|
|
|
@ -9,11 +9,10 @@ Author: Per A. Brodtkorb 2008
|
|
|
|
|
|
|
|
|
|
from __future__ import division, absolute_import
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
from scipy.stats import rv_continuous
|
|
|
|
|
from wafo.plotbackend import plotbackend as plt
|
|
|
|
|
from wafo.misc import ecross, findcross, argsreduce
|
|
|
|
|
from wafo.stats._constants import _EPS, _XMAX, _XMIN
|
|
|
|
|
from wafo.stats._distn_infrastructure import rv_frozen, rv_continuous
|
|
|
|
|
from wafo.misc import ecross, findcross
|
|
|
|
|
from wafo.stats._constants import _EPS # , _XMAX, _XMIN
|
|
|
|
|
from scipy._lib.six import string_types
|
|
|
|
|
import numdifftools as nd # @UnresolvedImport
|
|
|
|
|
from scipy import special
|
|
|
|
@ -36,6 +35,157 @@ arr = asarray
|
|
|
|
|
# all = alltrue # @ReservedAssignment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert_warn(cond, msg):
|
|
|
|
|
if not cond:
|
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert(cond, msg):
|
|
|
|
|
if not cond:
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert_index(cond, msg):
|
|
|
|
|
if not cond:
|
|
|
|
|
raise IndexError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assert_not_implemented(cond, msg):
|
|
|
|
|
if not cond:
|
|
|
|
|
raise NotImplementedError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Frozen RV class
|
|
|
|
|
class rv_frozen(object):
|
|
|
|
|
''' Frozen continous or discrete 1D Random Variable object (RV)
|
|
|
|
|
|
|
|
|
|
Methods
|
|
|
|
|
-------
|
|
|
|
|
rvs(size=1)
|
|
|
|
|
Random variates.
|
|
|
|
|
pdf(x)
|
|
|
|
|
Probability density function.
|
|
|
|
|
cdf(x)
|
|
|
|
|
Cumulative density function.
|
|
|
|
|
sf(x)
|
|
|
|
|
Survival function (1-cdf --- sometimes more accurate).
|
|
|
|
|
ppf(q)
|
|
|
|
|
Percent point function (inverse of cdf --- percentiles).
|
|
|
|
|
isf(q)
|
|
|
|
|
Inverse survival function (inverse of sf).
|
|
|
|
|
stats(moments='mv')
|
|
|
|
|
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
|
|
|
|
|
moment(n)
|
|
|
|
|
n-th order non-central moment of distribution.
|
|
|
|
|
entropy()
|
|
|
|
|
(Differential) entropy of the RV.
|
|
|
|
|
interval(alpha)
|
|
|
|
|
Confidence interval with equal areas around the median.
|
|
|
|
|
expect(func, lb, ub, conditional=False)
|
|
|
|
|
Calculate expected value of a function with respect to the
|
|
|
|
|
distribution.
|
|
|
|
|
'''
|
|
|
|
|
def __init__(self, dist, *args, **kwds):
|
|
|
|
|
# create a new instance
|
|
|
|
|
self.dist = dist # .__class__(**dist._ctor_param)
|
|
|
|
|
shapes, loc, scale = self.dist._parse_args(*args, **kwds)
|
|
|
|
|
if isinstance(dist, rv_continuous):
|
|
|
|
|
self.par = shapes + (loc, scale)
|
|
|
|
|
else: # rv_discrete
|
|
|
|
|
self.par = shapes + (loc,)
|
|
|
|
|
self.a = self.dist.a
|
|
|
|
|
self.b = self.dist.b
|
|
|
|
|
self.shapes = self.dist.shapes
|
|
|
|
|
# @property
|
|
|
|
|
# def shapes(self):
|
|
|
|
|
# return self.dist.shapes
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def random_state(self):
|
|
|
|
|
return self.dist._random_state
|
|
|
|
|
|
|
|
|
|
@random_state.setter
|
|
|
|
|
def random_state(self, seed):
|
|
|
|
|
self.dist._random_state = check_random_state(seed)
|
|
|
|
|
|
|
|
|
|
def pdf(self, x):
|
|
|
|
|
''' Probability density function at x of the given RV.'''
