-        # when proportiontocut=0.
-        Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean')
-        Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0)
-        assert_almost_equal(Xsq1, Xsq2)
-        assert_almost_equal(pval1, pval2)
-
-    def test_trimmed2(self):
-        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
-        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
-        # Use center='trimmed'
-        Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125)
-        # Trim the data here, and use center='mean'
-        Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean')
-        # Result should be the same.
-        assert_almost_equal(Xsq1, Xsq2)
-        assert_almost_equal(pval1, pval2)
-
-    # The following test looks reasonable at first, but fligner() uses the
-    # function stats.rankdata(), and in one of the cases in this test,
-    # there are ties, while in the other (because of normal rounding
-    # errors) there are not.  This difference leads to differences in the
-    # third significant digit of W.
-    #
-    #def test_equal_mean_median(self):
-    #    x = np.linspace(-1,1,21)
-    #    y = x**3
-    #    W1, pval1 = stats.fligner(x, y, center='mean')
-    #    W2, pval2 = stats.fligner(x, y, center='median')
-    #    assert_almost_equal(W1, W2)
-    #    assert_almost_equal(pval1, pval2)
-
-    def test_bad_keyword(self):
-        x = np.linspace(-1,1,21)
-        assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1)
-
-    def test_bad_center_value(self):
-        x = np.linspace(-1,1,21)
-        assert_raises(ValueError, stats.fligner, x, x, center='trim')
-
-    def test_bad_num_args(self):
-        # Too few args raises ValueError.
-        assert_raises(ValueError, stats.fligner, [1])
-
-
-class TestMood(TestCase):
-    def test_mood(self):
-        # numbers from R: mood.test in package stats
-        x1 = np.arange(5)
-        assert_array_almost_equal(stats.mood(x1, x1**2),
-                                  (-1.3830857299399906, 0.16663858066771478), 11)
-
-    def test_mood_order_of_args(self):
-        # z should change sign when the order of arguments changes, pvalue
-        # should not change
-        np.random.seed(1234)
-        x1 = np.random.randn(10, 1)
-        x2 = np.random.randn(15, 1)
-        z1, p1 = stats.mood(x1, x2)
-        z2, p2 = stats.mood(x2, x1)
-        assert_array_almost_equal([z1, p1], [-z2, p2])
-
-    def test_mood_with_axis_none(self):
-        #Test with axis = None, compare with results from R
-        x1 = [-0.626453810742332, 0.183643324222082, -0.835628612410047,
-               1.59528080213779, 0.329507771815361, -0.820468384118015,
-               0.487429052428485, 0.738324705129217, 0.575781351653492,
-              -0.305388387156356, 1.51178116845085, 0.389843236411431,
-              -0.621240580541804, -2.2146998871775, 1.12493091814311,
-              -0.0449336090152309, -0.0161902630989461, 0.943836210685299,
-               0.821221195098089, 0.593901321217509]
-
-        x2 = [-0.896914546624981, 0.184849184646742, 1.58784533120882,
-              -1.13037567424629, -0.0802517565509893, 0.132420284381094,
-               0.707954729271733, -0.23969802417184, 1.98447393665293,
-              -0.138787012119665, 0.417650750792556, 0.981752777463662,
-              -0.392695355503813, -1.03966897694891, 1.78222896030858,
-              -2.31106908460517, 0.878604580921265, 0.035806718015226,
-               1.01282869212708, 0.432265154539617, 2.09081920524915,
-              -1.19992581964387, 1.58963820029007, 1.95465164222325,
-               0.00493777682814261, -2.45170638784613, 0.477237302613617,
-              -0.596558168631403, 0.792203270299649, 0.289636710177348]
-
-        x1 = np.array(x1)
-        x2 = np.array(x2)
-        x1.shape = (10, 2)
-        x2.shape = (15, 2)
-        assert_array_almost_equal(stats.mood(x1, x2, axis=None),
-                                  [-1.31716607555, 0.18778296257])
-
-    def test_mood_2d(self):
-        # Test if the results of mood test in 2-D case are consistent with the
-        # R result for the same inputs.  Numbers from R mood.test().
-        ny = 5
-        np.random.seed(1234)
-        x1 = np.random.randn(10, ny)
-        x2 = np.random.randn(15, ny)
-        z_vectest, pval_vectest = stats.mood(x1, x2)
-
-        for j in range(ny):
-            assert_array_almost_equal([z_vectest[j], pval_vectest[j]],
-                                      stats.mood(x1[:, j], x2[:, j]))
-
-        # inverse order of dimensions
-        x1 = x1.transpose()
-        x2 = x2.transpose()
-        z_vectest, pval_vectest = stats.mood(x1, x2, axis=1)
-
-        for i in range(ny):
-            # check axis handling is self consistent
-            assert_array_almost_equal([z_vectest[i], pval_vectest[i]],
-                                      stats.mood(x1[i, :], x2[i, :]))
-
-    def test_mood_3d(self):
-        shape = (10, 5, 6)
-        np.random.seed(1234)
-        x1 = np.random.randn(*shape)
-        x2 = np.random.randn(*shape)
-
-        for axis in range(3):
-            z_vectest, pval_vectest = stats.mood(x1, x2, axis=axis)
-            # Tests that result for 3-D arrays is equal to that for the
-            # same calculation on a set of 1-D arrays taken from the
-            # 3-D array
-            axes_idx = ([1, 2], [0, 2], [0, 1])  # the two axes != axis
-            for i in range(shape[axes_idx[axis][0]]):
-                for j in range(shape[axes_idx[axis][1]]):
-                    if axis == 0:
-                        slice1 = x1[:, i, j]
-                        slice2 = x2[:, i, j]
-                    elif axis == 1:
-                        slice1 = x1[i, :, j]
-                        slice2 = x2[i, :, j]
-                    else:
-                        slice1 = x1[i, j, :]
-                        slice2 = x2[i, j, :]
-
-                    assert_array_almost_equal([z_vectest[i, j],
-                                               pval_vectest[i, j]],
-                                              stats.mood(slice1, slice2))
-
-    def test_mood_bad_arg(self):
-        # Raise ValueError when the sum of the lengths of the args is less than 3
-        assert_raises(ValueError, stats.mood, [1], [])
-
-
-class TestProbplot(TestCase):
-
-    def test_basic(self):
-        np.random.seed(12345)
-        x = stats.norm.rvs(size=20)
-        osm, osr = stats.probplot(x, fit=False)
-        osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575,
-                        -0.73908135, -0.5857176, -0.44506467, -0.31273668,
-                        -0.18568928, -0.06158146, 0.06158146, 0.18568928,
-                        0.31273668, 0.44506467, 0.5857176, 0.73908135,
-                        0.91222575, 1.11829229, 1.38768012, 1.8241636]
-        assert_allclose(osr, np.sort(x))
-        assert_allclose(osm, osm_expected)
-
-        res, res_fit = stats.probplot(x, fit=True)
-        res_fit_expected = [1.05361841, 0.31297795, 0.98741609]
-        assert_allclose(res_fit, res_fit_expected)
-
-    def test_sparams_keyword(self):
-        np.random.seed(123456)
-        x = stats.norm.rvs(size=100)
-        # Check that None, () and 0 (loc=0, for normal distribution) all work
-        # and give the same results
-        osm1, osr1 = stats.probplot(x, sparams=None, fit=False)
-        osm2, osr2 = stats.probplot(x, sparams=0, fit=False)
-        osm3, osr3 = stats.probplot(x, sparams=(), fit=False)
-        assert_allclose(osm1, osm2)
-        assert_allclose(osm1, osm3)
-        assert_allclose(osr1, osr2)
-        assert_allclose(osr1, osr3)
-        # Check giving (loc, scale) params for normal distribution
-        osm, osr = stats.probplot(x, sparams=(), fit=False)
-
-    def test_dist_keyword(self):
-        np.random.seed(12345)
-        x = stats.norm.rvs(size=20)
-        osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,))
-        osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,))
-        assert_allclose(osm1, osm2)
-        assert_allclose(osr1, osr2)
-
-        assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name')
-        assert_raises(AttributeError, stats.probplot, x, dist=[])
-
-        class custom_dist(object):
-            """Some class that looks just enough like a distribution."""
-            def ppf(self, q):
-                return stats.norm.ppf(q, loc=2)
-
-        osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False)
-        osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False)
-        assert_allclose(osm1, osm2)
-        assert_allclose(osr1, osr2)
-
-    @dec.skipif(not have_matplotlib)
-    def test_plot_kwarg(self):
-        np.random.seed(7654321)
-        fig = plt.figure()
-        fig.add_subplot(111)
-        x = stats.t.rvs(3, size=100)
-        res1, fitres1 = stats.probplot(x, plot=plt)
-        plt.close()
-        res2, fitres2 = stats.probplot(x, plot=None)
-        res3 = stats.probplot(x, fit=False, plot=plt)
-        plt.close()
-        res4 = stats.probplot(x, fit=False, plot=None)
-        # Check that results are consistent between combinations of `fit` and
-        # `plot` keywords.
-        assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2)
-        assert_allclose(res1, res2)
-        assert_allclose(res1, res3)
-        assert_allclose(res1, res4)
-        assert_allclose(fitres1, fitres2)
-
-        # Check that a Matplotlib Axes object is accepted
-        fig = plt.figure()
-        ax = fig.add_subplot(111)
-        stats.probplot(x, fit=False, plot=ax)
-        plt.close()
-
-    def test_probplot_bad_args(self):
-        # Raise ValueError when given an invalid distribution.
-        assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp")
-
-
-def test_wilcoxon_bad_arg():
-    # Raise ValueError when two args of different lengths are given or
-    # zero_method is unknown.
-    assert_raises(ValueError, stats.wilcoxon, [1], [1,2])
-    assert_raises(ValueError, stats.wilcoxon, [1,2], [1,2], "dummy")
-
-
-def test_mvsdist_bad_arg():
-    # Raise ValueError if fewer than two data points are given.
-    data = [1]
-    assert_raises(ValueError, stats.mvsdist, data)
-
-
-def test_kstat_bad_arg():
-    # Raise ValueError if n > 4 or n > 1.
-    data = [1]
-    n = 10
-    assert_raises(ValueError, stats.kstat, data, n=n)
-
-
-def test_kstatvar_bad_arg():
-    # Raise ValueError is n is not 1 or 2.
-    data = [1]
-    n = 10
-    assert_raises(ValueError, stats.kstatvar, data, n=n)
-
-
-def test_ppcc_max_bad_arg():
-    # Raise ValueError when given an invalid distribution.
-    data = [1]
-    assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp")
-
-
-class TestBoxcox_llf(TestCase):
-
-    def test_basic(self):
-        np.random.seed(54321)
-        x = stats.norm.rvs(size=10000, loc=10)
-        lmbda = 1
-        llf = stats.boxcox_llf(lmbda, x)
-        llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2))
-        assert_allclose(llf, llf_expected)
-
-    def test_array_like(self):
-        np.random.seed(54321)
-        x = stats.norm.rvs(size=100, loc=10)
-        lmbda = 1
-        llf = stats.boxcox_llf(lmbda, x)
-        llf2 = stats.boxcox_llf(lmbda, list(x))
-        assert_allclose(llf, llf2, rtol=1e-12)
-
-    def test_2d_input(self):
-        # Note: boxcox_llf() was already working with 2-D input (sort of), so
-        # keep it like that.  boxcox() doesn't work with 2-D input though, due
-        # to brent() returning a scalar.
-        np.random.seed(54321)
-        x = stats.norm.rvs(size=100, loc=10)
-        lmbda = 1
-        llf = stats.boxcox_llf(lmbda, x)
-        llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T)
-        assert_allclose([llf, llf], llf2, rtol=1e-12)
-
-    def test_empty(self):
-        assert_(np.isnan(stats.boxcox_llf(1, [])))
-
-
-class TestBoxcox(TestCase):
-
-    def test_fixed_lmbda(self):
-        np.random.seed(12345)
-        x = stats.loggamma.rvs(5, size=50) + 5
-        xt = stats.boxcox(x, lmbda=1)
-        assert_allclose(xt, x - 1)
-        xt = stats.boxcox(x, lmbda=-1)
-        assert_allclose(xt, 1 - 1/x)
-
-        xt = stats.boxcox(x, lmbda=0)
-        assert_allclose(xt, np.log(x))
-
-        # Also test that array_like input works
-        xt = stats.boxcox(list(x), lmbda=0)
-        assert_allclose(xt, np.log(x))
-
-    def test_lmbda_None(self):
-        np.random.seed(1234567)
-        # Start from normal rv's, do inverse transform to check that
-        # optimization function gets close to the right answer.
-        np.random.seed(1245)
-        lmbda = 2.5
-        x = stats.norm.rvs(loc=10, size=50000)
-        x_inv = (x * lmbda + 1)**(-lmbda)
-        xt, maxlog = stats.boxcox(x_inv)
-
-        assert_almost_equal(maxlog, -1 / lmbda, decimal=2)
-
-    def test_alpha(self):
-        np.random.seed(1234)
-        x = stats.loggamma.rvs(5, size=50) + 5
-
-        # Some regular values for alpha, on a small sample size
-        _, _, interval = stats.boxcox(x, alpha=0.75)
-        assert_allclose(interval, [4.004485780226041, 5.138756355035744])
-        _, _, interval = stats.boxcox(x, alpha=0.05)
-        assert_allclose(interval, [1.2138178554857557, 8.209033272375663])
-
-        # Try some extreme values, see we don't hit the N=500 limit
-        x = stats.loggamma.rvs(7, size=500) + 15
-        _, _, interval = stats.boxcox(x, alpha=0.001)
-        assert_allclose(interval, [0.3988867, 11.40553131])
-        _, _, interval = stats.boxcox(x, alpha=0.999)
-        assert_allclose(interval, [5.83316246, 5.83735292])
-
-    def test_boxcox_bad_arg(self):
-        # Raise ValueError if any data value is negative.
-        x = np.array([-1])
-        assert_raises(ValueError, stats.boxcox, x)
-
-    def test_empty(self):
-        assert_(stats.boxcox([]).shape == (0,))
-
-
-class TestBoxcoxNormmax(TestCase):
-    def setUp(self):
-        np.random.seed(12345)
-        self.x = stats.loggamma.rvs(5, size=50) + 5
-
-    def test_pearsonr(self):
-        maxlog = stats.boxcox_normmax(self.x)
-        assert_allclose(maxlog, 1.804465, rtol=1e-6)
-
-    def test_mle(self):
-        maxlog = stats.boxcox_normmax(self.x, method='mle')
-        assert_allclose(maxlog, 1.758101, rtol=1e-6)
-
-        # Check that boxcox() uses 'mle'
-        _, maxlog_boxcox = stats.boxcox(self.x)
-        assert_allclose(maxlog_boxcox, maxlog)
-
-    def test_all(self):
-        maxlog_all = stats.boxcox_normmax(self.x, method='all')
-        assert_allclose(maxlog_all, [1.804465, 1.758101], rtol=1e-6)
-
-
-class TestBoxcoxNormplot(TestCase):
-    def setUp(self):
-        np.random.seed(7654321)
-        self.x = stats.loggamma.rvs(5, size=500) + 5
-
-    def test_basic(self):
-        N = 5
-        lmbdas, ppcc = stats.boxcox_normplot(self.x, -10, 10, N=N)
-        ppcc_expected = [0.57783375, 0.83610988, 0.97524311, 0.99756057,
-                         0.95843297]
-        assert_allclose(lmbdas, np.linspace(-10, 10, num=N))
-        assert_allclose(ppcc, ppcc_expected)
-
-    @dec.skipif(not have_matplotlib)
-    def test_plot_kwarg(self):
-        # Check with the matplotlib.pyplot module
-        fig = plt.figure()
-        fig.add_subplot(111)
-        stats.boxcox_normplot(self.x, -20, 20, plot=plt)
-        plt.close()
-
-        # Check that a Matplotlib Axes object is accepted
-        fig.add_subplot(111)
-        ax = fig.add_subplot(111)
-        stats.boxcox_normplot(self.x, -20, 20, plot=ax)
-        plt.close()
-
-    def test_invalid_inputs(self):
-        # `lb` has to be larger than `la`
-        assert_raises(ValueError, stats.boxcox_normplot, self.x, 1, 0)
-        # `x` can not contain negative values
-        assert_raises(ValueError, stats.boxcox_normplot, [-1, 1], 0, 1)
-
-    def test_empty(self):
-        assert_(stats.boxcox_normplot([], 0, 1).size == 0)
-
-
-class TestCircFuncs(TestCase):
-    def test_circfuncs(self):
-        x = np.array([355,5,2,359,10,350])
-        M = stats.circmean(x, high=360)
-        Mval = 0.167690146
-        assert_allclose(M, Mval, rtol=1e-7)
-
-        V = stats.circvar(x, high=360)
-        Vval = 42.51955609
-        assert_allclose(V, Vval, rtol=1e-7)
-
-        S = stats.circstd(x, high=360)
-        Sval = 6.520702116
-        assert_allclose(S, Sval, rtol=1e-7)
-
-    def test_circfuncs_small(self):
-        x = np.array([20,21,22,18,19,20.5,19.2])
-        M1 = x.mean()
-        M2 = stats.circmean(x, high=360)
-        assert_allclose(M2, M1, rtol=1e-5)
-
-        V1 = x.var()
-        V2 = stats.circvar(x, high=360)
-        assert_allclose(V2, V1, rtol=1e-4)
-
-        S1 = x.std()
-        S2 = stats.circstd(x, high=360)
-        assert_allclose(S2, S1, rtol=1e-4)
-
-    def test_circmean_axis(self):
-        x = np.array([[355,5,2,359,10,350],
-                      [351,7,4,352,9,349],
-                      [357,9,8,358,4,356]])
-        M1 = stats.circmean(x, high=360)
-        M2 = stats.circmean(x.ravel(), high=360)
-        assert_allclose(M1, M2, rtol=1e-14)
-
-        M1 = stats.circmean(x, high=360, axis=1)
-        M2 = [stats.circmean(x[i], high=360) for i in range(x.shape[0])]
-        assert_allclose(M1, M2, rtol=1e-14)
-
-        M1 = stats.circmean(x, high=360, axis=0)
-        M2 = [stats.circmean(x[:,i], high=360) for i in range(x.shape[1])]
-        assert_allclose(M1, M2, rtol=1e-14)
-
-    def test_circvar_axis(self):
-        x = np.array([[355,5,2,359,10,350],
-                      [351,7,4,352,9,349],
-                  [357,9,8,358,4,356]])
-
-        V1 = stats.circvar(x, high=360)
-        V2 = stats.circvar(x.ravel(), high=360)
-        assert_allclose(V1, V2, rtol=1e-11)
-
-        V1 = stats.circvar(x, high=360, axis=1)
-        V2 = [stats.circvar(x[i], high=360) for i in range(x.shape[0])]
-        assert_allclose(V1, V2, rtol=1e-11)
-
-        V1 = stats.circvar(x, high=360, axis=0)
-        V2 = [stats.circvar(x[:,i], high=360) for i in range(x.shape[1])]
-        assert_allclose(V1, V2, rtol=1e-11)
-
-    def test_circstd_axis(self):
-        x = np.array([[355,5,2,359,10,350],
-                      [351,7,4,352,9,349],
-                      [357,9,8,358,4,356]])
-
-        S1 = stats.circstd(x, high=360)
-        S2 = stats.circstd(x.ravel(), high=360)
-        assert_allclose(S1, S2, rtol=1e-11)
-
-        S1 = stats.circstd(x, high=360, axis=1)
-        S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])]
-        assert_allclose(S1, S2, rtol=1e-11)
-
-        S1 = stats.circstd(x, high=360, axis=0)
-        S2 = [stats.circstd(x[:,i], high=360) for i in range(x.shape[1])]
-        assert_allclose(S1, S2, rtol=1e-11)
-
-    def test_circfuncs_array_like(self):
-        x = [355,5,2,359,10,350]
-        assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7)
-        assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7)
-        assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7)
-
-    def test_empty(self):
-        assert_(np.isnan(stats.circmean([])))
-        assert_(np.isnan(stats.circstd([])))
-        assert_(np.isnan(stats.circvar([])))
-
-
-def test_accuracy_wilcoxon():
-    freq = [1, 4, 16, 15, 8, 4, 5, 1, 2]
-    nums = range(-4, 5)
-    x = np.concatenate([[u] * v for u, v in zip(nums, freq)])
-    y = np.zeros(x.size)
-
-    T, p = stats.wilcoxon(x, y, "pratt")
-    assert_allclose(T, 423)
-    assert_allclose(p, 0.00197547303533107)
-
-    T, p = stats.wilcoxon(x, y, "zsplit")
-    assert_allclose(T, 441)
-    assert_allclose(p, 0.0032145343172473055)
-
-    T, p = stats.wilcoxon(x, y, "wilcox")
-    assert_allclose(T, 327)
-    assert_allclose(p, 0.00641346115861)
-
-    # Test the 'correction' option, using values computed in R with:
-    # > wilcox.test(x, y, paired=TRUE, exact=FALSE, correct={FALSE,TRUE})
-    x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112])
-    y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187])
-    T, p = stats.wilcoxon(x, y, correction=False)
-    assert_equal(T, 34)
-    assert_allclose(p, 0.6948866, rtol=1e-6)
-    T, p = stats.wilcoxon(x, y, correction=True)
-    assert_equal(T, 34)
-    assert_allclose(p, 0.7240817, rtol=1e-6)
-
-
-def test_wilcoxon_tie():
-    # Regression test for gh-2391.
-    # Corresponding R code is:
-    #   > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=FALSE)
-    #   > result$p.value
-    #   [1] 0.001565402
-    #   > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=TRUE)
-    #   > result$p.value
-    #   [1] 0.001904195
-    stat, p = stats.wilcoxon([0.1] * 10)
-    expected_p = 0.001565402
-    assert_equal(stat, 0)
-    assert_allclose(p, expected_p, rtol=1e-6)
-
-    stat, p = stats.wilcoxon([0.1] * 10, correction=True)
-    expected_p = 0.001904195
-    assert_equal(stat, 0)
-    assert_allclose(p, expected_p, rtol=1e-6)
-
-
-class TestMedianTest(TestCase):
-
-    def test_bad_n_samples(self):
-        # median_test requires at least two samples.
-        assert_raises(ValueError, stats.median_test, [1, 2, 3])
-
-    def test_empty_sample(self):
-        # Each sample must contain at least one value.
-        assert_raises(ValueError, stats.median_test, [], [1, 2, 3])
-
-    def test_empty_when_ties_ignored(self):
-        # The grand median is 1, and all values in the first argument are
-        # equal to the grand median.  With ties="ignore", those values are
-        # ignored, which results in the first sample being (in effect) empty.
-        # This should raise a ValueError.
-        assert_raises(ValueError, stats.median_test,
-                      [1, 1, 1, 1], [2, 0, 1], [2, 0], ties="ignore")
-
-    def test_empty_contingency_row(self):
-        # The grand median is 1, and with the default ties="below", all the
-        # values in the samples are counted as being below the grand median.
-        # This would result a row of zeros in the contingency table, which is
-        # an error.
-        assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1])
-
-        # With ties="above", all the values are counted as above the
-        # grand median.
-        assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1],
-                      ties="above")
-
-    def test_bad_ties(self):
-        assert_raises(ValueError, stats.median_test, [1, 2, 3], [4, 5], ties="foo")
-
-    def test_bad_keyword(self):
-        assert_raises(TypeError, stats.median_test, [1, 2, 3], [4, 5], foo="foo")
-
-    def test_simple(self):
-        x = [1, 2, 3]
-        y = [1, 2, 3]
-        stat, p, med, tbl = stats.median_test(x, y)
-
-        # The median is floating point, but this equality test should be safe.
-        assert_equal(med, 2.0)
-
-        assert_array_equal(tbl, [[1, 1], [2, 2]])
-
-        # The expected values of the contingency table equal the contingency table,
-        # so the statistic should be 0 and the p-value should be 1.
-        assert_equal(stat, 0)
-        assert_equal(p, 1)
-
-    def test_ties_options(self):
-        # Test the contingency table calculation.
-        x = [1, 2, 3, 4]
-        y = [5, 6]
-        z = [7, 8, 9]
-        # grand median is 5.
-
-        # Default 'ties' option is "below".
-        stat, p, m, tbl = stats.median_test(x, y, z)
-        assert_equal(m, 5)
-        assert_equal(tbl, [[0, 1, 3], [4, 1, 0]])
-
-        stat, p, m, tbl = stats.median_test(x, y, z, ties="ignore")
-        assert_equal(m, 5)
-        assert_equal(tbl, [[0, 1, 3], [4, 0, 0]])
-
-        stat, p, m, tbl = stats.median_test(x, y, z, ties="above")
-        assert_equal(m, 5)
-        assert_equal(tbl, [[0, 2, 3], [4, 0, 0]])
-
-    def test_basic(self):
-        # median_test calls chi2_contingency to compute the test statistic
-        # and p-value.  Make sure it hasn't screwed up the call...
-
-        x = [1, 2, 3, 4, 5]
-        y = [2, 4, 6, 8]
-
-        stat, p, m, tbl = stats.median_test(x, y)
-        assert_equal(m, 4)
-        assert_equal(tbl, [[1, 2], [4, 2]])
-
-        exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl)
-        assert_allclose(stat, exp_stat)
-        assert_allclose(p, exp_p)
-
-        stat, p, m, tbl = stats.median_test(x, y, lambda_=0)
-        assert_equal(m, 4)
-        assert_equal(tbl, [[1, 2], [4, 2]])
-
-        exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, lambda_=0)
-        assert_allclose(stat, exp_stat)
-        assert_allclose(p, exp_p)
-
-        stat, p, m, tbl = stats.median_test(x, y, correction=False)
-        assert_equal(m, 4)
-        assert_equal(tbl, [[1, 2], [4, 2]])
-
-        exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, correction=False)
-        assert_allclose(stat, exp_stat)
-        assert_allclose(p, exp_p)
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_mstats_basic.py b/wafo/stats/tests/test_mstats_basic.py
deleted file mode 100644
index 1f242e4..0000000
--- a/wafo/stats/tests/test_mstats_basic.py
+++ /dev/null
@@ -1,1055 +0,0 @@
-"""
-Tests for the stats.mstats module (support for masked arrays)
-"""
-from __future__ import division, print_function, absolute_import
-
-import warnings
-
-import numpy as np
-from numpy import nan
-import numpy.ma as ma
-from numpy.ma import masked, nomask
-
-import wafo.stats.mstats as mstats
-from wafo import stats
-from numpy.testing import TestCase, run_module_suite
-from numpy.testing.decorators import skipif
-from numpy.ma.testutils import (assert_equal, assert_almost_equal,
-    assert_array_almost_equal, assert_array_almost_equal_nulp, assert_,
-    assert_allclose, assert_raises)
-
-
-class TestMquantiles(TestCase):
-    def test_mquantiles_limit_keyword(self):
-        # Regression test for Trac ticket #867
-        data = np.array([[6., 7., 1.],
-                         [47., 15., 2.],
-                         [49., 36., 3.],
-                         [15., 39., 4.],
-                         [42., 40., -999.],
-                         [41., 41., -999.],
-                         [7., -999., -999.],
-                         [39., -999., -999.],
-                         [43., -999., -999.],
-                         [40., -999., -999.],
-                         [36., -999., -999.]])
-        desired = [[19.2, 14.6, 1.45],
-                   [40.0, 37.5, 2.5],
-                   [42.8, 40.05, 3.55]]
-        quants = mstats.mquantiles(data, axis=0, limit=(0, 50))
-        assert_almost_equal(quants, desired)
-
-
-class TestGMean(TestCase):
-    def test_1D(self):
-        a = (1,2,3,4)
-        actual = mstats.gmean(a)
-        desired = np.power(1*2*3*4,1./4.)
-        assert_almost_equal(actual, desired, decimal=14)
-
-        desired1 = mstats.gmean(a,axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-        assert_(not isinstance(desired1, ma.MaskedArray))
-
-        a = ma.array((1,2,3,4),mask=(0,0,0,1))
-        actual = mstats.gmean(a)
-        desired = np.power(1*2*3,1./3.)
-        assert_almost_equal(actual, desired,decimal=14)
-
-        desired1 = mstats.gmean(a,axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-
-    @skipif(not hasattr(np, 'float96'), 'cannot find float96 so skipping')
-    def test_1D_float96(self):
-        a = ma.array((1,2,3,4), mask=(0,0,0,1))
-        actual_dt = mstats.gmean(a, dtype=np.float96)
-        desired_dt = np.power(1 * 2 * 3, 1. / 3.).astype(np.float96)
-        assert_almost_equal(actual_dt, desired_dt, decimal=14)
-        assert_(actual_dt.dtype == desired_dt.dtype)
-
-    def test_2D(self):
-        a = ma.array(((1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)),
-                     mask=((0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0)))
-        actual = mstats.gmean(a)
-        desired = np.array((1,2,3,4))
-        assert_array_almost_equal(actual, desired, decimal=14)
-
-        desired1 = mstats.gmean(a,axis=0)
-        assert_array_almost_equal(actual, desired1, decimal=14)
-
-        actual = mstats.gmean(a, -1)
-        desired = ma.array((np.power(1*2*3*4,1./4.),
-                            np.power(2*3,1./2.),
-                            np.power(1*4,1./2.)))
