From d3080556a1353cda70aa82acbafab6700d837a09 Mon Sep 17 00:00:00 2001 From: "Per.Andreas.Brodtkorb" Date: Thu, 15 Aug 2013 08:23:42 +0000 Subject: [PATCH] Updated tutorial ipython notebook scripts --- .../doc/tutorial_scripts/WAFO Chapter 1.ipynb | 758 +++++++----- .../doc/tutorial_scripts/WAFO Chapter 2.ipynb | 1085 +++++++++++------ .../doc/tutorial_scripts/WAFO Chapter 3.ipynb | 73 ++ .../doc/tutorial_scripts/WAFO Chapter 4.ipynb | 468 +++++++ .../doc/tutorial_scripts/WAFO Chapter 5.ipynb | 485 ++++++++ 5 files changed, 2192 insertions(+), 677 deletions(-) create mode 100644 pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 3.ipynb create mode 100644 pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 4.ipynb create mode 100644 pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 5.ipynb diff --git a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 1.ipynb b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 1.ipynb index 040b042..e5aa752 100644 --- a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 1.ipynb +++ b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 1.ipynb @@ -1,298 +1,462 @@ -{ - "metadata": { - "name": "WAFO Chapter 1" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": "CHAPTER 1 demonstrates some applications of WAFO" - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "CHAPTER1 gives an overview through examples some of the capabilities of WAFO. WAFO is a toolbox of Matlab routines for statistical analysis and simulation of random waves and loads. The commands are edited for fast computation.\n" - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": "Section 1.4 Some applications of WAFO" - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Section 1.4.1 Simulation from spectrum, estimation of spectrum " - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Simulation of the sea surface from spectrum. The following code generates 200 seconds of data sampled with 10Hz from the Torsethaugen spectrum." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "import wafo.spectrum.models as wsm\nS = wsm.Torsethaugen(Hm0=6, Tp=8);\nS1 = S.tospecdata()\nS1.plot()\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEXCAYAAABPkyhHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX/P/DXsLiwI7KJG4rihoKiiKGMW+5iWeaO28/6\nttr3U330W5ZtWi750ZZPWaaWn8xsMXMhNEVNS0MxNUshRUHccGMRWWbO74/7YRyUZWZg7hmY1/Px\n4AEzc+fOe444L845956rEUIIEBGRXXOQXQAREcnHMCAiIoYBERExDIiICAwDIiICw4CIiMAwICvS\narVYuXKl7DLsUlJSEpo1a2by9mr8W7m7uyM9Pd2qr0GWYxjUEW5ubnB3d4e7uzscHBzg4uJiuL1u\n3Tqrv/68efMwadKkMvdpNBpoNBqrv7Y13bhxA9OmTUNgYCA8PDwQGhqKt99+26qvWV5bWpsa/1a5\nublo2bIlAGDKlCmYO3euVV+PzOMkuwCqGXl5eYafg4ODsXLlSvTr18+sfZSUlMDJib8Sxp599lkU\nFBTgr7/+gqenJ06ePInjx49Lran0PNHaHrRkW9gzqOMKCwsxa9YsBAUFISgoCM8++yyKiooAKEMJ\nTZs2xcKFCxEYGIjp06fj6tWrGD58OLy9veHj44M+ffoYPnyysrIwevRo+Pn5oVWrVnj33XcBAAkJ\nCViwYAHWr18Pd3d3REREGF4/PT0dMTEx8PDwwKBBg3D16lXDYw8//DACAwPh5eWF2NhYnDhxwvDY\n3cMWq1evRu/evQ23ExMTERoaCi8vLzzxxBOIjY0ts/2nn36KDh06oFGjRhg8eDDOnTtneMzBwQEf\nffQR2rZtC29vbzz55JMVtl9ycjLGjRsHT09PAEBoaChGjx5dZl/vvvsuWrduDV9fX7zwwgswPqm/\nsjr++OMPDBw4ED4+PggICMCCBQvw448/ltuWWq0WL730Eu677z64urri9OnTWLVqFTp06AAPDw+0\nbt0aK1asqPB93G379u1o164dvLy88NRTT0EIYXLdlbVfWloaYmNj4eXlBV9fX4wdO7bM8/7++2+s\nWLECX3zxBRYuXAh3d3eMHDkSixcvxkMPPVSmxqeffhqzZs0y+T1RNQmqc1q2bCl++uknIYQQc+fO\nFdHR0eLKlSviypUrolevXmLu3LlCCCF27dolnJycxOzZs0VRUZEoKCgQs2fPFo899pgoKSkRJSUl\n4ueffxZCCKHT6UTXrl3F66+/LoqLi8Xp06dFq1atxI8//iiEEGLevHli0qRJZeqIjY0VrVu3Fqmp\nqaKgoEBotVoxe/Zsw+OrVq0SeXl5oqioSMyaNUuEh4cbHtNqtWLlypVlto2JiRFCCHHlyhXh4eEh\nvvvuO6HT6cSyZcuEs7OzYfuNGzeKkJAQ8ddffwmdTifeeOMN0atXL8O+NBqNGDFihLh586Y4d+6c\n8PX1FQkJCeW25YwZM0THjh3FqlWrxKlTp+55XKPRiH79+onr16+Lc+fOibZt24pPPvmkyjpycnJE\nQECAeOedd0RhYaHIzc0VBw4cqLQtW7RoIU6cOCF0Op0oLi4WW7ZsEadPnxZCCLF7927h4uIiDh8+\nbPi3bdq0abnv6cqVK8Ld3V188803oqSkRCxdulQ4OTlVq/1Kfw/Gjh0r5s+fL4QQorCwUOzbt6/M\n8/7++28hhBBTpkwx/B4KIcSFCxeEq6uruHHjhhBCiOLiYuHn52d4P2R9DIM6yDgMWrduLbZt22Z4\n7McffxQtW7YUQigfGPXq1ROFhYWGx19++WURFxcn0tLSyuzz119/Fc2bNy9z3/z588XUqVOFEEK8\n8sorYuLEiWUe12q14s033zTc/uCDD8TgwYPLrfn69etCo9GInJwcw3MrCoM1a9aU+XASQohmzZoZ\nth88eHCZ5+p0OuHi4iLOnTsnhFA+lIw/pMaMGSPeeuutcusqKCgQ8+fPF926dRPOzs4iJCSkTHtq\nNBrDB2Hpe+zfv3+ldZw9e1Z88cUXomvXruW+ZkVt+corr5S7falRo0aJZcuWCSEqD4M1a9aI6Ojo\nMvc1bdq0Wu339ttvCyGEmDx5spg5c6bIzMy853XvDoOXXnqpzOODBw8WH3/8sRBCiB9++EF07Nix\n0vdLNYvDRHVcVlYWWrRoYbjdvHlzZGVlGW77+vqiXr16htvPP/88QkJCcP/996N169aGydKzZ88i\nKysL3t7ehq8FCxbg8uXLlb5+QECA4eeGDRsa5jZ0Oh1mz56NkJAQeHp6Ijg4GACQnZ1t0ntq2rRp\nmfuMb589exbPPPOMoU4fHx8AwPnz58uty8XFpcyci7EGDRpgzpw5SE5OxtWrVzFmzBg8/PDDuHHj\nhmEb46N2jNu3sjoyMzPRqlWrKt+rsbuPDtq2bRt69uwJHx8feHt7Y+vWrWWG4SpSXvsZ79uS9svN\nzQUALFy4EEII9OjRA506dcKqVatMfn/x8fFYu3YtAGDt2rWqT6LbO4ZBHdekSZMyh/OdO3cOTZo0\nMdy+exLSzc0Nixcvxt9//41NmzbhnXfewc6dO9G8eXMEBwfj+vXrhq+cnBxs3rwZgDIebI4vvvgC\nmzZtwk8//YSbN2/izJkzAO5Mjrq6uiI/P9+w/cWLF8u8p8zMTMNtIUSZ282bN8eKFSvK1Jqfn4+e\nPXuaVePd3N3dMWfOHOTn5xvqBVBmPP3cuXMICgqqtI7o6Gg0a9YMp0+fLvd1KmpL43+rwsJCjB49\nGi+88AIuX76M69evY+jQoWXG/SvSpEkTZGRkGG4LIcrcrk77+fv7Y8WKFTh//jw++ugjPP744+W+\nz/Imv+Pi4nD06FEcP34cW7ZswYQJE6p8Pao5DIM6bty4cXjjjTeQnZ2N7OxsvPbaa5X+xbVlyxak\npaVBCAEPDw84OjrC0dERPXr0gLu7OxYuXIiCggLodDocP34cycnJAJQPgfT09Hs+jCr6cMrLy0P9\n+vXRqFEj5Ofn4//+7//KPB4eHo5vv/0WBQUFSEtLKzM5PHToUBw7dgzff/89SkpK8P7775cJi8ce\newzz5883TEjfvHkTGzZsqPA9V/YB+vrrryM5ORlFRUW4ffs2li1bBm9vb4SGhhq2Wbx4MW7cuIGM\njAwsX74cjzzySJV1DB8+HBcuXMCyZctQWFiI3NxcHDx40OS2LCoqQlFRERo3bgwHBwds27YNiYmJ\nFb4PY8OGDcMff/yB7777DiUlJVi+fHmNtd+GDRsMwezl5QWNRlNuuPn7+98TEg0bNsTo0aMxfvx4\nREVF3dN7IetiGNRxL730EiIjI9G5c2d07twZkZGReOmllwyP3/0XWmpqKgYOHAh3d3f06tXLcKSO\ng4MDNm/ejCNHjqBVq1bw9fXFzJkzkZOTA0A5MggAfHx8EBkZWe7+jY9lnzx5Mlq0aIGgoCB06tQJ\n0dHRZbZ99tlnUa9ePfj7+2Pq1KmYOHGi4fHGjRtjw4YNeOGFF9C4cWP8+eefiIyMRP369QEAo0aN\nwj//+U+MHTsWnp6eCAsLw48//ljhe67sGHsHBwdMnToVvr6+CAoKwk8//YQtW7bAxcXFsE1cXBy6\ndeuGiIgIDB8+HNOmTauyDjc3N2zfvh0//PADAgMD0bZtWyQlJZnclu7u7li+fDnGjBmDRo0aYd26\ndYiLi7vnfZXHx8cHGzZswOzZs9G4cWOkpaUhJibG8Hh12i85ORk9e/aEu7s74uLisHz5csO5BcbP\nmz59Ok6cOAFvb288+OCDhvvj4+Nx/PhxDhFJoBGm9CuJbJher0ezZs3wxRdfIDY2VtXXdnBwQFpa\nmtnj/1S+jIwMtGvXDpcuXYKbm5vscuyK1DOMWrZsaRiKcHZ2NnSTiaqSmJiIHj16oGHDhli0aBEA\nVHtOgOTS6/VYsmQJxo0bxyCQQGoYaDQaJCUloVGjRjLLoFrol19+wfjx41FUVISOHTti48aNhmEi\nNfEs4JqRn58Pf39/BAcHIyEhQXY5dknqMFFwcDCSk5MNh64REZEcUieQNRoNBgwYgMjISHz88ccy\nSyEismtSh4n27duHwMBAXLlyBQMHDkS7du0M68+w+01EZBlLBnyk9gwCAwMBKGfBPvDAA/dMIIv/\nLp5lS1+vvPJKje1LrxfQagXGjrWdmmyxnVgT62JNpn9ZSloY3Lp1y3AKe35+PhITExEWFiarHCkS\nE4EDB4CzZ2VXQkT2Ttow0aVLl/DAAw8AUNbRnzBhAu6//35Z5Uixbh0waxawZo3sSojI3kkLg+Dg\nYBw5ckTWy1tMq9XW2L6uXgXi4oAlS4CiIsBovThpNdUU1mQaW6wJsM26WJN12ewZyBqNplrjX7VB\nr17AokXAhAnAzp0AT2Ilouqy9LOTaxNJdO0a4OMDtGjBeQMikothINHVq0CjRgwDIpKPYSCJXg9c\nvw54ezMMiEg+hoEkOTmAqyvg7Aw0b84wICK5GAaSXLumDBEB7BkQkXwMA0lKJ48BICAAuHRJbj1E\nZN8YBpKUTh4DyrzB9ety6yEi+8YwkMS4Z+DtDdy4IbceIrJvDANJjHsGrq5AcbFyFjIRkQwMA0mM\nJ5A1GsDLi0NFRCQPw0CSq1fvDBMBnDcgIrkYBpIY9wwA9gyISC6GgSTGE8gAewZEJBfDQBLjCWSA\nYUBEcjEMJLl5E/D0vHObYUBEMjEMJMnNBdzd79xmGBCRTAwDSRgGRGRLGAYSCAHk5QFubnfuYxgQ\nkUwMAwlu3QLq1wecjK5AzSUpiEgmhoEEdw8RAewZEJFcDAMJygsDnnRGRDIxDCRgz4CIbA3DQIK8\nPIYBEdkWhoEE5fUMPDyUieWSEjk1EZF9YxhIUF4YaDTKfbm5cmoiIvvGMJCgvDAAlN5BTo769RAR\nMQwkyM0te8JZKYYBEcnCMJCAPQMisjUMAwkYBkRkaxgGElQUBp6eytLWRERqYxhIwJ4BEdkahoEE\nDAMisjUMAwkYBkRkaxgGElQWBpwzICIZGAYSVDaBzJ4BEckgNQx0Oh0iIiIwYsQImWWojsNERGRr\npIbBsmXL0KFDB2g0GpllqK68VUsBhgERySMtDDIzM7F161bMmDEDQghZZahOr1dWJ3V1vfcxhgER\nyeJU9SbW8eyzz2LRokXIqeTTb968eYaftVottFqt9Quzsvx8wMUFcCgnhjmBTETmSkpKQlJSUrX3\nIyUMNm/eDD8/P0RERFT6JozDoK6oaL4A4AQyEZnv7j+UX331VYv2I2WYaP/+/di0aROCg4Mxbtw4\n7Ny5E5MnT5ZRiuoqWrEU4DAREcmjEZIH7Hfv3o3Fixfjhx9+KHO/RqOpk3MJycnAo48Chw7d+5he\nDzg7A0VFgKOj+rURUe1n6WenTZxnYE9HE1U2TOTgoPQaeLUzIlKbtAnkUrGxsYiNjZVdhmoqCwPg\nziSyl5d6NRER2UTPwJ5UFQacRCYiGRgGKjOlZ8AwICK1MQxUxjAgIlvEMFAZw4CIbBHDQGWmTiAT\nEamJYaAyTiATkS1iGKisohVLS3GYiIhkYBiojHMGRGSLGAYqYxgQkS1iGKiME8hEZIsYBiqrbNVS\ngBPIRCQHw0BlHCYiIlvEMFAZw4CIbBHDQEUlJUBhoXLZy4owDIhIBoaBivLylPmCyi7fwAlkIpKB\nYaCiqoaIACUsCgoAnU6dmoiIAIaBqkwJA17tjIhkYBioyJQwADhvQETqYxio6MYNwNu76u0YBkSk\nNoaBim7cMO3axpxEJiK1MQxUZGoY8CxkIlIbw0BF5vQMGAZEpCaGgYoYBkRkqxgGKmIYEJGtYhio\niBPIRGSrGAYq4gQyEdkqhoGKrl/nMBER2SaGgYp40hkR2SqGgYo4gUxEtsqpqg1Wr14NTWVrLhsR\nQmDKlCnVranO4gQyEdmqKsPA29sbMTEx8PHxqXJn33//fY0UVRfdvq18b9Cg6m05gUxEatMIIURV\nG4WFhSEkJAQeHh7o3r07oqKiEBERgV9++QWXL1/G6NGja74wjQYmlFZrXLwIhIcr36uSmQlERQHn\nz1u/LiKqWyz97DQpDFJTU9GmTRvcunULCxYsgJubG44ePYq8vDy0atUKS5cutajoSgurY2Hw11/A\nqFHK96rk5ABBQbymARGZz9LPziqHiQCgTZs2AAAXFxeEhIQgPj4eAFBUVMShIROZOl8AKBe3uXVL\nudqZo6N16yIiAiw4msjZ2RlTpkzBt99+i9TUVGRmZlqjrjrHnDBwcABcXdkzICL1mNQzMDZ+/Hh0\n69YNa9euxa5duzB58mSLXvj27duIjY1FYWEhioqKEBcXhwULFli0r9rA1BPOSpVOIpvzHCIiS5kd\nBgAQGhqK119/vVov3KBBA+zatQsuLi4oKSlBTEwMfv75Z8TExFRrv7bK3DDguQZEpCazh4k++eQT\n/PrrrygqKsK+ffvw9ddfW/ziLi4uAJS5B51Oh0aNGlm8L1t3+TLg72/69gwDIlKT2WFw+fJl7N69\nG1OmTMFbb72Fn3/+2eIX1+v1CA8Ph7+/P/r27YsOHTpYvC9bd/ky4Odn+vYMAyJSk9nDRE2bNjXM\nE1T3aCIHBwccOXIEN2/exKBBg5CUlAStVmt4fN68eYaftVptmcdqm8uXgb59Td+eZyETkSmSkpKQ\nlJRU7f2YHQalRxONHDkSoaGhNXI0kaenJ4YNG4bk5OQKw6C2u3TJvGEinoVMRKa4+w/lV1991aL9\nmD1M1LRpU8yZMwcpKSn48MMPLZ7wzc7Oxo0bNwAABQUF2L59OyIiIizaV23AYSIismVm9wzef/99\nrFmzptpHE124cAHx8fHQ6/XQ6/WYNGkS+vfvX6192jKGARHZMrPDwMvLC7t370bfvn3h7Oxs8QuH\nhYXh8OHDFj+/NiksBPLzTbuWQSkPD+DcOevVRERkzOxhIi8vL/z2228YM2YMhg4dirlz51qjrjrl\nyhXA1xcwcSVwAEpw/HcUjYjI6szuGQwfPhy+vr548cUXIYTAOf75WiVzzzEAgEaNgGvXrFMPEdHd\nqgyDkydPwsHBwbBYnfGEsUajQYsWLaxXXR1x6ZJ58wWAEgZXr1qnHiKiu1UZBq1bt0ZSUhISExPh\n4OCA7t27IzIyUo3a6gxzJ48BwMeHPQMiUo9J1zMwdvDgQRw6dAh6vR6hoaHQarVwcrJoiaPKC6tD\n1zNYuFCZN1i0yPTnXLwIdOmi9CqIiExl1YvbVOTkyZNISkpCUVERgoKCMGjQILi6ulq6u7KF1aEw\neO45Zc7g+edNf05RkbKMdVGReRPPRGTfrHpxm4qEhoYiNDQUAJCVlYXNmzfjkUceqc4u66Tz55VL\nXpqjXj3lesm5ucphpkRE1mT2oaX5+fm4VM7YRZMmTRgEFThzBggONv95nEQmIrWY3TNYu3Yt6tev\nj2+//RaNGzfGmDFjMHjwYGvUVmecOQO0amX+80onkS0JEiIic5jdM2jYsCE6dOiAa9eu4dNPP0UO\n10yoVH6+MtQTEGD+c3muARGpxeww6Nq1K7788kssX74cq1evRklJiTXqqjPS04EWLSybBOYwERGp\nxexhok6dOuGdd94BAFy9ehV+5h5Ab2dOn7Z8mIfnGhCRWqp1NNHAgQNrqo46y9L5AoDDRESkHrOH\nicg8lh5JBCg9Aw4TEZEaTAqDvLw8AEBxcTF0Op1VC6prqhMG7BkQkVqqDIOFCxfitddew//+7//i\n5s2beOyxx9Soq85ITQVat7bsuQwDIlJLlXMGUVFRiIqKgrOzM9avXw+9Xq9GXdLl5wMTJwLt2gHz\n51t2NNCtW0rPoH17y2rw8QGysy17LhGROarsGbi6umL16tVwdHTE+PHj0adPHzXqkm7cOGUZiIQE\nYPFiy/Zx9KgSBPXqWfZ8Pz9lxVMiImur1kJ1R48eRVhYGDRWWElN5kJ1168r5wZcvgxkZgLR0cDZ\ns4CLi3n7+eADICUF+Phjy+rIyQGaNAH+O2VDRFQlSz87zT6a6LPPPsOsWbOwevVquLq6Yt26dWa/\nqK378UcgNlZZKC4kRAmDtWvN38/hw0DXrpbX4e4O6PUMAyKyPosOLX355Zfh5+eHRYsWITU1taZr\nkm7LFmDYsDu3n3kGeP998/dT3TDQaJSlr3lNAyKyNrOHibZu3Yo+ffrAzc3NWjUBkDdMJIQyVp+c\nrAwVAcpf582bA9u3mz4ZfOsW4OurXNTG3OElYz17Au+8A/TqZfk+iMh+qDZMlJCQgOHDh2P06NF4\n++23cfDgQbNf1JZlZQEODneCAFBuP/wwsH696ftJSgIiI6sXBAB7BkSkDrPDQKvVIikpCZ9//jmi\no6ORnJxsjbqk+esv5XDSuz3yiBIGpgZuQgIwZEj16wkIYBgQkfWZHQYajQa//fYbXFxc0KdPHzz+\n+OPWqEuaisIgKgooKACOHTNtP9u2ATVxmQd/f+V6yERE1mT2QnW7d+8GALz22mto0KABYmNj8eST\nT9Z4YbJUFAYaDTBmjNI76Ny58n2kpipHAHXpUv16/P2B48ervx8iosqYHQajR4+GRqNBTEwMCgoK\n8Mcff1ijLmlOngSGDi3/sUceAcaOBd54o/Izkj/7TAmOmjj9wt8f+Omn6u+HiKgyVQ4THTp0qMzt\n3r17IyYmBoBy1bPIyMgKt62NKuoZAHcOE61smkSnA1avBqZPr5l6AgI4TERE1ldlz2Dbtm04buI4\nRUZGBrp161btomTJy1PWAmrevPzHNRpgyhRg5Uqge/fyt0lIUD7AqxpKMhWPJiIiNVRrOQprknGe\nwZEjwKRJlU8SZ2UBnToB584Bd59qIQQQEwM8/jgwYULN1JSTAwQGKkFlhVU/iKiOUe08g7osMxNo\n1qzybZo0AXr3VuYF7paYqKxrNHZszdXk7g44OgI3b9bcPomI7sYwMHL+PBAUVPV2c+cqk8i5uXfu\ny88Hnn4aePNN5cO7pmg0yrDVuXM1t08iorsxDIycP6/85V+VyEhgwADghReUoaGSEmVoKCoKeOCB\nmq+LYUBE1mb2oaUAcPv2bWg0GtSvX7+m65Hq/HnlA90US5cqi9kNGKCM53t4AN98Y526GAZEZG0m\nhYFer8fGjRuxbt067N+/H3q9HkIIODo6Ijo6GhMmTMCoUaOscl0DNZk6TAQoVyH76Sfg+++Vi9c8\n8EDNDg8Za9GCYUBE1mVSGGi1WvTu3RvPPfccwsPDDT2CwsJCpKSkYNOmTVi6dCn27Nlj1WKtLSvL\n9DAAAFdXYPx469VTqnlzZVltIiJrMenQ0sLCQkMA6HQ6ODg43NMLMN7GFBkZGZg8eTIuX74MjUaD\nmTNn4umnn75TmIRDS318lJPOfH1Vfdkq7d0LzJkD/Pyz7EqIyNZZ+tlp9nkGffv2Rf/+/REcHAwP\nDw+MGDHC7BcFgIsXL+LixYsIDw9HXl4eunXrho0bN6L9fy8YoHYYFBQA3t7Kd1sb7Tp7Vjl/ISND\ndiVEZOss/ew0ewJ5165dhp/37NmDWbNm4V//+pfZLxwQEICAgAAAgJubG9q3b4+srCxDGKgtK0s5\nucvWggBQjnC6dAkoLgacnWVXQ0R1kUWHlp4+fRo///wzOnbsiG9q4BCa9PR0pKSkIMrUQ3mswJzJ\nY7U5OyvLUpw/L7sSIqqrLDq0NCAgAEePHsUzzzyDF198sVoF5OXl4aGHHsKyZcvuuZTmvHnzDD9r\ntVpotdpqvVZlTD3HQJZWrYDTp4GWLWVXQkS2JCkpCUlJSdXej9lzBsnJyYaVSoUQCAsLM3khu7sV\nFxdj+PDhGDJkCGbNmlW2MJXnDP71L+XDdvly1V7SLDNnAhERwP/8j+xKiMiWqTZnEBQUhI0bN6Ko\nqAh//fUXBlt4OS8hBKZPn44OHTrcEwQyZGfb3lFExkJDlSOdiIiswaQwEEIYDiUNDAzEqFGjKt3G\nFPv27cPatWvRuXNnREREAAAWLFhgcbhU15UrQHi4lJc2SWgosH277CqIqK4y+aSz4cOHIy4uDm3b\nti3z2MmTJ7Fx40Zs2bLFrJPOYmJioNfrzavWiq5csf2ewcmTsqsgorrKpKOJEhMT4ePjgyeeeAKB\ngYFo27Yt2rRpg8DAQDz55JPw9/fHjh07rF2rVWVnA40by66iYsHBwIULynkQREQ1zewJZJ1Oh+zs\nbGg0GjRu3BgODtZZ+FTtCeT27YGvvwY6dlTtJc3Wvj2wfn3NXUWNiOoeq17c5uDBg7hw4QIAwNHR\nEQkJCZgxYwZmzZqFa9eumf2itsjWh4kA5drMnEQmImswKQweffRRw7pDe/bswezZsxEfHw8PDw/M\nnDnTqgWqQacDbtwAGjWSXUnlwsKAo0dlV0FEdZFJYaDX69Hov5+U69evx6OPPorRo0fjjTfeQGpq\nqlULVMO1a4CnJ+Bk0Sl46unaFTh8WHYVRFQXmRQGOp0OxcXFAIAdO3agb9++hsdKSkqsU5mKasMQ\nEaCEwaFDytXViIhqkkl/C48bNw6xsbFo3LgxXFxc0Lt3bwBAamoqvLy8rFqgGmz9SKJSzZoBer1y\nVJEtL51BRLWPSWHw4osvol+/frh48SLuv/9+wxFEQgi8++67Vi1QDbWlZ6DR3BkqYhgQUU0yeZQ8\nOjr6nvvuPgGttqotYQDcGSoaPlx2JURUl1jnJIFaprYMEwFAVBSwf7/sKoiormEYQOkZ1JYw6N0b\n+OUXoA7M2xORDWEYQDm01MdHdhWm8fFRrmnAQ0yJqCYxDKCEga2fcGYsNhbYvVt2FURUlzAMUPvC\noE8fhgER1SyGAYDr12tXGPTrB+zZA9y+LbsSIqorGAZQegbe3rKrMJ2Pj7JOEXsHRFRT7D4MhFB6\nBrUpDABg2DBgyxbZVRBRXWH3YZCXB9Svr3zVJsOHK2HAdYqIqCbYfRjUtiGiUmFhShD8/rvsSoio\nLmAY1LIjiUppNMCYMcqVz4iIqsvuw6C2HUlk7JFHgK++4lAREVWf3YdBbR0mAoDwcOWCPAcPyq6E\niGo7hkEtHSYClKGiqVOBTz6RXQkR1XYMg1ocBgAQHw98/TWQmyu7EiKqzew+DGrznAEABAYCWi0n\nkomoeuwVy8KpAAATQElEQVQ+DGrznEGpGTM4VERE1cMwqOXDRAAweDBw/jxw7JjsSoiotrL7MKjt\nw0QA4OioTCR/9JHsSoiotrL7MKgLw0QA8NhjwBdfKOFGRGQuhkEdGCYCgCZNgBEj2DsgIstohLDN\n81c1Gg3UKM3dXRlv9/Cw+ktZ3e+/A0OHAmfOAPXqya6GiGSw9LPTrnsGRUXKBWLc3WVXUjO6dAHa\nt+dhpkRkPrsOg+vXAS8v5UzeuuIf/wCWLOF6RURkHrsOg7oyX2Bs0CAlCLZulV0JEdUmdh0GdeGw\n0rs5OABz5wKvvsreARGZzq7DoK4cVnq3Bx8ECgqAhATZlRBRbSEtDKZNmwZ/f3+EhYXJKqFODhMB\n7B0QkfmkhcHUqVORIPlP17o4TFTqoYeUlUzZOyAiU0gLg969e8Nb8hhNXR0mApTeweuvA3PmADqd\n7GqIyNY5yS6gMvPmzTP8rNVqodVqa3T/164BISE1ukub8sADwOLFwH/+A0yeLLsaIrKGpKQkJCUl\nVXs/Us9ATk9Px4gRI3CsnOU21TgDeeJE5VDMSZOs+jJS7dsHjB8PnDwJNGgguxoisjaegWyBujqB\nbOy++4CuXYHly2VXQkS2zO7DoK7OGRh76y1g0SLgwgXZlRCRrZIWBuPGjUOvXr1w6tQpNGvWDKtW\nrVK9BnvoGQBAaKhyNbTnnpNdCRHZKrtetdTXF/jjD8DPz6ovYxPy84EOHYA1a5RrJhNR3cQ5AzPp\n9XcWqrMHrq7A0qXAE08oq7USERmz2zC4eVP5gLSndf8feAAIDgYWLJBdCRHZGrsNg6tXgcaNZVeh\nLo1GuRLa++8DR47IroaIbIndhkF2NuDjI7sK9QUFKUcWxcdzuIiI7rDrMLC3nkGpyZOBZs2A116T\nXQkR2Qq7DYOrV+2zZwAow0UrVwKrVgE7dsiuhohsgd2GgT33DADA3x/47DOll3DxouxqiEg2uw0D\ne5xAvlv//srJaBMnAiUlsqshIpnsNgzsdQL5bq+8oix3/cILsishIpnsNgzYM1A4OgLr1wObNyvz\nCERkn2z6egbWZO9zBsa8vYEffgD69AFat+ZyFUT2yG57BhwmKis0FPjyS2DMGCAlRXY1RKQ2uw0D\nDhPdq29f4MMPgWHDgFOnZFdDRGqyy2EiIez7PIPKPPigsoDfwIHATz/V7cuCEtEddhkGOTlAw4b2\ntUidOaZPB3Q6Ze5gxw6gXTvZFRGRtdllGHDyuGozZwL16wP9+ilHGnXtKrsiIrImuwyDS5eUC9tQ\n5eLjATc3YPBg5aI4Q4bIroiIrMUuJ5CzspTVO6lqo0cD338PTJsGfPCBMt9CRHUPw4CqFB0N7N0L\n/PvfwNSpQEGB7IqIqKbZZRicPw80aSK7itolJAT49VflGgi9egEnTsiuiIhqkl2GQVYWw8ASrq7A\nf/4DPP44EBsLLFmiHHVERLUfw4DMotEA/+//AQcOKHMJ/foBp0/LroqIqstuw4BzBtXTqhWwaxcw\nciTQowfw8stAfr7sqojIUnYZBpwzqBmOjsA//gEcOQKkpQHt2yvrG/GII6LaRyOEbf7X1Wg0sEZp\nubnKVb7y85UhD6o5e/cCs2YpYfDKK0qvgW1MpC5LPzvtrmdw4YLSK+CHVM3r3RtITlaCYN48oFs3\n4NtvOclMVBvYXRhwvsC6NBogLg44fFgJhUWLlMNSFy0Crl2TXR0RVcTuwoDzBeooDYVffgG++go4\ndky5cE58vLIaql4vu0IiMmZ3YfDXX0DbtrKrsC/duwOffQacPAlERADPPw+0bAnMmQMcPMhgILIF\ndhcGx48DnTrJrsI++fkpE8yHDwNbtij3xccDzZoB//M/QEICUFgot0Yie2V3RxO1aQNs2qQcBkm2\n4eRJ5QS2779XhpOio5WrrvXrpyyd7WSXa+sSWcbSz067CoP8fOU6Bjk5gLNzje6aasi1a8CePcDO\nncpJbRkZQM+eQFSUcnJbjx5cfpyoMgwDEyQnK1fx+v33Gt0tWdHly8ok9MGDytdvvwHe3kB4OBAW\npgz5deqk9PgY8EQMA5OsXg1s364stka1k14PpKYCR48q8z/HjinfMzKUQGjbVjlqqfSrVStlToJD\nTWQvGAYmeOYZICBAOYqF6pZbt4A//1SWxfj7b+Xr9Gnl++XLSiC0aKEcVhwUpHw3/jkwkD0Lqhtq\nXRgkJCRg1qxZ0Ol0mDFjBv75z3+WLayGw6C4GGjeXBmLrs7kcVJSErRabY3VVRNYU+Vu3wbS04HN\nm5PQuLEWWVnK+SZZWTD8fPky4OWlzCn5+CjfjX82/u7tDXh4AJ6eyrLe1Tmb3ZbayZgt1sWaTGPp\nZ6eUzrNOp8OTTz6JHTt2ICgoCN27d8fIkSPR3oqH+GzZogwbVPclbPEfnzVVrkEDoF074Msvk/Dc\nc9pyt9HpgCtXgKtXgezsO9+zs5UlTI4du3PfjRvKQQg5OcpV39zdlXAoDYjSnz08lLBwcSn/q2FD\nYMOGJDRsqC1zf4MGQL16ypeTk5ylU2zp368Ua7IuKWFw8OBBhISEoGXLlgCAsWPH4vvvv7daGFy7\nBrz1FvDYY1bZPdUBjo7KEGJAgHnPKylRFj8sDQfjr5s3leGr0q9r18reLihQrhj355937svPV861\nKCxUriqn1yuhUL/+nYAo/bmq+5ydlTAx/nJ0NO2+Q4eAlSsr387RUQkqBwfzvyx5XmGh0q4V7c/4\ni8wnJQzOnz+PZs2aGW43bdoUBw4cuGe74cPvfW5FvZ+K7r99W5lgnDBB+SKqSU5OyrCRt7dlz583\nT/mqiE6nhEJR0Z2AMP65ovsKC5WgKilR9lH68933FRWVv01WFrB/f8XPKy5Wgqr0S4iyt035Mvc5\nBQXAe+/d+zydTrmvvM+Au0Oisi9zt9dogLw84KOPKt8mOhpYt86y3w81SZkz+Oabb5CQkICPP/4Y\nALB27VocOHAA77777p3CGO9ERBapNXMGQUFByMjIMNzOyMhA06ZNy2xjowc5ERHVSVLWJoqMjERq\nairS09NRVFSE9evXY+TIkTJKISIiSOoZODk54b333sOgQYOg0+kwffp0qx5JRERElZO2aumQIUNw\n8uRJvPfee1izZg3atGmDt99+u9xtn376abRp0wZdunRBSkqK1WtLSEhAu3btKqwpKSkJnp6eiIiI\nQEREBN544w2r1zRt2jT4+/sjLCyswm3UbqeqapLRThkZGejbty86duyITp06Yfny5eVup2ZbmVKT\n2m11+/ZtREVFITw8HB06dMCcCs7EVPt3ypS6ZPxeAcoh8RERERgxYkS5j6vdVlXVZHY7CYlKSkpE\n69atxZkzZ0RRUZHo0qWLOHHiRJlttmzZIoYMGSKEEOLXX38VUVFR0mvatWuXGDFihFXruNuePXvE\n4cOHRadOncp9XO12MqUmGe104cIFkZKSIoQQIjc3V7Rt21b675QpNcloq/z8fCGEEMXFxSIqKkrs\n3bu3zOMyfqdMqUtGWwkhxJIlS8T48ePLfW1ZbVVZTea2k9TrGRifb+Ds7Gw438DYpk2bEB8fDwCI\niorCjRs3cOnSJak1AepPcPfu3RvelRy/qHY7mVIToH47BQQEIDw8HADg5uaG9u3bIysrq8w2areV\nKTUB6reVi4sLAKCoqAg6nQ6NGjUq87iM3ylT6gLUb6vMzExs3boVM2bMKPe1ZbRVVTUB5rWT1DAo\n73yD8+fPV7lNZmam1Jo0Gg3279+PLl26YOjQoThx4oTV6jGV2u1kCtntlJ6ejpSUFERFRZW5X2Zb\nVVSTjLbS6/UIDw+Hv78/+vbtiw4dOpR5XFY7VVWXjLZ69tlnsWjRIjg4lP+RKaOtqqrJ3HaSGgam\nnktwd7pZ8xwEU/bdtWtXZGRk4Pfff8dTTz2FUaNGWa0ec6jZTqaQ2U55eXl46KGHsGzZMri5ud3z\nuIy2qqwmGW3l4OCAI0eOIDMzE3v27EFSUtI928hop6rqUrutNm/eDD8/P0RERFT6l7aabWVKTea2\nk9QwMOV8g7u3yczMRFBQkNSa3N3dDV3ZIUOGoLi4GNeuXbNaTaZQu51MIaudiouLMXr0aEycOLHc\n/wAy2qqqmmT+Tnl6emLYsGFITk4uc7/s36mK6lK7rfbv349NmzYhODgY48aNw86dOzF58uQy26jd\nVqbUZHY7VW/6onqKi4tFq1atxJkzZ0RhYWGVE8i//PKL1SdmTKnp4sWLQq/XCyGEOHDggGjRooVV\nayp15swZkyaQ1WgnU2qS0U56vV5MmjRJzJo1q8Jt1G4rU2pSu62uXLkirl+/LoQQ4tatW6J3795i\nx44dZbaR8TtlSl2y/v8JIURSUpIYPnz4PffL+v9XWU3mtpPUS35UdL7BRx99BAB49NFHMXToUGzd\nuhUhISFwdXXFqlWrpNf09ddf49///jecnJzg4uKCL7/80qo1AcC4ceOwe/duZGdno1mzZnj11VdR\nXFxsqEntdjKlJhnttG/fPqxduxadO3dGREQEAGD+/Pk4d+6coS6128qUmtRuqwsXLiA+Ph56vR56\nvR6TJk1C//79pf7fM7UuGb9XxkqHf2S3VVU1mdtONntxGyIiUo/UOQMiIrINDAMiImIYEBERw4CI\niMAwIBvi6OhoWFQrIiLCcLRNbbd69Wr4+vpi5syZ1drPvHnzsGTJEsPtX3/9tcJ93r59G+Hh4ahf\nv770c2CodpB6aCmRMRcXlwpXeyw96E32WdWW0Gg0GDduXLmrlZaUlMDJybT/hne/923btmHIkCHl\nbtugQQMcOXIEwcHB5hdMdok9A7JZ6enpCA0NRXx8PMLCwpCRkYFFixahR48e6NKlC+YZXTz4zTff\nRGhoKHr37o3x48cb/oLWarU4dOgQACA7O9vw4ajT6fD8888b9rVixQoAyrK/Wq0WDz/8MNq3b4+J\nEycaXuO3337Dfffdh/DwcPTs2RN5eXmIjY3F77//btgmJiYGx44du+e9GB/BvXr1aowcORL9+/fH\nwIEDkZ+fjwEDBqBbt27o3LkzNm3aVO77OnnyZJl97ty5EwMGDMAff/yBqKgoREREoEuXLkhLS7O0\nycmOsWdANqOgoMBwUlarVq3wzjvvIC0tDZ9//jl69OiBxMREpKWl4eDBg9Dr9YiLi8PevXvh4uKC\n9evX4/fff0dxcTG6du2KyMhIAMpf0+X1JlauXAkvLy8cPHgQhYWFiImJwf333w8AOHLkCE6cOIHA\nwEDcd9992L9/PyIjIzF27Fh89dVX6NatG/Ly8tCwYUNMnz4dq1evxtKlS3Hq1CkUFhZWes2JUikp\nKTh27Bi8vLyg0+nw3Xffwd3dHdnZ2YiOjsbIkSNx6NChCt9XdnY2nJ2d4e7ujg8//BDPPPMMxo8f\nj5KSEpSUlNTUPwnZEYYB2YyGDRuWGSZKT09HixYt0KNHDwBAYmIiEhMTDYGRn5+P1NRU5Obm4sEH\nH0SDBg3QoEEDky6hmpiYiGPHjuHrr78GAOTk5CAtLQ3Ozs7o0aMHmjRpAgAIDw/HmTNn4O7ujsDA\nQHTr1g0ADAvNPfTQQ3j99dexaNEifPrpp5g6dWqVr63RaHD//ffDy8sLgLJK55w5c7B37144ODgg\nKysLly5dwt69e+95X6U9jMTERAwaNAgA0KtXL7z55pvIzMzEgw8+iJCQkKobm+guHCYim+bq6lrm\n9pw5c5CSkoKUlBScOnUK06ZNA1B2GMb4ZycnJ+j1egDKpKqx9957z7Cvv//+GwMGDIAQAvXr1zds\n4+joiJKSkgrnKlxcXDBw4EBs3LgRGzZswIQJE0x6X6ULiAHAf/7zH2RnZ+Pw4cNISUmBn58fbt++\nDY1Gc8/7Kq0jISEBgwcPBqAsC/LDDz+gYcOGGDp0KHbt2mVSDUTGGAZUawwaNAiffvop8vPzAShr\nyF+5cgV9+vTBxo0bcfv2beTm5mLz5s2G57Rs2dKw6mVpL6B0Xx988IFhSOXUqVO4detWua+r0WgQ\nGhqKCxcuGPaVm5sLnU4HAJgxYwaefvpp9OjRA56enlW+j7tXgMnJyYGfnx8cHR2xa9cunD17FhqN\npsL3JYTA0aNH0aVLFwDAmTNnEBwcjKeeegpxcXHlzlkQVYXDRGQzyvvr2/i+gQMH4s8//0R0dDQA\nZYnetWvXIiIiAo888gi6dOkCPz8/dO/e3fCB+9xzz2HMmDFYsWIFhg0bZtjfjBkzkJ6ejq5du0II\nAT8/P3z33XcVzjE4Oztj/fr1eOqpp1BQUAAXFxds374drq6u6Nq1Kzw9PU0aIip9T8avMWHCBIwY\nMQKdO3dGZGQk2rdvDwD3vK/S4bJDhw4ZhsoA4KuvvsLnn38OZ2dnBAYG4sUXXzSpDiJjXKiO6pxX\nX30Vbm5u+Mc//qHK62VlZaFv3773HO1Tas2aNUhOTsa7775bI6/35ptvok2bNhgzZkyV2wYHB+PQ\noUPlXjqSyBiHiahOUut8hM8++ww9e/bE/PnzK9ymYcOG2LZtW7VPOiv14osvVhkEpSedlZSUVHhZ\nRCJj7BkQERF7BkRExDAgIiIwDIiICAwDIiICw4CIiMAwICIiAP8fvGBef9YdgfQAAAAASUVORK5C\nYII=\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": "import wafo.objects as wo\nxs = S1.sim(ns=2000, dt=0.1)\nts = wo.mat2timeseries(xs)\nts.plot_wave('-')\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD9CAYAAABHnDf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYVdX6x78HxcwhzQlRVJwQEARE0RzymPM8VWqZpt5b\n3ZvVtTKzfsXhdh26Nlyzm02m3TTLMpwlNdlqDjkAoqDgAAqI84gTAuv3x9vmDOxzzp7OAKzP8/jI\n2WefvddZZ+/vftf7vutdBsYYA4fD4XAqFD6ebgCHw+Fw9IeLO4fD4VRAuLhzOBxOBYSLO4fD4VRA\nuLhzOBxOBYSLO4fD4VRAdBH34uJiREVFYdiwYXocjsPhcDga0UXcFyxYgNDQUBgMBj0Ox+FwOByN\naBb33NxcbNy4EX/5y1/A50NxOByOd6BZ3KdPn4758+fDx4e77zkcDsdbqKrlw+vXr0ejRo0QFRUF\nQRAk9+GuGg6Hw1GHFm+IJnN79+7dWLt2LVq2bInx48dj27ZtmDhxomQD+T+G2NhYj7fBW/7xvuB9\nwfvC8T+taBL3OXPmICcnB1lZWfjhhx/w2GOP4X//+5/mRnE4HA5HG7o6ysuzC8aeW4nD4XDKI7qJ\ne69evbB27Vq9Dud23CHuRqPR5ecoL/C+MMP7wgzvC/0wMD2cO45OYDDo4j9yJYwBr7xiwoIFJpTj\nwQeHw6lAaNVOTdky5R1BECAIAvbuBX79NQ6ZmUDXrmQ9cAuCw+GUZzRZ7nfv3kWvXr1w7949FBYW\nYsSIEZg7d671CcqB5d62LRAWZsIff5iQnQ1Uq+bpFnE4nMqOVu3U5HOvXr06EhMTkZKSgtTUVCQm\nJuL333/Xcki3k5MDXLsGdOgAtGkDbNrk6RZxOBxv4d49YM4cICvL0y1RjuaAao0aNQAAhYWFKC4u\nRr169TQ3yp0kJgJGI9C7txGjRwPr1nm6RRwOx1v47jvg//4PePllT7dEOZrFvaSkBJGRkfDz80Pv\n3r0RGhqqR7vcRnIyEBNDfvZhw4D164GSEk+3isPheAOrVgGLFwPbt9MIvzyhOaDq4+ODlJQUXL9+\nHQMGDIAgCGWCkSaTqfRvbwtWpqcDffvS361bA/XrAwcOkOBzOBz3I6UhnqCwkER95Urg22+BP/4A\nBgxw3fnEBA+90C3PvU6dOhgyZAgOHDhQ5j0TSOBNJhOMggBYiD1MJo++HrjXhG5bzK8/rG3CvVne\n0z7+mr/mrz3z+tgxYH5NE2p/aEL37sCuXa49n9FohAmgf5b7qIVp4OLFi+zq1auMMcZu377Nevbs\nybZu3Wq1j8ZTuJQbNxirUYOx4mLztrVrGevTx3Nt4nAqO7GxsZ5uAmOMse++Y2zsWPp73TrG+vVz\n7/m1amdVLQ+G/Px8TJo0CSUlJSgpKcEzzzyDPn36aH/iuImTJ4FWrQDLasW9egFPPQXcvQtUr+7a\n83vL8JPD8TSCICA+XsBXXwF37sSVbvekGzc1lbLoAPr/yBGPNEM1msQ9PDwcSUlJerXF7Zw+DbRo\nYb3toYeA9u2BPXuA3r1de/7KKO6V8TtznGM0GvHjj0ZMnQp8/TXwwgsmNG7s2TalpgLTptHfzZoB\nBQXAlStAeUkIrNQrbEiJOwD06QNs2+a68+7YAfTvTxdLZYMXaOPYY/164KWXgJAQYNkyT7fG2nI3\nGMjoS0vzbJuUoMlyL++cPg0EBpbd3q0b8J//uOacgiBgwgQBBQXAli1xqFWLtntbFpErmDmTMg/e\nfhvw9fV0azjexJkzNGGobVvgiSeM2LgReP11z7Xn4kXg9m2y2EXCwsg107On59qlhEov7l26lN3e\nuTOlQzIG3QuJhYQYUVBgRHw8MGGCTlFxL0cQBGzYIGDhQuDevThMmEDWWWV4oHHksXs30L073W8v\nvmjE7NnAnTvAgw96pj2i1W55/4viXl7Q7JbJyclB79690b59e4SFheGTTz7Ro12luHIYb88t06gR\n+d5PnND/nLt20cggJoasg3v39D+Ht7k+jEYjIiJMGDrUhAEDYlGnjgkmk4kLO6eU5GSgUyf6+6GH\nSEj/+MNz7bF0yYi0b1/JxN3X1xcff/wx0tLSsHfvXvz3v//F0aNH9WgbAM+IOwBERtIPrDe7dgE9\negA1awLNmxtdcg5vE3cAOHSIbt42bYDNmz3dGu/CG38vd3PsGI3mRLp0Afbt81x7Dh0CwsOtt4WE\nADpKm8vRLO6NGzdGZGQkAKBWrVoICQnB2bNnNTfszBnq3NWrXVMO4PZt4OZNstKlCA2l2at68/vv\nJO4A0LOnESkp+h37xAkqWZycrN8x9SI9nfp0zBgjbtwALlzwdIu8By7uJO7BwebXMTGeFfekJKBj\nR+ttTZrQSPvyZc+0SSm6+tyzs7ORnJyMLjaObEu/shw/qyAImDZNQJ06wO7d5KMNCtLXR3vmDAVL\nfOw83kJC9K8QefcuDes6d6bXQUHA8eP6HHvbNgGTJglo3BhYuzYO//d/QNWq3uPXFsW9TRsjIiPp\nAeTKqdzlBV7HiKb5nz5N5T9EYmKAt97yTHvu3CFDydYtYzDQA+joUbOBpid6lx/QbfrozZs3WXR0\nNIuPj7faruYU584xVqcOYwUFjI0ZE8v69tWrlWYSEpjD4+7fz1hEhL7n3LePschI8+uffmJsxAh9\njv3++4z17k2zbQMCYtm2bfocVw8KChh78EHGioro9fTpjM2b59k2qSUxMVHT54uKGLt2jbEtWxLZ\noEGxzNc3lgFgsbGxLDY2VvPxyyPHjjHWqpX1tpISxurWZSw/3/3t2buXsago6fcmTWLsyy/d0w6t\n8qyL5X7//n2MGTMGEyZMwMiRIzUfb/VqYPBg8ku3awd88glw4wYFWvTCkb8dMFvVembM2A719LLc\ns7KA99+nDB8fH6B5c/dMwpLLsWP0XatUodcREcCvv3q2TWrRMgnr/n0qL33wIMCYEb16GbF7N9Cv\nHzB4sKnSFqs7c6bsvWgwANHRdM8MHuze9uzcCTzyiPR75cnvrtnnzhjD1KlTERoain/84x96tAk/\n/QQ8/jj93a+fEY88Avz2my6HLsWZuD/0EPDAA8ClS/qd01bc27QBTp0Ciou1HXfGDGD6dKBlS3rd\no4cRx45pO6aeiC4ZkZAQICPDc+1Ryy+/0ENJbbzg55/JVXbnDnD1KgWWO3Wih93Klfq2FSg/vvyc\nHOt8cpGICApsupvffqOJjFJUKnHftWsXli1bhsTERERFRSEqKgoJCQmqj3fxIrB/PzBwIL0mn/Gf\nFdl0xJm4AzTBKTtbv3PainuNGkCDBnRxq+XECZrx+tpr5m0jR7pH3IuLgVmzgC+/dLyfrbi3a0fi\n7uWrL5YiCAKeecaEyZNN2Ls3Dl27UiqnUvFctw6YOJGs0j/XuAEATJhgxOrV+rYZKF/i3rx52e2e\nEPfbt0lr7A3OQkMrkbj36NEDJSUlSElJQXJyMpKTkzFQVGYVrFlDwm558XfuTIKvJ3LF/fRpfc53\n/z6JnG2Qpm1bIDNT/XGXLAGeecZ6ske7duQKcbV4/vADsGED8O67jjOLbMW9Th2gdm0gL8+17dOL\nXr2MSEszYelSE955JxZFRSYMH64sT7+khCxCce0AS6ZMMeLKFeDcOd2ajNRUoKhIv+MpQelDxZss\n9/XrKePMXv2Yli1p5HbrlnvbpQavqy2zbBkwdqz1tuhoyq7Q6r6wRMrPZ4uelnt6Oh2vZk3r7UFB\n2sR940Zg9GjrbfXqUUVLPcVCiv/9D3jnHWDKFFrMwB