|
|
|
|
|
return self.dist.pdf(x, *self.par)
|
|
|
|
|
|
|
|
|
|
def logpdf(self, x):
|
|
|
|
|
return self.dist.logpdf(x, *self.par)
|
|
|
|
|
|
|
|
|
|
def cdf(self, x):
|
|
|
|
|
'''Cumulative distribution function at x of the given RV.'''
|
|
|
|
|
return self.dist.cdf(x, *self.par)
|
|
|
|
|
|
|
|
|
|
def logcdf(self, x):
|
|
|
|
|
return self.dist.logcdf(x, *self.par)
|
|
|
|
|
|
|
|
|
|
def ppf(self, q):
|
|
|
|
|
'''Percent point function (inverse of cdf) at q of the given RV.'''
|
|
|
|
|
return self.dist.ppf(q, *self.par)
|
|
|
|
|
|
|
|
|
|
def isf(self, q):
|
|
|
|
|
'''Inverse survival function at q of the given RV.'''
|
|
|
|
|
return self.dist.isf(q, *self.par)
|
|
|
|
|
|
|
|
|
|
def rvs(self, size=None, random_state=None):
|
|
|
|
|
kwds = {'size': size, 'random_state': random_state}
|
|
|
|
|
return self.dist.rvs(*self.par, **kwds)
|
|
|
|
|
|
|
|
|
|
def sf(self, x):
|
|
|
|
|
'''Survival function (1-cdf) at x of the given RV.'''
|
|
|
|
|
return self.dist.sf(x, *self.par)
|
|
|
|
|
|
|
|
|
|
def logsf(self, x):
|
|
|
|
|
return self.dist.logsf(x, *self.par)
|
|
|
|
|
|
|
|
|
|
def stats(self, moments='mv'):
|
|
|
|
|
''' Some statistics of the given RV'''
|
|
|
|
|
kwds = dict(moments=moments)
|
|
|
|
|
return self.dist.stats(*self.par, **kwds)
|
|
|
|
|
|
|
|
|
|
def median(self):
|
|
|
|
|
return self.dist.median(*self.par)
|
|
|
|
|
|
|
|
|
|
def mean(self):
|
|
|
|
|
return self.dist.mean(*self.par)
|
|
|
|
|
|
|
|
|
|
def var(self):
|
|
|
|
|
return self.dist.var(*self.par)
|
|
|
|
|
|
|
|
|
|
def std(self):
|
|
|
|
|
return self.dist.std(*self.par)
|
|
|
|
|
|
|
|
|
|
def moment(self, n):
|
|
|
|
|
return self.dist.moment(n, *self.par)
|
|
|
|
|
|
|
|
|
|
def entropy(self):
|
|
|
|
|
return self.dist.entropy(*self.par)
|
|
|
|
|
|
|
|
|
|
def pmf(self, k):
|
|
|
|
|
'''Probability mass function at k of the given RV'''
|
|
|
|
|
return self.dist.pmf(k, *self.par)
|
|
|
|
|
|
|
|
|
|
def logpmf(self, k):
|
|
|
|
|
return self.dist.logpmf(k, *self.par)
|
|
|
|
|
|
|
|
|
|
def interval(self, alpha):
|
|
|
|
|
return self.dist.interval(alpha, *self.par)
|
|
|
|
|
|
|
|
|
|
def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds):
|
|
|
|
|
if isinstance(self.dist, rv_continuous):
|
|
|
|
|
a, loc, scale = self.par[:-2], self.par[:-2], self.par[-1]
|
|
|
|
|
return self.dist.expect(func, a, loc, scale, lb, ub, conditional,
|
|
|
|
|
**kwds)
|
|
|
|
|
|
|
|
|
|
a, loc = self.par[:-1], self.par[-1]
|
|
|
|
|
if kwds:
|
|
|
|
|
raise ValueError("Discrete expect does not accept **kwds.")
|
|
|
|
|
return self.dist.expect(func, a, loc, lb, ub, conditional)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _burr_link(x, logsf, phat, ix):
|
|
|
|
|
c, d, loc, scale = phat
|
|
|
|
|
logp = log(-expm1(logsf))
|
|
|
|
@ -90,43 +240,43 @@ def _genpareto_link(x, logsf, phat, ix):
|
|
|
|
|
# Stuart Coles (2004)
|
|
|
|
|
# "An introduction to statistical modelling of extreme values".
|
|
|
|
|
# Springer series in statistics
|
|
|
|
|
_assert_not_implemented(ix != 0, 'link(x,logsf,phat,i) where i=0 is '
|
|
|
|
|
'not implemented!')