-        assert_array_almost_equal(actual, desired, decimal=14)
-
-
-class TestHMean(TestCase):
-    def test_1D(self):
-        a = (1,2,3,4)
-        actual = mstats.hmean(a)
-        desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
-        assert_almost_equal(actual, desired, decimal=14)
-        desired1 = mstats.hmean(ma.array(a),axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-
-        a = ma.array((1,2,3,4),mask=(0,0,0,1))
-        actual = mstats.hmean(a)
-        desired = 3. / (1./1 + 1./2 + 1./3)
-        assert_almost_equal(actual, desired,decimal=14)
-        desired1 = mstats.hmean(a,axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-
-    @skipif(not hasattr(np, 'float96'), 'cannot find float96 so skipping')
-    def test_1D_float96(self):
-        a = ma.array((1,2,3,4), mask=(0,0,0,1))
-        actual_dt = mstats.hmean(a, dtype=np.float96)
-        desired_dt = np.asarray(3. / (1./1 + 1./2 + 1./3),
-                                dtype=np.float96)
-        assert_almost_equal(actual_dt, desired_dt, decimal=14)
-        assert_(actual_dt.dtype == desired_dt.dtype)
-
-    def test_2D(self):
-        a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
-                     mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
-        actual = mstats.hmean(a)
-        desired = ma.array((1,2,3,4))
-        assert_array_almost_equal(actual, desired, decimal=14)
-
-        actual1 = mstats.hmean(a,axis=-1)
-        desired = (4./(1/1.+1/2.+1/3.+1/4.),
-                   2./(1/2.+1/3.),
-                   2./(1/1.+1/4.)
-                   )
-        assert_array_almost_equal(actual1, desired, decimal=14)
-
-
-class TestRanking(TestCase):
-    def __init__(self, *args, **kwargs):
-        TestCase.__init__(self, *args, **kwargs)
-
-    def test_ranking(self):
-        x = ma.array([0,1,1,1,2,3,4,5,5,6,])
-        assert_almost_equal(mstats.rankdata(x),
-                           [1,3,3,3,5,6,7,8.5,8.5,10])
-        x[[3,4]] = masked
-        assert_almost_equal(mstats.rankdata(x),
-                           [1,2.5,2.5,0,0,4,5,6.5,6.5,8])
-        assert_almost_equal(mstats.rankdata(x, use_missing=True),
-                            [1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8])
-        x = ma.array([0,1,5,1,2,4,3,5,1,6,])
-        assert_almost_equal(mstats.rankdata(x),
-                           [1,3,8.5,3,5,7,6,8.5,3,10])
-        x = ma.array([[0,1,1,1,2], [3,4,5,5,6,]])
-        assert_almost_equal(mstats.rankdata(x),
-                            [[1,3,3,3,5], [6,7,8.5,8.5,10]])
-        assert_almost_equal(mstats.rankdata(x, axis=1),
-                           [[1,3,3,3,5], [1,2,3.5,3.5,5]])
-        assert_almost_equal(mstats.rankdata(x,axis=0),
-                           [[1,1,1,1,1], [2,2,2,2,2,]])
-
-
-class TestCorr(TestCase):
-    def test_pearsonr(self):
-        # Tests some computations of Pearson's r
-        x = ma.arange(10)
-        with warnings.catch_warnings():
-            # The tests in this context are edge cases, with perfect
-            # correlation or anticorrelation, or totally masked data.
-            # None of these should trigger a RuntimeWarning.
-            warnings.simplefilter("error", RuntimeWarning)
-
-            assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0)
-            assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0)
-
-            x = ma.array(x, mask=True)
-            pr = mstats.pearsonr(x, x)
-            assert_(pr[0] is masked)
-            assert_(pr[1] is masked)
-
-        x1 = ma.array([-1.0, 0.0, 1.0])
-        y1 = ma.array([0, 0, 3])
-        r, p = mstats.pearsonr(x1, y1)
-        assert_almost_equal(r, np.sqrt(3)/2)
-        assert_almost_equal(p, 1.0/3)
-
-        # (x2, y2) have the same unmasked data as (x1, y1).
-        mask = [False, False, False, True]
-        x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask)
-        y2 = ma.array([0, 0, 3, -1], mask=mask)
-        r, p = mstats.pearsonr(x2, y2)
-        assert_almost_equal(r, np.sqrt(3)/2)
-        assert_almost_equal(p, 1.0/3)
-
-    def test_spearmanr(self):
-        # Tests some computations of Spearman's rho
-        (x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
-        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
-        (x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
-        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
-        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
-
-        x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
-              1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
-        y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
-              0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
-        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
-        x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
-              1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
-        y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
-              0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
-        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
-        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
-
-    def test_kendalltau(self):
-        # Tests some computations of Kendall's tau
-        x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
-        y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
-        z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
-        assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
-                            [+0.3333333,0.4969059])
-        assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
-                            [-0.5477226,0.2785987])
-        #
-        x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20,
-                            10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
-        y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27,
-                            25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
-        result = mstats.kendalltau(x,y)
-        assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
-
-    def test_kendalltau_seasonal(self):
-        # Tests the seasonal Kendall tau.
-        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
-             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
-             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
-             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
-        x = ma.fix_invalid(x).T
-        output = mstats.kendalltau_seasonal(x)
-        assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
-        assert_almost_equal(output['seasonal p-value'].round(2),
-                            [0.18,0.53,0.20,0.04])
-
-    def test_pointbiserial(self):
-        x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
-             0,0,0,0,1,-1]
-        y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
-             2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
-             0.8,0.7,0.6,0.5,0.2,0.2,0.1,np.nan]
-        assert_almost_equal(mstats.pointbiserialr(x, y)[0], 0.36149, 5)
-
-
-class TestTrimming(TestCase):
-
-    def test_trim(self):
-        a = ma.arange(10)
-        assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
-        a = ma.arange(10)
-        assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
-        a = ma.arange(10)
-        assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
-                     [None,None,None,3,4,5,6,7,None,None])
-        a = ma.arange(10)
-        assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
-                     [None,1,2,3,4,5,6,7,None,None])
-
-        a = ma.arange(12)
-        a[[0,-1]] = a[5] = masked
-        assert_equal(mstats.trim(a, (2,8)),
-                     [None, None, 2, 3, 4, None, 6, 7, 8, None, None, None])
-
-        x = ma.arange(100).reshape(10, 10)
-        expected = [1]*10 + [0]*70 + [1]*20
-        trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None)
-        assert_equal(trimx._mask.ravel(), expected)
-        trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0)
-        assert_equal(trimx._mask.ravel(), expected)
-        trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=-1)
-        assert_equal(trimx._mask.T.ravel(), expected)
-
-        # same as above, but with an extra masked row inserted
-        x = ma.arange(110).reshape(11, 10)
-        x[1] = masked
-        expected = [1]*20 + [0]*70 + [1]*20
-        trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None)
-        assert_equal(trimx._mask.ravel(), expected)
-        trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0)
-        assert_equal(trimx._mask.ravel(), expected)
-        trimx = mstats.trim(x.T, (0.1,0.2), relative=True, axis=-1)
-        assert_equal(trimx.T._mask.ravel(), expected)
-
-    def test_trim_old(self):
-        x = ma.arange(100)
-        assert_equal(mstats.trimboth(x).count(), 60)
-        assert_equal(mstats.trimtail(x,tail='r').count(), 80)
-        x[50:70] = masked
-        trimx = mstats.trimboth(x)
-        assert_equal(trimx.count(), 48)
-        assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
-        x._mask = nomask
-        x.shape = (10,10)
-        assert_equal(mstats.trimboth(x).count(), 60)
-        assert_equal(mstats.trimtail(x).count(), 80)
-
-    def test_trimmedmean(self):
-        data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
-                         296,299,306,376,428,515,666,1310,2611])
-        assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0)
-        assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0)
-        assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0)
-
-    def test_trimmed_stde(self):
-        data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
-                         296,299,306,376,428,515,666,1310,2611])
-        assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5)
-        assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5)
-
-    def test_winsorization(self):
-        data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
-                         296,299,306,376,428,515,666,1310,2611])
-        assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1),
-                            21551.4, 1)
-        data[5] = masked
-        winsorized = mstats.winsorize(data)
-        assert_equal(winsorized.mask, data.mask)
-
-
-class TestMoments(TestCase):
-    # Comparison numbers are found using R v.1.5.1
-    # note that length(testcase) = 4
-    # testmathworks comes from documentation for the
-    # Statistics Toolbox for Matlab and can be found at both
-    # http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
-    # http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
-    # Note that both test cases came from here.
-    testcase = [1,2,3,4]
-    testmathworks = ma.fix_invalid([1.165, 0.6268, 0.0751, 0.3516, -0.6965,
-                                    np.nan])
-    testcase_2d = ma.array(
-    np.array([[0.05245846, 0.50344235, 0.86589117, 0.36936353, 0.46961149],
-           [0.11574073, 0.31299969, 0.45925772, 0.72618805, 0.75194407],
-           [0.67696689, 0.91878127, 0.09769044, 0.04645137, 0.37615733],
-           [0.05903624, 0.29908861, 0.34088298, 0.66216337, 0.83160998],
-           [0.64619526, 0.94894632, 0.27855892, 0.0706151, 0.39962917]]),
-    mask=np.array([[True, False, False, True, False],
-           [True, True, True, False, True],
-           [False, False, False, False, False],
-           [True, True, True, True, True],
-           [False, False, True, False, False]], dtype=np.bool))
-
-    def test_moment(self):
-        y = mstats.moment(self.testcase,1)
-        assert_almost_equal(y,0.0,10)
-        y = mstats.moment(self.testcase,2)
-        assert_almost_equal(y,1.25)
-        y = mstats.moment(self.testcase,3)
-        assert_almost_equal(y,0.0)
-        y = mstats.moment(self.testcase,4)
-        assert_almost_equal(y,2.5625)
-
-    def test_variation(self):
-        y = mstats.variation(self.testcase)
-        assert_almost_equal(y,0.44721359549996, 10)
-
-    def test_skewness(self):
-        y = mstats.skew(self.testmathworks)
-        assert_almost_equal(y,-0.29322304336607,10)
-        y = mstats.skew(self.testmathworks,bias=0)
-        assert_almost_equal(y,-0.437111105023940,10)
-        y = mstats.skew(self.testcase)
-        assert_almost_equal(y,0.0,10)
-
-    def test_kurtosis(self):
-        # Set flags for axis = 0 and fisher=0 (Pearson's definition of kurtosis
-        # for compatibility with Matlab)
-        y = mstats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
-        assert_almost_equal(y, 2.1658856802973,10)
-        # Note that MATLAB has confusing docs for the following case
-        #  kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
-        #  kurtosis(x)  gives a biased estimate of Fisher's skewness (Pearson-3)
-        #  The MATLAB docs imply that both should give Fisher's
-        y = mstats.kurtosis(self.testmathworks,fisher=0, bias=0)
-        assert_almost_equal(y, 3.663542721189047,10)
-        y = mstats.kurtosis(self.testcase,0,0)
-        assert_almost_equal(y,1.64)
-
-        # test that kurtosis works on multidimensional masked arrays
-        correct_2d = ma.array(np.array([-1.5, -3., -1.47247052385, 0.,
-                                        -1.26979517952]),
-                              mask=np.array([False, False, False, True,
-                                             False], dtype=np.bool))
-        assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1),
-                                  correct_2d)
-        for i, row in enumerate(self.testcase_2d):
-            assert_almost_equal(mstats.kurtosis(row), correct_2d[i])
-
-        correct_2d_bias_corrected = ma.array(
-            np.array([-1.5, -3., -1.88988209538, 0., -0.5234638463918877]),
-            mask=np.array([False, False, False, True, False], dtype=np.bool))
-        assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1,
-                                                  bias=False),
-                                  correct_2d_bias_corrected)
-        for i, row in enumerate(self.testcase_2d):
-            assert_almost_equal(mstats.kurtosis(row, bias=False),
-                                correct_2d_bias_corrected[i])
-
-        # Check consistency between stats and mstats implementations
-        assert_array_almost_equal_nulp(mstats.kurtosis(self.testcase_2d[2, :]),
-                                       stats.kurtosis(self.testcase_2d[2, :]))
-
-    def test_mode(self):
-        a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7]
-        a2 = np.reshape(a1, (3,5))
-        a3 = np.array([1,2,3,4,5,6])
-        a4 = np.reshape(a3, (3,2))
-        ma1 = ma.masked_where(ma.array(a1) > 2, a1)
-        ma2 = ma.masked_where(a2 > 2, a2)
-        ma3 = ma.masked_where(a3 < 2, a3)
-        ma4 = ma.masked_where(ma.array(a4) < 2, a4)
-        assert_equal(mstats.mode(a1, axis=None), (3,4))
-        assert_equal(mstats.mode(a1, axis=0), (3,4))
-        assert_equal(mstats.mode(ma1, axis=None), (0,3))
-        assert_equal(mstats.mode(a2, axis=None), (3,4))
-        assert_equal(mstats.mode(ma2, axis=None), (0,3))
-        assert_equal(mstats.mode(a3, axis=None), (1,1))
-        assert_equal(mstats.mode(ma3, axis=None), (2,1))
-        assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
-        assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
-        assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]]))
-        assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]]))
-        assert_equal(mstats.mode(ma4, axis=0), ([[3,2]], [[1,1]]))
-        assert_equal(mstats.mode(ma4, axis=-1), ([[2],[3],[5]], [[1],[1],[1]]))
-
-
-class TestPercentile(TestCase):
-    def setUp(self):
-        self.a1 = [3,4,5,10,-3,-5,6]
-        self.a2 = [3,-6,-2,8,7,4,2,1]
-        self.a3 = [3.,4,5,10,-3,-5,-6,7.0]
-
-    def test_percentile(self):
-        x = np.arange(8) * 0.5
-        assert_equal(mstats.scoreatpercentile(x, 0), 0.)
-        assert_equal(mstats.scoreatpercentile(x, 100), 3.5)
-        assert_equal(mstats.scoreatpercentile(x, 50), 1.75)
-
-    def test_2D(self):
-        x = ma.array([[1, 1, 1],
-                      [1, 1, 1],
-                      [4, 4, 3],
-                      [1, 1, 1],
-                      [1, 1, 1]])
-        assert_equal(mstats.scoreatpercentile(x,50), [1,1,1])
-
-
-class TestVariability(TestCase):
-    """  Comparison numbers are found using R v.1.5.1
-         note that length(testcase) = 4
-    """
-    testcase = ma.fix_invalid([1,2,3,4,np.nan])
-
-    def test_signaltonoise(self):
-        # This is not in R, so used:
-        #     mean(testcase, axis=0) / (sqrt(var(testcase)*3/4))
-        y = mstats.signaltonoise(self.testcase)
-        assert_almost_equal(y, 2.236067977)
-
-    def test_sem(self):
-        # This is not in R, so used: sqrt(var(testcase)*3/4) / sqrt(3)
-        y = mstats.sem(self.testcase)
-        assert_almost_equal(y, 0.6454972244)
-        n = self.testcase.count()
-        assert_allclose(mstats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)),
-                        mstats.sem(self.testcase, ddof=2))
-
-    def test_zmap(self):
-        # This is not in R, so tested by using:
-        #    (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4)
-        y = mstats.zmap(self.testcase, self.testcase)
-        desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996,
-                                 0.44721359549996, 1.3416407864999])
-        assert_array_almost_equal(desired_unmaskedvals,
-                                  y.data[y.mask == False], decimal=12)
-
-    def test_zscore(self):
-        # This is not in R, so tested by using:
-        #     (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4)
-        y = mstats.zscore(self.testcase)
-        desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996,
-                                  0.44721359549996, 1.3416407864999, np.nan])
-        assert_almost_equal(desired, y, decimal=12)
-
-
-class TestMisc(TestCase):
-
-    def test_obrientransform(self):
-        args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2,
-                [6]+[7]*2+[8]*4+[9]*9+[10]*16]
-        result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538],
-                  [10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]]
-        assert_almost_equal(np.round(mstats.obrientransform(*args).T,4),
-                            result,4)
-
-    def test_kstwosamp(self):
-        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
-             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
-             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
-             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
-        x = ma.fix_invalid(x).T
-        (winter,spring,summer,fall) = x.T
-
-        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
-                            (0.1818,0.9892))
-        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
-                            (0.1469,0.7734))
-        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
-                            (0.1818,0.6744))
-
-    def test_friedmanchisq(self):
-        # No missing values
-        args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
-                [7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
-                [6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
-        result = mstats.friedmanchisquare(*args)
-        assert_almost_equal(result[0], 10.4737, 4)
-        assert_almost_equal(result[1], 0.005317, 6)
-        # Missing values
-        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
-             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
-             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
-             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
-        x = ma.fix_invalid(x)
-        result = mstats.friedmanchisquare(*x)
-        assert_almost_equal(result[0], 2.0156, 4)
-        assert_almost_equal(result[1], 0.5692, 4)
-
-
-def test_regress_simple():
-    # Regress a line with sinusoidal noise. Test for #1273.
-    x = np.linspace(0, 100, 100)
-    y = 0.2 * np.linspace(0, 100, 100) + 10
-    y += np.sin(np.linspace(0, 20, 100))
-
-    slope, intercept, r_value, p_value, sterr = mstats.linregress(x, y)
-    assert_almost_equal(slope, 0.19644990055858422)
-    assert_almost_equal(intercept, 10.211269918932341)
-
-
-def test_theilslopes():
-    # Test for basic slope and intercept.
-    slope, intercept, lower, upper = mstats.theilslopes([0,1,1])
-    assert_almost_equal(slope, 0.5)
-    assert_almost_equal(intercept, 0.5)
-
-    # Test for correct masking.
-    y = np.ma.array([0,1,100,1], mask=[False, False, True, False])
-    slope, intercept, lower, upper = mstats.theilslopes(y)
-    assert_almost_equal(slope, 1./3)
-    assert_almost_equal(intercept, 2./3)
-
-    # Test of confidence intervals from example in Sen (1968).
-    x = [1, 2, 3, 4, 10, 12, 18]
-    y = [9, 15, 19, 20, 45, 55, 78]
-    slope, intercept, lower, upper = mstats.theilslopes(y, x, 0.07)
-    assert_almost_equal(slope, 4)
-    assert_almost_equal(upper, 4.38, decimal=2)
-    assert_almost_equal(lower, 3.71, decimal=2)
-
-
-def test_plotting_positions():
-    # Regression test for #1256
-    pos = mstats.plotting_positions(np.arange(3), 0, 0)
-    assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75]))
-
-
-class TestNormalitytests():
-
-    def test_vs_nonmasked(self):
-        x = np.array((-2,-1,0,1,2,3)*4)**2
-        assert_array_almost_equal(mstats.normaltest(x),
-                                  stats.normaltest(x))
-        assert_array_almost_equal(mstats.skewtest(x),
-                                  stats.skewtest(x))
-        assert_array_almost_equal(mstats.kurtosistest(x),
-                                  stats.kurtosistest(x))
-
-        funcs = [stats.normaltest, stats.skewtest, stats.kurtosistest]
-        mfuncs = [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]
-        x = [1, 2, 3, 4]
-        for func, mfunc in zip(funcs, mfuncs):
-            assert_raises(ValueError, func, x)
-            assert_raises(ValueError, mfunc, x)
-
-    def test_axis_None(self):
-        # Test axis=None (equal to axis=0 for 1-D input)
-        x = np.array((-2,-1,0,1,2,3)*4)**2
-        assert_allclose(mstats.normaltest(x, axis=None), mstats.normaltest(x))
-        assert_allclose(mstats.skewtest(x, axis=None), mstats.skewtest(x))
-        assert_allclose(mstats.kurtosistest(x, axis=None),
-                        mstats.kurtosistest(x))
-
-    def test_maskedarray_input(self):
-        # Add some masked values, test result doesn't change
-        x = np.array((-2,-1,0,1,2,3)*4)**2
-        xm = np.ma.array(np.r_[np.inf, x, 10],
-                         mask=np.r_[True, [False] * x.size, True])
-        assert_allclose(mstats.normaltest(xm), stats.normaltest(x))
-        assert_allclose(mstats.skewtest(xm), stats.skewtest(x))
-        assert_allclose(mstats.kurtosistest(xm), stats.kurtosistest(x))
-
-    def test_nd_input(self):
-        x = np.array((-2,-1,0,1,2,3)*4)**2
-        x_2d = np.vstack([x] * 2).T
-        for func in [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]:
-            res_1d = func(x)
-            res_2d = func(x_2d)
-            assert_allclose(res_2d[0], [res_1d[0]] * 2)
-            assert_allclose(res_2d[1], [res_1d[1]] * 2)
-
-
-#TODO: for all ttest functions, add tests with masked array inputs
-class TestTtest_rel():
-    def test_vs_nonmasked(self):
-        np.random.seed(1234567)
-        outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
-
-        # 1-D inputs
-        res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1])
-        res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1])
-        assert_allclose(res1, res2)
-
-        # 2-D inputs
-        res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
-        res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
-        assert_allclose(res1, res2)
-        res1 = stats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
-        res2 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
-        assert_allclose(res1, res2)
-
-        # Check default is axis=0
-        res3 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:])
-        assert_allclose(res2, res3)
-
-    def test_invalid_input_size(self):
-        assert_raises(ValueError, mstats.ttest_rel,
-                      np.arange(10), np.arange(11))
-        x = np.arange(24)
-        assert_raises(ValueError, mstats.ttest_rel,
-                      x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=1)
-        assert_raises(ValueError, mstats.ttest_rel,
-                      x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=2)
-
-    def test_empty(self):
-        res1 = mstats.ttest_rel([], [])
-        assert_(np.all(np.isnan(res1)))
-
-
-class TestTtest_ind():
-    def test_vs_nonmasked(self):
-        np.random.seed(1234567)
-        outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
-
-        # 1-D inputs
-        res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1])
-        res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1])
-        assert_allclose(res1, res2)
-
-        # 2-D inputs
-        res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None)
-        res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None)
-        assert_allclose(res1, res2)
-        res1 = stats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0)
-        res2 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0)
-        assert_allclose(res1, res2)
-
-        # Check default is axis=0
-        res3 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:])
-        assert_allclose(res2, res3)
-
-    def test_empty(self):
-        res1 = mstats.ttest_ind([], [])
-        assert_(np.all(np.isnan(res1)))
-
-
-class TestTtest_1samp():
-    def test_vs_nonmasked(self):
-        np.random.seed(1234567)
-        outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
-
-        # 1-D inputs
-        res1 = stats.ttest_1samp(outcome[:, 0], 1)
-        res2 = mstats.ttest_1samp(outcome[:, 0], 1)
-        assert_allclose(res1, res2)
-
-        # 2-D inputs
-        res1 = stats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None)
-        res2 = mstats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None)
-        assert_allclose(res1, res2)
-        res1 = stats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0)
-        res2 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0)
-        assert_allclose(res1, res2)
-
-        # Check default is axis=0
-        res3 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:])
-        assert_allclose(res2, res3)
-
-    def test_empty(self):
-        res1 = mstats.ttest_1samp([], 1)
-        assert_(np.all(np.isnan(res1)))
-
-
-class TestCompareWithStats(TestCase):
-    """
-    Class to compare mstats results with stats results.
-
-    It is in general assumed that scipy.stats is at a more mature stage than
-    stats.mstats.  If a routine in mstats results in similar results like in
-    scipy.stats, this is considered also as a proper validation of scipy.mstats
-    routine.
-
-    Different sample sizes are used for testing, as some problems between stats
-    and mstats are dependent on sample size.
-
-    Author: Alexander Loew
-
-    NOTE that some tests fail. This might be caused by
-    a) actual differences or bugs between stats and mstats
-    b) numerical inaccuracies
-    c) different definitions of routine interfaces
-
-    These failures need to be checked. Current workaround is to have disabled these tests,
-    but issuing reports on scipy-dev
-
-    """
-    def get_n(self):
-        """ Returns list of sample sizes to be used for comparison. """
-        return [1000, 100, 10, 5]
-
-    def generate_xy_sample(self, n):
-        # This routine generates numpy arrays and corresponding masked arrays
-        # with the same data, but additional masked values
-        np.random.seed(1234567)
-        x = np.random.randn(n)
-        y = x + np.random.randn(n)
-        xm = np.ones(len(x) + 5) * 1e16
-        ym = np.ones(len(y) + 5) * 1e16
-        xm[0:len(x)] = x
-        ym[0:len(y)] = y
-        mask = xm > 9e15
-        xm = np.ma.array(xm, mask=mask)
-        ym = np.ma.array(ym, mask=mask)
-        return x, y, xm, ym
-
-    def generate_xy_sample2D(self, n, nx):
-        x = np.ones((n, nx)) * np.nan
-        y = np.ones((n, nx)) * np.nan
-        xm = np.ones((n+5, nx)) * np.nan
-        ym = np.ones((n+5, nx)) * np.nan
-
-        for i in range(nx):
-            x[:,i], y[:,i], dx, dy = self.generate_xy_sample(n)
-
-        xm[0:n, :] = x[0:n]
-        ym[0:n, :] = y[0:n]
-        xm = np.ma.array(xm, mask=np.isnan(xm))
-        ym = np.ma.array(ym, mask=np.isnan(ym))
-        return x, y, xm, ym
-
-    def test_linregress(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            res1 = stats.linregress(x, y)
-            res2 = stats.mstats.linregress(xm, ym)
-            assert_allclose(np.asarray(res1), np.asarray(res2))
-
-    def test_pearsonr(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r, p = stats.pearsonr(x, y)
-            rm, pm = stats.mstats.pearsonr(xm, ym)
-
-            assert_almost_equal(r, rm, decimal=14)
-            assert_almost_equal(p, pm, decimal=14)
-
-    def test_spearmanr(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r, p = stats.spearmanr(x, y)
-            rm, pm = stats.mstats.spearmanr(xm, ym)
-            assert_almost_equal(r, rm, 14)
-            assert_almost_equal(p, pm, 14)
-
-    def test_gmean(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r = stats.gmean(abs(x))
-            rm = stats.mstats.gmean(abs(xm))
-            assert_allclose(r, rm, rtol=1e-13)
-
-            r = stats.gmean(abs(y))
-            rm = stats.mstats.gmean(abs(ym))
-            assert_allclose(r, rm, rtol=1e-13)
-
-    def test_hmean(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-
-            r = stats.hmean(abs(x))
-            rm = stats.mstats.hmean(abs(xm))
-            assert_almost_equal(r, rm, 10)
-
-            r = stats.hmean(abs(y))
-            rm = stats.mstats.hmean(abs(ym))
-            assert_almost_equal(r, rm, 10)
-
-    def test_skew(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-
-            r = stats.skew(x)
-            rm = stats.mstats.skew(xm)
-            assert_almost_equal(r, rm, 10)
-
-            r = stats.skew(y)
-            rm = stats.mstats.skew(ym)
-            assert_almost_equal(r, rm, 10)
-
-    def test_moment(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-
-            r = stats.moment(x)
-            rm = stats.mstats.moment(xm)
-            assert_almost_equal(r, rm, 10)
-
-            r = stats.moment(y)
-            rm = stats.mstats.moment(ym)
-            assert_almost_equal(r, rm, 10)
-
-    def test_signaltonoise(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-
-            r = stats.signaltonoise(x)
-            rm = stats.mstats.signaltonoise(xm)
-            assert_almost_equal(r, rm, 10)
-
-            r = stats.signaltonoise(y)
-            rm = stats.mstats.signaltonoise(ym)
-            assert_almost_equal(r, rm, 10)
-
-    def test_betai(self):
-        np.random.seed(12345)
-        for i in range(10):
-            a = np.random.rand() * 5.
-            b = np.random.rand() * 200.
-            assert_equal(stats.betai(a, b, 0.), 0.)
-            assert_equal(stats.betai(a, b, 1.), 1.)
-            assert_equal(stats.mstats.betai(a, b, 0.), 0.)
-            assert_equal(stats.mstats.betai(a, b, 1.), 1.)