624g6YH0BK8JQlmppKBaNGjKCYxl/+Qt9d\nCSdO0G8idc35+FB2iB6TdgRBwOjRJkRFmTB7dhxMJnWjDK1tUIKYuWZLSAjdf3fu6NIsWfz4IzBu\nnP33q1Qhd2p5cCt6lbhnZNCQZ+hQ6+316tEKSSdP6nOeoiIgPx9o2tTxfi1a6Ge5S+XNAtrE/eJF\n8tlLBeKaN9fm7nHGlSvA3r0U7Bo/HlixQnqkcOcOkJtrneYGUEqZ0hvEU+L+ww/0HX18yE04YIDy\nwnLp6WUnxVjSpYs+4t6rlxHp6SZs2WJC3bqxGDrUvbOBV682l+6Qiz3LvVo1MgLcNSu0oADYuhVw\nlhNSXvzumsV9ypQp8PPzQ7ijK1cGV68Cf/sb+Y6rVSv7vp5BuLNnafKSs+JVelruBw/qL+579lBU\nX+p7NG1Kouoqdu+mh0rNmjRVvEoV6ZswI4OE3baNSi13T7kYAGDLFmDQIPrbaDQiOpoe+koCq0eP\nWs/AtKVrV33Efc8e+r93byAqCli6VPsxLWGMRtdvvEHuuO+/B65fpwfv8OEmPPusCRs2xGHsWHkj\nBsbsizvgXtfMpk2OXTIilUbcJ0+erCmAClB2THAw3fDTp0vvExysfBhvjzNnpAM4tugp7q6w3FNT\nqUyCFAEBrvVp79lDNXIAChAOHiw96UvKJQNQrEFO7R5BEDB+vAm+vibExbnfzXDlCv0+Xbuat1Wt\nSlkuBw/KP469fhCJiSGLV+ukpjVrgCefpN/k2WeNWLtW39jLG28ACxaQAFapQqOaFi0Ak8mIQ4dM\n2LfPhMcfj8WNG/JGDNeu0XHq1JF+353ivmZNWRenFOVF3HWZxJSVlcXCwsIk33N2iv37GWvUiLED\nBxyf4/PPGZsyRW0LrVm+3Lx8liOuXmWsdm3t5ysqYqxmTZq8YkthIWMPPMDY3bvKj/vEE/RdpJg9\nm7GZM5UfUy5GI2ObNplfr1tH22x5+23GpFZNS0tjLChI3rm6dqXvU6tWrKp+0sKqVYwNHFh2+/Tp\njM2dK/840dGM7dnjeJ+AAMZOnVLWPlvCwxnbvZv+LilhLDCQsSNHtB1T5ORJxho0YOziRevt58/T\n73/lCr2eOTOW1apF17YzUlIYa9/e/vtbtzLWs6f6NiuhRQuaUOWMQ4cYCw52eXO8YxKTMxyVH/jX\nv2h4Fx3t+BjBwcB33+nTHjnBVICsiZIS7ROoMjIAf39p68TXl9py8qRjy06K1FTqOymaNnVNbRyA\nXCQHDlhbs717k1/atq/S06UDVC1bkmujuNg8uUmKa9fI3bN9O63Q88svdB53YS/nOTJSfnmKkpKy\nhbGk6NCBrFRxvoJScnNptCbGYAwGyjxLSKCKhlpZtoyWoGzQwHp7o0bWcbKBA43YsMFcLM4Rjlwy\ngNlyd0X5bUvOnqVaU0FBzvcNCqKJg/fv67sugVeWH1BruYtlBm7dcn6Oc+cYq19fbQut+dvfGPv0\nU3n7tmvHWHq6tvMtX87Y44/bf3/oUMZ++UXZMW/fZqx6dfvW0dat0pa0HqSmUr/Y0q9f2e/RqhVj\nR49KH6dJE8bOnHF8rt9+Y6x7d/p71qxENmyY8vZqoV07xpKSym5PTmYsNFTeMbKz6bs6Y9YsxuLi\nlLXPkq++KjsiXbNGvwXfw8IY+/13efs+/zxjCxY43++zzxj7618d7+PvT33oSuLjGRs0SP7+rVtr\n1wVnaJVnj2bLxMeTr9Yyp90ejRqRlafHjNHTp+X53AHyXWsNTB496thyCg9X7ldMTycLwp7l4O9P\nGUGuQKrWNUBBR0tr9upVCjras4ZatXKeAXXggNn6e/NNI7Zvp+O6g9xcut4iIsq+164dZSrJCfQ6\n87eLiJa7WjZtMgd+RR57jAK1WvOy8/NpVGBvWr4tcktmy4l/ucPvnp5OiQFyKQ9+d4+K+6pVwJgx\n8vY1GCi/VI8FNOQGVAH9xN2ynKkt0dHKgnOAfYEV8fd3XZ774cPSaX2iuIsBvORkusntVd5s1YoE\n0hHJyeZA9EMP0SSg+Hj1bVfCr7+SS0aq/Q8+CPj5yQu4O8uUEYmIUL+GQFERuZBsK23WqkW/gdYZ\n3tu3A48+av+3tEVuyWxnbhmArnNXrHtgSUYGPbDlYk/cvWnWtWZxHz9+PLp164bMzEw0a9YMS5Ys\nkfW5y5epXrOSyazlVdyd+VvViLs9gRWpW5dyzF0xAeTwYekHS7t2lEkiLiK8a5d0Dr6IHHE/dYp+\nd5Fx4yhDwx0kJJS1hC0Ryyg4Q67l3rYt+X7VLJx++DDVG2/cuOx7vXsDiYnKj2mJINifki+FKO7O\nxE6OuGt56MlFD3Hfu5fias8+6x0ir1ncV6xYgbNnz+LevXvIycnB5MmTZX0uPp6q4dnO2HRE69ba\nJzJdv04Brrp15e2vVdyLiqjNjgI1LVrQxaDkweXMcjcY6EY/f17+MZWcW+rBIqZEbthAr9evd1zR\nT87vaVsmYsgQMgpcvdhHURFNaHFkfMgVd7mWe9WqtJ+aSTu7d5tTU2157DHt4p6YqEzcGzSg+SrO\nXINyLXdXumUYUy7uHTrAaqEdxoDnngMWLqQH7eLFZT9z4AAtDq93EUR7eMwts2wZLRCtBD0sd9Fq\nlxt51yruWVnkInG00K/BUNZf7Qxn4g6QuOvtmrl2jf4FBkq/P3Ei8OmnJFAnTjheKd6Z5X73Lp3L\n39+8rUYNEviff1bVfNns2UNZK1KWsIicWbaMUV/I9eeq9S87EveuXakNN24oPy5AvvbLl51fb7Y4\nc82UlNCxAwIcH6ddO3oI3L6t7PxyuXiR3E22WUCO6NCB7m2xT3fupJjgxIkk7G+/bb1i06pVdN0y\nRpb9N9/o+hUk8Yi45+TQ083RkFcKPSx3uWmQIlrFXa7VNnQoXQByOH+eLiRL0ZNCrrgrSb86cYLc\nB/Z8r126mGdHzpolPdtYxFlA9cwZ6n/bc4nlDlyJVHDSFjmW+5kz5PeuX1/eedX6lx2Je/Xq5B7b\nuVP5cQGz1S7X3y4SGmp20Ulx/jy5MRwZPgAlDbiyDMGxY3R8JamWvr4UyzhwgF4vWQJMnkzHiIwE\nnniCSnEzRuWcX3yR3Hxz5tCM5zfeoGvDlWgW94SEBAQHB6Nt27Z4//33ZX3mk0/Ian/gAWXn0sNy\nV5IpA2gXd9u1Ie0xdCgt3CHnxj50iETA2cXoCnHPynKeh710KYmeZRliKfz8zGvZSpGdLf0g7t+f\nLEJX1s6RK+7OZk3bc2HZQ43lfuUK/XPk+uvWTX15g23byLWjFGflcZXEvlzpd1fqkhHp1Ytq8l+/\nTjV1LD0R//oXzUqPjKT74NdfyeABSA9eeIH2cSWaxL24uBjTpk1DQkIC0tPTsWLFChx1kh906RIN\nW2bMUH6+xo0ppUvt8BJQdkEBZHHdvq1+SCjXcq9WDfj734H//Mf5vgcPOp/0BcgT95s3lU15z8qy\n75IR8fEhq9zZw8dgcFxW+fRp6XNVqwaMGuWaBS4A8hOfPm09SUuKpk0p+Hn9uv19kpKkUyntIVru\nSn6TtDQSUkeWtZqgPUCW59at6sS9fXvHlrucstsirvS7qxX3J56gKpJLlpDBYenCq1uXEgo++ogM\nANtr4KWXqOzKtWva2u4ITeK+b98+tGnTBoGBgfD19cW4ceOwZs0ah5/59FNKf3TmZ5PCYNDumlEq\n7gYD3cRq67TItdwBepqvXk0ZE47QQ9wFQcCsWSY0aGDCe+/Jr9mSna1+BqUUgYH0wJDC0c3vyqyZ\n334j11JVJ/O3DQaylh25ZrZtUxaIrFePXBVKqpGmpTmfgRodrbxaI0Duntq11Ymf6Jaxd06l4u5K\ny13uPWpJZCS5Rl97DXjzzbLv16xJqbRSSSN+fpRaun698vPKRZO45+XloZlFqDsgIAB5DlTw9m3g\ns8+cD9cd4W5xB9S7ZhiTb7kDNEqYMMG59b5/v3ZxNxqNCAszoV8/Ex56KBZPPCGv0JMcy10JLVva\nzxV3dPMbjeSic0Uu/7Zt9pdZs8VRUPXWLXoQOwoqS6HUSpWTatmsGV2PSo2Ur76ia1LN1P9Gjehz\n9jKb1LhlXJFiqNZyNxjIf56dbXa5KGHECLhkBS4Rw5/TXFWxatUqJCQk4KuvvgIALFu2DH/88QcW\nLlxoPoErC0JwOBxOBUaDPGuz3Js2bYoci6hWTk4OAiT8LYwxMMYwbhzDV1+x0tdq/i1axPCXv6j7\n7P37DNWqMRQWKvvczJkMc+YoP9+2bQw9eyr/3PjxDB98QH8nJiZavfef/zBMnSrvOKdOMbRoYf/9\nJk1onzffTMSTTzo/XkkJQ/XqDAUF2n5Dy38rVzKMGiX9XrNmDFlZ9j/7zjsMb72lX1sYYzh5ksHf\nn76rnP1XrGAYM8b6GouOZggOZujalSEzU3kbli9neOIJ+fu3b89w6JDz/WbNYjCZ5B938GCGBQu0\n9efzzzMsXCj9XocODAcPyj/WgAEM69bp+3sfPcrQpo2+x1TyLzCQ2iD1nlY0iXunTp1w/PhxZGdn\no7CwED/++COGDx8uue/9+xQxdjSpRQ5aMmby8uQt0mGLWreMEn+7Ja+9RjWz790j33hJCQXt7t+n\nYPTjj8s7jp8fuS2krpPr1+lfYCCt4bl3r/PjnTtH/lclE8+cYc8tc/8+pco5Wi2rSxea0CTFhQtU\nwVCpT3PfPqqfInfAaZsOuXQplUlIT6dc+bZtlZ0fUL4wTU6OvBiWEr/1wYOUrvzCC/LbIYWjXHcl\nPnfANUFVMQ3SU3TrRnENV6BJ3KtWrYpPP/0UAwYMQGhoKMaOHYsQOw7m3bvpRm7SRMsZtfnc1fjb\nAfXirsTfbkl0NBXLmjWLbozgYBK52rUpgGdbP8QeNWpQuqlURF5sm8FAmS0XL9pPSRSRkwapFHsL\nouTl0cPJ0YM4JobiD1KZJe+9R5NIJk9WlpGQlKTMfxoURMaGuL7vV18BM2dqK08bFERpsXLWDL5x\ng2bTPvyw832VpFkuWkQZHY7mKcjBXsbM9evUbmerHlkSFUW/j54omWDmCqKjrWe66onmPPdBgwYh\nIyMDJ06cwKxZs+zut2FD2bVR1dCsGVlld+8q/6y7xV2t5S4IAlq3NiE+3oSffopDly4mvP66CatW\nCfjpJ2XCYa+AWHq6+cFTpQq101mhJ70zZQAKIhcWlk0nzM52Hrht2JBSzmwf9nfv0oLd335LI8VF\ni+S3x7JQmRxq1qR2ZGcD330n4MwZ+cFYR8ds0EDeJBdxhqeca0Ju7RrGaJQ9YoS89joiIoLEy/ZB\ndeoUXUtKruXOnelhrgbGaDS8ZYv1dmc1mlyNs3RRLbhthur69fqIe9WqdFGoWZquvFjuRqMR8+eb\nkJVlQmxsLL77jjJZhgwxKrYI7WXMHD1qnWEh5yLTO1MGoJtbyjUjd8geFUWCbMmePfTdGjemmYGL\nF8vLG2dMueUOAD16UPrkl18KGD/eeQqlHOQuKynXJQNQu0JDSdAckZlJv4sal5ItDRrQCMzWcFBz\nb7RuTQ8mNRlSq1bR5Mlx46wnvymdZKY35V7cT52iGXRy0vfkEBmpbiijVtwbNaKh/b178j9z8yZ9\nZzXn0xNH4m55c8kp0eoKtwwg7ZrRIu6JiZSnDpC1V6MGlax1Rk4OuSGclXWwZfhwWiUsOVm7j1pE\nrrjn5jovvGWJHL/71q1UWlmvRLeuXc0Ld4uoEXeDQb31vnQpueqmTgXEifQFBXSdedLn3rQpVW61\nrEOjF24R959+ohtAaW0Ke0RGlr2h5aC0royIjw+JpLPJRZaIvnKt39lZ3rkz7Im7pVsGoAvc2WhI\njqtEDVITmbSIu+V0eYMB+MtfyBfuDDVWuyAISE014ehRE27disP33+uzgLcScVcyIVCOuG/ZQhVb\n9aJ377LuENuRo1zUiHtxMfD77/Sdpk8Hli+nBV+2b6egvNIyKHpiMMivfa8U1dLz008/oX379qhS\npQqSnEQ5vvtOeQVIR6gNrGRnq7ekmzVTVuhHr0CNK8T99m2aYt+qlXmbHHF3leUu5ZaR+yARrwUx\nI6iggEZ13bub95kwAdi40bl1lJysXNyNRiPmzDHh0iVyoYkzfbX+bkrcMkosd2dB1aIiqt2uptyA\nPQYPJnEvLDRvS01Vt66rGnFPTaXRWMOG9P+QIfSw1/shphZXuWZUi3t4eDji4+Px6KOPOt3X15f8\nknrRtSvd0ErqvTCmTZzatlXm55czJdwdSIl7RgallFr6hlu3JkG9f1/6OMXFZCWqGfk4Q4tbpmlT\n+m3FUdWuXeT+s1y6sV49GjnGxlKp4L59yf9qixpxdxXt2slbxk2N5X74sP2Znvv3U7/7+ck/pjP8\n/MivLdb5z8+nGlNq4lExMZSuqiQNXExvFZk5k1wzS5dSfRhPI6d0tBpUi3twcDCC5CwVDmDdOv1c\nMgDlEUdGKithmp9PqYS1a6s7p9I1E71Z3KX8ndWrU5qqvVIAeXkUHHPFENbWLVNSQqIlZ5RlMFB2\ni+iasVfB8OOPyYJbuBB45hlg3ryycRut4q7VWrekSRPyxTpbL1apuNevT/eAvd9561bXWLPPP091\npQDg888F9OhBWVpKEddGsFePSIrMTOustfBwKvj144/6BI21EhSkLkHEGTrE9Z3z9dem0r+NRqMu\nN8GQIRQBl5vzffIkWadqCQ6m4apcjhzxbnGX8neKF5nUBe8qlwxgdsswRmKdm0siVL26vM936wbs\n2EHZWAkJVL/Ilvr1aR+R/Hyq4bN0Kb2+dIlyxrV8Rz3F3WAwW3SOqlMqdcsAZr+71HfdupXmV+jN\nk08C//wnsHYt8NNPAqZNM6o+luiasXQrOiIzs2x9n759VZ9ed8T7ThAEzbEaSxyKe79+/XBOIho3\nZ84cDBs2TPZJTCaT4oY549lnyfqcN0/eRAit4q7Ecr92jYTC05kygLS4p6fTzWaLONtyyJCy77lS\n3MUlD69do8k4J09ar5vqjL59KeXxlVdI7Lp0cf6ZqVPpIXbrFuWVp6Q4XszbE4j14u2J+82b5MeW\nM4HJErEIl20e++XL1A9KC53JoVo1Wn1oyBDq42eeUX8s0TUzdqy8/TMzHde69zStWtF1262bteEb\nFxen6bgOxX2LbYjbi2jcmHJW333XPNxzxMmT8p/0UrRsSSJ5+7a1P1cKOfW13UXDhpSSWVRk9rE7\nstzt5UC7KlMGMNd1z8oioTpxQpm4x8SQtR8bS9a7nDzzhg3pIbBhAz3ovMnfLuIsqCqmQSpNWezQ\ngVwSAFmKF9i0AAAgAElEQVSLoqCsWkVrxupZXkJEtEqfew744IM4fPghbVczku/cmUYBcrh/n+I3\nWgw7V1OtGv2Op06pm/RoD13kR48iN2qYPZsCZJZ1URITqYNsZyVqtdyrVqXPy/GNeYtLBiC/Zv36\nVF4AoIs9K0vaknFUm9yVljtAfSvWDDpxQtlv5etrDpZK1dW2h2VN+Ph4wSro5g04W8ZPqb9dpH9/\nuk+uXyfRzcujB/5HH1G5BldgNBphMpkwf772rKJOnehhXFTkfN/sbAq6ezLdUQ6u8LurFvf4+Hg0\na9YMe/fuxZAhQzBI6YKoOlCvHvlXJ0ygIWpeHq2v+frrwFtvkcUqolXcAUptdDa7D/B8vQpbLF0z\nJ06QIEhd7I7SIV0t7uHh5vzr48eVWe4A1UG5dk1Z7vSoUTSz9OJFIClJ8Co/LCDPclcj7vXrU9D0\n1Vcp57tDB3KXDB0qP4blSerWpYCzHDept7tkRLxK3EeNGoWcnBzcuXMH586dw6ZNm/Rsl2xGj6Za\nHkOG0JDylVdo0srw4eYVxouL9cleiYqSNzPWm8XdUS2NgADKzpCqPeJKtwxgnX998KB7XCR169Ki\nH+PG0SxkuYtYu4u2bemhai89VU0wFSBrvUULE5KTTThxIg5//7sJEyeaMHSooNusVEfoEXiWm+9e\nmcXdLdkyruazz4D//pdWmReHlZMnk2Xy+utkCTZqZA7cqSUy0jx12R6MkYCWR3H38THn81sWzyos\npM+rERK5iAWm4uMF3LhhVGy5q0EQBPj7C1i/HsjLi4MY99cro0srYnqqPTdabq6yImcilt/PZHJN\nwoOz82ulUycyAqZMcbxfRoZna8fIJSjIHAfRiwoh7lWqAC+/bL2tZ08SpIwMYPlyAR07GjWfR6xp\nI6bsSXHhAr2vtD6JKwkIMK/JmZoKTJxof1/RgrAUjTNnSGT0KIhlj5Yt6SHy1VcCoqOVF0hTg6dF\nTg6ia8aeuOtRubE8Ehwsr1Z/Ziat2ezt2FruR45oP6amgOqMGTMQEhKCiIgIjB49GtcdLQPvZqpU\nMa9OvnmzgM6dtR/Tz4+sKUdlCESXjDetLihaxWLVQ9uV2C2RCuK5otSvLT4+5ErbtEn7gi4VCTEd\nUgolFSHt4Q0jFDW0bUsjcmeUF7dM06YUM7p5k+7T/v21H1OTuPfv3x9paWk4dOgQgoKCMHfuXO0t\n0pHx44HPPydXhIK0fIc4q0jpbf52wFx/ZcUKWtXJUWBZyvfn6mCqIAgwmUx46CETgDhcvqxP8S0l\neKvIhYTYLyqlNqBqibd+b2e0aEErdTla16GggHL3XelO1AsfH/qtDx+mUbachVqcoWmg3c9innKX\nLl2watUqzQ3SCzGvtmVLYPfuOKxcSdu1+lNFcbc3HD5yRJ0f1JW0akWTqr7+WsBjjzl2ebRrV7bu\niriwgquw/E1q1/aMe8RbRa5jR+l5HDdvUglqJSsZVSSqVqUA/8mT9hMlxPkS3jDfRA7du1NtpIcf\nphIaYpquWnTzon7zzTcYP3685HuWN6u7glXieciXqp9gREVR+pg9MjJo7U5vwseHsom+/x745RfH\n+4qWu2Vc4cSJ8uG3rIiEh1P/206eO32axM2b3H/uRnTN2BP3zEzP1mpXysMPC1i8WECVKvrUvHEq\n7nJKEMyePRvVqlXDU3ZUzRsDVWqJjARmzLD//qlT3jUbThzB0Nq1cTh0iFIO7T1kH36Y4grnz1OW\nDUA3kLsKLHmrBe0pHniAhuuHDllXNlS6uHRFxJnfvbz420WmTTNi3jwaWW/bBqxZ48LyA4DzEgRL\nly7Fxo0b8dtvv2lqiCvRUzBatyY/3tWrZWt63L1LBaiaNtXtdJqxFPGaNeU9aMWZqo0bkwWvtByA\nFri4l6VTJ+DAAWtxz87m4t62reNFezIz9a1L72oaNgSWLaO/9Si5rMkblZCQgPnz52PNmjWoLreE\nnwfQUzB8fGhGn9SCB1lZVCxMTSlTb8IyqHruHLkD6tTxbJsqM507W5fYAMxumcqMM8v96NHy5ZYB\nKMNPrxrzmsT9pZdeQkFBAfr164eoqCj8/e9/16dVXk5QkPRFdeqUtuJkrkbuQ659e3MpgJQUephx\nPEefPlQmwXKRb265Oxb3khISd2+p8eQJNAVUj8tJNK2AtG5NUXpbKoq4d+9OSyMC5A7o1Ml1beI4\np2VLWqDm8GHzHIX0dNfUXS9PNGtG9aMKCmh2uiVZWbS4zEMPeaZt3kA5SRLyLtq0KZ/iLpeOHen7\nXbsGJCQIXNy9gP79gV9/pb/v3aPfR80ydRUJHx+6F6VqsnjjfBN3w8VdBY4sd2/KlFFLtWpUvmHN\nGiA5WUC3bp5uEWfIEGD1avr72DGy5r04zOU27JVF5uKuQdzfeecdREREIDIyEn369EFOTo6e7fJq\nRHG3LWNfUSx3AHjuOVrtyt8ff6ZRcjxJ376UtXTyJPDDDwKPg/yJvTLVhw9Xbn87oEHc33jjDRw6\ndAgpKSkYOXKk5iWhyhP16tGQ8NIl8zbGXD+T010IgoCUFBPGjzfh1Km40oUV3FkOgGONry9VOv34\nY2DdOgG9e3u6Rd6BPct93z4gOtr97fEmVAdUa9euXfp3QUEBGjRooEuDygui9d6wIb2+cIFWZa8I\nARzL3PigoIo1Ca0889pr5Ge/fVt6DdzKSFAQLXRuSX4+xYv0XLKuPKIpW+btt9/Gd999hxo1amCv\nbSKuBSbBBJPRVPo3gHL/unVrE06dAhLu0usBD5jQqpX3tE+v1wKECvn7lbfXRhghCAKCnhOwd+92\nLFgAAEB2YDYCAwM93j5PvV59zYTD9YHiYhOqVKH309OBbt1M8PHxfPu0vtaCgTlYAFVO6QEAmDdv\nHjIyMrBkyZKyJzAYEBsbW/raWxZC0Mpbb5Gl/s479Pr77ykAqXfBfU9juYAyxzsQ3WQcom1bID7e\nHECdOpXmZrzyimfbpRSxVIhIXFycpvWpHYq7XM6cOYPBgwfjiESFeYPB4LEFtF3J4sXAzp3A0qX0\nevZsqtQ3b55Hm8WpBHBxt+bppyngPHkylcpt0gTYs6f8Jzdo1U7VAVXLCUxr1qxBlDsWvfQiWrWi\nAKqIq2ueczgifCRlTUwMsHs3Wb6bN9PkpvIu7HpQVe0HZ82ahYyMDFSpUgWtW7fGokWL9GyX12Ob\n637qFDB2rOfaw6k8cHG3ZtgwGjn7+wvYv9+I55/3dIu8A13cMg5PUEHdMsXFVGXx6lXyvbdsCWzZ\n4r7qiRwOx0z37sC1aybcv2/C4cNUKrm8o1U7ubhroF07CuS0bUu1LW7epNmdHA7HPYhByIsXgc8+\ni8MLL8TCz69iJG5o1U7VbhkOiXpGBk1gatGCCzuH424sRbxhQ/BAswWaa8t8+OGH8PHxwZUrV/Ro\nT7kiKooWCzh0yFytj8PhcLwBTeKek5ODLVu2oEUlLSzdsSOQlETTwbm4cziepby7YfRGk7i/+uqr\n+Pe//61XW8od0dHA/v3Anj0CKlkmKIfjdXBxt0a1uK9ZswYBAQHoUInL0zVrRsvPnT4NXsiJw+F4\nFQ4DqvbKD8yePRtz587F5s2bS7c5iupaBjkqQhQbMEfpBw0Cjh+PgziAqSjfj8PhuBfb8gNaUZUK\neeTIEfTp0wc1atQAAOTm5qJp06bYt28fGjVqZH2CCpwKKcKng3M4HL3xSCpkWFgYzp8/X/q6ZcuW\nOHjwIOrVq6e6IRwOh8PRD12W2TMYDHocptzC3TAcDsfb4DNUORwOxwvxWFVIDofD4XgvXNw5HA6n\nAsLF3Y3wBabN8L4ww/vCDO8L/VAt7iaTCQEBAYiKikJUVBQSEhL0bFeFhF+4ZnhfmOF9YYb3hX6o\nrgppMBjw6quv4tVXX9WzPRwOh8PRAU1uGZ4Fw+FwON6J6lTIuLg4LFmyBHXq1EGnTp3w4Ycfom7d\numVPUMlz4DkcDkctLluJyVFtma5du6Jhw4YAgHfeeQf5+flYvHix6oZwOBwORz90mcSUnZ2NYcOG\n4fDhw3q0icPhcDgaUe1zz8/PL/07Pj4e4eHhujSIw+FwONpRbblPnDgRKSkpMBgMaNmyJb744gv4\n+fnp3T4Oh8PhqEC15f6///0PqampiI6Oxp49e9C3b9/S965cuYJ+/fohKCgI/fv3x7Vr10rfmzt3\nLtq2bYvg4GCrevAVgSlTpsDPz89qFDNjxgyEhIQgIiICo0ePxvXr10vfq6h9IdUPIlJr7lbUfgDs\n98XChQsREhKCsLAwzJw5s3R7ZeuLffv2ISYmBlFRUejcuTP2799f+l5F7oucnBz07t0b7du3R1hY\nGD755BMAOmsn08iOHTtYUlISCwsLK902Y8YM9v777zPGGJs3bx6bOXMmY4yxtLQ0FhERwQoLC1lW\nVhZr3bo1Ky4u1toEr0GqLzZv3lz6HWfOnFkp+kKqHxhj7MyZM2zAgAEsMDCQXb58mTFWsfuBMem+\n2LZtG+vbty8rLCxkjDF24cIFxljl7ItevXqxhIQExhhjGzduZEajkTFW8fsiPz+fJScnM8YYu3nz\nJgsKCmLp6em6aqfm8gM9e/bEww8/bLVt7dq1mDRpEgBg0qRJWL16NQBamm/8+PHw9fVFYGAg2rRp\ng3379mltgtcg1Rf9+vWDjw91c5cuXZCbmwugYveFVD8A0mvuVuR+AKT7YtGiRZg1axZ8fX0BoDTr\nrDL2hb+/f+lo9tq1a2jatCmAit8XjRs3RmRkJACgVq1aCAkJQV5enq7a6ZLaMufPny/1v/v5+ZUu\n7HH27FkEBASU7hcQEIC8vDxXNMEr+eabbzB48GAAla8v7K25W9n6AQCOHz+OHTt2oGvXrjAajThw\n4ACAytkX8+bNw2uvvYbmzZtjxowZmDt3LoDK1RfZ2dlITk5Gly5ddNVOlxcOMxgMDicyVZZJTrNn\nz0a1atXw1FNP2d2novbF7du3MWfOHMTFxZVuYw7i+BW1H0SKiopw9epV7N27F/Pnz8eTTz5pd9+K\n3hdTp07FJ598gjNnzuDjjz/GlClT7O5bEfuioKAAY8aMwYIFC1C7dm2r97Rqp0vE3c/Pr3TyU35+\nfum6qk2bNkVOTk7pfuLaqxWdpUuXYuPGjVi+fHnptsrUFydPnkR2djYiIiLQsmVL5ObmIjo6GufP\nn69U/SASEBCA0aNHAwA6d+4MHx8fXLp0qVL2xb59+zBq1CgAwOOPP17qaqgMfXH//n2MGTMGzzzz\nDEaOHAlAX+10ibgPHz4c3377LQDg22+/LW348OHD8cMPP6CwsBBZWVk4fvw4YmJiXNEEryEhIQHz\n58/HmjVrUL169dLtlakvwsPDcf78eWRlZSErKwsBAQFISkqCn59fpeoHkZEjR2Lbtm0AgMzMTBQW\nFqJBgwaVsi/atGmD7du3AwC2bduGoKAgABX//mCMYerUqQgNDcU//vGP0u26aqfWqO+4ceOYv78/\n8/X1ZQEBAeybb75hly9fZn369GFt27Zl/fr1Y1evXi3df/bs2ax169asXbt2pVHyioJtXyxevJi1\nadOGNW/enEVGRrLIyEj2t7/9rXT/itoXYj9Uq1at9JqwpGXLlqXZMoxV3H5gTLovCgsL2YQJE1hY\nWBjr2LEjS0xMLN2/MvSFpVbs37+fxcTEsIiICNa1a1eWlJRUun9F7oudO3cyg8HAIiIiSrVh06ZN\numqny9dQ5XA4HI774SsxcTgcTgWEizuHw+FUQLi4czgcTgVE9TJ7lgQGBuKhhx5ClSpV4OvrW6Fm\nknE4HE55RBdxNxgMEAQB9erV0+NwHA6Hw9GIbm4ZnnTD0ZPLly8jKioKUVFR8Pf3R0BAAKKiolC7\ndm1MmzZN9/M9++yzaNWqFb788kvdjjljxgz4+/vjww8/1O2YHI5cdEmFbNWqFerUqYMqVarg+eef\nx1//+lfzCSrglGEOh8NxB5rkWY+E/LNnzzLGqHRpREQE27FjR+l7Op2iQhAbG+vpJngNSvrCZDKx\nDz74gDHGWGJiIhs6dGjpMSZOnMh69uzJWrRowVatWsVee+01Fh4ezgYOHMju37/PGGPswIEDrFev\nXiw6OpoNGDCA5efnlznHs88+y37++efS1ytXrmRhYWEsIiKCPfroo4wxxoqKitjrr7/OOnfuzDp0\n6MC++OKL0v3nzZvHwsPDWUREBHvzzTcl265HX1R0eF+Y0aqduvjc/f39AVDp0lGjRmHfvn3o2bOn\nHofmcBySlZWFxMREpKWloWvXroiPj8cHH3yA0aNHY8OGDRg8eDBeeuklrFu3DvXr18ePP/6It99+\n2+li7u+99x42b94Mf39/3LhxAwCwePFi1K1bF/v27cO9e/fQo0cP9O/fH0ePHsXatWuxb98+VK9e\nHVevXnXHV+dwHKJZ3G/fvo3i4mLUrl0bt27dwubNmxEbG6tH2zgchxgMBgwaNAhVqlRBWFgYSkpK\nMGDAAABUzyY7OxuZmZlIS0srXSmsuLgYTZo0cXrs7t27Y9KkSXjyySdLi3xt3rwZhw8fxs8//wwA\nuHHjBo4fP47ffvsNU6ZMKa0dJFXLnsNxN5rF/fz586VV3YqKivD000+jf//+mhtWETEajZ5ugteg\nV19Uq1YNAODj41O6+IX4uqioCIwxtG/fHrt371Z03EWLFmHfvn3YsGEDoqOjcfDgQQDAp59+in79\n+lnt++uvv2ryjfLrwgzvC/3QnC3TsmVLpKSkICUlBUeOHMGsWbP0aFeFhF+4ZvToCzmC2q5dO1y8\neBF79+4FQGVW09PTnX7u5MmTiImJQVxcHBo2bIicnBwMGDAAn332GYqKigBQRcfbt2+jX79+WLJk\nCe7cuQMAit0y/Loww/tCP3TxuXM4rkbMurJcwMB2MQPbzCyDwQBfX1/8/PPPePnll3H9+nUUFRVh\n+vTpCA0NtXsOAHjjjTdw/PhxMMbQt29fREREoEOHDsjOzkbHjh3BGEOjRo2wevVqDBgwACkpKejU\nqROqVauGIUOG4F//+pcruoHDkY3Lq0IaDAaeA8/xeiZPnoyhQ4dizJgxku8LgqDKqjSZTKhduzZe\ne+01jS3kVDa0aqcuk5iKi4sRFRWFYcOG6XE4Dsft1KlTB++8847dSUyCICg+5owZM7B8+XLUqlVL\nY+s4HOXoYrl/9NFHOHjwIG7evIm1a9dan4Bb7pxyjiAAL79swm+/mdCwoadbw6ksaNVOzT733Nxc\nbNy4EW+//TY++ugjrYfjcLwGQRCwebOA//4XuHEjDsOGAQMHUtCPB/443o5mcZ8+fTrmz59fOtGD\nw6koGI1GbN5sxLBhwMMPA/HxJphMnm4VhyMPTeK+fv16NGrUCFFRUQ59kiaLO4JbPZzyQnIy8PXX\nQEoK8OWXwP37wJkzQPPmnm4ZpyIiCIKq2I49NPnc33rrLXz33XeoWrUq7t69ixs3bmDMmDH43//+\nZz4B97lzyiG7dwOjRwMLFwJPPEE33oIFRowdC4wb5+nWcSoDWrVTt1TI7du344MPPsC6deusT8DF\nnVPOyM4GYmKAb78FBg0yb58zB7h6FZg/32NN41QivCIVUoSX9+VUBD75BJg82VrYASA4GMjI8Eyb\nOByl8ElMHI4FjAF+fsCePUDr1tbvpacDI0cCmZmeaRuncuFVljuHU97JyABq1Cgr7ABtO3MGKCx0\nf7s4HKVwcedwLNi1C+jRQ/q9Bx4AAgKAU6fc2yYORw2axP3u3bvo0qULIiMjERoayitCcso9SUlA\n58723w8MJOudw/F2NIl79erVkZiYiJSUFKSmpiIxMRG///67Xm3jcNxOVpa0S0akeXMu7pzygWa3\nTI0aNQAAhYWFKC4uRr169TQ3isPxFFlZZJ3bg4s7p7ygWdxLSkoQGRkJPz8/9O7dW7JONodTHmCM\nctydifvp0+5qEYejHs21ZXx8fJCSkoLr169jwIABknWvefkBTnng3Dmgdm3AUYVebrlzXIXe5Qd0\ny5apU6cOhgwZggMHDpR5zwQSeJPJBKMgwKr6ksnEX/PXXvE6OxuYXc3x/lFrTRh5yDvay19XrNdG\noxEmgP5Z7qMSTZOYLl26hKpVq6Ju3bq4c+cOBgwYgNjYWPTp08d8Aj6JiVNO+P57YO1a4Icf7O9z\n5w5Qty7978MTiTkuxKP13PPz8zFp0iSUlJSgpKQEzzzzjJWwczjlCWfBVAB48EES9/PnAX9/tzSL\nw1GFJnEPDw9HUlKSXm3hcDxKVpbjHHeRgAAgN5eLO8e74QNLDudPsrOBli2d79e4MVnuHHXoGTTU\nG29um1LKvbgnJgLPPgvcuuXplnDKO1lZ8sX93DnXt6ei4s0C6s1tU0q5F/dXXwXWrweWLPF0Szjl\nmeJicrXIWWWpvIq7NwhXWhpQUuLpVlhTVAT89a9UDTQtzdOt0Q9NPncAyMnJwcSJE3HhwgUYDAY8\n99xzePnll/Vom1Nu3qTyq0uWAN98A0yb5pbTciogublAw4ZUHMwZjRuXz7ruUnNQ3HnuhQsF/PIL\nAMSVZhp5w7yXF18UsGWLgCFDgCVL4vDmm0D16t7RNk0wjeTn57Pk5GTGGGM3b95kQUFBLD09vfR9\nHU5hlx07GIuJYezqVcZq1WLszh2XnYpTwREExnr0kLfvypWMjRnj2vbozYIFjD35ZKxH29C9O2Pf\nf8/YAw/EssuXPdqUUgoKGKtfn7Fjx+h1aGgs++wzz7ZJRKt2arbcGzdujMaNGwMAatWqhZCQEJw9\nexYhISFaD+2UpCQgOppS04KDgf37gZ49XX5aTgVErr8dKF9uGUEQsGaNgP/8BwDi0K4d5ee72yrN\nywOOHgXGjAH+9S/gl1+Av/zFbae3yy+/AF26AO3a0esOHYCffwb+9jfPtksPNIu7JdnZ2UhOTkaX\nLl2stlvOttLzokpKMov5I48Ae/dWDHH35PC5slJRxd1oNCItzYjJk4ENG4Bhw0yy0j31Zu9eoFs3\noFo1YPhwI377zTvEfcUKYOJE8+unnjLiqaeA+/cBX1/3tkXv8gO6+Uxu3rzJoqOjWXx8vNV2HU9R\nhrAwxg4epL+//56xUaNcdiq3Ehsb6+kmVDqeeYaxb76Rt++NG4zVqMFYSYlr26QXY8cytmQJY1FR\nnnM5vP02Y+++S39nZjLWvLln2mHJnTvkzr1yxXp7+/aM7d+v7diJiYnaDsC0a6cu2TL379/HmDFj\nMGHCBIwcOVKPQzrl9m3g5EkgLIxed+1K616W90oHmzcDGzfS9HZ34A0ZFN6A3Bx3wFxYrKDAZc3R\nDcaAHTtoRBsTY/TY+q9JSUDHjvR3mzZ0/+bleaYtIr//DoSHAw8/bL09JgaQKJGlCG+4rzSLO2MM\nU6dORWhoKP7xj3/o0SZZpKYCISE0zANo2jhjQE6O25qgK4Ig4O23TRg1yoT9++MwYoQJJpPJ5ReJ\nN1yE3oASt4zB4B2umS++cJ4CfOoUtbdVK2DwYM+J+5EjJKQAtadjRyA52TNtEfnjD+klFUNDgWPH\n1B2zoAAYPZrqE12/rq19WtHsc9+1axeWLVuGDh06ICoqCgAwd+5cDBw4UHPjHGFpCQB0wYjWu5xc\nZW/DaDTi9GkjevcG6tcHjh41QYfCcA65ehW4csW15ygP3LsHXLgANG0q/zMNGwKXLgFt27quXY64\neJFSf6tUAYYPp2tGiu3byWo3GICgIHhE3MX+tbwvw8OBw4eBoUPd3x6RgweBsWPLbg8OBrZuVX48\nQRAQGyvg0iUgIyMO/fsDgwZ5LqVSs7j36NEDJR6YlXDwYNk6IGJQVeoHKw+sWAFMnQocOgSsWgXc\nuAE89JD+5xEEAdu2CVi0CLh0KQ6FhWSJelter7sCy2fOkLBXVXA3NGhA4u4pdu0C+vQBatYE1q2j\nWdpSbN0K9O1Lf7dqRSNbdwcLs7KAZs2s+zc8nFyQniQpCXj//bLbg4PVWe6PPmrEqVNGJCQAS5cC\nixebsGEDXSueoNzOULW13AGz5e5u9HBt3LkD7N4N9O8P9O1rRKdOdAO7AqPRiLAwE9q1M2HgwFic\nP08uIG8SdsB9LiMl/naR+vWBy5dd0hxZ7NxJFvnIkVSmWIriYuC33+ghAJAL08+PJmy5k1On6MFi\niWi5e4rLl2nkKrVebsuW5HJTGvfas4f89+3b00O3Tx/7v407KJfifu8ezRDs0MF6e6dOdMHcu+fe\n9ughQjt2AJGRQJ06JL7du9MoxFUsXw688AI9IAUBOHvWdedSSkkJMHkysG2be86nxN8u4mnL/fff\nyV/cpw+5XsTBc3ExMGEC5ZN/+CG5Qiy/W4sW7l8m8OTJsiIaEgIcP06jCE+QlARERUnX5K9ShSp/\nKo3f7dwJPPYY/W00GjFqFLB6tfa2qkWzuE+ZMgV+fn4IF6MlbiA1lXyd1atbb69Zk56au3e7rSmY\nPZvcKbdvazvO3r3WwZ2YGGDfPm3HtMfduyTogwYB/foZMXo0ib03IAgCnnrKhA0bTNi5Mw7Tprk+\nsKxG3D1pud+6RQHKmBigSRN60KSm0nvx8eRS6NQJWLkSWLjQ+rOeEPfTp+m8ljz4IG3zhuwdKdSs\nlbtnD7mGARL3Pn3IaPNULR3N4j558mQkJCTo0RbZWHaiLYMH02QNVyMIAl580YS5c03IzIzDmDHa\nRGjfPrpZRURxt0zt/PprKpSmNd1TEGjUU78+XYSTJgHffqtfGqkWITYajWDMhDlzTIiJiUWzZq53\nGZ04IT08d4QnLfc//gAiIkggAaB3b/pNGQPmzgXefReYNYvS+bp2tf6sJ9aAzc+nh5Atan3benDw\nIM1ut4eah+Aff1j3t58fBd49VYxMs7j37NkTD9smirqYXbtotpsUQ4e6R9yNRiNKSkyYMcOEp56K\nxd276kWIsbLi7u9PI5GTJ+n1jRvA9OnAd9/R8E8L69cDQ4aYX/foQSMPvdZd0SLu9+4BCQnAiBFk\nTYeuKrIAACAASURBVLvD7X7ihPKsF09a7qK/XaRPH+qzLVtoVOYoA8UTlrs9cW/XznMF2JxZ7i1a\nKHsIXr5MPnrbTL3u3d3rSbBE1/ID9tCz/EBxMQ115syRfr9jR+DaNbph27RRfRqnXL1KuaxHjwKf\nfAKsWUM3lq2rSA7Z2VSN0PYGEK33Nm3ogfXoozTcTkigv9XAGIm75QPQx4emYC9d6tiakXv84mL1\nn09OJlFv2JCmgk+YQCVZlWSyKIExddeKJy33338HXnnF/HrwYKqF8te/0n3haG3XFi2An35yfRst\nOXtWetWqoCC6l93NtWu02EpQkP19mjenWIZcjh6lOILBYL09KsrsMnOG3uUH3C7uSjlyBPjoI+Cp\npyila8cOulDsDaN9fMgq3bDB+gbQm88/p/M0bgz072/Etm3kN1fz3BILoNkiivtTT1Exo8cfp+8u\nlb4ll7Q0ugBDQ623P/ssPThef72sf1QOgiAgMVHAd98BWVlxuHbN7PZR8jDfu9fschs+3Ah/f7px\nXBXSOX+e3Bt16ij7nKcs9/v3afhvOXKtWZPcaklJwPjxjj/vTW6Zdu3I1ehukpPJrVWliv19xKUU\n5SKKuy1hYfizzLFzbO+VuLg4+Q2QwC3irpbCQuCJJ0hEJ02i7I7du60L/UgxZAjw2WeuE/fcXHrg\niO4Ro9GImBi6udSI+6lT0pZjTAzw1ls0623rVuDLL+nhdeCAemt29WoatttaGIGBwJtvAqNG0epW\nSsXOaDTi0iUjGjYky/vmTVOZYJ4c9uyxdhl16kTf11Xifvy4uhGeqyz3s2eB994Dnn5aevbkjh0k\nIvXqWW8fMsS63+whijtjZa8BV3DrFt3HUteT6JZxV1tEDh507JIByIjKz5d/zGPH7Iv7kSPu/46A\nl6dCrl9Pw/P588mC3buX8kidleN89FGybuRGqZUMha5fp2HwG29QQEgkMhJISZF9GCtOnZLO1oiO\npglNP/9Mvrv69en7N2pk9sUroagI+Oor+xNeXnuNzjN8uLraNp9+CsyYQX2xdi3d1EqxDZaL4u4q\n1PjbARLXK1f0r2X04ouUYz1mjLSF/csvlNuulpo1qTbOhQvqjyEi577JzyehlBI2cXKPu91brhB3\ne3MlGjUig8wTpSo0i/v48ePRrVs3ZGZmolmzZlii43p3GzfSRW4w0AzCDRuA7793vlpO/fpkKWRl\nyTuPXHFnjPKvu3cn94UlWsQ9K6vsJA8AqF2bzjV5MvDMM+btISHqsgzWrKGZgvb86gYDsGABXdiz\nZik79oUL9P2HDQOGDTMiOFi5PzUvjwK7lpa0q8VdreVerRpQo4a+9UOOHSOjZMUK4KWXyIgRYxiC\nACxeTHGep5/Wdh69gqpy7puzZ6VdMgBdb54IqtomL0hRvz5di3fvyjtmTg7dW7YYDGbr3d1oFvcV\nK1bg7NmzuHfvHnJycjB58mQ92gXGgE2bKBdbDZGRZPU6oriY3DfXrsk75s6d9CP95z9lLZHQUBIK\nuReDJfYsd4B8kl99ZV1SQW0K2YIFgLMVEH18yOX07bfK6s6sXQsMGEAPXqPRiEcfVZ4lsGcPpZJZ\n9m1UFPW5mlGAHI4fV18fRm+/+88/kxuyenUaGebm0kM9MhL4xz8oG2b5cu21k/Twu2/fTu47Z8Fz\n0XK3hxJx1yPYePEi/WaWo24pDAZKZZRrcdsTd4Dm3nhC3L3W556aSoEutTdeRAQdY/Ro6fcFQcAn\nnwiIjweAONStS9sdBQAXLaJhs9TIoXp1sgDT0pRlnJSU0I0WGCj9fvPmZRc1CA5WXpogOZlGCKNG\nOd+3SROgXz9lq+WsXm1tUT7yCPWXEiyDqSK1atGDLy2NhF5vtGRVieKuNEfeHj//TJlXAI0Mtm2j\n108/DQwcqJ/PVovlLmZ0fPIJcPVqHCZMIIG2d984stwB5eKuJDjPGPD3v9N1v2oVuaT++INqUjnK\nKBIRXTP27k2RwkIyhP5ckK4MwcHl1HJ3FRs3km9b7QXdti3duPYwGo3IyTFh9WoTHnggFi++6DhP\n/fx5Gkk4CuZGRCivl3H2LPlvxQkpclBjuX/+OQ3z5RaMeuIJ+SlzN2+SC2bwYPO2Rx5RFvcA7E9O\nc5VrRkyDVGtAiH53PThzhtxS3bubt9WvD8TF0ehVz2CcFnE3Go0YMcKEBg2oLtFDDzm+b5xZ7kFB\n8sT9xAnlcYK9e2m0U7s2MHMmbduwgeo3yUGu3z0vj4TdXvaNpyZraRb3hIQEBAcHo23btnhfS46e\nDaK4q6VVK8dBxwsXaEg+eDANp5y5EL75hkYBjuZrhYUpF3dHLhl7iBeL3GBeYSFZLhMmyD/HwIHU\nJ3LKKiQkUGqeZUZEo0YkfnIv6sJC8tlL+UJdJe75+eQ3V5oZJKKnuO/YQYkAjtLz9ELN1HpLtm+n\nGiotWjiPq2h1ywiCgLfeMiEiwoRFi+Lw0kvyZ4J/8w2NPL/8kgyVpCQaYcoNSDduLE/cHblkAM9N\n1tLklikuLsa0adOwdetWNG3aFJ07d8bw4cM1L4599Sr5y3v1Un+M1q0di/tvv9HxfX2Brl2NSEqi\nWZFSFBfTBbJypeNzhoebh9VysRdMdUSDBiQC58/bHwpasn07WUhKfLW1a5Ovd9cuctE4YvVqaXdP\n165kPdnm1EuRnEwWtLjKkSWdOjlflEINWvztAFnWeom77axTV6J09qUtu3ZRRlXTpkb88ANlu9gr\na+vMLdOqFT1oSkqkXSVGoxH5+bTOQUEBcP++vHUObt0iN1daGhlk771Ho6KePeX/5nIt99xcyou3\nR9OmNLp1VQlve2iy3Pft24c2bdogMDAQvr6+GDduHNasWaO5UZs304+gxFVhi78/XQw3b0q/v2WL\neXg2apTR4dT7X36h4IqzhYXdZbkDyoZ627Y5F2gp+vRxvmjB3bs0ypJ6MHbpQq4ZOYjBVCkiIui7\n6r2sXWam41mKzqhXT7+A6s6d6mcdK0WLW4YxEvcePYDHHjOWxrbs4cxyr1EDqFvXsYiKtes7daJs\nITlpuqtWkZiLD5bnnqMAsNwJRQC1W05A1Znl7uMj3/2kJ5rEPS8vD80svlVAQADydFgY0bb2iRrE\npcXsWe87dlDBJcDxkl937lAhprffdn7O5s3JYlByw6upSAhQOuTRo/L23bbNXNNbCX37Ohf3X38l\nC19qBKFU3O0Vg3vwQXrYb9wo71hyOX5cu7jrYblfuULWn20Ja1dRvz7NdL16Vflns7PpfzHI6CzN\nz5nlDtB9euqU/ffFOjBDhxoRFUWGmS1FRTRCvXuXHkCffw5MmWK9T9eu0iNDe8i13J2JO0CuGXf7\n3Q1/rrKtilWrViEhIQFfffUVAGDZsmX4448/sNBiaqLB3dOyOBwOp4KgQZ61We5NmzZFjkVF+5yc\nHARIOJ8YY7L/LV/OYDTK39/RvxdfZFiwoOz2rVsZeva03hYTw7BrV9m2hIYy3Lgh/5zPPcewcKH8\n/Zs0YTh9Wvl327CBoV8/5/slJTGEhanvwyFDGFaulH7v9m2GOnUYzp+3//mYGIYdOxyfIy+PoX59\nhpIS+/sUFDA0asSQlua4T+rVY5g2Td53Cw1lSE1V3zfr1zMMHqz+8+K/BQsYXnhB+3GU/HvpJYYP\nP1T+uQkTGL74wvx6xw6GRx6R3vfECYYWLZwf89136Z/UeydPMjRvbn59+jRdK/fvW2+rV4/hwgX6\nTiEhDFu2aO+jnBy6P53tFxXFsH+/432+/57h8ceVnV8rmsS9U6dOOH78OLKzs1FYWIgff/wRw4cP\nV328oiJK/ZLjApFDixbmYaQlUrWcbScaFBcDJhPw3/9ScFEu4eHyc1rv3iUXjpKFmUXk+tzFFWfU\n0r+//bUuN20iP2ijRvY/L8c1IzV5yZaaNWlW8DvvSL9//z7lNC9ZQsFyZyvgFBeTK0BLjrpePvfD\nh93nkhGJiqL7wBnFxZQW++yzlDm1dau1i0+8b6S0SI5LBnDslsnNtU4EaN6cXEKWZa+//56K6jVs\nSOsdpKeb143VQqNGlFXnbKKWHLeMJ9IhNYl71apV8emnn2LAgAEIDQ3F2LFjNWXKLFtGfi41/mEp\nAgOlA0f2xN2yqP6ePTQxSWnGjpKganY2XRRq0t9atKAsBWdBRmd1q50hirvUzbtyJfDkk44/L1fc\n7fnbLZk2jaaOS61QtW4d3fjDhwP//CfNsnXEmTMkBjVqOD+vPfTyuael0fXnTh57jOIlzpa527iR\nYhM3blBsqE0b6wdivXrkx5Zaki4vz3EWiUjLlvbFPSen7DFGj7YOjC5frr0kgxTVqlGarKMH+J07\n1DcNGzo+VlAQ5eprKYetFM157oMGDUJGRgZOnDiBWUoLklhQWEhW+3vv6TsTT4nlbinuGzZQnRSl\nbREtdzmjKrXBVIAeCG3bOo/AJydrs9zbtaM0Ndvl0K5do/z2MWMcf75LF0qHdNQfjjJlLHnwQZqG\n/9//ln1vwway3gDK3MnIcByk05oGCeiXCnnypGvXHpCiRQsSHGdB6o0baeLeypU0ov7227L72Auq\n5uXJG5U6s9ylxD0+nq7LxYsFXL8uXUFTD5xlzIjf0dmM15o1KV3UneWWvWaG6ooVdIHrmesrZblf\nvSpdqF9K3NVk7NSvTz+knMV1pVaFV4KzjJniYkpTi4xUfw6Dgaz3X3+13v7DD5ReWb++48+3bk0X\nvr12Opq8JMXEiVQAzTLFlf1Zh0ic9ObrS7M6N22yfxytaZAApfBdu6ZtjcybN+mfo3RBV/F//0e1\nhs6ft7/PkSNkHFStSvtKXa/2Rqtyxd3fnx6SUnWZpMQ9OJjyxXfsAD7/XMDEifLKCajB2UQmOS4Z\nkeBg96ZDeo24f/opLSOnJw0bkp/QUgiSkkjsbF0hAQG075Ur9HQ9e5asTjXIdc1osdwByv+2l8IJ\nkIA1bqx+BqbIsGGUN2zJkiVlU82kMBiofvy6ddLvp6TQQ11uXKNhQ7LS1q41bzt0iFwDltbv4ME0\nsrCHHpZ71ap0Xi2VIcV5Dp5IKhs8mCqOjh4tPbJiTJ7LKCJCukhfbq48ca9She4/KYPI3gShmTOB\n55+nh8+0ac7PoZbGjR1b7krE3d3pkF4h7idOUCcNHKjvcQ2GshM27C2MazCQSyUpCfj4YwEDB6qf\nCi43qKp2ApOIuFKTPbQGU0UGDaKH1ZkzNB08OZkefnJrdDzxBMVTpARErr/dkiefBH780fx648ay\n1UO7d3fsDtLDcge0+921BnW18u67tG6t1OSe8+fJInbmT7Yn7nItd8C+CzU3t6x4CoKAU6dMaNbM\nhLt34/D559oWp3eE3uLuzHLfsqWsIaUW1eUHfvrpJ5hMJhw7dgz79+9HRw1RuzVrKBDmiqGV6JoJ\nC6PXBw+SJSpFv37kfli9WsDHHxtVnzMsjDI2nKGm9IAlnTqR5W5vVSa9xP2BByhb4qOPgLp1BaSk\nGPHqq/Iffr16UeAuMZECeZbs2aO8rPOIEWStXbtGrpGNG8tm0TRtSgExe4so6CXuot9drUBnZTmv\nOuhKfHyoL5cvLxs/SU+n0hHORhUhIfSQsl1DWKm4SyU/SFnulhUoTSZty3g6w9/fsYs1J0d+plO7\ndvizCq00+/dTiedateSvReEI1XIaHh6O+Ph4PKrDnOktW7QVCXOErUVgz3IHqA2LFpGPTcsoQo7l\nzph2y71OHcoQsYwVWOLouyplxgzys8fHkzA+/7z8zxoMdBO+/rp1tgBjtAiF0kuoTh16SKxZQ9bl\nkSPSWU2dO0uPbAoLSXi09L2I1nTIs2fVpcLqyfDhZIzYFolLT5eXxfPAA+TisrwOS0roPpL73aTi\nY4WF1Ld+fvKO4Qr09rk7csvMnk1GiiAAH3+sqJmSqBb34OBgBOlg+hQVUfVBVxVNsrxo7AVTARrq\nbdhgQseOJty7F4d589QP9UJDafjlKM3s0iUSPdu1MJUSE0PuB1tKSsiq10PcBUHAF1+YMHKkCamp\ncejf34R//1tZ34wdS9kuX3xh3nbsGFl6akR27FhyzaxcSeJkaTGKxMSQNWTLqVN0Q8otf+wIrW4Z\nbxD3evXI+ratvCla7nKwdc1cukRxFKnfRQopt0x+vuNSugAU1XdXgxy3jJx0T4D2u36dUidtuXCB\nRraTJ9N+SmtUSeGWxTosh022Rf1TUsj6dJZ1oZYWLVBaFMxeMNWyXTTM0zbUq1GDfqDjx+3fHJmZ\nNEzTGkh77DEKLtpa0idOkMvCXrU+JVj+Zo0bq+sbg4FWlerZk9wwp08LOHDAqKqgGUCutRdfJMvc\nXjGozp0ptdYWPYKpInqIu5yJPq6mWzcq0GU5ikpLc57qKiKOksQguxLRA6Qtd2fVFgHvEHe5lruP\nD113mZnkUrVk1SqgUycB//63oLqttjgU9379+uGcxDebM2cOhtlzXEvw5JMmGAzSq4OLdaxdRWCg\n2SI4cEA/N4UzRNeMM3HXSv/+wCuv0CjB0hLV0yWjFyEhtHzc1KlAz54CVq0y4rPP1B2rVi1KV83L\ns3/9iEst2paT1cvfDmjPdfcmcbfNYZfrlgEogP3ll+bXSvtYynKXI+6uxlGee0EBBaOVGKZiOqSt\nuP/4IzB9uhEjRhhLt8XFxSlvsAUOxX2LVPk1FXTpQgG/zMyykfedO63XB9Wb4GDKsS4uJvePnJls\nelgDYjqkvRmceglM48bk1vjjD+uJHAcOlL2A9EBr37z2Go00vvyS2q7FHecsy6ZhQ3INZGdbB64z\nM/Wb7l+vnvrgF2PeI+5dutBIiDEaZV28SPeMXH93RARlU125Yl6kRYnxEhBALlNLI8UbxL1uXZqF\neudO2RLkYvuUjL4jIujetNShM2dIK/TOFtQlP8VZkZvhw2l4Z+lvBciicvUiBQ8/TDdPWhr5ji2X\nMbOHHuLuLKialuZ8kV65DB1a1jUhCNoWO7GHlr4RBAHvvWdCr14mnDsXhz59TIiLc00Km0hUFLn+\nLDl2THoUqQYtbhlx/oWS2kWuIiCARjfiDMq0NHmZMiJVq1KMQ1zRLCNDmbj7+tKDJDfXvM0bxN1g\nsO+aUeKSEXnssbKZdMuX0+xqqbWZtaBa3OPj49GsWTPs3bsXQ4YMwSAH+WwTJ1JRp2++sc47PnyY\nhjSuDijFxJC/18dHcFvwytFEJsYoCCpnyr0cnn6aZvgWFdHrK1fIr+xscRF3QzENE2bPNiE2NhYf\nfOB4/U09iIwsO9Hr6FH9HqxaxF202r2hKrbBYD1vQolLRsRoNAvX0aPK3Y62fndvEHfAvrirmYQY\nHU0PhdxcMnaKi4GlSykFUm9Ui/uoUaOQk5ODO3fu4Ny5c9jkYK53z55kQfn6WmcvbNtWNu/ZFQwc\nCCxcSNa0u2jblvzBt26Vfe/kScoi0OvCbdeObgyxRMC//y2gd2/K867sREZaW+6XL5OfVK/p/lp8\n7t7ikhHp3Nl8fzqKF9ljxAhKlS0oADIyBMX3m63fXWlQ1lXYW7RDTSpz1apkjH3xBYn78uV0Dcnx\nKCjFLTNUa9Qgy2DcOMqVFtm2zbwakqsQBAGZmSaMHWvCzp1xMJlcN5vNkqpVSXTT08u+t2WL/q6o\nadMoT5YxYMUKAZMm6Xt8vXF1loOIrVsmI4Osdr2sZS157t4m7paWu5qYTVgY+aVnzQKaNBFkp0GK\n2E5k8hbLvUkTa3eRiNryIa+8QitF7dhBMagFC1wzenNLKqTI2LE0C/SDD2g2286dwOLFrj2nZRpf\ncLBrZ7PZEh5OrhlL90heHk1QUJslYo9x46g+T69eNFoYOlTf4+uNu8Q9MJDyisVFnPV0yQD6uGW8\nhU6dKMvq9m0gNVVAVJRR0ecNBuBf/yL/8VNPKT9/YKDZZ19URLnfniioZou90uFqxF0QBAiCgCFD\ngG+/jcOUKZT1deuWUfd7QpO4z5gxA+vXr0e1atXQunVrLFmyBHUcVKkKDaUbbPt2GuZ07ep4oYfy\njijuIl9/TQWPXnlFn8UELNm5U0CvXgJSUoDLl+MwZw5tt51XUNnw8TG7Zvr21V/cH37YXBlSafmM\ns2etF6LwNPXqkZB9/jmVmahRw6jo84Ig4PBhAe++C/zzn3GlcwnkXoMt/r+9s41pq/7i+LeTGYa6\nKchAV8COAbU8CARdNqebkrpk2ZhzM8p0GjQagzrnQzKNIZQXPEzUDZ8TFbdsyUBnlpE5a+E/OzWM\nGdbpNkFAbWMFXDYYBpZFNjj/Fz/L01oo7b3tpfd8XvXetvece7ic++u55yFBDN4AhH+48UZpCs38\nJSHBfaWzL859rC1uuUXmxSb5gcVioaGhISIi2rp1K23duvWKz0wU8emnRJmZROnpRF9+6Y/06fPt\nt98GVN6RI0TZ2ULur78SRUURtbfLL7e4uFh+ITOIzZuJKivF67vvJvrmG2mPP28eUW/v9L/34INE\ne/dKq4u/lJYSAUTLlxf7dRxfrsH2dqKFC8Xr774jWrLELxUko6mJKCdn/L7+fqI5c4iGh30/7lQ2\n8tM9k18rd+OY8sLFixfjSy/amRUUiNVTeDiwbp0/0qdPoFewS5eKu3tdnRUnTqxAUZF0lZGM92Rm\nivFwDQ1WHD++wudWzp5whWZuuGF631NaWMZqteLCBet/vfBL4FpUBurXX1yciG0PDfnfDltK3BVY\nuRq++RMrl9umksXcq6urkZ+f7/a9ie0HKitXSCVW0YSFiV7Ze/aIC/fZZwMjV81hGHcsXw68+ioQ\nHm6FTrfC7/72E4mJEaly0+0MOZ2uiYFAym6LvlyD4eEic6S723M3z2AQEyOeY/X3j9YkdHT4Pz1r\noo1c8XipmNK5e9OCoLS0FFdffTU2eniKEsiHmErB9YeKjATOni3BI4+Ih02BWAWxcx/PwoXCUezf\nP71ult4SHy+Kf+68UziA6mohZ7JsESLhxJS0cpcSX69B1yrZbpcnPdAXNJrRSnfXxLBTp6RPrZ7o\nG2RtPwBM3YJg586dOHToEP7nTQNzFTH2DxURoc4bnBJw3WSTk4Fjx0pw+bJYlUp5k3U5d0CktRUV\niWrDZ57x/J2eHnFdTCxpVwrBWiC4MlPsduDRR4OigltcYzjHOnfXzF6l4ldYxmw2o7KyEkeOHEH4\ndJNaGSYAjHXiCxfKc5ONjx/t033wIPD002J+62TOXWnx9okEy7knJAjHbrNZkZoaHB3cMXHG8smT\ngJ8La9nxq4jp+eefx8DAAIxGI7KyslBYWCiVXiEFh0lCG9fKvadH/HR/5ZXJxx8Cyou3K4WMDNEh\nkciK2NhgazNKevpoMdzZs6LJmRRdXeXEr5V7R0eHVHqENOzclYFcf4f4eBEnrq8XD28XLRIl+K4x\ngO5Q+so9WBiNojxfae2qly0D8vNF8eV771lx110r3I62VBIKV49hpEMu567Xi35B+/eLPkYazegw\nZE9pl0qYwKQ0XM9HCguBDz4IfCrmZMybJ9or/PCDSG1+/PHg6uMN7NwZxk/mzBG59J9/DlRWin2u\neZmenHtnp3Q95UOFsU48Olp5SQgPPST65rS1iXYfSsdn515UVIS6ujpoNBpERUVh586diJtuc2OG\nCRGqqsRoQ1c7gamGIXd1iXGDzMzAarXi3DkrwsKAixdL8NFHYr8SflV4QvNfmeu06e/vx3X/ZfS/\n++67+Pnnn/HJJ59cKUCjmXKYB8OEGrW1wBdfAPv2uX8/I0P08c7ODqhaMwar1apYp+nqLCs3/vpO\nn7NlrhszPmZgYAA3SjGJmWFChEWLxEreHcPD4j2p5riGIkp17DMJv2Lur7/+Onbv3o2IiAg0NTV5\n/JzJaoJphWnkNQDe5u2Q3t6SacJvv7l//59/gMhIE669Vjn68rb3245bHHAhtzx/mDQs403rAQCo\nqKhAW1sbPvvssysFaDQoLi4e2VZyjIphpCQ6WlQyTszXtliAigoxrIZhXEzsLVNSUuJXWMbnmPtY\n/vzzT6xatQqn3UyE5pg7o1aWLBHZM8uWjd+/YwfQ3i79wBYmtAhazH1sAdOBAweQlZXlsxIME4ok\nJbmPuzc2ek6RZBipCPP1i6+99hra2tpw1VVXITExER9++KGUejHMjGfRIpET7cLpFJWr9fUidZJh\n5MRn577PU44XwzAARAn99u3itdksCl/Cw0VffyXMBmVCG0li7pMK4Jg7o1LOnRMDPPbts2Lz5hV4\n+20uXGK8x1/fyc6dYWQkJQWYO9eEiAgTrFb/xrIx6iJoD1RdvPXWW5g1axZ6e3v9PVTII+UIrZmO\nWmxRWAg0NwNvvunZsavFFt7AtpAOv5y70+lEfX09EhISpNInpOELd5RQt4XVaoXJZML58yYAJfjq\nKxNMJpPb8w51W0wHtoV0+PxAFQBeeuklvPHGG1i7dq1U+jBMSDCxWE9pHQ6Z0MfnlfuBAweg1WqR\nwX1LGYZhFIdP7QdKS0tRVlYGi8WCuXPnQqfTobm5GVFRUVcK4CdIDMMwPhHwbJnTp08jNzcXERER\nAIC//voLCxYswI8//oj58+f7rAzDMAwjDZKkQup0Ohw/fhyRkZFS6MQwDMP4id+pkACHXhiGYZSG\nJM79jz/+cLtqN5vN0Ov1SEpKwrZt26QQNWNwOp245557kJqairS0NLzzzjsAgN7eXhiNRiQnJ+O+\n++5DX19fkDUNDENDQ8jKyhppFa1WO/T19WHDhg249dZbYTAYcOzYMdXaory8HKmpqUhPT8fGjRvx\n77//qsYWTzzxBGJiYpCenj6yb7JzLy8vR1JSEvR6PSwWi1cyJHHu7hgaGsJzzz0Hs9mMlpYW7N27\nF62trXKJUxyzZ8/G9u3b8csvv6CpqQnvv/8+WltbUVFRAaPRiPb2duTm5qKioiLYqgaEqqoqGAyG\nkV95arXDCy+8gFWrVqG1tRUnT56EXq9XpS0cDgc+/vhj2Gw2nDp1CkNDQ6ipqVGNLQoKCmA20gFR\nPwAAA3ZJREFUm8ft83TuLS0tqK2tRUtLC8xmMwoLCzE8PDy1EJKJxsZGWrly5ch2eXk5lZeXyyVO\n8axdu5bq6+spJSWF/v77byIi6u7uppSUlCBrJj9Op5Nyc3Pp8OHDtHr1aiIiVdqhr6+PdDrdFfvV\naIuenh5KTk6m3t5eunTpEq1evZosFouqbGG32yktLW1k29O5l5WVUUVFxcjnVq5cSUePHp3y+LKt\n3Ds7OxEXFzeyrdVq0dnZKZc4ReNwOHDixAksXrwYZ86cQUxMDAAgJiYGZ86cCbJ28vPiiy+isrIS\ns2aNXm5qtIPdbkd0dDQKCgqQnZ2Np556ChcuXFClLSIjI/Hyyy8jPj4eN998M66//noYjUZV2sKF\np3Pv6uqCVqsd+Zy3vlQ2584PWQUDAwNYv349qqqqxg0VB4SNQt1OBw8exPz585GVleUxZ1cNdgCA\ny5cvw2azobCwEDabDddcc80VYQe12OL333/Hjh074HA40NXVhYGBAezZs2fcZ9RiC3dMde7e2EU2\n575gwQI4nc6RbafTOe7uowYuXbqE9evXY9OmTbj//vsBiDuyqzCsu7s75OsCGhsbUVdXB51Oh/z8\nfBw+fBibNm1SnR0AseLSarW4/fbbAQAbNmyAzWZDbGys6mzR3NyMpUuXIioqCmFhYXjggQdw9OhR\nVdrChaf/iYm+1FVXNBWyOfecnBx0dHTA4XBgcHAQtbW1yMvLk0uc4iAiPPnkkzAYDNiyZcvI/ry8\nPOzatQsAsGvXrhGnH6qUlZXB6XTCbrejpqYG9957L3bv3q06OwBAbGws4uLi0N7eDgBoaGhAamoq\n1qxZozpb6PV6NDU14eLFiyAiNDQ0wGAwqNIWLjz9T+Tl5aGmpgaDg4Ow2+3o6OjAHXfcMfUBpXxA\nMJFDhw5RcnIyJSYmUllZmZyiFMf3339PGo2GbrvtNsrMzKTMzEz6+uuvqaenh3JzcykpKYmMRiOd\nP38+2KoGDKvVSmvWrCEiUq0dfvrpJ8rJyaGMjAxat24d9fX1qdYW27ZtI4PBQGlpafTYY4/R4OCg\namzx8MMP00033USzZ88mrVZL1dXVk557aWkpJSYmUkpKCpnNZq9kyD6sg2EYhgk8soVlGIZhmODB\nzp1hGCYEYefOMAwTgrBzZxiGCUHYuTMMw4Qg7NwZhmFCkP8D0TTAdPkdbBwAAAAASUVORK5CYII=\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 4, - "metadata": {}, - "source": "Estimation of spectrum " - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "A common situation is that one wants to estimate the spectrum for wave measurements. The following code simulate 20 minutes signal sampled at 4Hz and compare the spectral estimate with the original Torsethaugen spectum.\n" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nFs = 4; \nxs = S1.sim(ns=fix(20 * 60 * Fs), dt=1. / Fs) \nts = wo.mat2timeseries(xs) \nSest = ts.tospecdata(L=400)\nS1.plot()\nSest.plot('--')\naxis([0, 3, 0, 5]) # This may depend on the simulation\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEXCAYAAABPkyhHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6wPHPsMi+C8jmhoqiCLihhonlkhuWlqWWqNly\nb5t16/6y1ZbbZmVZN23V1Ba72mKWpi24ZqbiviGKyiIIiOzbzPn9MUEiKDPDcpiZ5/16zQs45zvn\nPMcj8/Bdj0ZRFAUhhBBWzUbtAIQQQqhPkoEQQghJBkIIISQZCCGEQJKBEEIIJBkIIYRAkoEQRpkx\nYwZPP/20QWVTU1OxsbFBp9M1WzyfffYZo0aNarbjC+shyUCoYuvWrQwePBhPT098fHyIjY1l165d\nzXrOjh078uuvvzbqGBqNBo1G00QRNd60adP46aefan62sbHh5MmTKkYkzJWd2gEI61NQUMC4ceN4\n//33mTx5MuXl5WzZsgUHB4dmPa9Go+Fqcyyrqqqws2v4V6K1z9Ns7fGJ1klqBqLFHT9+HI1Gw623\n3opGo8HR0ZERI0YQEREBwNKlS7nmmmt44IEH8PT0pEePHrX+or948SJ33nkngYGBBAcH8/TTT9dq\nivnwww8JDw/H3d2dnj17kpSUxB133MGZM2cYP348bm5uvP766zXNOJ988gkdOnRg+PDhANxyyy0E\nBATg6enJ0KFDOXz4sEHXpdPpePTRR/H19SU0NJQffvih1v6rxb106VJiY2N57LHH8Pb2pnPnzqxf\nv77mvUuXLiU0NBR3d3c6d+7M559/XrN9yJAhAFx77bUAREZG4u7uzldffUVERARr166tOU5lZSVt\n27Zl3759ht0sYT0UIVpYQUGB4uPjoyQkJCjr1q1T8vLyau1fsmSJYmdnp7z11ltKVVWVsnLlSsXD\nw0O5cOGCoiiKcuONNyr33nuvUlJSomRnZysDBgxQ3n//fUVRFOWrr75SgoKClF27dimKoignTpxQ\nTp8+rSiKonTs2FH55Zdfas5z6tQpRaPRKAkJCUpJSYlSVlZWc/6ioiKloqJCmTNnjhIVFVXznhkz\nZihPPfVUvde1aNEipXv37kpaWpqSl5enxMXFKTY2NopWq20w7iVLlij29vbKRx99pOh0OmXRokVK\nYGCgoiiKUlRUpLi7uyvHjx9XFEVRzp07pxw6dKjmfbGxsTUxaDQaJSUlpebn1157Tbn11ltrfv72\n22+V3r17G3CXhLWRZCBUceTIEWXGjBlKcHCwYmdnp8THxytZWVmKoug/4Ko/CKsNGDBAWb58uXLu\n3DnFwcFBKS0trdn3+eefK8OGDVMURVFGjhypLFy4sN5zXikZnDp16opxXrhwQdFoNEpBQYGiKFdP\nBsOGDav5cFcURdmwYYOi0WgUrVbbYNxLlixRunTpUrOvuLhY0Wg0SlZWllJUVKR4enoqq1evVkpK\nSmqds6FkkJ6erri6uiqFhYWKoijKpEmTlPnz51/xeoX1kmYioYru3buzZMkSzp49y8GDB8nIyGDO\nnDk1+4OCgmqV79ChAxkZGZw5c4bKykoCAgLw8vLCy8uLe++9l/PnzwOQlpZGaGioUbGEhITUfK/T\n6Xj88cfp0qULHh4edOrUCYCcnJwGj5OZmVnrWO3bt6/5/vTp01eNG6Bdu3Y13zs7OwNQVFSEi4sL\nK1euZPHixQQGBjJu3DiOHTtm0LUFBgZyzTXXsGrVKvLz81m/fj3Tpk0z6L3CukgHslBdWFgYCQkJ\nfPDBBzXb0tPTa5U5ffo0EyZMICQkBAcHB3Jzc7Gxqfu3TEhICCdOnKj3PFcaBXTp9s8++4w1a9bw\nyy+/0KFDB/Lz8/H29jaoUzYgIIAzZ87U/Hzp9w3F3ZCRI0cycuRIysvLefLJJ7nrrrvYvHmzQe9N\nSEjg448/prKyksGDBxMQEGD0+YXlk5qBaHHHjh3jzTffrPnAP3v2LF988QWDBg2qKZOdnc3ChQup\nrKzkf//7H0ePHmXMmDG0a9eOkSNH8sgjj1BYWIhOpyMlJaXmg3H27Nm8/vrr7NmzB0VROHHiRM2H\nsr+/PykpKVeNraioCAcHB7y9vSkuLuaJJ56otf9qSWHy5MksXLiQ9PR0Lly4wCuvvFKzLyAg4Kpx\nX012djbfffcdxcXF2Nvb4+Ligq2tbb1l67vGm266iT179rBw4UKmT5/e4PmEdZJkIFqcm5sbf/zx\nBzExMbi6ujJo0CB69+7NG2+8UVMmJiaG5ORkfH19efrpp1m9ejVeXl4ALFu2jIqKCsLDw/H29uaW\nW27h3LlzANx88808+eSTTJ06FXd3dyZOnMiFCxcAmDt3Li+++CJeXl68+eabQN3awvTp0+nQoQNB\nQUH06tWLQYMG1SpztXkGd911F6NGjSIyMpJ+/foxadKkWmWvFnd9x63+WafTsWDBAoKCgvDx8WHL\nli0sWrSo3vfNmzePhIQEvLy8WLVqFQCOjo5MnDiR1NRUJk6caNA9EtZHoxhS/xWiBS1dupSPP/6Y\nLVu2qB2KxXjhhRdITk5m2bJlaociWilV+ww6duyIu7s7tra22Nvbs3PnTjXDEcIi5eXl8cknn7B8\n+XK1QxGtmKrNRBqNhsTERJKSkiQRiBqtbckHc/bhhx/Svn17Ro8eTWxsrNrhiFZM1WaiTp06sWvX\nLnx8fNQKQQghBK2gZjB8+HD69evHhx9+qGYoQghh1VTtM9i2bRsBAQGcP3+eESNG0L1795p1VqSZ\nQAghTGNKg4+qNYPqyS++vr7cdNNNdfoNFP1yGRb5evbZZ1U79333KYDChQuWeX2Wfv/k+uTarvYy\nlWrJoKSkhMLCQgCKi4vZsGFDzaqVovksWQI//wwREXDggNrRCCFaC9WSQVZWFkOGDCEqKoqYmBjG\njRvHyJEj1QrHarz4IixbBoMGwf79akcjhGgtVOsz6NSpE3v37lXr9KqLi4tr8XMqCqSn62sFvXs3\nbzJQ4/paklyf+bLka2uMVjsDuaGnUgnjnT8PPXpATg5s2QKPPQY7dqgdlRCiKZn62SlrE1mRtDQI\nDtZ/HxEBBw9CMz6rXQhhRiQZWJG0NKh+TICnJ7RtC/LsdCEESDKwKunpf9cMoPn7DYQQ5kOSgRW5\ntGYA+mQgz0UXQoAkA6tyaZ8BSDIQQvxNkoEVubyZqGtXOHVKvXiEEK2HJAMrcnkzUUAAZGaqF48Q\novWQeQZWxM1NnxA8PPQ/a7Xg6AjFxdCmjbqxCSGahswzEFdVUKD/6u7+9zZbW/Dzg6wsdWISQrQe\nkgysRHUT0eUrg0tTkRACJBlYjctHElULDISMjJaPRwjRukgysBKXjySqJjUDIQRIMrAal48kqiY1\nAyEESDKwGldKBlIzEEKAJAOrkZ0N7drV3S7JQAgBkgysRk4O+PjU3S7NREIIkGRgNXJz9UtWX05q\nBkIIkGRgNXJz668Z+Pnp91VVtXxMQojWQ5KBFVAUyMsDb++6++zs9DUGmYUshHWTZGAFLl4EZ+cr\nrz8kTUVCCEkGVuBKTUTVpBNZCCHJwArk5NTfeVxNagZCCEkGVqChmoEkAyGEJAMrcKU5BtXatYNz\n51ouHiFE6yPJwApcaY5BNV9ffcIQQlgvSQZWoKFmorZt4fz5lotHCNH6SDKwAg11IEvNQAghycAK\nSM1ACNEQSQZWoKEOZB8fuHABdLqWi0kI0bpIMrACDXUg29uDm5s+IQghrJMkAyvQUDMRSFORENZO\nkoGFU5SGm4lAOpGFsHaSDCxccbF+ZVInp6uXk5qBENZNkoGFM6RWAFIzEMLaSTKwcA11HleTmoEQ\n1k3VZKDVaomOjmb8+PFqhmHRDOk8BqkZCGHtVE0Gb7/9NuHh4Wg0GjXDsGjGNBNJzUAI66VaMkhL\nS+PHH39k9uzZKIqiVhgWT5qJhBCGsFPrxA8//DDz58+noKDgimXmzZtX831cXBxxcXHNH5iFkQ5k\nISxbYmIiiYmJjT6OKslg7dq1+Pn5ER0dfdWLuDQZCNPk5kJYWMPlpGYghHm6/A/l5557zqTjqNJM\ntH37dtasWUOnTp2YMmUKv/76K9OnT1cjFIsnHchCCENoFJUb7Ddt2sTrr7/O999/X2u7RqORvoQm\nMGIEPPoojBp19XKKop+YlpcHzs4tE5sQoumZ+tnZKuYZyGii5mNoB7JGI7UDIayZ6slg6NChrFmz\nRu0wLNalzUTv/fke+87tu2JZGV4qhPVSPRmI5nXpU84Kygt4c8ebVywrnchCWC9JBhastBSqqsDF\nRf/z3X3vZs2xNeSU1N8WJM1EQlgvSQYWrLqJqLpLxtvJmz4BfdiVsave8lIzEMJ6STKwYLm54NXu\nIrO+m1WzLbpdNEmZSfWWl5qBENZLkoEFy80Fh5CDHDp/qGZbVLso9mbtrbe81AyEsF6qLUchml9O\nDuB/gAi/iJpt47qN45qQa+otLzUDIayXJAMLlpsLFZ61k4Gnoyeejp71lpehpUJYL2kmsmA5OVDg\ndIAI/4iGCyPNREJYM0kGFiwnVyHHpnbN4GqkmUgI6yXJwILl5sJD7b7B18XXoPLe3pCfD1ptMwcm\nhGh1JBlYsNwcDUNC4gwub2sLnp76xeqEENZFkoEFu9Ly1eeLz9P93e71vkf6DYSwTpIMLNiVnnLW\n1rktGYUZ5JXWrQJIv4EQ1kmSgQW70vLVGo2G7m27czTnaJ19MrxUCOskycBCVVZCSQl4eNS/v4dv\nD46cP1Jne9u2UjMQwhpJMrBQublge8vtHM2p+4EP0N2nO0dzpWYghNCTZGChcnNB2/5X3Bzc6t3f\nw7cHx3OP19kuHchCWCdJBhYqPascrUMuAa4B9e4f23UsqyevrrNdOpCFsE6yNpGFOpqehlNVILY2\ntvXut7e1r3e71AyEsE5SM7BQx7PO4Klpb/T7pGYghHWSZGChUi+cwa+NaclAagZCWB9pJrJQ7pkT\niBt4ndHvqx5aqih/Py5TCGH5pGZgofIyPAkPDrlqGUVRyC/Lr7XN2RlsbKC4uDmjE0K0NpIMLNS5\nc9Cu3dXLJJ1L4tol19bZLp3IQlgfSQYW6tw5CKh/VGmNMJ8wkvOS0epqr1nt5wfZ2c0YnBCi1ZFk\nYIG0Wv2kM98GHmPg0sYFPxc/UvNTa23394esrOaLTwjR+kgysEDnz+sfVGNnwPCACL8I9p7bW2ub\nJAMhrI8kAwuUdPIMxZPr9gXUZ1DwIH5P+73WNkkGQlgfSQYW6HDaWewcKg0qG9s+lgtlF2pt8/eX\nPgMhrE2DDQlLly5FY+CAc0VRmDFjRmNjEo10IjsdD02QQWWHdhzK0I5Da23z94ft25sjMiFEa9Vg\nMvDy8iI2Nhaf+h6ZdZnvvvuuSYISjXMmPw1fh2CT3y/NREJYnwaTwYQJE4iIiKBLly64u7vTv39/\nYmJiiI6O5vfffyc7O5tJkybVlBXqyyxKJ9jTsJpBffz8JBkIYW0MWo7i66+/pmvXrpSUlPDyyy/z\n66+/8tZbb1FUVETnzp1rkoFoHXIq0hjs1dfk90vNQAjrY1Ay6Nq1KwDOzs506dKFhIQEACoqKqRp\nqBUK2fc+Y8fWv0S1Iby9obAQKiqgTZsmDEwI0WoZPZrI3t6eGTNm8PXXX5OcnExaWlpzxCUaISfN\nk05BLka9Z++5vfyZ/iegX5vI11dGFAlhTYxOBlOnTmXu3LkkJSWxePFiYmNjTTpxWVkZMTExREVF\nER4ezty5c006jqXJK83jQNaBRh0jM7PhdYkutydzD69ue7XmZxleKoR10SiKoqh18pKSEpydnamq\nqiI2NpbXX3+9JrloNBpUDE0Vnx/4nLu+vwu3Nm7Eh8Xz0vUv0da5rVHHKCrS/1VfUmLcEtS5Jbl0\nXtiZtIfTcHNw44Yb4KGHYPRoIy9CCKEqUz87ja4ZfPTRR+zYsYOKigq2bdvGqlWrjD5pNWdnZ0Df\n96DVavH29jb5WJZgasRUzj92nuMPHMfe1p5u73Rj2KfDyCjMMPgYqanQsaPxzyLwcfZhaIehrD6i\nfy6ydCILYV2MTgbZ2dls2rSJGTNm8Morr7B161aTT67T6YiKisLf359hw4YRHh5u8rEshbO9M+4O\n7vx3zH85+M+DPBH7BJ6Onga/PyVFoXNn086dEJnAp/s+BSQZCGFtjH7SWXBwMNOnTwcaP5rIxsaG\nvXv3cvHiRUaNGkViYiJxcXE1++fNm1fzfVxcXK191iDQLZBAt0Cj3rP46PNcDHcC/m30+cZ1G8c9\na+/hdP5p/P07kJ5u9CGEEC0sMTGRxMTERh/H6GRQPZooPj6esLCwJhlN5OHhwdixY9m1a9cVk4Ew\nzOmLp4jwGWLSex3sHPjm1m9wc3DD3x/27Gni4IQQTe7yP5Sfe+45k45jdDNRcHBwk4wmysnJIT9f\n/8jF0tJSNm7cSHR0tEnHsibbzmzjjm/uuOL+7IrT9AjsYPLxh3QYgreTt8xCFsLKGF0z+O9//8un\nn37KCy+80KgTZ2ZmkpCQgE6nQ6fTcccdd3D99dc36pjm6sj5I1RoK4hsF9lg2ch2kXx/7HtyS3Lx\nca67XlSB5jR9Qk1PBtWkz0AI62J0MvD09GTTpk0MGzYMe3vTZ7lGRESwR9ohAFi6bylubdwMSgau\nbVwZ0mEIG09u5LZet9XaV6XVUumYzqAe7RsdkyQDIayL0c1Enp6e/Pnnn0yePJkxY8bw9NNPN0dc\nViUpM4nodoY3kY0KHcVPKT/V2X4gNRObUj98vR0aHZOvL+TnQ6Vhj0UQQpg5o2sG48aNw9fXlyef\nfBJFUThz5kxzxGU1FEVh77m9RLWLMvg9o0JH8fLWl1EUpdazJsqyg4neeqJJ4rKxUfD315CZCe0b\nX9EQQrRyDdYMjh07RnJycs3PsbGxhIWFAfqZbh06NL592pplFmUCGDWEtIt3FzwcPOo8yP7UKQjt\n0PhaQWllKSELQggK1iJLTwlhHRqsGYSGhpKYmMiGDRuwsbGhf//+9OvXryViswoHsg7Q27+3wU+T\nA30SPvCPA9ja2NbafvIkJk84u5STvRMOdg54dE4mLa174w8ohGj1GkwGdnZ2DB8+nOHDhwOwc+dO\nFi1ahE6nIywsjLi4OOzsjG5tEn/xdvLm9t63G/2+yxMB6GsGAwc2RVQQ1S6KksC9pKdLMhDCGhj9\nKT5gwAAGDBgA6JuQPv74YyoqKggKCmLUqFG4uBi3dLK16x/Un/5B/ZvkWCdPwpQpTXIoovyj+NVz\nL2lptzVcWAhh9hr1J31YWFhN/0FGRgZr167l1ltvbZLAhHGKKoo4nKLQrZtbkxwvql0Uq9r8V/oM\nhLASRg8tLS4uJqueAeiBgYGSCFS0cPOnXBz0ECEhTXO8qHZRZGmPyPpEQlgJo5PBihUrWLduHfHx\n8cyaNYv169c3R1zCQF8d+oqckhz+u+stwnVTjF66+kqC3YPZfHOK1AyEsBJGJwMnJyfCw8PJy8vj\nk08+oaCgoDniEgbadHoTAz4cgGN5B0Z0HtFkx9VoNLQPtiMzE3S6JjusEKKVMjoZ9OnThy+//JKF\nCxeydOlSqqqqmiMuq5CSl8Jn+z9r1DHmj5hPR8+OdDj+Gn36NFFgf3F0BHd3OH++aY8rhGh9jE4G\nvXr14s0336RPnz4EBQXRs2fP5ojLKuxI28Ha5LWNOoazvTO/JvzKyW19mjwZAAQHI01FQliBRo0m\nGjGi6ZolrNHJCyfp7NX4WWK5uZCXB6GhTRDUZYKC9Mmgb9+mP7YQovUwumYgmk7KhRQ6ezY+GSQl\nQVQU2DTx3VQUBZ/252VEkRBWwKCPj6KiIgAqKyvRarXNGpA1OXnhJKHejf9zfs8emqWJqKiiiC/8\nO3I2TWn6gwshWpUGk8Frr73G888/zyOPPMLFixe59957WyIuq5ByIaVJmol27IDmWC7KzcENJxs3\nkjMzmv7gQohWpcE+g5iYGGJiYrC3t2flypXoZJyhwX74AZ59FuLjYe5cuPRZQIqi8FDMQwS5BTXq\nHBUV8OuvsHhxI4O9gvYuXUnJTwYaF6cQonVrsGbg4uLC0qVLsbW1ZerUqVx77bUtEZfZe+opePhh\neOwx2LYNhgyBkpK/92s0Gv59zb/rXXDOGFu2QFgY+Pk1MuArCPPtypni5IYLCiHMmkZRFJMbhPfv\n309ERIRRyy8bSqPR0IjQVHXhgn4p6UOHIDAQFAWmTtV//8YbTXuuRx4BT0945pmmPW61FxJfYt4r\nFyld8ypt2jTPOYQQTcfUz06jx58sW7aMOXPmsHTpUlxcXPjiiy+MPqml+/hjGDdO/+EPoNHAwoXw\n2Wfwxx9Ne64ff4SxY5v2mJfq5d8DV48KTp9uvnMIIdRn0mDEZ555Bj8/P+bPn1/rKWgCqqrgnXdg\nzpza23194a234O67m255h5QUuHgRog1/fLLRbupxE/1zF5CS0nznEEKoz+hJZ23btqVNmzaMGTOG\nMWPGNEdMZm3tWggJqX+S1q23woIFsGoVTJ7c+HN9842+VtDU8wsuFxqKJAMhLJzRHyPr169n3Lhx\nTJo0iVdffZWdO3c2R1xma+NGmDSp/n0aDTz/PMybB0/8/CTni01f9EerhUWLYPZskw9hMEkGQlg+\no5NBXFwciYmJLF++nEGDBrFr167miMtsbd0KsbFX3j9yJHh66Xhj+wIc7RxNPs+6deDtDTExJh/C\nYJIMhLB8RicDjUbDn3/+ibOzM9deey3//Oc/myMus5Sfr3/0ZFTUlctoNHD/E2fRFnvhZGv6U8ne\neQfuv58me37B1UgyEMLyGZ0MNm3axGeffcb48eO55ZZbePfdd5sjLrP0++/Qv3/tyWX18ex2GLey\nHqxYYdp5Dh3Sr0fUUg+W8wzMISX3NGY60lcIYQCjO5AnTZqERqMhNjaW0tJSDh061BxxmaWGmoiq\nHc05wnUR4Tz/PEyb1nDyuJSiwL/+Bf/3f/rnDbSEjWe/gWt3cO7cxwQEtMw5hRAtq8Gawe7du2v9\nPGTIEGL/+sRzcnKi3yWL4lxe1toYmgyO5BxheGQPOneGjz4y7hw//ACpqfDAAyaFaJLOXp1p0y5F\nmoqEsGAN1gzWrVvHwYMHDTrY2bNn6WulC9+Xl8Pu3TBwYMNlZ0bNJMgtiEGv6zuUJ08GH5+G31dS\nop9x/PbbtOhs4FDvUKrcTpKSYliyE0KYn0YtR9GczG05ip074a67YN8+4953//36SWjvvddw2Vmz\n9Enns8Y9KdNoVboqHJ935d+6i7z0vEPLnlwIYZQWW45C1O/IEejVy/j3vfACfP01bN589XJLluiX\nqn7/fdPiaww7Gzt824SwO+VUy59cCNEiJBk0kaNHoXt349/n5QXLl+tHBp08WX+ZlSvh8cf1M5dd\nXRsXp6mu7zCaIydKGi4ohDBLkgyayNGj0KOHae8dMUK/5PWYMfqnllUrL4f58/VLYW/cCOHhTROr\nKZZMXsj5/X1qLcMthLAcRg8tBSgrK0Oj0eDgIO3H1UytGVS77z5wdtYnhIEDwd0dNm3SNz1t3gxd\nujRdrKawt4du3eDw4eZ5qpoQQl0GdSDrdDq+/fZbvvjiC7Zv345Op0NRFGxtbRk0aBDTpk3jxhtv\nbNLnGphTB3JlJbi56WcgX23sf6W2kmGfDuOX6b/gYFd/Ir1wQT98VKvV1zQGDGimoE1wxx1w3XUw\nc6bakQghrsTUz06DagZxcXEMGTKERx99lKioqJoaQXl5OUlJSaxZs4YFCxawuaFeUAuVkgLBwQ1P\nAvsz40+KK4uvmAhA34dw++1NHGATiYiA/fvVjkII0RwMSgYbN26sSQBarRZFUWqaiQYOHMjAgQMp\nLy836sRnz55l+vTpZGdno9FouPvuu3nwwQeNv4JWwND+gl9O/sJ1na5r/oCaSUQEbNigdhRCiOZg\nUDK4tG9g+PDhXH/99XTq1Al3d3fGjx9fp4wh7O3tWbBgAVFRURQVFdG3b19GjBhBD1N7YVVkSH+B\nVqdl1ZFVvDb8tZYJqhkU+vzGvqP9ANMX2BNCtE5Gjyb67bffeOqpp5g2bRoeHh7MufyRXgZq164d\nUX8t7+nq6kqPHj3IyMgw6VhqO3Kk4WTw3p/v4eXoxcjQkS0TVDN4++BTlHntIStL7UiEEE3NpKGl\nJ0+eZOvWrfTs2ZPVq1c3OojU1FSSkpKIaYnF+ZtBQ81EiqKw8eRGFo1d1KSd7C0t3DecdhGHOXBA\n7UiEEE3NpKGl7dq1Y//+/Tz00EM8+eSTjQqgqKiIm2++mbfffhvXy2ZUzZs3r+b7uLg44uLiGnWu\n5qAo+mQQFnblMhqNhjVT1rRcUM0kvG04f3Y8zK5dMHy42tEIIQASExNJTExs9HGMXpto165dNSuV\nKopCRESEwQvZXa6yspJx48YxevToOs1N5jK0NDdXPwfgwgW1I2l+G1I28K9vXqXjpl/4/nu1oxFC\n1KdZh5ZeKigoiG+//ZaKigqOHj3KDTfcYPRJQZ9I7rzzTsLDw03ud2gNTp+GDh3UjqJlhPuGk6U7\nRMZ2/eJ6NjJ/XQiLYVAyqB5KChAQEMCNN9541TKG2LZtGytWrKB3795ER0cD8PLLL5ucXNRSXzK4\nddWtPDv0WcJ9VVw/ohkEuQUR330cP3tUcvy4faNmXAshWheDJ52NGzeOCRMm0K1bt1r7jh07xrff\nfssPP/xg1KSz2NhYdDqdcdG2Qpcngz2Ze/j97O908+l25TeZKY1Gw0fxH3H7V7BtW+OW3xBCtC4G\nVfQ3bNiAj48P9913HwEBAXTr1o2uXbsSEBDA/fffj7+/Pz///HNzx9oqXZ4MFu1axD/7/xM7G5P6\n5s3CNdfok4EQwnIY3YGs1WrJyclBo9HQtm1bbJqp4dhcOpBvukn/HOObb9ZPLAt8M5Add+6gk1cn\ntUNrNvv365/OdvSo2pEIIS7XrA+32blzJ5mZmQDY2tqyfv16Zs+ezZw5c8jLyzP6pJbk0prBjrQd\n+Lv4W3QiAOjZE86dg/Pn1Y5ECNFUDEoG99xzT81yE5s3b+bxxx8nISEBd3d37r777mYNsLW7NBkk\nnUtiYo/EIMRqAAAbw0lEQVSJ6gbUAmxtYehQ/TMWhBCWwaBmosjISPb99XDf++67D19f35oJYZfu\na9LAzKCZqKgI/PyguBiqB1IZO6rKHH1x4AtObO3DkS1hfP652tEIIS7VrM1EWq2WyspKAH7++WeG\nDRtWs6+qqsrok1qK06ehffu/EwFg8YkAYNPpTSid1/PTT2DFt18Ii2JQMpgyZQpDhw4lPj4eZ2dn\nhgwZAkBycjKenp7NGmBrZk0Tzi41MHggR4p20L497NihdjRCiKZg8Gii33//nXPnzjFy5EhcXFwA\nOH78OEVFRfTp06fpAzODZqJFiyApCT74QO1IWtaR80cY8/kYpp0/RVUVvPKK2hEJIao1+3IUgwYN\nqrPt8glo1sZaawZhbcOo0FYQMewYLzwUJslACAsgq8s0QnUyyCnJYVPqJrXDaTE2GhvGdxvPaYfv\nyc8HE9cpFEK0IpIMGuHMGX0y+OnET7yz8x21w2lRD8U8xA1dR3L77bB8udrRCCEaS5JBI6SlQUgI\n7EjfwcDggWqH06J6+Pagt39v7rgDVqwArVbtiIQQjSHJwEQ6nX4WbkAA/JH2BzFB5vmUtsbq2VP/\nb/Drr2pHIoRoDEkGJsrJAXd3UGzLOHT+EH0D+6odkmqmT4elS9WOQgjRGJIMTJSeDoGBsPfcXrr5\ndMPZ3lntkFQzbRr8+KO+piSEME+SDEyUkQFBQeBk58SDAx5UOxxVZekOM/lWhUWL1I5ECGEqSQYm\nqq4ZRLaLZGb0TLXDUY2iKMz6bhYdJ3zK4sVQVqZ2REIIU0gyMFF1zcDaaTQa3h3zLm8fepxeMVms\nWKF2REIIU0gyMFF1zUBAv8B+zO4zm8Lh03n5FR1/rWkohDAjkgxMJDWD2ubFzaONazE2g99i2TK1\noxFCGEuSgYmkZlCbnY0dn974KeUR7/P8S2VUVKgdkRDCGJIMTJSRAZsLP2FP5h61Q2k1Qr1DOfHI\nAXp0dbS6lVyFMHeSDExQXg75+fBl8gcUVxSrHU6r0sa2Da+9Bi+8oP83EkKYB0kGJsjMBP8ALQez\nDxLZLlLtcFqd3r0hPh5efFHtSIQQhpJkYIKMDPAJPYmviy/uDu5qh9MqvfCCfomKY8fUjkQIYQhJ\nBiZITwenDocJ9w1XO5RWq107ePppuOceaOUPrBNCIMnAJBkZgK8kg6vJL8tnQ9txFBXrWLJE7WiE\nEA2RZGCC9HQY4DmGhMgEtUNptTwdPTlbcIZ/vLyVxx+HrCy1IxJCXI0kAxNkZEDf4Eh6+fVSO5RW\nbUqvKSRVfMXMmfDww2pHI4S4GkkGJkhPl9nHhhjbbSzrTqzjmWcU/vgD1q1TOyIhxJVIMjBBRobM\nPjZEhF8E5VXlpJUeZ/FifWfyhQtqRyWEqI8kAyMpitQMDKXRaBjddTS/pf7GiBEwYQL84x8yukiI\n1kijKK3zV1Oj0dAaQyso0NcKCgtBo1E7mtavpLIEJzsnNBoNpaXQrx88/jjccYfakQlhmUz97JSa\ngZHS08Fx5Iv8lipPgDeEs70zmr+yppMTfP45PPIInDqlcmBCiFokGRgpPR0qO/6AvY292qGYpcjI\nv2sGVVVqRyOEqCbJwEjp6QqlrkdkwlkjPPywvpbw3HNqRyKEqKZaMpg1axb+/v5ERESoFYJJjqZn\nYm/jgI+zj9qhmC0bG1ixQr920dq1akcjhAAVk8HMmTNZv369Wqc32ZGcwwTaS63AWIfPH6awvLDm\nZ39/+OormDULTpxQMTAhBKBiMhgyZAheXl5qnd5kp4oO09mth9phmJ1/b/w360/UTv6DBsGzz8Kk\nSVBSolJgQggA7NQO4GrmzZtX831cXBxxcXGqxVLN7sgU7r2tTO0wzM7wzsPZeHIjt/S8pdb2f/4T\nduzQT0hbtkyG6wphrMTERBITExt9HFXnGaSmpjJ+/HgOHDhQZ19rnWcQEgJbt0KHDmpHYl4OZh8k\n/ot4Tj50ss6+khIYMkRfQ3jiCRWCE8KCyDyDFqDT6VffDAhQOxLz09O3J6VVpZy8UDcZODvD99/D\n4sXw5ZcqBCeEkGRgjOxs8PSENm3UjsT8aDQafVNRysZ69wcG6kcWPfggbNvWwsEJIdRLBlOmTGHw\n4MEcP36ckJAQlpjBE1DS02WBusaY2msq3k7eV9zfuzcsX65vLkpObsHAhBCyNpExqpsyfvhB7Ugs\n24cfwssvw+bNEBysdjRCmBdTPztb9Wii1ua/R+dS2iUMmKF2KBbtrrvg4kUYPhw2bdLPSRBCNC/p\nMzDC8aI9hPj4qh2GVXj0UbjtNhgxAvLy1I5GCMsnycAIWdrDRAbK7OOW8uyzMGoU3HAD5OerHY0Q\nlk2SgYEKygsos8kjupNMMGgpGg289pp+pvKwYXD+vNoRCWG5JBkY6GjOUezyu9GhvfyTNVZ6QToj\nl49Ep+gaLKvRwFtvwdixcO21kJbWAgEKYYXkk81AR88foyozXEa3NIFAt0Cyi7NZe9ywJUs1Gnjx\nRZg5U58QUlKaOUAhrJAMLTVQRoZCZL8Szme4qB2KRfjl5C/M+G4G++7dd9W5B5dbvBiefx6++QZi\nYpoxQCHMlAwtbWZpaRraB0giaCrXd76eiT0mMu3raXwx6Qs8HT3rlDmYfZBP932Kq70rYW3DGNJ+\nCPfeG0RQEIwbB//9L0yerELwQlggaSYy0Nmz0L692lFYlteGv0aoVyhjPhtT7/42tm3wdfalSqli\n5aGV9F7cm9hPYlG6rWHjRv3w05deglZUgRTCbEkzkYEWLNA/xH3hQrUjsTyn80/TwbPhUVoV2go2\npmzEtY0rQzsOJTMT4uOhc2f46CNwc2uBYIVo5WTV0mYmNYPmY0giAH1NYWy3sQztOBTQrx67ZQt4\neUG/flDPSuhCCANJMjBASWUJp89oCQlROxJxOUdHfafyo08W0O+NeJ5ZvEuajYQwgSQDA7y27TV2\nOM6TmkErNvN2Z566eQIvp46n05xZHDp9Tu2QhDArkgwMsC9rH8WnIqRm0IrZ2djx9Lg7yXjiGP5u\nvkQs6sX0D16hvKpc7dCEMAuSDAyQlJlE8YloecKZGfB1d+ePF1/l8+t2sHrndibcs5esLLWjEqL1\nk2TQgLzSPHJL8ghwDMXWVu1ohKFuG9mF7LfXENk2hl69YNEi0GrVjkqI1kuSQQP2nttLR6dIOneS\nfypz4+ICr74Kv/0Gn38OgwfD77+rHZUQrZN8wjXgXNE5Aipj6d5d7UiEqXr10j8k57779DOWhyYk\nkpwsQ46EuJRMOjPAAw/oJzY9/LDakYjGulhUQcSbQ8lKDiLBYynPznUlKEjtqIRoOjLprBkdOwZh\nYWpHIZqCh2sbkp9I5OZxHnzjPYieQ1K47z79pEIhrJkkAwMcO4Y0E1kQBzsHVkz+iHnj7sX+3sGc\nd99AVBTMmiWzmIX1kmTQgOJiyM6GDvKAM4ui0Wi4b8B9rL71f5wJfYYDR8rp0kX/mM2RI+HHH2X0\nkbAu0mfQgL174fbb4eBBtSMRzUVRFDQaDQDl5bBypX5BwvPn9bWFmTP/XpeqUlsJgL2tfZ3j3P/j\n/Xg6ejI4ZDDXdrgW1zauLXYNQlQz9bNTksFV/HLyFzL+GMx3q51YtUrVUIQKnvr2fb7fcZhjRzX4\nBF3Asf0hMqsOs3bqWq7rdF2d8htSNrDlzBa2ntnK7ozdDAoZxPhu47m77920sW2jwhUIayQPt2li\nZVVlxH8Zz5zKLOk8tlJDenXEt10Z5RU6Thzqze6f7iF3e2+WHHWl6BZ9c5Kj49/lR4aOZGToSAAK\nygv4+eTPJKYmYmcjv2ai9ZOawRVsPr2Zf234F11/+5MbboDp01ULRbQimZmwejX873+wf7/+iWsT\nJ8Lw4fI8BdE6yNDSJvb98e8Z3WW0jCQStQQEwP336yexHT4MAwfCe+9BYCBcdx3Mn6/vX2rod7GV\n/g0mrJjUDOqhKApd3+nKl5P+R1xYNGlp4Fn3Eb1C1Cgq0i978eOPsG6dfiTSsGEwdKj+FRoKf/VR\nk1uSy/gvxvNR/EeE+4arG7iwOFIzaEKHzh+iSleF5lwU7dtLIhANc3WF8eP1C+KdOgU//wzXXAO/\n/KJPBsHBMHUqvPsunDjgw8zedzN06VC+PvK12qELAUjNoF5Hc46SlJlE+k9TSE3V/wILYSpFgZQU\nfdPSjh3w559w/Di0H7iL9GtuJtL9Ol6Me5XYaF/spK9ZNJIMLW0GY8bA7Nn6DkIhmlJpqX4Oy5ad\nhSxJfZpkxy+wX3SCsI5u9OoFPXtS87VjR7CROrwwkCSDJlZZCT4++iq/j49qYQgrUVBegG2VO0eO\n6DugDx3Sfz14SOFCnobu3aFrV+jSRf+q/t7X9+++CCFAkkGT275dP2pkzx7VQhCCDSkbuO+HB+jn\nPpYOFWNQMvqQfsKb5GQ4cUL/R0uXLvoZ0u3bQ0BwOR1C7OjYwZaQEP3oJ2l6si6SDJrYiy9Cfj68\n/rpqIQiBTtGxJ3MPPyb/yIaUDezP2k+lrpJ7+93LglELyMvT90ecOaNfeXXtuffZ1OYxnPP7oT09\nkLITA/HTRdKhrT+Bfo74+1Pr9XvlYvYU/kho2/Z09wsl1DuUrt5dCfUOlVnTZkqSQSOdvXiWcm05\nXby7oCgwaBA884y+30CI1kJRFMqqylBQcLZ3rrdMXmkeO9N3siNtB7+f3cH+cweZFPgIQ9s8wrlz\nkJX19+tU8UGyKpO5oJwBr5PY+59A8Uom7NzTRCh34O0NXl7g7a1/ba14h1OVO/BwdsbTxQUvVyds\nbOGW8FvoE9CnTixnL57F3cEdD0eP5v6nEX8xu2Swfv165syZg1arZfbs2fzf//1f7cBaMBmcvHCS\nEctH8FDMQzwY8yCrV8O8eZCU1HxV7MTEROLi4prn4K2AXJ95URQoKNAniOxs2Lw5kaCgOC5cgLw8\nar6eqthJdlUyheXFFFeUUFpVgp2tBs/s8XhX9cLNjVqv/QGPcMT5A5w0ngTY9aS9Y08CXdpzXcBE\nQtu2x80NnJzA2Vn/1c6hAidHG2wu6wix0djULCbYWJZ27y5nVmsTabVa7r//fn7++WeCgoLo378/\n8fHx9OjRo0XjyCvN4+M9H/Pa9td4Pu55/tH/H5SUwL/+BUuXNm9bq6X/h5TrMy8aDXh46F/dusHP\nPyeSkBBXT8kBf730FAUKC+HiRf3Xy18DC9/kYsHrpBed4czFQ2RqD3FSd5Lj64pQsvWT9UpLoaRE\n//Xi+HiUThvrnLXz9g34F19fK3E4O8Mev4cptj+Js8YHV1sfnGxd0dhWEet8J