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
if c == 0:
|
|
|
|
|
return _expon_link(x, logsf, phat[1:], ix-1)
|
|
|
|
|
if ix == 2:
|
|
|
|
|
# Reorganizing w.r.t.scale, Eq. 4.13 and 4.14, pp 81 in
|
|
|
|
|
# Coles (2004) gives
|
|
|
|
|
# link = -(x-loc)*c/expm1(-c*logsf)
|
|
|
|
|
if c != 0.0:
|
|
|
|
|
phati = (x - loc) * c / expm1(-c * logsf)
|
|
|
|
|
else:
|
|
|
|
|
phati = -(x - loc) / logsf
|
|
|
|
|
elif ix == 1:
|
|
|
|
|
if c != 0:
|
|
|
|
|
phati = x + scale * expm1(c * logsf) / c
|
|
|
|
|
else:
|
|
|
|
|
phati = x + scale * logsf
|
|
|
|
|
elif ix == 0:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
'link(x,logsf,phat,i) where i=0 is not implemented!')
|
|
|
|
|
else:
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
return phati
|
|
|
|
|
return (x - loc) * c / expm1(-c * logsf)
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return x + scale * expm1(c * logsf) / c
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gumbel_r_link(x, logsf, phat, ix):
|
|
|
|
|
loc, scale = phat
|
|
|
|
|
loglogP = log(-log(-expm1(logsf)))
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return -(x - loc) / loglogP
|
|
|
|
|
if ix == 1:
|
|
|
|
|
return x + scale * loglogP
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _genextreme_link(x, logsf, phat, ix):
|
|
|
|
|
_assert_not_implemented(ix != 0, 'link(x,logsf,phat,i) where i=0 is not '
|
|
|
|
|
'implemented!')
|
|
|
|
|
c, loc, scale = phat
|
|
|
|
|
if c == 0:
|
|
|
|
|
return _gumbel_r_link(x, logsf, phat[1:], ix-1)
|
|
|
|
|
loglogP = log(-log(-expm1(logsf)))
|
|
|
|
|
if ix == 2:
|
|
|
|
|
# link = -(x-loc)*c/expm1(c*log(-logP))
|
|
|
|
|
if c != 0.0:
|
|
|
|
|
return -(x - loc) * c / expm1(c * loglogP)
|
|
|
|
|
return -(x - loc) / loglogP
|
|
|
|
|
return -(x - loc) * c / expm1(c * loglogP)
|
|
|
|
|
if ix == 1:
|
|
|
|
|
if c != 0:
|
|
|
|
|
return x + scale * expm1(c * loglogP) / c
|
|
|
|
|
return x + scale * loglogP
|
|
|
|
|
if ix == 0:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
'link(x,logsf,phat,i) where i=0 is not implemented!')
|
|
|
|
|
return x + scale * expm1(c * loglogP) / c
|
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -168,6 +318,7 @@ LINKS = dict(expon=_expon_link,
|
|
|
|
|
frechet_r=_weibull_min_link,
|
|
|
|
|
genpareto=_genpareto_link,
|
|
|
|
|
genexpon=_genexpon_link,
|
|
|
|
|
gumbel_r=_gumbel_r_link,
|
|
|
|
|
rayleigh=_rayleigh_link,
|
|
|
|
|
trunclayleigh=_trunclayleigh_link,
|
|
|
|
|
genextreme=_genextreme_link,
|
|
|
|
@ -414,9 +565,9 @@ class Profile(object):
|
|
|
|
|
p_low, p_up = self._approx_p_min_max(p_opt)
|
|
|
|
|
pmin, pmax = self.pmin, self.pmax
|
|
|
|
|
if pmin is None:
|
|
|
|
|
pmin = self._search_pmin(phatfree0, p_low, p_opt)
|
|
|
|
|
pmin = self._search_pminmax(phatfree0, p_low, p_opt, 'min')