-            x = np.random.rand()
-            assert_almost_equal(stats.betai(a, b, x),
-                                stats.mstats.betai(a, b, x), decimal=13)
-
-    def test_zscore(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-
-            #reference solution
-            zx = (x - x.mean()) / x.std()
-            zy = (y - y.mean()) / y.std()
-
-            #validate stats
-            assert_allclose(stats.zscore(x), zx, rtol=1e-10)
-            assert_allclose(stats.zscore(y), zy, rtol=1e-10)
-
-            #compare stats and mstats
-            assert_allclose(stats.zscore(x), stats.mstats.zscore(xm[0:len(x)]),
-                            rtol=1e-10)
-            assert_allclose(stats.zscore(y), stats.mstats.zscore(ym[0:len(y)]),
-                            rtol=1e-10)
-
-    def test_kurtosis(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r = stats.kurtosis(x)
-            rm = stats.mstats.kurtosis(xm)
-            assert_almost_equal(r, rm, 10)
-
-            r = stats.kurtosis(y)
-            rm = stats.mstats.kurtosis(ym)
-            assert_almost_equal(r, rm, 10)
-
-    def test_sem(self):
-        # example from stats.sem doc
-        a = np.arange(20).reshape(5,4)
-        am = np.ma.array(a)
-        r = stats.sem(a,ddof=1)
-        rm = stats.mstats.sem(am, ddof=1)
-
-        assert_allclose(r, 2.82842712, atol=1e-5)
-        assert_allclose(rm, 2.82842712, atol=1e-5)
-
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=0),
-                                stats.sem(x, axis=None, ddof=0), decimal=13)
-            assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=0),
-                                stats.sem(y, axis=None, ddof=0), decimal=13)
-            assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=1),
-                                stats.sem(x, axis=None, ddof=1), decimal=13)
-            assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=1),
-                                stats.sem(y, axis=None, ddof=1), decimal=13)
-
-    def test_describe(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r = stats.describe(x, ddof=1)
-            rm = stats.mstats.describe(xm, ddof=1)
-            for ii in range(6):
-                assert_almost_equal(np.asarray(r[ii]),
-                                    np.asarray(rm[ii]),
-                                    decimal=12)
-
-    def test_rankdata(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r = stats.rankdata(x)
-            rm = stats.mstats.rankdata(x)
-            assert_allclose(r, rm)
-
-    def test_tmean(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_almost_equal(stats.tmean(x),stats.mstats.tmean(xm), 14)
-            assert_almost_equal(stats.tmean(y),stats.mstats.tmean(ym), 14)
-
-    def test_tmax(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_almost_equal(stats.tmax(x,2.),
-                                stats.mstats.tmax(xm,2.), 10)
-            assert_almost_equal(stats.tmax(y,2.),
-                                stats.mstats.tmax(ym,2.), 10)
-
-    def test_tmin(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_equal(stats.tmin(x),stats.mstats.tmin(xm))
-            assert_equal(stats.tmin(y),stats.mstats.tmin(ym))
-
-            assert_almost_equal(stats.tmin(x,lowerlimit=-1.),
-                                stats.mstats.tmin(xm,lowerlimit=-1.), 10)
-            assert_almost_equal(stats.tmin(y,lowerlimit=-1.),
-                                stats.mstats.tmin(ym,lowerlimit=-1.), 10)
-
-    def test_zmap(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            z = stats.zmap(x,y)
-            zm = stats.mstats.zmap(xm,ym)
-            assert_allclose(z, zm[0:len(z)], atol=1e-10)
-
-    def test_variation(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_almost_equal(stats.variation(x), stats.mstats.variation(xm),
-                                decimal=12)
-            assert_almost_equal(stats.variation(y), stats.mstats.variation(ym),
-                                decimal=12)
-
-    def test_tvar(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_almost_equal(stats.tvar(x), stats.mstats.tvar(xm),
-                                decimal=12)
-            assert_almost_equal(stats.tvar(y), stats.mstats.tvar(ym),
-                                decimal=12)
-
-    def test_trimboth(self):
-        a = np.arange(20)
-        b = stats.trimboth(a, 0.1)
-        bm = stats.mstats.trimboth(a, 0.1)
-        assert_allclose(b, bm.data[~bm.mask])
-
-    def test_tsem(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            assert_almost_equal(stats.tsem(x),stats.mstats.tsem(xm), decimal=14)
-            assert_almost_equal(stats.tsem(y),stats.mstats.tsem(ym), decimal=14)
-            assert_almost_equal(stats.tsem(x,limits=(-2.,2.)),
-                                stats.mstats.tsem(xm,limits=(-2.,2.)),
-                                decimal=14)
-
-    def test_skewtest(self):
-        # this test is for 1D data
-        for n in self.get_n():
-            if n > 8:
-                x, y, xm, ym = self.generate_xy_sample(n)
-                r = stats.skewtest(x)
-                rm = stats.mstats.skewtest(xm)
-                assert_equal(r[0], rm[0])
-                # TODO this test is not performed as it is a known issue that
-                # mstats returns a slightly different p-value what is a bit
-                # strange is that other tests like test_maskedarray_input don't
-                # fail!
-                #~ assert_almost_equal(r[1], rm[1])
-
-    def test_skewtest_2D_notmasked(self):
-        # a normal ndarray is passed to the masked function
-        x = np.random.random((20, 2)) * 20.
-        r = stats.skewtest(x)
-        rm = stats.mstats.skewtest(x)
-        assert_allclose(np.asarray(r), np.asarray(rm))
-
-    def test_skewtest_2D_WithMask(self):
-        nx = 2
-        for n in self.get_n():
-            if n > 8:
-                x, y, xm, ym = self.generate_xy_sample2D(n, nx)
-                r = stats.skewtest(x)
-                rm = stats.mstats.skewtest(xm)
-
-                assert_equal(r[0][0],rm[0][0])
-                assert_equal(r[0][1],rm[0][1])
-
-    def test_normaltest(self):
-        np.seterr(over='raise')
-        for n in self.get_n():
-            if n > 8:
-                with warnings.catch_warnings():
-                    warnings.filterwarnings('ignore', category=UserWarning)
-                    x, y, xm, ym = self.generate_xy_sample(n)
-                    r = stats.normaltest(x)
-                    rm = stats.mstats.normaltest(xm)
-                    assert_allclose(np.asarray(r), np.asarray(rm))
-
-    def test_find_repeats(self):
-        x = np.asarray([1,1,2,2,3,3,3,4,4,4,4]).astype('float')
-        tmp = np.asarray([1,1,2,2,3,3,3,4,4,4,4,5,5,5,5]).astype('float')
-        mask = (tmp == 5.)
-        xm = np.ma.array(tmp, mask=mask)
-
-        r = stats.find_repeats(x)
-        rm = stats.mstats.find_repeats(xm)
-
-        assert_equal(r,rm)
-
-    def test_kendalltau(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r = stats.kendalltau(x, y)
-            rm = stats.mstats.kendalltau(xm, ym)
-            assert_almost_equal(r[0], rm[0], decimal=10)
-            assert_almost_equal(r[1], rm[1], decimal=7)
-
-    def test_obrientransform(self):
-        for n in self.get_n():
-            x, y, xm, ym = self.generate_xy_sample(n)
-            r = stats.obrientransform(x)
-            rm = stats.mstats.obrientransform(xm)
-            assert_almost_equal(r.T, rm[0:len(x)])
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_mstats_extras.py b/wafo/stats/tests/test_mstats_extras.py
deleted file mode 100644
index 2ab5762..0000000
--- a/wafo/stats/tests/test_mstats_extras.py
+++ /dev/null
@@ -1,107 +0,0 @@
-# pylint: disable-msg=W0611, W0612, W0511,R0201
-"""Tests suite for maskedArray statistics.
-
-:author: Pierre Gerard-Marchant
-:contact: pierregm_at_uga_dot_edu
-"""
-from __future__ import division, print_function, absolute_import
-
-__author__ = "Pierre GF Gerard-Marchant ($Author: backtopop $)"
-
-import numpy as np
-
-import numpy.ma as ma
-
-import wafo.stats.mstats as ms
-#import wafo.stats.mmorestats as mms
-
-from numpy.testing import TestCase, run_module_suite, assert_equal, \
-    assert_almost_equal, assert_
-
-
-class TestMisc(TestCase):
-
-    def __init__(self, *args, **kwargs):
-        TestCase.__init__(self, *args, **kwargs)
-
-    def test_mjci(self):
-        "Tests the Marits-Jarrett estimator"
-        data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
-                          296,299,306,376,428,515,666,1310,2611])
-        assert_almost_equal(ms.mjci(data),[55.76819,45.84028,198.87875],5)
-
-    def test_trimmedmeanci(self):
-        "Tests the confidence intervals of the trimmed mean."
-        data = ma.array([545,555,558,572,575,576,578,580,
-                         594,605,635,651,653,661,666])
-        assert_almost_equal(ms.trimmed_mean(data,0.2), 596.2, 1)
-        assert_equal(np.round(ms.trimmed_mean_ci(data,(0.2,0.2)),1),
-                     [561.8, 630.6])
-
-    def test_idealfourths(self):
-        "Tests ideal-fourths"
-        test = np.arange(100)
-        assert_almost_equal(np.asarray(ms.idealfourths(test)),
-                            [24.416667,74.583333],6)
-        test_2D = test.repeat(3).reshape(-1,3)
-        assert_almost_equal(ms.idealfourths(test_2D, axis=0),
-                            [[24.416667,24.416667,24.416667],
-                             [74.583333,74.583333,74.583333]],6)
-        assert_almost_equal(ms.idealfourths(test_2D, axis=1),
-                            test.repeat(2).reshape(-1,2))
-        test = [0,0]
-        _result = ms.idealfourths(test)
-        assert_(np.isnan(_result).all())
-
-#..............................................................................
-
-
-class TestQuantiles(TestCase):
-
-    def __init__(self, *args, **kwargs):
-        TestCase.__init__(self, *args, **kwargs)
-
-    def test_hdquantiles(self):
-        data = [0.706560797,0.727229578,0.990399276,0.927065621,0.158953014,
-            0.887764025,0.239407086,0.349638551,0.972791145,0.149789972,
-            0.936947700,0.132359948,0.046041972,0.641675031,0.945530547,
-            0.224218684,0.771450991,0.820257774,0.336458052,0.589113496,
-            0.509736129,0.696838829,0.491323573,0.622767425,0.775189248,
-            0.641461450,0.118455200,0.773029450,0.319280007,0.752229111,
-            0.047841438,0.466295911,0.583850781,0.840581845,0.550086491,
-            0.466470062,0.504765074,0.226855960,0.362641207,0.891620942,
-            0.127898691,0.490094097,0.044882048,0.041441695,0.317976349,
-            0.504135618,0.567353033,0.434617473,0.636243375,0.231803616,
-            0.230154113,0.160011327,0.819464108,0.854706985,0.438809221,
-            0.487427267,0.786907310,0.408367937,0.405534192,0.250444460,
-            0.995309248,0.144389588,0.739947527,0.953543606,0.680051621,
-            0.388382017,0.863530727,0.006514031,0.118007779,0.924024803,
-            0.384236354,0.893687694,0.626534881,0.473051932,0.750134705,
-            0.241843555,0.432947602,0.689538104,0.136934797,0.150206859,
-            0.474335206,0.907775349,0.525869295,0.189184225,0.854284286,
-            0.831089744,0.251637345,0.587038213,0.254475554,0.237781276,
-            0.827928620,0.480283781,0.594514455,0.213641488,0.024194386,
-            0.536668589,0.699497811,0.892804071,0.093835427,0.731107772]
-        #
-        assert_almost_equal(ms.hdquantiles(data,[0., 1.]),
-                            [0.006514031, 0.995309248])
-        hdq = ms.hdquantiles(data,[0.25, 0.5, 0.75])
-        assert_almost_equal(hdq, [0.253210762, 0.512847491, 0.762232442,])
-        hdq = ms.hdquantiles_sd(data,[0.25, 0.5, 0.75])
-        assert_almost_equal(hdq, [0.03786954, 0.03805389, 0.03800152,], 4)
-        #
-        data = np.array(data).reshape(10,10)
-        hdq = ms.hdquantiles(data,[0.25,0.5,0.75],axis=0)
-        assert_almost_equal(hdq[:,0], ms.hdquantiles(data[:,0],[0.25,0.5,0.75]))
-        assert_almost_equal(hdq[:,-1], ms.hdquantiles(data[:,-1],[0.25,0.5,0.75]))
-        hdq = ms.hdquantiles(data,[0.25,0.5,0.75],axis=0,var=True)
-        assert_almost_equal(hdq[...,0],
-                            ms.hdquantiles(data[:,0],[0.25,0.5,0.75],var=True))
-        assert_almost_equal(hdq[...,-1],
-                            ms.hdquantiles(data[:,-1],[0.25,0.5,0.75], var=True))
-
-
-###############################################################################
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_multivariate.py b/wafo/stats/tests/test_multivariate.py
deleted file mode 100644
index 63d2a8c..0000000
--- a/wafo/stats/tests/test_multivariate.py
+++ /dev/null
@@ -1,485 +0,0 @@
-"""
-Test functions for multivariate normal distributions.
-
-"""
-from __future__ import division, print_function, absolute_import
-
-from numpy.testing import (
-    assert_allclose,
-    assert_almost_equal,
-    assert_array_almost_equal,
-    assert_equal,
-    assert_raises,
-    run_module_suite,
-)
-
-import numpy
-import numpy as np
-
-import scipy.linalg
-from wafo.stats._multivariate import _PSD, _lnB
-from wafo.stats import multivariate_normal
-from wafo.stats import dirichlet, beta
-from wafo.stats import norm
-
-from scipy.integrate import romb
-
-
-def test_input_shape():
-    mu = np.arange(3)
-    cov = np.identity(2)
-    assert_raises(ValueError, multivariate_normal.pdf, (0, 1), mu, cov)
-    assert_raises(ValueError, multivariate_normal.pdf, (0, 1, 2), mu, cov)
-
-
-def test_scalar_values():
-    np.random.seed(1234)
-
-    # When evaluated on scalar data, the pdf should return a scalar
-    x, mean, cov = 1.5, 1.7, 2.5
-    pdf = multivariate_normal.pdf(x, mean, cov)
-    assert_equal(pdf.ndim, 0)
-
-    # When evaluated on a single vector, the pdf should return a scalar
-    x = np.random.randn(5)
-    mean = np.random.randn(5)
-    cov = np.abs(np.random.randn(5))  # Diagonal values for cov. matrix
-    pdf = multivariate_normal.pdf(x, mean, cov)
-    assert_equal(pdf.ndim, 0)
-
-
-def test_logpdf():
-    # Check that the log of the pdf is in fact the logpdf
-    np.random.seed(1234)
-    x = np.random.randn(5)
-    mean = np.random.randn(5)
-    cov = np.abs(np.random.randn(5))
-    d1 = multivariate_normal.logpdf(x, mean, cov)
-    d2 = multivariate_normal.pdf(x, mean, cov)
-    assert_allclose(d1, np.log(d2))
-
-
-def test_rank():
-    # Check that the rank is detected correctly.
-    np.random.seed(1234)
-    n = 4
-    mean = np.random.randn(n)
-    for expected_rank in range(1, n + 1):
-        s = np.random.randn(n, expected_rank)
-        cov = np.dot(s, s.T)
-        distn = multivariate_normal(mean, cov, allow_singular=True)
-        assert_equal(distn.cov_info.rank, expected_rank)
-
-
-def _sample_orthonormal_matrix(n):
-    M = np.random.randn(n, n)
-    u, s, v = scipy.linalg.svd(M)
-    return u
-
-
-def test_degenerate_distributions():
-    for n in range(1, 5):
-        x = np.random.randn(n)
-        for k in range(1, n + 1):
-            # Sample a small covariance matrix.
-            s = np.random.randn(k, k)
-            cov_kk = np.dot(s, s.T)
-
-            # Embed the small covariance matrix into a larger low rank matrix.
-            cov_nn = np.zeros((n, n))
-            cov_nn[:k, :k] = cov_kk
-
-            # Define a rotation of the larger low rank matrix.
-            u = _sample_orthonormal_matrix(n)
-            cov_rr = np.dot(u, np.dot(cov_nn, u.T))
-            y = np.dot(u, x)
-
-            # Check some identities.
-            distn_kk = multivariate_normal(np.zeros(k), cov_kk,
-                                           allow_singular=True)
-            distn_nn = multivariate_normal(np.zeros(n), cov_nn,
-                                           allow_singular=True)
-            distn_rr = multivariate_normal(np.zeros(n), cov_rr,
-                                           allow_singular=True)
-            assert_equal(distn_kk.cov_info.rank, k)
-            assert_equal(distn_nn.cov_info.rank, k)
-            assert_equal(distn_rr.cov_info.rank, k)
-            pdf_kk = distn_kk.pdf(x[:k])
-            pdf_nn = distn_nn.pdf(x)
-            pdf_rr = distn_rr.pdf(y)
-            assert_allclose(pdf_kk, pdf_nn)
-            assert_allclose(pdf_kk, pdf_rr)
-            logpdf_kk = distn_kk.logpdf(x[:k])
-            logpdf_nn = distn_nn.logpdf(x)
-            logpdf_rr = distn_rr.logpdf(y)
-            assert_allclose(logpdf_kk, logpdf_nn)
-            assert_allclose(logpdf_kk, logpdf_rr)
-
-
-def test_large_pseudo_determinant():
-    # Check that large pseudo-determinants are handled appropriately.
-
-    # Construct a singular diagonal covariance matrix
-    # whose pseudo determinant overflows double precision.
-    large_total_log = 1000.0
-    npos = 100
-    nzero = 2
-    large_entry = np.exp(large_total_log / npos)
-    n = npos + nzero
-    cov = np.zeros((n, n), dtype=float)
-    np.fill_diagonal(cov, large_entry)
-    cov[-nzero:, -nzero:] = 0
-
-    # Check some determinants.
-    assert_equal(scipy.linalg.det(cov), 0)
-    assert_equal(scipy.linalg.det(cov[:npos, :npos]), np.inf)
-
-    # np.linalg.slogdet is only available in numpy 1.6+
-    # but scipy currently supports numpy 1.5.1.
-    # assert_allclose(np.linalg.slogdet(cov[:npos, :npos]),
-    #                 (1, large_total_log))
-
-    # Check the pseudo-determinant.
-    psd = _PSD(cov)
-    assert_allclose(psd.log_pdet, large_total_log)
-
-
-def test_broadcasting():
-    np.random.seed(1234)
-    n = 4
-
-    # Construct a random covariance matrix.
-    data = np.random.randn(n, n)
-    cov = np.dot(data, data.T)
-    mean = np.random.randn(n)
-
-    # Construct an ndarray which can be interpreted as
-    # a 2x3 array whose elements are random data vectors.
-    X = np.random.randn(2, 3, n)
-
-    # Check that multiple data points can be evaluated at once.
-    for i in range(2):
-        for j in range(3):
-            actual = multivariate_normal.pdf(X[i, j], mean, cov)
-            desired = multivariate_normal.pdf(X, mean, cov)[i, j]
-            assert_allclose(actual, desired)
-
-
-def test_normal_1D():
-    # The probability density function for a 1D normal variable should
-    # agree with the standard normal distribution in scipy.stats.distributions
-    x = np.linspace(0, 2, 10)
-    mean, cov = 1.2, 0.9
-    scale = cov**0.5
-    d1 = norm.pdf(x, mean, scale)
-    d2 = multivariate_normal.pdf(x, mean, cov)
-    assert_allclose(d1, d2)
-
-
-def test_marginalization():
-    # Integrating out one of the variables of a 2D Gaussian should
-    # yield a 1D Gaussian
-    mean = np.array([2.5, 3.5])
-    cov = np.array([[.5, 0.2], [0.2, .6]])
-    n = 2 ** 8 + 1  # Number of samples
-    delta = 6 / (n - 1)  # Grid spacing
-
-    v = np.linspace(0, 6, n)
-    xv, yv = np.meshgrid(v, v)
-    pos = np.empty((n, n, 2))
-    pos[:, :, 0] = xv
-    pos[:, :, 1] = yv
-    pdf = multivariate_normal.pdf(pos, mean, cov)
-
-    # Marginalize over x and y axis
-    margin_x = romb(pdf, delta, axis=0)
-    margin_y = romb(pdf, delta, axis=1)
-
-    # Compare with standard normal distribution
-    gauss_x = norm.pdf(v, loc=mean[0], scale=cov[0, 0] ** 0.5)
-    gauss_y = norm.pdf(v, loc=mean[1], scale=cov[1, 1] ** 0.5)
-    assert_allclose(margin_x, gauss_x, rtol=1e-2, atol=1e-2)
-    assert_allclose(margin_y, gauss_y, rtol=1e-2, atol=1e-2)
-
-
-def test_frozen():
-    # The frozen distribution should agree with the regular one
-    np.random.seed(1234)
-    x = np.random.randn(5)
-    mean = np.random.randn(5)
-    cov = np.abs(np.random.randn(5))
-    norm_frozen = multivariate_normal(mean, cov)
-    assert_allclose(norm_frozen.pdf(x), multivariate_normal.pdf(x, mean, cov))
-    assert_allclose(norm_frozen.logpdf(x),
-                    multivariate_normal.logpdf(x, mean, cov))
-
-
-def test_pseudodet_pinv():
-    # Make sure that pseudo-inverse and pseudo-det agree on cutoff
-
-    # Assemble random covariance matrix with large and small eigenvalues
-    np.random.seed(1234)
-    n = 7
-    x = np.random.randn(n, n)
-    cov = np.dot(x, x.T)
-    s, u = scipy.linalg.eigh(cov)
-    s = 0.5 * np.ones(n)
-    s[0] = 1.0
-    s[-1] = 1e-7
-    cov = np.dot(u, np.dot(np.diag(s), u.T))
-
-    # Set cond so that the lowest eigenvalue is below the cutoff
-    cond = 1e-5
-    psd = _PSD(cov, cond=cond)
-    psd_pinv = _PSD(psd.pinv, cond=cond)
-
-    # Check that the log pseudo-determinant agrees with the sum
-    # of the logs of all but the smallest eigenvalue
-    assert_allclose(psd.log_pdet, np.sum(np.log(s[:-1])))
-    # Check that the pseudo-determinant of the pseudo-inverse
-    # agrees with 1 / pseudo-determinant
-    assert_allclose(-psd.log_pdet, psd_pinv.log_pdet)
-
-
-def test_exception_nonsquare_cov():
-    cov = [[1, 2, 3], [4, 5, 6]]
-    assert_raises(ValueError, _PSD, cov)
-
-
-def test_exception_nonfinite_cov():
-    cov_nan = [[1, 0], [0, np.nan]]
-    assert_raises(ValueError, _PSD, cov_nan)
-    cov_inf = [[1, 0], [0, np.inf]]
-    assert_raises(ValueError, _PSD, cov_inf)
-
-
-def test_exception_non_psd_cov():
-    cov = [[1, 0], [0, -1]]
-    assert_raises(ValueError, _PSD, cov)
-
-
-def test_exception_singular_cov():
-    np.random.seed(1234)
-    x = np.random.randn(5)
-    mean = np.random.randn(5)
-    cov = np.ones((5, 5))
-    e = np.linalg.LinAlgError
-    assert_raises(e, multivariate_normal, mean, cov)
-    assert_raises(e, multivariate_normal.pdf, x, mean, cov)
-    assert_raises(e, multivariate_normal.logpdf, x, mean, cov)
-
-
-def test_R_values():
-    # Compare the multivariate pdf with some values precomputed
-    # in R version 3.0.1 (2013-05-16) on Mac OS X 10.6.
-
-    # The values below were generated by the following R-script:
-    # > library(mnormt)
-    # > x <- seq(0, 2, length=5)
-    # > y <- 3*x - 2
-    # > z <- x + cos(y)
-    # > mu <- c(1, 3, 2)
-    # > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
-    # > r_pdf <- dmnorm(cbind(x,y,z), mu, Sigma)
-    r_pdf = np.array([0.0002214706, 0.0013819953, 0.0049138692,
-                      0.0103803050, 0.0140250800])
-
-    x = np.linspace(0, 2, 5)
-    y = 3 * x - 2
-    z = x + np.cos(y)
-    r = np.array([x, y, z]).T
-
-    mean = np.array([1, 3, 2], 'd')
-    cov = np.array([[1, 2, 0], [2, 5, .5], [0, .5, 3]], 'd')
-
-    pdf = multivariate_normal.pdf(r, mean, cov)
-    assert_allclose(pdf, r_pdf, atol=1e-10)
-
-
-def test_multivariate_normal_rvs_zero_covariance():
-    mean = np.zeros(2)
-    covariance = np.zeros((2, 2))
-    model = multivariate_normal(mean, covariance, allow_singular=True)
-    sample = model.rvs()
-    assert_equal(sample, [0, 0])
-
-
-def test_rvs_shape():
-    # Check that rvs parses the mean and covariance correctly, and returns
-    # an array of the right shape
-    N = 300
-    d = 4
-    sample = multivariate_normal.rvs(mean=np.zeros(d), cov=1, size=N)
-    assert_equal(sample.shape, (N, d))
-
-    sample = multivariate_normal.rvs(mean=None,
-                                     cov=np.array([[2, .1], [.1, 1]]),
-                                     size=N)
-    assert_equal(sample.shape, (N, 2))
-
-    u = multivariate_normal(mean=0, cov=1)
-    sample = u.rvs(N)
-    assert_equal(sample.shape, (N, ))
-
-
-def test_large_sample():
-    # Generate large sample and compare sample mean and sample covariance
-    # with mean and covariance matrix.
-
-    np.random.seed(2846)
-
-    n = 3
-    mean = np.random.randn(n)
-    M = np.random.randn(n, n)
-    cov = np.dot(M, M.T)
-    size = 5000
-
-    sample = multivariate_normal.rvs(mean, cov, size)
-
-    assert_allclose(numpy.cov(sample.T), cov, rtol=1e-1)
-    assert_allclose(sample.mean(0), mean, rtol=1e-1)
-
-
-def test_entropy():
-    np.random.seed(2846)
-
-    n = 3
-    mean = np.random.randn(n)
-    M = np.random.randn(n, n)
-    cov = np.dot(M, M.T)
-
-    rv = multivariate_normal(mean, cov)
-
-    # Check that frozen distribution agrees with entropy function
-    assert_almost_equal(rv.entropy(), multivariate_normal.entropy(mean, cov))
-    # Compare entropy with manually computed expression involving
-    # the sum of the logs of the eigenvalues of the covariance matrix
-    eigs = np.linalg.eig(cov)[0]
-    desired = 1 / 2 * (n * (np.log(2 * np.pi) + 1) + np.sum(np.log(eigs)))
-    assert_almost_equal(desired, rv.entropy())
-
-
-def test_lnB():
-    alpha = np.array([1, 1, 1])
-    desired = .5  # e^lnB = 1/2 for [1, 1, 1]
-
-    assert_almost_equal(np.exp(_lnB(alpha)), desired)
-
-
-def test_frozen_dirichlet():
-    np.random.seed(2846)
-
-    n = np.random.randint(1, 32)
-    alpha = np.random.uniform(10e-10, 100, n)
-
-    d = dirichlet(alpha)
-
-    assert_equal(d.var(), dirichlet.var(alpha))
-    assert_equal(d.mean(), dirichlet.mean(alpha))
-    assert_equal(d.entropy(), dirichlet.entropy(alpha))
-    num_tests = 10
-    for i in range(num_tests):
-        x = np.random.uniform(10e-10, 100, n)
-        x /= np.sum(x)
-        assert_equal(d.pdf(x[:-1]), dirichlet.pdf(x[:-1], alpha))
-        assert_equal(d.logpdf(x[:-1]), dirichlet.logpdf(x[:-1], alpha))
-
-
-def test_simple_values():
-    alpha = np.array([1, 1])
-    d = dirichlet(alpha)
-
-    assert_almost_equal(d.mean(), 0.5)
-    assert_almost_equal(d.var(), 1. / 12.)
-
-    b = beta(1, 1)
-    assert_almost_equal(d.mean(), b.mean())
-    assert_almost_equal(d.var(), b.var())
-
-
-def test_K_and_K_minus_1_calls_equal():
-    # Test that calls with K and K-1 entries yield the same results.
-
-    np.random.seed(2846)
-
-    n = np.random.randint(1, 32)
-    alpha = np.random.uniform(10e-10, 100, n)
-
-    d = dirichlet(alpha)
-    num_tests = 10
-    for i in range(num_tests):
-        x = np.random.uniform(10e-10, 100, n)
-        x /= np.sum(x)
-        assert_almost_equal(d.pdf(x[:-1]), d.pdf(x))
-
-
-def test_multiple_entry_calls():
-    # Test that calls with multiple x vectors as matrix work
-
-    np.random.seed(2846)
-
-    n = np.random.randint(1, 32)
-    alpha = np.random.uniform(10e-10, 100, n)
-    d = dirichlet(alpha)
-
-    num_tests = 10
-    num_multiple = 5
-    xm = None
-    for i in range(num_tests):
-        for m in range(num_multiple):
-            x = np.random.uniform(10e-10, 100, n)
-            x /= np.sum(x)
-            if xm is not None:
-                xm = np.vstack((xm, x))
-            else:
-                xm = x
-        rm = d.pdf(xm.T)
-        rs = None
-        for xs in xm:
-            r = d.pdf(xs)
-            if rs is not None:
-                rs = np.append(rs, r)
-            else:
-                rs = r
-        assert_array_almost_equal(rm, rs)
-
-
-def test_2D_dirichlet_is_beta():
-    np.random.seed(2846)
-
-    alpha = np.random.uniform(10e-10, 100, 2)
-    d = dirichlet(alpha)
-    b = beta(alpha[0], alpha[1])
-
-    num_tests = 10
-    for i in range(num_tests):
-        x = np.random.uniform(10e-10, 100, 2)
-        x /= np.sum(x)
-        assert_almost_equal(b.pdf(x), d.pdf([x]))
-
-    assert_almost_equal(b.mean(), d.mean()[0])
-    assert_almost_equal(b.var(), d.var()[0])
-
-
-def test_dimensions_mismatch():
-    # Regression test for GH #3493. Check that setting up a PDF with a mean of
-    # length M and a covariance matrix of size (N, N), where M != N, raises a
-    # ValueError with an informative error message.