+0cO+LgAG3aUPN1\nS8EytnzzBaNy0vB29sLbyQsfF09CvTvh7uxEmzZgb6//3bezg2MXDnGhLIfiymLKq8qxt7XHwdaB\nAUEDLK62o0oy2LlzJ126dKFjx44A3HbbbXz33Xd1kkFRRRE6RVfr5drGFUc7xzrHzCrKoqC8AJ2i\no0pXRWlVKSWVJYT5hOHv6l+n/Jz1c1iydwmju4xm68ythLUN48wZeOwxiIkBC/o9F6LZaDTg7q5/\nXZkN0PGv19gGjrgerRbKyv5OEKWlUHJj7aRR/X1AwR1klZ+moDKXgqpcyrTF6MrbcCZHQ3aZfkny\n8nKoqNB/TfEs4+zpPE5uXE+FbR6Vtvlo7fPxTlwBmX2oqICqqr9fFaPfAK8UNFXOaHSOaOwq0NiV\n475tIY6FHtjZ1U4ep64fRJnbIWy1LtjqXLDTuWKrc6J36sd4VobXKmtnB3t8HqPQPgUbjS02Ghts\n0H8dXP48PjadsbXVDyu2tdW/kmw+oESTjZ2mDfY29tjbtMHOxp4oh5vwsPfF1tb0e6lKMkhPTyck\nJKTm5+DgYP7444865TxfbIcGG1Bsar5GpH5AQL5+4P+lNaHD7V8i2/NHNIoNYIOtzhlbrQtd0+fh\nU1A3GZQ4PEhM5YsUbHbl/vchNxdOn4a77oLHH2/ySxZCGMjWFlxc9K+G9fnrZai7mTcvg3nz5hlY\n/hN0On1iqKysnSjq+7msYgtF5cUUlhfrv1YUUVpZSnBcCPa6uu/1LxlDYVUeVTodWp0W7V9fO9q4\n46gDnU6/tEn1q6pKoUQppUopoEqpQKtUUqVU4FA8EpdK30Y9kEmVPoPVq1ezfv16PvzwQwBWrFjB\nH3/8wTvvvPN3YDJ4WgghTGI2fQZBQUGcveQJ5GfPniU4OLhWmVY6yEkIISySKpPc+/XrR3JyMqmp\nqVRUVLBy5Uri4+PVCEUIIQQq1Qzs7Ox49913GTVqFFqtljvvvLPFRxIJIYT4m2rLX40ePZpjx47x\n7rvv8umnn9K1a1deffXVess++OCDdO3alcjISJKSklo40sZZv3493bt3v+L1JSYm4uHhQXR0NNHR\n0bz44osqRGmaWbNm4e/vT0RExBXLmPO9a+j6zPnenT17lmHDhtGzZ0969erFwoUL6y1nrvfPkOsz\n5/tXVlZGTEwMUVFRhIeHM3fu3HrLGXX/FBVVVVUpoaGhyqlTp5SKigolMjJSOXz4cK0yP/zwgzJ6\n9GhFURRlx44dSkxMjBqhmsSQ6/vtt9+U8ePHqxRh42zevFnZs2eP0qtXr3r3m/O9U5SGr8+c711m\nZqaSlJSkKIqiFBYWKt26dbOo3z1Drs+c75+iKEpxcbGiKIpSWVmpxMTEKFu2bKm139j7p+rCuJfO\nN7C3t6+Zb3CpNWvWkJCQAEBMTAz5+flkZWWpEa7RDLk+MN/O8iFDhuDl5XXF/eZ876Dh6wPzvXft\n2rUjKioKAFdXV3r06EFGRkatMuZ8/wy5PjDf+wfg7KxfjqSiogKtVou3t3et/cbeP1WTQX3zDdLT\n0xssk5aW1mIxNoYh16fRaNi+fTuRkZGMGTOGw4cPt3SYzcac750hLOXepaamkpSURExMTK3tlnL/\nrnR95n7/dDodUVFR+Pv7M2zYMMLDaz9C1dj7p+ritobOJbg8e5vLHARD4uzTpw9nz57F2dmZdevW\nceONN3L8+PEWiK5lmOu9M4Ql3LuioiJuvvlm3n77bVxdXevsN/f7d7XrM/f7Z2Njw969e7l48SKj\nRo2qd4kUY+6fqjUDQ+YbXF4mLS2NoKCgFouxMQy5Pjc3t5rq3ujRo6msrCQvL69F42wu5nzvDGHu\n966yspJJkyZx++23c+ONN9bZb+73r6HrM/f7V83Dw4OxY8eya9euWtuNvX+qJgND5hvEx8ezbNky\nAHbs2IGnpyf+/nWXl2iNDLm+rKysmuy9c+dOFEWp0/Znrsz53hnCnO+doijceeedhIeHM2fOnHrL\nmPP9M+T6zPn+5eTkkJ+fD0BpaSkbN24kOjq6Vhlj75+qzURXmm/w/vvvA3DPPfcwZswYfvzxR7p0\n6YKLiwtLlixRM2SjGHJ9q1atYtGiRdjZ2eHs7MyXX36pctSGmzJlCps2bSInJ4eQkBCee+45Kisr\nAfO/d9Dw9Znzvdu2bRsrVqygd+/eNR8iL730EmfOnAHM//4Zcn3mfP8yMzNJSEhAp9Oh0+m44447\nuP766xv12dlqH24jhBCi5ajaTCSEEKJ1kGQghBBCkoEQQghJBkIIIZBkIFoRW1vbmkXDoqOja0Z+\nmLulS5fi6+vL3Xff3ajjzJs3jzfeeKPm5x07dlzxmGVlZURFReHg4GCWY+dFy1N1aKkQl3J2dr7i\nyorVg97MbQYs6GOeMmVKvStnVlVVYWdn2K/h5de+bt06Ro8eXW9ZR0dH9u7dS6dOnYwPWFglqRmI\nVis1NZWwsDASEhKIiIjg7NmzzJ8/nwEDBhAZGVnrObb/+c9/CAsLY8iQIUydOrXmL+i4uDh2794N\n6CfqVH84arVaHnvssZpjffDBBwA1U/pvueUWevTowe23315zjj///JNrrrmGqKgoBg4cSFFREUOH\nDmXfvn01ZWJjYzlw4ECda7l0BPfSpUuJj4/n+uuvZ8SIERQXFzN8+HD69u1L7969WbNmTb3XdezY\nsVrH/PXXXxk+fDiHDh0iJiaG6OhoIiMjOXHihKn/5MKKSc1AtBqlpaU1E4Q6d+7Mm2++yYkTJ1i+\nfDkDBgxgw4YNnDhxgp07d6LT6ZgwYQJbtmzB2dmZlStXsm/fPiorK+nTpw/9+vUD9H9N11eb+Pjj\nj/H09GTnzp2Ul5cTGxvLyJEjAdi7dy+HDx8mICCAa665hu3bt9OvXz9uu+02vvrqK/r27UtRURFO\nTk7ceeedLF26lAULFnD8+HHKy8uv+nyHaklJSRw4cABPT0+0Wi3ffPMNbm5u5OTkMGjQIOLj49m9\ne/cVrysnJwd7e3vc3NxYvHgxDz30EFOnTqWqqoqqqqqmuiXCikgyEK2Gk5NTrWai1NRUOnTowIAB\nAwDYsGEDGzZsqEkYxcXFJCcnU1hYyMSJE3F0dMTR0dGgR6hu2LCBAwcOsGrVKgAKCgo4ceIE9vb2\nDBgwgMDAQACioqI4deoUbm5uBAQE0LdvX4CaRc9uvvlmXnjhBebPn88nn3zCzJkzGzy3RqNh5MiR\neHp6AvrVJ+fOncuWLVuwsbEhIyODrKwstmzZUue6qmsYGzZsYNSoUQAMHjyY//znP6SlpTFx4kS6\ndOnS8D+2EJeRZiLRqrm4uNT6ee7cuSQlJZGUlMTx48eZNWsWULsZ5tLv7ezs0Ol0gL5T9VLvvvtu\nzbFSUlIYPnw4iqLg4OBQU8bW1paqqqor9lU4OzszYsQIvv32W/73v/8xbdo0g66reoE0gM8++4yc\nnBz27NlDUlISfn5+lJWVodFo6lxXdRzr16/nhhtuAPTLZnz//fc4OTkxZswYfvvtN4NiEOJSkgyE\n2Rg1ahSffPIJxcXFgH699vPnz3Pttdfy7bffUlZWRmFhIWvXrq15T8eOHWtWc6yuBVQf67333qtp\nUjl+/DglJSX1nlej0RAWFkZmZmbNsQoLC9FqtQDMnj2bBx98kAEDBuDh4dHgdVy+AkxBQQF+fn7Y\n2try22+/cfr0aTQazRWvS1EU9u/fT2RkJACnTp2iU6dOPPDAA0yYMKHePgshGiLNRKLVqO+v70u3\njRgxgiNHjjBo0CBAvwTxihUriI6O5tZbbyUyMhI/Pz/69+9f84H76KOPMnnyZD744APGjh1bc7zZ\ns2eTmppKnz59UBQFPz8/vvnmmyv2Mdjb27Ny5UoeeOABSktLcXZ2ZuPGjbi4uNCnTx88PDwMaiKq\nvqZLzzFt2jTGjx9P79696devHz169ACoc13VzWW7d++utULlV199xfLly7G3tycgIIAnn3zSoDiE\nuJQsVCcsznPPPYerqyv/+te/WuR8GRkZDBs2rM5on2qffvopu3bt4p133mmS8/3nP/+ha9euTJ48\nucGynTp1Yvfu3WazNLNQjzQTCYvUUvMRli1bxsCBA3nppZeuWMbJyYl169Y1etJZtSeffLLBRFA9\n6ayqqgobG/k1Fw2TmoEQQgipGQghhJBkIIQQAkkGQgghkGQghBACSQZCCCGQZCCEEAL4f2jy9u5K\n3hGSAAAAAElFTkSuQmCC\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Section 1.4.2 Probability distributions of wave characteristics." - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Probability distribution of wave trough period: WAFO gives the possibility of computing the exact probability distributions for a number of characteristics given a spectral density. In the following example we study the trough period extracted from the time series and compared with the theoretical density computed with exact spectrum, S1, and the estimated spectrum, Sest.\n" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nimport wafo.misc as wm\ndtyex = S1.to_t_pdf(pdef='Tt', paramt=(0, 10, 51), nit=3)\ndtyest = Sest.to_t_pdf(pdef='Tt', paramt=(0, 10, 51), nit=3)\n\nT, index = ts.wave_periods(vh=0, pdef='d2u')\nbins = wm.good_bins(T, num_bins=25, odd=True)\nwm.plot_histgrm(T, bins=bins, normed=True)\n\ndtyex.plot()\ndtyest.plot('-.')\naxis([0, 10, 0, 0.35])\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEXCAYAAABMCOQqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X98jfX/x/HH2Xb82i/DGvvBMOwHZkyiZH4lYjGU3/Kr\npRCpJJ/PF/3wCR+VQiHJr9AnhcRCmkSzmN/DkDEzM2zGhm1n1/eP1clsO862s13n7Lzut9u55VzX\n+/2+nudoL9eu631dl0ZRFAUhhBAVmo3aAYQQQpQ9KfZCCGEFpNgLIYQVkGIvhBBWQIq9EEJYASn2\nQghhBaTYC7O0Z88efH19y2Vbp0+fpkWLFjg5ObFgwYIy396JEycICgrC2dmZ/fv3l/n2jPX777/j\n7OxMUFAQx48fVzuOMDEp9sIgb29vqlWrhpOTEy4uLjz++OMsXryYsr48o3379pw6dSpfjl27dpXJ\ntubMmUPnzp1JT09n3Lhx+dYFBATg6OiIo6MjdnZ2VK1aVf/+gw8+KNH2vvzyS3x8fLh58yZt2rQx\nxUcw2s8//4yvry/29vZ06tSJixcv6te1bduWtLQ0GjduzLJly8o1lyh7UuyFQRqNhi1btpCens7F\nixd56623mD17NqNGjSr3HGX1D8yFCxfw9/cvdN2JEye4desWt27don379ixcuFD//q233irR9lJT\nU/Hz8ytN5BK5du0affv25f333yc1NZXg4GCef/75fG00Gg3+/v5cv3693POJsiXFXhjN0dGRXr16\nsX79elasWMGJEycAuHfvHq+//jr16tWjdu3ajB07lrt37wIQGRmJp6cnH374IW5ubri7u/PVV1/p\nx9y6dSsBAQE4OTnh6enJvHnz9P28vLwAGDp0KBcvXqRXr144Ojoyd+5cevbsWeCQS/Pmzdm0aVOh\n2Tdv3kxAQAAuLi507NhR/1tDp06diIyMZNy4cTg5OXH27FmD38H9/+AsXboUf39/nJycCAgI4NCh\nQ0Z9j9nZ2Wg0mnzLunfvzsKFC/MtCwwMZOPGjUaNaYzvvvuOpk2b0rdvXypVqsSMGTM4cuQIcXFx\n+dppNBpycnJMtl1hHqTYi2Jr3bo1np6e/PbbbwC89dZbnD17liNHjnD27FkSExN555139O2Tk5NJ\nT0/n8uXLLFu2jFdeeYWbN28CMGrUKJYsWUJ6ejonTpygU6dOBba3atUq6taty5YtW7h16xZvvPEG\nw4cPZ/Xq1fo2R44c4fLlyzzzzDMF+sfFxTFo0CA++eQTrl27Ro8ePejVqxc5OTns2rVLv8eenp6O\nj4+Pwc/+d5H+3//+x8yZM1m1ahXp6en88MMP1KxZ86Hf3Y0bNzh48CD16tXLt3zQoEGsXbtW/z42\nNpaLFy8W+nkAqlevjouLS6GvOXPmFNrnxIkTBAYG6t9Xq1YNHx+fAsfn69aty8GDB7lx48ZDP4+w\nHFLsRYm4u7tz48YNFEVh6dKlfPjhh1SvXh0HBwemTp3KunXr9G21Wi3/93//h62tLd27d8fBwYHT\np08DUKlSJU6cOEF6err+5KAxevXqRVxcHOfOnQPy/kEYMGAAdnZ2BdquX7+enj170rlzZ2xtbXn9\n9de5c+cO+/bt07cp7iGiL774gilTptCqVSsAGjRoQN26dQ32+fTTT6lVqxbVq1dn2LBh+db17t2b\nw4cPk5CQAMCaNWvo27cvWq220LHS0tJITU0t9PXmm28W2icjIwMnJ6d8y5ycnLh9+3a+ZUOGDKFm\nzZrUqlWLTz75xOBnEpZDir0okUuXLlGjRg2uXbtGZmYmrVq10u9Zdu/enWvXrunb1qxZExubf/5X\nq1atmr7AbNiwga1bt+Lt7U1ISAhRUVFGbb9KlSo899xzrFq1CkVRWLduHUOHDi20bVJSUr5CrNFo\n8PLyIjExMd+y4n7+hg0bFqvP+PHjSUpKIikpqcDhJkdHR5555hn93v26desYPHhwscZ/GAcHB9LT\n0/Mtu3nzJo6OjvmWbd68mUuXLpGUlMSECRNMmkGoR4q9KLY//viDy5cv88QTT1CzZk2qVq1KbGys\nfs8yLS2tQFEpSnBwMBs3biQlJYXevXvz3HPPFdqusGI8fPhw1qxZw86dO6lWrVqRM1vc3d25cOGC\n/r2iKCQkJODh4WFUxsJ4eXk99Ph+Ydzc3Gjbti2xsbEF1g0cOJC1a9fy+++/c/fuXTp27FjkOA4O\nDvpZQQ++ipolFBAQwJEjR/TvMzIyOHfuHAEBAfnanTx5krZt2+Lm5lbszyfMlxR78VB/H+JIT09n\ny5YtDBw4kKFDhxIQEICNjQ1jxoxh4sSJpKSkAJCYmMj27dsfOm52djZr1qzh5s2b2Nra4ujoiK2t\nbaFt3dzc9Ids/ta2bVs0Gg2vv/56gcMi93vuuef48ccf2bVrF9nZ2cybN48qVarQrl27Ap/RWKNH\nj+a///0vMTExKIrC2bNn801jNKRy5cpkZ2cXWN6jRw8uXLjA9OnTGTBggMExbt++rZ8V9OCrqFlC\nffr04fjx43z33XfcvXuXmTNn0qJFCxo3bpyvXU5ODpUqVTLqswjLIcVePFSvXr1wcnKibt26/Oc/\n/2Hy5MksX75cv3727Nn4+Pjw2GOP4ezsTNeuXfPN8DB0iGT16tXUr18fZ2dnlixZwpo1awrtN3Xq\nVN577z1cXFz48MMP9cuHDRvGsWPHGDJkSJHbaNy4MatXr2b8+PG4urry448/8sMPP+Q7vl/cwzj9\n+vVj2rRpDBo0CCcnJ8LCwkhNTTWqr42NDTqdrsDySpUqERYWxs8//8ygQYOKlccYtWrVYsOGDUyb\nNo0aNWpw4MCBfOdW/paTk5PvsJuoGDTy8BJhyVatWsXSpUv59ddf1Y5itGnTpnHo0CE2b95c6All\nNeXk5BAWFoa/v3+JLxoT5kn++RYWKzMzk4ULF/Liiy+qHaVYRo8ezZ07d3B3dyc6OlrtOHpRUVHU\nqVOH9PR0i/tOxcPJnr2wSD/99BN9+/ala9eubNiwwSwOO1y8eLHAyU7IO0QUGxuLp6enCqmEyCPF\nXgghrID6u0NCCCHKnOpnh4o7C0IIIUSe4hyYMYs9e0VR5KUoTJ8+XfUM5vKS70K+C/kuDL+KyyyK\nvRBCiLIlxV4IIayAFHszEhISonYEsyHfxT/ku/iHfBclp/rUy7J8ApEoGzVqgJF3BiiSiwvI7dKF\nKLni1k4p9qLYNBoo7V+ZKcYQwpoVt3bKYRwhhLACUuyFEMIKSLEXQggrIMVeCCGsgBR7IYSwAlLs\nhRDCCkixF0IIKyDFXgghrIAUeyGEsAJS7IUQwgpIsRdCCCsgxV4IIayAFHshhLACUuyFEMIKSLEX\nQggrIMVeCCGsgBR7IYSwAlLshRDCCkixF0IIKyDFXgghrIAUeyGEsAIPLfYRERH4+vrSqFEjZs+e\nXWD9pk2bCAwMJCgoiFatWrFr1y6j+wohhCgfGkVRlKJW6nQ6mjRpws6dO/Hw8KB169asXbsWPz8/\nfZuMjAzs7e0BOHbsGH369OHs2bNG9QXQaDQYiCDMkEYDpf0rM8UYQliz4tZOg3v20dHR+Pj44O3t\njVarZcCAAWzatClfm78LPcDt27epVauW0X2FEEKUDztDKxMTE/Hy8tK/9/T0ZP/+/QXabdy4kalT\np5KUlMT27duL1RdgxowZ+j+HhIQQEhJSnM8ghBAVXmRkJJGRkSXub7DYazQaowbp3bs3vXv3Zs+e\nPQwdOpRTp04VK8T9xV4IIURBD+4Iz5w5s1j9DR7G8fDwICEhQf8+ISEBT0/PItu3b9+enJwcbty4\ngaenZ7H6CiGEKDsGi31wcDBnzpwhPj6erKws1q9fT2hoaL42586d058kiImJAaBmzZpG9RVCCFE+\nDB7GsbOzY8GCBXTr1g2dTseoUaPw8/Nj8eLFAISHh7NhwwZWrlyJVqvFwcGBdevWGewrhBCi/Bmc\nelkuAWTqpcWRqZdCqM+kUy+FEEJUDFLshRDCCkixF0IIKyDFXgghrIAUeyGEsAJS7IUQwgpIsRdC\nCCsgxV4IIayAFHshhLACUuyFEMIKSLEXQggrIMVeCCGsgBR7IYSwAlLshRDCCkixF0IIKyDFXggh\nrIAUeyGEsAJS7IUQwgpIsRdCCCsgxV6U2smUk2w/t52UjBS1owghimCndgBhmRRF4beLvzF772wO\nXD6Aby1fDl85jGNlR4JqB9GyTkv9y9PJU+24Qlg9jVKcx5OXRYBiPiFdqEuXq8MuYDOPvT6Ha5nX\neL3t6wxvMZwqdlVQFIXzaeeJSYrh0JVDxCTFcODyAZo+0pSpT0yla4OuaDQaADQakL92IUquuLVT\nir0wii5Xx/LDy5m7by5xR535duIUevv2xtbG1mC/bF02646v44O9H1DFrgpvPf4WYX5h2NnaSrEX\nohRMXuwjIiKYOHEiOp2O0aNHM2XKlHzr16xZw5w5c1AUBUdHRz777DOaN28OgLe3N05OTtja2qLV\naomOji51YKGOqT9PZce5Hcx7ah4h9Z9EUTTF6p+r5LIlbgv/+e0/3Lhzg7gv34SjQ0FXqUR5XFzg\nxo0SdRWiQih27VQMyMnJURo2bKicP39eycrKUgIDA5XY2Nh8bfbt26ekpaUpiqIo27ZtU9q0aaNf\n5+3trVy/ft3QJpSHRBBm4OujXyveH3srV29fVRRFUUrzV5abm6v8cv4XhSFPKQ3nN1SSbiWVaBz5\n30ZYu+LWToOzcaKjo/Hx8cHb2xutVsuAAQPYtGlTvjZt27bF2dkZgDZt2nDp0qUH/zEx/l8eYXZi\nkmKYEDGBjc9vxNXetdTjaTQaQrxDYPVPDG4+mP7/60+WLqv0QYUQBhmcjZOYmIiXl5f+vaenJ/v3\n7y+y/bJly+jRo4f+vUajoUuXLtja2hIeHs6YMWMK7Tdjxgz9n0NCQggJCTEyvihLybeT6bO+D58/\n8zmBtQNNPv70DtOJSYrhtZ9eY0GPBSYfX4iKJDIyksjIyBL3N1js/545YYxffvmFL7/8kr179+qX\n7d27lzp16pCSkkLXrl3x9fWlffv2BfreX+yFecjSZdHvf/0YHjicvv59y2QbNhobVvdZzaNfPMry\nQ8sZETSiTLYjREXw4I7wzJkzi9Xf4GEcDw8PEhIS9O8TEhLw9Cw4Z/ro0aOMGTOGzZs34+Liol9e\np04dAFxdXenTp0+hJ2iF+VEUhfHbxlOzak1mhMwo0205V3Hm++e/582db/JH4h9lui0hrJnBYh8c\nHMyZM2eIj48nKyuL9evXExoamq/NxYsXCQsLY/Xq1fj4+OiXZ2ZmcuvWLQAyMjLYvn07zZo1K4OP\nIEzt8wOfs/fiXlb1WYWNpuwvsvZ39WdJzyX0/aYvybeTy3x7Qlgjg4dx7OzsWLBgAd26dUOn0zFq\n1Cj8/PxYvHgxAOHh4bzzzjukpqYyduxYAP0UyytXrhAWFgZATk4OgwcP5qmnnirjjyNKa3f8bmbs\nnsG+kftwrOxYbtvt49eHmCsxPPftc+wcuhOtrbbcti2ENZCLqoTetcxrNP+sOSv7rKRLgy5FtjPF\n1a+FjaHL1RG6LpSGLg35pPsnxe4vhDUpbu2UG6EJvfHbxjOw2UCDhb5QubmQVfrpk7Y2tqwJW8O2\ns9tYfXR1qccTQvxDir0AYOOpjRy8fJB3O75b/M7PPgsXLpgkR/Uq1fmm3zdM3j6ZtLtpJhlTCCHF\nXgA37tzgla2vsCx0GdW01Yo/wPz50LBh/mV37sC0abB3b96fiyGoThA9G/dk1p5Zxc8ihCiUFHvB\nxIiJ9PXrS/t6Ba+BMEqDBmDzwP9Kd+/m/XfcOHjyyQJdqpEBiYlFDvlux3dZdmgZ51PPlyyTECIf\nOUFr5X6M+5Hx28ZzbOwx7CvZG9Wn2CdHFSWv031aaQ5y8Lk5sH59kd3e3f0ux1OOs75fwTZyglZY\nOzlBK4yWdjeN8C3hLAtdZnSh5/x5VjIUcnKM31AhV2LH0MpgoQeY3G4y+xL2sS9hn/HbEkIUSoq9\nFZu8fTK9mvSiY/2OxnU4fRo6dCCKx8Cu7B9yVk1bjfc7vc9rP70mv/0JUUpS7K3UT2d/4uc/f2ZO\nlznGd9q1C2bMYBGvlE2onTth27Z8i4Y0H0J2bjbrTxj+LUAIYZgcs7dC6ffSafZZM5b2WspTDYu4\nqjktDapXL3RVWV1Uxd698NxzMHYsvP22/qTv7vjdDN84nFPjTlHFrorJMghhyeSYvXioabum0aVB\nl6ILfUYGtGwJ2dnlG+zxx+GPP+DwYUhN1S/u4N2BoDpBzI+aX755hKhAZM/eysSmxNLhqw6cfOUk\ntarVKrqhTge2hT9ftsz27A2Iux5Hu2XtiH0llkfsH5E9e2H1ZM9eGDR5+2TefuJtw4Ueiiz0amlc\nszFDmg9heuR0taMIYZGk2FuRiLMRnLtxjlcefeAE686deTNtzNW1a5CTw/91+D++jf2Wkykn1U4k\nhMWRYm8lcnJzeO2n1/jvU/+lkm2lf1ZERcHAgXDjhnrhHubf/4YtW6hRtQavtnmVeb/PUzuREBZH\njtlbiYXRC/nu1HfsHLrzn8dNZmWBnx98+inc9+zghyn3Y/Y5Ofp5/SkZKTRe0Ji0d+JQMkr/AHQh\nLJUcsxcFpN5J5Z1f3+HDpz7M/1zhSpXg4MFiFXpV3HcBl6u9K2F+YdBqiYqBhLA8UuytwHt73uPZ\nJs8SWDuw4Moi5tKbs1fbvAqtF5GlK/099IWwFlLsK7gz18+w4vCKkt2n3hzl5tJ8+VYqX/Xh29hv\n1U4jhMWQYl/BvbHjDV5v9zpuDm55C1avhtu31Q1VGjY2sGcPI3b483HUx3K+RwgjSbGvwH45/wtH\nko8w8bGJeQtyc+HECZM8QlBV//43byVvJf3WNaIuRamdRgiLILNxKihdro5WS1oxrf00+gf0N+nY\nalxB+6Cumh30+u04+5L2s67futKFEcICyWwcAcDKIytxqORAP/9+akcpEzvpygvBo9h+bjsJNxPU\njiOE2ZNiXwHdzbnL9MjpzOk6J/9UywrGqbITwwKHsejAIrWjCGH2HlrsIyIi8PX1pVGjRsyePbvA\n+jVr1hAYGEjz5s15/PHHOXr0qNF9RdlYGL2QoDpBtPNqB3PmwObNakcqM+MfHc8XMV+QmZ2pdhQh\nzJtiQE5OjtKwYUPl/PnzSlZWlhIYGKjExsbma7Nv3z4lLS1NURRF2bZtm9KmTRuj+/51vsBQBFFM\naXfSFNc5rsrx5OOKsm2bori7K0piokm3YYq/stKOoe9/+bIy6f0nlcUHFpc6kxCWpLi10+CefXR0\nND4+Pnh7e6PVahkwYACbNm3K16Zt27Y4OzsD0KZNGy5dumR0X2F6c/bN4ZnGzxDg6g8ffgjr1oG7\nu9qxys6JE4zNDJBpmEI8hMEHiSYmJuLl5aV/7+npyf79+4tsv2zZMnr8del9cfrOmDFD/+eQkBBC\nQkKMyS4ekHQric8PfM6h8EN5010iIvRPe6qwunTBp3NntItbsOPPHUU/kEUICxcZGUlkZGSJ+xss\n9sU5uffLL7/w5Zdfsnfv3mL3vb/Yi5J759d3eKHFC9R1rpu3oKIX+r9oNBpebfMq8/fPl2IvKqwH\nd4RnzpxZrP4Gq4GHhwcJCf9Ma0tISMDT07NAu6NHjzJmzBg2b96Mi4tLsfoK0zhz/Qwbjn3D20+8\nrXYUVQxqNogDlw9w+poZ35dfCBUZLPbBwcGcOXOG+Ph4srKyWL9+PaGhofnaXLx4kbCwMFavXo2P\nj0+x+grT+c/mNziyvAo1bR3UjqKKKnZVGNtiDJ/sl+fUClEYg4dx7OzsWLBgAd26dUOn0zFq1Cj8\n/PxYvHgxAOHh4bzzzjukpqYyduxYALRaLdHR0UX2FaZ38PJBfkr9gwU/7YbKldWOo5opi44yxmEX\nqZ3ex6Wqi9pxhDArcrsEC1OjBqSmPrBwaFc42RcOvPTQ/i4upX8olTncLqHQ/lu3khg+iK9XT+GN\nDlNLlU8Icye3S6jgUlPzitzfrx3ndtKo9QWyokblW17Uq8A/FBVJ9+7Y+wey84f5ZOuy1U4jhFmR\nYm/Bcr/+mulb3+S9Tu+htdWqHUd9Gg3VIyK527QJ35/6Xu00QpgVKfaWascOMqZMwsbWtsLe7KxE\nNBomtpnIR1EfqZ1ECLMixd4SZWWRO34c457KYW6vT7HRyF/j/UKbhJJ8O1nudS/EfaRKWCI7O1YN\nb0HuM915zPMxtdOYHVsbWya0mcD8qI/VjiKE2ZDZOBZGo4E/b5wneGkwR186ioeTR7H7qz2TxhRj\nPKx/+q1rxPvWpsbvh/Gs27TkGxLCTMlsHCvwxo43mNhmYrELvTVxcqzFdx8MZ0HcarWjCGEWZM/e\nwmi8d1Nv4nBOvnKSqtqqxe9vBnvlphjDmP5/pv5Jmy/aEP9qPPaV7Eu+MSHMkOzZV1Q5OeS+9y6V\nnhrPnK5zSlTorU0DlwY8UfcJVh1dpXYUIVQnxd5S3LvH/hvHycp2pr+/aR8gXpFNbDORj6M+JlfJ\nVTuKEKqSYm8hbtrm0Md9N/w0v0I/V9bUnqz3JJ6Zdpx7dZjaUYRQlRR7C/Hur+/Ss3FPSGqpdhSL\notFoeKHjJBzXboC/nrUghDWSE7QWIO56HO2WtePEyyeo7ehW5ic2LWGM4vTP1mUzbUgd3k6oT/Xf\n/ij5RoUwI8WtnQZvcSxUFhVFblwcr2hWMeXxKbg5uKmdyCJpbbU0mfQ+k39ZwTK1wwihEjmMY66S\nk6F/fzZd/ZWMrAwmtZ2kdiKLNrTVCH6ufJl9CfvUjiKEKuQwjrl66SWSquXSvM73RI+Opr5LfaB8\nD3+Y8xgl6b/k4BI2nNzAT0N+KvmGhTATMs++gsj44F261P+Vj7t9rC/0onReaPECp66dkhukCask\nxd5Mvfbbv2jp2ZrBzQerHaXCqGRbibefeJt1yybBrl1qxxGiXEmxN0Pfn/yeHed2sLDHQrWjVDgj\ngkaQmHKO0wmH1Y4iRLmSYm8uUlPh2DES0xN56ceXWBO2BqfKTmqnqnAq2Vai0/CZTLLbqXYUIcqV\nFHtzcfgwuevXM/T7oYxrPY62Xm3VTlRhjQwaybGrx4hOjFY7ihDlRoq9kWrUyJsBUppXjRoGNtCx\nI3OfdiQnN4e3279dbp/LGlW2q8zUJ6byzu531I4iRLmRqZdGMvl0Q0XJW/CXPRf20Pebvhx48QB1\nneuWWQ5zmDZpijFK2/9ezj18PvXhh45LaeEbAlWqlHwwIVRg8qmXERER+Pr60qhRI2bPnl1g/alT\np2jbti1VqlRh3rx5+dZ5e3vTvHlzgoKCePTRR40OVaEpCixYAIMG6RftOLeDsG/CWB222mChF6ZT\n2a4yUx6fQkb4SFi0SO04QpQ5g3v2Op2OJk2asHPnTjw8PGjdujVr167Fz89P3yYlJYULFy6wceNG\nXFxcmDx5sn5d/fr1OXjwIDUMHL+wuj370GfhyhVYtQoaN+b7k98TviWcDc9toH299mWew1Q3zLT0\nPXuAuzl36TatHju/yEIbewrc5HYUwnKYdM8+OjoaHx8fvL290Wq1DBgwgE2bNuVr4+rqSnBwMFqt\nttAxLKGQl5ncQu6hHh4Ov/0GjRuz8shKXt76MhFDIowq9KaiKKV7VRRV7KrQM/R1vunTCK5eVTuO\nEGXK4I3QEhMT8fLy0r/39PRk//79Rg+u0Wjo0qULtra2hIeHM2bMmELbzZgxQ//nkJAQQkJCjN6G\n2Xr1VQgOhqFD8y/v0QOABdELmL13NruG7cLP1a+QAUR5eKHFCzTyeZ8ePp64qB1GCAMiIyOJjIws\ncX+Dxb60D8nYu3cvderUISUlha5du+Lr60v79gX3YO8v9mYnLQ3GjgXWFr4+JweuXYPatfMvnzED\nnJ0LNFcUhVl7ZrH88HL2jNiDd3VvUycWxeBq70r3Rt1ZfXQ149uMVzuOEEV6cEd45syZxepv8DCO\nh4cHCQkJ+vcJCQl4enoaPXidOnWAvEM9ffr0ITrazOc1KwrodPmXVaoEL75YsO2VKzB8eF6RnzWr\n4HoXF7B54Ou1u8sbO95g3Yl1UujNyIstX2RJzBLrPuQoKjyDxT44OJgzZ84QHx9PVlYW69evJzQ0\ntNC2D/6gZGZmcuvWLQAyMjLYvn07zZo1M1FsE7tzB774Apo1g82b86+rVg06dizYJz097zBNTAx8\n8onB4a9mXGVm5EyY6M3p66fZ/cJu6jjWMeEHEKUR4h3CvZx7/H7pd4iLg5s31Y4khMk9dJ79tm3b\nmDhxIjqdjlGjRjF16lQWL14MQHh4OFeuXKF169akp6djY2ODo6MjsbGxXL16lbCwMABycnIYPHgw\nU6dOLRjAHGbjzJ0Lu3fDpEnQqVOhU1ZKMvvjxNUTfBT1ERtObqC/f3+WjpqIctW/VFHNYRaLOYxh\nigz3++++/3L86nG+2lMTevWCinDeSFRoxa2dclGVkYwpLoqicCn9EtGJ0SyNWcqR5CO8HPwyLwW/\nhKu9q1lMezSHQm2KMUxd7FMyUmj0aSPOv3oel6pyqlaYPyn2ZeTB4pKr5HL62mkOXTmU90o6xOEr\nh7G1sSWodhDPBzzPwGYDqWJXpcgxTJGjvPubyximLvYAAzcMpJ1nOzlRKyyCFPsyotFA+t1b7Phz\nB1vitvDjmR+x19rTsk5LgmoHEVQniKDaQQaPxVeUImkOY5RFsf/l/C9MiJjA0ZeOlnommhBlTR44\nboxvv807CTdq1EObXki7wA9xP8CQH3D/cB9tPdvSq3Ev/vXkv2jg0qAcwory8veJ2qhLUXl3Hc3M\nBFtbqFxZ7WhClJp1FvvWreGvmUJFiUmK4Z3d77A3YS/PNHoGDr7I5S++xbGyYzmFFA9T2p1vFxe4\nceP+8TS82OpFFh9cnFfsX34ZWrSAiRNLtyEhzIAcxnnAwcsHmbl7JgeTDjLl8SmMaTmGqtqqZnHo\nwhRjmEMGU4xRVhnynag9ewm6doUzZ8BR/pEX5kUeOF5CBy4foNfaXjy77lm6NujK2fFnmdBmAlW1\nVdWOJspNrqjbAAAd70lEQVSRq70rT/s8zeqjq/Ouuxg8GE6fVjuWEKVmPXv2ubkFr2gFsnRZDP1+\nKHsv7uWtJ95idMvR+WbQ/JNT/b1ZU4xhDhlMMUZZZpATtcISyJ59Ya5cgaZNITs732JFURi1eRR3\nc+5ydsJZxj06rtBCL6zL/SdqhagorKPYz58PnTvDA7dhfnvX25y9cZa1fddKkRd695+oFaKiqPiz\ncXJzISICvv8+3+JFfyziu5PfsXfkXqppq6kUTpir4YHDafRpIxLTE/Fw8shbeO+eTMMUFqvi79nb\n2MDBg+DtrV+08dRG3vv1PbYN3katarXUyybMlqu9K28+/ib9/tePezn38u6G2rKlPOREWCzrOUH7\nl30J+3h23bNEDI6glXsro/uZw0lJU4xhDhlMMYapMhhukAvP9YXbdeDHRThwi9vkn4L54Fx9IcqL\nnKA14PS104StD2Nl75XFKvSi4jL4CMZcG26uWEHjp3/my5jl3FIcC7RJTVX7EwhhHKvYs69RA1Kz\nr8CodrD733B4RInGUXtv1hRjmEMGU4xRnhliU2Lp8FWHQn8bLIt79AhhDNmz/9umTbB8OZC39/Xs\n0pd4O3QgyqERVv2QbVF8/q7+fP7M5/T9pi/XMq+pHUeIEqm4xb5ZMwgKyvuz114OXTnEv5/8t7qZ\nhMXq69+XAU0HMODbAeRcvgQjRkBWltqxhDBaxS32DRpAixZ5v+Y89QbvdnxX5tKLUnmv03toNBr+\ndeJTuH4d3npL7UhCGK3iFvu/bDy1EbQZDG42WO0owsLZ2dixtu9a1p1Yz+apYfDTT7iTqHYsIYxS\noU/Q5uTm0HRRU07P/xjlzNOlGsscTkqaYgxzyGCKMdTMcPDyQbqv6c6BkVHUq9VAzukIVcgJ2gMH\n9D/By2KW5V39eLabyqFERdLKvRWTHpvEqK3heXPxhbAAFavYnz4NzzwDd+6QkZXBzN0zmdNlDiB3\nLhSm9cbjb3A76zYEf6Z2FCGMYhHFvkaNvF+5H/Z633clc68OQ2NfDYeuH5L0eweCPeTiKWF6djZ2\nrOi9AkJmcOb6GcjIgP371Y4lRJEsotinpho3F37aLAfeODqM5NtXqfnMfM4tfV+Op4oy07hmY9j9\nfwzfOBzdqZOwfr3akYQo0kOLfUREBL6+vjRq1IjZs2cXWH/q1Cnatm1LlSpVmDdvXrH6mtzUqdCs\nGe/++i6Dmw+WB4KLsvfHK1Sxq8LcOzvhww/VTiNEkQzOxtHpdDRp0oSdO3fi4eFB69atWbt2LX5+\nfvo2KSkpXLhwgY0bN+Li4sLkyZON7gvGnVEuzqyJczfO0eaLNpx85SSu9q7F7m+KDOY8hjlkMMUY\n5pDh7zHiUy8QvDSYXcN20cytWekGFMJIJp2NEx0djY+PD97e3mi1WgYMGMCmTZvytXF1dSU4OBjt\nAw8GMaZvWZi2axqTHpukL/RClDVvl3pc+3oOzWcMRWOXZdT5pftfNWqo/QmENTD48JLExES8vLz0\n7z09Pdlv5Emo4vSdMWOG/s8hISGEhIQYtY0HHU0+yp6Le1gWuqxE/YUoibxzRi/w7Lrvad7/Hd7r\n9B78+CPs2QP/+c9D76Usj7kVxoiMjCQyMrLE/Q0W+9I8bLk4fe8v9iXy6qswciRfJi1ndMvR2Fey\nL914QhSTRqNhSa8ltPi8Bb0a96JN27Z555CqVYP/+z+144kK4MEd4ZkzZxarv8HDOB4eHiQkJOjf\nJyQk4OnpadTApelbbIMHk1XPk6+Pfc2w5sPKZhtCPERth9p89sxnDNgwgNSqGtixA44cgcxMtaMJ\nYbjYBwcHc+bMGeLj48nKymL9+vWEhoYW2vbBEwXF6Vtqjz7K1it78HP1o2GNhmWzDSGM0MevD719\nezN843ByH3GFDRvy9u6FUJnBYm9nZ8eCBQvo1q0b/v7+PP/88/j5+bF48WIWL14MwJUrV/Dy8uKj\njz7ivffeo27duty+fbvIvmXlq8Nf8ULgC2U2vhDGmt1lNimZKfx333/VjiKEnkXcCO1hU+SuZlyl\n8aeNSZiUgGNlxwLrzWmantpjmEMGU4xhDhkMjZFwM4HWS1vzTf9veLLek/+s0OnA1tbkOYT1sa4b\noaWkgKLw9bGvedb32UILvRBq8HL24qveXzFowyCSbyfnLczKgjZt8u6FL0Q5s9xiryjQrh0cOSKH\ncIRZetrnaUYGjWTQd4PQ5eqgUqW8x2XWrKl2NGGFLLfYR0eDjQ2H3RTS7qbRwbuD2omEKGB6h+lo\n0DBj94y8BR4equYR1styi/3p0xAezldHVjAscBg2Gsv9KKLisrWxZU3YGpYfWs62M9vUjiOsmEWf\noM3SZeH5oSe/j/rd4JRLcz+ZV55jmEMGU4xhDhmKM8aeC3vo979+HBhzAC/nv64sz82FHTvQPN1N\nTtCKYrOqE7Rbz2zFt5avzK0XZq99vfZMemwSg78bTE5uTt7CW7dg3DhGIrf3EGXPoov9V4e/4oUW\nL6gdQwijvPn4m1SyrcR7v76Xt8DZGbZsYRZvw8GD6oYTFZ7FHsZ52Nz6h/Uvfs6KMYY5ZDDFGOaQ\noSRjJN1KouWSlqzvt14//95Xc4pT2T5gZ/BWVULkU/EP48TEwLff8vWxrwltEipz64VFqeNYh2Wh\nyxjy3RCuZ+bNtz+NrxR6UeYsr9jb2kLlyqw4skIO4QiL1KNRD/r592PU5lHF2jMTojQsr9gHBnK4\ntRc37twgxDtE7TRClMh/Ov+HhPQEPjvwWcGVx47J/ROEyVlesQdWyNx6YeEq21Vmbd+1TI+cDm5H\n/1mRmwtTpkBionrhRIVkcdVSl6uT+9aLCqFxzcbMe2oe9BtAZvZf97y3sYGtW6Gsnv0grJbFFft9\nCfuo41CHRjUbqR1FiFIb2nwoJLVk/LbxcvxelCnLKfa5udCrF1uPfMuzvs+qnUYIk9BoNPDjIo5c\nOcLLW18mV8lVO5KooCyn2B86hHL2LP+L/5HeTXqrnUYI07nnxK7huziZcpKh3w8lW5f9z7rMTBgz\nBtLS1MsnKgTLKfbbt3OjfTDZudm0qN1C7TRCmJRTZSe2Dd5G+r10wr4J4072nbwVVauCvT107w63\nb6sbUlg0yyn2o0ez+ml3nm3ybN6vvkJUMFW1Vfnuue9wquxE9zXdSb+XnneJ7kcfQbNmeQ8wF6KE\nLKfYu7qy5vovPNtEjteLiktrq2VVn1X4u/rTeWVnrmVeyyv4ixdDnz5qxxMWzGKu0U5MT+TsjbP5\nn+cpRAWR/5dVG2AhdJ6G65EnYeUOuFX0Q09cXODGjbJOKCydxRT7zac306NRD7S2WrWjCGFyBWdd\naoBZzN3rwgKfdmwZuIVmbs0KdtBokKOawhgWcRinKplsPL2R3r4yC0dYlzcef4MPOn9A55Wd2fnn\nzn9WLFkCs2erF0xYHPO/xXFSEmc8nqDVe1dJnHy5RHe5tNTb4ZbFGOaQwRRjmEOG8hxjz4U99P9f\nf2Z1nsXIoJFw8ybk5EDNmibJICyPyW9xHBERga+vL40aNWJ2EXsSEyZMoFGjRgQGBnLo0CH9cm9v\nb5o3b05QUBCPPvqo0aHyqVMHf/+ZtPd+Um5nLKxW+3rt2f3Cbt7f8z7/2vUvFCcnqFlT7VjCghgs\n9jqdjnHjxhEREUFsbCxr167l5MmT+dps3bqVs2fPcubMGZYsWcLYsWP16zQaDZGRkRw6dIjo6OgS\nh8zx/VFm4Qir16RWE6JGRfHz+Z8Z8v0Q7uXcy98gJ0edYMIiGCz20dHR+Pj44O3tjVarZcCAAWza\ntClfm82bNzN8+HAA2rRpQ1paGsnJyfr1pT1KlKXLAp8IQpuElmocISoCV3tXdg3bxb2cezy1+imS\nb//1s3bvHgQFwbZt6gYUZsvgbJzExES8vLz07z09Pdm/f/9D2yQmJuLm5oZGo6FLly7Y2toSHh7O\nmDFjCt3OjBkz9H8OCQkhJCRE/z4yPhKu+VLboXYxPpYQFVdVbVW+6f8N0yOn0+yzZtByFrmVRmLz\n+efQrx/MnAkvvqh2TGFikZGRREZGlri/wWJv7JWqRe29//bbb7i7u5OSkkLXrl3x9fWlffv2Bdrd\nX+zzOX6c7bHfwCmZhSPE/Ww0Nrzb8V36+fWjRdyLdPhqBYt7Lsb/99/hvt+sRcXx4I7wzJkzi9Xf\n4GEcDw8PEhIS9O8TEhLwfOA+2w+2uXTpEh4eeReAuLu7A+Dq6kqfPn2KfdxeGTmSC5GbpNgLUYTA\n2oGwbB8Dmw6kw1cd+NefX3CnZXO1YwkzZLDYBwcHc+bMGeLj48nKymL9+vWEhuY/dh4aGsrKlSsB\niIqKonr16ri5uZGZmcmtW7cAyMjIYPv27TRr1qzANop0/Tq6U7GcalwDrjcp5scSwoootrzc+mWO\nvHSEuOtxNPusWf45+cnJcOeOevmEWTB4GMfOzo4FCxbQrVs3dDodo0aNws/Pj8WLFwMQHh5Ojx49\n2Lp1Kz4+Ptjb27N8+XIArly5QlhYGAA5OTkMHjyYp556yvhkycns69GcZ5o+yfESfjghrIm7ozvf\n9P+GH+N+ZPTm0TxZ70nmPTUP1+XLwckJXn5Z7YhCRWZ9UVWzz5qxpOcS2tVtKxfgmGgMc8hgijHM\nIYO5jFFY/9tZt5keOZ3VR1czp8schjUfisbGIi6YF0Yq7kVVZlvsz904xxPLnyDxtURsbWykMJho\nDHPIYIoxzCGDuYxhqP/Bywd5ccuLVK9Snc+f+fyfx3nm5uY971ZYLJNfQauWTac30atxL2w0ZhtR\nCLPXyr0V+0fvp2ejnrRd1pb3f30/79qVuXPzpmneN7lCVGxmW0m3xG2hV+NeascQwuLZ2dgxqe0k\nDr54kN8v/U7TRU1ZE1KT3AD/vAuxjstZMWtglodx7nyxmDanXmPfrGQcKjnIr/wmHMMcMphiDHPI\nYC5jFKe/oihExkcyc/dMLqVfYpZPOH26TkCrrVzyAEIVxT2MY5b3sz919QRN3VvgUMlB7ShCWATj\n72mvATrmvert5vkO78D2z6h28G1SI4dRybZSiTPUqAGpqSXuDsiDWMqSWR7GWRKYTavHwtSOIYTF\nUJQSvOI7oKz4mT2vrSSz/jc0/rQx86Pmc2/SBHjgHljGSE0tYY77XqX9x0IUzeyKvaIoRJyN4Gmf\np9WOIoRVeKLuE7BqO+v6rSMqMYpm9it47e4mjl+VY/kVidkV+7jrceTk5uDv6q92FCGsymOej7G2\n71p2TzlF9dredFvdjZCvQvg29luy793Jm64pLJbZnaD9OOpjYlNiWdJryX1t5GSeqcYwhwymGMMc\nMpjLGGWVIVuXzfenvmdB9AKa7D7B7J1Q6ZVXcQgfl3eAvpxyiMJZ9kVVp0+zYVI3NPM+JMwv7L42\n5vnDYIljmEMGU4xhDhnMZYzyyHAk6TBbVv0bn3U/obRsif/7S2julv+Ga+bwXVgTi76oKuunbWRc\nTaRz/c5qRxFC3CewTgumvfkDnfYkcm5YL7qv6U7HFR3ZeGojulwdZGerHVE8hFnt2V95+gm+8Erh\nX0tPP9DG/Pd8LGUMc8hgijHMIYO5jKFGhixdFhtiNzB//3wS0xKImXebJlWWceVsaKmmb8qevfEs\nep79V8/Ww75eJ7VjCGGVjJ+rD1AJGJj3co2lQcP/cTtgHm7/HUO3ht0IbRJKjwbdqF7JCbTasgks\nisWs9uybLGjCur7rCKoT9EAby9vzMdcxzCGDKcYwhwzmMoY5ZPh7jKRbV/jh9A9sjttMVuTPfPN1\nDpdDWlErfBKuPZ8rlxzWwmJP0P6Z+iftlrXj8uTLBW5+VpF+GNQewxwymGIMc8hgLmOYQ4bCxsjI\nyuDX39Zw7esviEk9wd6nA+jt25vevr3xq+VHYY89lWJvPIst9ov+WMT+xP2s6L2ikDYV84dBjTHM\nIYMpxjCHDOYyhjlkeNgY2bpsfr3wKxtPb2TjqY1UtavK9Dh36rQKwb/fS9R2qG2yHNbCMot9bi6h\na0MZ1HwwA5oOKKRNxf9hKK8xzCGDKcYwhwzmMoY5ZCjOGIqicOjKIU5v+pJf7p7k23uHcLV3pUO9\nDiz915MkfeFB7Sat8p6uJYpkkcX+XnQUUQMeJ+BYMjWr1SykjXX9MJTlGOaQwRRjmEMGcxnDHDKU\nZoxcJZdjycfYfWE3r364m2/jfqR7bBZptatzaMm7PPrEc7jau5YuXAVkkcUe7x04t3+Lm6sOFNnO\nmn8YTDmGOWQwxRjmkMFcxjCHDKYcQ5eby7FLMRz/eS3/08TyS9I+6levT6f6nWhVpxUd5m8i+53p\n1HFrSBW7KqXboAWzyGL/+vbXcdA6MD1kehFt5IfBVGOYQwZTjGEOGcxlDHPIUJZjZOuyOXD5AD+f\n/5kTV44RtOUgi4KyScq4glNlJzydPKlr785bq+KhoQ9VAwKpPmgEXs51sbWxLV0gM2aRxb7poqZ8\n0esL2ni2KaKN/DCYagxzyGCKMcwhg7mMYQ4Z1BgjV8klJSOFS+mXSLz2J1W+/gblzBm4mszoMDuu\nZV6jfvX6+NTwwdumBr23/snxl/vxiP0j+ldtezdqVqtV6Mwgc2eRxb7m7Jokv55c5L/C8sNgujHM\nIYMpxjCHDOYyhjlkMKcx/paZncm5G+c4l3qO1OQLuP74C9s71uVqxlX9q/L5BH75NJ2U6pU436AG\nX0/pTl3nung5eeHu6E5trQu172mp5dMcra15XRxm8mIfERHBxIkT0el0jB49milTphRoM2HCBLZt\n20a1atX46quvCAoKMrqvRqNh8LrnWP38egMfyjp+GCIjIwkJCSnTHBXlu7CUz2GKMaztuzAsEggp\ncm2xn3SlKGSkXCY5LoaU5PMcq1+NhPQELt68SNKtJKqdvcD4ded5arAOp8pOuNm74ebghl9GNZ6L\nSEBTvTpZ9etxvf8z1KpWi1rVavGI/SPU0jpTSQfY2xcjTPGY9HYJOp2OcePGsXPnTjw8PGjdujWh\noaH4+fnp22zdupWzZ89y5swZ9u/fz9ixY4mKijKq799GJrsX4yNWXMYUe2sh38U/rO27MFS/ZsyI\nZMaMkCLXF/tojEaD/SMeNHjEgwZAoQeSZ8A9JZfrmddJzkgm+XYyty+exebcDnQ3rpOWfIHvT33P\ntcxrpGSkkJKZgndcCrN2aQifUB9Xe1cesX+EGlVr0ORqLj3WxYCzE5m+Plx7oT/OlZ3RaDTkKrlw\n+za2N9LIdHclV8nFRmODQyUHnCo74VjZEafKTjhUcihw4akxDBb76OhofHx88Pb2BmDAgAFs2rQp\nX8HevHkzw4cPB6BNmzakpaVx5coVzp8//9C+fwvoO7bYwYUQorzYaGxwtXfF1d6Vpo80hQadISRc\nv77/A+1zlVzS7qbxQ0YKVzOukpKZwo07N7hnk0DsozfITUslJTOOrdGfcvPuTRQUbDW2BJy/TZ9f\nrjBnjD+2NrbocnXczrpN49hk3luVSKKtwq91c3k9rPjP5zZY7BMTE/Hy8tK/9/T0ZP/+/Q9tk5iY\nyOXLlx/a929uHo2LHVwIIcyVjcaGGlVr5O3N12ryz4qWQM9/3o4von+Bh7LeuQPjLsPduzTR2jGo\nnjtObxfvojODxd7YM9SlPcdrzHZKe7LcFCfby2OMmTNnlnmOivJdWMrnMMUY8l38ozy+i4rIYLH3\n8PAgISFB/z4hIQFPT0+DbS5duoSnpyfZ2dkP7Qul/4dCCCHEwxk8yh8cHMyZM2eIj48nKyuL9evX\nExoamq9NaGgoK1euBCAqKorq1avj5uZmVF8hhBDlw+CevZ2dHQsWLKBbt27odDpGjRqFn58fixcv\nBiA8PJwePXqwdetWfHx8sLe3Z/ny5Qb7CiGEUIGiom3btilNmjRRfHx8lA8++EDNKKq6ePGiEhIS\novj7+ysBAQHK/Pnz1Y6kqpycHKVFixZKz5491Y6iutTUVKVv376Kr6+v4ufnp/z+++9qR1LNrFmz\nFH9/f6Vp06bKwIEDlbt376odqdyMGDFCeeSRR5SmTZvql12/fl3p0qWL0qhRI6Vr165KamqqwTFU\ne+D43/PwIyIiiI2NZe3atZw8eVKtOKrSarV89NFHnDhxgqioKBYuXGi13wXA/Pnz8ff3t8hL2E3t\n1VdfpUePHpw8eZKjR49a7W/H8fHxLF26lJiYGI4dO4ZOp2PdunVqxyo3I0aMICIiIt+yDz74gK5d\nuxIXF0fnzp354IMPDI6hWrG/fw6/VqvVz8O3RrVr16ZFixYAODg44Ofnx+XLl1VOpY5Lly6xdetW\nRo8ebfUn72/evMmePXsYOXIkkHdo1NnZWeVU6nByckKr1ZKZmUlOTg6ZmZl4eHioHavctG/fHhcX\nl3zL7r/Gafjw4WzcuNHgGKoV+6Lm51u7+Ph4Dh06RJs2hd8UrqKbNGkSc+fOxcZGtf81zcb58+dx\ndXVlxIgRtGzZkjFjxpCZmal2LFXUqFGDyZMnU7duXdzd3alevTpdunRRO5aqkpOTcXNzA8DNzY3k\n5GSD7VX7iZJf0Qu6ffs2/fr1Y/78+Tg4FP8KOUu3ZcsWHnnkEYKCgqx+rx4gJyeHmJgYXn75ZWJi\nYrC3t3/or+oV1blz5/j444+Jj4/n8uXL3L59mzVr1qgdy2xoNJqH1lTVir0xc/itSXZ2Nn379mXI\nkCH07t1b7Tiq2LdvH5s3b6Z+/foMHDiQXbt2MWzYMLVjqcbT0xNPT09at24NQL9+/YiJiVE5lToO\nHDhAu3btqFmzJnZ2doSFhbFv3z61Y6nKzc2NK1euAJCUlMQjjzxisL1qxV7m4f9DURRGjRqFv78/\nEydOVDuOambNmkVCQgLnz59n3bp1dOrUSX8NhzWqXbs2Xl5exMXFAbBz504CAgJUTqUOX19foqKi\nuHPnDoqisHPnTvz9/dWOparQ0FBWrFgBwIoVKx6+k1iW04UeZuvWrUrjxo2Vhg0bKrNmzVIziqr2\n7NmjaDQaJTAwUGnRooXSokULZdu2bWrHUlVkZKTSq1cvtWOo7vDhw0pwcLDSvHlzpU+fPkpaWpra\nkVQze/Zs/dTLYcOGKVlZWWpHKjcDBgxQ6tSpo2i1WsXT01P58ssvlevXryudO3c2euql6g8vEUII\nUfZkyoMQQlgBKfZCCGEFpNgLIYQVkGIvhBBWQIq9sHqLFy9m1apVRrePj4+nWbNmBZZHRkbi7OxM\nz549C+n1j44dO+Lo6MjBgweLnVWIkjJ4i2MhKjqdTkd4ePjDGxrpySef5IcffjDY5pdffqFjx45y\nFbkoV7JnLyxafHw8vr6+DBkyBH9/f/r378+dO3cAOHjwICEhIQQHB/P000/rrzYMCQlh0qRJtG7d\nmvnz5zNz5kzmzZsHwOHDh3nssccIDAwkLCyMtLQ0/ViBgYG0aNGCRYsWGZUtKSmJJ598kqCgIJo1\na8Zvv/1WBt+AEMaRYi8sXlxcHK+88gqxsbE4OTmxaNEicnJyGD9+PBs2bODAgQOMGDGCadOmAXn3\nEcnOzuaPP/7gtdde0y8DGDZsGHPnzuXIkSM0a9ZM/7zTESNGsHDhQg4fPmx0rrVr1/L0009z6NAh\njh49qr+zqRBqkMM4wuJ5eXnRtm1bAIYMGcInn3zC008/zYkTJ/R3RtTpdLi7u+v7PP/88wXGSU9P\n5+bNm7Rv3x7Iu21s//79uXnzJjdv3uSJJ54AYOjQoWzbtu2huVq3bs3IkSPJzs6md+/eBAYGlvqz\nClFSsmcvLN79x74VRUGj0aAoCgEBARw6dEi/Z33/wx/s7e0fOm5RF5cbe9F5+/bt2bNnDx4eHrzw\nwgvFOgkshKlJsRcW7+LFi0RFRQHw9ddf0759e5o0aUJKSop+eXZ2NrGxsUWOoSgKTk5OuLi46I+t\nr1q1ipCQEJydnalevTp79+4FMPrWuhcvXsTV1ZXRo0czevRoq71jpTAPchhHWLwmTZqwcOFCRo4c\nSUBAAGPHjkWr1fLtt98yYcIEbt68SU5ODpMmTSryTol//3awYsUKXnrpJTIzM2nYsCHLly8HYPny\n5YwcORKNRsNTTz1l1EyayMhI5s6di1arxdHR0arv4CnUJzdCExYtPj6eXr16cezYMbWjEBkZybx5\n8x469RLy5trPmzePli1blkMyIeQwjqgAzGW+euXKlTl+/LhRF1WdP38erVZbTsmEkD17IYSwCrJn\nL4QQVkCKvRBCWAEp9kIIYQWk2AshhBWQYi+EEFZAir0QQliB/weWrgqv8QBDmwAAAABJRU5ErkJg\ngg==\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Section 1.4.3 Directional spectra" - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Here are a few lines of code, which produce directional spectra with frequency independent and frequency dependent spreading." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nplotflag = 1\nNt = 101; # number of angles\nth0 = pi / 2; # primary direction of waves\nSp = 15; # spreading parameter\n\nD1 = wsm.Spreading(type='cos', theta0=th0, method=None) # frequency independent\nD12 = wsm.Spreading(type='cos', theta0=0, method='mitsuyasu') # frequency dependent\n\nSD1 = D1.tospecdata2d(S1)\nSD12 = D12.tospecdata2d(S1)\nSD1.plot()\nSD12.plot()#linestyle='dashdot')\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEXCAYAAACu1P9TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VEX7wPHvbnbTe0IC6XQChN6lShMVVF5AkN5EBcGC\nBUUBRREpChYUX8QXFEX0JyCgIkoEFWkC0iGQ3kN62Wyb3x83LgmkLIGEkMznHI7sLTNzL8dnZ+fO\nfUYlhBBIkiRJtZ76djdAkiRJqh4y4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVETLg\nS1Xu8ccfZ/HixdVSV+vWrdm3b1+V1hEVFYVarcZsNldpPZJ0q8mAL92UkJAQHB0dcXV1xcPDg7vu\nuouPP/6Y4q93rFmzhvnz59/yuidNmsQrr7xSYtupU6fo3bv3La/rRvz+++/06NEDd3d3vLy86Nmz\nJ0eOHKnSOkNCQvj111+rtA7pzicDvnRTVCoVO3bsIDs7m5iYGF588UWWLl3K1KlTrTrfaDRWcQur\nV3Z2Nvfffz9z5swhIyOD+Ph4FixYgJ2dXZXWq1KpKO8dytp2n6VKEpJ0E0JCQsQvv/xSYtuhQ4eE\nWq0Wp0+fFkIIMXHiRDF//nwhhBB79+4V/v7+YunSpaJ+/fpiwoQJwmw2iyVLlojGjRsLLy8vMWrU\nKJGenm4pb//+/aJ79+7C3d1dBAYGis8++0ysXbtWaLVaYWtrK5ydncWwYcOEEEIEBweLPXv2CCGE\n0Ol0Ys6cOcLPz0/4+fmJp556ShQWFpZox4oVK4SPj49o0KCBWL9+vaXOHTt2iHbt2glXV1cRGBgo\nFi5caNkXGRkpVCqVMJlM192Pw4cPC3d39zLv1/r160WPHj3ErFmzhJubm2jRokWJ+5eZmSmmTJki\nGjRoIPz9/cX8+fNL1LN27VoRGhoqXFxcRMuWLcXff/8txo0bJ9RqtXBwcBDOzs5i2bJlljauW7dO\nBAUFiT59+ojw8HAREBBQoj3BwcGW+hcsWCBGjBghxo0bJ1xcXERYWJi4cOGCePPNN4WPj48ICgoS\nu3fvLvPapJpP9vClW65z584EBASwf/9+QOl9qlQqy/7k5GQyMjKIiYnh448/ZvXq1Wzfvp19+/aR\nmJiIh4cHM2fOBCA6Opp7772XOXPmkJaWxvHjx2nXrh3Tp09n7NixvPDCC+Tk5LBt27br6nrjjTc4\ndOgQJ06c4MSJExw6dKjEs4Tk5GSys7NJSEhg3bp1zJw5k6ysLACcnZ35/PPPycrKYufOnaxZs8ZS\nR3maN2+OjY0NkyZN4scffyQjI+O6Yw4dOkSTJk24cuUKixYtYvjw4WRmZgLKMJWtrS2XLl3i2LFj\n7N69m//+978AbNmyhUWLFrFx40ays7PZvn07Xl5ebNy4kaCgIHbs2EFOTg5z58611LVv3z7OnTvH\njz/+WOovgOL/LgA7duxgwoQJZGRk0L59ewYOHAhAQkICr7zyCjNmzKjwHkg12O3+xpHubKX18IUQ\nolu3buLNN98UQggxadKkEj18W1tbS09bCCFCQ0NLlJGQkCC0Wq0wGo3izTffFMOHDy+17uLlltae\nxo0bix9++MGy76effhIhISGWdjg4OJToPfv4+IiDBw+WWtecOXPE008/LYQov4cvhBBnz54VkyZN\nEgEBAUKj0Yhhw4aJ5ORkIYTSw/fz8ytxfJcuXcTGjRtFUlKSsLOzEwUFBZZ9mzZtEv369RNCCDFo\n0CCxevXqUuu89t/h3zZGRkZatu3du/e6Hn7x8xYsWCAGDRpk2bd9+3bh7OwszGazEEKI7OxsoVKp\nRFZWVqltkGo+ze3+wpFqp7i4ODw9PUvdV69ePWxtbS2fo6KieOihh1Crr/7g1Gg0JCcnExcXR6NG\njSrVhoSEBIKDgy2fg4KCSEhIsHz28vIqUaejoyO5ubkAHDx4kBdffJHTp0+j1+spLCxk1KhRVtXb\nokUL1q9fD8D58+cZN24cTz31FJs2bQLA39+/xPHBwcEkJCQQExODwWCgQYMGln1ms5mgoCBAuaeN\nGze+kVtAYGDgDR3v4+Nj+buDgwPe3t6WXwEODg4A5Obm4urqekPlSjWDHNKRbrnDhw+TkJBAz549\nLduKDx1cO4wQFBRkGf74909+fj5+fn4EBgZy6dKlUuu5tpxr+fn5ERUVZfkcExODn5+fVdfwyCOP\n8OCDDxIXF0dmZiaPPfZYpaZhNm/enIkTJ3Lq1CnLtvj4+BLHREdH4+/vT2BgIHZ2dly5csVyH7Ky\nsjh58iSgBO+IiIhS6ynrXhTf7uTkRH5+vuWzyWQiNTX1hq9JunPJgC/dNFE0Npydnc2OHTsYM2YM\n48ePp1WrVpb9opwZJI899hgvvfQSMTExAKSmprJ9+3YAxo4dy549e9iyZQtGo5ErV65w4sQJAHx9\nfbl8+XKZ5Y4ZM4bFixeTlpZGWloar732GuPHj7fqmnJzc/Hw8MDW1pZDhw6xadOmCr9gQOnRr1y5\n0hLUY2Nj+fLLL+nevbvlmJSUFFavXo3BYGDLli2cO3eOe++9l/r16zNo0CCeeeYZcnJyMJvNXLp0\nyfJewbRp01i+fDl///03QggiIiIs98zX17fML8Z/NWvWDJ1Ox65duzAYDCxevJjCwkKr7odUO8iA\nL920oUOH4urqSlBQEEuWLOHZZ5+1DGnA9Q9trw2cc+bMYdiwYQwaNAhXV1e6d+/OoUOHAKVXu2vX\nLlasWIGXlxft27fnn3/+AWDq1KmcOXMGDw8Phg8ffl275s+fT6dOnWjTpg1t2rShU6dOJd4HKC+A\nf/jhh7z66qu4urry+uuv8/DDD5fYX9a5Li4uHDx4kK5du+Ls7Ez37t1p06YNK1assBzTtWtXLl68\nSL169XjllVf49ttv8fDwAGDDhg3o9XpatmyJp6cnI0eOJCkpCYARI0bw8ssv88gjj+Dq6srw4cMt\nD4XnzZvH4sWL8fDwYOXKlaW20c3NjQ8//JBp06YREBCAs7NziSGfa/+dSivDmi89qeZSifK6XpIk\n3VKfffYZ69ats8xgkqTqJHv4kiRJdYQM+JJUjUobNpGk6iKHdCRJkuoI2cOXJEmqI2r0i1fyp68k\nSVLllDZ4c9t6+Dqdjq5du9KuXTtatmzJvHnzSj3u3zncNfHPggULbnsbZBtl++6ENtb09tW2Npbl\ntvXw7e3t2bt3L46OjhiNRnr27Mnvv/9e4u1MSZIk6da5rWP4jo6OAOj1ekwmU5m5VyRJkqSbd1sD\nvtlspl27dvj6+tKvXz9atmx5O5tzw/r27Xu7m1Ah2cabV9PbBzW/jTW9fVA32lgjpmVmZWUxePBg\n3nrrrRIXpFKpWLBggeVz375974h/FEmSpOoUHh5OeHi45fOiRYtKHcuvEQEf4PXXX8fBwaHE4g0V\nLdsmSZIkXa+s2HnbhnTS0tIsq/wUFBTw888/0759+9vVHEmSpFrvts3SSUxMZOLEiZjNZsxmM+PH\nj6d///63qzmSJEm1Xo0Z0imNHNKRJEm6cTVuSEeSJEmqXjLgS5Ik1REy4EuSJNURMuBLkiTVETLg\nS5Ik1REy4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBL\nkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVEbdtEXOpdGaz4Oef\nLxETk4Wfnwt9+4bg5GR7u5slSVItIBcxryGEEHz//QXmzfsFBwcN7drVJyIindOnU5k1qzOzZ3fF\nw8PhdjdTkqQ7QFmxU/bwa4D4+GymTNlOQkIOb789gHvvbYpKpQLg7NlUVqw4QLNm77NkSX+mTm1v\n2SdJknQjZA//Ntu27RwzZuzgiSc689JLvdBoSn+scupUCmPH/h+hod6sX/8ADg7aam6pJEl3irJi\npwz4t0lGRgFz5/7Mr79GsmnTcLp3D6zwHJ3OyNSp24mISGfnzkfw9nashpZKknSnkQG/koxGMydP\nJnPiRDLZ2YW4u9vTtKknLVvWw83N/obLS0rKZf36Y7zzzl+MGNGSpUsH4OJiV+KYMzFwORkCvaFN\nCBQfwRFCMG/eL3z//QV27x6Hv7/rTV6hJEm1jQz4N8hgMLF8+Z+8994h3Nzs6dTJDzc3OzIydJw/\nn8a5c2n4+DjRsaMf7dr50rJlPUJC3PHycsTGRoVOZyQtLZ/Y2GzLw9ejRxNISMjhoYdCmTu3O61a\n+ZSo80wMPL4GLiUpgf5CApjNsHAMjO9XMvAvW/YHK1f+xaefDmPIkKbVe3MkSarRZMC/ARkZBTz4\n4GYcHDQsWzaQsDDf644xmcxERKRz9Ggix48nce5cGtHRWaSnF2AymXFw0OLp6UBAgCuNG3vQqlU9\n2rdvQOvWPqWO0+88DJNWwetjYdog0Ngo238/A3M+gSYN4NPZ4FTsR0V4eBQTJ27lvvua8vbbA3F2\nltM3JUmqgQE/NjaWCRMmkJKSgkql4tFHH2X27NklG3cbAr4QguHDv8bX14kPP7wPtbrqZ8TsOqIE\n++3zoVvz6/fr9DDtPUhIh10LwL5YXM/M1PH00z8RHh7F++8P4b77mlV5eyVJqtlqXMBPSkoiKSmJ\ndu3akZubS8eOHdm6dSuhoaFXG3cbAv66dX/zwQeHOXBgKnZ2VT9rNfwkjHobvp8PXZtDBkY+JIlI\ndARhx8N40xwHTCYY/w7kF8K3L4KNTclyfv75EjNn7qJ5c2+WLRtIixbeVd52SZJqprJi521LrVC/\nfn3atWsHgLOzM6GhoSQkJNyu5gDKuP3Chb/x8cf3V2uw3/ycEuzPkM+DnMUGmIAPPmiZRgTrSUZt\nI/hsDmTmwUsbry9r4MDGnDz5OH37BtOr13omT97GuXNpVX4NkiTdOWrEi1dRUVEcO3aMrl27Xrdv\n4cKFlr/37duXvn37Vlk7tm07T6NGHnTu7F9ldQAIAZ/shvmfw1fPQb82cAkdj3GJVwlkAO4A9MaV\nYXgyi8tkY2KO1o9vXoQuz0LbhvBIn5Ll2tlpePbZHkyZ0p733jtEnz6f0a1bAM8/34O77gqq0muS\nJOn2CQ8PJzw8vMLjbvtD29zcXPr27cv8+fN58MEHS+yr7iGd/v038OijHXj44daWbYUG5YFq+ClI\nz4F6btC+EfRvC/5eN17HqWh4/jNIzIBNz0JoIORhYhTnmYovD+FJNr+h4yJ2NMKNvmRgZgIXmYAP\no/DmnyjoPx9+XAgdm5RdV36+gf/97zjLlx/Az8+Fl1/uxeDBjeWbupJUy9W4MXwAg8HA/fffz5Ah\nQ3jqqaeu21+dAT89vYCQkHdJSXkOe3vlh8/JKBixFBp4wLAu4OUCKVlw+CL88g+0CIAxvWDEXVDf\no+yyM3Jh5xHYuBeOXYZ5I+CJe8Gu6GXZl4kGYDF+xLCIPI7jRh9yOYLASGM+Ig4XxnGRDTSlMfZ8\n8wfMXQ9HVoJ3BVPxjUYzX399mjff3I+Tky2vv96PgQMbycAvSbVUjQv4QggmTpyIl5cX77zzTqnH\nVGfA//rr02zYcIIdOx4B4Gws9HkJVk6FcX2vP15vgD0n4IvflFk2zfyhe3No6KsE8sw8ZT790Qi4\nmAj9wmBUTxjRo+Qsm52k8wFJbKE5mayggAs0ZBU2OCEQJPMR6WynKV/wHWa+Jo0vaY4WFS/+D/46\nD7sXga0VmRbMZsGWLad59dVwAgJcWbZsIB06NLg1N1CSpBqjxgX833//nd69e9OmTRtLT3PJkiXc\nc889VxtXjQF/1qxdNGrkwTPPdMdshu7Pw+T+8NiQis8tNMDB83DwAsSkgt4Iro4Q4gMdGkPHxqUH\n5AyMDOMsH9GYEC5ymdmEsg1NgQqSz4N3I3D2Jp63MZBKMG8zmQjux4MReGMywQNvQOtgeGui9ddq\nNJpZt+5vFiwIZ8KEtrz2Wj/LrxpJku58NS7gW6M6A37fvp8xf35vBgxoxNa/4I2v4eByUFfRPCaB\n4BmiaIAtz+PPRabgyX14xTeDd/uDuz9kxsPDqzF1GsZZhhLMW0QQynNEs4tQbFGTkgntn4L1c2BQ\n+xtrQ0pKHjNn7uLMmVQ+//wh2reXvX1Jqg1q3LTMmkQIwalTKbRuraQ6+N+v8PiQqgv2ANtIJwId\nc2hALkfRE4tnTnf44D4YtQpePgazf4ItT2Fz8Qh+zCaJD2mPM8HYsYMMAHzcYdNcmPAORKfcWBt8\nfJz4+usRzJvXk0GDPufdd/+67bmLJEmqOjLgA8nJeQD4+jqRlg17TyoPYqvKMXJZTgIrCcEONUms\nwZdHUf34NrQZBp3HKAcGtocJn8Gnj+CR3wM9seRxnMfwZS3JmFCCc5/W8PxwZXgnt+DG2qJSqRg3\nrg0HD07jiy9OMmLEFrKydLf2giVJqhFkwAfOnUsjNLQeKpWKb/+EezsqY/D/+okM7uEM7TjOUM7y\nf1xBULmecAQFPEkkSwimKQ7kc4pCovDM7gZ/bYAh87m8Zw/fT5/O2e++g1b3QMvBqPZ+iA9TSOEz\nOuGMNxp+JtNS7tMPKM8Kpr9fuXvQqJEHv/8+GR8fJ7p1W0dmpgz6klTbyICPkrLYz88FgL8vQc+W\nV/ftI4s3iGMxQfxBGIsI5HNSeYFo9JhvqB4DgpeJ4Uka0AtlLmUWv+HOENRn9kLzu8ktgC0jR+LR\npAk7Hn2UxGPHoMcUOP4d7gwih78AM8Pw5FeyLGWrVPDBY/D7WWXmTmXY2WlYs+Y++vUL4fHHd1au\nEEmSaiwZ8IG0tHzLYiIRidDUT9luRLCYOJYRQiecccKGDjjzJc3Ix8yTRFJoZdAXCBYSgxcaRnL1\nja0cDuBCdzj/K7Toz5E1a2g9ejQ9X3iBe1atYtvkyYjgLpAegzZTjwZPdFykJ678SQ7mYr807G1h\nwWiYt0F5m7eyVqwYxIkTSWzadLLyhUiSVOPIgM/1Ab9xfWX7z2Tig5auuJQ43g4179IQF2x4kssV\nBn0zgreI5wIFLCMENco0VBO5FHAOZ9rDhXAMgd058tFHdC16Ca316NEUZmeTeOIfCB0IZ3fjTCdy\nOYIftrhhwzlKDtpP6g8pmbDjcOXvh4ODls8/H85TT/1IbGxWxSdIknRHkAGffwO+A4UGSM6EoHrK\n9vWkMIXrc+EDaFDxFsG4ouFRLpGPqdTjCjDzDFGcIZ91NMGJq2kus/gNZzqhvpIMRh2Rp2LxDg3F\nu7mSI1mlVtNu8mSOrVsHze+GC+FFAf8oAD1w5XeyS7bLBpZPgefWg8FY+XvSoUMDZs/uyrRp38uZ\nO5JUS8iAD+Tm6nF2tiUtGzxdlKBpRnCKfPpSdt4CDSreJphCzBwht9RjDpNDHIX8lya4XpOrroBz\nONEBki+AX2tSz57Fr1OnEsc0GTyYuL/+Ar8wSD6HPU0oLErF0BpHIrj+4eo9HZSXvyISb/ROlPTC\nC3fx55+x8gGuJNUSMuAX+fdt3+LZZVRgGX4pixoV7mjKnLMjAG+02JVxq1X/blepi/5T8ji1RlNi\nf/EWlvWPp1Ip4/k32zHXam3QatU3XY4kSTWDDPiSJEl1hAz4kiRJdYQM+CjDOWazQK0CU7EJNyqo\ncAZODiZiKcS2jKEfW9REoSMJ/fX1osZMIahtwKhHZWODqbCwxDH6vDxlWMdYCCobBAb+HdbRI0r9\nBzSalJTM2pvMh5aZqUOnM5a66LokSXce+X8y4OZmR1aWjnpuSlpjnV4Zm++JK9tJL/O8TIxM4iLd\ncblu6ua/uuLMQ3gxlgtcuuYBqzOdyOEP8G8DsccI6NyZyF9/LTEr5uw339B0yBCIPgyB7cnnNA60\nAOAoubTB6bo6P92j5OpvcpO50J5++icmTWqHq6vdzRUkSVKNUG4fcMWKFRUW4OzszIwZM25Zg24H\nb29H0tIK0NgoUzIjk5WVqKbiwwJi+Q9e1z28zcTINCLoigvP4YeqjB6+GhUzqE99bJlKBJtohh9K\nQnxnulLAMxhdtGg8gwgMsMOo0xH7xx8E9eyJsbCQk5s2Me3QIdjxOPScTi5/4kpPBII/yGYG9UvU\nl5MPCzbBzleVh7eVtXXrOfbvj+b48ccqX4gkSTVKuT385cuXk5ubW+afnJwcli9fXl1trTJKwM8H\nlF7xv9MZO+GMCzb8H1dKHJ+InvFcpEcFwb64B/BkMj48ziV0RcNEamxxpgO5HIKmfVBF/EbXp57i\nwMqVAPyxdCl+nTvj4e8Ll/5AtOhPHkdxpiMX0WGHmiBsS9SzYhv0b6Pk4a+spKRcHntsBxs2PISz\ns23FJ0iSdEcot4c/btw4FixYUG4BeXl5t7RBt8O1Af9CgrJdhYo3CGIKEaRipCNOnKeAtSQzFV8m\n4XND9UygHsfJYzWJPI+yULoz3cjhAO4t+sO+NbSb+h2/LVrElpEjif3zT6YfOQIXwiGwPXoH5SUr\nWwL5gxTuwrXEl01KJry3Aw5X/MOsTHq9iQkTvuPRRzvSo0dg5QuSJKnGKbeHv2zZsgoLsOaYms7f\n34WYGCWFQI8W8PPxq/ua4MBamhBPIatI5DT5fETjGw72oHyBvEwA4WSxASV5vTv9yWQ3xhZdIfY4\nttnRPHr0KA3792fsDz/gUr8+/PoudH6EdLbhSl/MwNdcYQjulrL1BmX93SeGQKP6ZTSgAvHx2fTr\n9z8cHbW8+mqfyhUiSVKNVe6KV8XH8IuvoPLvS0rPPPNM1Taumla8yszUERj4DllZL6IzqPCfBKff\nBz+vCk+tlAT0jOE8rxNEb9yIZh62BNJgdx6c+xme/OnqAPze9+DAekzP7+G05n6a8xW/4MIXpPI5\nTS09/OnvQ1o2fPti5RZu+fHHCCZP3sasWZ2ZN68XarVc4FyS7lSVWvEqJyeH3Nxcjh49ypo1a0hI\nSCA+Pp6PPvqIv//+u8oaW93c3e1xd7cnOjoTRzsY3h027au6+vywZSUNmU8MaRjwZQZpfIHp7qmg\nL4BtL4HJAAc+g12vw/RvSNN8iys90RLIWpKYQX1LsF/3M/xxFjY+fePBXqcz8vTTPzF9+vd89dV/\nePnl3jLYS1JtJazQs2dPkZ2dbfmcnZ0tevbsac2pN8XK5t0S99zzudi+/ZwQQog/zggRMlWIfF3V\n1rlSxItZ4pIQQohI8ZxIEB8IkZMqxJLOQjyhEeKN9kLE/C30IlmcEN1FgbgkfhIZYqQ4J8zCLIQQ\n4mSUEN5jhTgTc+P1HzgQK1q0eF+MHPm1uHIl/1ZemiRJt1FZsdOqV3NSUlLQarWWz1qtlpSUG1xA\ntYYLC/Ph2LEkhg5tTo9Q6NQU5n8OK6aWf54QcCoadh+HwxeVdWUNJnBxgIa+0L4R9G4FYcHX975n\nUp8HOcfPZNKb2ZxnFB7O92D/4iEw6sFGi1CZiGEO3oxETQirOcdz+KNCRU4+PLIclkxQppFaKyEh\nh4ULw/n++wusWnUPo0a1uvEbJknSHceqgD9hwgS6dOnC8OHDEUKwdetWJk6cWNVtq1b9+zdk8eL9\nloeVax6H7s8pb94unQR22pLHn4uDr3+HTb+BzqAsi3hfJyXI22khKw8uJcHRCFj9PRToYeRd8Ojg\nq8HZFjVvEsyTXGYLzfHjGS4zk8Z8hJ0mGBN5RDMPgYH6zGQliTTCnt64YjbD+HegW3OYOtC6a0xN\nzWPZsj9Zt+4YU6e258yZJ/DwcLh1N1GSpBqt3Ie2xR09epT9+/ejUqno3bs37du3r+q2VdtDW4CC\nAgM+PsuJiXnKEgQzcmHae7DvNAxsB96ukJIFhy5AoQH+0wPG9oEuzSp+yelcHGzcq4y3928LSydC\ngLeyby1J7Ceb9TQlg80kshoHmlHABdzpTwCvcJBC5hHNd7TAAw2LN8OuoxD+Bthqy687Pj6blSv/\nYv36Y4we3ZqXXupFQEDZaZ8lSbqzlRU7rQ74AMnJyeh0OsssnaCgoFvXwlJUZ8AHePjhb+jVK4hZ\ns7qU2B6ZDPtOQUYe1HNVhmlCAyv3JmtuASz9Fj7+CT6ZBQ90VXLvT+cSzXHgOfzQiwQ+WPM7Wzdn\nkpZqJKynP5dfbsDq4JZ0x4XtB+GJj+DQ8vJnEp09m8ry5Qf47ruzTJjQlrlze8hAL0l1QJmx05oH\nANu2bRNNmjQRjo6OIiQkRKhUKtGyZctb8WyhXFY275YJD48UoaHvC7PZXOV1/XVOCP9JQqzarnzO\nEAYxTJwRbxVGiwce+FJ06fKJ+OmnCPHZ3xEiaMFm4ea9VHz11UlxOlp5SPvXubLLPnw4Xgwdukn4\n+CwTixaFi7S0vCq/HkmSao6yYqdVETUsLEykpqaKdu3aCSGE+PXXX8XkyZNvXevKUN0B32w2i7Zt\n14itW89WS31RyUI0flSID3cqnxONOhE88lMRMOwT8Z4+TswUl0Rv8Y/4U2SJ48cThX/ASuHZ9Q/x\nv1/KKC8qQ4we/Y3w81sh3n//oMjP11fLdUiSVLOUFTutmrWt1Wrx9vbGbDZjMpno168fR44cuemf\nHVOmTMHX15ewsLCbLutWUKlUrFgxiJkzd5GaWvUpI4J94OfX4I0tsOFX2LjyCAEJghWbh2LQquiH\nG7toSXdcadi0Pp5DpmK+fBj95ZLvQBgMJpYs2U/Hjmtp3tyLCxdmMXNmFxwcKhjclySpTrFqlo6H\nhwc5OTn06tWLsWPH4uPjg7Oz801XPnnyZJ588kkmTJhw02XdKv37N+KRR8J4+OFv+L//exh3d3ur\nz9XrTWRm6jCZzNjba3B1tcPGpvzv1Ia+StDvMzuNgl//4MSx6TSy9yhxTGwqPLQEend05clnx9Gn\nz3qaNfOid+9gTp5MZsKErfj6OnH48HQaNvQooyZJkuo6qx7a5uXlYW9vj9ls5osvviA7O5uxY8fi\n5XXzuQeioqIYOnQoJ0+evL5x1fzQ9l8Gg4lnn93Nzp0XeeWV3gwfHloiJ7zBYOLixXSOHUvk6NFE\njh9P4ty5NFJT83F3t0ejUaPTGcnL0+Pr60zjxh60bFmPDh0acNddgbRo4W158A0ghOCu3hu5aG7G\ng2O68epi834SAAAgAElEQVTDEFgPrmTDxnB4cwvMfRCeG648KP7hh4tMn/49M2Z0ZPXqQyxdOoDJ\nk9uVKFOSpLqr0rN0jEYjAwcOZO/evVXSsJoY8P+1e/cl3n33L/btiyYoyA1XVzsyMnTExGQRGOhK\n27b16dixAe3b1yc0tB4BAa4l0hIYDCbi43OIiEjn9OkUjhxJ5LffonBzs+fFF+9izJgw1GoVX399\nmtde+43f/niMN75Rs+5nZS6/Tg+D2sOro6FNyNV26fUmOnT4mJiYLI4efZSmTaso6Y8kSXekm5qW\n2b9/f7799lvc3d0rOvSGVRTwi6dn7tu3L3379r3lbahIYaGRixfTyc4uxN3dnkaNPLC3r9z6gWaz\n4JdfLjN//l5UKli+fCAjRmxh69bRdOsWAIDBCFdywN0J7K9JR5+bq2fUqC1otWpycw107x7A4sV3\n3+wlSpJ0BwsPDyc8PNzyedGiRZUP+MOGDePYsWMMGjQIR0dH5USVitWrV990Q2tiD18Iwbp1x1iy\n5HfuvrshCxf2wd//1s5fN5sFH310mKef3k2/fiH88MNYy5CMwQhf7oO4K9C9OfRro5wTG5vFAw98\nRbt29fn44/vJyNDRocPHfPLJUIYMaXpL2ydJ0p2rrNhpVTd1+PDhDB8+3BKQhBC1erz4669Ps2LF\nAdatG8bOnRfp0+czfvtt0i0N+mq1CkdHW4KD3UhKyuXBBzfz8cf3Y+vkTK8XoYEndGwM096Hvq0F\nvdxP8sJzu5k7tztz5/ZApVLh4+PEpk3/YdSoLRw6NJ2gILdb1j5JkmqhKp0MWoHRo0eLBg0aCFtb\nWxEQECA+/fTTEvtvV/N6914vtmw5bfm8ZMl+0bbtGpGXd+vmtZ87lyq8vd8W//yTJAoLjeKll34R\nHl7LRMjoNPHEBwYhhBAGg0l8uuG0cBkQI3zuPiUOHYortaylS38XXbp8IgoLjbesfZIk3bnKip3l\nRtTp06dXWLA1x1TW7Qj4ycm5ws1tSYngaTabxfjx/yeGDt0kjEbTTddx9myqCAhYKdavP1Zi+9yP\n8oXf8BTh7rFUtG27Rri7vyV69FgnNn97UTSdYRZf7y+9PLPZLIYN+1I8+eSum26bJEl3vrJiZ7lj\n+PXq1WPMmDHljqP/8MMPRERE3PJfHnB7xvA3bjzB1q3n+fbbUSW2GwwmBg36nJ49g3j99X6VLn/f\nvmhGjdrCW28NYNKkdpbt5+Pgrhfg6DtgL3JJSMihQQMX6tdX3nfYfxrGroBza8DR7vpyMzN1dO78\nCa++2pvx49tWun2SJN35KjWGv2zZsgrH6nv16nVzLath9u2L4e67Q67brtXa8NVX/6FTp0/o2TOQ\nwYOb3FC5QghWrz7IG2/s54svhjNwYOMS+59eBy+PUt6+BWd8fUu+2NarlZIKecVWeOXh68t3d7fn\nu+8epl+//xEW5ku7dpVc2FaSpNqr2n5jVMLtaF6PHutEeHhkmft/+eWyCAhYKdLTrV8hKjU1Tzzw\nwJeiQ4ePxaVL6dft33NciEbThSgsekSgF2axT2SJv0WOZWUrIYSISFASp2WVkwvtyy9PikaNVskV\nrCSpDisrdlZiueva7fz5NFq08C5z/913N2T48FDGj/8Oo9Fcblm5uXqWLv2dli0/oEkTT/78cwqN\nGpVMfWA0wbOfKqtW2WohGT33coYPSWQeMTzKJQpR6mncQMnL/9/dZdc5enRrhg1rzpQp227rS2uS\nJNU8MuAXk59vIC/PgI+PU7nHLV8+EL3exJw5P5YaVFNS8li0KJxGjVbx999J/PbbJJYvH4Sd3fUj\naKu/VxZWGXkXFGDmcS4zCm++pDk7CcUZG14hBoFSz8x74aMflaUVy/LWW/2Jisrks8+O39gNkCSp\nVrvhgG8ymcjOzq6Kttx2sbFZBAS4VvjcQqu14ZtvRrFvXzTvvXcIAKPRzO7dl3jkkW9p1uw94uJy\n2LdvMps3jyA0tF6p5UQmK3lyPnxMyZHzKckEYcc0fACwQcUSgjlLAftR7nmPUNDaKA9xy2Jnp2HD\nhod4/vk9REdnVuJOSJJUG1kV8MeMGUN2djZ5eXmEhYURGhrK22+/XdVtq3axsdkEBlr3cpWrqx3f\nfz+Gt976nY4d1+Lnt4KXX/6Vbt0CuHx5Dp98MrTcoSGjCcathJdGQjN/SMHA56TyHH6ouPqFY4+a\nmdTnA5IQCFQqmDwA1v9SfvvatPHlmWe6MWPGDjm0I0kSYGXAP3PmDK6urmzdupUhQ4YQFRXFxo0b\nq7pt1S42NovAQOvfVg0JcefMmZmsWXMfBw9O4/Dh6cye3RVPz/IXBhcC5n4Kjrbw1DBl24ck8h+8\n8Of6OZeDcCcfMwfIAWBcX/juL2W5xPLMnduDpKRcvvrqlNXXJElS7WVVwDcajRgMBrZu3crQoUPR\narW1MrVCSkoevr4lx+9TMmH2Wuj0DMz4QJkvX5y7uz1duvhbnYfeZFKC/W+n4esXQK2GBPT8RCZT\n8cWMnihe4CS9ieRpTOShRsUYvNlGOgD1PaBzE9h9rPy6tFobVq8ewssv/4rBYLL6PkiSVDtZFfBn\nzJhBSEgIubm59O7dm6ioKNzcal/elvR0XYneuRDwwBtQaIB3pkKAN/R8EV7aAHrDjZd/IR4GvAon\nopRFTzyKptp/SjL/wQsPNMSzDBM5NGMTNrhwiRkIBANx5zey0RfN2HmgK2w7VHGdvXsH06iRBxs3\n/nPjDZYkqXapzBxPs9ksDAZD5SeJWqmSzau0adO2i7Vrj1g+/3hUiNAnhDAWS1GTnCHE0NeF6PKs\nENEp1pV7JkaI6e8J4fWIEMv+r2R58aJQdBMnRKrQi2xxQJwSA4VBZAkhhDALkzgrhosM8ZMQQohx\n4rz4VWQKIYSISRHC8xEhDFakz9m3L0o0bPiu0Otlrh1JqgvKip1WZcvU6XR8++23REVFYTQaAeXV\n3VdffbUKv4qq35Ur+SV6+K9vhlcfBhubq8f4uMO2l5U3XrvOhc3PQe/WJcsxm+FcHPx0DLb8oczG\neXQwnP0Q6l3zw+gjkhiFN15ouMgHNOBJNCgPjlWo8eNp4ngTN+5mMB7sJpN+uBFYT1kecf/pq+mT\ny9KrVzDBwe5s3nyaceMqOFiSpFrLqoD/wAMP4O7uTseOHbG3t36N1ztNRoYODw8l4Kdlw6kYZX78\ntVQqmPuQsgrViKXg5wkNPEBngNQsJcD7uEH/tjB/lPKylLaUOx2Jjj1ksouW5HEMA6l4MKTEMS7c\nhRoncjlMPzrw8b+zdVAxtDP88HfFAR9g7tzuvPbaPhnwJakOsyrgx8fH89NPP1V1W2673Fw9Li7K\nElMnIqFtSMne/bUGtYfo/8LJaOULwt4WvFyUnrerY/l1CQSLiWMG9XFHQxRfUo+xqNDAyR2QFglh\n96PybogbfclmP350wwYV8egJwI6+YfDceuuubfDgJkydup2IiHSaNPG07iRJkmoVqx7a9ujRg3/+\nqf0P/XJyCnFyKhbwG1Z8joMddGkG93aCu9so51QU7AG2ks4VDIylHkYyyWYfngyF87/CF49C1EH4\n4F7Q5+NKb7LZjwoVbXHkOHmAkkztbBxk5VVcn0ajZuTIVnKKpiTVYVYF/P3799OxY0eaNWtGWFgY\nYWFhtGlT+4YGSvTwo0oP+NEUcpZ8sjBWup4j5LKCBJYRggYV6WzHlT5odBrYMAXGrYPJn0NQJ/i/\n53GkFUYyKCSedjhxoijg22mhS1PYf8a6ekeNasmWLVYeLElSrWPVkM4PP/wAUGKJw9ooN1ePs7MS\n8P+Jgln3Xd2XjoHHuUwSejzREIeeRthzD+4Mwr3UF6auJRBsJZ3lJLCcYJrigEBwhS0E8Cr89T8I\n6giti8bxR74LrzZGNWwxLo53kcMftOVefuBquoR+YbD3H7i/c8XXd9ddQaSm5nHhwhWaNfO6kVsj\nSVItYFXADwkJ4fjx4+zfvx+VSkWvXr1o27b2LbKRn2/A0VELQHQKNPJVtgsEC4ilPU48RzNsUKHH\nzBFy+ZFMRnEBf2wZgBvdcaE5DtgW/XhSArqRA+SwmTSyMLGBpjRGefhdwBnMGHCmExx5Bga/eLVB\nzl7QqDuc/xXH9mEUcI6m/IfL6DAjUKOiUxNY9p1116dWqxg4sDHh4VEy4EtSHWTVkM6qVasYN24c\nqampJCcnM27cOFavXl3VbatWJpMZo9GMra0NOj3k6cDTRdkXTjYxFPIMftgU5bmxRU0PXHmNIH6j\nNU/jRypG5hNDV/6hDycZwGm6cZKhnOVHMhiNN9/RwhLsATLYhQdDUGUlQeIpaDGgZMNaDIBze3Cg\nCQVcxAUbnFCTjPLmV6sgOBVt/XX26BHAH3/E3tS9kiTpzmRVD/+///0vBw8exMlJSTvw4osv0q1b\nN2bPnl2ljatOhYUm7O01qFQqEjOU9AX/Zo/4gQweoZ6l134tDSq640J3lG8IPWYyMGJA4IwNbtiU\nSIj2L4GZDH6gMWvhxFZofR9o7dDn5qJ1clKG0FoMgP0fY89r6IhAIGiEPZfR0QBbArzBaIbEdGhg\nxeSbHj0CWbHiQKXvkyRJdy6r0yOr1epS/15b6HRG7O2V77/EdGVePSjBex/Z3I31qSRsUeOLLQHY\n4Y6m1GAPkM1vaPDCgSZwYhu0fRBdZiarGjbk3eBgLu7aBX5hkJeOJlOHCjVG0iwBH5QvpQ6N4O9L\n1rWtZct6JCfnkZpqxdQeSZJqFasi9+TJk+natSsLFy5kwYIFdOvWjSlTplR126qVTme0LFByJUdZ\nlATgNPkEYEs9tCWOFwjyOEEiH5DP2UrVmcYWfBgHJiNE7IcWAzj26ac0HjSIfq+/zu9vvaVkVwto\niyrhNHY0REcUwdgRg95STlgInI6xrk4bGzUdOjTg2LGkSrVZkqQ7l1UB/5lnnmH9+vV4eHjg5eXF\nZ599xtNPP13VbatWBoMJrVa5Hbk6cCnKsHCZQppSMt2xgStE8iRRPI+RTC4xnVQ+v6H6zBSQy2Fc\n6QspF8GtATi6c3LTJtpNnkzLESNI/Ptv9Lm54BUC6TFo8cbIFbzRcoWr2duC6kHcFevrbtzYg8jI\njBtqryRJd75yx/Czs7NxdXUlPT2dhg0bEhISAijTM9PT0/H0rD1vbBqNZrRa5bXa3AJwLorxkeho\nWGzKpcBIJHNwJJQQVqLGFl8mc5FJgIp6jLWqvmz+xJHWaHCDuF3g35aMyEiy4+II6dcPtY0Nfp06\nEb1/P009gyA9Bg1eGEnDEw3pxd4DCPCCfeWsgHWtkBB3IiPlSliSVNeUG/DHjBnDzp076dChQ6n5\n7yMjI6usYdXNYDCj0Vzt4TsXTaSJpZAhXM11n8RHqHHAn3moin4g2eJHE9YTwSQEJnyYUGF9qWzA\ni/8oH+JOQGA74g4cILhXL9RF+Rwa9u9P5J49NB0RBhf2oqErBq7gjYYrxQO+N8SlWX+tDRu6s337\nBetPkCSpVig34O/cuROAqKio6mjLbXXtkI5TUcBPwkB9lJexzOhI5XNa8J0l2P/LDn+a8j8imAaY\n8WFSmXXlcRI9iXhwr7Ih4ST0fJTEX/ZRv0MHy3Ehffvy83PPwfR7i4Z07iWf03iiKTGkE+B1Y0M6\nDRt6EBUle/iSVNdYNYbfv39/q7bdycxmgVqt/IrRG8C26KswDxMuKD3uQmLQUg9bGpRahi1+NOJD\nklmHmcIy68rjOK70UhKlAWQlgrs/OYmJuAUFWY5zadCA/LQ0cHAHXTZqHDFTgAM2FBQthAJK7p6c\nCpY7LM7Dw56sLJ31J0iSVCuUG/ALCgq4cuUKqamppKenW/5ERUURHx9/05X/+OOPtGjRgqZNm7J0\n6dKbLu9mCIEl4JvMoCnKklmAGfuiaZV64rDFv9xy7AnBgZZksLPMY3RcxJ6mVzfkpoGzNwXp6TgU\ney5i5+pKYXY22DqAPh81dpgpxBYVegQCJcWFgy0UlP39ch1HRy15eZVYskuSpDtauUM6H3/8MatW\nrSIhIYGOHTtatru4uDBr1qybqthkMjFr1iz27NmDv78/nTt3ZtiwYYSGht5UuZVVvIdvNEPRcD6F\nCOyKvhcLicOWwArLqs8MongOD+5FTcn1AwSCHA7izZirG/OugJPXdQHf1sVFCfhaB9AXoMIOgR6b\nogElI6Dlaq59g7H0vPvXcnKyJT9fBnxJqmvK7eE/9dRTREZGsnz5ciIjIy1//vnnn5sO+IcOHaJJ\nkyaEhISg1WoZPXo027Ztu6kyb4bZLCwPpo2mqz18HWYcim6TnjjsCKiwLGc64EjLUqdqFnAGFSoc\naKFsMOjAbAQ75+sCvsbeHmEyYUIDhgLU2GIumn9vi9qyvi0oaZoL9FjFyUkrA74k1UFWpVZQqVRk\nZGTg4aHMVsnIyODLL7/kiSeeqHTF8fHxBAZe7S0HBARw8ODB645buHCh5e99+/alb9++la7TWsWT\ngZqKkpQpf89Hfc2c/LLYEUwB56/bricJLX5X3741FoKNLahUmPR6bGxtLceqVCrUWi0mkxkbsxHl\n+9kERX8zFyvXRq0MRVlDo1FjMJisO1iSpBovPDyc8PDwCo+zKuB/8sknJXr0Hh4erF279qYCfmnT\nPEtTPOBXJZXqatrn4sHTHjWFRb18O/zRU/GzCyOZpPMdTUvp4bvQnWjmYSQDDR5g76r08o16HDw8\n0GVkQHAwAGajEZNej1ajAq0DAj2qoncC9Ahsi6Vs0OmVsXxr5OUZLAu9SJJ057u2M7xo0aJSj7Nq\nlo7ZbMZsvtp9NJlMGAw3NyTg7+9PbOzVrI2xsbEEBFQ8XFJV1GqVpWevsSkZ8HVFfWlbAqwK+Mn8\nF3cGY8/1K6jY4IgLXcjhL2WDSgVOnpCnDOcUpKdbji3MycHW2RmVUQe2jpjRo8YWgcCAQFsU8M1m\n0BuVBVGsUTwNtCRJdYdVAX/w4MGMHj2aX375hT179jB69Gjuueeem6q4U6dOXLx4kaioKPR6PZs3\nb2bYsGE3VebNUKlUmM1KxNfYKOP4AHZFPXxQAn4h5acWNpHPFf4PH8rONeRACwq4eHWDkxfkpV0f\n8LOzsXN1BUNBUQ+/EBW2lmD/71CTzqAEeyt/NJGXp8fJSQZ8SaprrBrSWbp0KWvXrmXNmjUADBw4\nkGnTpt1cxRoN77//PoMHD8ZkMjF16tTbNkMHlB5+8YD/7xC3AyryiwK+HYEUEo3AgIrrA6ZAkMhq\nnOlQ7sNdB5qRxtdXNzh7Q04qDl5e5KWmWjYXZmUpAb8wr6iHr0ONHYXXDOfkF4JjxQtuWeTm6mUP\nX5LqIKsCvo2NDRMnTqRfv360aNHillU+ZMgQhgwZcsvKuxkajRqjUQnsjraQmq1s90ZLKkZCAS3e\nONGWFDbgy9QS5wvMxLGYfE7TiDXl1uVKL2JZTAEXcKAZ+DaHpLPUa9WKlGKLxSccOYJP69aQlQBu\nDTCSiQYPMjHiXuyfLikD6rtbf62xsdkEBLhaf4IkSbWCVUM627dvp3379pZhnGPHjt3W4ZeqoNVe\nnbni7KCkVwDww5b4Ym/NBjCfFNaTx9XALBDE8ToFnKcJ69BSflI5NQ74MJ4UNhQV2g7ijuPXqRNx\nxWYqRf7yC40GDID0GPAMxkgaGry4ghGvYgE/Nk3Jp2OtyMgMGjb0qPhASZJqFasC/sKFCzl48KBl\nWmb79u25fPlylTasuhXv4TvbKxkzARpiT2SxgG9HIEG8xiUeI5EPKeAC0TxHPmdpzMfY4GxVfe7c\nSzbhCEwQ0BbiTuDfpQvZcXFkXL6MEILLe/YUBfxo8AzCwJWigG8oEfDj0pR8OtaKisqiYcMb+Ekg\nSVKtYFXA12q1uLuXDBC1bdUrrdYGg0EJ+C4OkFcU4xtiRyQl8864cTfN+Ro98UQwHQ2eNOFTq4M9\nKMnWNHiRxwnwbwMJp7CxUdNyxAhOfvklKadOYevsjHtISFEPPwgjV9BaevhXx+Djrtx4Dz8kRAZ8\nSaprrBrDb9WqFV988QVGo5GLFy+yevVqevToUdVtq1a2tjYUFioph92cICNX2d4SR06Sjx5ziTVt\n7QggmDduqk4P7uUK3+Ls8IayyEn0ETpMm8bajh35Z8MGQocPVw5MPgf1mqAnHi0NSECPb7GAfyEe\n7ulQeh2lOXUqhdDQG/iGkCSpVrCqm/7+++9z+vRp7OzsGDNmDK6urrz77rtV3bZq5eCgobBQGcP3\ndVcehALUQ0tj7DlI7i2v05uHyeRnTORA2P1w8nsadOjAtIMHuWf1au5+803ISYGsRMwNGqEnCXuC\niURH42I5ev6+DB0aW1dnSkoeV64UEBpa75ZfjyRJNVuFPXyj0ch9993H3r17efPNN6ujTbeFvb0G\nnU7p4ft5QmKxFQAH4MZO0ulF2TNbBIIIdBwkl/MUkIoBPQJXbAjClg440w0X7It9x2pwx4WuZLIH\nr7YPwcYpMGwx/l26XC34xK/QtA86mzjsCEKFlssU0rAo4OcWKGP4oRXndAPgwIFYunb1tySKkySp\n7qiwh6/RaFCr1WRm1u4FMzQaNWazwGg04+4EhYarKYcfwouD5HKAnBLnCASnyGc58QzmDE9wmQsU\n0AoHRuPNVHy4B3ccsGE9KQzkNJ+RgomryXo8uI8MdkFIFyjMgcQzJRt2dg+0GICOCOxpggFBLIWE\nFKVYOB0Dzf2vJnuryB9/xNKjh5XfDpIk1SpWjeE7OTkRFhbGwIEDcXJyApQ3U1evXl2ljatOKpUK\ne3sNBQUGXFzsaOChPAxt6gfuaFhMEM8RxSi88EbLZXTsIxsbVNyDO6toSAscriZFu8bj1CeCAhYR\ny1/k8DbBuKLBjT7EshCDOg1t+//Aka9g6GvKSWYznP0JBs6lgO9xoClxFOKD1pKy+WQ0tAoqtcpS\n7dsXzRtv3H2zt0uSpDuQVQF/+PDhDP/3AWIRa5Of3UmcnW3Jy1MCfstAOBWtBHyAu3BlLY3ZRQYR\n6AjEltU0ojn2ZQb5azXBgU9pyhvEMptI1tIYWxxw5x6u8H/U7/UYLO8JfWaCqy8c3gSu9aF+C3J4\niQBe5hD5tMLRUuZvp6BXK+uuLzY2i4sX0+nVK/hGb40kSbWAVQF/0qRJVdyMmsHZ2ZacnELq13em\nbUP4Jwoe6n51f0scaVks2FaGFhWvEMgcInmbeOYTiDcjieQpfOs/iqrno/DFdBgwF755Bmb/hIFU\n9CTiRFuOk0g7lF9ZQsDek/DqaOvq/uabMzzwQHNsba0c/5EkqVYpdwx/5MiRAISFhV33p02bNtXS\nwOrk4mJrWfqvbUM4EVU19dig4k2C2E0mJ8nDkVbY4EoOB+C+BYAKvpoJD7wBge3JZj8udEOFhuPk\nWQJ+RKJSXpPSl9i9zubNpxk1ysqfA5Ik1Trl9vBXrVoFwPfff18tjbndnJ1tyc1Vlo1qGwLzNpR/\nfG4BvPIFhJ+C1CywtwVPZ2hUH9o1hP5toVOT0rNYuqLhGfx4nTg20wxvRpHGl7hq74LHS678lc1+\nXOlNPiaiKSS0aBGW8JPQL8y6LJmXLqUTGZnJgAGNrLkVkiTVQuUGfD8/ZQA7JCSkOtpy27m52ZOZ\nqbxV26SBEtDPxUGLUhJfRibDQ28qvwTWzlSSl+kMkJYNl5LgyEUYv1LJZDm+Hzw6GIJ9SpbxAJ5s\nIJVfyKIfQ0nkAwqIwIEmlmMMpJDDXwTwCn+QSyscLS+A/XQM7utk3bW9//5hJkxoi0ZTu96QliTJ\neuUGfGdn5zIfzqpUKrKzs6ukUbeLp6cD6elKEh0bG5gzDBZvhs+fLXnc9oMw/X14eRQ8eX/JHnZT\nP+jeAsb1VT6fioZP90CHp2FoZ3hjPPgX5b1RoWI2DVhJAv1ogQ8TSeAdGvOBpbxEPsSL/6DFk91E\nMwg3QJky+vNxWPN4xdeVmprH//53nH/+seJgSZJqrXK7e7m5ueTk5DBnzhyWLl1KfHw88fHxvP32\n28yZM6e62lhtvLyuBnyAWffB7uNwsGhp2vgrMHkVzPkEvnsJZg+teDildTCsnMr/t3fvcVWV6QLH\nf5vLCCiCmiASZyQhhJT7gHgpTMFLg854AfFeaJ6ZMzr1KTtjfpq0kuqYOpbdzJTSUtGOSqYeHBU1\nkTERkcQLOqLgLXEUQUFu6/yxh53E3rKVy9q4nu9f7rXfvdezHvVh8a53PYt/LtMX+sA/w9d7fn7/\nKdrTFitSuUFnxlNBIdf4BoBSMilmB65MpYIadlPMIPQ9cHYe1U8bdXZq+Ljee+8A8fG9pCWyEBqn\nU5S7H9ltnL+/P0fv6tNualtT0+l0mBFek3njjT1UVtbw5psDDNuSv4cZn0JHR33B/+MweHUMtH/A\nxTrZZ2H0OzDpaXgtTr9tLzdZyAU20oMKzpLHROzxpYwT/Jp3aE8/9nKTT7nMVzwO6H/D8POAF0fc\ne39Xr96iR48POXJkOh4eZvx0EEK0eqZqp9k3Xq1evZr4+HgA1q5dS7t25neGbC06dbLnxx+v1tkW\n2w+GBkPeJfB9FOzv48lSxgR4wvfvwlOzoUNb+NNvoT+OLMWKv1NMNI/Rg83c5ih2PG54cta3/Ish\n/z67r6zSTyv9ZVTD+5s7dw/jxvWSYi+EMK952tdff01ycjKurq64urqSnJzM119/3dyxtTh39/YU\nFta/LuHooG9O9stiX11dw4wZ2wgK+pTo6FV89lmm4aLvvbg6w7a5MG8tZJ3Rz+XPwI3FXKSCGmx5\nBCeeNhT7fMpJp4Tfo5/835YJXl2hewPLMQ8cKGDjxuO88UakGUcvhHjYmVXwPT09SUlJoaioiKKi\nIjZv3vxQrtzx8GhPQUGx2eP/8ped/PjjTyxfHsP06SH83/+doVu3vzFp0kZ++OHCPT/r6Qp/mwrj\nF+n79vSnPR78imSK6o39hMtMoDPt0N8wtXInTGmgO0JZWSXPPruZJUuG0KGDvdnHJIR4eMkavbt4\neOnHURQAABWPSURBVDhRUGDeyqNlyzLZtOkEGzaMISSkK6NG+bFhQyxnzszE39+V0aPXExmZxM6d\n/zR5HWJ8JHi7wf/8r/71K7jzMVc4yc8XjrdznR8oZQL6dsZXbujvro3rf+/4Xn11F0FBbowZIzda\nCSH0zLpoq5aWvmirKAr29vO5du0V2rb9lclxqalnmDx5E/v2PYuXl/Hn11ZV1bBmTQ5vvbUPN7d2\nvP/+UPz9XeuNO38Vgl+Af7ynn6LZynUWcIFpuFJCNau4ynK86PHvm60S18M/L8PyGaaP4+9//ydT\npmzi6NE/0LGjnN0LoTWmaqec4d9Fp9Px2GMdOHPmuskxRUW3mTJlE2vWjDJZ7EHfbnnixACOHfsj\n48b1YuDAL/ngg3/U+0v4j876lTa1d/UOowNz8SCTUi5Swcq7in15BSz9Tr/235SCgmImTtzIF1/8\nToq9EKIOswr+5cuXSUhIYMiQIQDk5uby+eefN2tgavHz60xu7lWj7ymKwvTpW4iP70VkZDezvs/G\nxornnw/hwIEEkpKyiY3dYGjfUOvFEZB+AjL+vd7/KZxYiCfz+A+8+blof7IdQrrrV/oYc+dOFaNH\nr+fFF3szcKC0UBBC1GVWwZ8yZQrR0dFcvHgRAG9vbxYvXtysgaklONiNAwcKjb63aNEBzp278UD9\n5L28OrJ//3O0b9+Gfv1WcOHCz9cKHNrA/AnwX59AVbXxzxfdhPnJ8O5k0/uYOXM7Hh7tmTXr4Xre\nsBCiaZhV8IuKioiLi8PaWr9KxNbWFhsbs5bwtzpDh3qxbVteve1btpxiwYJ0NmyIxc7uwY7dzs6G\n5ctjiIt7giefTOLcuZ+fIjbpaX3jtYWbjH/2v5P0F2r9TDzsZPnyw+zde46VK0c8lM8qEEI0nlkF\nv127dly7ds3wOiMjAyenh/NGnsDALty+XcmPP/5k2Hbs2E88++xmNm8eS7duzo36fp1Ox+zZ/fnj\nH0N55pmvKSur/Pd2WPYnWLRJ3wXzbp/vgP3HIXGi8e88cuQys2fvZOPGOBwdG3lnmBDi4aWY4dCh\nQ0pERITSvn17JSIiQvHy8lKOHDlizkeNSk5OVvz8/BQrKyslMzPT5Dgzw2tyr722S5kyZZNSXV2j\n5Ob+pLi7L1RWr85u0n3U1NQosbHrlRkzttbZviNLURxjFWXtXkU5fVFR5qxSlC6TFOVEgfHvuX69\nTOnefYmyZk1Ok8YnhGi9TNVOs5dlVlVVceLECRRFwcfHh1/9yvSyxYacOHECKysrpk+fzsKFCwkO\nDjY6rqWXZdb66adbDB++hhs3yrl69TaLFkUzeXJgk+/n+vUy/P0/YeXKEXX61Kcfh1eS9M/U7e2j\nv0GrS4f6n1cUhVGjknFzc+TDD4c1eXxCiNapUb10/P39GTt2LHFxcXTv3r3RwfTo0aPR39GcXFza\nsn//c+zenU9YmDvt2zfPNEmHDvYsXx5DQkIKR4/+J05OdgD08dX322nIkiX/4Pz5YtasMaOpjhBC\n88yaw09JScHa2prY2FhCQ0N57733OH/+fHPHpipraysGDXqs2Yp9rcGDvRgyxItXXvn7fX3uwIEC\nEhP3sX79GNq0eTgvoAshmtZ932mbl5fHm2++yVdffUV1tYk1hEBUVBSXL1+utz0xMZGYmBgABgwY\n0OCUzuuvv254HRkZSWRk5P2E2yoUF5fTo8eHfPttPKGhXRscf/XqLUJClvHhh8OIifFpgQiFEJYs\nLS2NtLQ0w+t58+YZndIxu+Dn5+ezbt06kpOTsba2Ji4ujpdeeqnhD96DOQVfjTl8NaxcmcXSpT+Q\nkZGAra21yXFVVTUMG/YVISFdefvtgS0YoRCitWhUa4Xw8HB+//vfU1NTw/r16zl48GCji30trRT0\nhkyZEkjnzg688873JscoisIf/vAdOp2uzkNahBDCHGad4Z84caJJL7Ru3LiRmTNnUlRUhJOTE0FB\nQWzbtq1+cBo6wwd9H5zevT9n4cJoxo7tWee9qqoa/vSnrWRmXmLXrkmy3l4IYZKp2mn2lM6WLVvI\nzc2lrKzMcCfnX//616aN8pfBaazgA+TkXGHQoFXMmxfJ9Okh6HQ68vNvkJCQgq2tFcnJY5r9QrIQ\nonVrVMGfPn06ZWVl7Nq1i2nTprF+/XrCw8ObvYGaFgs+wIkTRYwb9w3Xr5fTqZM9p05d49VX+/Py\ny32wsZEGp0KIe2tUwe/Vqxc5OTmGB5eXlpYyZMgQvv/e9HxzU9BqwQeoqVHIy7vG1au3CQlxw97e\nVu2QhBCtRKNuvLK317fodXBw4MKFC3Tq1MnokkvRdKysdPj4PIKPrLoUQjQRswr+b3/7W65fv86s\nWbMICQkBYNq0ac0amBBCiKZ1zymdxYsX07dvX4KDgw3tkMvLyykvL8fZuXFdI80KTsNTOkII8aAe\naEqnsLCQF154gePHj9OrVy/69etHnz596NNHHrAhhBCtjVkXbe/cucOhQ4c4cOAA6enpHDhwAGdn\nZ44fP968wckZvhBC3LdGXbQtKyvj5s2bFBcXU1xcTNeuXfH392/yIIUQQjSfe57hT5s2jdzcXBwd\nHQkLCyMiIoLevXvToYOR5uzNEZyc4QshxH17oF4658+f586dO3Tp0gV3d3fc3d1b5GKtEEKIptfg\nHH5NTQ3Hjh0zzN/n5OTQqVMnevfuzRtvvNG8wckZvhBC3LdG99IpKCggPT2d/fv3s2XLFq5du0Zx\ncXGTB1onOCn4Qghx3x6o4C9ZssSwKsfGxoY+ffrQt29f+vTpQ8+ePbG2Nt23vTmDFkIIYdoDrdLJ\nz88nNjaWxYsX07Vrw09iEkIIYbnu+xGHLUnO8IUQ4v416olXQgghWj8p+EIIoRFS8IUQQiOk4Ash\nhEZIwRdCCI2Qgi+EEBohBV8IITRCCr4QQmiEFHwhhNAIKfhCCKERUvCFEEIjpOALIYRGqFLwZ82a\nha+vLwEBAYwcObLZ++oLIYRQqeBHR0dz7NgxsrOzefzxx3n77bfVCEMIITRFlYIfFRWFlZV+1+Hh\n4RQWFqoRhhBCaMo9H4DSElasWEF8fLzJ9+fOnWv4c2RkJJGRkc0flBBCtCJpaWmkpaU1OK7ZHoAS\nFRXF5cuX621PTEwkJiYGgPnz53P48GG++eYb48HJA1CEEOK+Nfoh5k0tKSmJzz77jJ07d2JnZ2d0\njBR8IYS4fw/0TNvmsn37dhYsWMCePXtMFnshhBBNS5UzfG9vbyoqKujYsSMAERERfPTRR/WDkzN8\nIYS4bxY3pWMOKfhCCHH/5CHmQgihcVLwhRBCI6TgCyGERkjBF0IIjZCCL4QQGiEFXwghNEIKvhBC\naIQUfCGE0Agp+EIIoRFS8IUQQiOk4AshhEZIwRdCCI2Qgi+EEBohBV8IITRCCr4QQmiEFHwhhNAI\nKfhCCKERUvCFEEIjpOALIYRGSMEXQgiNkIIvhBAaIQVfCCE0Qgq+EEJohBR8IYTQCCn4QgihEVLw\nhRBCI1Qp+K+99hoBAQEEBgYycOBACgoK1AhDCCE0RacoitLSOy0pKcHR0RGADz74gOzsbJYvX14/\nOJ0OFcITQohWzVTtVOUMv7bYA5SWlvLII4+oEYYQQmiKjVo7njNnDqtWrcLBwYGMjAy1whBCCM1o\ntimdqKgoLl++XG97YmIiMTExhtfvvPMOJ0+eZOXKlfWD0+l4/fXXDa8jIyOJjIxsjnCFEKLVSktL\nIy0tzfB63rx5xqfDFZWdO3dOeeKJJ4y+ZwHh3dPu3bvVDqFBEmPjWXp8imL5MVp6fIrycMVoqnaq\nMoefl5dn+PPmzZsJCgpSI4xGu/snqqWSGBvP0uMDy4/R0uMDbcSoyhz+7NmzOXnyJNbW1nTv3p2P\nP/5YjTCEEEJTVCn4GzZsUGO3QgihaaqswzeXTqdTOwQhhGiVjJV21ZZlmsOCfxYJIUSrI710hBBC\nI6TgCyGERlhEwd++fTs9evTA29ubd9991+iYmTNn4u3tTUBAAFlZWRYVX1paGk5OTgQFBREUFMRb\nb73VovE999xzuLq60qtXL5Nj1MwfNByj2jksKChgwIABPPHEE/Ts2ZP333/f6Dg182hOjGrmsby8\nnPDwcAIDA/Hz82P27NlGx6mZQ3NiVPvfIkB1dTVBQUF1blK92wPnsInuB3hgVVVVSvfu3ZWzZ88q\nFRUVSkBAgJKbm1tnzHfffacMHTpUURRFycjIUMLDwy0qvt27dysxMTEtFtMv7d27Vzl8+LDSs2dP\no++rmb9aDcWodg4vXbqkZGVlKYqiKCUlJcrjjz9uUf8OzY1R7TzeunVLURRFqaysVMLDw5V9+/bV\neV/tHJoTo9o5VBRFWbhwoTJu3DijcTQmh6qf4R88eBAvLy+6deuGra0tY8eOZfPmzXXGpKSkMHny\nZADCw8O5ceMGV65csZj4QN0LzP3796dDhw4m31czf7UaihHUzWGXLl0IDAwEoF27dvj6+nLx4sU6\nY9TOozkxgrp5dHBwAKCiooLq6mo6duxY5321c2hOjKBuDgsLC9m6dStTp041Gkdjcqh6wb9w4QIe\nHh6G148++igXLlxocExhYaHFxKfT6UhPTycgIIBhw4aRm5vbIrGZS838mcuScpifn09WVhbh4eF1\ntltSHk3FqHYea2pqCAwMxNXVlQEDBuDn51fnfUvIYUMxqp3DF198kQULFmBlZbw8NyaHqhd8c9fa\n//InXUut0TdnP8HBwRQUFJCdnc2MGTP43e9+1wKR3R+18mcuS8lhaWkpo0ePZsmSJbRr167e+5aQ\nx3vFqHYeraysOHLkCIWFhezdu9doKwC1c9hQjGrmcMuWLbi4uBAUFHTP3zIeNIeqF3x3d/c6T7wq\nKCjg0UcfveeYwsJC3N3dLSY+R0dHw6+JQ4cOpbKykn/9618tEp851MyfuSwhh5WVlYwaNYoJEyYY\n/U9uCXlsKEZLyCOAk5MTzzzzDIcOHaqz3RJyWMtUjGrmMD09nZSUFDw9PYmPj2fXrl1MmjSpzpjG\n5FD1gh8aGkpeXh75+flUVFSwbt06hg8fXmfM8OHD+fLLLwHIyMjA2dkZV1dXi4nvypUrhp+4Bw8e\nRFEUo/OCalEzf+ZSO4eKopCQkICfnx8vvPCC0TFq59GcGNXMY1FRETdu3ACgrKyMHTt21GuMqHYO\nzYlRzRwmJiZSUFDA2bNnWbt2LU8//bQhX7Uak0PV77S1sbFh6dKlDB48mOrqahISEvD19eXTTz8F\nYPr06QwbNoytW7fi5eVF27ZtjfbOVzO+DRs28PHHH2NjY4ODgwNr165tsfgA4uPj2bNnD0VFRXh4\neDBv3jwqKysN8amZP3NjVDuH+/fvZ/Xq1fj7+xsKQGJiIufPnzfEqHYezYlRzTxeunSJyZMnU1NT\nQ01NDRMnTmTgwIEW83/Z3BjV/rd4t9qpmqbKoUX30hFCCNF0VJ/SEUII0TKk4AshhEZIwRdCCI2Q\ngi+EEBohBV9YFGtra0PTqqCgIMMKlNYuKSmJzp078/zzzzfqe+bOncvChQsNrzMyMkx+Z3l5OYGB\ngbRp08ai7gsR6lF9WaYQd3NwcDDZ/a92QZml3SVsDp1OR3x8vNEOl1VVVdjYmPdf8ZfHvm3bNoYO\nHWp0rJ2dHUeOHMHT0/P+AxYPJTnDFxYtPz8fHx8fJk+eTK9evSgoKGDBggWEhYUREBDA3LlzDWPn\nz5+Pj48P/fv3Z9y4cYYz4cjISDIzMwH9jTe1BbC6uppZs2YZvmvZsmWAvj1uZGQkY8aMwdfXlwkT\nJhj28cMPP9C3b18CAwPp3bs3paWlPPXUU2RnZxvG9OvXj5ycnHrHcvcK6KSkJIYPH87AgQOJiori\n1q1bDBo0iJCQEPz9/UlJSTF6XCdPnqzznbt27WLQoEEcO3aM8PBwgoKCCAgI4PTp0w+acvEQkzN8\nYVHKysoMNxU99thjLFq0iNOnT7Nq1SrCwsJITU3l9OnTHDx4kJqaGkaMGMG+fftwcHBg3bp1ZGdn\nU1lZSXBwMKGhoYD+rNjYbwWff/45zs7OHDx4kDt37tCvXz+io6MBOHLkCLm5ubi5udG3b1/S09MJ\nDQ1l7NixJCcnExISQmlpKfb29iQkJJCUlMTixYs5deoUd+7cueezCWplZWWRk5ODs7Mz1dXVbNy4\nEUdHR4qKioiIiGD48OFkZmaaPK6ioiJsbW1xdHTkk08+4c9//jPjxo2jqqqKqqqqpvorEQ8RKfjC\notjb29eZ0snPz+fXv/41YWFhAKSmppKammr4oXDr1i3y8vIoKSlh5MiR2NnZYWdnV6/9hTGpqank\n5OSwYcMGAG7evMnp06extbUlLCyMrl27AhAYGMjZs2dxdHTEzc2NkJAQAEPjstGjR/Pmm2+yYMEC\nVqxYwbPPPtvgvnU6HdHR0Tg7OwP6Do6zZ89m3759WFlZcfHiRa5cucK+ffvqHVftbwqpqakMHjwY\ngD59+jB//nwKCwsZOXIkXl5eDSdbaI5M6QiL17Zt2zqvZ8+eTVZWFllZWZw6dYrnnnsOqDtlcvef\nbWxsqKmpAfQXMu+2dOlSw3edOXOGQYMGoSgKbdq0MYyxtramqqrK5LUDBwcHoqKi2LRpE+vXr2f8\n+PFmHVdtgy6Ar776iqKiIg4fPkxWVhYuLi6Ul5ej0+nqHVdtHNu3b2fIkCGAvnXFt99+i729PcOG\nDWP37t1mxSC0RQq+aFUGDx7MihUruHXrFqDvDX716lWefPJJNm3aRHl5OSUlJWzZssXwmW7duhk6\nItaezdd+10cffWSY/jh16hS3b982ul+dToePjw+XLl0yfFdJSQnV1dUATJ06lZkzZxIWFoaTk1OD\nx/HLjiY3b97ExcUFa2trdu/ezblz59DpdCaPS1EUjh49SkBAAABnz57F09OTGTNmMGLECKPXEISQ\nKR1hUYydRd+9LSoqiuPHjxMREQHoW9muXr2aoKAg4uLiCAgIwMXFhd/85jeGovryyy8TGxvLsmXL\neOaZZwzfN3XqVPLz8wkODkZRFFxcXNi4caPJOX9bW1vWrVvHjBkzKCsrw8HBgR07dtC2bVuCg4Nx\ncnIyazqn9pju3sf48eOJiYnB39+f0NBQfH19AeodV+3UVmZmZp0uj8nJyaxatQpbW1vc3NyYM2eO\nWXEIbZHmaeKhNG/ePNq1a8dLL73UIvu7ePEiAwYMqLeKptYXX3zBoUOH+OCDD5pkf/Pnz8fb25vY\n2NgGx3p6epKZmWlRLbuFOmRKRzy0Wmq9/pdffknv3r1JTEw0Ocbe3p5t27Y1+sarWnPmzGmw2Nfe\neFVVVWXycXlCW+QMXwghNEJ+7AshhEZIwRdCCI2Qgi+EEBohBV8IITRCCr4QQmiEFHwhhNCI/wfH\nIpf6HamIVgAAAABJRU5ErkJggg==\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 4, - "metadata": {}, - "source": "3D Simulation of the sea surface " - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "The simulations show that frequency dependent spreading leads to much more irregular surface so the orientation of waves is less transparent compared to the frequency independent case." - }, - { - "cell_type": "heading", - "level": 5, - "metadata": {}, - "source": "Frequency independent spreading" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#plotflag = 1; iseed = 1;\n#\n#Nx = 2 ^ 8;Ny = Nx;Nt = 1;dx = 0.5; dy = dx; dt = 0.25; fftdim = 2;\n#randn('state', iseed)\n#Y1 = seasim(SD1, Nx, Ny, Nt, dx, dy, dt, fftdim, plotflag);\n#wafostamp('', '(ER)')\n#axis('fill')\n#disp('Block = 6'), pause(pstate)", - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "heading", - "level": 5, - "metadata": {}, - "source": "Frequency dependent spreading" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#randn('state', iseed)\n#Y12 = seasim(SD12, Nx, Ny, Nt, dx, dy, dt, fftdim, plotflag);\n#wafostamp('', '(ER)')\n#axis('fill')", - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Estimation of directional spectrum" - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "The figure is not shown in the Tutorial" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "# Nx = 3; Ny = 2; Nt = 2 ^ 12; dx = 10; dy = 10;dt = 0.5;\n# F = seasim(SD12, Nx, Ny, Nt, dx, dy, dt, 1, 0); \n# Z = permute(F.Z, [3 1 2]);\n# [X, Y] = meshgrid(F.x, F.y);\n# N = Nx * Ny;\n# types = repmat(sensortypeid('n'), N, 1);\n# bfs = ones(N, 1);\n# pos = [X(:), Y(:), zeros(N, 1)];\n# h = inf;\n# nfft = 128;\n# nt = 101;\n# SDe = dat2dspec([F.t Z(:, :)], [pos types, bfs], h, nfft, nt);\n#plotspec(SDe), hold on\n#plotspec(SD12, '--'), hold off\n#disp('Block = 8'), pause(pstate)\n", - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Section 1.4.4 Fatigue, Load cycles and Markov models" - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Switching Markow chain of turningpoints.\nIn fatigue applications the exact sample path is not important, but only the tops and bottoms of the load, called the sequence of turning points (TP). From the turning points one can extract load cycles, from which damage calculations and fatigue life predictions can be performed.\n\nThe commands below computes the intensity of rainflowcycles for the Gaussian model with spectrum S1 using the Markov approximation. \nThe rainflow cycles found in the simulated load signal are shown in the figure." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#clf()\n#paramu = [-6 6 61];\n#frfc = spec2cmat(S1, [], 'rfc', [], paramu);\n#pdfplot(frfc);\n#hold on\n#tp = dat2tp(xs);\n#rfc = tp2rfc(tp);\n#plot(rfc(:, 2), rfc(:, 1), '.')\n#wafostamp('', '(ER)')\n#hold off\n#disp('Block = 9'), pause(pstate)", - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": "Section 1.4.5 Extreme value statistics" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nimport wafo.data as wd\nxn = wd.yura87()\n#xn = load('yura87.dat'); \nsubplot(211) \nplot(xn[::30, 0] / 3600, xn[::30, 1], '.')\ntitle('Water level')\nylabel('(m)')", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "pyout", - "prompt_number": 10, - "text": "" - }, - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAACOCAYAAAA4ut97AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXWuQVMd1/mZ2Zpdd9jX7ZplleT8WFtiEFRDxkg0UWiR2\nEVobFBsKZClxXCkpD4uyq2JUSkqvip0gxVaCIwjEUWK5bEWqRBAkGQQYq5AiEJaJjR6MpRIshtWC\nXrZ4dX5cn73n9u2+c+/svGD6q+ranTt37j3dffqc0+ec7g4JIQQMDAwMDAoO4VwTYGBgYGCQGxgF\nYGBgYFCgMArAwMDAoEBhFICBgYFBgcIoAAMDA4MChVEABgYGBgUKowAMDNKEvXv3oqWlJePvCYfD\nePvttzP+HoNrH0YBGFw1eOCBB9DV1eW4NmHCBOW1J5980vNZ2RLWBgb5DKMADK4aLFy4EAcPHgSt\nXTx16hQuXbqEI0eO4MqVK4PX3nrrLSxYsCCjtFy6dCmjzzcwyAaMAjC4ajBr1ixcvHgRR44cAQDs\n378fN9xwAyZOnOi4Nn78eDQ1NWHbtm1oa2tDZWUlxo0bhy1btgAAPv74Y9x44404efIkKioqUFlZ\nib6+Pggh8OCDD2L8+PGoq6vD5z//eQwMDAAAEokEwuEwtm7ditbWVixevDgpvSdPnsSqVavQ0NCA\nsWPH4tFHHx28XlZWNvhsADh8+DDq6+tx+fJlAMDWrVvR1taGmpoaLFu2DO+88076GtLA4HcwCsDg\nqkFxcTFmz56NF198EQCwb98+zJ8/H/PmzcO+ffsGr5H139jYiP/+7//GBx98gG3btuHP/uzPcPjw\nYQwfPhy7du1Cc3MzPvzwQ3zwwQdoamrCI488gmeeeQb79u3DqVOnEIvF8JWvfMVBw759+/CLX/wC\n//M//+NJ65UrV3DzzTejo6MDJ0+exAsvvIC///u/x+7du9Hc3Iy5c+fihz/84eD9TzzxBHp7e1FU\nVISnn34aDzzwAJ566imcPXsW8+fPx5o1a9LZlAYGFoSBwVWEe++9V6xcuVIIIcSMGTPEm2++KXbt\n2jV4bfr06WLHjh3K3/b09IjNmzcLIYTYs2ePiMfjju+nTJkiXnjhhcHPJ0+eFNFoVFy+fFmcOHFC\nhEIhceLECS1t/JkvvfSSGDVqlOP7+++/X6xfv14IIcQ///M/i8985jNCCCGuXLkiWlpaxP79+4UQ\nQixbtkw8/vjjg7+7fPmyKCsrE++8844QQohQKCTeeustj1YyMPAHMwMwuKqwYMECHDhwAAMDAzhz\n5gzGjRuHuXPn4uDBgxgYGMDPf/7zwRnAzp07MWfOHNTW1iIWi+HZZ59Ff3+/9tmJRAIrV65ELBZD\nLBZDW1sbIpEITp8+PXiP38Dxr371K5w8eXLwWbFYDA888AB+/etfAwBuueUW/PSnP0VfXx/27duH\ncDiMefPmDf72rrvuGvxdbW0tAOC9995Lqc0MDHSI5JoAA4MgmDNnDs6fP4/vfve7uP766wEAlZWV\naG5uxpYtW9Dc3IzW1lZ8+umnWLVqFb73ve+hu7sbRUVFWLly5WAAORQKuZ49atQobNu2DXPnznV9\nl0gktL9ToaWlBWPGjMHx48eV38diMSxduhTf//73cezYMYeLZ9SoUfirv/or4/YxyDjMDMDgqkJp\naSlmzZqFb33rW45Mn3nz5uFb3/oWFi5cCAC4cOECLly4gLq6OoTDYezcuRO7d+8evL+xsRH9/f34\n4IMPBq/98R//Mb7+9a8PBlzPnDmDZ555JiU6r7vuOlRUVODhhx/Gb37zG1y+fBmvv/46XnnllcF7\nbrvtNmzfvh0//OEPcdtttznouP/++3Hs2DEAwPnz5/GDH/wgJToMDLxgFIDBVYeFCxfizJkzgy4T\nAJg/fz7Onj07qBQqKirwyCOP4HOf+xxqamrw7//+7+ju7h68f/LkyVizZg3Gjh2Lmpoa9PX14a67\n7sKKFSuwdOlSVFZWYu7cuTh06NDgb/xY/3RPUVER/uu//gtHjhzB2LFjUV9fjzvvvNOhcFasWIE3\n33wTI0aMQHt7++D1np4ebNy4EatXr0ZVVRXa29sdQWe/sxADg2QICWEOhDEwMDAoRGRsBrBhwwY0\nNjY6LJtDhw7huuuuQ0dHBzo7O/Hyyy9n6vUGBgYGBkmQMQWwfv167Nq1y3HtnnvuwV//9V/j8OHD\nuO+++3DPPfdk6vUGBgYGBkmQMQUwf/58xGIxx7URI0bg/PnzAIBz585h5MiRmXq9gYGBgUESZDQG\nkEgkcPPNN+NnP/sZACu/ed68eQiFQrhy5Qp++tOfKvOqTZDLwMDAIDUEEelZzQK6/fbb8cgjj+Cd\nd97B3/3d32HDhg3ae4UQpgiBTZs25ZyGfCmmLUxbmLbwLkGRVQVw6NAhrFy5EgBw6623OlLsDAwM\nDAyyi6wqgPHjxw9u5PXjH/8YEydOzObrDQwMDAwYMrYVxJo1a/Diiy/i7NmzaGlpwX333YctW7bg\nK1/5Cj799FOUlpYObs9roMeiRYtyTULewLSFDdMWNkxbpI68XAgWCoVS8mcZGBgYFDKCyk6zFYSB\ngYFBgcIoAAMDA4MChVEABgYGBgUKowAMDAwMChRGARgYZBl33gksWgR0dQHnzuWaGoNChlEABgZZ\nxvHjwIsvAjt3WsrAwCBXMArAwCDLKCuz/nZ2AmYpjEEuYdYBGBhkGefOWZb/li1AdXWuqTG4lpA3\n6wBUB8IAwKOPPoopU6Zg2rRp2LhxY6Zeb2CQt6iuBp580gh/g9wjY1tBrF+/Hn/6p3+KtWvXDl7b\ns2cPnnnmGRw9ehTRaBRnzpzJ1OsNDPIWd95pxQHKyoAnnjCKwCB3yOqBMI899hi+9rWvIRqNAgDq\n6+sz9XoDg7yFCQIb5AsyNgNQ4Y033sC+ffvw9a9/HcOGDcPf/u3fYtasWcp777333sH/Fy1aZDZ8\nMrhmYILABunC3r17sXfv3pR/n9UTwdrb2/GZz3wGmzdvxssvv4zPf/7zePvtt91EmSCwwTUMEwQ2\nyBTyJgisQjwexy233AIA6OzsRDgcRn9/fzZJMDDIOUwQ2CBfkFUF0NPTgx//+McAgOPHj+PChQuo\nra3NJgkGBgYGBr9Dxg+E6e/vHzwQZsOGDdiwYQPa29tRXFyMHTt2ZOr1BgYGBgZJYBaCGRgYGFwj\nyOsYgIGBgYFB/sAoAAMDA4MChVEABgYGBgUKowAMDAwMChRGARgYGBgUKIwCMDBIAnOCl8G1CqMA\nDAySIF2btxlFYpBvMArA4JpAJoVrujZvM7uAGuQbsn4gDAB885vfRDgcxvvvv5+p1xsUGDIpXJ94\nAujtBXbvHtr+PWYXUIN8Q8YUwPr167Fr1y7X9XfffRfPPfccWltbM/XqawLGXRAMmRSu6dq8LV2K\nxMAgXcjqgTAA8Od//ud4+OGHM/XaawbGXRAMQYRrrpSr2QXUIN+Q1QNhnn76acTjcUyfPj3pvaoD\nYQrpKD3jLggGEq5+QMoVsJSB398ZZBaFNL7ThavmQJhPPvkEN9xwA5577jlUVlZizJgxeOWVV5Tb\nQes2NFq0yB64vb3X9sBVHRrid4Bc7QOJ6H/rLaC1FaisBBoagEQiPXXq6rJmVp2dxh2TTyik8Z0p\nBN5IU2QQJ06cENOmTRNCCHH06FHR0NAgRo8eLUaPHi0ikYhobW0Vp0+fdv1OR9aNNwoBCNHZKcTA\nQCYpz08sXGjVHxCit3fo9/nBHXdYz7vxRu8293ufH3D6qdTXp69OAwPWMwqRh/IZhT6+04GgIj1r\nCkDG6NGjRX9/v5ooTSWupoGbToFI8DtA0jmQcqF0iP6qKrseixc76xS0fXX3Z6KfDFLD1TS+8xV5\nowBWr14tRowYIYqLi0U8Hhdbt251fD9mzJjACuBqQjoFIsHvAFHdl6olz5XJunX6Z8TjttBOJFKr\nn0x/ImHXQ65T0PbV3Z+JfspnZELhGSWaP8gbBTAUpEsB5JIx8206m6olzwWv1zOuvz67gjRo++ru\nz0U/5XI2kgmFly0lahRNchgFwMAZc8yY7DAPMenixUL09OQPo6bDfdTSorfysyFIuQBIJKw+vf56\nf32qmz0FdTukQwjlcjaSiX7KlhIttNlaKjAKgIEzZrYs1FwzKQmoeNwpHNPhPqqudtZNFshez7/j\nDiGamoSoqbGUYyqCQm7bXLR1Ot5JfFlX5+yjbAjSdPnZeX8uXJgdYyffZtX5CKMAGDiz65jHy6JL\nZaqeTiZNxdrUZdCkarHecYcdjKVCdQsiDEtLnc9IRXjKbZtJgaBr+1TeKT+L+FI2SnTCOdVZRyZd\nJjKfZUMBmyBxchgFoMHAgNpl4CXEUpmqp5NJU3FhyRk0FRXegzSZkOA0VFU5Lb0gwjASsZ8TjabW\nPrxt77jD6sumpqEHnVXQ9XEq/at7lt/2S3XWkcrv/CoNoh0QoqMjfxRToaMgFYBfK17lBvIahEEC\nh5lM+6yrE6Ky0t9gljNo5PRJGcmEBNEQi7kFbRBhWFNjPSccFuLo0eT3J0NQ4Ra0f9I5u9A9y2/7\nyb8PKqSD1MFvuw4MCNHdLURrq9Oo8kNbLmJzhYK0K4DXX39dfOc73xH33HOP2Lhxo3jsscfE66+/\nnjKBvogCAg1YFdPS70nwAJa1KA8Ir0EYJHCYbqbmFu6cOfazY7FgmSPJhEwyIZGuGU0iYcUlglrr\n6XLFBFUYfuuti7l4PcsPb/N71qyx3HgUO/Gqi1dcxs97h9qufsZBNmNzhTbbSJsC2LFjh+js7BTL\nli0T3/jGN8Q//uM/iscee0x84xvfEMuWLROzZs0S//qv/zpkgpVEAVomv+MOy58ciQhRW2sxuYpp\nZR9lZ6d7IKUT6WZqTj8pruJiSxlwZua+9a4u72eqBkMyQZeuBVepQI4/DMUVk6l4gSrmIgfI5ff5\nUUb8HnkVtFdd/Lo0dXGhobarbhyUlNgJAFwxZTqwm6lEgXxVLGlTAJs3bxYffPCB9ofnz58Xmzdv\nDvQy30QBIhZz+hdVFj1gWV4qpiXG6uiw/dbp9oly62/2bNsfnQ6m5s+gAcMHFA1g7ltvbvZ+Zir1\n91LEqnbxYwGqfqu6xp8lz3yCwkuwBRnMuoVyfNVyMl7zwx/8HtmN51UXP2m8RUXJ+YDzdmOjO3tL\nl+68dq1tZBHdPA41VEUeFJlKysj2uhe/yKsYwPr160VDQ4NjO4i//Mu/FJMnTxbTp08XK1euFOfO\nnXMTBQw2bne3OhMFEKKsTO9S8FIKyZjBT0fraPLK5ggCL/r5gIpGk7dF0Pr7+Y0s6CklsLbWuuYV\nt1AJR9U1EliRiP+4QSqZW8mUFk95JMOE6CSBJ6dC6lI9hXAHs1V08Xt0/BR0Rsd5mfpUt7pbNbOh\n2aiXguPXu7udcShAiPJy/zPwVDL0ZFB7eK1i9wvVrDzfUlLTrgDeeustcffdd4uenh5x0003iZtu\nukncfPPNvh6+b98+8eqrrzoUwO7du8Xly5eFEEJs3LhRbNy40U3U7xSAypqqqhJi6VLL2uUCzw9D\n+B1Ifjqa30NWuB9mGApTE/0jR9ptceCA27cuP2coi9N0baab6tOsjF+TrXdVUJMEa22tLTBnz05u\nZU2aZLVDXZ3VBrp4kM6VJIRzGwseb1EpJyok2PmMVGXZqtwgI0fadfSyJINkaCWzQnkbt7cnnxXL\nMxvZyAmSIDEwYCmDkhL7GT093vR61U/Vn+lsKx1Us/J8Ev5CZEABtLe3i82bN4sXXnhB7NmzR+zZ\ns0fs3bvX9wu8NoT70Y9+JP7wD//QTRTgsJCIcaur1VZusgGeDLIFyN1PvKO5JUiWbixmWacqi05l\ndZBCAYRoaNArFTmYzZ+RbPrpFZhLNuVP5pYhcMWgSgn0mz0k9x0XEg0NesVKtHEXWDyutrxlZUT9\nQoqquNj+PhSy/lZU2HTz+pHwVFnTXi4Z2Q2iMjBkfvGboeWVjaZynQ4bZrcNWefyTGVgwBoLs2db\n/UBxiIoKtx+f90ljo9Weixa524PPnrq7VVyYvH5CuI0vneL386wgyLS7Kh1IuwLo7OxMmRghvBXA\nTTfdJP7t3/7NTRQgNm3aJDZt2iRaWzcJYI+LabiPkrsa+AD3Sk3j17iPlQ9smUm58CaBw5lh0iSn\nf5ULM3qWHMNQWV2RiFWPxYu9U1dpMHpZ58kCbSoBQe8ZMcJpsanacdIkq/2jUWtm5scVwcEHbnGx\nU6AvX67PYpEFcGmpJQhUljf1GykjnXtDJZwHBiw3T22tJQhlpcBjTCoQPdwNwnmVC1LOX93dyYUW\n97er4iay8lcVctPw9iotdc9uRo2y3Y2A9V6e+bRunXu2oLPa29v9CdFks0/+nnRls+VrcFeHPXv2\nDMrKTZs2pV8B7NixQ2zatEkcPHhQ/O///u9g8QudAvibv/kbccstt6iJYpXQ5UCHw25mjkbdA7y+\n3snIoZA1mPlUv7vbXiRWV6e3yPg7KyvdDMIHQDTqtHhoyssFgbyAZmDAss50FiIXrqr98WmGUl1t\nCatx4yyaamosYepHkNbV2UE/Loxra9VKgtc5HvfNFoM0UHvHYs4+IcuOQ+Wa45/5s1WzuAkTLHpJ\nkBHtpLTLy9081dOjzp6RZ4Z+3I/d3VbbcuHPwduXlIqX0FLFLmT+5TxIhQesice5sSIX2TDifMHb\nhX+WeVuODQSFnHBBszY/gfFUU8rJAPBLWxClkSlFk3YFsHHjRtHc3CwWLFggFi1aNFj8QqUAtm3b\nJv7gD/5A/OY3v1ETxSohdyy3SlXWlBDqbAe5EMNXVFg+WT6LCIfd1mhvr/N5xcXujqPBV1RkuYVI\n2PPBQIKgp0c9U+HvJJeXygrmA11l/ZGyUwlnfh8Jw1jMeqZKYMiCkb+T2tHvAi/VjINmUirLjkP2\nwZJClt/NU2OXLlW7i0pLhRg71tlGXV1W3/BrZGETr6hoS+Z+0OXmy+5C2mtp+nS3ayVIPj21p8wP\nlZWWIZBIWH1aWemsqyzgy8stg2TOHJvfQiG3AuWZSlVVtrGhcpmS0lHtC+UlFGWFz+uZDPLMygvJ\neFDVt6m4nzOVnpp2BTB27Fjx6aefpkyQrAB27twp2traxJkzZ/REAVpG4P5aPkj5gOKblgEWo/Hp\nazgsxLx5aqtHNSAoiCm7b4qLnQwsL3YiP6q8UlKXUcKZIhRSC1TOzM3NaoEgF8oQovaheuvcVbw0\nNzsVmezu4FY7zwbSZXrIewKRG2vdOqc/XjWVl40BHiTm2Ttc0IfDTuVO5cAB58ANhaz3x+Pu2WUk\nYtE1b56aNi6IuVKn/3WBYt6XJCAB79gQr2eyfHq6xhU49ZGKz6lwga8bG6R05UylCROssRaNusch\nCWxZmKuC7XI2ljz2dO5PIdyKlfMDDz7LCQTEY0SfKoNLhpyq7DfbKJ3nZ3CkXQF0d3eLvr6+lIih\nQ2Gi0aiIx+Pi8ccfF+PHjxejRo0SM2fOFDNnzhRf/vKX3UQBLuYgqBQA5b/LwoUsDy5oVa4jPtDl\na0VFVocODFgdpRKU5DOVO12OCeh8ssRo8rNVefdckcmZFOSrpnva253ZUjp/cGenc7BSG9PMZd06\nS8mOHOnOCedbRHNloKJfZcVR4S6E4cP12wtUVlptGo3a7hT53byNdCUedwo5VbaLzC/Nzd4rw2U/\nuOwWkRUHF2pUF1Xb8dgQ51ESksOHWwIxHLbqFA5bwrqoyOIp6tvaWrUyVBW5DeUZsY4/VWOIBDYZ\nIfyeUMiOd/GANKdzzBi7DlOnOvtNNsJkPud9wN81MKB3XxK/c1mjy1qSkx28Mpe4YlCt6UmHKyjt\nCmDBggWiurpaLFmyJHAaaKogBaDS8rKLgue/y5afLJD4VDWZEJILMVoi4S3IeKfLMQHZzdHebu2l\nohqUcuqkLLzLy+10QgrGqdwqHDyvHrAtei642tvdbied4qivdyoO3i5yvrdXMFJe7MSFoWypylYo\n7x/iGa5M+f0k1IqKLN5YuNBtUMiKQF5nocuyufFGJ93V1eqZE79/0SL7e85XRUX2KnchrN/JxkE0\n6ubvZIXPMoIW+f3ybEeOJQGWsOa/Ky31VkC1te6tT0IhdyxKNTtRKUyv8d7b66Rt1ix19hUV2XXE\nU6v5fki6vbfk2EIyt2KqSJsCuHLlihBCDKZ+8kJpoHRPugFAewg4NVxbm3stgDxNpMHLB6BqCsoF\nGh/EqhgC+YSXL3daoKpO535TYjDyv0aj7mA0FVr4xIUF5f5XVrrrKReaUZBioL9cWIfDdqoeZ87a\nWrdwUw04OS5QVWXR3N3tvJ98xiqaeT46d++o4hCq4nXfkiXW83idR460Bj0X+pRqSjzCBXFdnS00\nKyutfuf80d2tjqcAllUeiVj1nzdPH2yNRu0Z5sCA8xnxuHrmR4XqobO6iQ5ZGJKf3m87V1e7Z4hy\nhhrNvisqrLgBrXfQxeFkxS7vFuuHLirTpztdT/PmOflKfh6tNdGtcSD3DE8O8JplcH6irKpkmUut\nrRYvcGMsr2YACxYsEA8//LD45S9/6fruF7/4hXjwwQfF/Pnzg1PohyhgUIjIswCvaH8i4WYs2RKm\nTdaIKWSXUEODNThUQk925xAtiYTVkeSaIN99ImENQHlFrCrvXR7E5eXO93HrjRiOnkN/SYjJ7gSv\nwlPouDVSXKx2txHNJBBIwNCzhLCfJw/+cNhtzaksaa/Zwrx5zj7T+bLJLUhCT+f+qKmxBP6aNc4D\nTnQzM94mra3ObCOiu7bWXXcvnztguwGon0MhdZBW5pN43OK3eFwtOLu6nH56HpOiGYiqbvSe4mJr\nTNBn3t+kKIn3eV286koxFb886jUOAUvoysK8ocFWurxdYjH9rI8MOK7YePvzuAQZZLyodmslGrjx\noFo8mUpmlE52Brpf98Vvf/tb8fjjj4vFixeLpqYmMWHCBDF+/HjR1NQkFi9eLLZt2zak4LAnUcCg\noJEHiJeWvOMOp6VCPtCGBttvLa/MVDHY8uXOPO/ly533Vle7Mxc4o5SW2t9xxiwudisfslbkqSp/\nXijkDqiFw06Lh6ahfIAmK2TZ0CZ5XvERXaG60NqFkSPtfZGSzVSoNDY6lZacukuF/Mh8sRe1rywY\naXajWhdAhbeVLBRUQmz6dKfbRl4z4vUuv6WmxlJeKuVTVuZMgaQMNprlyfd3dNgCaPhwq684X3V3\nW6WlxWpL3obFxeoFb3xxXiKhbqegFjwvXrMZOcYnjxO58JTqcNiahcv3lJRYCnTMGO9nyWOQ17Go\nyF4jIo953j6Ubt7Y6HxXTY3/o039yM5A9/u56dKlS6Kvr0/09fWJS5cupURYENAMQBZ6NOhVwVae\n3+1VeF4999HyDqHsGp6ux7/nqYUqS4bcPbIloWJAwH4PDS55EMjCQJWv7pXHLRdaG6BiUtV7dKtY\n+eBSXY/FnNNcryL3HW/vsjKnEKAAnYo/5HYl8EBqMuFRXq72l3MhzwPg5I8ni4+7VnTv8BI2sn+a\n+syP8cJLa6s+uE3GiLyQUqaDK8lw2KpbS4vb560roZAQM2fa4yTZGD1wQO02ikaddQ6FvNswEnHz\nB419ub6yKy/VIq/9oTEA2DETXX9QSbajrx/ZGej+ob0uMwCQNFuBL36SGUYnsOStHfhgpgFPwT6e\nIib76eXFQXyAcCHvFSymwlPNyBJPJjBJUfB6eflzueVEg5jnZasGMbmyaDuAYcPUAre6Wq0EeZ/I\n7gO5v8rLnfQHdZ+o+ruoyFozQm1Lh8hTHWQlShYeF1Bc4ESjtpuI3GMquvy4Njo6bLeNPNMhX7DM\nc1VVdp9Rxg//3o+S1fUPFT7mKA6lGofyLEKlLKuqLJ7h46G4OLkA9Jua7afwcVJZaaet8jUkgHPG\n71UopkOfg8yY5dmXrm7JdvT1IzsD3T+012UGPA1UV2pqrI6UF4Zx/zQvulRNsuQXLrQan1bPyi4Y\n+p8W6ciuFppu803N+HRdLpRWxweul++UBgZNvbu7LcalYBcPjstCjNwWsqCk+MjateqBp3PF8JJs\ndsBLXZ23VUoDxe/zVL5kL4s7SKBRNwsYauE550JY/zc3W7NKyshSuTqopOKmU7Wb6ros8JMpFUqr\n9GonamfVrNWPuzKI8Of3FhVZrlHOv2PG2GeJ8N/V1qp9+vK7ly4NNtNOVsrK3O8guTYU2Rno/tRf\nlTmQAkjGgMOH+2OQ6mp33i3tc87f0dTktnjkPHDyqfJ7iorcefyc8eRUuOXL3e/xSlmjtQh+9pxR\nLf/v6nJav4Az68BL4MjCoLPTuQAraPEbF+AuvXA4ubsnlZKqZakayDrBXFQkxM6dTh6g2SufZa5Z\n4140pmqTZO2QTEFEIvp7uHCUA/Z++MPrN2SN85nHUGIFfgsZCCUl6etvr1Ja6o/HQyG98RRkSxWV\n7Ax0f+qvyhxoN1BZIHJrjxa9eDUwMebRo2ofsBfD0DNowFGQU+VqUVn5crCsq8tSIDTQiflLS22f\nKs8UUAU3k+1VLwe5qchB1hEjnDtiBmFw3VRW1/6667pZQFmZ1XZr1liKRlbAcmAv0wM6WfEjJEMh\nWyjwrLZk7hAVn6nep1rrMFSa01n4pnfpsqCD9H1Rkfe2MOksqWQ3yWNlKGdm540CUB0G09/fLxYv\nXiwmTJgglixZIgY05ixVYu1aZ5ZJVZV7Px7O1DqhQxkytFGariNKStRT1WQCT7X+gAKV3A8t59zT\nDpZyLjn5TktLbXrlrJNw2JmeR4XiDrJ1IWcdDCUNb6iFFGGQQUFBNL8rWdNZ5A36vIqXcJVTCrm1\nrbqX3x8ku2vYMOcz+f9eLpuhKgail4/RUMji72SuLT+FPzdIn+RziUTc7TKUBWF5owBUh8F89atf\nFQ899JAQQogHH3xQeRiMEHYlvCLzPAVQtQ0BL9wqkgOoyQaAfK2iQu2rJ8umuFhvhZWUOBenyXu2\neBWec+41AIuKLBoOHNArg3QMQL8lHLZcIFyY6YLoqudHIvbmYjp+4GmRumcRfwStgxyg1vFVkCKv\n4vXKgApee5T8AAAbIElEQVTaD5TEoBOQlZWWUaGzoIdiod9wg/PAIrkfg9RRLrW1tuLK9gwmm4V2\nDEgVeaMAhHBvBDdp0qTBfYVOnTolJk2apCbqd5VQnUpEq0e5S6OrSy9EZesnkbA1bmWl86ALVURe\nNfhpdStnxEjEUi46RSQz7fLldgB65Eh90BmwBnxQpqcAr04QBBWE0ajlkikt9RZ8cpoluZ/oOuU8\nc0EzebK3O6+ry7nFs9w+FOOor7fTBWmmQC5AipFQ9k0yFwKts+DXaOZE/R/EhSMrYT8ZYqkUry0i\nkgndUMg7nTpZnjzts5NsIVhRkT1+afGk1/18Vp7OIGy6SjpjC0Nx/3DZ6fv+ob3OG7ICqK6uHvz/\nypUrjs8OogBRW7tJhMObBLBJtLXtGVysQv5T7nah9Eta8OU1COvqnMKmpUXNgLQfPcUh/ApMHTPI\nLpeaGr0QogGsmvb7VQS0FkF+L+0/xPfF4d8vWeJUkPKA44NbpoUWgXnRpaozbZvg9Rvd90VF7u28\neenuVgdb+fOS9S1to6xbYd3W5q1QwmGnYK2rc2aIZcs/nQrf8qJTwH5LOGzH7nidu7rcfFZZ6U4j\n5VtRZ7ststFH8h5QfpDxA2GGAi8FIIQQsVhMTRTgGvBckMkZLbxwf5rKnx+E8WnZfLaDjbTCVzWA\nhsKII0ZYylPniyW3lG4pfHW18zxiWSCmmsOd7uwMsrZpaT5vS3mmVV9vucv4+RB8QNL/vb1642LJ\nEr1lKveXfF5yJoufOA8pRn5t6lRrlq2qUyqzUa8SiTh3AuWFb1Mi91tdnfesOV2lrc1qC5VbK1Ml\nm1lAYWQRjY2N6OvrAwCcOnUKDQ0N2nsvXXJ+vnDB+tvZCbzzDnDunPs3kQgwfLj9ee5coKnJmyYh\n1Nc7OoDmZuAnPwGuXPF+RlCUl3t/f/GiVeR7r1wBLl9O/b0dHUB1tf1sGaNGWd+/8459jdonEgGO\nHAFGj7Y+nz8P/PrX9n1FRVZ7y2hpSU6Xrg+8UFxs0SQjFAJ+7/eAnh5g926rPrp3CQGcOQNs3gz0\n9QG9vcDPfgaUlFjfU1t3dgJbtljPBYCqKus9hJ//HCgtVdPJ+2v4cGDyZP29AFBW5nz2UFBXB3R1\nOa+FQkA0an8Oh4Fp05z3vPEGsG+f3Q4cly+7x6YfFBWpr1+6BDz/PHD8uJOujg6L355/3qKZ/14I\n4OxZJ2+mwkMq/pHxxhvAyy8Dp08Hf36qePbZ7L0rqwpgxYoV2L59OwBg+/bt6OnpCfT7ESOsQa0T\nyJcuAe+/b38+cgR46SVg2DDv53JGaGqyhMf06cCxY4HIA2AJh/p66/+ODvv/WMwqDQ3AwYPOwaUa\n8O3tFh2vv24rsaoq629lpSUAg6K4GLjzTvV3kYglCAFb2RKiUUs4rlsH/PKX9nUadNEocPgw8NRT\ntnALhYADByxFoUJJid02yVBU5BQOsZglTGVBFA5bNL34oqW4b7vNMhTq6vTPjkSs0tMDfPQRsGmT\nU2g3N9uK5Ac/sNohkQBqaux3TpwIzJiRvB4ff2wJtOeft6/xvo9GLeWcTJjt3GnRsXix8/oNN9h8\nUVYGLFwIvPqqk7+FcBoAAwPA3r3O9r1wwRpHH3xgfe7oABobne8Khax3qXi3qsp+Z1sb0NrqbfTE\nYpahQHQVF1vGxdtv2+2hUzrDhiU3qFSIRoGZM236QyHrc0ODky8vXgTee8+/0gt7SFRZ4egU/de+\n5u9daUHqkw1vyIfBbN26VfT394vPfvazvtJAVVMjOinJbxASsIJtXot06ursqS6dziMf5KIrMh0U\n3KqutvyXDQ32NJxPUXXbCFCpr3f6Aenwb74YTA56y2mD8jm35N5JdpaB6sCOo0fVR3HSoja+pkDe\n31wV3KXV1AMD/rc0aGlRbyVAwdiSEvvELjngmqwv5dPi+O/otDKqH6X0rlrlbO9Ro4JP9elUrWQr\njqurnXUiF8HAgPO+JUvsHWhVKcIyH8q0qNqKzsX1ch3yZ9TXO4PQDQ3eLq9QyHkCWVAf//Ll3hsp\nqvpY5jM54B+L+dt+RHaxlZVZ/akbY/L9y5ap7xvKdhBBRXqwu7MEnQIALAa7/np3gIiY1++KUd3u\ngMXF+oAiHSQCOLf/BazBEfSADq/Cdz9VnTLkNSDpnITeXivoWVJiZ2jolGEo5F6TQIX2v5Gv19Xp\n0zNps7GmJvvsA9rugC9ik4XUsGHuwSevgaC+kGMltPVxsg3KghaVMOD+cS+e8Spz5ljCXOerp6Dn\nokXOvaookC0v4iPBEXRjs7Iyd7CV/ucnYemC4HyzPsAtbHVKntb2JKNPpxTa291nfMRibuXM3ykX\nP/GMsjJ3HIkvLpVP3hsYsJIPkm3Lrjtd0GwFAQwOcl1n0baqKquwqclu/IoKfScT0wRJ52tqcm4m\n19KiPkR+KIUHr+vrnQfA8wO1VXTLB0sEEQZjxugzPXQWEQ/UET20HkF1L6W+6nah5IHWSMReJU2D\npbJSLzBpp1jVuRBUVHS1t/tbWET9q9o6md/nxxAIujYjFrNo1FmYZEnLO3QSnap6L1pk9cOaNc49\nrKgf5cPp/ayH8DNz7upKnioKWMYcrQjn51PQqWC6c0JUs1Ud3fKZCJwndOeCAM7FpaSQ6ewP2u+J\nFIFKgZWVOd89fLhF91DPB76mFAAvVVV2x0aj3hYX7c3NmYyvqgXs1EIaOH4zfegAeoJKwHLhQ0rK\n65mhkJWJ0t3tzDjgg4ny+pMJdHk7WT+LzAC3Feu16IyECm1rQLuYqk684s9Lth0uzzCJRKwBoprl\nqA4ukZWmiv6yMqfgpvROOfNJJ4xoN0l+b3W1812ksEpL/WWhycJBpRj4c3SGBr+H9vmnE850yq2x\n0d0nnHdp/YWfg3rkftEpAjqNy2vdB2ALUf5OOm1LPomM3HKqA2CoPh0dTl4idy/fbYAXOqCFnwvC\n7+NuO93CUDqlTP6utNSSUfLus3l1JGQuQQrA7/YF7e3uTpAtZ75jpsoHH2SzMdU+8/w5pKgiEUu5\nqIQRDWJanMYhCyN+/iofOKp1AnzKLp9+5lW45U3uIt29S5c625v/L++lxOuoEiCRiPU8nUBQbQlB\nllMk4j5QRyd4olFnu5JvW9ePpMiKiqz60S6xdXXO95OLi+5V8RHFmng7hcNWvfm6ieJi9+FCjY36\nFETZ9ULPkHe95fwnjyGVMuW8xK3plhZL8HF+4sYACcVYzNlG1AZ8gR7vW116s2oMq/pKxcM0Fklp\ny0qeBLxqNsUPaOEuVD5L4lu06MaKatw1NanHgXyc7FBkZ6D7h/7K9AOAiMWSC+WiImsQyX5AzkzD\nh7v3hFd1DF2rrLQG3dKl6t1GyXIgrF1rM3llpfWdlzUZiThPzaLpIx+wxOC64GBJiTUY+UZ1xIyc\niZIF7XjuOw1YEtZeMQb5KER+EDY9Rx58QtgHqPC2oJWPukFN/RIK2cG6SMRtOQ0MOAVsLOYUaEuW\nOI++lM945fzT2Wn1i86N1NCQ3IWh2syvu9v5OR5XH59J90yd6j074ftkye8F7M0DSTCWl1ufVb5p\nebtscv9w5SHzY3GxFTvgSoRmquSSGTdOvw9+NKo/2IcbN8OHWzTX1FhKT7Vqn+ghnlTtnMs3hCQj\nJ9nmjrKskNdx1NZaz5ENmI4Od3tR0J/zOj8XO12yM9D96XltegHAYbF7Fb61rnyGquzWqanxXinM\nlYW8W6O8kRcJbdmqmDRJ7ZbQMRgf+DU1zsPEvdwlvG5LlzpPLyPavGISHR3u/WjIdSaE9RyVm00+\nmYp+ozt3ltOkGugU7E4k7H2aeObS0aPey//5Oaw0mKurnTOO4cMtXpLdgvKUm/uRvdwdTU16hUWb\nrVHGFvEwKR0uFKqr3W4zWWEIod7JlvOWqp/lBVv8Hd3dtrLr6HALLzoRTwibfn4+AgXgZf5UWbGq\nMeQnPsN309UpQHlvfxoHNFuWz/6QjQT+Hno3983L7jg6QpX3KecJGh/kVqSzHuRjYRcudJ7lkU5c\nMwpACPduoKrBRg0oT21jMX+ZGfQ7mdF6e52+UxKW8n3U8XSyl3zoiCq24HVIRiqltdUOQvldEak7\nBUm2Gnnb0+xA/l1jo5OR+bSaCxu5/rzU11szo5ISa8DwM1ZVrj9arUrCnw8yEpzr1jnfpXMpELjy\n5MYHt0YpA2RgwE1Xc7Obh2Sho9r2QKZRpo+nAZPgUAkhwLIo5fblZ03Qc7my4/1ZVGSfpyyEm36V\nMi4vt8YKZTVx5c+VS0OD9Vmmj7LE+Cl13KhQ8SltekcuqvJy23jhylveQp0/i58QSHtEUVygvt6m\nRz5ClWIRvE05vTJU9POEiHScBUy4ZhRAaalTmMm7eMquGDkrI5FQ+5XlU7hoI7HGRvdOndw/O2qU\nxRSLFzu3Q1AFBgF9UFnlt9WVyZOtHRZLSvTuINki190jH4hBVgoXzqp0S0qr46mkiYR7EHNrmg+W\nxkbnNJum8HKfqOju7VX7aGX/PR/w3AfO6yK7XlQDjr+rq8sa6CoeIqHC+4R4hgY7F+Dk+qqqcmbc\nkMDlLjyVINGlAXMhxC1PopnWacgCn0MXJyopsc+Y4IKOK8b2du9gbm+vEKtXq40SGh+xmHMmOmyY\nOybGz8vm/SOEW+EK4ewDlUKmADlPRyZBLAfFiVdU/aprUxmqcaZL7x4qrhkFwDs7FHJbHrW1TheD\nbO3T2Z+yIgFsZlJ1BOCeend2Ov2mXMDJTCczOA3uqiqn356EoCwM5bNKCQMD+mMbVa4yslpVATv6\nv6jIdjWRxc2zHmiQyO0jb/nLrS8h3PQQDdOnuxVMdbU95ea0kg9adtmVl1vv5lYm0SwLExp03M+s\n+j0JAP5+CqbLKa6yAdHc7JyJUAYQpWTKPnxuTcvuSlU8SOZDngZMylgWQqtX264GL+Ekz5x4G/PP\ny5c7XXxcgMrtQ39Vh6DzU+W8LHyVMOQxKW78eQlm+YhW1ZGwQjj5W+4fMnoo002OHfmFSvGoaB8q\nrgoFcP/994u2tjYxbdo0sWbNGvHb3/7WSZSkAORADR84vb1uAcUbVPWdPGjkaaFKw3MaVHv6c5eA\nvLBGlcJJi5YSCfWzuSKiU7/kgUqlocFWUJRVozpgnqy1jg59nr7KqlG1jyzI+ZSWn2zGFVx3t1Ng\nyNYpn3FR3bmFq4rfyDTT82nHzaYm77x81bnHdL4z1YXSKVWuG54dpHoPXyfBLeiKCrfVzWcUXAh6\nxSZUwtLLsuTWLu9D6g/VxmfcEJFBtPGFhyQo+fOjUXdSAH8GD8DrhKHK2lfFnFTtoGtbzt+8f+RZ\nqVfsKBn42hdOp98ZRBDkvQI4ceKEGDNmzKDQ/9znPif+5V/+xUkUUwBVVW6LkvsK+aBXRf9p+s1z\nvjnIamtosHO4eU4xdRYPhnHBy6eRs2dbgnXWLPfiLZ7CKTM5z07hFgtlPqh84LIwIr+kTvHJ7gWV\nn1g1JVZZfZxmrhTkAdfUZFv3Kt+z3A88s0ilhGVrUyUs6H5VnEa2UuXZl27WQy4nlQJS7UhJbUuW\nKq+DKhBJhZSmlxDkq3/lhVoyP6meI9cLcKciy8qdlLEf+Hm+Cn6Eoa5eOoWnEuxePMP5k8scOe0z\nqMBWJRQUbAygv79fTJw4Ubz//vvi4sWL4qabbhLPPfeckyjYh8JTwI0EXnm505Kg7B/a2kFuTJXV\nwME7hwd9uW+zqcli4PJyt+VMz1R1ssryp2u88+XslGRbBk+fbv1GDkBzxcWtfVW2wdGj1pT6wAF3\nBhFXLnxdAYeXUuCCtbXV39RZXvCjAgXnmprcK0EJVAeubEnxyX9pkKvaSOWWULnaZPdiPO6cCajO\ncVYFBXX+fxmqXHZV3yQLSHoFLuU0xSDCSfV82ZhKVfDp6qVTDCrB7vd9nL+92txPXXSGS8HGAP7p\nn/5JlJeXi/r6evGFL3zB9b2lADYJ6zCYTWLPnj1aQa7yYeqsAK8BIW8ZIQedenvd7+KCV3WAvfyd\nzjXV1OS+h+fM88U03H9NA4zHJ3TBTjnQpWJalRILYv3J1lNJiXtPfR28+olo17mAOFTKNhm9qnu4\nW4L6mdxBnA+SBYJ1bguehhkkHXCofmM/gnBgwFLcOiUb9PmyoEu34MuEK4XD74xKVxfZTZbOGEBe\nHwijwptvvimmTJkizp49Ky5evCh6enrE9773PSdRgKthdI0lL3PneeHch8t/42V906DmJzbRM8mq\nLCqyhBH33fN0x1jMqUB4EI0gW4GypcwFB3+PyhepchHJK0I5o8o54TJNFFBPZborhO2X5cJfd9ap\nVz8RZMXk5QLyWuyVSj1kdxJXcMQnw4bZe9XEYupdW72sUy+o3HGZFHYEv0I6iAUsu2zTGfzMJLzi\nDKnUxQ/Pp4q8VwD/8R//IW6//fbBzzt27BB/8id/4iQKcDG5jvF54JAv5PJy/ch5wiRgVecN80Ux\niYR7is87n9MoKwcC73wSkJGIM2isCxzqfJlykFzOhpGfx+/nLh5uqagYPsjUXRba8+YlF+46QSPH\neLxcJbKPPZmFmaxOqtiESjHoZiZBBbZMj5/20QUZhwK/gi2IBUzPyZYSSyd09UylLnLWUUHFAI4c\nOSKmTp0qPvnkE3HlyhWxdu1a8Q//8A9OogJUQjfdlq13P78hQc0FJA/0CuEUCF7LuLl/WTcdVq3U\nVCmTZL5MehenRx7A/Hc62jhUDJ9ssKsWUskZW179p6MlyCDTBZN1SFYnr9iE7NulkurMSUWPn/bR\nBRmHAr9tfrVZ86kinfVUxcoKKgbw0EMPDaaBrl27Vly4cMFJVIBKcEaV3So6H7DqN7xjZX8+7xw/\nwUrKLKLgMQd/H9/jXZUi59fiVg3WZP7tVDIukvnp5dW43F2iGzjpsAZ1qY1e/SMrKl2dvJQJnzF1\nd6dneb+X4k72Gy/XWKZwNVrzqSCd9aRnJRsbqeCqUADJkOpBZQMD/vKJ5d+ohKfuOUEtMlmz8/eR\nS0mXIue1pD3TCKpU+K6R1dXZne6rUg/99o+cPut1XzaQSnuRj5rWPQx1T3mD7CATY6OgFYAQ6WtU\n3XNStZ5TQbJsknwCd5vJZxJkGnLqoS5gp7o/G/0oRGZyvjkykVJocPWh4BVAPiCoz1oWDKosgXzx\nteoEmZ+4QqYgt3cyYei3f9JpoaVLQOvaP1/4wyC3MArgKkOyYCu5fjKRMpYKdBkM69YNba+UdCIf\nhWG6aEpnNorBtYegsjMMg5yirMz629kJbNnivtbcDLz4IvD880A0ClRXq59z553AokVAVxdw7lzm\n6a2oAM6cAXbutN6dSFifn3/e+pxLPPEE0NsL7N6tb69sI100qfgFsJ755JP5U1+DqwQZUkRDQp6S\nlREkC7amMx9biKH7onUZDPlodV+LMJa+gReCys7Q736UVwiFQshDstKGO+8Ejh+3rLknnvC22s6d\ns+7fssX7vq4uyxrv7PS2MhctsmYUgGWRPvlkanWQ6fJLp4GBQeYQVHYaBZADpEsIc6RbURgYGFx9\nCCo7TQwgB9D5cVXYu3evr2f69QHno3/cL/y2RSHAtIUN0xapIycK4Ny5c7j11lsxZcoUtLW14aWX\nXsoFGTlDfb1VqqqS35tu5r6ag4VmoNswbWHDtEXqyIkCuOuuu9DV1YX/+7//w9GjRzFlypRckJEz\n/OpX+ZMxY2BgULiIZPuF58+fx/79+7F9+3aLgEgEVX5M4WsIQVxABgYGBplC1oPAR44cwR/90R+h\nra0Nr732Gn7/938fmzdvRhlJRViBDAMDAwOD4MjrLKBXXnkFc+fOxcGDB9HZ2Ym7774blZWVuO++\n+7JJhoGBgUHBI+sxgHg8jng8js7OTgDArbfeildffTXbZBgYGBgUPLKuAJqamtDS0oLjx48DAJ5/\n/nlMnTo122QYGBgYFDxyshDstddew5e+9CVcuHAB48aNw7Zt2wouEGxgYGCQa+QkDXTGjBl4+eWX\n8dprr+FHP/qRQ/jv2rULkydPxoQJE/DQQw/lgry8wejRozF9+nR0dHTguuuuyzU5WcWGDRvQ2NiI\n9vb2wWvvv/8+lixZgokTJ2Lp0qU4l8ld7/IIqra49957EY/H0dHRgY6ODuzatSuHFGYH7777Lm64\n4QZMnToV06ZNwyOPPAKgMPlC1xaB+SJdmxClA5cuXRLjxo0TJ06cEBcuXBAzZswQx44dyzVZOcPo\n0aNFf39/rsnICfbt2ydeffVVMW3atMFrX/3qV8VDDz0khBDiwQcfFBs3bswVeVmFqi3uvfde8c1v\nfjOHVGUfp06dEocPHxZCCPHhhx+KiRMnimPHjhUkX+jaIihf5NVWEIcOHcL48eMxevRoRKNRrF69\nGk8//XSuycopxDW8J5IX5s+fj1gs5rj2zDPPYN26dQCAdevW4T//8z9zQVrWoWoLoPB4o6mpCTNn\nzgQAlJeXY8qUKXjvvfcKki90bQEE44u8UgDvvfceWlpaBj/H4/HBShUiQqEQFi9ejFmzZuG73/1u\nrsnJOU6fPo3GxkYAQGNjI06fPp1jinKLRx99FDNmzMDtt99eEG4PjkQigcOHD2P27NkFzxfUFnPm\nzAEQjC/ySgGYBWBO/OQnP8Hhw4exc+dOfPvb38b+/ftzTVLeIBQKFTS/fPnLX8aJEydw5MgRjBgx\nAn/xF3+Ra5Kyho8++girVq3C5s2bUVFR4fiu0Pjio48+wq233orNmzejvLw8MF/klQIYOXIk3n33\n3cHP7777LuLxeA4pyi1GjBgBAKivr8fKlStx6NChHFOUWzQ2NqKvrw8AcOrUKTQ0NOSYotyhoaFh\nUNh96UtfKhjeuHjxIlatWoUvfvGL6OnpAVC4fEFt8YUvfGGwLYLyRV4pgFmzZuGNN95AIpHAhQsX\n8P3vfx8rVqzINVk5wSeffIIPP/wQAPDxxx9j9+7djiyQQsSKFSsG95Davn37INMXIk6dOjX4/1NP\nPVUQvCGEwO233462tjbcfffdg9cLkS90bRGYLzIQoB4Snn32WTFx4kQxbtw4cf/99+eanJzh7bff\nFjNmzBAzZswQU6dOLbi2WL16tRgxYoSIRqMiHo+LrVu3iv7+fvHZz35WTJgwQSxZskQMFMi5iHJb\nPP744+KLX/yiaG9vF9OnTxfd3d2ir68v12RmHPv37xehUEjMmDFDzJw5U8ycOVPs3LmzIPlC1RbP\nPvtsYL7IyxPBDAwMDAwyj7xyARkYGBgYZA9GARgYGBgUKIwCMDAwMChQGAVgYGBgUKAwCsDAwMCg\nQPH/x7b+U3K6ZM4AAAAASUVORK5CYII=\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Formation of 5 min maxima" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "yura = xn[:85500, 1]\nyura = np.reshape(yura, (285, 300)).T\nmaxyura = yura.max(axis=0)\nsubplot(212)\nplot(xn[299:85500:300, 0] / 3600, maxyura, '.')\nxlabel('Time (h)')\nylabel('(m)')\ntitle('Maximum 5 min water level')\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAACdCAYAAAC9+K9OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt4TNf6x78TEpIjZIRcNCQIaUQQDUqFtCfq8qsm6EWU\nupXDaVWrF0dx0Bunl/MUrbZ64nrEQR3qlDgOklBtRRsV5bTpg5GWpCSNSygaeX9/zJmdPTt7z+w9\nM3tmknk/z5MnM/uy1rvWXvt913rXu9YYiIjAMAzD+Bx+nhaAYRiG8QxsABiGYXwUNgAMwzA+ChsA\nhmEYH4UNAMMwjI/CBoBhGMZHYQPAuIzg4GCYTCZPi+FWNmzYgMGDB3taDJdiMpng5+eHmpoaXfOJ\niYnBvn37dM2DsQ0bAB8hJiYGTZo0QUVFhdXxpKQk+Pn5oaSkxOk8rl69ipiYGKfTcTULFy6Ev78/\ngoODERwcjObNm7vMUD322GP497//7ZK0HMFdyloPDAYDDAaDp8XwadgA+AgGgwEdOnTAxo0bhWPH\njx/Hr7/+2uBfQoPBgMzMTFy9ehVXr17FlStXvNJQOYOj6zmrq6tdLAlTn2AD4EOMHTsW69atE76v\nXbsWjz/+uJXy2LlzJ5KSktCiRQu0a9cOixYtEs5t2rQJHTp0wNWrVwEAOTk5iIyMFEYVfn5+OH36\nNABgwoQJ+OMf/4hhw4YhODgYKSkpKCsrw8yZM2E0GhEfH49vvvlGSFt8r+X++fPnAwDy8vIQFRWF\nN998E2FhYWjTpg22b9+OXbt2oXPnzggNDcWSJUsUy01EqhWkpUe9Zs0atGvXDqGhofjggw9w5MgR\ndOvWDUajETNmzBCuX7NmDVJSUqzK8eGHH6Jz584wGo146qmnZPO5ceMGAgMD8csvvwAAXnvtNfj7\n+6OqqgoAMH/+fDz77LMAbD+TAQMGAABCQkIQHByMw4cPAwBWrVqFLl26oGXLlhgyZIjVCM/Pzw8r\nVqxAp06dEBcXZ7dOLl++jMmTJ6NNmzaIiorC/PnzUVNTg5s3byIkJAQnTpwQrr148SKCgoJQXl4O\nAPj000/Ro0cPGI1G3HPPPTh+/Ljd/Bg3QoxPEBMTQ3v37qW4uDj673//S9XV1RQVFUVnz54lg8FA\nZ8+eJSKivLw8+vbbb4mIqKioiMLDw2n79u1COo899hhNmDCBysvLqU2bNrRz507hnMFgoFOnThER\n0fjx46lVq1ZUWFhIN27coPvuu4+io6Np/fr1VFNTQ/PmzaN7771X9l4iogkTJtD8+fOJiCg3N5ca\nN25Mr7zyClVXV9NHH31EoaGhNGbMGKqqqqITJ05QYGAgmUwm2bIvXLiQWrRoQS1btqSEhAR6//33\nFevpzJkzZDAYaPr06XTz5k3as2cPBQQEUEZGBl28eJHOnTtHYWFhlJ+fT0REq1evpv79+1uVY/jw\n4XT58mUqKSmh1q1b0+7du2XzGjBgAG3dupWIiAYNGkSxsbGUk5NDREQpKSlCvdt6JiaTiQwGA92+\nfVtId/v27RQbG0vfffcd3b59m1599VXq16+flYz3338/VVZW0o0bNxTrwJJmRkYGTZs2ja5fv04X\nLlyg3r1704cffkhERJMmTaK5c+cK97777rs0dOhQIiIqLCyksLAwKigooJqaGlq7di3FxMTQrVu3\niMjcJvft26f4LBj9YQPgI1gMwKuvvkpz5syhnJwcuv/++6m6utrKAEiZOXMmPfvss8L3S5cuUbt2\n7SgxMZGmTZtmda1YiU+YMIGmTp0qnFu+fDl16dJF+F5UVEQhISGy91runzdvHhGZDUBgYCDV1NQQ\nEdGVK1fIYDBQQUGBcP1dd91lZajEnDx5kkpLS6mmpoY+//xzioyMpI0bN8pea1F+58+fF46FhobS\n5s2bhe+jRo2id955h4jkDcChQ4eE74888ggtWbJENq/58+fT008/TdXV1RQREUHLli2jP/3pT/Tr\nr79SYGAg/fLLL7L3iZ+JVFkTEQ0ZMoSysrKE77dv36agoCAqKSkRZMzNzZVNW5pmWVkZNWnShH79\n9VfhfHZ2tmC89+7dSx07dhTO9evXj9avX09ERNOmTROMuIW4uDg6cOAAEbEB8AbYBeRDGAwGjBs3\nDhs2bJB1/wDA4cOHce+99yIsLAwhISH48MMPrSaOW7RogYceegjffvstnnvuOZv5hYWFCZ+bNm1q\n9T0wMFBwd6ghNDRUmKsIDAwEAISHh1uld+3aNdl74+PjERERAYPBgL59+2LmzJn4+OOPbeYnTVtt\nXgAQEREhfA4KClIs58CBA5GXl4fCwkIkJiYiLS0N+fn5OHz4MGJjY2E0GgHYfyZSzp49K7jajEYj\nQkNDAQDnzp0Trmnbtq3N8ovT+u233xAZGSmkN23aNFy8eBEAkJqaiuvXr6OgoAAmkwnHjh3DiBEj\nhHvffvtt4T6j0YiffvoJ58+fV5U3oz9sAHyMdu3aoUOHDsjJycHIkSPrnB8zZgwyMjLw008/4dKl\nS5g2bZpVhMk333yD1atXY8yYMVa+cGcJCgrC9evXhe+lpaUNfnK6b9+++P7777Ft2zakpqYiPj4e\nJSUl2LVrF1JTU4XrbD0TuTpq164dVq5cicrKSuHv2rVruPvuu4Vr1NZt27ZthegxS1qXL18WfPmN\nGjXCI488go0bN2Ljxo0YPnw4fve73wlyzJ0710qOqqoqPProo45WGeNi2AD4IFlZWdi/f7/QkxZT\nVVUFo9GIgIAAFBQUIDs7W1AWN27cwNixY7F48WKsWrUK586dw/vvvy+bh3RkYY8ePXpgw4YNuH37\nNnbv3o0DBw5oL5gCn3zyCSorK0FEKCgowLJly5Cenu5UmmrLZ+u6oKAg3HXXXXjvvfcwcOBAAEC/\nfv3wwQcfCN8B28+kdevW8PPzw6lTp4Trp02bhtdffx0nT54EYJ7E3bJli+YyAkBkZCTuv/9+zJo1\nC1evXkVNTQ1OnTpl9XzGjBmDf/zjH8jOzsaYMWOE41OmTMEHH3yAgoICEBGuXbuGnTt3ahr5MfrC\nBsAH6dChA3r27Cl8F/cGV6xYgT//+c9o3rw5XnnlFTzyyCPCuTlz5iA6Ohp/+MMfEBAQgL///e+Y\nN2+eoHzE6UhjvOVivsXfly5din/9618wGo3Izs4W3Ahy18p9t8WmTZvQqVMnNG/eHOPHj8ecOXMw\nbtw4xevVpG25Rq6c0utspTdw4EBUV1ejd+/ewveqqiohugeo+0zEPeigoCDMnTsX99xzD4xGIwoK\nCpCRkYHZs2dj9OjRaNGiBRITE63WKmgpHwCsW7cOt27dEqKKHn74YZSVlQnne/fujWbNmqG0tBRD\nhw4Vjt9111346KOP8NRTT6Fly5bo1KkT1q1b1+BHdvUJA2ntqjEMwzANAt1GAJMmTUJ4eDgSExOF\nY8eOHUPfvn3RrVs3PPjgg0I8OcMwDON+dDMAEydOxO7du62OPfHEE3jjjTdQVFSEESNG4M0339Qr\ne4ZhGMYOuhmAlJQUIYzNwg8//CCsmkxLS8PWrVv1yp5hGIaxQ2N3ZpaQkIBPPvkE6enp2LJlC378\n8UfZ63iSiGEYxjG0TOu6NQpo1apVWLFiBZKTk1FVVYWAgADFa+l/+7f4+t+CBQs8LoO3/HFdcF1w\nXdj+04pbRwBxcXFCOFpxcTF27tzpzuwZhmEYEW4dAViWj9fU1ODVV1/F9OnT3Zk9wzAMI0I3A5CZ\nmYl+/frh+++/R9u2bbFq1Sps3LgRcXFxiI+PR1RUFCZMmKBX9g0G8ZYAvg7XRS1cF7VwXTiOVy4E\nMxgMDvmzGKY+MHUqUFwMBAUB2dlASIinJWIaClp1J28FwTBuprgYyM8HcnLMxoBhPAUbAIZxM0FB\n5v+9egErV3pWFsa3YRcQw7iZS5fMPf+VK9n9w7gWrbqTDQDDMEwDwWvmAOQ2gysoKEDv3r2RlJSE\nXr164ciRI3pl73GmTgVSU4Fhw8w9PoZhGG/DrZvBvfjii3jllVdw9OhRvPzyy3jxxRf1yt7j8EQf\nwzDejls3g4uMjMTly5cBAJcuXcIdd9yhV/Yehyf6GIbxdty6FcSSJUvQv39/PP/886ipqcEXX3yh\neO3ChQuFz6mpqfVusUd2Nk/0MQyjL3l5ecjLy3P4fl0ngU0mE4YPHy78gHRaWhqefPJJjBgxAlu2\nbMHKlSvxn//8p65QPAnMMAyjGa+KApIagObNm+PKlSsAzLt9hoSECC4hK6HYADAMw2jGa6KA5IiN\njUV+fj4AYP/+/ejcubM7s2cYhmFE6DYCyMzMRH5+PsrLyxEeHo6XX34ZiYmJePLJJ3Hz5k0EBgZi\nxYoVSEpKqisUjwAYhmE041UuIEdhA8AwDKMdr3YBMQzDMN4DGwCGYRgfhQ0AwzCMj8IGgGEYxkdx\n62Zwo0ePRlJSEpKSktC+fXvZCCCG8TZ4Yz+moaJbFNDBgwfRrFkzPP7448JCMDHPP/88QkJCMG/e\nvLpCcRQQ40Wkppo39gOAhx8GNm/2qDgMo4hW3anbXkApKSkwmUyy54gImzdvRm5url7ZM4zL4I39\nmIaKWzeDs3Dw4EGEh4ejY8eOitfU983gmIYDb+zHeCv1ajM4C9OnT0fnzp3x7LPPygvFLiCGYRjN\neI0LSInq6mps27YNhYWF7s6aYRiGEeH2MNC9e/ciPj4ebdq0cXfWDMMwjAjdDEBmZib69euH4uJi\ntG3bFqtXrwYAbNq0CZmZmXplyzAMw6iEN4NjGIZpIPBmcAzDMIwq2AAwDMP4KGwAGIZhfBS37gUE\nAMuXL0d8fDy6du2K2bNn65U9wzAMYwfd1gFMnDgRM2bMwOOPPy4cy83NxY4dO1BUVAR/f39cvHhR\nr+xVMXUqUFxsXuqfnc2rPBmG8S10GwGkpKTAaDRaHXv//fcxZ84c+Pv7AwBat26tV/aqKC42b/KV\nk2M2BgzDML6EW1cC//DDDzhw4ABeeuklNG3aFG+99RaSk5Nlr3XHXkC8yVf9hkdwjK9Tr/YCSkxM\nxH333YelS5fiyJEjePTRR3H69Om6QrlpHcClS7zJV33GU9s0s+FhvBWvXgcQFRWFkSNHAgB69eoF\nPz8/VFRUuFMEK0JCzEqDX+Ba6tOPn3hqBMeuQ6ah4FYDkJGRgf379wMAiouLcevWLYSGhrpTBMYO\n9Um5ZWebe/579rjXiLPrkGkouHUvoEmTJuH06dNITExEZmYm1q1bp1f2zP/Q2qOvT8pNbgTnjhGM\npwwPw7ga3guogaPVT17f50X45xsZX8brfw+AcS9ae/SWXnV9pT6NYBjG09gdAZw4cQIHDhyAyWSC\nwWBATEwMUlJSkJCQoJ9QPAJwGfW9R68VXysvw4jRqjsVDcD69euxfPlyhIaGonfv3mjTpg2ICKWl\npSgoKEB5eTlmzpyJsWPHukx4QSg2AAzDMJpxmQuosrIS+/btQ3BwsOz5K1euYM2aNZoFZFyLO2PS\nOf6dYRoWuk0CT5o0CTt37kRYWJiwEGzhwoX429/+JmwBsXjxYgwZMqSuUD44AnBUubpz0lOvvKRl\nf/HF+mfU2Dgy3oDLJ4FPnz6N5cuXw2Qyobq6Wshkx44dNu+T2wzOYDBg1qxZmDVrlmoBfQVL/D1g\nViZqlasjk56OKiu9JlilZb9wwbG6cEXejublqnQYxp3YNQAZGRl44oknMHz4cPj5mZcNGAwGuwmn\npKTAZDLVOe5rPXu1OKpcs7O1T3o6qqwcyUsN0rKPGWP9XU9cZdTcEX3EowzG1dg1AE2bNsXTTz/t\nsgyXL1+OdevWITk5GW+//TZCFFqxOzaD8yYcVa6OhG06qqz0ChGVll1rXTijGF1l1PQyjmJ4lMFI\n0X0zuPXr1+PUqVMYPHgwmjRpIhzv2bOn3cSlm8FduHBB8P/Pnz8fpaWlyMrKqiuUG+cAvLlXpZds\nDS1U0lcWfw0bZt6io1cvXoXMyOPyOYATJ05g/fr1yM3NFVxAgPnHXbQSFhYmfLa4lTyNXK/KGcVr\n616t6Ypl69wZSE5WL4+tvOr7Yi8prnK/uNrgujo9yygjKAjIyPDOTgtTzyA7dOjQgW7evGnvMlnO\nnDlDXbt2Fb6fP39e+PzXv/6VMjMzZe9TIZbLGDqUCCDq1YuostJ8bOBA8zGA6OGHtaVn616t6Vpk\nCw7WLo8zZVDLlCnmfIYOra07T1BZaS6jszK4us70egbidFu39nz9M96DVt1p9+r09HQqKyvTLMjo\n0aMpMjKS/P39KSoqirKysmjcuHGUmJhI3bp1s5muOw2AnPIQK960NG0vl5xBsXXOlhK1yJaWppym\nI3K4CkcUnCNGw12GxtV1ptczcKZjwDRsXG4ABgwYQCEhITRo0CB64IEH6IEHHqDhw4c7LKAqodxo\nAMRYFE1aGlGrVo69XLZ6o3Ln1ChR8X1qlaGresW2cETBOWI03DGaIXJ9nUnTc5Uhc6ZjwDRsXGYA\nampqiIgoNze3zl9eXp7VNa7GUwZArGgiIuy/XK54obUqUXcpQzU4ojAdMRqu6El7g7vK1c/OHUae\nqV+4zAAMGDCA3njjDfr+++/rnPvuu+9oyZIllJKSol1CNUJ5yACIFY3JVPflkioRV7zQWl9isYzj\nx3uXO0VN2krlVeMKc0ZebzCc7nDLMb6NywzAjRs3KCsri9LS0igiIoI6depEsbGxFBERQWlpabR6\n9WqHJ4ftCuUhA2BP0UiViNoXWk65OeoLv+ce8+jEZLKWp317denpqQj1mDwX15PF4EVFmetBWlZb\ndeoNyrch9tht1bmj5xjHcfkcABFRdXU1lZWVUVlZGVVXVzskmBakhfCWxiJVIpWVZsUrp4zESF1L\njo4epNEflnmKXr3MMqhJT09FaCtte89QaYK8RYvacvn7136WK6stIyI2nK7GVQbe21BTBkej3rxh\nRNYQ0cUAOMLEiRMpLCzMKgzUwltvvUUGg4EqKirkhQIUXS0WBWoPPV5ARydxLcpNbvQgF2k0ZYq5\nnC1bWp+Ti/6IijKfV6vY9eqF2lOy9urJXt02blz3s7SsSnWgt7KRS19tnmrbqScMipa2rTbqzd65\nhmA4PYnXGIADBw5QYWFhHQNQUlJCgwcPppiYGJsGQE5ZanmJ3dXDUKN4KyutJ5XHjzcry4AA+z1Z\n8Tlb0R+edi/Yq29pPal50S33GI1Eqam1n4uK5KOi5OZtxOm0amWudzkXkjOKR64NqDXIatupJ3rM\natu2lqg3e+d4ZOAcXmMAiOouBCMieuihh+jYsWOqDIDY1SJVoGqVhyOx/FpQq3jF10kVvFgpRkRY\nuzqSkhyfFLUoNSWfudL1zihBi5KVpiENZRW7dtSEvzqjMCz3it1ktnrsTZrUHX3ZQi7cU63LSa2h\n0NN1p+TC0tNtpoQ3zNXUZ7zaAGzfvp2eeeYZIiK7BqBLlwU0e/YCWrBgAeXm5lr521u2VH7p7cXy\nu3uIKZefpZEnJRFlZNQelxqGNm1cF/midy9TTslaVqlKDbY4H6PRuTJqURjSkaQ4bzn3mqO9UC31\nqMaY66WMLW1T7n3yVE/c0yPZ+kZubi4tWLBA+PNaA3Dt2jXq3bs3Xb58mYjMBqC8vFxeKIVCKPWc\nla6Ri+XXs2HLKXu5/JQauVhByfX8teQrTs/S23ZHL1NOkbZubV0HYteOswpNi8IQjySNRqLMzLru\nI4t7DSBq1sz+KMCWgVdbj/YmkdVO8CulpYSt94l74u7B1R1SrzUARUVFFBYWRjExMRQTE0ONGzem\n6Oho+vnnn+sKpVAIcc85Olre1WAvll/Phi2n7LXkV1lJlJ5uPSpwJhLDohyVfOPS9G1dp4RUPstI\nLSTELE9oaO1ni1FT2+vV8mLIhYvaW1OgZJzT09WvBFdj4JUm9ZXSkLrI1CxKtCWPEpa22awZUViY\ntTGu7z3x+jKZ7OoOqdcaACn2XEByD9Deyyu9Rg6582oaixp/upyyd/ZFcjYSQ64M9kYoau6zJZ/4\nWGho7ef0dLWl1v5iSENk1dyrJkrF3hySmrpXmtSXpmGZPxG7ZCyjJLVt1pJW48bme23JXlkpX1fS\ntJ0xxnoqX1vvZH2ZTHZ1h9RrDIBlM7iAgACKioqiVatWWZ1v37693TBQWw9Qbcy5uDeo9NnWEFvO\nT6p0rR69Ji2RGPYmx7WMUNS6IOxFwNjar8aVC7fU5inG1vOSKkel8GM1z9yea09pktqWi8xWB0gs\ntyNGUJq2FmVqb4Lf3mhIC0pzXFOmmOtOqb7dhTMr4x3FawyAMwCwq5jS0qxdJeJzYmUtfhmUPtsa\nYksbmVp/uqvQ0kBsvahKL4V4cl2pB2WrfuTkEx+zJb8teZXuU3qplPJUul5LGKpUuWiJrLLIJnXt\nSRE/n8RE87VyBt2Sv3gRoNI5NQpQrp6l7569CC8x9ib4pe+T2hXscijNcYnz0DLqdDWeGIU0GAOg\npADk/KVyPVW53qDSZ1u+b2nEjslUV2F6i7/RVq/Z1kthb2Qgrh9XltWR4a8zriE1q4bFVFbWNX5a\nI6tsodR2Lc/HnnstKkp5JNumjW2DYwvpuyc3QlEaKVuMj9LoRToaUjvBbcslLH1/vWUC2xNyNBgD\noIS0UsUvhCV+3tKDkvYG1fZMxchd58wQWU9suYK0rspUa4BdIa+0B6umV652vkOup6wlHWmdWtJT\nOxJUO38iN8pSs8BM7UhN6haVumHs1b0tt4rU7WNZnS6Xt8lkPRpyZMGcvR/B0cMV6wiekKPBGwBp\npcqFHUp7uI72Wu1NtEmHyJ7ucVjQEnpqOSce1diaS9DiDtBa72p75WpeKmlPWY3rSkt6aiOmbJVJ\nbpQlrnu5PJTaf6tWRH36yK8VkCpouTkCe3WvdgTZuHFd374jrj4pcu+5N0/uegqvMQByewHNmzeP\nunXrRt27d6f77ruPSkpK5IVSWQjxAhnLVgH23B9aGo1Sr0NpiOxO5e/qnS/tRdFI517UDN21Rhi5\n8gdOXG2U5dJzdsSiZnRpDzXuGXGaAQG1Ybni3ry9+lIzghTv1ySWQW1ElRS5EGVn24je7lpPu4O9\nxgDI7QV05coV4fOyZcto8uTJ8kKpLIS0V2LPj6+10WjpdaiNQ3cVruhVKSlfuZdMmp+aOtUaImnr\nGWrF1UbZUWWtVQ5n26otBW00Et19d63M4pXm0lGgGmMl7RQoKefKSvWhuWKk7i1L56t9e6Lw8LqR\nRFrXzGidgFbjJlOzxYmeeI0BILK9DuD111+n2bNnywulshBa/bhafbWW+9T0OtTGobuqh+CKHq6S\n8hXXl5IvXU2dqrnG29xnWtBDdkcNlz0Xn+Wc2kABWx0dy/yBZU7Acr0tGRwZQclFYUnlVDqutKZB\nLIeWFdZq6sdeBJQ78HoD8NJLL1Hbtm0pLi6OKhVqCIDV/ha5ubmy17myl+dsj1ptHLqrJlFdUXat\nPXQ5X7qzeMuEnSM4Irun96LSqqSlyEVBqV3lLh1h2HsXKitrJ7bF7iOldRVq1jTIGUMl15Qt42Gr\n/qQRUHo+83qzF5CUxYsX04QJE+SF0lgIrbhi/xYp4obl7EvmLhztoXvaz+mtOPsDKnrIo8UloaU9\nANbRdmpwxI0o5z6qrJRfVyEnv1zQgsVFK90wUrrYz5bx0FJ/7nzm9cYAnD17lhISEuSFEhVCD2Wj\nNUrGldS3Hq+jvm9fRE29uLMDoIdLQkn5SlHTyZJzNcrNoTlTZ5Y8xO4e8e9wWEYYcs/NXr5qdZM7\nn7lXG4Di4mLh87Jly2js2LHyQokKoYey8aZeeH2E608etT1ad3UAlFwS7kBrJ0saqaSl560G6XyC\n5TmZTMrrJyz5KgV1qNVN9uR3ZSfXawyAZS8gf39/ioqKoqysLBo1ahR17dqVunfvTiNHjpTdCZTI\nuhDeNNHGmOH6k8fb6sWT8mh9b5UUtL171SpP8XyC9Hc47NWT0uSyM/sNObrdtz28xgA4g7gQ3vZS\nMQxjH63vrS0FbQsta03k9g8TXxMRYR59SHdRtTe57Mh+Q2pXcGtFqwHwg5cTEgJs3mz+zzBM/UDr\nexsSAvz3v8DDDwP79wOtWwMZGcCwYcClS8r3BQWZ//fqBaxcKX9NcTGQnw/s3Qv4+8vLVFwMlJUB\nt24BlZXma+PjzXlnZ5vl2rPHfO/UqUBRkfm+pCRgzRp1ZVSS+8svrdN3J4b/WQ2vwmAwwAvFYhif\nY+pUs3IMCjIrQncpqNRUs9IGzMpx82b56y5dMssYFASYTPJyDhsG5OSYla2SkrVcI0Wa99Sp5u+X\nL5u/p6cD27drryeL3CtXurZONetO5wYc+uClYjGMz+GpiC+tcwjOruOxRDf93/+ZVxmrWcdjNNZO\nENv6nXJ3olV38giAYRhF1PSe9UBrD9mVcsrlbenhnzgBlJcDRiNw9CgwfnztSAWom7/lvlOngOho\noHlzfUdSWnWnrgZg0qRJ2LlzJ8LCwnD8+HEAwAsvvIBPP/0UAQEB6NixI1avXo0WLVpYC8UGgGG8\nAr1cFa5GbznFLqmoKOD4cXM+FsOTlGRW8KtXW+cvvs9C+/ZAu3bW7iJXudq8ygUktyHcnj176Pbt\n20RENHv2bNn9gHQWi2EYH8CZ+Hq120DIuZfE+yVZfhNb/PsRcmGfrnK1adWdukYBpaSkwGg0Wh0b\nNGgQ/PzM2fbp0wc//fSTniIwDOOjWKJ/cnLMPWxn7pVGAlmQi3ayRBT98gtQUWEeMRw7Vnt/8+bm\n61q1As6fN48i/P3Nx2xFM+lBY/dlVZdVq1YhMzNT9tzChQuFz6mpqUhNTXWPUAzDNAjUhIiqvdei\n6LXcC5hdQ/v3194/dSpw5QoQEQHExACHDpmvS083GwitLqy8vDzk5eWpv0GC7pPAJpMJw4cPF+YA\nLLz22msoLCzE1q1b6wrFcwAMwziJM/MCzt47YQJgMNieE4iIMI8UXDnBrlV3emQEsGbNGuzatQv7\n9u3zRPYMw/gAWnrtrr53+3b5c+KRxZYtwAsveHaC3e0GYPfu3XjzzTeRn5+Ppk2bujt7hmEYj5Gd\nbT2ycNSGSFawAAAHc0lEQVTIuApdXUCZmZnIz89HeXk5wsPDsWjRIixevBi3bt1Cy5YtAQB9+/bF\nihUrrIViFxDDMIxmvGodgKOwAWAYhtGOVt3p9ZvBMQzDMPrABoBhGMZHYQPAMAzjo7AB8HKcWeTR\n0OC6qIXrohauC8fR1QBMmjQJ4eHhSExMFI5t2bIFCQkJaNSoEQoLC/XMvkHAjbsWrotauC5q4bpw\nHF0NwMSJE7F7926rY4mJidi2bRsGDBigZ9YMwzCMHXRdCJaSkgKTyWR17M4779QzS4ZhGEYtjm88\nqo4zZ85YbQdtITU1lb7++mvZewDwH//xH//xnwN/WvDobqBKEC8CYxiG0R2OAmIYhvFRPGoAuKfP\nMAzjOdy+GVzLli0xY8YMlJeXo0WLFkhKSkJOTo5eIjAMwzBKaJ7V1ZmcnByKi4uj2NhYWrJkiafF\n8SjR0dGUmJhIPXr0oF69enlaHLcyceJECgsLswogqKiooLS0NOrUqRMNGjSIKrX+0Gs9Ra4uFixY\nQHfccQf16NGDevToQTk5OR6U0D2UlJRQamoqdenShRISEmjp0qVE5JvtQqkutLYLrzIA1dXV1LFj\nRzpz5gzdunWLunfvTidPnvS0WB4jJiaGKioqPC2GRzhw4AAVFhZaKb0XXniB/vKXvxAR0ZIlS2j2\n7NmeEs+tyNXFwoUL6e233/agVO6ntLSUjh49SkREV69epc6dO9PJkyd9sl0o1YXWduFVk8AFBQWI\njY1FTEwM/P39MXr0aHzyySeeFsujkI/Ok6SkpMBoNFod27FjB8aPHw8AGD9+PLYr/exSA0OuLgDf\naxsRERHo0aMHAKBZs2aIj4/HuXPnfLJdKNUFoK1deJUBOHfuHNq2bSt8j4qKEgrlixgMBqSlpSE5\nORkfffSRp8XxOD///DPCw8MBAOHh4fj55589LJFnWb58Obp3747Jkyfj0qVLnhbHrZhMJhw9ehR9\n+vTx+XZhqYu7774bgLZ24VUGwGAweFoEr+LQoUM4evQocnJy8N577+HgwYOeFslrMBgMPt1epk+f\njjNnzuCbb75BZGQknnvuOU+L5DaqqqowatQoLF26FMHBwVbnfK1dVFVV4aGHHsLSpUvRrFkzze3C\nqwzAHXfcgR9//FH4/uOPPyIqKsqDEnmWyMhIAEDr1q0xYsQIFBQUeFgizxIeHo6ysjIAQGlpKcLC\nwjwskecICwsTlN0TTzzhM23jt99+w6hRozBu3DhkZGQA8N12YamLsWPHCnWhtV14lQFITk7GDz/8\nAJPJhFu3bmHTpk148MEHPS2WR7h+/TquXr0KALh27Rr27NljtauqL/Lggw9i7dq1AIC1a9cKjd4X\nKS0tFT5v27bNJ9oGEWHy5Mno0qULnnnmGeG4L7YLpbrQ3C50mKB2il27dlHnzp2pY8eO9Prrr3ta\nHI9x+vRp6t69O3Xv3p0SEhJ8ri5Gjx5NkZGR5O/vT1FRUbRq1SqqqKig3//+9z4V7kdUty6ysrJo\n3LhxlJiYSN26daP09HQqKyvztJi6c/DgQTIYDNS9e3erMEdfbBdydbFr1y7N7cIrfxSeYRiG0R+v\ncgExDMMw7oMNAMMwjI/CBoBhGMZHYQPAMAzjo7ABYBo0FRUVSEpKQlJSEiIjIxEVFYWkpCQEBwfj\nqaee0iXPd999F2vWrAEApKam4uuvv65zTVFRESZPnqxL/gyjFq/8RTCGcRWhoaE4evQoAGDRokUI\nDg7GrFmzdMuPiJCVlYUjR44AUF7d3q1bN5w6dQoXLlzwmYVLjPfBIwDGp7BEPefl5WH48OEAgIUL\nF2L8+PEYMGAAYmJi8M9//hPPP/88unXrhqFDh6K6uhoA8PXXXyM1NRXJyckYMmSIsPpUzKFDh3Dn\nnXeicePavtWWLVvQp08fxMXF4bPPPhOODx06FFu2bNGzuAxjEzYADAPgzJkzyM3NxY4dOzB27FgM\nGjQIRUVFCAwMxM6dO/Hbb79hxowZ2Lp1K7766itMnDgRc+fOrZPOZ599huTkZKtjt2/fxuHDh/HO\nO+9g0aJFwvHevXvjwIEDupeNYZRgFxDj8xgMBgwdOhSNGjVC165dUVNTg8GDBwMAEhMTYTKZUFxc\njBMnTiAtLQ2AWam3adOmTlolJSXo37+/1bGRI0cCAHr27AmTySQcj4yMtPrOMO6GDQDDAAgICAAA\n+Pn5wd/fXzju5+eH6upqEBESEhLw+eef201Luri+SZMmAIBGjRoJ7iTLdb60cyXjfbALiPF51OyG\nEhcXh4sXL+LLL78EYN6J8eTJk3Wui46Olp0bkKO0tBTR0dHahGUYF8IGgPEpLD1u8b7x0j3kpb1y\ng8EAf39/fPzxx5g9ezZ69OiBpKQkfPHFF3XS79+/P7766iu7+QPmX8AbMGCAU+VhGGfgzeAYxoUQ\nEXr27InDhw8LbiUlUlNTsXnzZg4DZTwGjwAYxoUYDAZMmTIFGzZssHldUVERYmNjWfkzHoVHAAzD\nMD4KjwAYhmF8FDYADMMwPgobAIZhGB+FDQDDMIyPwgaAYRjGR/l/GpOCVM/8oZQAAAAASUVORK5C\nYII=\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Estimation of GEV for yuramax" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nimport wafo.stats as ws\nphat = ws.genextreme.fit2(maxyura, method='ml')\nphat.plotfitsummary()\nshow()\n#disp('Block = 11, Last block')", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stderr", - "text": "c:\\pab\\workspace\\pywafo_svn\\pywafo\\src\\wafo\\stats\\estimation.py:1080: UserWarning: P-value is on the conservative side (i.e. too large) due to ties in the data!\n warnings.warn('P-value is on the conservative side (i.e. too large) due to ties in the data!')