|
|
|
|
|
if pmax is None:
|
|
|
|
|
pmax = self._search_pmax(phatfree0, p_up, p_opt)
|
|
|
|
|
pmax = self._search_pminmax(phatfree0, p_up, p_opt, 'max')
|
|
|
|
|
return pmin, pmax
|
|
|
|
|
|
|
|
|
|
def _adaptive_pvec(self, p_opt, pmin, pmax):
|
|
|
|
@ -438,58 +589,32 @@ class Profile(object):
|
|
|
|
|
return self._adaptive_pvec(p_opt, pmin, pmax)
|
|
|
|
|
return np.linspace(self.pmin, self.pmax, self.n)
|
|
|
|
|
|
|
|
|
|
def _search_pmin(self, phatfree0, p_min0, p_opt):
|
|
|
|
|
def _search_pminmax(self, phatfree0, p_minmax0, p_opt, direction):
|
|
|
|
|
phatfree = phatfree0.copy()
|
|
|
|
|
|
|
|
|
|
dp = np.maximum((p_opt - p_min0)/40, 0.01)*10
|
|
|
|
|
sign = -1 if direction == 'min' else 1
|
|
|
|
|
dp = np.maximum(sign*(p_minmax0 - p_opt) / 40, 0.01) * 10
|
|
|
|
|
Lmax, phatfree = self._profile_optimum(phatfree, p_opt)
|
|
|
|
|
p_min_opt = p_min0
|
|
|
|
|
p_minmax_opt = p_minmax0
|
|
|
|
|
for j in range(51):
|
|
|
|
|
p_min = p_opt - dp
|
|
|
|
|
Lmax, phatfree = self._profile_optimum(phatfree, p_min)
|
|
|
|
|
# print((dp, p_min, p_min_opt, Lmax))
|
|
|
|
|
p_minmax = p_opt + sign * dp
|
|
|
|
|
Lmax, phatfree = self._profile_optimum(phatfree, p_minmax)
|
|
|
|
|
# print((dp, p_minmax, p_minmax_opt, Lmax))
|
|
|
|
|
if np.isnan(Lmax):
|
|
|
|
|
dp *= 0.33
|
|
|
|
|
elif Lmax < self.alpha_cross_level - self.alpha_Lrange*5*(j+1):
|
|
|
|
|
p_min_opt = p_min
|
|
|
|
|
p_minmax_opt = p_minmax
|
|
|
|
|
dp *= 0.33
|
|
|
|
|
elif Lmax < self.alpha_cross_level:
|
|
|
|
|
p_min_opt = p_min
|
|
|
|
|
p_minmax_opt = p_minmax
|
|
|
|
|
break
|
|
|
|
|
else:
|
|
|
|
|
dp *= 1.67
|
|
|
|
|
else:
|
|
|
|
|
msg = 'Exceeded max iterations. (p_min0={}, p_min={}, p={})'
|
|
|
|
|
warnings.warn(msg.format(p_min0, p_min_opt, p_opt))
|
|
|
|
|
msg = 'Exceeded max iterations. (p_{0}0={1}, p_{0}={2}, p={3})'
|
|
|
|
|
warnings.warn(msg.format(direction, p_minmax0, p_minmax_opt,
|
|
|
|
|
p_opt))
|
|
|
|
|
# print('search_pmin iterations={}'.format(j))
|
|
|
|
|
return p_min_opt
|
|
|
|
|
|
|
|
|
|
def _search_pmax(self, phatfree0, p_max0, p_opt):
|
|
|
|
|
phatfree = phatfree0.copy()
|
|
|
|
|
|
|
|
|
|
dp = (p_max0 - p_opt)/40
|
|
|
|
|
if dp < 1e-2:
|
|
|
|
|
dp = 0.1
|
|
|
|
|
Lmax, phatfree = self._profile_optimum(phatfree, p_opt)
|
|
|
|
|
p_max_opt = p_opt
|
|
|
|
|
for j in range(51):
|
|
|
|
|
p_max = p_opt + dp
|
|
|
|
|
Lmax, phatfree = self._profile_optimum(phatfree, p_max)
|
|
|
|
|
if np.isnan(Lmax):
|
|
|
|
|
dp *= 0.33
|
|
|
|
|
elif Lmax < self.alpha_cross_level - self.alpha_Lrange*5*(j+1):
|
|
|
|
|
p_max_opt = p_max
|
|
|
|
|
dp *= 0.33
|
|
|
|
|
elif Lmax < self.alpha_cross_level:
|
|
|
|
|
p_max_opt = p_max
|
|
|
|
|
break
|
|
|
|
|
else:
|
|
|
|
|
dp *= 1.67
|
|
|
|
|
else:
|
|
|
|
|