-
-    mu = np.array([0.0, 0.0])
-    sigma = np.array([[1.0]])
-
-    assert_raises(ValueError, multivariate_normal, mu, sigma)
-
-    # A simple check that the right error message was passed along. Checking
-    # that the entire message is there, word for word, would be somewhat
-    # fragile, so we just check for the leading part.
-    try:
-        multivariate_normal(mu, sigma)
-    except ValueError as e:
-        msg = "Dimension mismatch"
-        assert_equal(str(e)[:len(msg)], msg)
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_rank.py b/wafo/stats/tests/test_rank.py
deleted file mode 100644
index 10e0dc1..0000000
--- a/wafo/stats/tests/test_rank.py
+++ /dev/null
@@ -1,193 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-from numpy.testing import TestCase, run_module_suite, assert_equal, \
-    assert_array_equal
-
-from wafo.stats import rankdata, tiecorrect
-
-
-class TestTieCorrect(TestCase):
-
-    def test_empty(self):
-        """An empty array requires no correction, should return 1.0."""
-        ranks = np.array([], dtype=np.float64)
-        c = tiecorrect(ranks)
-        assert_equal(c, 1.0)
-
-    def test_one(self):
-        """A single element requires no correction, should return 1.0."""
-        ranks = np.array([1.0], dtype=np.float64)
-        c = tiecorrect(ranks)
-        assert_equal(c, 1.0)
-
-    def test_no_correction(self):
-        """Arrays with no ties require no correction."""
-        ranks = np.arange(2.0)
-        c = tiecorrect(ranks)
-        assert_equal(c, 1.0)
-        ranks = np.arange(3.0)
-        c = tiecorrect(ranks)
-        assert_equal(c, 1.0)
-
-    def test_basic(self):
-        """Check a few basic examples of the tie correction factor."""
-        # One tie of two elements
-        ranks = np.array([1.0, 2.5, 2.5])
-        c = tiecorrect(ranks)
-        T = 2.0
-        N = ranks.size
-        expected = 1.0 - (T**3 - T) / (N**3 - N)
-        assert_equal(c, expected)
-
-        # One tie of two elements (same as above, but tie is not at the end)
-        ranks = np.array([1.5, 1.5, 3.0])
-        c = tiecorrect(ranks)
-        T = 2.0
-        N = ranks.size
-        expected = 1.0 - (T**3 - T) / (N**3 - N)
-        assert_equal(c, expected)
-
-        # One tie of three elements
-        ranks = np.array([1.0, 3.0, 3.0, 3.0])
-        c = tiecorrect(ranks)
-        T = 3.0
-        N = ranks.size
-        expected = 1.0 - (T**3 - T) / (N**3 - N)
-        assert_equal(c, expected)
-
-        # Two ties, lengths 2 and 3.
-        ranks = np.array([1.5, 1.5, 4.0, 4.0, 4.0])
-        c = tiecorrect(ranks)
-        T1 = 2.0
-        T2 = 3.0
-        N = ranks.size
-        expected = 1.0 - ((T1**3 - T1) + (T2**3 - T2)) / (N**3 - N)
-        assert_equal(c, expected)
-
-
-class TestRankData(TestCase):
-
-    def test_empty(self):
-        """stats.rankdata([]) should return an empty array."""
-        a = np.array([], dtype=np.int)
-        r = rankdata(a)
-        assert_array_equal(r, np.array([], dtype=np.float64))
-        r = rankdata([])
-        assert_array_equal(r, np.array([], dtype=np.float64))
-
-    def test_one(self):
-        """Check stats.rankdata with an array of length 1."""
-        data = [100]
-        a = np.array(data, dtype=np.int)
-        r = rankdata(a)
-        assert_array_equal(r, np.array([1.0], dtype=np.float64))
-        r = rankdata(data)
-        assert_array_equal(r, np.array([1.0], dtype=np.float64))
-
-    def test_basic(self):
-        """Basic tests of stats.rankdata."""
-        data = [100, 10, 50]
-        expected = np.array([3.0, 1.0, 2.0], dtype=np.float64)
-        a = np.array(data, dtype=np.int)
-        r = rankdata(a)
-        assert_array_equal(r, expected)
-        r = rankdata(data)
-        assert_array_equal(r, expected)
-
-        data = [40, 10, 30, 10, 50]
-        expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64)
-        a = np.array(data, dtype=np.int)
-        r = rankdata(a)
-        assert_array_equal(r, expected)
-        r = rankdata(data)
-        assert_array_equal(r, expected)
-
-        data = [20, 20, 20, 10, 10, 10]
-        expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64)
-        a = np.array(data, dtype=np.int)
-        r = rankdata(a)
-        assert_array_equal(r, expected)
-        r = rankdata(data)
-        assert_array_equal(r, expected)
-        # The docstring states explicitly that the argument is flattened.
-        a2d = a.reshape(2, 3)
-        r = rankdata(a2d)
-        assert_array_equal(r, expected)
-
-    def test_large_int(self):
-        data = np.array([2**60, 2**60+1], dtype=np.uint64)
-        r = rankdata(data)
-        assert_array_equal(r, [1.0, 2.0])
-
-        data = np.array([2**60, 2**60+1], dtype=np.int64)
-        r = rankdata(data)
-        assert_array_equal(r, [1.0, 2.0])
-
-        data = np.array([2**60, -2**60+1], dtype=np.int64)
-        r = rankdata(data)
-        assert_array_equal(r, [2.0, 1.0])
-
-    def test_big_tie(self):
-        for n in [10000, 100000, 1000000]:
-            data = np.ones(n, dtype=int)
-            r = rankdata(data)
-            expected_rank = 0.5 * (n + 1)
-            assert_array_equal(r, expected_rank * data,
-                               "test failed with n=%d" % n)
-
-
-_cases = (
-    # values, method, expected
-    ([], 'average', []),
-    ([], 'min', []),
-    ([], 'max', []),
-    ([], 'dense', []),
-    ([], 'ordinal', []),
-    #
-    ([100], 'average', [1.0]),
-    ([100], 'min', [1.0]),
-    ([100], 'max', [1.0]),
-    ([100], 'dense', [1.0]),
-    ([100], 'ordinal', [1.0]),
-    #
-    ([100, 100, 100], 'average', [2.0, 2.0, 2.0]),
-    ([100, 100, 100], 'min', [1.0, 1.0, 1.0]),
-    ([100, 100, 100], 'max', [3.0, 3.0, 3.0]),
-    ([100, 100, 100], 'dense', [1.0, 1.0, 1.0]),
-    ([100, 100, 100], 'ordinal', [1.0, 2.0, 3.0]),
-    #
-    ([100, 300, 200], 'average', [1.0, 3.0, 2.0]),
-    ([100, 300, 200], 'min', [1.0, 3.0, 2.0]),
-    ([100, 300, 200], 'max', [1.0, 3.0, 2.0]),
-    ([100, 300, 200], 'dense', [1.0, 3.0, 2.0]),
-    ([100, 300, 200], 'ordinal', [1.0, 3.0, 2.0]),
-    #
-    ([100, 200, 300, 200], 'average', [1.0, 2.5, 4.0, 2.5]),
-    ([100, 200, 300, 200], 'min', [1.0, 2.0, 4.0, 2.0]),
-    ([100, 200, 300, 200], 'max', [1.0, 3.0, 4.0, 3.0]),
-    ([100, 200, 300, 200], 'dense', [1.0, 2.0, 3.0, 2.0]),
-    ([100, 200, 300, 200], 'ordinal', [1.0, 2.0, 4.0, 3.0]),
-    #
-    ([100, 200, 300, 200, 100], 'average', [1.5, 3.5, 5.0, 3.5, 1.5]),
-    ([100, 200, 300, 200, 100], 'min', [1.0, 3.0, 5.0, 3.0, 1.0]),
-    ([100, 200, 300, 200, 100], 'max', [2.0, 4.0, 5.0, 4.0, 2.0]),
-    ([100, 200, 300, 200, 100], 'dense', [1.0, 2.0, 3.0, 2.0, 1.0]),
-    ([100, 200, 300, 200, 100], 'ordinal', [1.0, 3.0, 5.0, 4.0, 2.0]),
-    #
-    ([10] * 30, 'ordinal', np.arange(1.0, 31.0)),
-)
-
-
-def test_cases():
-
-    def check_case(values, method, expected):
-        r = rankdata(values, method=method)
-        assert_array_equal(r, expected)
-
-    for values, method, expected in _cases:
-        yield check_case, values, method, expected
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_stats.py b/wafo/stats/tests/test_stats.py
deleted file mode 100644
index 8f87fbb..0000000
--- a/wafo/stats/tests/test_stats.py
+++ /dev/null
@@ -1,2830 +0,0 @@
-""" Test functions for stats module
-
-    WRITTEN BY LOUIS LUANGKESORN <lluang@yahoo.com> FOR THE STATS MODULE
-    BASED ON WILKINSON'S STATISTICS QUIZ
-    http://www.stanford.edu/~clint/bench/wilk.txt
-
-    Additional tests by a host of SciPy developers.
-"""
-from __future__ import division, print_function, absolute_import
-
-import sys
-import warnings
-from collections import namedtuple
-
-from numpy.testing import (TestCase, assert_, assert_equal,
-                           assert_almost_equal, assert_array_almost_equal,
-                           assert_array_equal, assert_approx_equal,
-                           assert_raises, run_module_suite, assert_allclose,
-                           dec)
-import numpy.ma.testutils as mat
-from numpy import array, arange, float32, float64, power
-import numpy as np
-
-import wafo.stats as stats
-
-
-""" Numbers in docstrings beginning with 'W' refer to the section numbers
-    and headings found in the STATISTICS QUIZ of Leland Wilkinson.  These are
-    considered to be essential functionality.  True testing and
-    evaluation of a statistics package requires use of the
-    NIST Statistical test data.  See McCoullough(1999) Assessing The Reliability
-    of Statistical Software for a test methodology and its
-    implementation in testing SAS, SPSS, and S-Plus
-"""
-
-#  Datasets
-#  These data sets are from the nasty.dat sets used by Wilkinson
-#  For completeness, I should write the relevant tests and count them as failures
-#  Somewhat acceptable, since this is still beta software.  It would count as a
-#  good target for 1.0 status
-X = array([1,2,3,4,5,6,7,8,9], float)
-ZERO = array([0,0,0,0,0,0,0,0,0], float)
-BIG = array([99999991,99999992,99999993,99999994,99999995,99999996,99999997,
-             99999998,99999999], float)
-LITTLE = array([0.99999991,0.99999992,0.99999993,0.99999994,0.99999995,0.99999996,
-                0.99999997,0.99999998,0.99999999], float)
-HUGE = array([1e+12,2e+12,3e+12,4e+12,5e+12,6e+12,7e+12,8e+12,9e+12], float)
-TINY = array([1e-12,2e-12,3e-12,4e-12,5e-12,6e-12,7e-12,8e-12,9e-12], float)
-ROUND = array([0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5], float)
-
-
-class TestTrimmedStats(TestCase):
-    # TODO: write these tests to handle missing values properly
-    dprec = np.finfo(np.float64).precision
-
-    def test_tmean(self):
-        y = stats.tmean(X, (2, 8), (True, True))
-        assert_approx_equal(y, 5.0, significant=self.dprec)
-
-        y1 = stats.tmean(X, limits=(2, 8), inclusive=(False, False))
-        y2 = stats.tmean(X, limits=None)
-        assert_approx_equal(y1, y2, significant=self.dprec)
-
-    def test_tvar(self):
-        y = stats.tvar(X, limits=(2, 8), inclusive=(True, True))
-        assert_approx_equal(y, 4.6666666666666661, significant=self.dprec)
-
-        y = stats.tvar(X, limits=None)
-        assert_approx_equal(y, X.var(ddof=1), significant=self.dprec)
-
-    def test_tstd(self):
-        y = stats.tstd(X, (2, 8), (True, True))
-        assert_approx_equal(y, 2.1602468994692865, significant=self.dprec)
-
-        y = stats.tstd(X, limits=None)
-        assert_approx_equal(y, X.std(ddof=1), significant=self.dprec)
-
-    def test_tmin(self):
-        x = np.arange(10)
-        assert_equal(stats.tmin(x), 0)
-        assert_equal(stats.tmin(x, lowerlimit=0), 0)
-        assert_equal(stats.tmin(x, lowerlimit=0, inclusive=False), 1)
-
-        x = x.reshape((5, 2))
-        assert_equal(stats.tmin(x, lowerlimit=0, inclusive=False), [2, 1])
-        assert_equal(stats.tmin(x, axis=1), [0, 2, 4, 6, 8])
-        assert_equal(stats.tmin(x, axis=None), 0)
-
-    def test_tmax(self):
-        x = np.arange(10)
-        assert_equal(stats.tmax(x), 9)
-        assert_equal(stats.tmax(x, upperlimit=9),9)
-        assert_equal(stats.tmax(x, upperlimit=9, inclusive=False), 8)
-
-        x = x.reshape((5, 2))
-        assert_equal(stats.tmax(x, upperlimit=9, inclusive=False), [8, 7])
-        assert_equal(stats.tmax(x, axis=1), [1, 3, 5, 7, 9])
-        assert_equal(stats.tmax(x, axis=None), 9)
-
-    def test_tsem(self):
-        y = stats.tsem(X, limits=(3, 8), inclusive=(False, True))
-        y_ref = np.array([4, 5, 6, 7, 8])
-        assert_approx_equal(y, y_ref.std(ddof=1) / np.sqrt(y_ref.size),
-                            significant=self.dprec)
-
-        assert_approx_equal(stats.tsem(X, limits=[-1, 10]),
-                            stats.tsem(X, limits=None),
-                            significant=self.dprec)
-
-
-class TestNanFunc(TestCase):
-    def __init__(self, *args, **kw):
-        TestCase.__init__(self, *args, **kw)
-        self.X = X.copy()
-
-        self.Xall = X.copy()
-        self.Xall[:] = np.nan
-
-        self.Xsome = X.copy()
-        self.Xsomet = X.copy()
-        self.Xsome[0] = np.nan
-        self.Xsomet = self.Xsomet[1:]
-
-    def test_nanmean_none(self):
-        # Check nanmean when no values are nan.
-        m = stats.nanmean(X)
-        assert_approx_equal(m, X[4])
-
-    def test_nanmean_some(self):
-        # Check nanmean when some values only are nan.
-        m = stats.nanmean(self.Xsome)
-        assert_approx_equal(m, 5.5)
-
-    def test_nanmean_all(self):
-        # Check nanmean when all values are nan.
-        olderr = np.seterr(all='ignore')
-        try:
-            m = stats.nanmean(self.Xall)
-        finally:
-            np.seterr(**olderr)
-        assert_(np.isnan(m))
-
-    def test_nanstd_none(self):
-        # Check nanstd when no values are nan.
-        s = stats.nanstd(self.X)
-        assert_approx_equal(s, np.std(self.X, ddof=1))
-
-    def test_nanstd_some(self):
-        # Check nanstd when some values only are nan.
-        s = stats.nanstd(self.Xsome)
-        assert_approx_equal(s, np.std(self.Xsomet, ddof=1))
-
-    def test_nanstd_all(self):
-        # Check nanstd when all values are nan.
-        olderr = np.seterr(all='ignore')
-        try:
-            s = stats.nanstd(self.Xall)
-        finally:
-            np.seterr(**olderr)
-        assert_(np.isnan(s))
-
-    def test_nanstd_bias_kw(self):
-        s = stats.nanstd(self.X, bias=True)
-        assert_approx_equal(s, np.std(self.X, ddof=0))
-
-    def test_nanstd_negative_axis(self):
-        x = np.array([1, 2, 3])
-        assert_equal(stats.nanstd(x, -1), 1)
-
-    def test_nanmedian_none(self):
-        # Check nanmedian when no values are nan.
-        m = stats.nanmedian(self.X)
-        assert_approx_equal(m, np.median(self.X))
-
-    def test_nanmedian_axis(self):
-        # Check nanmedian with axis
-        X = self.X.reshape(3,3)
-        m = stats.nanmedian(X, axis=0)
-        assert_equal(m, np.median(X, axis=0))
-        m = stats.nanmedian(X, axis=1)
-        assert_equal(m, np.median(X, axis=1))
-
-    def test_nanmedian_some(self):
-        # Check nanmedian when some values only are nan.
-        m = stats.nanmedian(self.Xsome)
-        assert_approx_equal(m, np.median(self.Xsomet))
-
-    def test_nanmedian_all(self):
-        # Check nanmedian when all values are nan.
-        with warnings.catch_warnings(record=True) as w:
-            warnings.simplefilter('always')
-            m = stats.nanmedian(self.Xall)
-            assert_(np.isnan(m))
-            assert_equal(len(w), 1)
-            assert_(issubclass(w[0].category, RuntimeWarning))
-
-    def test_nanmedian_all_axis(self):
-        # Check nanmedian when all values are nan.
-        with warnings.catch_warnings(record=True) as w:
-            warnings.simplefilter('always')
-            m = stats.nanmedian(self.Xall.reshape(3,3), axis=1)
-            assert_(np.isnan(m).all())
-            assert_equal(len(w), 3)
-            assert_(issubclass(w[0].category, RuntimeWarning))
-
-    def test_nanmedian_scalars(self):
-        # Check nanmedian for scalar inputs. See ticket #1098.
-        assert_equal(stats.nanmedian(1), np.median(1))
-        assert_equal(stats.nanmedian(True), np.median(True))
-        assert_equal(stats.nanmedian(np.array(1)), np.median(np.array(1)))
-        assert_equal(stats.nanmedian(np.nan), np.median(np.nan))
-
-
-class TestCorrPearsonr(TestCase):
-    """ W.II.D. Compute a correlation matrix on all the variables.
-
-        All the correlations, except for ZERO and MISS, shoud be exactly 1.
-        ZERO and MISS should have undefined or missing correlations with the
-        other variables.  The same should go for SPEARMAN corelations, if
-        your program has them.
-    """
-    def test_pXX(self):
-        y = stats.pearsonr(X,X)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pXBIG(self):
-        y = stats.pearsonr(X,BIG)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pXLITTLE(self):
-        y = stats.pearsonr(X,LITTLE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pXHUGE(self):
-        y = stats.pearsonr(X,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pXTINY(self):
-        y = stats.pearsonr(X,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pXROUND(self):
-        y = stats.pearsonr(X,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pBIGBIG(self):
-        y = stats.pearsonr(BIG,BIG)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pBIGLITTLE(self):
-        y = stats.pearsonr(BIG,LITTLE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pBIGHUGE(self):
-        y = stats.pearsonr(BIG,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pBIGTINY(self):
-        y = stats.pearsonr(BIG,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pBIGROUND(self):
-        y = stats.pearsonr(BIG,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pLITTLELITTLE(self):
-        y = stats.pearsonr(LITTLE,LITTLE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pLITTLEHUGE(self):
-        y = stats.pearsonr(LITTLE,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pLITTLETINY(self):
-        y = stats.pearsonr(LITTLE,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pLITTLEROUND(self):
-        y = stats.pearsonr(LITTLE,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pHUGEHUGE(self):
-        y = stats.pearsonr(HUGE,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pHUGETINY(self):
-        y = stats.pearsonr(HUGE,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pHUGEROUND(self):
-        y = stats.pearsonr(HUGE,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pTINYTINY(self):
-        y = stats.pearsonr(TINY,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pTINYROUND(self):
-        y = stats.pearsonr(TINY,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_pROUNDROUND(self):
-        y = stats.pearsonr(ROUND,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_r_exactly_pos1(self):
-        a = arange(3.0)
-        b = a
-        r, prob = stats.pearsonr(a,b)
-        assert_equal(r, 1.0)
-        assert_equal(prob, 0.0)
-
-    def test_r_exactly_neg1(self):
-        a = arange(3.0)
-        b = -a
-        r, prob = stats.pearsonr(a,b)
-        assert_equal(r, -1.0)
-        assert_equal(prob, 0.0)
-
-    def test_basic(self):
-        # A basic test, with a correlation coefficient
-        # that is not 1 or -1.
-        a = array([-1, 0, 1])
-        b = array([0, 0, 3])
-        r, prob = stats.pearsonr(a, b)
-        assert_approx_equal(r, np.sqrt(3)/2)
-        assert_approx_equal(prob, 1.0/3)
-
-
-class TestFisherExact(TestCase):
-    """Some tests to show that fisher_exact() works correctly.
-
-    Note that in SciPy 0.9.0 this was not working well for large numbers due to
-    inaccuracy of the hypergeom distribution (see #1218). Fixed now.
-
-    Also note that R and Scipy have different argument formats for their
-    hypergeometric distribution functions.
-
-    R:
-    > phyper(18999, 99000, 110000, 39000, lower.tail = FALSE)
-    [1] 1.701815e-09
-    """
-    def test_basic(self):
-        fisher_exact = stats.fisher_exact
-
-        res = fisher_exact([[14500, 20000], [30000, 40000]])[1]
-        assert_approx_equal(res, 0.01106, significant=4)
-        res = fisher_exact([[100, 2], [1000, 5]])[1]
-        assert_approx_equal(res, 0.1301, significant=4)
-        res = fisher_exact([[2, 7], [8, 2]])[1]
-        assert_approx_equal(res, 0.0230141, significant=6)
-        res = fisher_exact([[5, 1], [10, 10]])[1]
-        assert_approx_equal(res, 0.1973244, significant=6)
-        res = fisher_exact([[5, 15], [20, 20]])[1]
-        assert_approx_equal(res, 0.0958044, significant=6)
-        res = fisher_exact([[5, 16], [20, 25]])[1]
-        assert_approx_equal(res, 0.1725862, significant=6)
-        res = fisher_exact([[10, 5], [10, 1]])[1]
-        assert_approx_equal(res, 0.1973244, significant=6)
-        res = fisher_exact([[5, 0], [1, 4]])[1]
-        assert_approx_equal(res, 0.04761904, significant=6)
-        res = fisher_exact([[0, 1], [3, 2]])[1]
-        assert_approx_equal(res, 1.0)
-        res = fisher_exact([[0, 2], [6, 4]])[1]
-        assert_approx_equal(res, 0.4545454545)
-        res = fisher_exact([[2, 7], [8, 2]])
-        assert_approx_equal(res[1], 0.0230141, significant=6)
-        assert_approx_equal(res[0], 4.0 / 56)
-
-    def test_precise(self):
-        # results from R
-        #
-        # R defines oddsratio differently (see Notes section of fisher_exact
-        # docstring), so those will not match.  We leave them in anyway, in
-        # case they will be useful later on. We test only the p-value.
-        tablist = [
-            ([[100, 2], [1000, 5]], (2.505583993422285e-001, 1.300759363430016e-001)),
-            ([[2, 7], [8, 2]], (8.586235135736206e-002, 2.301413756522114e-002)),
-            ([[5, 1], [10, 10]], (4.725646047336584e+000, 1.973244147157190e-001)),
-            ([[5, 15], [20, 20]], (3.394396617440852e-001, 9.580440012477637e-002)),
-            ([[5, 16], [20, 25]], (3.960558326183334e-001, 1.725864953812994e-001)),
-            ([[10, 5], [10, 1]], (2.116112781158483e-001, 1.973244147157190e-001)),
-            ([[10, 5], [10, 0]], (0.000000000000000e+000, 6.126482213438734e-002)),
-            ([[5, 0], [1, 4]], (np.inf, 4.761904761904762e-002)),
-            ([[0, 5], [1, 4]], (0.000000000000000e+000, 1.000000000000000e+000)),
-            ([[5, 1], [0, 4]], (np.inf, 4.761904761904758e-002)),
-            ([[0, 1], [3, 2]], (0.000000000000000e+000, 1.000000000000000e+000))
-            ]
-        for table, res_r in tablist:
-            res = stats.fisher_exact(np.asarray(table))
-            np.testing.assert_almost_equal(res[1], res_r[1], decimal=11,
-                                           verbose=True)
-
-    @dec.slow
-    def test_large_numbers(self):
-        # Test with some large numbers. Regression test for #1401
-        pvals = [5.56e-11, 2.666e-11, 1.363e-11]  # from R
-        for pval, num in zip(pvals, [75, 76, 77]):
-            res = stats.fisher_exact([[17704, 496], [1065, num]])[1]
-            assert_approx_equal(res, pval, significant=4)
-
-        res = stats.fisher_exact([[18000, 80000], [20000, 90000]])[1]
-        assert_approx_equal(res, 0.2751, significant=4)
-
-    def test_raises(self):
-        # test we raise an error for wrong shape of input.
-        assert_raises(ValueError, stats.fisher_exact,
-                      np.arange(6).reshape(2, 3))
-
-    def test_row_or_col_zero(self):
-        tables = ([[0, 0], [5, 10]],
-                  [[5, 10], [0, 0]],
-                  [[0, 5], [0, 10]],
-                  [[5, 0], [10, 0]])
-        for table in tables:
-            oddsratio, pval = stats.fisher_exact(table)
-            assert_equal(pval, 1.0)
-            assert_equal(oddsratio, np.nan)
-
-    def test_less_greater(self):
-        tables = (
-            # Some tables to compare with R:
-            [[2, 7], [8, 2]],
-            [[200, 7], [8, 300]],
-            [[28, 21], [6, 1957]],
-            [[190, 800], [200, 900]],
-            # Some tables with simple exact values
-            # (includes regression test for ticket #1568):
-            [[0, 2], [3, 0]],
-            [[1, 1], [2, 1]],
-            [[2, 0], [1, 2]],
-            [[0, 1], [2, 3]],
-            [[1, 0], [1, 4]],
-            )
-        pvals = (
-            # from R:
-            [0.018521725952066501, 0.9990149169715733],
-            [1.0, 2.0056578803889148e-122],
-            [1.0, 5.7284374608319831e-44],
-            [0.7416227, 0.2959826],
-            # Exact:
-            [0.1, 1.0],
-            [0.7, 0.9],
-            [1.0, 0.3],
-            [2./3, 1.0],
-            [1.0, 1./3],
-            )
-        for table, pval in zip(tables, pvals):
-            res = []
-            res.append(stats.fisher_exact(table, alternative="less")[1])
-            res.append(stats.fisher_exact(table, alternative="greater")[1])
-            assert_allclose(res, pval, atol=0, rtol=1e-7)
-
-    def test_gh3014(self):
-        # check if issue #3014 has been fixed.
-        # before, this would have risen a ValueError
-        odds, pvalue = stats.fisher_exact([[1, 2], [9, 84419233]])
-
-
-class TestCorrSpearmanr(TestCase):
-    """ W.II.D. Compute a correlation matrix on all the variables.
-
-        All the correlations, except for ZERO and MISS, shoud be exactly 1.
-        ZERO and MISS should have undefined or missing correlations with the
-        other variables.  The same should go for SPEARMAN corelations, if
-        your program has them.
-    """
-    def test_sXX(self):
-        y = stats.spearmanr(X,X)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sXBIG(self):
-        y = stats.spearmanr(X,BIG)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sXLITTLE(self):
-        y = stats.spearmanr(X,LITTLE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sXHUGE(self):
-        y = stats.spearmanr(X,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sXTINY(self):
-        y = stats.spearmanr(X,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sXROUND(self):
-        y = stats.spearmanr(X,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sBIGBIG(self):
-        y = stats.spearmanr(BIG,BIG)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sBIGLITTLE(self):
-        y = stats.spearmanr(BIG,LITTLE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sBIGHUGE(self):
-        y = stats.spearmanr(BIG,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sBIGTINY(self):
-        y = stats.spearmanr(BIG,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sBIGROUND(self):
-        y = stats.spearmanr(BIG,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sLITTLELITTLE(self):
-        y = stats.spearmanr(LITTLE,LITTLE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sLITTLEHUGE(self):
-        y = stats.spearmanr(LITTLE,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sLITTLETINY(self):
-        y = stats.spearmanr(LITTLE,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sLITTLEROUND(self):
-        y = stats.spearmanr(LITTLE,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sHUGEHUGE(self):
-        y = stats.spearmanr(HUGE,HUGE)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sHUGETINY(self):
-        y = stats.spearmanr(HUGE,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sHUGEROUND(self):
-        y = stats.spearmanr(HUGE,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sTINYTINY(self):
-        y = stats.spearmanr(TINY,TINY)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sTINYROUND(self):
-        y = stats.spearmanr(TINY,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-    def test_sROUNDROUND(self):
-        y = stats.spearmanr(ROUND,ROUND)
-        r = y[0]
-        assert_approx_equal(r,1.0)
-
-
-class TestCorrSpearmanrTies(TestCase):
-    """Some tests of tie-handling by the spearmanr function."""