msg = 'Exceeded max iterations. (p={}, p_max={}, p_max0 = {})'
|
|
|
|
|
warnings.warn(msg.format(p_opt, p_max_opt, p_max0))
|
|
|
|
|
# print('search_pmax iterations={}'.format(j))
|
|
|
|
|
return p_max_opt
|
|
|
|
|
return p_minmax_opt
|
|
|
|
|
|
|
|
|
|
def _profile_fun(self, free_par, fix_par):
|
|
|
|
|
''' Return negative of loglike or logps function
|
|
|
|
@ -504,37 +629,40 @@ class Profile(object):
|
|
|
|
|
par[self.i_fixed] = self._local_link(fix_par, par)
|
|
|
|
|
return self.fit_dist.fitfun(par)
|
|
|
|
|
|
|
|
|
|
def get_bounds(self, alpha=0.05):
|
|
|
|
|
'''Return confidence interval for profiled parameter
|
|
|
|
|
'''
|
|
|
|
|
if alpha < self.alpha:
|
|
|
|
|
msg = 'Might not be able to return bounds with alpha less than {}'
|
|
|
|
|
warnings.warn(msg.format(self.alpha))
|
|
|
|
|
cross_level = self.Lmax - 0.5 * chi2isf(alpha, 1)
|
|
|
|
|
ind = findcross(self.data, cross_level)
|
|
|
|
|
n = len(ind)
|
|
|
|
|
def _check_bounds(self, cross_level, ind, n):
|
|
|
|
|
if n == 0:
|
|
|
|
|
warnings.warn('''Number of crossings is zero, i.e.,
|
|
|
|
|
upper and lower bound is not found!''')
|
|
|
|
|
bounds = (self.pmin, self.pmax)
|
|
|
|
|
|
|
|
|
|
warnings.warn('Number of crossings is zero, i.e., upper and lower '
|
|
|
|
|
'bound is not found!')
|
|
|
|
|
bounds = self.pmin, self.pmax
|
|
|
|
|
elif n == 1:
|
|
|
|
|
x0 = ecross(self.args, self.data, ind, cross_level)
|
|
|
|
|
is_upcrossing = self.data[ind] < self.data[ind + 1]
|
|
|
|
|
if is_upcrossing:
|
|
|
|
|
bounds = (x0, self.pmax)
|
|
|
|
|
bounds = x0, self.pmax
|
|
|
|
|
warnings.warn('Upper bound is larger')
|
|
|
|
|
else:
|
|
|
|
|
bounds = (self.pmin, x0)
|
|
|
|
|
bounds = self.pmin, x0
|
|
|
|
|
warnings.warn('Lower bound is smaller')
|
|
|
|
|
|
|
|
|
|
elif n == 2:
|
|
|
|
|
bounds = ecross(self.args, self.data, ind, cross_level)
|
|
|
|
|
else:
|
|
|
|
|
warnings.warn('Number of crossings too large! Something is wrong!')
|
|
|
|
|
bounds = ecross(self.args, self.data, ind[[0, -1]], cross_level)
|
|
|
|
|
return bounds
|
|
|
|
|
|
|
|
|
|
def get_bounds(self, alpha=0.05):
|
|
|
|
|
'''Return confidence interval for profiled parameter
|
|
|
|
|
'''
|
|
|
|
|
_assert_warn(self.alpha <= alpha, 'Might not be able to return bounds '
|
|
|
|
|
'with alpha less than {}'.format(self.alpha))
|
|
|
|
|
|
|
|
|
|
cross_level = self.Lmax - 0.5 * chi2isf(alpha, 1)
|
|
|
|
|
ind = findcross(self.data, cross_level)
|
|
|
|
|
n = len(ind)
|
|
|
|
|
if n == 2:
|
|
|
|
|
bounds = ecross(self.args, self.data, ind, cross_level)
|
|
|
|
|
else:
|
|
|
|
|
bounds = self._check_bounds(cross_level, ind, n)
|
|
|
|
|
return bounds
|
|
|
|
|
|
|
|
|
|
def plot(self, axis=None):
|
|
|
|
|
'''
|
|
|
|
|
Plot profile function for p_opt with 100(1-alpha)% confidence interval.
|
|
|
|
@ -1121,7 +1249,6 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
def _nnlf(self, theta, x):
|
|
|
|
|
return self.dist._penalized_nnlf(theta, x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _nlogps(self, theta, x):
|
|
|
|
|
""" Moran's negative log Product Spacings statistic
|
|
|
|
|
|
|
|
|
@ -1323,6 +1450,29 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
ci.append((np.nan, np.nan))
|
|
|
|
|
return np.array(ci)
|
|
|
|
|
|
|
|
|
|
def _fit_summary_text(self):
|
|
|
|
|
fixstr = ''
|
|
|
|
|
if self.par_fix is not None:
|
|
|
|
|
numfix = len(self.i_fixed)
|
|
|
|
|
if numfix > 0:
|
|
|
|
|
format0 = ', '.join(['%d'] * numfix)
|
|
|
|
|
format1 = ', '.join(['%g'] * numfix)
|
|
|
|
|
phatistr = format0 % tuple(self.i_fixed)
|
|
|
|
|
phatvstr = format1 % tuple(self.par[self.i_fixed])
|
|
|
|
|
fixstr = 'Fixed: phat[{0:s}] = {1:s} '.format(phatistr,
|
|
|
|
|
phatvstr)
|
|
|
|
|
subtxt = ('Fit method: {0:s}, Fit p-value: {1:2.2f} {2:s}, ' +
|
|
|
|
|
'phat=[{3:s}], {4:s}')
|
|
|
|
|
par_txt = '{:1.2g}, ' * len(self.par)[:-2].format(*self.par)
|
|
|
|
|
try:
|
|
|
|
|
LL_txt = 'Lps_max={:2.2g}, Ll_max={:2.2g}'.format(self.LPSmax,
|
|
|
|
|
self.LLmax)
|
|
|
|
|
except Exception:
|
|
|
|
|
LL_txt = 'Lps_max={}, Ll_max={}'.format(self.LPSmax, self.LLmax)
|
|
|
|
|
txt = subtxt.format(self.method.upper(), self.pvalue, fixstr, par_txt,
|
|
|
|
|
LL_txt)
|
|
|
|
|
return txt
|
|
|
|
|
|
|
|
|
|
def plotfitsummary(self, axes=None, fig=None):
|
|
|
|
|
''' Plot various diagnostic plots to asses the quality of the fit.
|
|
|
|
|
|
|
|
|
@ -1346,29 +1496,9 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
|
|
|
|
|
if fig is None:
|
|
|
|
|
fig = plt.gcf()
|
|
|
|
|
fixstr = ''
|
|
|
|
|
if self.par_fix is not None:
|
|
|
|
|
numfix = len(self.i_fixed)
|
|
|
|
|
if numfix > 0:
|
|
|
|
|
format0 = ', '.join(['%d'] * numfix)
|
|
|
|
|
format1 = ', '.join(['%g'] * numfix)
|
|
|
|
|
phatistr = format0 % tuple(self.i_fixed)
|
|
|
|
|
phatvstr = format1 % tuple(self.par[self.i_fixed])
|
|
|
|
|
fixstr = 'Fixed: phat[{0:s}] = {1:s} '.format(phatistr,
|
|
|
|
|
phatvstr)
|
|
|
|
|
|
|
|
|
|
subtxt = ('Fit method: {0:s}, Fit p-value: {1:2.2f} {2:s}, ' +
|
|
|
|
|
'phat=[{3:s}], {4:s}')
|
|
|
|
|
par_txt = ('{:1.2g}, '*len(self.par))[:-2].format(*self.par)
|
|
|
|
|
try:
|
|
|
|
|
LL_txt = 'Lps_max={:2.2g}, Ll_max={:2.2g}'.format(self.LPSmax,
|
|
|
|
|
self.LLmax)
|
|
|
|
|
except Exception:
|
|
|
|
|
LL_txt = 'Lps_max={}, Ll_max={}'.format(self.LPSmax, self.LLmax)
|
|
|
|
|
try:
|
|
|
|
|
fig.text(0.05, 0.01, subtxt.format(self.method.upper(),
|
|
|
|
|
self.pvalue, fixstr, par_txt,
|
|
|
|
|
LL_txt))
|
|
|
|
|
txt = self._fit_summary_text()
|
|
|
|
|
fig.text(0.05, 0.01, txt)
|
|
|
|
|
except AttributeError:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|