-
-    def test_tie1(self):
-        # Data
-        x = [1.0, 2.0, 3.0, 4.0]
-        y = [1.0, 2.0, 2.0, 3.0]
-        # Ranks of the data, with tie-handling.
-        xr = [1.0, 2.0, 3.0, 4.0]
-        yr = [1.0, 2.5, 2.5, 4.0]
-        # Result of spearmanr should be the same as applying
-        # pearsonr to the ranks.
-        sr = stats.spearmanr(x, y)
-        pr = stats.pearsonr(xr, yr)
-        assert_almost_equal(sr, pr)
-
-
-##    W.II.E.  Tabulate X against X, using BIG as a case weight.  The values
-##    should appear on the diagonal and the total should be 899999955.
-##    If the table cannot hold these values, forget about working with
-##    census data.  You can also tabulate HUGE against TINY.  There is no
-##    reason a tabulation program should not be able to distinguish
-##    different values regardless of their magnitude.
-
-### I need to figure out how to do this one.
-
-
-def test_kendalltau():
-    # with some ties
-    x1 = [12, 2, 1, 12, 2]
-    x2 = [1, 4, 7, 1, 0]
-    expected = (-0.47140452079103173, 0.24821309157521476)
-    res = stats.kendalltau(x1, x2)
-    assert_approx_equal(res[0], expected[0])
-    assert_approx_equal(res[1], expected[1])
-
-    # with only ties in one or both inputs
-    assert_equal(stats.kendalltau([2,2,2], [2,2,2]), (np.nan, np.nan))
-    assert_equal(stats.kendalltau([2,0,2], [2,2,2]), (np.nan, np.nan))
-    assert_equal(stats.kendalltau([2,2,2], [2,0,2]), (np.nan, np.nan))
-
-    # empty arrays provided as input
-    assert_equal(stats.kendalltau([], []), (np.nan, np.nan))
-
-    # check two different sort methods
-    assert_approx_equal(stats.kendalltau(x1, x2, initial_lexsort=False)[1],
-                        stats.kendalltau(x1, x2, initial_lexsort=True)[1])
-
-    # and with larger arrays
-    np.random.seed(7546)
-    x = np.array([np.random.normal(loc=1, scale=1, size=500),
-                np.random.normal(loc=1, scale=1, size=500)])
-    corr = [[1.0, 0.3],
-            [0.3, 1.0]]
-    x = np.dot(np.linalg.cholesky(corr), x)
-    expected = (0.19291382765531062, 1.1337108207276285e-10)
-    res = stats.kendalltau(x[0], x[1])
-    assert_approx_equal(res[0], expected[0])
-    assert_approx_equal(res[1], expected[1])
-
-    # and do we get a tau of 1 for identical inputs?
-    assert_approx_equal(stats.kendalltau([1,1,2], [1,1,2])[0], 1.0)
-
-
-class TestRegression(TestCase):
-    def test_linregressBIGX(self):
-        # W.II.F.  Regress BIG on X.
-        # The constant should be 99999990 and the regression coefficient should be 1.
-        y = stats.linregress(X,BIG)
-        intercept = y[1]
-        r = y[2]
-        assert_almost_equal(intercept,99999990)
-        assert_almost_equal(r,1.0)
-
-    def test_regressXX(self):
-        # W.IV.B.  Regress X on X.
-        # The constant should be exactly 0 and the regression coefficient should be 1.
-        # This is a perfectly valid regression.  The program should not complain.
-        y = stats.linregress(X,X)
-        intercept = y[1]
-        r = y[2]
-        assert_almost_equal(intercept,0.0)
-        assert_almost_equal(r,1.0)
-##     W.IV.C. Regress X on BIG and LITTLE (two predictors).  The program
-##     should tell you that this model is "singular" because BIG and
-##     LITTLE are linear combinations of each other.  Cryptic error
-##     messages are unacceptable here.  Singularity is the most
-##     fundamental regression error.
-### Need to figure out how to handle multiple linear regression.  Not obvious
-
-    def test_regressZEROX(self):
-        # W.IV.D. Regress ZERO on X.
-        # The program should inform you that ZERO has no variance or it should
-        # go ahead and compute the regression and report a correlation and
-        # total sum of squares of exactly 0.
-        y = stats.linregress(X,ZERO)
-        intercept = y[1]
-        r = y[2]
-        assert_almost_equal(intercept,0.0)
-        assert_almost_equal(r,0.0)
-
-    def test_regress_simple(self):
-        # Regress a line with sinusoidal noise.
-        x = np.linspace(0, 100, 100)
-        y = 0.2 * np.linspace(0, 100, 100) + 10
-        y += np.sin(np.linspace(0, 20, 100))
-
-        res = stats.linregress(x, y)
-        assert_almost_equal(res[4], 2.3957814497838803e-3)
-
-    def test_regress_simple_onearg_rows(self):
-        # Regress a line w sinusoidal noise, with a single input of shape (2, N).
-        x = np.linspace(0, 100, 100)
-        y = 0.2 * np.linspace(0, 100, 100) + 10
-        y += np.sin(np.linspace(0, 20, 100))
-        rows = np.vstack((x, y))
-
-        res = stats.linregress(rows)
-        assert_almost_equal(res[4], 2.3957814497838803e-3)
-
-    def test_regress_simple_onearg_cols(self):
-        x = np.linspace(0, 100, 100)
-        y = 0.2 * np.linspace(0, 100, 100) + 10
-        y += np.sin(np.linspace(0, 20, 100))
-        cols = np.hstack((np.expand_dims(x, 1), np.expand_dims(y, 1)))
-
-        res = stats.linregress(cols)
-        assert_almost_equal(res[4], 2.3957814497838803e-3)
-
-    def test_regress_shape_error(self):
-        # Check that a single input argument to linregress with wrong shape
-        # results in a ValueError.
-        assert_raises(ValueError, stats.linregress, np.ones((3, 3)))
-
-    def test_linregress(self):
-        # compared with multivariate ols with pinv
-        x = np.arange(11)
-        y = np.arange(5,16)
-        y[[(1),(-2)]] -= 1
-        y[[(0),(-1)]] += 1
-
-        res = (1.0, 5.0, 0.98229948625750, 7.45259691e-008, 0.063564172616372733)
-        assert_array_almost_equal(stats.linregress(x,y),res,decimal=14)
-
-    def test_regress_simple_negative_cor(self):
-        # If the slope of the regression is negative the factor R tend to -1 not 1.
-        # Sometimes rounding errors makes it < -1 leading to stderr being NaN
-        a, n = 1e-71, 100000
-        x = np.linspace(a, 2 * a, n)
-        y = np.linspace(2 * a, a, n)
-        stats.linregress(x, y)
-        res = stats.linregress(x, y)
-        assert_(res[2] >= -1)  # propagated numerical errors were not corrected
-        assert_almost_equal(res[2], -1)  # perfect negative correlation case
-        assert_(not np.isnan(res[4]))  # stderr should stay finite
-
-
-def test_theilslopes():
-    # Basic slope test.
-    slope, intercept, lower, upper = stats.theilslopes([0,1,1])
-    assert_almost_equal(slope, 0.5)
-    assert_almost_equal(intercept, 0.5)
-
-    # Test of confidence intervals.
-    x = [1, 2, 3, 4, 10, 12, 18]
-    y = [9, 15, 19, 20, 45, 55, 78]
-    slope, intercept, lower, upper = stats.theilslopes(y, x, 0.07)
-    assert_almost_equal(slope, 4)
-    assert_almost_equal(upper, 4.38, decimal=2)
-    assert_almost_equal(lower, 3.71, decimal=2)
-
-
-class TestHistogram(TestCase):
-    # Tests that histogram works as it should, and keeps old behaviour
-    #
-    # what is untested:
-    # - multidimensional arrays (since 'a' is ravel'd as the first line in the method)
-    # - very large arrays
-    # - Nans, Infs, empty and otherwise bad inputs
-
-    # sample arrays to test the histogram with
-    low_values = np.array([0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2],
-                          dtype=float)  # 11 values
-    high_range = np.array([2, 3, 4, 2, 21, 32, 78, 95, 65, 66, 66, 66, 66, 4],
-                          dtype=float)  # 14 values
-    low_range = np.array([2, 3, 3, 2, 3, 2.4, 2.1, 3.1, 2.9, 2.6, 2.7, 2.8, 2.2, 2.001],
-                         dtype=float)  # 14 values
-    few_values = np.array([2.0, 3.0, -1.0, 0.0], dtype=float)  # 4 values
-
-    def test_simple(self):
-        # Tests that each of the tests works as expected with default params
-        #
-        # basic tests, with expected results (no weighting)
-        # results taken from the previous (slower) version of histogram
-        basic_tests = ((self.low_values, (np.array([1., 1., 1., 2., 2.,
-                                                     1., 1., 0., 1., 1.]),
-                                          0.14444444444444446, 0.11111111111111112, 0)),
-                       (self.high_range, (np.array([5., 0., 1., 1., 0.,
-                                                     0., 5., 1., 0., 1.]),
-                                          -3.1666666666666661, 10.333333333333332, 0)),
-                       (self.low_range, (np.array([3., 1., 1., 1., 0., 1.,
-                                                    1., 2., 3., 1.]),
-                                         1.9388888888888889, 0.12222222222222223, 0)),
-                       (self.few_values, (np.array([1., 0., 1., 0., 0., 0.,
-                                                     0., 1., 0., 1.]),
-                                          -1.2222222222222223, 0.44444444444444448, 0)),
-                       )
-        for inputs, expected_results in basic_tests:
-            given_results = stats.histogram(inputs)
-            assert_array_almost_equal(expected_results[0], given_results[0],
-                                      decimal=2)
-            for i in range(1, 4):
-                assert_almost_equal(expected_results[i], given_results[i],
-                                    decimal=2)
-
-    def test_weighting(self):
-        # Tests that weights give expected histograms
-
-        # basic tests, with expected results, given a set of weights
-        # weights used (first n are used for each test, where n is len of array) (14 values)
-        weights = np.array([1., 3., 4.5, 0.1, -1.0, 0.0, 0.3, 7.0, 103.2, 2, 40, 0, 0, 1])
-        # results taken from the numpy version of histogram
-        basic_tests = ((self.low_values, (np.array([4.0, 0.0, 4.5, -0.9, 0.0,
-                                                      0.3,110.2, 0.0, 0.0, 42.0]),
-                                          0.2, 0.1, 0)),
-                       (self.high_range, (np.array([9.6, 0., -1., 0., 0.,
-                                                      0.,145.2, 0., 0.3, 7.]),
-                                          2.0, 9.3, 0)),
-                       (self.low_range, (np.array([2.4, 0., 0., 0., 0.,
-                                                    2., 40., 0., 103.2, 13.5]),
-                                         2.0, 0.11, 0)),
-                       (self.few_values, (np.array([4.5, 0., 0.1, 0., 0., 0.,
-                                                     0., 1., 0., 3.]),
-                                          -1., 0.4, 0)),
-
-                       )
-        for inputs, expected_results in basic_tests:
-            # use the first lot of weights for test
-            # default limits given to reproduce output of numpy's test better
-            given_results = stats.histogram(inputs, defaultlimits=(inputs.min(),
-                                                                   inputs.max()),
-                                            weights=weights[:len(inputs)])
-            assert_array_almost_equal(expected_results[0], given_results[0],
-                                      decimal=2)
-            for i in range(1, 4):
-                assert_almost_equal(expected_results[i], given_results[i],
-                                    decimal=2)
-
-    def test_reduced_bins(self):
-        # Tests that reducing the number of bins produces expected results
-
-        # basic tests, with expected results (no weighting),
-        # except number of bins is halved to 5
-        # results taken from the previous (slower) version of histogram
-        basic_tests = ((self.low_values, (np.array([2., 3., 3., 1., 2.]),
-                                          0.075000000000000011, 0.25, 0)),
-                       (self.high_range, (np.array([5., 2., 0., 6., 1.]),
-                                          -9.625, 23.25, 0)),
-                       (self.low_range, (np.array([4., 2., 1., 3., 4.]),
-                                         1.8625, 0.27500000000000002, 0)),
-                       (self.few_values, (np.array([1., 1., 0., 1., 1.]),
-                                          -1.5, 1.0, 0)),
-                       )
-        for inputs, expected_results in basic_tests:
-            given_results = stats.histogram(inputs, numbins=5)
-            assert_array_almost_equal(expected_results[0], given_results[0],
-                                      decimal=2)
-            for i in range(1, 4):
-                assert_almost_equal(expected_results[i], given_results[i],
-                                    decimal=2)
-
-    def test_increased_bins(self):
-        # Tests that increasing the number of bins produces expected results
-
-        # basic tests, with expected results (no weighting),
-        # except number of bins is double to 20
-        # results taken from the previous (slower) version of histogram
-        basic_tests = ((self.low_values, (np.array([1., 0., 1., 0., 1.,
-                                                     0., 2., 0., 1., 0.,
-                                                     1., 1., 0., 1., 0.,
-                                                     0., 0., 1., 0., 1.]),
-                                          0.1736842105263158, 0.052631578947368418, 0)),
-                       (self.high_range, (np.array([5., 0., 0., 0., 1.,
-                                                     0., 1., 0., 0., 0.,
-                                                     0., 0., 0., 5., 0.,
-                                                     0., 1., 0., 0., 1.]),
-                                          -0.44736842105263142, 4.8947368421052628, 0)),
-                       (self.low_range, (np.array([3., 0., 1., 1., 0., 0.,
-                                                    0., 1., 0., 0., 1., 0.,
-                                                    1., 0., 1., 0., 1., 3.,
-                                                    0., 1.]),
-                                         1.9710526315789474, 0.057894736842105263, 0)),
-                       (self.few_values, (np.array([1., 0., 0., 0., 0., 1.,
-                                                     0., 0., 0., 0., 0., 0.,
-                                                     0., 0., 1., 0., 0., 0.,
-                                                     0., 1.]),
-                                          -1.1052631578947367, 0.21052631578947367, 0)),
-                       )
-        for inputs, expected_results in basic_tests:
-            given_results = stats.histogram(inputs, numbins=20)
-            assert_array_almost_equal(expected_results[0], given_results[0],
-                                      decimal=2)
-            for i in range(1, 4):
-                assert_almost_equal(expected_results[i], given_results[i],
-                                    decimal=2)
-
-
-def test_cumfreq():
-    x = [1, 4, 2, 1, 3, 1]
-    cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4)
-    assert_array_almost_equal(cumfreqs, np.array([3., 4., 5., 6.]))
-    cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4,
-                                                      defaultreallimits=(1.5, 5))
-    assert_(extrapoints == 3)
-
-
-def test_relfreq():
-    a = np.array([1, 4, 2, 1, 3, 1])
-    relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4)
-    assert_array_almost_equal(relfreqs,
-                              array([0.5, 0.16666667, 0.16666667, 0.16666667]))
-
-    # check array_like input is accepted
-    relfreqs2, lowlim, binsize, extrapoints = stats.relfreq([1, 4, 2, 1, 3, 1],
-                                                            numbins=4)
-    assert_array_almost_equal(relfreqs, relfreqs2)
-
-
-class TestGMean(TestCase):
-
-    def test_1D_list(self):
-        a = (1,2,3,4)
-        actual = stats.gmean(a)
-        desired = power(1*2*3*4,1./4.)
-        assert_almost_equal(actual, desired,decimal=14)
-
-        desired1 = stats.gmean(a,axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-
-    def test_1D_array(self):
-        a = array((1,2,3,4), float32)
-        actual = stats.gmean(a)
-        desired = power(1*2*3*4,1./4.)
-        assert_almost_equal(actual, desired, decimal=7)
-
-        desired1 = stats.gmean(a,axis=-1)
-        assert_almost_equal(actual, desired1, decimal=7)
-
-    def test_2D_array_default(self):
-        a = array(((1,2,3,4),
-                   (1,2,3,4),
-                   (1,2,3,4)))
-        actual = stats.gmean(a)
-        desired = array((1,2,3,4))
-        assert_array_almost_equal(actual, desired, decimal=14)
-
-        desired1 = stats.gmean(a,axis=0)
-        assert_array_almost_equal(actual, desired1, decimal=14)
-
-    def test_2D_array_dim1(self):
-        a = array(((1,2,3,4),
-                   (1,2,3,4),
-                   (1,2,3,4)))
-        actual = stats.gmean(a, axis=1)
-        v = power(1*2*3*4,1./4.)
-        desired = array((v,v,v))
-        assert_array_almost_equal(actual, desired, decimal=14)
-
-    def test_large_values(self):
-        a = array([1e100, 1e200, 1e300])
-        actual = stats.gmean(a)
-        assert_approx_equal(actual, 1e200, significant=14)
-
-
-class TestHMean(TestCase):
-    def test_1D_list(self):
-        a = (1,2,3,4)
-        actual = stats.hmean(a)
-        desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
-        assert_almost_equal(actual, desired, decimal=14)
-
-        desired1 = stats.hmean(array(a),axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-
-    def test_1D_array(self):
-        a = array((1,2,3,4), float64)
-        actual = stats.hmean(a)
-        desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
-        assert_almost_equal(actual, desired, decimal=14)
-
-        desired1 = stats.hmean(a,axis=-1)
-        assert_almost_equal(actual, desired1, decimal=14)
-
-    def test_2D_array_default(self):
-        a = array(((1,2,3,4),
-                   (1,2,3,4),
-                   (1,2,3,4)))
-        actual = stats.hmean(a)
-        desired = array((1.,2.,3.,4.))
-        assert_array_almost_equal(actual, desired, decimal=14)
-
-        actual1 = stats.hmean(a,axis=0)
-        assert_array_almost_equal(actual1, desired, decimal=14)
-
-    def test_2D_array_dim1(self):
-        a = array(((1,2,3,4),
-                   (1,2,3,4),
-                   (1,2,3,4)))
-
-        v = 4. / (1./1 + 1./2 + 1./3 + 1./4)
-        desired1 = array((v,v,v))
-        actual1 = stats.hmean(a, axis=1)
-        assert_array_almost_equal(actual1, desired1, decimal=14)
-
-
-class TestScoreatpercentile(TestCase):
-    def setUp(self):
-        self.a1 = [3, 4, 5, 10, -3, -5, 6]
-        self.a2 = [3, -6, -2, 8, 7, 4, 2, 1]
-        self.a3 = [3., 4, 5, 10, -3, -5, -6, 7.0]
-
-    def test_basic(self):
-        x = arange(8) * 0.5
-        assert_equal(stats.scoreatpercentile(x, 0), 0.)
-        assert_equal(stats.scoreatpercentile(x, 100), 3.5)
-        assert_equal(stats.scoreatpercentile(x, 50), 1.75)
-
-    def test_2D(self):
-        x = array([[1, 1, 1],
-                   [1, 1, 1],
-                   [4, 4, 3],
-                   [1, 1, 1],
-                   [1, 1, 1]])
-        assert_array_equal(stats.scoreatpercentile(x, 50), [1, 1, 1])
-
-    def test_fraction(self):
-        scoreatperc = stats.scoreatpercentile
-
-        # Test defaults
-        assert_equal(scoreatperc(list(range(10)), 50), 4.5)
-        assert_equal(scoreatperc(list(range(10)), 50, (2,7)), 4.5)
-        assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8)), 4.5)
-        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10,100)), 55)
-        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10)), 5.5)
-
-        # explicitly specify interpolation_method 'fraction' (the default)
-        assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='fraction'),
-                     4.5)
-        assert_equal(scoreatperc(list(range(10)), 50, limit=(2, 7),
-                                 interpolation_method='fraction'),
-                     4.5)
-        assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8),
-                                 interpolation_method='fraction'),
-                     4.5)
-        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10, 100),
-                                 interpolation_method='fraction'),
-                     55)
-        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10),
-                                 interpolation_method='fraction'),
-                     5.5)
-
-    def test_lower_higher(self):
-        scoreatperc = stats.scoreatpercentile
-
-        # interpolation_method 'lower'/'higher'
-        assert_equal(scoreatperc(list(range(10)), 50,
-                                 interpolation_method='lower'), 4)
-        assert_equal(scoreatperc(list(range(10)), 50,
-                                 interpolation_method='higher'), 5)
-        assert_equal(scoreatperc(list(range(10)), 50, (2,7),
-                                 interpolation_method='lower'), 4)
-        assert_equal(scoreatperc(list(range(10)), 50, limit=(2,7),
-                                 interpolation_method='higher'), 5)
-        assert_equal(scoreatperc(list(range(100)), 50, (1,8),
-                                 interpolation_method='lower'), 4)
-        assert_equal(scoreatperc(list(range(100)), 50, (1,8),
-                                 interpolation_method='higher'), 5)
-        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (10, 100),
-                                 interpolation_method='lower'), 10)
-        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(10, 100),
-                                 interpolation_method='higher'), 100)
-        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (1, 10),
-                                 interpolation_method='lower'), 1)
-        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(1, 10),
-                                 interpolation_method='higher'), 10)
-
-    def test_sequence_per(self):
-        x = arange(8) * 0.5
-        expected = np.array([0, 3.5, 1.75])
-        res = stats.scoreatpercentile(x, [0, 100, 50])
-        assert_allclose(res, expected)
-        assert_(isinstance(res, np.ndarray))
-        # Test with ndarray.  Regression test for gh-2861
-        assert_allclose(stats.scoreatpercentile(x, np.array([0, 100, 50])),
-                        expected)
-        # Also test combination of 2-D array, axis not None and array-like per
-        res2 = stats.scoreatpercentile(np.arange(12).reshape((3,4)),
-                                       np.array([0, 1, 100, 100]), axis=1)
-        expected2 = array([[0, 4, 8],
-                           [0.03, 4.03, 8.03],
-                           [3, 7, 11],
-                           [3, 7, 11]])
-        assert_allclose(res2, expected2)
-
-    def test_axis(self):
-        scoreatperc = stats.scoreatpercentile
-        x = arange(12).reshape(3, 4)
-
-        assert_equal(scoreatperc(x, (25, 50, 100)), [2.75, 5.5, 11.0])
-
-        r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]]
-        assert_equal(scoreatperc(x, (25, 50, 100), axis=0), r0)
-
-        r1 = [[0.75, 4.75, 8.75], [1.5, 5.5, 9.5], [3, 7, 11]]
-        assert_equal(scoreatperc(x, (25, 50, 100), axis=1), r1)
-
-    def test_exception(self):
-        assert_raises(ValueError, stats.scoreatpercentile, [1, 2], 56,
-            interpolation_method='foobar')
-        assert_raises(ValueError, stats.scoreatpercentile, [1], 101)
-        assert_raises(ValueError, stats.scoreatpercentile, [1], -1)
-
-    def test_empty(self):
-        assert_equal(stats.scoreatpercentile([], 50), np.nan)
-        assert_equal(stats.scoreatpercentile(np.array([[], []]), 50), np.nan)
-        assert_equal(stats.scoreatpercentile([], [50, 99]), [np.nan, np.nan])
-
-
-class TestItemfreq(object):
-    a = [5, 7, 1, 2, 1, 5, 7] * 10
-    b = [1, 2, 5, 7]
-
-    def test_numeric_types(self):
-        # Check itemfreq works for all dtypes (adapted from np.unique tests)
-        def _check_itemfreq(dt):
-            a = np.array(self.a, dt)
-            v = stats.itemfreq(a)
-            assert_array_equal(v[:, 0], [1, 2, 5, 7])
-            assert_array_equal(v[:, 1], np.array([20, 10, 20, 20], dtype=dt))
-
-        dtypes = [np.int32, np.int64, np.float32, np.float64,
-                  np.complex64, np.complex128]
-        for dt in dtypes:
-            yield _check_itemfreq, dt
-
-    def test_object_arrays(self):
-        a, b = self.a, self.b
-        dt = 'O'
-        aa = np.empty(len(a), dt)
-        aa[:] = a
-        bb = np.empty(len(b), dt)
-        bb[:] = b
-        v = stats.itemfreq(aa)
-        assert_array_equal(v[:, 0], bb)
-
-    def test_structured_arrays(self):
-        a, b = self.a, self.b
-        dt = [('', 'i'), ('', 'i')]
-        aa = np.array(list(zip(a, a)), dt)
-        bb = np.array(list(zip(b, b)), dt)
-        v = stats.itemfreq(aa)
-        # Arrays don't compare equal because v[:,0] is object array
-        assert_equal(tuple(v[2, 0]), tuple(bb[2]))
-
-
-class TestMode(TestCase):
-    def test_basic(self):
-        data1 = [3,5,1,10,23,3,2,6,8,6,10,6]
-        vals = stats.mode(data1)
-        assert_almost_equal(vals[0][0],6)
-        assert_almost_equal(vals[1][0],3)
-
-    def test_axes(self):
-        data1 = [10,10,30,40]
-        data2 = [10,10,10,10]
-        data3 = [20,10,20,20]
-        data4 = [30,30,30,30]
-        data5 = [40,30,30,30]
-        arr = np.array([data1, data2, data3, data4, data5])
-
-        vals = stats.mode(arr, axis=None)
-        assert_almost_equal(vals[0],np.array([30]))
-        assert_almost_equal(vals[1],np.array([8]))
-
-        vals = stats.mode(arr, axis=0)
-        assert_almost_equal(vals[0],np.array([[10,10,30,30]]))
-        assert_almost_equal(vals[1],np.array([[2,3,3,2]]))
-
-        vals = stats.mode(arr, axis=1)
-        assert_almost_equal(vals[0],np.array([[10],[10],[20],[30],[30]]))
-        assert_almost_equal(vals[1],np.array([[2],[4],[3],[4],[3]]))
-
-    def test_strings(self):
-        data1 = ['rain', 'showers', 'showers']
-        vals = stats.mode(data1)
-        expected = ['showers']
-        assert_equal(vals[0][0], 'showers')
-        assert_equal(vals[1][0], 2)
-
-    @dec.knownfailureif(sys.version_info > (3,), 'numpy github issue 641')
-    def test_mixed_objects(self):
-        objects = [10, True, np.nan, 'hello', 10]
-        arr = np.empty((5,), dtype=object)
-        arr[:] = objects
-        vals = stats.mode(arr)
-        assert_equal(vals[0][0], 10)
-        assert_equal(vals[1][0], 2)
-
-    def test_objects(self):
-        """Python objects must be sortable (le + eq) and have ne defined
-        for np.unique to work. hash is for set.
-        """
-        class Point(object):
-            def __init__(self, x):
-                self.x = x
-
-            def __eq__(self, other):
-                return self.x == other.x
-
-            def __ne__(self, other):
-                return self.x != other.x
-
-            def __lt__(self, other):
-                return self.x < other.x
-
-            def __hash__(self):
-                return hash(self.x)
-
-        points = [Point(x) for x in [1,2,3,4,3,2,2,2]]
-        arr = np.empty((8,), dtype=object)
-        arr[:] = points
-        assert len(set(points)) == 4
-        assert_equal(np.unique(arr).shape, (4,))
-        vals = stats.mode(arr)
-        assert_equal(vals[0][0], Point(2))
-        assert_equal(vals[1][0], 4)
-
-
-class TestVariability(TestCase):
-
-    testcase = [1,2,3,4]
-
-    def test_signaltonoise(self):
-        # This is not in R, so used:
-        #     mean(testcase, axis=0) / (sqrt(var(testcase) * 3/4))
-
-        # y = stats.signaltonoise(self.shoes[0])
-        # assert_approx_equal(y,4.5709967)
-        y = stats.signaltonoise(self.testcase)
-        assert_approx_equal(y,2.236067977)
-
-    def test_sem(self):
-        # This is not in R, so used:
-        #     sqrt(var(testcase)*3/4)/sqrt(3)
-
-        # y = stats.sem(self.shoes[0])
-        # assert_approx_equal(y,0.775177399)
-        y = stats.sem(self.testcase)
-        assert_approx_equal(y, 0.6454972244)
-        n = len(self.testcase)
-        assert_allclose(stats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)),
-                         stats.sem(self.testcase, ddof=2))
-
-    def test_zmap(self):
-        # not in R, so tested by using:
-        #     (testcase[i] - mean(testcase, axis=0)) / sqrt(var(testcase) * 3/4)
-        y = stats.zmap(self.testcase,self.testcase)
-        desired = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999])
-        assert_array_almost_equal(desired,y,decimal=12)
-
-    def test_zmap_axis(self):
-        # Test use of 'axis' keyword in zmap.
-        x = np.array([[0.0, 0.0, 1.0, 1.0],
-                      [1.0, 1.0, 1.0, 2.0],
-                      [2.0, 0.0, 2.0, 0.0]])
-
-        t1 = 1.0/np.sqrt(2.0/3)
-        t2 = np.sqrt(3.)/3
-        t3 = np.sqrt(2.)
-
-        z0 = stats.zmap(x, x, axis=0)
-        z1 = stats.zmap(x, x, axis=1)
-
-        z0_expected = [[-t1, -t3/2, -t3/2, 0.0],
-                       [0.0, t3, -t3/2, t1],
-                       [t1, -t3/2, t3, -t1]]
-        z1_expected = [[-1.0, -1.0, 1.0, 1.0],
-                       [-t2, -t2, -t2, np.sqrt(3.)],
-                       [1.0, -1.0, 1.0, -1.0]]
-
-        assert_array_almost_equal(z0, z0_expected)
-        assert_array_almost_equal(z1, z1_expected)
-
-    def test_zmap_ddof(self):
-        # Test use of 'ddof' keyword in zmap.
-        x = np.array([[0.0, 0.0, 1.0, 1.0],
-                      [0.0, 1.0, 2.0, 3.0]])
-
-        z = stats.zmap(x, x, axis=1, ddof=1)
-
-        z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3))
-        z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3))
-        assert_array_almost_equal(z[0], z0_expected)
-        assert_array_almost_equal(z[1], z1_expected)
-
-    def test_zscore(self):
-        # not in R, so tested by using:
-        #    (testcase[i] - mean(testcase, axis=0)) / sqrt(var(testcase) * 3/4)
-        y = stats.zscore(self.testcase)
-        desired = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999])
-        assert_array_almost_equal(desired,y,decimal=12)
-
-    def test_zscore_axis(self):
-        # Test use of 'axis' keyword in zscore.
-        x = np.array([[0.0, 0.0, 1.0, 1.0],
-                      [1.0, 1.0, 1.0, 2.0],
-                      [2.0, 0.0, 2.0, 0.0]])
-
-        t1 = 1.0/np.sqrt(2.0/3)
-        t2 = np.sqrt(3.)/3
-        t3 = np.sqrt(2.)
-
-        z0 = stats.zscore(x, axis=0)
-        z1 = stats.zscore(x, axis=1)
-
-        z0_expected = [[-t1, -t3/2, -t3/2, 0.0],
-                       [0.0, t3, -t3/2, t1],
-                       [t1, -t3/2, t3, -t1]]
-        z1_expected = [[-1.0, -1.0, 1.0, 1.0],
-                       [-t2, -t2, -t2, np.sqrt(3.)],
-                       [1.0, -1.0, 1.0, -1.0]]
-
-        assert_array_almost_equal(z0, z0_expected)
-        assert_array_almost_equal(z1, z1_expected)
-
-    def test_zscore_ddof(self):
-        # Test use of 'ddof' keyword in zscore.
-        x = np.array([[0.0, 0.0, 1.0, 1.0],
-                      [0.0, 1.0, 2.0, 3.0]])
-
-        z = stats.zscore(x, axis=1, ddof=1)
-
-        z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3))
-        z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3))
-        assert_array_almost_equal(z[0], z0_expected)
-        assert_array_almost_equal(z[1], z1_expected)
-
-
-class TestMoments(TestCase):
-    """
-        Comparison numbers are found using R v.1.5.1
-        note that length(testcase) = 4
-        testmathworks comes from documentation for the
-        Statistics Toolbox for Matlab and can be found at both
-        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
-        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
-        Note that both test cases came from here.
-    """
-    testcase = [1,2,3,4]
-    testmathworks = [1.165, 0.6268, 0.0751, 0.3516, -0.6965]
-
-    def test_moment(self):
-        # mean((testcase-mean(testcase))**power,axis=0),axis=0))**power))
-        y = stats.moment(self.testcase,1)
-        assert_approx_equal(y,0.0,10)
-        y = stats.moment(self.testcase,2)
-        assert_approx_equal(y,1.25)
-        y = stats.moment(self.testcase,3)
-        assert_approx_equal(y,0.0)
-        y = stats.moment(self.testcase,4)
-        assert_approx_equal(y,2.5625)
-
-    def test_variation(self):
-        # variation = samplestd / mean
-        y = stats.variation(self.testcase)
-        assert_approx_equal(y,0.44721359549996, 10)
-
-    def test_skewness(self):
-        # sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0) /
-        #     ((sqrt(var(testmathworks)*4/5))**3)/5
-        y = stats.skew(self.testmathworks)
-        assert_approx_equal(y,-0.29322304336607,10)
-        y = stats.skew(self.testmathworks,bias=0)
-        assert_approx_equal(y,-0.437111105023940,10)
-        y = stats.skew(self.testcase)
-        assert_approx_equal(y,0.0,10)
-
-    def test_skewness_scalar(self):
-        # `skew` must return a scalar for 1-dim input
-        assert_equal(stats.skew(arange(10)), 0.0)
-
-    def test_kurtosis(self):
-        #   sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
-        #   sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
-        #   Set flags for axis = 0 and
-        #   fisher=0 (Pearson's defn of kurtosis for compatiability with Matlab)
-        y = stats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
-        assert_approx_equal(y, 2.1658856802973,10)
-
-        # Note that MATLAB has confusing docs for the following case
-        #  kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
-        #  kurtosis(x)  gives a biased estimate of Fisher's skewness (Pearson-3)
-        #  The MATLAB docs imply that both should give Fisher's
-        y = stats.kurtosis(self.testmathworks,fisher=0,bias=0)
-        assert_approx_equal(y, 3.663542721189047,10)
-        y = stats.kurtosis(self.testcase,0,0)
-        assert_approx_equal(y,1.64)
-
-    def test_kurtosis_array_scalar(self):
-        assert_equal(type(stats.kurtosis([1,2,3])), float)
-
-
-class TestThreshold(TestCase):
-    def test_basic(self):
-        a = [-1,2,3,4,5,-1,-2]
-        assert_array_equal(stats.threshold(a),a)
-        assert_array_equal(stats.threshold(a,3,None,0),
-                           [0,0,3,4,5,0,0])
-        assert_array_equal(stats.threshold(a,None,3,0),
-                           [-1,2,3,0,0,-1,-2])
-        assert_array_equal(stats.threshold(a,2,4,0),
-                           [0,2,3,4,0,0,0])
-
-
-class TestStudentTest(TestCase):
-    X1 = np.array([-1, 0, 1])
-    X2 = np.array([0, 1, 2])
-    T1_0 = 0
-    P1_0 = 1
-    T1_1 = -1.732051
-    P1_1 = 0.2254033
-    T1_2 = -3.464102
-    P1_2 = 0.0741799
-    T2_0 = 1.732051
-    P2_0 = 0.2254033
-
-    def test_onesample(self):
-        t, p = stats.ttest_1samp(self.X1, 0)
-
-        assert_array_almost_equal(t, self.T1_0)
-        assert_array_almost_equal(p, self.P1_0)
-
-        t, p = stats.ttest_1samp(self.X2, 0)
-
-        assert_array_almost_equal(t, self.T2_0)
-        assert_array_almost_equal(p, self.P2_0)
-
-        t, p = stats.ttest_1samp(self.X1, 1)
-
-        assert_array_almost_equal(t, self.T1_1)
-        assert_array_almost_equal(p, self.P1_1)
-
-        t, p = stats.ttest_1samp(self.X1, 2)
-
-        assert_array_almost_equal(t, self.T1_2)
-        assert_array_almost_equal(p, self.P1_2)
-
-
-def test_percentileofscore():
-    pcos = stats.percentileofscore
-
-    assert_equal(pcos([1,2,3,4,5,6,7,8,9,10],4), 40.0)
-
-    for (kind, result) in [('mean', 35.0),
-                           ('strict', 30.0),
-                           ('weak', 40.0)]:
-        yield assert_equal, pcos(np.arange(10) + 1,
-                                                    4, kind=kind), \
-                                                    result
-
-    # multiple - 2
-    for (kind, result) in [('rank', 45.0),
-                           ('strict', 30.0),
-                           ('weak', 50.0),
-                           ('mean', 40.0)]:
-        yield assert_equal, pcos([1,2,3,4,4,5,6,7,8,9],
-                                                    4, kind=kind), \
-                                                    result
-
-    # multiple - 3
-    assert_equal(pcos([1,2,3,4,4,4,5,6,7,8], 4), 50.0)
-    for (kind, result) in [('rank', 50.0),
-                           ('mean', 45.0),
-                           ('strict', 30.0),
-                           ('weak', 60.0)]:
-
-        yield assert_equal, pcos([1,2,3,4,4,4,5,6,7,8],
-                                                    4, kind=kind), \
-                                                    result
-
-    # missing
-    for kind in ('rank', 'mean', 'strict', 'weak'):
-        yield assert_equal, pcos([1,2,3,5,6,7,8,9,10,11],
-                                                    4, kind=kind), \
-                                                    30
-
-    # larger numbers
-    for (kind, result) in [('mean', 35.0),
-                           ('strict', 30.0),
-                           ('weak', 40.0)]:
-        yield assert_equal, \
-              pcos([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 40,
-                   kind=kind), result
-
-    for (kind, result) in [('mean', 45.0),
-                           ('strict', 30.0),
-                           ('weak', 60.0)]:
-        yield assert_equal, \
-              pcos([10, 20, 30, 40, 40, 40, 50, 60, 70, 80],
-                   40, kind=kind), result
-
-    for kind in ('rank', 'mean', 'strict', 'weak'):
-        yield assert_equal, \
-              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
-                   40, kind=kind), 30.0
-
-    # boundaries
-    for (kind, result) in [('rank', 10.0),
-                           ('mean', 5.0),
-                           ('strict', 0.0),
-                           ('weak', 10.0)]:
-        yield assert_equal, \
-              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
-                   10, kind=kind), result
-
-    for (kind, result) in [('rank', 100.0),
-                           ('mean', 95.0),
-                           ('strict', 90.0),
-                           ('weak', 100.0)]:
-        yield assert_equal, \
-              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
-                   110, kind=kind), result
-
-    # out of bounds
-    for (kind, score, result) in [('rank', 200, 100.0),
-                                  ('mean', 200, 100.0),
-                                  ('mean', 0, 0.0)]:
-        yield assert_equal, \
-              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
-                   score, kind=kind), result
-
-    assert_raises(ValueError, pcos, [1, 2, 3, 3, 4], 3, kind='unrecognized')
-
-
-PowerDivCase = namedtuple('Case', ['f_obs', 'f_exp', 'ddof', 'axis',
-                                   'chi2',     # Pearson's
-                                   'log',      # G-test (log-likelihood)
-                                   'mod_log',  # Modified log-likelihood
-                                   'cr',       # Cressie-Read (lambda=2/3)
-                                   ])
-
-# The details of the first two elements in power_div_1d_cases are used
-# in a test in TestPowerDivergence.  Check that code before making
-# any changes here.
-power_div_1d_cases = [
-    # Use the default f_exp.
-    PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=None, ddof=0, axis=None,
-                 chi2=4,
-                 log=2*(4*np.log(4/8) + 12*np.log(12/8)),
-                 mod_log=2*(8*np.log(8/4) + 8*np.log(8/12)),
-                 cr=(4*((4/8)**(2/3) - 1) + 12*((12/8)**(2/3) - 1))/(5/9)),
-    # Give a non-uniform f_exp.
-    PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=[2, 16, 12, 2], ddof=0, axis=None,
-                 chi2=24,
-                 log=2*(4*np.log(4/2) + 8*np.log(8/16) + 8*np.log(8/2)),
-                 mod_log=2*(2*np.log(2/4) + 16*np.log(16/8) + 2*np.log(2/8)),
-                 cr=(4*((4/2)**(2/3) - 1) + 8*((8/16)**(2/3) - 1) +
-                     8*((8/2)**(2/3) - 1))/(5/9)),
-    # f_exp is a scalar.
-    PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=8, ddof=0, axis=None,
-                 chi2=4,
-                 log=2*(4*np.log(4/8) + 12*np.log(12/8)),
-                 mod_log=2*(8*np.log(8/4) + 8*np.log(8/12)),
-                 cr=(4*((4/8)**(2/3) - 1) + 12*((12/8)**(2/3) - 1))/(5/9)),
-    # f_exp equal to f_obs.
-    PowerDivCase(f_obs=[3, 5, 7, 9], f_exp=[3, 5, 7, 9], ddof=0, axis=0,
-                 chi2=0, log=0, mod_log=0, cr=0),
-]
-
-
-power_div_empty_cases = [
-    # Shape is (0,)--a data set with length 0.  The computed
-    # test statistic should be 0.
-    PowerDivCase(f_obs=[],
-                 f_exp=None, ddof=0, axis=0,
-                 chi2=0, log=0, mod_log=0, cr=0),
-    # Shape is (0, 3).  This is 3 data sets, but each data set has
-    # length 0, so the computed test statistic should be [0, 0, 0].
-    PowerDivCase(f_obs=np.array([[],[],[]]).T,
-                 f_exp=None, ddof=0, axis=0,
-                 chi2=[0, 0, 0],
-                 log=[0, 0, 0],
-                 mod_log=[0, 0, 0],
-                 cr=[0, 0, 0]),
-    # Shape is (3, 0).  This represents an empty collection of
-    # data sets in which each data set has length 3.  The test
-    # statistic should be an empty array.
-    PowerDivCase(f_obs=np.array([[],[],[]]),
-                 f_exp=None, ddof=0, axis=0,
-                 chi2=[],
-                 log=[],
-                 mod_log=[],
-                 cr=[]),
-]
-
-
-class TestPowerDivergence(object):
-
-    def check_power_divergence(self, f_obs, f_exp, ddof, axis, lambda_,
-                               expected_stat):
-        f_obs = np.asarray(f_obs)
-        if axis is None:
-            num_obs = f_obs.size
-        else:
-            b = np.broadcast(f_obs, f_exp)
-            num_obs = b.shape[axis]
-        stat, p = stats.power_divergence(f_obs=f_obs, f_exp=f_exp, ddof=ddof,
-                                         axis=axis, lambda_=lambda_)
-        assert_allclose(stat, expected_stat)
-
-        if lambda_ == 1 or lambda_ == "pearson":
-            # Also test stats.chisquare.
-            stat, p = stats.chisquare(f_obs=f_obs, f_exp=f_exp, ddof=ddof,
-                                      axis=axis)
-            assert_allclose(stat, expected_stat)
-
-        ddof = np.asarray(ddof)
-        expected_p = stats.chisqprob(expected_stat, num_obs - 1 - ddof)
-        assert_allclose(p, expected_p)
-
-    def test_basic(self):
-        for case in power_div_1d_cases:
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   None, case.chi2)
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   "pearson", case.chi2)
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   1, case.chi2)
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   "log-likelihood", case.log)
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   "mod-log-likelihood", case.mod_log)
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   "cressie-read", case.cr)
-            yield (self.check_power_divergence,
-                   case.f_obs, case.f_exp, case.ddof, case.axis,
-                   2/3, case.cr)
-
-    def test_basic_masked(self):
-        for case in power_div_1d_cases:
-            mobs = np.ma.array(case.f_obs)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   None, case.chi2)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   "pearson", case.chi2)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   1, case.chi2)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   "log-likelihood", case.log)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   "mod-log-likelihood", case.mod_log)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   "cressie-read", case.cr)
-            yield (self.check_power_divergence,
-                   mobs, case.f_exp, case.ddof, case.axis,
-                   2/3, case.cr)
-
-    def test_axis(self):
-        case0 = power_div_1d_cases[0]
-        case1 = power_div_1d_cases[1]
-        f_obs = np.vstack((case0.f_obs, case1.f_obs))
-        f_exp = np.vstack((np.ones_like(case0.f_obs)*np.mean(case0.f_obs),
-                           case1.f_exp))
-        # Check the four computational code paths in power_divergence
-        # using a 2D array with axis=1.
-        yield (self.check_power_divergence,
-               f_obs, f_exp, 0, 1,
-               "pearson", [case0.chi2, case1.chi2])
-        yield (self.check_power_divergence,
-               f_obs, f_exp, 0, 1,
-               "log-likelihood", [case0.log, case1.log])
-        yield (self.check_power_divergence,
-               f_obs, f_exp, 0, 1,
-               "mod-log-likelihood", [case0.mod_log, case1.mod_log])
-        yield (self.check_power_divergence,
-               f_obs, f_exp, 0, 1,
-               "cressie-read", [case0.cr, case1.cr])
-        # Reshape case0.f_obs to shape (2,2), and use axis=None.
-        # The result should be the same.
-        yield (self.check_power_divergence,
-               np.array(case0.f_obs).reshape(2, 2), None, 0, None,
-               "pearson", case0.chi2)
-
-    def test_ddof_broadcasting(self):
-        # Test that ddof broadcasts correctly.
-        # ddof does not affect the test statistic.  It is broadcast
-        # with the computed test statistic for the computation of
-        # the p value.
-
-        case0 = power_div_1d_cases[0]
-        case1 = power_div_1d_cases[1]
-        # Create 4x2 arrays of observed and expected frequencies.
-        f_obs = np.vstack((case0.f_obs, case1.f_obs)).T
-        f_exp = np.vstack((np.ones_like(case0.f_obs)*np.mean(case0.f_obs),
-                           case1.f_exp)).T
-
-        expected_chi2 = [case0.chi2, case1.chi2]
-
-        # ddof has shape (2, 1).  This is broadcast with the computed
-        # statistic, so p will have shape (2,2).
-        ddof = np.array([[0], [1]])
-
-        stat, p = stats.power_divergence(f_obs, f_exp, ddof=ddof)
-        assert_allclose(stat, expected_chi2)
-
-        # Compute the p values separately, passing in scalars for ddof.
-        stat0, p0 = stats.power_divergence(f_obs, f_exp, ddof=ddof[0,0])
-        stat1, p1 = stats.power_divergence(f_obs, f_exp, ddof=ddof[1,0])
-
-        assert_array_equal(p, np.vstack((p0, p1)))
-
-    def test_empty_cases(self):
-        with warnings.catch_warnings():
-            warnings.simplefilter("ignore", RuntimeWarning)
-            for case in power_div_empty_cases:
-                yield (self.check_power_divergence,
-                       case.f_obs, case.f_exp, case.ddof, case.axis,
-                       "pearson", case.chi2)
-                yield (self.check_power_divergence,
-                       case.f_obs, case.f_exp, case.ddof, case.axis,
-                       "log-likelihood", case.log)
-                yield (self.check_power_divergence,
-                       case.f_obs, case.f_exp, case.ddof, case.axis,
-                       "mod-log-likelihood", case.mod_log)
-                yield (self.check_power_divergence,
-                       case.f_obs, case.f_exp, case.ddof, case.axis,
-                       "cressie-read", case.cr)
-
-
-def test_chisquare_masked_arrays():
-    # Test masked arrays.
-    obs = np.array([[8, 8, 16, 32, -1], [-1, -1, 3, 4, 5]]).T
-    mask = np.array([[0, 0, 0, 0, 1], [1, 1, 0, 0, 0]]).T
-    mobs = np.ma.masked_array(obs, mask)
-    expected_chisq = np.array([24.0, 0.5])
-    expected_g = np.array([2*(2*8*np.log(0.5) + 32*np.log(2.0)),
-                           2*(3*np.log(0.75) + 5*np.log(1.25))])
-
-    chisq, p = stats.chisquare(mobs)
-    mat.assert_array_equal(chisq, expected_chisq)
-    mat.assert_array_almost_equal(p, stats.chisqprob(expected_chisq,
-                                                     mobs.count(axis=0) - 1))
-
-    g, p = stats.power_divergence(mobs, lambda_='log-likelihood')
-    mat.assert_array_almost_equal(g, expected_g, decimal=15)
-    mat.assert_array_almost_equal(p, stats.chisqprob(expected_g,
-                                                     mobs.count(axis=0) - 1))
-
-    chisq, p = stats.chisquare(mobs.T, axis=1)
-    mat.assert_array_equal(chisq, expected_chisq)
-    mat.assert_array_almost_equal(p,
-                                  stats.chisqprob(expected_chisq,
-                                                  mobs.T.count(axis=1) - 1))
-
-    g, p = stats.power_divergence(mobs.T, axis=1, lambda_="log-likelihood")
-    mat.assert_array_almost_equal(g, expected_g, decimal=15)
-    mat.assert_array_almost_equal(p, stats.chisqprob(expected_g,
-                                                     mobs.count(axis=0) - 1))
-
-    obs1 = np.ma.array([3, 5, 6, 99, 10], mask=[0, 0, 0, 1, 0])
-    exp1 = np.ma.array([2, 4, 8, 10, 99], mask=[0, 0, 0, 0, 1])
-    chi2, p = stats.chisquare(obs1, f_exp=exp1)
-    # Because of the mask at index 3 of obs1 and at index 4 of exp1,
-    # only the first three elements are included in the calculation
-    # of the statistic.
-    mat.assert_array_equal(chi2, 1/2 + 1/4 + 4/8)
-
-    # When axis=None, the two values should have type np.float64.
-    chisq, p = stats.chisquare(np.ma.array([1,2,3]), axis=None)
-    assert_(isinstance(chisq, np.float64))
-    assert_(isinstance(p, np.float64))
-    assert_equal(chisq, 1.0)
-    assert_almost_equal(p, stats.chisqprob(1.0, 2))
-
-    # Empty arrays:
-    # A data set with length 0 returns a masked scalar.
-    with np.errstate(invalid='ignore'):
-        chisq, p = stats.chisquare(np.ma.array([]))
-    assert_(isinstance(chisq, np.ma.MaskedArray))
-    assert_equal(chisq.shape, ())
-    assert_(chisq.mask)
-
-    empty3 = np.ma.array([[],[],[]])
-
-    # empty3 is a collection of 0 data sets (whose lengths would be 3, if
-    # there were any), so the return value is an array with length 0.
-    chisq, p = stats.chisquare(empty3)
-    assert_(isinstance(chisq, np.ma.MaskedArray))
-    mat.assert_array_equal(chisq, [])
-
-    # empty3.T is an array containing 3 data sets, each with length 0,
-    # so an array of size (3,) is returned, with all values masked.
-    with np.errstate(invalid='ignore'):
-        chisq, p = stats.chisquare(empty3.T)
-    assert_(isinstance(chisq, np.ma.MaskedArray))
-    assert_equal(chisq.shape, (3,))
-    assert_(np.all(chisq.mask))
-
-
-def test_power_divergence_against_cressie_read_data():
-    # Test stats.power_divergence against tables 4 and 5 from
-    # Cressie and Read, "Multimonial Goodness-of-Fit Tests",
-    # J. R. Statist. Soc. B (1984), Vol 46, No. 3, pp. 440-464.
-    # This tests the calculation for several values of lambda.
-
-    # `table4` holds just the second and third columns from Table 4.
-    table4 = np.array([
-        # observed, expected,
-        15, 15.171,
-        11, 13.952,
-        14, 12.831,
-        17, 11.800,
-        5, 10.852,
-        11, 9.9796,
-        10, 9.1777,
-        4, 8.4402,
-        8, 7.7620,
-        10, 7.1383,
-        7, 6.5647,
-        9, 6.0371,
-        11, 5.5520,
-        3, 5.1059,
-        6, 4.6956,
-        1, 4.3183,
-        1, 3.9713,
-        4, 3.6522,
-        ]).reshape(-1, 2)
-    table5 = np.array([
-        # lambda, statistic
-        -10.0, 72.2e3,
-        -5.0, 28.9e1,
-        -3.0, 65.6,
-        -2.0, 40.6,
-        -1.5, 34.0,
-        -1.0, 29.5,
-        -0.5, 26.5,
-        0.0, 24.6,
-        0.5, 23.4,
-        0.67, 23.1,
-        1.0, 22.7,
-        1.5, 22.6,
-        2.0, 22.9,
-        3.0, 24.8,
-        5.0, 35.5,
-        10.0, 21.4e1,
-        ]).reshape(-1, 2)
-
-    for lambda_, expected_stat in table5:
-        stat, p = stats.power_divergence(table4[:,0], table4[:,1],
-                                         lambda_=lambda_)
-        assert_allclose(stat, expected_stat, rtol=5e-3)
-
-
-def test_friedmanchisquare():
-    # see ticket:113
-    # verified with matlab and R
-    # From Demsar "Statistical Comparisons of Classifiers over Multiple Data Sets"
-    # 2006, Xf=9.28 (no tie handling, tie corrected Xf >=9.28)
-    x1 = [array([0.763, 0.599, 0.954, 0.628, 0.882, 0.936, 0.661, 0.583,
-                 0.775, 1.0, 0.94, 0.619, 0.972, 0.957]),
-          array([0.768, 0.591, 0.971, 0.661, 0.888, 0.931, 0.668, 0.583,
-                 0.838, 1.0, 0.962, 0.666, 0.981, 0.978]),
-          array([0.771, 0.590, 0.968, 0.654, 0.886, 0.916, 0.609, 0.563,
-                 0.866, 1.0, 0.965, 0.614, 0.9751, 0.946]),
-          array([0.798, 0.569, 0.967, 0.657, 0.898, 0.931, 0.685, 0.625,
-                 0.875, 1.0, 0.962, 0.669, 0.975, 0.970])]
-
-    # From "Bioestadistica para las ciencias de la salud" Xf=18.95 p<0.001:
-    x2 = [array([4,3,5,3,5,3,2,5,4,4,4,3]),
-          array([2,2,1,2,3,1,2,3,2,1,1,3]),
-          array([2,4,3,3,4,3,3,4,4,1,2,1]),
-          array([3,5,4,3,4,4,3,3,3,4,4,4])]
-
-    # From Jerrorl H. Zar, "Biostatistical Analysis"(example 12.6), Xf=10.68, 0.005 < p < 0.01:
-    # Probability from this example is inexact using Chisquare aproximation of Friedman Chisquare.
-    x3 = [array([7.0,9.9,8.5,5.1,10.3]),
-          array([5.3,5.7,4.7,3.5,7.7]),
-          array([4.9,7.6,5.5,2.8,8.4]),
-          array([8.8,8.9,8.1,3.3,9.1])]
-
-    assert_array_almost_equal(stats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]),
-                              (10.2283464566929, 0.0167215803284414))
-    assert_array_almost_equal(stats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]),
-                              (18.9428571428571, 0.000280938375189499))
-    assert_array_almost_equal(stats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]),
-                              (10.68, 0.0135882729582176))
-    np.testing.assert_raises(ValueError, stats.friedmanchisquare,x3[0],x3[1])
-
-    # test using mstats
-    assert_array_almost_equal(stats.mstats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]),
-                              (10.2283464566929, 0.0167215803284414))
-    # the following fails
-    # assert_array_almost_equal(stats.mstats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]),
-    #                           (18.9428571428571, 0.000280938375189499))
-    assert_array_almost_equal(stats.mstats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]),
-                              (10.68, 0.0135882729582176))
-    np.testing.assert_raises(ValueError,stats.mstats.friedmanchisquare,x3[0],x3[1])
-
-
-def test_kstest():
-    # from numpy.testing import assert_almost_equal
-
-    # comparing with values from R
-    x = np.linspace(-1,1,9)
-    D,p = stats.kstest(x,'norm')
-    assert_almost_equal(D, 0.15865525393145705, 12)
-    assert_almost_equal(p, 0.95164069201518386, 1)
-
-    x = np.linspace(-15,15,9)
-    D,p = stats.kstest(x,'norm')
-    assert_almost_equal(D, 0.44435602715924361, 15)
-    assert_almost_equal(p, 0.038850140086788665, 8)
-
-    # the following tests rely on deterministicaly replicated rvs
-    np.random.seed(987654321)
-    x = stats.norm.rvs(loc=0.2, size=100)
-    D,p = stats.kstest(x, 'norm', mode='asymp')
-    assert_almost_equal(D, 0.12464329735846891, 15)
-    assert_almost_equal(p, 0.089444888711820769, 15)
-    assert_almost_equal(np.array(stats.kstest(x, 'norm', mode='asymp')),
-                np.array((0.12464329735846891, 0.089444888711820769)), 15)
-    assert_almost_equal(np.array(stats.kstest(x,'norm', alternative='less')),
-                np.array((0.12464329735846891, 0.040989164077641749)), 15)
-    # this 'greater' test fails with precision of decimal=14
-    assert_almost_equal(np.array(stats.kstest(x,'norm', alternative='greater')),
-                np.array((0.0072115233216310994, 0.98531158590396228)), 12)
-
-    # missing: no test that uses *args
-
-
-def test_ks_2samp():
-    # exact small sample solution
-    data1 = np.array([1.0,2.0])
-    data2 = np.array([1.0,2.0,3.0])
-    assert_almost_equal(np.array(stats.ks_2samp(data1+0.01,data2)),
-                np.array((0.33333333333333337, 0.99062316386915694)))
-    assert_almost_equal(np.array(stats.ks_2samp(data1-0.01,data2)),
-                np.array((0.66666666666666674, 0.42490954988801982)))
-    # these can also be verified graphically
-    assert_almost_equal(
-        np.array(stats.ks_2samp(np.linspace(1,100,100),
-                              np.linspace(1,100,100)+2+0.1)),
-        np.array((0.030000000000000027, 0.99999999996005062)))
-    assert_almost_equal(
-        np.array(stats.ks_2samp(np.linspace(1,100,100),
-                              np.linspace(1,100,100)+2-0.1)),
-        np.array((0.020000000000000018, 0.99999999999999933)))
-    # these are just regression tests
-    assert_almost_equal(
-        np.array(stats.ks_2samp(np.linspace(1,100,100),
-                              np.linspace(1,100,110)+20.1)),
-        np.array((0.21090909090909091, 0.015880386730710221)))
-    assert_almost_equal(
-        np.array(stats.ks_2samp(np.linspace(1,100,100),
-                              np.linspace(1,100,110)+20-0.1)),
-        np.array((0.20818181818181825, 0.017981441789762638)))
-
-
-def test_ttest_rel():
-    # regression test
-    tr,pr = 0.81248591389165692, 0.41846234511362157
-    tpr = ([tr,-tr],[pr,pr])
-
-    rvs1 = np.linspace(1,100,100)
-    rvs2 = np.linspace(1.01,99.989,100)
-    rvs1_2D = np.array([np.linspace(1,100,100), np.linspace(1.01,99.989,100)])
-    rvs2_2D = np.array([np.linspace(1.01,99.989,100), np.linspace(1,100,100)])
-
-    t,p = stats.ttest_rel(rvs1, rvs2, axis=0)
-    assert_array_almost_equal([t,p],(tr,pr))
-    t,p = stats.ttest_rel(rvs1_2D.T, rvs2_2D.T, axis=0)
-    assert_array_almost_equal([t,p],tpr)
-    t,p = stats.ttest_rel(rvs1_2D, rvs2_2D, axis=1)
-    assert_array_almost_equal([t,p],tpr)
-
-    # test on 3 dimensions
-    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
-    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
-    t,p = stats.ttest_rel(rvs1_3D, rvs2_3D, axis=1)
-    assert_array_almost_equal(np.abs(t), tr)
-    assert_array_almost_equal(np.abs(p), pr)
-    assert_equal(t.shape, (2, 3))
-
-    t,p = stats.ttest_rel(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
-    assert_array_almost_equal(np.abs(t), tr)
-    assert_array_almost_equal(np.abs(p), pr)
-    assert_equal(t.shape, (3, 2))
-
-    olderr = np.seterr(all='ignore')
-    try:
-        # test zero division problem
-        t,p = stats.ttest_rel([0,0,0],[1,1,1])
-        assert_equal((np.abs(t),p), (np.inf, 0))
-        assert_equal(stats.ttest_rel([0,0,0], [0,0,0]), (np.nan, np.nan))
-
-        # check that nan in input array result in nan output
-        anan = np.array([[1,np.nan],[-1,1]])
-        assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))
-    finally:
-        np.seterr(**olderr)
-
-    # test incorrect input shape raise an error
-    x = np.arange(24)
-    assert_raises(ValueError, stats.ttest_rel, x.reshape((8, 3)),
-                  x.reshape((2, 3, 4)))
-
-
-def test_ttest_ind():
-    # regression test
-    tr = 1.0912746897927283
-    pr = 0.27647818616351882
-    tpr = ([tr,-tr],[pr,pr])
-
-    rvs2 = np.linspace(1,100,100)
-    rvs1 = np.linspace(5,105,100)
-    rvs1_2D = np.array([rvs1, rvs2])
-    rvs2_2D = np.array([rvs2, rvs1])
-
-    t,p = stats.ttest_ind(rvs1, rvs2, axis=0)
-    assert_array_almost_equal([t,p],(tr,pr))
-    t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0)
-    assert_array_almost_equal([t,p],tpr)
-    t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1)
-    assert_array_almost_equal([t,p],tpr)
-
-    # test on 3 dimensions
-    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
-    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
-    t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1)
-    assert_almost_equal(np.abs(t), np.abs(tr))
-    assert_array_almost_equal(np.abs(p), pr)
-    assert_equal(t.shape, (2, 3))
-
-    t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
-    assert_array_almost_equal(np.abs(t), np.abs(tr))
-    assert_array_almost_equal(np.abs(p), pr)
-    assert_equal(t.shape, (3, 2))
-
-    olderr = np.seterr(all='ignore')
-    try:
-        # test zero division problem
-        t,p = stats.ttest_ind([0,0,0],[1,1,1])
-        assert_equal((np.abs(t),p), (np.inf, 0))
-        assert_equal(stats.ttest_ind([0,0,0], [0,0,0]), (np.nan, np.nan))
-
-        # check that nan in input array result in nan output
-        anan = np.array([[1,np.nan],[-1,1]])
-        assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))
-    finally:
-        np.seterr(**olderr)
-
-
-def test_ttest_ind_with_uneq_var():
-    # check vs. R
-    a = (1, 2, 3)
-    b = (1.1, 2.9, 4.2)
-    pr = 0.53619490753126731
-    tr = -0.68649512735572582
-    t, p = stats.ttest_ind(a, b, equal_var=False)
-    assert_array_almost_equal([t,p], [tr, pr])
-
-    a = (1, 2, 3, 4)
-    pr = 0.84354139131608286
-    tr = -0.2108663315950719
-    t, p = stats.ttest_ind(a, b, equal_var=False)
-    assert_array_almost_equal([t,p], [tr, pr])
-
-    # regression test
-    tr = 1.0912746897927283
-    tr_uneq_n = 0.66745638708050492
-    pr = 0.27647831993021388
-    pr_uneq_n = 0.50873585065616544
-    tpr = ([tr,-tr],[pr,pr])
-
-    rvs3 = np.linspace(1,100, 25)
-    rvs2 = np.linspace(1,100,100)
-    rvs1 = np.linspace(5,105,100)
-    rvs1_2D = np.array([rvs1, rvs2])
-    rvs2_2D = np.array([rvs2, rvs1])
-
-    t,p = stats.ttest_ind(rvs1, rvs2, axis=0, equal_var=False)
-    assert_array_almost_equal([t,p],(tr,pr))
-    t,p = stats.ttest_ind(rvs1, rvs3, axis=0, equal_var=False)
-    assert_array_almost_equal([t,p], (tr_uneq_n, pr_uneq_n))
-    t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0, equal_var=False)
-    assert_array_almost_equal([t,p],tpr)
-    t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1, equal_var=False)
-    assert_array_almost_equal([t,p],tpr)
-
-    # test on 3 dimensions
-    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
-    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
-    t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1, equal_var=False)
-    assert_almost_equal(np.abs(t), np.abs(tr))
-    assert_array_almost_equal(np.abs(p), pr)
-    assert_equal(t.shape, (2, 3))
-
-    t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2),
-                                   axis=2, equal_var=False)
-    assert_array_almost_equal(np.abs(t), np.abs(tr))
-    assert_array_almost_equal(np.abs(p), pr)
-    assert_equal(t.shape, (3, 2))
-
-    olderr = np.seterr(all='ignore')
-    try:
-        # test zero division problem
-        t,p = stats.ttest_ind([0,0,0],[1,1,1], equal_var=False)
-        assert_equal((np.abs(t),p), (np.inf, 0))
-        assert_equal(stats.ttest_ind([0,0,0], [0,0,0], equal_var=False), (np.nan, np.nan))
-
-        # check that nan in input array result in nan output
-        anan = np.array([[1,np.nan],[-1,1]])
-        assert_equal(stats.ttest_ind(anan, np.zeros((2,2)), equal_var=False),
-                     ([0, np.nan], [1,np.nan]))
-    finally:
-        np.seterr(**olderr)
-
-
-def test_ttest_1samp_new():
-    n1, n2, n3 = (10,15,20)
-    rvn1 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3))
-
-    # check multidimensional array and correct axis handling
-    # deterministic rvn1 and rvn2 would be better as in test_ttest_rel
-    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n2,n3)),axis=0)
-    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=0)
-    t3,p3 = stats.ttest_1samp(rvn1[:,0,0], 1)
-    assert_array_almost_equal(t1,t2, decimal=14)
-    assert_almost_equal(t1[0,0],t3, decimal=14)
-    assert_equal(t1.shape, (n2,n3))
-
-    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n3)),axis=1)
-    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=1)
-    t3,p3 = stats.ttest_1samp(rvn1[0,:,0], 1)
-    assert_array_almost_equal(t1,t2, decimal=14)
-    assert_almost_equal(t1[0,0],t3, decimal=14)
-    assert_equal(t1.shape, (n1,n3))
-
-    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n2)),axis=2)
-    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=2)
-    t3,p3 = stats.ttest_1samp(rvn1[0,0,:], 1)
-    assert_array_almost_equal(t1,t2, decimal=14)
-    assert_almost_equal(t1[0,0],t3, decimal=14)
-    assert_equal(t1.shape, (n1,n2))
-
-    olderr = np.seterr(all='ignore')
-    try:
-        # test zero division problem
-        t,p = stats.ttest_1samp([0,0,0], 1)
-        assert_equal((np.abs(t),p), (np.inf, 0))
-        assert_equal(stats.ttest_1samp([0,0,0], 0), (np.nan, np.nan))
-
-        # check that nan in input array result in nan output
-        anan = np.array([[1,np.nan],[-1,1]])
-        assert_equal(stats.ttest_1samp(anan, 0),([0, np.nan], [1,np.nan]))
-    finally:
-        np.seterr(**olderr)
-
-
-def test_describe():
-    x = np.vstack((np.ones((3,4)),2*np.ones((2,4))))
-    nc, mmc = (5, ([1., 1., 1., 1.], [2., 2., 2., 2.]))
-    mc = np.array([1.4, 1.4, 1.4, 1.4])
-    vc = np.array([0.3, 0.3, 0.3, 0.3])
-    skc = [0.40824829046386357]*4
-    kurtc = [-1.833333333333333]*4
-    n, mm, m, v, sk, kurt = stats.describe(x)
-    assert_equal(n, nc)
-    assert_equal(mm, mmc)
-    assert_equal(m, mc)
-    assert_equal(v, vc)
-    assert_array_almost_equal(sk, skc, decimal=13)  # not sure about precision
-    assert_array_almost_equal(kurt, kurtc, decimal=13)
-    n, mm, m, v, sk, kurt = stats.describe(x.T, axis=1)
-    assert_equal(n, nc)
-    assert_equal(mm, mmc)
-    assert_equal(m, mc)
-    assert_equal(v, vc)
-    assert_array_almost_equal(sk, skc, decimal=13)  # not sure about precision
-    assert_array_almost_equal(kurt, kurtc, decimal=13)
-
-
-def test_normalitytests():
-    # numbers verified with R: dagoTest in package fBasics
-    st_normal, st_skew, st_kurt = (3.92371918, 1.98078826, -0.01403734)
-    pv_normal, pv_skew, pv_kurt = (0.14059673, 0.04761502, 0.98880019)
-    x = np.array((-2,-1,0,1,2,3)*4)**2
-    yield assert_array_almost_equal, stats.normaltest(x), (st_normal, pv_normal)
-    yield assert_array_almost_equal, stats.skewtest(x), (st_skew, pv_skew)
-    yield assert_array_almost_equal, stats.kurtosistest(x), (st_kurt, pv_kurt)
-
-    # Test axis=None (equal to axis=0 for 1-D input)
-    yield (assert_array_almost_equal, stats.normaltest(x, axis=None),
-           (st_normal, pv_normal))
-    yield (assert_array_almost_equal, stats.skewtest(x, axis=None),
-           (st_skew, pv_skew))
-    yield (assert_array_almost_equal, stats.kurtosistest(x, axis=None),
-           (st_kurt, pv_kurt))
-
-
-class TestJarqueBera(TestCase):
-    def test_jarque_bera_stats(self):
-        np.random.seed(987654321)
-        x = np.random.normal(0, 1, 100000)
-        y = np.random.chisquare(10000, 100000)
-        z = np.random.rayleigh(1, 100000)
-
-        assert_(stats.jarque_bera(x)[1] > stats.jarque_bera(y)[1])
-        assert_(stats.jarque_bera(x)[1] > stats.jarque_bera(z)[1])
-        assert_(stats.jarque_bera(y)[1] > stats.jarque_bera(z)[1])
-
-    def test_jarque_bera_array_like(self):
-        np.random.seed(987654321)
-        x = np.random.normal(0, 1, 100000)
-
-        JB1, p1 = stats.jarque_bera(list(x))
-        JB2, p2 = stats.jarque_bera(tuple(x))
-        JB3, p3 = stats.jarque_bera(x.reshape(2, 50000))
-
-        assert_(JB1 == JB2 == JB3)
-        assert_(p1 == p2 == p3)
-
-    def test_jarque_bera_size(self):
-        assert_raises(ValueError, stats.jarque_bera, [])
-
-
-def test_skewtest_too_few_samples():
-    # Regression test for ticket #1492.
-    # skewtest requires at least 8 samples; 7 should raise a ValueError.
-    x = np.arange(7.0)
-    assert_raises(ValueError, stats.skewtest, x)
-
-
-def test_kurtosistest_too_few_samples():
-    # Regression test for ticket #1425.
-    # kurtosistest requires at least 5 samples; 4 should raise a ValueError.
-    x = np.arange(4.0)
-    assert_raises(ValueError, stats.kurtosistest, x)
-
-
-def test_mannwhitneyu():
-    x = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1.,
-        2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 1.])
-
-    y = np.array([1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1.,
-        1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1.,
-        1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 1., 1., 2., 1., 1., 2.,
-        1., 2., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1.,
-        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
-        1., 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
-        1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
-        1.])
-    # p-value verified with matlab and R to 5 significant digits
-    assert_array_almost_equal(stats.stats.mannwhitneyu(x,y),
-                    (16980.5, 2.8214327656317373e-005), decimal=12)
-
-
-def test_pointbiserial():
-    # same as mstats test except for the nan
-    # Test data: http://support.sas.com/ctx/samples/index.jsp?sid=490&tab=output
-    x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
-         0,0,0,0,1]
-    y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
-         2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
-         0.8,0.7,0.6,0.5,0.2,0.2,0.1]
-    assert_almost_equal(stats.pointbiserialr(x, y)[0], 0.36149, 5)
-
-
-def test_obrientransform():
-    # A couple tests calculated by hand.
-    x1 = np.array([0, 2, 4])
-    t1 = stats.obrientransform(x1)
-    expected = [7, -2, 7]
-    assert_allclose(t1[0], expected)
-
-    x2 = np.array([0, 3, 6, 9])
-    t2 = stats.obrientransform(x2)
-    expected = np.array([30, 0, 0, 30])
-    assert_allclose(t2[0], expected)
-
-    # Test two arguments.
-    a, b = stats.obrientransform(x1, x2)
-    assert_equal(a, t1[0])
-    assert_equal(b, t2[0])
-
-    # Test three arguments.
-    a, b, c = stats.obrientransform(x1, x2, x1)
-    assert_equal(a, t1[0])
-    assert_equal(b, t2[0])
-    assert_equal(c, t1[0])
-
-    # This is a regression test to check np.var replacement.
-    # The author of this test didn't separately verify the numbers.
-    x1 = np.arange(5)
-    result = np.array(
-      [[5.41666667, 1.04166667, -0.41666667, 1.04166667, 5.41666667],
-       [21.66666667, 4.16666667, -1.66666667, 4.16666667, 21.66666667]])
-    assert_array_almost_equal(stats.obrientransform(x1, 2*x1), result, decimal=8)
-
-    # Example from "O'Brien Test for Homogeneity of Variance"
-    # by Herve Abdi.
-    values = range(5, 11)
-    reps = np.array([5, 11, 9, 3, 2, 2])
-    data = np.repeat(values, reps)
-    transformed_values = np.array([3.1828, 0.5591, 0.0344,
-                                   1.6086, 5.2817, 11.0538])
-    expected = np.repeat(transformed_values, reps)
-    result = stats.obrientransform(data)
-    assert_array_almost_equal(result[0], expected, decimal=4)
-
-
-class HarMeanTestCase:
-    def test_1dlist(self):
-        #  Test a 1d list
-        a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
-        b = 34.1417152147
-        self.do(a, b)
-
-    def test_1darray(self):
-        #  Test a 1d array
-        a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
-        b = 34.1417152147
-        self.do(a, b)
-
-    def test_1dma(self):
-        #  Test a 1d masked array
-        a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
-        b = 34.1417152147
-        self.do(a, b)
-
-    def test_1dmavalue(self):
-        #  Test a 1d masked array with a masked value
-        a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
-                      mask=[0,0,0,0,0,0,0,0,0,1])
-        b = 31.8137186141
-        self.do(a, b)
-
-    # Note the next tests use axis=None as default, not axis=0
-    def test_2dlist(self):
-        #  Test a 2d list
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = 38.6696271841
-        self.do(a, b)
-
-    def test_2darray(self):
-        #  Test a 2d array
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = 38.6696271841
-        self.do(np.array(a), b)
-
-    def test_2dma(self):
-        #  Test a 2d masked array
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = 38.6696271841
-        self.do(np.ma.array(a), b)
-
-    def test_2daxis0(self):
-        #  Test a 2d list with axis=0
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.array([22.88135593, 39.13043478, 52.90076336, 65.45454545])
-        self.do(a, b, axis=0)
-
-    def test_2daxis1(self):
-        #  Test a 2d list with axis=1
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.array([19.2, 63.03939962, 103.80078637])
-        self.do(a, b, axis=1)
-
-    def test_2dmatrixdaxis0(self):
-        #  Test a 2d list with axis=0
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.matrix([[22.88135593, 39.13043478, 52.90076336, 65.45454545]])
-        self.do(np.matrix(a), b, axis=0)
-
-    def test_2dmatrixaxis1(self):
-        #  Test a 2d list with axis=1
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.matrix([[19.2, 63.03939962, 103.80078637]]).T
-        self.do(np.matrix(a), b, axis=1)
-
-
-class TestHarMean(HarMeanTestCase, TestCase):
-    def do(self, a, b, axis=None, dtype=None):
-        x = stats.hmean(a, axis=axis, dtype=dtype)
-        assert_almost_equal(b, x)
-        assert_equal(x.dtype, dtype)
-
-
-class GeoMeanTestCase:
-    def test_1dlist(self):
-        #  Test a 1d list
-        a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
-        b = 45.2872868812
-        self.do(a, b)
-
-    def test_1darray(self):
-        #  Test a 1d array
-        a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
-        b = 45.2872868812
-        self.do(a, b)
-
-    def test_1dma(self):
-        #  Test a 1d masked array
-        a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
-        b = 45.2872868812
-        self.do(a, b)
-
-    def test_1dmavalue(self):
-        #  Test a 1d masked array with a masked value
-        a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], mask=[0,0,0,0,0,0,0,0,0,1])
-        b = 41.4716627439
-        self.do(a, b)
-
-    # Note the next tests use axis=None as default, not axis=0
-    def test_2dlist(self):
-        #  Test a 2d list
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = 52.8885199
-        self.do(a, b)
-
-    def test_2darray(self):
-        #  Test a 2d array
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = 52.8885199
-        self.do(np.array(a), b)
-
-    def test_2dma(self):
-        #  Test a 2d masked array
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = 52.8885199
-        self.do(np.ma.array(a), b)
-
-    def test_2daxis0(self):
-        #  Test a 2d list with axis=0
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.array([35.56893304, 49.32424149, 61.3579244, 72.68482371])
-        self.do(a, b, axis=0)
-
-    def test_2daxis1(self):
-        #  Test a 2d list with axis=1
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.array([22.13363839, 64.02171746, 104.40086817])
-        self.do(a, b, axis=1)
-
-    def test_2dmatrixdaxis0(self):
-        #  Test a 2d list with axis=0
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.matrix([[35.56893304, 49.32424149, 61.3579244, 72.68482371]])
-        self.do(np.matrix(a), b, axis=0)
-
-    def test_2dmatrixaxis1(self):
-        #  Test a 2d list with axis=1
-        a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
-        b = np.matrix([[22.13363839, 64.02171746, 104.40086817]]).T
-        self.do(np.matrix(a), b, axis=1)
-
-    def test_1dlist0(self):
-        #  Test a 1d list with zero element
-        a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 0]
-        b = 0.0  # due to exp(-inf)=0
-        olderr = np.seterr(all='ignore')
-        try:
-            self.do(a, b)
-        finally:
-            np.seterr(**olderr)
-
-    def test_1darray0(self):
-        #  Test a 1d array with zero element
-        a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0])
-        b = 0.0  # due to exp(-inf)=0
-        olderr = np.seterr(all='ignore')
-        try:
-            self.do(a, b)
-        finally:
-            np.seterr(**olderr)
-
-    def test_1dma0(self):
-        #  Test a 1d masked array with zero element
-        a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0])
-        b = 41.4716627439
-        olderr = np.seterr(all='ignore')
-        try:
-            self.do(a, b)
-        finally:
-            np.seterr(**olderr)
-
-    def test_1dmainf(self):
-        #  Test a 1d masked array with negative element
-        a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, -1])
-        b = 41.4716627439
-        olderr = np.seterr(all='ignore')
-        try:
-            self.do(a, b)
-        finally:
-            np.seterr(**olderr)
-
-
-class TestGeoMean(GeoMeanTestCase, TestCase):
-    def do(self, a, b, axis=None, dtype=None):
-        # Note this doesn't test when axis is not specified
-        x = stats.gmean(a, axis=axis, dtype=dtype)
-        assert_almost_equal(b, x)
-        assert_equal(x.dtype, dtype)
-
-
-def test_binomtest():
-    # precision tests compared to R for ticket:986
-    pp = np.concatenate((np.linspace(0.1,0.2,5), np.linspace(0.45,0.65,5),
-                          np.linspace(0.85,0.95,5)))
-    n = 501
-    x = 450
-    results = [0.0, 0.0, 1.0159969301994141e-304,
-    2.9752418572150531e-275, 7.7668382922535275e-250,
-    2.3381250925167094e-099, 7.8284591587323951e-081,
-    9.9155947819961383e-065, 2.8729390725176308e-050,
-    1.7175066298388421e-037, 0.0021070691951093692,
-    0.12044570587262322, 0.88154763174802508, 0.027120993063129286,
-    2.6102587134694721e-006]
-
-    for p, res in zip(pp,results):
-        assert_approx_equal(stats.binom_test(x, n, p), res,
-                            significant=12, err_msg='fail forp=%f' % p)
-
-    assert_approx_equal(stats.binom_test(50,100,0.1), 5.8320387857343647e-024,
-                            significant=12, err_msg='fail forp=%f' % p)
-
-
-def test_binomtest2():
-    # test added for issue #2384
-    res2 = [
-    [1.0, 1.0],
-    [0.5,1.0,0.5],
-    [0.25,1.00,1.00,0.25],
-    [0.125,0.625,1.000,0.625,0.125],
-    [0.0625,0.3750,1.0000,1.0000,0.3750,0.0625],
-    [0.03125,0.21875,0.68750,1.00000,0.68750,0.21875,0.03125],
-    [0.015625,0.125000,0.453125,1.000000,1.000000,0.453125,0.125000,0.015625],
-    [0.0078125,0.0703125,0.2890625,0.7265625,1.0000000,0.7265625,0.2890625,
-     0.0703125,0.0078125],
-    [0.00390625,0.03906250,0.17968750,0.50781250,1.00000000,1.00000000,
-     0.50781250,0.17968750,0.03906250,0.00390625],
-    [0.001953125,0.021484375,0.109375000,0.343750000,0.753906250,1.000000000,
-     0.753906250,0.343750000,0.109375000,0.021484375,0.001953125]
-    ]
-
-    for k in range(1, 11):
-        res1 = [stats.binom_test(v, k, 0.5) for v in range(k + 1)]
-        assert_almost_equal(res1, res2[k-1], decimal=10)
-
-
-def test_binomtest3():
-    # test added for issue #2384
-    # test when x == n*p and neighbors
-    res3 = [stats.binom_test(v, v*k, 1./k) for v in range(1, 11)
-                                           for k in range(2, 11)]
-    assert_equal(res3, np.ones(len(res3), int))
-
-    #> bt=c()
-    #> for(i in as.single(1:10)){for(k in as.single(2:10)){bt = c(bt, binom.test(i-1, k*i,(1/k))$p.value); print(c(i+1, k*i,(1/k)))}}
-    binom_testm1 = np.array([
-         0.5, 0.5555555555555556, 0.578125, 0.5904000000000003,
-         0.5981224279835393, 0.603430543396034, 0.607304096221924,
-         0.610255656871054, 0.612579511000001, 0.625, 0.670781893004115,
-         0.68853759765625, 0.6980101120000006, 0.703906431368616,
-         0.70793209416498, 0.7108561134173507, 0.713076544331419,
-         0.714820192935702, 0.6875, 0.7268709038256367, 0.7418963909149174,
-         0.74986110468096, 0.7548015520398076, 0.7581671424768577,
-         0.760607984787832, 0.762459425024199, 0.7639120677676575, 0.7265625,
-         0.761553963657302, 0.774800934828818, 0.7818005980538996,
-         0.78613491480358, 0.789084353140195, 0.7912217659828884,
-         0.79284214559524, 0.794112956558801, 0.75390625, 0.7856929451142176,
-         0.7976688481430754, 0.8039848974727624, 0.807891868948366,
-         0.8105487660137676, 0.812473307174702, 0.8139318233591120,
-         0.815075399104785, 0.7744140625, 0.8037322594985427,
-         0.814742863657656, 0.8205425178645808, 0.8241275984172285,
-         0.8265645374416, 0.8283292196088257, 0.829666291102775,
-         0.8307144686362666, 0.7905273437499996, 0.8178712053954738,
-         0.828116983756619, 0.833508948940494, 0.8368403871552892,
-         0.839104213210105, 0.840743186196171, 0.84198481438049,
-         0.8429580531563676, 0.803619384765625, 0.829338573944648,
-         0.8389591907548646, 0.84401876783902, 0.84714369697889,
-         0.8492667010581667, 0.850803474598719, 0.851967542858308,
-         0.8528799045949524, 0.8145294189453126, 0.838881732845347,
-         0.847979024541911, 0.852760894015685, 0.8557134656773457,
-         0.8577190131799202, 0.85917058278431, 0.860270010472127,
-         0.861131648404582, 0.823802947998047, 0.846984756807511,
-         0.855635653643743, 0.860180994825685, 0.86298688573253,
-         0.864892525675245, 0.866271647085603, 0.867316125625004,
-         0.8681346531755114
-        ])
-
-    # > bt=c()
-    # > for(i in as.single(1:10)){for(k in as.single(2:10)){bt = c(bt, binom.test(i+1, k*i,(1/k))$p.value); print(c(i+1, k*i,(1/k)))}}
-
-    binom_testp1 = np.array([
-         0.5, 0.259259259259259, 0.26171875, 0.26272, 0.2632244513031551,
-         0.2635138663069203, 0.2636951804161073, 0.2638162407564354,
-         0.2639010709000002, 0.625, 0.4074074074074074, 0.42156982421875,
-         0.4295746560000003, 0.43473045988554, 0.4383309503172684,
-         0.4409884859402103, 0.4430309389962837, 0.444649849401104, 0.6875,
-         0.4927602499618962, 0.5096031427383425, 0.5189636628480,
-         0.5249280070771274, 0.5290623300865124, 0.5320974248125793,
-         0.5344204730474308, 0.536255847400756, 0.7265625, 0.5496019313526808,
-         0.5669248746708034, 0.576436455045805, 0.5824538812831795,
-         0.5866053321547824, 0.589642781414643, 0.5919618019300193,
-         0.593790427805202, 0.75390625, 0.590868349763505, 0.607983393277209,
-         0.617303847446822, 0.623172512167948, 0.627208862156123,
-         0.6301556891501057, 0.632401894928977, 0.6341708982290303,
-         0.7744140625, 0.622562037497196, 0.639236102912278, 0.648263335014579,
-         0.65392850011132, 0.657816519817211, 0.660650782947676,
-         0.662808780346311, 0.6645068560246006, 0.7905273437499996,
-         0.6478843304312477, 0.6640468318879372, 0.6727589686071775,
-         0.6782129857784873, 0.681950188903695, 0.684671508668418,
-         0.686741824999918, 0.688369886732168, 0.803619384765625,
-         0.668716055304315, 0.684360013879534, 0.6927642396829181,
-         0.6980155964704895, 0.701609591890657, 0.7042244320992127,
-         0.7062125081341817, 0.707775152962577, 0.8145294189453126,
-         0.686243374488305, 0.7013873696358975, 0.709501223328243,
-         0.714563595144314, 0.718024953392931, 0.7205416252126137,
-         0.722454130389843, 0.723956813292035, 0.823802947998047,
-         0.701255953767043, 0.715928221686075, 0.723772209289768,
-         0.7286603031173616, 0.7319999279787631, 0.7344267920995765,
-         0.736270323773157, 0.737718376096348
-        ])
-
-    res4_p1 = [stats.binom_test(v+1, v*k, 1./k) for v in range(1, 11)
-                                                for k in range(2, 11)]
-    res4_m1 = [stats.binom_test(v-1, v*k, 1./k) for v in range(1, 11)
-                                                for k in range(2, 11)]
-
-    assert_almost_equal(res4_p1, binom_testp1, decimal=13)
-    assert_almost_equal(res4_m1, binom_testm1, decimal=13)
-
-
-class TestTrim(object):
-    # test trim functions
-    def test_trim1(self):
-        a = np.arange(11)
-        assert_equal(stats.trim1(a, 0.1), np.arange(10))
-        assert_equal(stats.trim1(a, 0.2), np.arange(9))
-        assert_equal(stats.trim1(a, 0.2, tail='left'), np.arange(2,11))
-        assert_equal(stats.trim1(a, 3/11., tail='left'), np.arange(3,11))
-
-    def test_trimboth(self):
-        a = np.arange(11)
-        assert_equal(stats.trimboth(a, 3/11.), np.arange(3,8))
-        assert_equal(stats.trimboth(a, 0.2), np.array([2, 3, 4, 5, 6, 7, 8]))
-        assert_equal(stats.trimboth(np.arange(24).reshape(6,4), 0.2),
-                     np.arange(4,20).reshape(4,4))
-        assert_equal(stats.trimboth(np.arange(24).reshape(4,6).T, 2/6.),
-               np.array([[2, 8, 14, 20],[3, 9, 15, 21]]))
-        assert_raises(ValueError, stats.trimboth,
-               np.arange(24).reshape(4,6).T, 4/6.)
-
-    def test_trim_mean(self):
-        # don't use pre-sorted arrays
-        a = np.array([4, 8, 2, 0, 9, 5, 10, 1, 7, 3, 6])
-        idx = np.array([3, 5, 0, 1, 2, 4])
-        a2 = np.arange(24).reshape(6, 4)[idx, :]
-        a3 = np.arange(24).reshape(6, 4, order='F')[idx, :]
-        assert_equal(stats.trim_mean(a3, 2/6.),
-                     np.array([2.5, 8.5, 14.5, 20.5]))
-        assert_equal(stats.trim_mean(a2, 2/6.),
-                     np.array([10., 11., 12., 13.]))
-        idx4 = np.array([1, 0, 3, 2])
-        a4 = np.arange(24).reshape(4, 6)[idx4, :]
-        assert_equal(stats.trim_mean(a4, 2/6.),
-                     np.array([9., 10., 11., 12., 13., 14.]))
-        # shuffled arange(24) as array_like
-        a = [7, 11, 12, 21, 16, 6, 22, 1, 5, 0, 18, 10, 17, 9, 19, 15, 23,
-             20, 2, 14, 4, 13, 8, 3]
-        assert_equal(stats.trim_mean(a, 2/6.), 11.5)
-        assert_equal(stats.trim_mean([5,4,3,1,2,0], 2/6.), 2.5)
-
-        # check axis argument
-        np.random.seed(1234)
-        a = np.random.randint(20, size=(5, 6, 4, 7))
-        for axis in [0, 1, 2, 3, -1]:
-            res1 = stats.trim_mean(a, 2/6., axis=axis)
-            res2 = stats.trim_mean(np.rollaxis(a, axis), 2/6.)
-            assert_equal(res1, res2)
-
-        res1 = stats.trim_mean(a, 2/6., axis=None)
-        res2 = stats.trim_mean(a.ravel(), 2/6.)
-        assert_equal(res1, res2)
-
-        assert_raises(ValueError, stats.trim_mean, a, 0.6)
-
-
-class TestSigamClip(object):
-    def test_sigmaclip1(self):
-        a = np.concatenate((np.linspace(9.5,10.5,31),np.linspace(0,20,5)))
-        fact = 4  # default
-        c, low, upp = stats.sigmaclip(a)
-        assert_(c.min() > low)
-        assert_(c.max() < upp)
-        assert_equal(low, c.mean() - fact*c.std())
-        assert_equal(upp, c.mean() + fact*c.std())
-        assert_equal(c.size, a.size)
-
-    def test_sigmaclip2(self):
-        a = np.concatenate((np.linspace(9.5,10.5,31),np.linspace(0,20,5)))
-        fact = 1.5
-        c, low, upp = stats.sigmaclip(a, fact, fact)
-        assert_(c.min() > low)
-        assert_(c.max() < upp)
-        assert_equal(low, c.mean() - fact*c.std())
-        assert_equal(upp, c.mean() + fact*c.std())
-        assert_equal(c.size, 4)
-        assert_equal(a.size, 36)  # check original array unchanged
-
-    def test_sigmaclip3(self):
-        a = np.concatenate((np.linspace(9.5,10.5,11),np.linspace(-100,-50,3)))
-        fact = 1.8
-        c, low, upp = stats.sigmaclip(a, fact, fact)
-        assert_(c.min() > low)
-        assert_(c.max() < upp)
-        assert_equal(low, c.mean() - fact*c.std())
-        assert_equal(upp, c.mean() + fact*c.std())
-        assert_equal(c, np.linspace(9.5,10.5,11))
-
-
-class TestFOneWay(TestCase):
-    def test_trivial(self):
-        # A trivial test of stats.f_oneway, with F=0.
-        F, p = stats.f_oneway([0,2], [0,2])
-        assert_equal(F, 0.0)
-
-    def test_basic(self):
-        # Despite being a floating point calculation, this data should
-        # result in F being exactly 2.0.
-        F, p = stats.f_oneway([0,2], [2,4])
-        assert_equal(F, 2.0)
-
-    def test_large_integer_array(self):
-        a = np.array([655, 788], dtype=np.uint16)
-        b = np.array([789, 772], dtype=np.uint16)
-        F, p = stats.f_oneway(a, b)
-        assert_almost_equal(F, 0.77450216931805538)
-
-
-class TestKruskal(TestCase):
-    def test_simple(self):
-        x = [1]
-        y = [2]
-        h, p = stats.kruskal(x, y)
-        assert_equal(h, 1.0)
-        assert_approx_equal(p, stats.chisqprob(h, 1))
-        h, p = stats.kruskal(np.array(x), np.array(y))
-        assert_equal(h, 1.0)
-        assert_approx_equal(p, stats.chisqprob(h, 1))
-
-    def test_basic(self):
-        x = [1, 3, 5, 7, 9]
-        y = [2, 4, 6, 8, 10]
-        h, p = stats.kruskal(x, y)
-        assert_approx_equal(h, 3./11, significant=10)
-        assert_approx_equal(p, stats.chisqprob(3./11, 1))
-        h, p = stats.kruskal(np.array(x), np.array(y))
-        assert_approx_equal(h, 3./11, significant=10)
-        assert_approx_equal(p, stats.chisqprob(3./11, 1))
-
-    def test_simple_tie(self):
-        x = [1]
-        y = [1, 2]
-        h_uncorr = 1.5**2 + 2*2.25**2 - 12
-        corr = 0.75
-        expected = h_uncorr / corr   # 0.5
-        h, p = stats.kruskal(x, y)
-        # Since the expression is simple and the exact answer is 0.5, it
-        # should be safe to use assert_equal().
-        assert_equal(h, expected)
-
-    def test_another_tie(self):
-        x = [1, 1, 1, 2]
-        y = [2, 2, 2, 2]
-        h_uncorr = (12. / 8. / 9.) * 4 * (3**2 + 6**2) - 3 * 9
-        corr = 1 - float(3**3 - 3 + 5**3 - 5) / (8**3 - 8)
-        expected = h_uncorr / corr
-        h, p = stats.kruskal(x, y)
-        assert_approx_equal(h, expected)
-
-    def test_three_groups(self):
-        # A test of stats.kruskal with three groups, with ties.
-        x = [1, 1, 1]
-        y = [2, 2, 2]
-        z = [2, 2]
-        h_uncorr = (12. / 8. / 9.) * (3*2**2 + 3*6**2 + 2*6**2) - 3 * 9  # 5.0
-        corr = 1 - float(3**3 - 3 + 5**3 - 5) / (8**3 - 8)
-        expected = h_uncorr / corr  # 7.0
-        h, p = stats.kruskal(x, y, z)
-        assert_approx_equal(h, expected)
-        assert_approx_equal(p, stats.chisqprob(h, 2))
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/tests/test_tukeylambda_stats.py b/wafo/stats/tests/test_tukeylambda_stats.py
deleted file mode 100644
index 9d3d654..0000000
--- a/wafo/stats/tests/test_tukeylambda_stats.py
+++ /dev/null
@@ -1,91 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-from numpy.testing import assert_allclose, assert_equal, run_module_suite
-
-from scipy.stats._tukeylambda_stats import tukeylambda_variance, \
-                                            tukeylambda_kurtosis
-
-
-def test_tukeylambda_stats_known_exact():
-    """Compare results with some known exact formulas."""
-    # Some exact values of the Tukey Lambda variance and kurtosis:
-    # lambda   var      kurtosis
-    #   0     pi**2/3     6/5     (logistic distribution)
-    #  0.5    4 - pi    (5/3 - pi/2)/(pi/4 - 1)**2 - 3
-    #   1      1/3       -6/5     (uniform distribution on (-1,1))
-    #   2      1/12      -6/5     (uniform distribution on (-1/2, 1/2))
-
-    # lambda = 0
-    var = tukeylambda_variance(0)
-    assert_allclose(var, np.pi**2 / 3, atol=1e-12)
-    kurt = tukeylambda_kurtosis(0)
-    assert_allclose(kurt, 1.2, atol=1e-10)
-
-    # lambda = 0.5
-    var = tukeylambda_variance(0.5)
-    assert_allclose(var, 4 - np.pi, atol=1e-12)
-    kurt = tukeylambda_kurtosis(0.5)
-    desired = (5./3 - np.pi/2) / (np.pi/4 - 1)**2 - 3
-    assert_allclose(kurt, desired, atol=1e-10)
-
-    # lambda = 1
-    var = tukeylambda_variance(1)
-    assert_allclose(var, 1.0 / 3, atol=1e-12)
-    kurt = tukeylambda_kurtosis(1)
-    assert_allclose(kurt, -1.2, atol=1e-10)
-
-    # lambda = 2
-    var = tukeylambda_variance(2)
-    assert_allclose(var, 1.0 / 12, atol=1e-12)
-    kurt = tukeylambda_kurtosis(2)
-    assert_allclose(kurt, -1.2, atol=1e-10)
-
-
-def test_tukeylambda_stats_mpmath():
-    """Compare results with some values that were computed using mpmath."""
-    a10 = dict(atol=1e-10, rtol=0)
-    a12 = dict(atol=1e-12, rtol=0)
-    data = [
-        # lambda        variance              kurtosis
-        [-0.1, 4.78050217874253547, 3.78559520346454510],
-        [-0.0649, 4.16428023599895777, 2.52019675947435718],
-        [-0.05, 3.93672267890775277, 2.13129793057777277],
-        [-0.001, 3.30128380390964882, 1.21452460083542988],
-        [0.001, 3.27850775649572176, 1.18560634779287585],
-        [0.03125, 2.95927803254615800, 0.804487555161819980],
-        [0.05, 2.78281053405464501, 0.611604043886644327],
-        [0.0649, 2.65282386754100551, 0.476834119532774540],
-        [1.2, 0.242153920578588346, -1.23428047169049726],
-        [10.0, 0.00095237579757703597, 2.37810697355144933],
-        [20.0, 0.00012195121951131043, 7.37654321002709531],
-    ]
-
-    for lam, var_expected, kurt_expected in data:
-        var = tukeylambda_variance(lam)
-        assert_allclose(var, var_expected, **a12)
-        kurt = tukeylambda_kurtosis(lam)
-        assert_allclose(kurt, kurt_expected, **a10)
-
-    # Test with vector arguments (most of the other tests are for single
-    # values).
-    lam, var_expected, kurt_expected = zip(*data)
-    var = tukeylambda_variance(lam)
-    assert_allclose(var, var_expected, **a12)
-    kurt = tukeylambda_kurtosis(lam)
-    assert_allclose(kurt, kurt_expected, **a10)
-
-
-def test_tukeylambda_stats_invalid():
-    """Test values of lambda outside the domains of the functions."""
-    lam = [-1.0, -0.5]
-    var = tukeylambda_variance(lam)
-    assert_equal(var, np.array([np.nan, np.inf]))
-
-    lam = [-1.0, -0.25]
-    kurt = tukeylambda_kurtosis(lam)
-    assert_equal(kurt, np.array([np.nan, np.inf]))
-
-
-if __name__ == "__main__":
-    run_module_suite()
diff --git a/wafo/stats/twolumps.py b/wafo/stats/twolumps.py
deleted file mode 100644
index d0eb627..0000000
--- a/wafo/stats/twolumps.py
+++ /dev/null
@@ -1,412 +0,0 @@
-"""
-Commentary
-----------
-
-Most of the work is done by the scipy.stats.distributions module.
-
-This provides a plethora of continuous distributions to play with.
-
-Each distribution has functions to generate random deviates, pdf's,
-cdf's etc. as well as a function to fit the distribution to some given
-data.
-
-The fitting uses scipy.optimize.fmin to minimise the log odds of the
-data given the distribution.
-
-There are a couple of problems with this approach.  First it is
-sensitive to the initial guess at the parameters.  Second it can be a
-little slow.
-
-Two key parameters are the 'loc' and 'scale' parameters.  Data is
-shifted by 'loc' and scaled by scale prior to fitting.  Supplying
-appropriate values for these parameters is important to getting a good
-fit.
-
-See the factory() function which picks from a handful of common
-approaches for each distribution.
-
-For some distributions (eg normal) it really makes sense just to
-calculate the parameters directly from the data.
-
-The code in the __ifmain__ should be a good guide how to use this.
-
-Simply:
-      get a QuickFit object
-      add the distributions you want to try to fit
-      call fit() with your data
-      call fit_stats() to generate some stats on the fit.
-      call plot() if you want to see a plot.
-
-
-Named after Mrs Twolumps, minister's secretary in the silly walks
-sketch, who brings in coffee with a full silly walk.
-
-Tenuous link with curve fitting is that you generally see "two lumps"
-one in your data and the other in the curve that is being fitted.
-
-Or alternately, if your data is not too silly then you can fit a
-curve to it.
-
-License is GNU LGPL v3, see https://launchpad.net/twolumps
-"""
-import inspect
-from itertools import izip
-
-import numpy
-from wafo import stats
-from scipy import mean, std
-
-def factory(name):
-    """ Factory to return appropriate objects for each distro. """
-    fitters = dict(
-
-        beta=ZeroOneScipyDistribution,
-        alpha=ZeroOneScipyDistribution,
-        ncf=ZeroOneScipyDistribution,
-        triang=ZeroOneScipyDistribution,
-        uniform=ZeroOneScipyDistribution,
-        powerlaw=ZeroOneScipyDistribution,
-
-        pareto=MinLocScipyDistribution,
-        expon=MinLocScipyDistribution,
-        gamma=MinLocScipyDistribution,
-        lognorm=MinLocScipyDistribution,
-        maxwell=MinLocScipyDistribution,
-        weibull_min=MinLocScipyDistribution,
-
-        weibull_max=MaxLocScipyDistribution)
-
-    return fitters.get(name, ScipyDistribution)(name)
-  
-
-def get_continuous_distros():
-    """ Find all attributes of stats that are continuous distributions. """
-    
-    fitters = []
-    skip = set()
-    for name, item in inspect.getmembers(stats):
-        if name in skip: continue
-        if item is stats.rv_continuous: continue
-        if isinstance(item, stats.rv_continuous):
-            fitters.append([name, factory(name)])
-
-    return fitters
-
-
-class ScipyDistribution(object):
-
-    def __init__(self, name):
-
-        self.name = name
-        self.distro = self.get_distro()
-        self.fitted = None
-
-    def __getattr__(self, attr):
-        """ Try delegating to the distro object """
-        return getattr(self.distro, attr)
-
-    def get_distro(self):
-
-        return getattr(stats, self.name)
-    
-    def set_distro(self, parms):
-        
-        self.distro = getattr(stats, self.name)(*parms)
-
-        return self.distro
-
-    def calculate_loc_and_scale(self, data):
-        """ Calculate loc and scale parameters for fit.
-
-        Depending on the distribution, these need to be approximately
-        right to get a good fit.
-        """
-        return mean(data), std(data)
-        
-    def fit(self, data, *args, **kwargs):
-        """ This needs some work.
-
-        Seems the various scipy distributions do a reasonable job if given a good hint.
-
-        Need to get distro specific hints.
-        """
-
-        fits = []
-
-        # try with and without providing loc and scale hints
-        # increases chance of a fit without an exception being
-        # generated.
-        for (loc, scale) in ((0.0, 1.0),
-                             self.calculate_loc_and_scale(data)):
-
-            try:
-                parms = self.get_distro().fit(data, loc=loc, scale=scale)
-                    
-                self.set_distro(list(parms))
-                expected = self.expected(data)
-                rss = ((expected-data)**2).sum()
-                fits.append([rss, list(parms)])
-                
-                parms = self.get_distro().fit(data, floc=loc, scale=scale)
-                    
-                self.set_distro(list(parms))
-                expected = self.expected(data)
-                rss = ((expected-data)**2).sum()
-                fits.append([rss, list(parms)])
-            except:
-                pass
-
-        # no fits means all tries raised exceptions
-        if not fits:
-            raise Exception("Exception in fit()")
-
-        # pick the one with the smallest rss
-        fits.sort()
-        self.parms = fits[0][1]
-        print self.parms
-    
-        return self.set_distro(list(self.parms))
-
-    def expected(self, data):
-        """ Calculate expected values at each data point """
-        if self.fitted is not None:
-            return self.fitted
-
-        n = len(data)
-        xx = numpy.linspace(0, 1, n + 2)[1:-1]
-        self.fitted = self.ppf(xx)
-        #self.fitted = [self.ppf(x) for x in xx]
-
-        return self.fitted
-    
-    def fit_stats(self, data):
-        """ Return stats on the fits
-
-        data assumed to be sorted.
-        """
-        n = len(data)
-
-        dvar = numpy.var(data)
-        expected = self.expected(data)
-        evar = numpy.var(expected)
-
-        rss = 0.0
-        for expect, obs in izip(expected, data):
-            rss += (obs-expect) ** 2.0
-
-        self.rss = rss
-        self.dss = dvar * n
-        self.fss = evar * n
-        
-    def residuals(self, data):
-        """ Return residuals """
-        expected = self.expected(data)
-
-        return numpy.array(data) - numpy.array(expected)
-        
-
-
-class MinLocScipyDistribution(ScipyDistribution):
-
-    def calculate_loc_and_scale(self, data):
-        """ Set loc to min value in the data.
-
-        Useful for weibull_min
-        """
-        return min(data), std(data)
-
-class MaxLocScipyDistribution(ScipyDistribution):
-
-    def calculate_loc_and_scale(self, data):
-        """ Set loc to max value in the data.
-
-        Useful for weibull_max
-        """
-        return max(data), std(data)
-
-class ZeroOneScipyDistribution(ScipyDistribution):
-
-    def calculate_loc_and_scale(self, data):
-        """ Set loc and scale to move to [0, 1] interval.
-
-        Useful for beta distribution
-        """
-        return min(data), max(data)-min(data)
-
-class QuickFit(object):
-    """ Fit a family of distributions.
-
-    Calculates stats on each fit.
-
-    Option to create plots.
-    """
-
-    def __init__(self):
-
-        self.distributions = []
-
-    def add_distribution(self, distribution):
-        """ Add a ready-prepared ScipyDistribution """
-        self.distributions.append(distribution)
-
-    def add(self, name):
-        """ Add a distribution by name. """
-
-        self.distributions.append(factory(name))
-
-    def fit(self, data):
-        """ Fit all of the distros we have """
-        fitted = []
-        for distro in self.distributions:
-            print 'fitting distro', distro.name
-            try:
-                distro.fit(data)
-            except:
-                continue
-            fitted.append(distro)
-        self.distributions = fitted
-            
-        print 'finished fitting'
-
-    def stats(self, data):
-        """ Return stats on the fits """
-        for dd in self.distributions:
-            dd.fit_stats(data)
-
-    def get_topn(self, n):
-        """ Return top-n best fits. """
-        data = [[x.rss, x] for x in self.distributions if numpy.isfinite(x.rss)]
-        data.sort()
-
-        if not n:
-            n = len(data)
-
-        return [x[1] for x in data[:n]]
-
-    def fit_plot(self, data, topn=0, bins=20):
-        """ Create a plot. """
-        from matplotlib import pylab as pl
-
-        distros = self.get_topn(topn)
-
-        xx = numpy.linspace(data.min(), data.max(), 300)
-
-        table = []
-        nparms = max(len(x.parms) for x in distros)
-        tcolours = []
-        for dd in distros:
-            patch = pl.plot(xx, [dd.pdf(p) for p in xx], label='%10.2f%% %s' % (100.0*dd.rss/dd.dss, dd.name))
-            row = ['', dd.name, '%10.2f%%' % (100.0*dd.rss/dd.dss,)] + ['%0.2f' % x for x in dd.parms]
-            while len(row) < 3 + nparms:
-                row.append('')
-            table.append(row)
-            tcolours.append([patch[0].get_markerfacecolor()] + ['w'] * (2+nparms))
-
-        # add a historgram with the data
-        pl.hist(data, bins=bins, normed=True)
-        tab = pl.table(cellText=table, cellColours=tcolours,
-                       colLabels=['', 'Distribution', 'Res. SS/Data SS'] + ['P%d' % (x + 1,) for x in range(nparms)],
-                       bbox=(0.0, 1.0, 1.0, 0.3))
-                 #loc='top'))
-        #pl.legend(loc=0)
-        tab.auto_set_font_size(False)
-        tab.set_fontsize(10.)
-
-    def residual_plot(self, data, topn=0):
-        """ Create a residual plot. """
-        from matplotlib import pylab as pl
-
-        distros = self.get_topn(topn)
-
-
-        n = len(data)
-        xx = numpy.linspace(0, 1, n + 2)[1:-1]
-        for dd in distros:
-
-            pl.plot(xx, dd.residuals(data), label='%10.2f%% %s' % (100.0*dd.rss/dd.dss, dd.name))
-        pl.grid(True)
-
-    def plot(self, data, topn):
-        """ Plot data fit and residuals """
-        from matplotlib import pylab as pl
-        pl.axes([0.1, 0.4, 0.8, 0.4])   # leave room above the axes for the table
-        self.fit_plot(data, topn=topn)
-
-        pl.axes([0.1, 0.05, 0.8, 0.3]) 
-        self.residual_plot(data, topn=topn)
-
-
-def read_data(infile, field):
-    """ Simple utility to extract a field out of a csv file. """
-    import csv
-
-    reader = csv.reader(infile)
-    header = reader.next()
-    field = header.index(field)
-    data = []
-    for row in reader:
-        data.append(float(row[field]))
-
-    return data
-        
-if __name__ == '__main__':
-
-    import sys
-    import optparse
-
-    from matplotlib import pylab as pl
-    
-    parser = optparse.OptionParser()
-    parser.add_option('-d', '--distro', action='append', default=[])
-    parser.add_option('-l', '--list', action='store_true',
-                      help='List available distros')
-
-    parser.add_option('-i', '--infile')
-    parser.add_option('-f', '--field', default='P/L')
-
-    parser.add_option('-n', '--topn', type='int', default=0)
-
-    parser.add_option('-s', '--sample', default='normal',
-                      help='generate a sample from this distro as a test')
-    parser.add_option('--size', type='int', default=1000,
-                      help='Size of sample to generate')
-
-    
-    opts, args = parser.parse_args()
-    
-    if opts.list:
-        for name, distro in get_continuous_distros():
-            print name
-        sys.exit()
-    opts.distro = ['weibull_min', 'norm']
-    if not opts.distro:
-        opts.distro = [x[0] for x in get_continuous_distros()]
-
-    quickfit = QuickFit()
-    for distro in opts.distro:
-        quickfit.add(distro)
-
-    if opts.sample:
-        data = getattr(numpy.random, opts.sample)(size=opts.size)
-    else:
-        data = numpy.array(read_data(open(opts.infile), opts.field))
-        
-    data.sort()
-
-    quickfit.fit(data)
-    print 'doing stats'
-    quickfit.stats(data)
-
-    print 'doing plot'
-    quickfit.plot(data, topn=opts.topn)
-    pl.show()
-    
-        
-
-    
-
-    
-
-        
-
-    
diff --git a/wafo/stats/vonmises.py b/wafo/stats/vonmises.py
deleted file mode 100644
index 753bf6b..0000000
--- a/wafo/stats/vonmises.py
+++ /dev/null
@@ -1,47 +0,0 @@
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-import scipy.stats
-from scipy.special import i0
-
-
-def von_mises_cdf_series(k,x,p):
-    x = float(x)
-    s = np.sin(x)
-    c = np.cos(x)
-    sn = np.sin(p*x)
-    cn = np.cos(p*x)
-    R = 0
-    V = 0
-    for n in range(p-1,0,-1):
-        sn, cn = sn*c - cn*s, cn*c + sn*s
-        R = 1./(2*n/k + R)
-        V = R*(sn/n+V)
-
-    return 0.5+x/(2*np.pi) + V/np.pi
-
-
-def von_mises_cdf_normalapprox(k,x,C1):
-    b = np.sqrt(2/np.pi)*np.exp(k)/i0(k)
-    z = b*np.sin(x/2.)
-    return scipy.stats.norm.cdf(z)
-
-
-def von_mises_cdf(k,x):
-    ix = 2*np.pi*np.round(x/(2*np.pi))
-    x = x-ix
-    k = float(k)
-
-    # These values should give 12 decimal digits
-    CK = 50
-    a = [28., 0.5, 100., 5.0]
-    C1 = 50.1
-
-    if k < CK:
-        p = int(np.ceil(a[0]+a[1]*k-a[2]/(k+a[3])))
-
-        F = np.clip(von_mises_cdf_series(k,x,p),0,1)
-    else:
-        F = von_mises_cdf_normalapprox(k,x,C1)
-
-    return F+ix
diff --git a/wafo/stats/vonmises_cython.pyx b/wafo/stats/vonmises_cython.pyx
deleted file mode 100644
index 4c24986..0000000
--- a/wafo/stats/vonmises_cython.pyx
+++ /dev/null
@@ -1,76 +0,0 @@
-import numpy as np
-import scipy.stats
-from scipy.special import i0
-import numpy.testing
-cimport numpy as np
-
-cdef extern from "math.h":
-    double cos(double theta)
-    double sin(double theta)
-
-
-cdef double von_mises_cdf_series(double k,double x,unsigned int p):
-    cdef double s, c, sn, cn, R, V
-    cdef unsigned int n
-    s = sin(x)
-    c = cos(x)
-    sn = sin(p*x)
-    cn = cos(p*x)
-    R = 0
-    V = 0
-    for n in range(p-1,0,-1):
-        sn, cn = sn*c - cn*s, cn*c + sn*s
-        R = 1./(2*n/k + R)
-        V = R*(sn/n+V)
-
-    return 0.5+x/(2*np.pi) + V/np.pi
-
-def von_mises_cdf_normalapprox(k,x,C1):
-    b = np.sqrt(2/np.pi)*np.exp(k)/i0(k)
-    z = b*np.sin(x/2.)
-    C = 24*k
-    chi = z - z**3/((C-2*z**2-16)/3.-(z**4+7/4.*z**2+167./2)/(C+C1-z**2+3))**2
-    return scipy.stats.norm.cdf(z)
-
-cimport cython
-@cython.boundscheck(False)
-def von_mises_cdf(k,x):
-    cdef np.ndarray[double, ndim=1] temp, temp_xs, temp_ks
-    cdef unsigned int i, p
-    cdef double a1, a2, a3, a4, C1, CK
-    #k,x = np.broadcast_arrays(np.asarray(k),np.asarray(x))
-    k = np.asarray(k)
-    x = np.asarray(x)
-    zerodim = k.ndim==0 and x.ndim==0
-
-    k = np.atleast_1d(k)
-    x = np.atleast_1d(x)
-    ix = np.round(x/(2*np.pi))
-    x = x-ix*2*np.pi
-
-    # These values should give 12 decimal digits
-    CK=50
-    a1, a2, a3, a4 = [28., 0.5, 100., 5.0]
-    C1 = 50.1
-
-    bx, bk = np.broadcast_arrays(x,k)
-    result = np.empty(bx.shape,dtype=np.float)
-     
-    c_small_k = bk<CK
-    temp = result[c_small_k]
-    temp_xs = bx[c_small_k].astype(np.float)
-    temp_ks = bk[c_small_k].astype(np.float)
-    for i in range(len(temp)):
-        p = <int>(1+a1+a2*temp_ks[i]-a3/(temp_ks[i]+a4))
-        temp[i] = von_mises_cdf_series(temp_ks[i],temp_xs[i],p)
-        if temp[i]<0:
-            temp[i]=0
-        elif temp[i]>1:
-            temp[i]=1
-    result[c_small_k] = temp
-    result[~c_small_k] = von_mises_cdf_normalapprox(bk[~c_small_k],bx[~c_small_k],C1)
-
-    if not zerodim:
-        return result+ix
-    else:
-        return (result+ix)[0]