\n" - }, - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEfCAYAAABf1YHgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlcTekfxz+3DWknpdKikPZGiy2yE2GsZWzZmYydMZiy\nDgYz9jUxdmMZW7KkDZWlsktSIoyl0sK0fn9/HPf+urp17627lfN+ve5LnfOc7/M91/f0nOd5vguH\niAgsLCwsLCwVoCRvBVhYWFhYFBt2oGBhYWFhqRR2oGBhYWFhqRR2oGBhYWFhqRR2oGBhYWFhqRR2\noGBhYWFhqRR2oFBANDU1kZaWVuH5yZMnY9myZdXqIyIiAk2aNKmWjOqiCDqw1Dyio6NhbW0tk74C\nAwMxYsQImfSlyLADhYiYm5tDXV0dmpqavM9PP/0klb5yc3Nhbm5e4fmtW7di4cKFUumby6lTp+Dk\n5ARtbW3o6+ujS5cuvMErMDAQqqqqfN/FmjVrpKrP6NGjsWjRIqn2wSIe3GdCS0sLurq6aNeuHbZv\n3w5ph2Z5eHjg8ePHfHpcuXJFKn1xOByR20pTD3mjIm8FagocDgdnz55F586d5apHaWkplJSkO74/\nffoUo0aNwsmTJ9GpUyfk5eXh4sWLUFZWBsB8F76+vvjrr7+kqgeLYlP2mcjNzUVERASmTZuGuLg4\n7N69W6Z6SGtwEkeuNPWQN+yMQgLs2bMH7dq1w8yZM6GrqwsrKytcv34dwcHBMDU1hYGBAd8f1dGj\nR2PSpEno3r07tLS04OnpifT0dN55JSUlPHv2jNd28uTJ8PLygoaGBsLDw8u9XZd9+7eyssKFCxcA\nAMHBwbCxsYGWlhYsLS2xY8cOke4nMTERFhYW6NSpEwBAQ0MDAwYM4C0TEZHID4S5uTlWrlwJW1tb\n6OnpYcyYMSgoKBDY9tGjR/D09ISuri7s7Oxw5swZAMCOHTtw8OBBrF69GpqamujXr59IfbPIDk1N\nTXh7e+PIkSPYu3cvHjx4AAAoKCjA7NmzYWZmBkNDQ0yePBn//fcfAGbp0cTEBOvWrYOBgQGMjIyw\nZ88ensyQkBDY2tpCS0sLJiYmWLt2Le86ri2OGDEC6enp8Pb2hqamJn7//Xf06dMHmzZt4tPPwcEB\np06dKqd3WloalJSUsHPnThgbG8PIyIjXjyBOnz4NW1tb6OrqolOnTryZzdd6SHuGLXOIRSTMzc3p\n8uXLAs8FBweTiooK7dmzh0pLS2nhwoVkbGxM/v7+VFhYSBcvXiRNTU3Kz88nIqJRo0aRpqYmRUdH\nU0FBAU2bNo3at2/Pk8fhcCglJYXXVltbm65fv05ERP/99x+NHj2aFi1aREREcXFxpK2tzdMtIyOD\nHj9+TERE586do2fPnhERUWRkJKmrq1N8fDwREYWHh5OJiYnA+3n27BnVrVuXZsyYQeHh4ZSbm8t3\nPiAggIYPHy7S92ZmZkb29vb08uVLyszMpHbt2tHChQvL6VBYWEiWlpb022+/UVFREV25coU0NTUp\nKSmJiIjvnlkUA3NzcwoLCyt33NTUlLZt20ZERNOnT6d+/fpRVlYW5ebmkre3N82fP5+ImP9/FRUV\nCggIoOLiYgoJCSF1dXXKzs4mIiJDQ0O6evUqERFlZ2dXaLtf63H06FFyd3fn/Z6YmEgNGjSgoqKi\ncrqmpqYSh8OhYcOG0adPn+jevXukr6/Pe57K2npSUhLVr1+fLl++TMXFxbR69WqysrLiya3o+6gN\nsDMKESEi9O/fH7q6urxPUFAQ77yFhQVGjRoFDoeDIUOG4NWrV/j111+hqqqKbt26QU1NDU+fPuW1\n79OnD9q3bw81NTUsX74cMTExyMjIENh3//790aZNGwBAnTp1+M4FBQVh7Nix6NKlCwDAyMgILVq0\nAAB4eXnBwsICANChQwd0794d0dHRQu/VwsICERERyMjIwJAhQ6Cvrw8/Pz/k5+fz2hw9epT3Pejp\n6eHNmzcCZXE4HPj7+8PY2Bi6urpYsGABDh06VK5dbGws8vPz8fPPP0NFRQWdOnVCnz59eG1JjFkM\ni3wxMjJCZmYmiAg7d+7EunXroKOjAw0NDcyfPx+HDx/mtVVVVcWvv/4KZWVl9OrVCxoaGkhKSgIA\nqKmp4cGDB8jJyYG2tjacnZ1F6t/b2xtPnjxBSkoKAGDfvn3w8fGBikrFK+0BAQGoV68e7Ozs4Ofn\nJ9BGjxw5gj59+qBLly5QVlbG7Nmz8fnzZ1y/fl2cr6dGwg4UIsLhcHDq1ClkZWXxPmPHjuWdNzAw\n4P1cr149AIC+vj7fsby8PJ4sExMT3rn69etDT08Pr169EthvZZ5BL1++hKWlpcBz58+fR+vWrdGg\nQQPo6uoiJCQEHz58EOl+3d3dceTIEbx9+xbR0dGIiorC8uXLeeeHDh3K+x4yMzNhaGhYoayy+pua\nmgq8z1evXpW7TzMzM15bcTYVWeTLy5cvoaenh/fv3+PTp09o1aoV76WiV69eeP/+Pa9tgwYN+Pbc\n1NXVec/J8ePHERISAnNzc3h6eiI2Nlak/uvWrYshQ4Zg3759ICIcPnxYqOeSqDZqamrK+537bFb0\nglebYAcKOUBEePHiBe/3vLw8ZGZmwsjISGxZTZo04ZupcCkoKMDAgQMxd+5cvH37FllZWfDy8qrS\nW7mLiwu+//573roz9x5Epez+S3p6usD7NDIywosXL/jkPn/+HMbGxgDYgaKmcPPmTbx69Qrt27dH\ngwYNUK9ePTx8+JD3UpGdnY2cnByRZLm4uOCff/7Bu3fv0L9/fwwZMkRgO0G2MWrUKBw4cACXL1+G\nuro63N3dK+3raxvl2l1ZjI2N8fz5c97v3Of4W7BRdqAQA0kufYSEhODatWsoLCzEokWL0KZNG4HG\nKajPssswY8eORXBwMK5cuYLS0lJkZGQgKSkJhYWFKCwsRMOGDaGkpITz58/j4sWLIul27do17Nq1\nC+/evQMAPH78GGfOnEHr1q3Fvk8iwpYtW5CRkYHMzEwsX74cPj4+5dq5u7tDXV0dq1evRlFRESIi\nInD27FleWwMDA94GP4viwLXDnJwcnD17Fr6+vhgxYgRsbW2hpKSE8ePHY/r06TxbysjIEMkOi4qK\ncODAAXz8+BHKysrQ1NTked19jYGBAW+ZiUubNm3A4XAwe/ZsjBw5Umh/y5Ytw+fPn/HgwQPs2bMH\nQ4cOLddm8ODBOHfuHK5cuYKioiKsXbsWdevWRdu2bSvUo7bADhRiwPVo4H4GDhwIgHmT+PptorK3\nCw6Hg2HDhmHx4sVo0KABEhISsH//foHXViSbe8zV1RXBwcGYMWMGdHR0eB5Umpqa2LBhA4YMGQI9\nPT0cOnSonLdQRTrq6Ojg9OnTsLe3h6amJnr16oUBAwZg7ty5Feok7F67d+8OS0tLNGvWjC8GhCtH\nTU0NZ86cwfnz56Gvrw9/f3/s27cPzZs3B8AMiA8fPoSuri4GDBggUt8s0sfb2xtaWlowNTXFb7/9\nhlmzZiE4OJh3ftWqVbCyskLr1q2hra2Nbt264cmTJ7zzldnR/v37YWFhAW1tbezYsQMHDhwQeN38\n+fOxbNky6OrqYt26dbzjI0eOxL179zB8+HCh99GxY0dYWVmha9eumDNnDrp27crrh9tXixYtsH//\nfkydOhX6+vo4d+4czpw5w9v7qEiP2gCHFHSHMD8/H1OmTEGdOnXg6emJYcOGyVslieHn5wcTExMs\nXbpU3qpIHQsLCwQFBck9/oTl22Pfvn3YuXMnoqKiKmyTlpaGpk2bori4WOrxSTUZhf1mTpw4gSFD\nhmDHjh04ffq0vNWRKAo6NrNIgNDQUFhbW6NZs2ZYtWqVwDYRERFwdnaGnZ0dPD09ZavgN8KnT5+w\nefNmTJgwQd6q1ApkOlCMGTMGBgYGsLe35zsu6OHKyMjgeSJUtDZZUxFn6Yal5lBSUgJ/f3+Ehobi\n4cOHOHToEB49esTXJjs7Gz/++CPOnDmD+/fv49ixY3LStvZy4cIFNGrUCI0bNxZpJYJ9FoUj0xQe\nfn5+mDp1Kt/mEvfhunz5MoyNjeHq6oq+ffvCxMQEL168gIODA0pLS2WpptQpu4Zb20lNTZW3CjLj\nxo0bsLKy4uXp8vHxwalTp9CyZUtem4MHD2LgwIE89+iGDRvKQ9VaTY8ePXgutsIwNzdHSUmJlDWq\n+ch0oPDw8CiXFbWih+unn36Cv78/zp07h759+wqUx74JsMgCUZcKy86CAcDExARxcXF8bZKTk1FU\nVIROnTohNzcX06ZNE+jjz9o2i7QRZwlc7nsUgh6ujIwMqKurY/fu3diyZQt8fX0rvJ7rKlrVT6+e\npVBBIVTxC3TxAQZ4jSZ4Dis8gQMS0QlhGILD+BEbEYhfEQQ/XEVbvIcesqCNy+iMJViIHjgPLWQD\noC+fAFy9Wj3duJ+AgACJyGFlif8RB1H+uBcVFSE+Ph4hISG4cOECli5diuTkZKnYtqJ/t6ws+ckS\nF7lnj63um1NgYCA8PT2rvCl48BAHLVuq4s0bVWRBT6xrG+IdXHETbXEdc7EaLriFW3DBGXhjL7LQ\nvv3/2zo5AeHhgI5OldRkkTERERGIiIgQ6xpjY2O+QMoXL17wReADTIBkw4YNUa9ePdSrVw8dOnTA\nnTt30KxZM0morTDo6QFZWZW3qVsXCAyUiTos1UTuMwpRHi5poqMDPHoE2NgAV68CampAnTrA338D\n9eoxx7p1A1RVmXMuLsx1DRsCHzj6OA8vLMIydMEVGOIN/sR02OAhxiIIV9EOY7ELmshBYiKgqwtw\nOEBoqMxuj0WGuLi4IDk5GWlpaSgsLMSRI0fKLZv269cPV69eRUlJCT59+oS4uDjY2NjISWPpkZUF\nEFX++ZJElqUGIPcZRdmHy8jICEeOHBGYkEua6OgAmzd7ol07oGwG7EGDmH8rCiS9d48ZOEpKmM9n\nqOMM+uIM+kIZQ5GET/BDMNZgNv7GYKzDTDxGS/TqxVy/ZQswebJw/STpQsnKkh4qKirYtGkTevTo\ngZKSEowdOxYtW7bE9u3bAQATJ06EtbU1evbsCQcHB17ksrQHCsX9biUnS1HvUVFliQ3JEB8fH2rc\nuDGpqamRiYkJ7d69m4iIQkJCqHnz5mRpaUkrVqwQWZ6M1ReJrCwiFxf+dyd9/Eu/IpDeoBGdhRe1\nxVW+81u2yFtrloqQl40pom2Lgyjq1/BbrNGIa18KG5ktChwOBwEBAdXao5A2x44BgwczP9fBfxiB\nfViA5XgIGyzCUsSjFQBASQlITAS+CjFhkRPcPYrFixdXafOvutT0amkcDvMaVN02LNJBXPuq8QNF\nTVH/+XPA0RH4+BFQQwHGIggLsBxxcMc8rMJTMJuZoi5HscgGedlYTbJtQbADhWIjrn1Vupn99u1b\nbN68GUOHDoW7uztat26NoUOHYvPmzXj79m21lZUEgYGBYnunyAMzMyA7m3kwduypg62YAis8RRzc\nEYM2WIl50EAupkwBtLSYgYVFfkRERCCQdclhYQFQyYxi7NixSElJQa9eveDm5obGjRuDiPD69Wvc\nuHEDoaGhsLKywq5du2StM4+a/NZ17x7g4MD8bIjX+A3z0Q2X8DNWYj+GQ1mZg/fvWXdaWVNUVISL\nFy8iKioKaWlpOHr0KObOnYsOHTqgR48elVZJkyQ12bYBdkah6Ehs6enu3btw4P4lqwBR2kiTmv4w\nAYyrLNcLyg1x2IrJeAd9TMR2PIc5zp8HevaUr47fCkuXLsXx48fRpk0buLm5wcjICD179kRQUBBu\n3LiB2NhYDBo0iC9NurSo6bbNDhSKjcSWnsoOAJ8/f+bVsa2ojbyoKUtPFdGzJxOrAQA34A53xOEK\nOuMWXDANf6J3rxK4ujLLVizSxdHREQkJCdi6dSssLCwQExMDgElmuW3bNsTHxyuEzbOwyBqhm9mn\nT5/GnDlzUFBQgLS0NCQkJCAgIEAhUn/X9Leur1m2DFi0iPm5GZ5gJ8ZDDYUYib+g4dQMCQny1e9b\n49OnT6hfvz67mV0F2BmFYiPRzWyAeWOPi4uDrq4uAMDZ2ZktSSklFi4Ezp9nfk5Gc3RCOA7BFzFo\ng1aJu6CnS+wmtwy4fv06bGxs0KJFCwBAYmIipkyZImetWFjkh9CBQlVVFTpf7agqUiWomr709DU9\newJ37wIqKgBBCRvxEzoiEv7YhKDsAWhl/h7Xrslby9rN9OnTERAQgOLiYgCAk5MTIiMjRb5eWPGi\niIgIaGtrw9nZGc7Ozli2bJnEdGdhkQZC/+Lb2triwIEDKC4uRnJyMqZOncorJq4IcJMC1ibs7YGi\nIiYIDwAewhbuiEMymuEOHLG4/UU2X5SUGTp0KAwNDXm/i+rtJErxIoCp0ZyQkICEhASZbI6zsFQH\noQPFxo0b8eDBA9SpUwe+vr7Q0tLCn3/+KQvdvnkSE5lEhABQiDqYh9UYgX0Ihh9u9PoV2R/YgivS\nwNTUFNfKTNvWrFnDV3yoMsrWV1FVVeXVV/mamrz/UA4i4Pp14MQJ4PVreWvDIgWEvibVr18fK1as\nwIoVK2ShD0sZ7O2ZJIX37jFR3URAODrjO8TjIIbhjmF3OD04CO3mBvJWtVaxdetWTJs2DRkZGQCA\nhIQEbN68WaRrRSlexOFwcP36dTg6OsLY2Bhr1qwRmBiwbMCfwqapefsWGDAAyMwErKyAceOA6dMB\n/CpvzVjKUJW0+XwISwZ148YN6t+/Pzk5OZGdnR3Z2dmRvb29WAmlpAUACggIoPDwcHmrInWysvgT\nDSqhmBZjEf2rZkwUESFv9Wod4eHhFBAQIHbytGPHjtG4ceN4v+/bt4/8/f352uTk5FB+fj4RMQkx\nmzVrVk6OuP3KhdxcIhsbogULiEpKmGMZGUTu7kzCv9LSSi+vCbdYWxHXvoTOKH744QesWbMGdnZ2\nCrWJzeVbSbOgo8N4RHGD80qhjAAswfXCtjgzcChU584E5sxhfA5ZqsWzZ89w6tQpXtleb29vcDgc\nkVzCRamvoqmpyfu5V69emDJlCjIzM6GnJ17hLLkzbRrg7s74dXMxMmKiSHUB7NoFjB8vN/VYJIiw\nkaRt27ZVHrWkjQjq1zquXi1fAqYJ0qnIqRWRjw/RlzdVlqpjb29P69evp7CwMAJA4eHhFCHirK2o\nqIiaNm1KqampVFBQQI6OjvTw4UO+Nm/evKHSL2/bcXFxZGZmVk6Owtt2fDyRoSFRTo7A0wARNWxI\nlJJSoQhFv8XajLj2JTTg7uLFizhy5Ai6du0KtS87qxwOBwMGDJDqAJaamorly5fj48eP+PvvvwW2\nqelBSVXF1RW4dYv/mKbKZ5xoOAGejR5A5cw/gKmpfJSrBbi5ueHGjRsAqmZj58+fx/Tp03nFi+bP\nn89XvGjz5s3YunUrVFRUoK6ujnXr1qF169Z8MhTVtkUpccqFVvwGxMYCAjbzATbgTp5IPM34Dz/8\ngKSkJNja2vItPQUHB1ddSzEYPHgwO1B8RXY288CWv3XCr/XXIUBjDZSOHgE6dJCHejWeffv2ISUl\nBT169EDbtm1x+/ZtAMB3330nMx0U1bY5HIBu3Qa+/x5ISWFqBFfU7r8CwM4O2LhRYMIydqCQH2Lb\nl7ApR/PmzXnT5Krg5+dHjRo1Ijs7O77j58+fpxYtWpCVlRWtXLmywusHDRpU4TkR1K+13L1bcTXi\nXsoXqLhhI6Z0XjX+775V5s2bR0ZGRtShQwcCQJ6enuTp6SlTHRTVtgEiGjmSaNUq4e2IiE6cIPru\nO4F2qKC3+E0grn0JbT169Gi6f/9+lRWKioqi+Ph4voGiuLiYLC0tKTU1lQoLC3nruH/99RdNnz6d\nMjIyeG3ZgaJi0tKIjIyIVFXLDxaWSKbPljZEkycTFRXJW9UaRdOmTamgoICI2FKoXwMQkbY20bt3\nwtsRMd5QDg5EZ85U3IZF5ohrX0LdmGJiYuDk5ITmzZvD3t4e9vb2YmXQ9PDw4OWJ4lJRUNKIESPw\nxx9/wMjICJmZmZg0aRISExMFpkFgYYohZWQAyclAnTr851JgBYOU67i4LQW5nt5ATo58lKyB2Nvb\nI0vUhfhvEQ8PoGFD0doqKTGZLpcsYdeZajBC3WNDpZArQpSgJD09PWzbtk2orBoRlCRlzMyAN2+A\nH34AQkL+fzwH2vCic9ga44/x7dsDZ8+ym9xCiIiIQGJiIszNzWFkZARAPPfYb4Lhw8VrP2AAsGAB\nk0/fw0M6OrFIFaEDhbm5OaKjo/H06VP4+fnh3bt3yMvLq1anHAn7+n+rA0RZdHSAc+eYKG53d+Dz\nZ+Z4CVQwX2crxo9aB7Rpw3iguLjIV1kFxtPTE3v27EFiYiISExPx7NkzzJo1S+I2WyP5918ABoC3\nt3jXKSkBU6cCGzawA0UNRaQ046tXr8Zvv/0GACgsLMRwcd8ovkKUoCSWqmFvD3z6xB93l5nFwfNB\ns4DNm5mIvX/+kZ+CNQBPT08YGhqitLQUAOMu6+zsLGetFICzZ5l/1dXFv3bUKODKFSA9XbI6scgG\nYZsYDg4OVFJSQk5OTrxj4qbwSE1N5dvMFiUoSRREUP+bRU+Pf3ObwyHq2pUo58pNZgd83Tp5q6iw\nbN++nVxcXKhp06YEgJKSkqhz584y1UEhbfv770XegBbYbvp0onnzKm/DIhPEtS+hM4o6derwxU/k\n5+eLNRD5+vqibdu2ePLkCZo0aYLg4GCoqKhg06ZN6NGjB2xsbDB06FCRs3N+TW2rRyEp4uP5ZxVE\nwOXLQPNhLvgYGsOkV5gxA/jy1szyfzZv3ozly5fj06dPAIDmzZvj7du3ctZKzhQUAGFh1ZPh7w8E\nBf1/XZSlxiB0oBg8eDAmTpyI7Oxs7NixA126dMG4ceNE7uDQoUN49eoVCgoK8OLFC/j5+QFgctwk\nJSXh6dOnmD9/ftXvgEUgZmZAamp5b6g3bwCTtqYwe3kVMZtuI7//MKCwUD5KKih16tThZSEAgOLi\nYpH3KIQVLeJy8+ZNqKio4MSJE9XWVyZERQG2ttWTYWkJODsDJ09KRicWmVFpZDYR4cWLF3j8+DEu\nXrwIAOjRowe6desmMwUrQ1GjVxWJ7Gxg9Ggmk8K//zLpPxITmcJIdfAfTtb1Ra8On5haAvXry1td\nhWDOnDnQ0dHBX3/9hSdPnqB///6wsbHB8uXLK72upKQELVq0wOXLl2FsbAxXV1ccOnSo3Gy5pKQE\n3bp1g7q6Ovz8/DBw4MByshTOtqdPB/T1wVm4QCQv1wqjro8eBbZvB8LC2MhsOSLxmtleXl7o3r07\n1qxZgzVr1ijMIMGFXXqqHB0dZu/68WNg8GDgy3gPAChAXQwo/ht52sZA165MTQEWrFq1CpmZmVBW\nVgbAPAOilCsVtWjRxo0bMWjQIOjr60tcd6kRFgZ07159Of36MbV+nz2rviwWmVGpeyyHw0GrVq1w\n48YNuLm5yUonsfhW0oxXFx0d5mUOANq1A7hj63/FKmhxNQgZP8xlckNduAAYG8tNT3lTXFwMOzs7\nPH78GGvXrgWHw8F4EVNlixIflJGRgVOnTuHKlSu4efNmpUtaChMj9O4d8OIFs2xUXerUYQJ+goMB\nLK2+PBaRqG7hIqFxFLGxsdi/fz/MzMxQ/8vSBIfDwd27d6vcKYt8OXmSP6lgUTEH2Qt+h07DhkD7\n9sy0o1kz+SopJ1RUVNCiRQs8f/4cZmZmYl0ryj7G9OnTsXLlSt7Uv7Lpv8K8BEVGMnYhYt1woYwd\n+6WwCjtQyIqvXzQWL14s1vVC/+cvXrxYzpgVKfgoMDCQDbgTEx0doGPH/88q3r1j9jH++WceM4J0\n7MhE732jsQOZmZmwtraGoaEhANEjs0WJD7p9+zZ8fHwAAO/fv8f58+ehqqqKvn37SvguJEh4ONCp\nk+Tk2dszs9YMyYlkkTLC/GeHDx8u0jF5IIL6LBWQlUWkpvb/OIv+/cucPHaMSF+fKDJSbvrJk4iI\nCAoPD6fw8HCxCheJGx80evRoOn78uMBzCmXbNjZEt24RkeixD0LbbdvGxlHIEXHtS+hm9v379/l+\nLy4u5uXnZ6m56Oj8v1yFs/OXJWMuAwdineshZHUdhMWtTiM7Wy4qyo1z587xzVI9PT0RUjaJVgVU\nFB+0fft2XuGiGse//wKvXgFOTpKV+2VWhffvJSuXRTpUNIIsX76cNDQ0SFlZmTQ0NHgfXV1dmlcm\nulKeAKCAgAAKDw+Xtyo1kqwsosGDmX+/pmNHIhfcoNcwIH/tvQLb1FacnJwoPDycAgICeG9eX9dT\nkTaVPJqy5cgRIm9v3q8Sm1Fw26xfXzW9WKqFuPYltMLd/PnzeXmeFA2F8zWvRXh5AefPAy3wGBfQ\nAzvrz0B8h+k4eJCZjdRGtm7dii1btiAlJQWWlpYAmBm1mZkZ2rVrhwMHDshMF4Wx7enTASMjYO5c\nAKJXpROlHYcDkPN3TBoBFpki8TgK7gPDpbi4WOwdc5aax8GDgKEhkARr9KofjVH5m+FwfiUmTJC3\nZtJj2LBhOHPmDPr164ezZ8/izJkzAJgNaFkOEgpFbCyTjlhafPgA3LkjPfksEkHoQBEWFgYvLy+8\nevUK9+/fR5s2bZDDFsGp9ejoAI8eMUF6xm1M0RGRmFh3L4Y9CYRnR4KXF2rd3oW2tjbMzc0xZswY\nmJmZwdzcHADQoEED7N27V77KyYOCAiZvvTTT0o8a9dUGGYtCIsr61KFDh6hBgwZkampK0dHR4i6H\nSQ0R1WepJty9jOwn/9LT+va0Aj8TUEqDB8tbM+nQvn17mjRpEuXl5REA6tOnDw0YMECmOiiEbcfG\nEjk68h2S+B7F06eMh92X0rMsskFc+xI6o3jy5Ak2bNiAAQMGwNTUFPv37xc7g6w0YVN4SB9uVLd2\ns0b4pXU4uuMiNqnORFYm1bpZBQBERkaCiHhR1r6+vjh+/LictZIDcXFA69bS7cPSEmjZ8v+1LlgU\nEqEDRd++fbFkyRLs2LEDkZGRaNasGVxdXWWhm0hwA+5YZMP2Yw0wtEEYWhXF4PuwHzFxfO1LU56V\nlYXMzExWx2bIAAAgAElEQVSenaenpyvGxrKskfb+BBc/P2DPHun3w1JlhA4UcXFx6Nq1K9NYSQmz\nZs3CPzKqkHbq1ClMmDABPj4+uHTpkkz6ZKkcHR2guZsOuuESnFXuY3j0BPTuVVqrZhZt2rRBjx49\ncOHCBQBMfqZ27drJWSs5IIsZBQAMGgRERzM58FkUEqHusW/evMGCBQuQkZGB0NBQPHz4EDExMRg7\ndqysdER2djZmz56NXbt28R1XGBfCb4zsbGDCBCDzRT4CY3sgAc6IHrQBR/9WnNQu1aFsnieujUVF\nRaEDN0JRBsjdtt+9Y/J9ZWYyNa95eknWPVYUdHXZxMaSRuLusaNHj0b37t3x6tUrAECzZs3wxx9/\niKXUmDFjYGBgAHt7e77johZ5WbZsGfz9/cXqk0V6cPcs1HTrozfOoYt6LP4ymldrigs0bNgQS5cu\n5WWNTU5OFsvTT5hdnzp1Co6OjnB2dkarVq1w5coViekuMeLiADc3vkFCGvCSyERFg2xsQaVUpoAv\n88nKkqoKLKIgbLe7VatWRER8NbMdv/KEEEZUVBTFx8fzRbcWFxeTpaUlpaamUmFhIS8vzl9//UXT\np0+njIwMKi0tpblz59Lly5cFyhVBfRYpwvOGevaByN6eKDBQ3ipJhMGDB9PKlSvJxsaGAFBeXh45\nODiIdG1Fdl2WvLw83s93794lS0vLcnLkbtsLFhAtXFjusMS9nriUlhJZWhLFxVW5TxbREde+hL4u\naGho4MOHD7zfY2Njoa2tLdZg5OHhAV1dXb5jFRV5GTFiBP744w8YGRlh48aNCAsLw7Fjx2purpxa\nDM8bykIPuHQJOHQI+P33KsubMAHw9ITcYzRSUlIwb948XjnU+mJU/hOleFFZeXl5eWjYsKFkFJck\ncXGy2cjmwuEwKYzZTW2FRGia8bVr18Lb2xvPnj1D27Zt8e7dOxw7dqzaHYtS5OWnn37CTz/9VKkc\nhSnu8q1jYMBUQevQAVBXB378UWwRT54wpQ8AZtDgFlqSJREREXj79i0WLFiAN182V1NSUlDn6+Lj\nFSCKXQPAP//8g/nz5+P169e8MsNfIzfbLi0Fbt6U7UABMMF3Tk7AunVA3bqy7buWI/XCRa1atUJk\nZCSSkpIAAC1atICqqmqVO+QiyZoW7AChIBgbM4NFx45AvXrAmDFiXa6uzvzr6grs2CEF/UTA09MT\nQUFBmDt3Lm9fonPnztgj4puuqHbdv39/9O/fH9HR0RgxYgTv+SqL3AoXPX4MNGgAyLpUa5MmQKtW\nTO1ebnZZFokg9cJFADOdTktLQ3FxMeK/JPAaOXKkWB19jShFXkRBYaqAsTCYmzPLUJ06MYOFr6/I\nlx48yMwkduyQb+LB7t2747vvvkNsbCy8vb1x+/ZtkZeHxLVrDw8PFBcX48OHD2jQoEG1dZcIsnKL\nFYSfH5PSgx0oFAqhexTDhw/HnDlzcO3aNdy6dQs3b97EzZs3q92xi4sLkpOTkZaWhsLCQhw5cqRK\nVb7YyGwFpHlzpvb2jBlM3VUR4e55SGKQqO5+R3h4OE6cOAEAePjwIaKiokS6ThS7TklJ4bkmcl+8\nFGaQAGQXaCeI/v2BW7eYGt0sCoPQGcXt27fx8OHDai0V+fr6IjIyEh8+fECTJk2wZMkS+Pn58Yq8\nlJSUYOzYsWjZsmWV+2BRMOzsgJAQoGdPZmbRs6dMu6/Ofse8efOwd+9eaGpqAgB+/7JBL0ocRdni\nRWXtmuuMMXHiRBw/fhx//fUXVFVVoaGhgcOHD4t3c9ImLo6pay0P6tVjMlHu2wf88ot8dGAph9CA\nu8GDB2P9+vUwMjKSlU4iI/egJBbhxMQA/foxf6lluI/Erafh6gpcvCjeLKV58+a4d+8e6tSpIzcb\nk5tt5+UxjgmZmYCADXyJ16MQ1CYuDhg+nBntORyR+2QRHXHtS+iM4t27d7CxsYGbmxvP80OUQvOy\ngpvrid3MVlDatGEGiSFDgFOnmN9lQHX2OywtLREWFoYbN25IRzlF5vZtwN5e4CAhM9zcAFVV4No1\noH17+enBwkPojIK7/l92BOJwOOjYsaPUlRMGO6OoQYSGAiNHMv9+9528tamUAQMG4M6dO+jSpQt2\n7twJf39/cDgcbNiwQWY6yM22V60CXr8G/vxT4GmZzCgAJh7n0SNg9252RiEFJJ7Cw9PTE+bm5igq\nKoKnpyfc3Nzg7OxcLSUlCbuZXUPo2ZN5vffyAu7fl7c2ldK3b18MHjwYb9++BcC4iLdq1UrOWskI\nWQfaVcSoUYwjRJlgXxb5IXRGsWPHDuzcuROZmZlISUnBkydPMHnyZISFhclKxwphZxQ1kEOHgNmz\ngfBwxjtKQfn06RPS09PRsmXLb2ePgoiJhbl2DbCwqEAvGc0oAGawsLUFZ95cdkYhYSQ+o9i8eTOu\nXr0KLS0tAMxGH/dNSxFgZxQ1DF9fYOlSoGtXIC1N3toI5PTp07C2tkbrL7EECQkJVXLdrnG8fAkU\nFzOxMIrA1KnAli3y1oIFImxm16lThy99QXFxsUSjqqsLG3BXAxkzBvj8GejSBYiKYt5i5cCECYxj\njbo6s/nN3fQODAzE3bt30alTJyQmJsLZ2RnPnj2Ti44yJTaWCbRTlOfbxQVo3Bh4Lm9FWITOKDp2\n7Ijly5fj06dPuHTpEgYPHgxvb29Z6MZSm/nxR2DSJGaw+PdfuajAjbU4f54ZNLioqqpC5ytXKSUp\np9tWCBRlf6IsQnK9scgGoda/cuVK6Ovrw97eHtu3b4eXlxeWLVsmC91Egl16qsHMmcMsRXXrJpdN\ny4pyS9na2mLhwoW8GixTp05F27ZtZa6fzJFnRHZFDBzI/PvggXz1+NaRRG5zeVHD1WchYuoQzJlD\n5OJClJ0t06659TSysviP5+Xl0fz586lVq1YEgH755Rf6/PmzyHLPnz9PLVq0ICsrK1q5cmW58/v3\n7ycHBweyt7entm3b0p07d8q1kbltFxSQLj58VTJI8EcUxK5HIazd+PGiNWYRCXHtS6jXk729fbkd\ncm1tbbi6umLhwoVyzVHDej3VEoiYjcuEBCZHlIaGvDXiIa6NlZSUoEWLFrh8+TKMjY3h6uqKQ4cO\n8aWniYmJgY2NDbS1tREaGorAwEDExsZWq99qc/MmOG6u1fdUEqOdWLJ09ZhZRePGwi9gEYrEI7N7\n9uwJFRUVDBs2DESEw4cP49OnTzAwMMDo0aNx5syZainMwgIOB9iwARg3jongPn0aUBEpsbFU8Pb2\n5nuQ+vbtCy0tLbi6umLixImoW0mthLKFiwDwCheVHSjalIlOd3d3x8uXL6VzI+IQEwPAVd5aVMzw\n4UwQYCUlk1mkh9Cn8fLly0hISOD97uDgAGdnZyQkJJSrgc3CUmWUlIDt24HevYFp04BNm+TmfWNh\nYYH379/D19cXZ8+ehaamJjQ1NfHkyROMHz8e+/btq/BaUQsXcQkKCoKXl5fAczItXBQTA0CBN45n\nzWIi+ufPl28O+hqK1AsXlZSUIC4uDu5fNrlu3LiB0tJS5mI5vvVxYXM91SJUVYG//wbatQPWrwem\nT5eLGtevX8eaNWt4D9aBAwfg4uKCW7duwdbWttJrxXEdDw8Px+7du3Ht2jWB52Xq+v3V0pfCYWbG\nvERs2cJmla0CUi9cFBQUBD8/P+Tl5QEANDU1ERQUhPz8fPz888/iaSsF2DiKWoa2NnDuHNC2LRMd\n3K+fzFXIz8+HhYUFPD09sXjxYjx//hz5+fkAwKujXRGiFi66e/cuxo8fj9DQ0HL15GXOmzfAx4/y\n1UEUfvmFKbX744+MnbDIDlF3vbOysijra/cQOSOG+iw1jRs3iBo2JLp1S+Zdnzt3jpo0aUIdO3Yk\nANSkSRM6c+YM5eXl0bp16yq9tqioiJo2bUqpqalUUFBAjo6O9PDhQ742z58/J0tLS4qJialQjkxt\n++RJol69JO+pJA1Zo0cTLVok2oUsFSKufVXYOjg4mIqKiiq8sKCggHbv3i1WZ+Lw6NEjmjRpEg0e\nPJh27dolsA07UNRyTpwgMjYmev5c5l1//vyZEhISCAB9+vRJrGtDQkKoefPmZGlpSStWrCAiom3b\nttG2bduIiGjs2LGkp6dHTk5O5OTkRK6uruVkyNS2Z88mWrKkZgwUqalEenpEb9+KdjGLQMS1rwrd\nYzdt2oSgoCBYW1vDxcUFjRs3BhHhzZs3uHXrFh4/fozx48djypQpUp3xlJaWwsfHB0cFlChj3WO/\nAdauBfbuBa5eBb7kG5MWERER5fa6vrax8PBwdOrUSap6COpXqri7A6tXg+PZUXHdY8u28/dn6mWs\nXSv8YhaBiGtflcZREBGuXbuGq1evIj09HQBgZmaG9u3bo23btiJt3I0ZMwbnzp1Do0aNcO/ePd7x\n0NBQTJ8+HSUlJRg3bhzmzZtX7tozZ85gy5YtGD9+PAYMGFBeeXagqP0QAZMnA8+fA2fOSNVtdvbs\n2YiKikLXrl15L0dt27bFsWPHcOvWLVy+fBmdOnXC6tWrpaYDF5nZdl4eYGgIvH8PTr26NWOgeP2a\nKbV75w4gYP+HRTgSHSgkQXR0NDQ0NDBy5EjeQFFRUNKtW7cQHx+POXPm8JVe7devH06dOlVeeXag\n+DYoLgb69GE2t7dskarbbG5uLk6dOoVr167h+fPnOH/+PCZNmoT27dujX79+0JBRMKDMbPviRWDZ\nMiAqSrp/3CUta8ECID2dqa3NIjYKN1AAQFpaGry9vXkDRUxMDBYvXozQ0FAATD4pAHxeVJGRkThx\n4gT+++8/tGzZEtMFuEqyA8U3RE4O4zbr5wfMnCmzbmt9zeyFC5l/ly2rWQNFXh7QsiVw+DBjFyxi\nIfHIbGkgSlBSx44dRSq3KtOgJBb5oaXFuM22aQM0bQr07y+VbqobmFTjiIoCFi2StxZCKT+J1ADw\nAvhSUltXF8jMlLFS3xByGSgkXc+CHSC+EUxNgVOngF69mLVpFxeJd8G1pW9iwPjvPyA+nhl8FRyB\nL79EQMeOgI8POD9K16nmW0foQPHgwQNERUUhLS0NHA4H5ubm8PDwEBqhWhmiBiWxsJTDxQXYuZMJ\nxIuJYQYPlqoREwPY2ipUEkax4HCAbduYwQLsQCFNKqxHsW/fPri5uWH27Nl48+YNmjZtCnNzc7x+\n/RqzZ8+Gq6sr9u/fX6VOXVxckJycjLS0NBQWFuLIkSPfRqlJFsnQvz+T+6d3b2bvQsJkZ2cjLi4O\nN2/eBMB46H2sCZHL4nL+PDM7q8nY2AAzZjA/l5TIV5faTEUBFuvXr6ecnJwKAzA+fvxI69evFxqo\n4ePjQ40bNyY1NTUyMTHhBekJCkoSl0rUZ6ntlJYSTZ5M1KMHUSWBoeIQFRVF3t7eZG9vTyNHjqSf\nf/6ZANDIkSPJ3t6evL29KTo6WiJ9CUMmtm1rSxQXV6ZP4ZfIPeBOEMXFTJulS0UTyCK5yOzKKCgo\nqMplEgcABQQEUHh4uLxVYZEHRUVEPXsSTZzIDBzVZMaMGfTkyRMiIgoPD6eAgAC+ByopKYlmzJgh\nVI6wwkWPHj2i1q1bU506dWjNmjUCZUh9oEhLI9LXJyopKdOn8MsUcqDgtjEwILp2TTSh3zji2pdQ\n99iOHTtiz549sLCwAMBkjx03bhzu3r0r1ZmOKLDusSzIyQHatwdGjWKWoySMNAoXvXv3Ds+fP8c/\n//wDXV1dzBKgtyRtW08PyMoSrW2NcY8V1OafU0zG4YQENhW5EMS1L6E1s3/55Rf06tULmzdvxi+/\n/IKJEydiz5491dFRorA1s79xuG6zf/wBnDwpEZHDhw/H2bNnea7XaWlp6Ny5s0jXli1cpKqqyitc\nVBZ9fX24uLhAVVVVIvoKIytLQEFT776gQ4f5jtV4+vVj9q0mTKglN6Q4CPV66tGjB7Zu3Ypu3bpB\nX18fCQkJMDQ0lIVuIsGmGWdBkyaM22zPnozbrGv1KrV5eHhg1qxZWLduHQCge/fuWCtiXiFxCxdV\nhtRihP77D4iIABTohU9i/P47k4p8xQomepsFgAwKFy1duhRHjhxBdHQ07t69i44dO2Lt2rXo06dP\nlTtlYZE4rVoBu3YxHlHXrzOFbqrIxIkTYWNjw5tFREZGorGItZolGSMktZegqCjAwYFZk6pt1KvH\nlNJt3ZqpWeHvL2+NFILqFi4SuvT04cMH3Lx5E23atMHEiRNx8eJFrF+/XmxFpQW79MTCo18/YM4c\nZvmhGu6s+/btg6+vL89l28vLC4mJiSJdWyNihI4fB7y95a2F9GjcGIiMBDZuZGYV7DJU9anKjnmp\nBDxMJEEV1WepzZSWEk2ZQtStG1FhYZVE9OvXj/79918iYmwsLi6OHB0dRbpWlMJFXAICAmTi9cQn\nKj+fSFeX6OXLytuJIqua7aQu6907Ind3pthRFW2htiKufVXY2s/Pj27cuFHhhbGxsTR69GixOpM0\n7EDBIpCiIqJevYgmTKi22yzXxv777z+RrxFWuOj169dkYmJCWlpapKOjQ02aNKHc3FyB/UoCPlEH\nDjCxJ8LaiSKrmu1kIisvj8jLi7GHvDzROvwGENe+KnSPvXfvHn7//XfExsaiRYsWfIWLkpKS0LZt\nW8yePRt2dnaymvyUg8PhICAggM31xFKe3Fwmh5G/PzBpkkiXBAYGYvLkyTAwMOBt/i1evJjnRvj6\n9Wts27ZN7PXdqiBJ91g+99Ju3YBx44ChQytvJ4qsaraTmayiImDiROD+fcZDTl9feKe1HImnGS8o\nKEBCQgKeP38ODocDMzMzODo6om7dutVWtrqwcRQslZKczKSgPnVKpMR3Z8+exdq1a1FYWIjvvvsO\njRs3xoIFC+Dv74/4+HjUqVMHs2fPhpeXl9RVl8pAkZ4OODsDGRmAgOdXof64S1oWEZMl9+hRIDSU\nyUD8DSOxgSI9PR2mCp5wjR0oWIRy5gwwZQpw6xZgYCDSJS9evMC1a9eQnp6OefPm4fDhw2jXrp1M\nN6WlMlAsWcJUh9u6tfJ2osgStU8ZyhIFXfX/kKljyXhGtWol2kW1ELHtq6I1KScnJ97PAwYMEGs9\nS1ZUoj4Ly//59VeiDh2EbmgOHz6ciIj++OMP3jF52Zgk+wWIWZ83MCC6f7/ydqLIErVPRZV1/DiT\nvuTnn5nN/W8Qce1LqHssADx79qwqg5ZMYN1jWYQSEMCk0p47t9Jmt2/fxqtXr7B7926cPn2aV8c9\nMzMTmTW9Ks6ffwKdOjFpxb91BgwA7t4FUlMBe3tmOaq0VN5aKTQVLj05OzsjISGh3M+KBLv0xCIy\nWVlMxPaSJcCwYQKbbNiwAVu3bsWzZ894NdvT0tJgbm4ODocj0xcmiS89NWgIxMUBlpaVt6vBS09V\nknXpErN3kZsL/PorMGgQoKwsXFANR2J7FMrKylBXVwcAfP78GfXq1ePrJEcKdQDEhR0oWMTi7l2g\nSxcgLIyJTK6ASZMmYdu2bQBqR81sDgegmbMAIWlIaswf92rKEoau+n/IfPGpdkauf0HiXk/yJD8/\nH56enggMDETv3r3LnWcHChaxOXiQeXO8eZMptCyEGj9QBAWBM24s6NNnJr1FpX0q7h93mcgiAiIj\nwenkCdLWAezsAEdH5qXCwYFZpqqp1QC/QuLZY+XJ6tWrMVSAv7c0kPQ+hyTlsbIkKGvYMKBPH2D4\n8Nq/Ln3sGLBwIYAIoYOE6ERISI4CyuJwAE9PRlZaGrB0KdC8ObNkN3Uq0KgRYGXF7HEEBjLZilNS\nKrUjRX1GxEXqA8WYMWNgYGAAe3t7vuOhoaGwtrZGs2bNsGrVqnLXXbp0CTY2NtCXUXAMO1B8Q7J+\n/51Zk16yRGJ9chFm1wDw008/oVmzZnB0dJTe3t/798DMmUy5U0X7g1wTZOnoMJv/06YBu3cz7tU5\nOcDZs0ywYlERc7xzZyb5YNu2TGDnli3A1au8Er2K+oyIi9DssdXFz88PU6dOxciRI3nHSkpK4O/v\nz1fcpW/fvrh16xbi4+MxZ84cREZGIj8/Hw8fPkS9evXg5eUl0cycLN8wqqqMp4urK+DmBkgogK4i\nuy5btCgkJARPnz5FcnIy4uLiMHnyZMTGxla5z4qLEjUEkA44A8A/VZbPUgYVFcDamvmUXenIygLu\n3WP2wBITgb17gQcPmAjwOnWYGYetLTP41K3LfOrVE/yzjGqUiIvUBwoPDw+kpaXxHStb3AUAr7jL\nzz//jBEjRgAAli1bBgDYu3cv9PX12UGCRbIYGjJBVxKsrVKRXZcdKE6fPo1Ro0YBANzd3ZGdnY1/\n//0XBiIGA34NtyhRZbCPjviItOmtC2RmfvmhQwfmw6WkBHj2DKvs/sLipcJnrrrIRKbylz0zQQNI\n3bpYFd8VMsgeIxjJhG9UTmpqKtnZ2fF+//vvv2ncuHG83/ft20f+/v5iywXAftiP1D+iIopd9+nT\nh66VqevcpUsXunXrFmvb7EfmH3GQ+oxCEJKaHRDr8cSiQIhq11/braDrWNtmUSTk4vVUI4q7sLCI\niSh2/XWbly9fwtjYWGY6srBUBbkMFC4uLkhOTkZaWhoKCwtx5MgRXjUxFpaaiih23bdvX/z1118A\ngNjYWOjo6FR5f4KFRVZIfenJ19cXkZGR+PDhA5o0aYIlS5bAz88PmzZtQo8ePVBSUoKxY8fybfix\nsNREVFRUBNr19u3bATC1uL28vBASEgIrKyvUr18fwcHBctaahUUExNrRkCN+fn7UqFEjvk3xo0eP\nko2NDSkpKdHt27erJWv27NlkbW1NDg4O9P3331N2dnaVZS1cuJAcHBzI0dGROnfuTOnp6VWWxWXN\nmjXE4XDow4cPVZYVEBBAxsbG5OTkRE5OTnT+/Plq6bVhwwaytrYmW1tbmjt3bpVlDR06lKeTubk5\nX+ZicWXFxcWRq6srOTk5kYuLS6VVGoXJSkxMpNatW5O9vT15e3tTTk6OSLLEhbVt1rZFkSVP264x\nA0VUVBTFx8fz3eyjR48oKSmJPD09xXqYBMm6ePEilZSUEBHRvHnzaN68eSLJWrRoEbVp04ZPVtkv\n3crKitq3b19lvYiI0tPTydXVlZSVlUV+mATJCgwMpLVr14p0vTBZV65coa5du1Lhl9Tdb9++5bvm\n+fPnpKGhwauv3rFjR9q1a1eF98hl1qxZtHTpUpH14nA41Lx5c96xjh07UmhoKBExJUk9PT2rfI8u\nLi4UFRVFRES7d++mRYsWiSRLXORp2/v376fu3btXKKtVq1ZkZGTEO1bWtjds2EBjx44VSa/169eT\ngYGBQNvu0aMHmZubS8S2U1NTicPh8O5XXFkcDof2798v0La//q44HA6lpKQQEdGkSZNo3LhxErXt\nr2V17NiRZs2aRe3bt5e5bSt0Co+yeHh4QPer3DzW1tZo3ry5yDLMzc2hrq4OLy8vdO/eHS9evOAl\nN+zWrRuUlJivw93dHS9fvhRJ5pIlS3Dw4EG+Y5qamryfS0tL+X6vDEH3CAAzZ87ExIkTK72WiPD7\n77+jefPmUFdXx/Dhw7Fr1y6UfpVegKrgTSNIr61bt2L+/PlQ/RIg5OrqiitXrvDOm5qaIjc3l+fR\nw+FwwOFwKrxHrm5Hjx6Fr68v71haWhqUlJSgqakJTU1NWFhY8CKePTw8yslo3LgxPn78CADIzs7m\nbRTv2bNHYPvK7jE5OZl3TdeuXXH8+PEKr68Ooto21341NTVhaGiIESNGlEvOKUhWZbb9ww8/4MKF\nCxXqpaqqyueVVdaW8/Ly0LBhQ5Hu0cHBgadDWWbOnInVq1cjLS0Npqam0NTUhImJCWbNmlXOdiu7\nR0Bytn3gwAE+2+Zmh6jsu9q6dSt27twJXV1d5Ofno0mTJuV0+9q2KyIwMBCdO3eGh4cHHj58iHbt\n2iE2NhaNGzfGp0+fAPDbdkV4enoiKChIIrZdYwYKScDhcHD27Fnk5uYiJCQEBQUFvMC+suzevbva\n5S4XLFgAU1NTvH79ulqyTp06BRMTE1hWkh4aYNJC7Ny5E/v27UNeXh7Onz+Pa9eu8XnYAMDGjRvh\n6OiIsWPHIjs7u8p6JScnIyoqCq1bt4anpyeKioqq7dIZHR0NAwMDgff68eNH5Obm4tChQ1iyZAku\nXrwoUMbKlSsxa9YsmJqaYs6cOfjtt9+qrI+trS1OnToFAPj777/LfZeypqz93rlzB/fu3RNov5Uh\nSdveu3cvfv755yrL4dq2w5dMvlFRUcjNzUVYWBgOHjyInTt3lrumuLi4QnkbN25Er169QETVsu20\ntDQ+275161aVZXGpzLa/hsPhwNfXF/fv30fLli3Rvn17DBgwACtXrsThw4dx48YNkWy7MndtcW37\nmxooyqKvrw8NDQ08ePCAdyw2Nhampqa4cOECVq9ejcjISN65PXv2wNLSElpaWmjatClvFrFnzx4M\nGTKE1+7SpUuwtrbG5s2b0a9fPxgaGuLw4cMAmDcFbuQ58P+3Ze6bU3BwMLp164aHDx/C0tISmzZt\nwooVK7C4TDimoD/GycnJ2Lp1Kw4ePAh3d3coKSnBxsYGW7duRV5eHi9HzMWLF7Fw4UIkJiaicePG\n6Nu3L99b9rRp02BqagptbW24uLjg6tWrvHN//vkn0tPTMWrUKGhpaeHRo0dISkpCbGws1NXV8erV\nK3h7e0NTUxNr1qwpd29fk5WVBRsbG+jp6aFnz55IT0/HoUOHMKyCWhFcWrduDVtbW9y/f7/cuY8f\nP6J169bIycmBkpISPDw84Ofnh0ePHmHy5MmIiYmBpqYm9ERMH717925s2bIFLi4uyMvLg5qamkjX\nyQIDAwN07969nP22bdsWjo6OePr0aTn7bdCgAUJDQ7Fw4UI++y1rA1z71dHRwdSpU/nsjWu/y5cv\nR3p6Ovr16wddXV0++7WxsYGWlhYsLS2xY8eOCvX/9OlThbbdokULeHh44MGDB3j+/DmUlJSwe/du\nmACEKGAAACAASURBVJmZoWvXriAibNy4EUlJSTAwMMCoUaMwfPhwpKamIiQkBADjXWZsbAwjIyOs\nLZNe/caNG2jTpg10dXVhZGSEqVOnoqioiE+37Oxs/Pnnn0hJSYGpqSkGDx4s8Lsqy+jRo7Fo0SJ8\n/vwZaWlpePXqFTQ1NaGlpYXXr1+jS5cu6N+/P699fHw8GjVqhJKSknKyiNkSAMD8sR85ciTevHmD\nkSNH4ocffoCbmxv++OMPjBkzBtevX4erqyt0dHTg5uaGmJgYAMxgHh0dDX9/f2hqaiIwMJCvD3Ft\n+5sbKLj/Aa9fv0Zubi7c3d0BABkZGejWrRs0NDSQk5ODNWvWYODAgfjw4QPy8/Mxbdo0hIaGIicn\nBzExMXBycion+/379xg4cCBWrFiBDx8+wNLSEi9evEBqaioA4QFZBgYG2L17N2xsbBAcHIy5c+ci\nOTkZjo6O8PX1RUlJCVq1aoW3b9/yXRcWFoYmTZrAxcWF73jjxo2hrq6Oy5cvAwDU1NSgpKQEDoeD\ncePGlSvE4+bmhjt37iArKwvDhg3D4MGDUVhYyDufm5sLX19ffPz4EcbGxrh79y4AJn+RiooKDh48\niNzcXMyePbvS+7x06RLevXuHkydP4v379/Dw8ICPjw9OnjxZYbZg7sNz7do1PHjwAM7OzuXaTJ06\nFe/fv8erV68QGRmJ+Ph4XLt2DS1btsS2bdvQpk0b5ObmilytrkWLFrhw4QJu3boFHx8fkd4GpQ3X\nfl++fInQ0FA+++3Tpw9+/fVX3LlzB4aGhnz2O2XKFJiZmSE3N1cs+719+zbv/Nf2+7Xrr4GBAc6d\nO4ecnBwEBwdjxowZFSY9TElJQVpaGhwdHWFhYcGT9/btWzx8+BDR0dF8/8dRUVF4/PgxQkNDERwc\njBMnTsDCwgLPnj1DXl4eFi9ezFve5HA4uH//Pp4+fYqLFy9i1apVCAsLA8B4pq1fvx4fPnxATEwM\nwsLCsH//fj7dCgoKcODAAcTHxyMuLg75+fn48OFDpf8v3H7r1asHc3NzGBkZITc3Fzk5OdDX14eS\nkhKUyxRE2rdvH3x9ffmOCaK0tBR79uyBqakpEhIS0OpLne9BgwYhLi4OvXv3xvTp05GZmYmZM2ei\nd+/eyMrKwvLly+Hh4YHNmzcjNze33EAhrm3XmoFClGUPIkL//v2hpaWFdu3aQU1NDQsXLgQALFq0\nCMrKyoiKikLdunXRtWtXuLi44Ny5c+BwOFBSUsK9e/fw+fNnGBgYwMbGppz8kJAQ2NnZwd7eHsrK\nypg+fTo0NDRgamoqko5eXl68tc0OHTqgR48eCAwMRGpqKg4dOgRlZWXem0hZ3r9/D8MKchapqKjg\n/fv3AMD3R//kyZPlgsF++OEH6OrqQklJCTNnzkRBQQGSkpJ45+vXr4+ePXuCw+FgxIgRePLkCQDg\nyZMnICJoaWlVen9cDhw4AH19fbRo0QJKSkqYP38+4uPjYWFhwass9zUNGzZEgwYNMH78eKxatQqd\nOnXiO19SUoIjR46gWbNmuHXrFszMzNC7d2/eOnNVlsXevXsHgHlYly1bhsmTJ4stQxJwdS9rv6am\nprC0tOTZ7/79++Hl5YWePXsCADQ0NHj2e+nSJRQUFOCnn34CEQm13wEDBvDst2z2ZiJCbm4u7/dL\nly7xXe/l5cX7o9+hQwd0794d0dHRAu/J3t4e//77L1JTU3kvUrm5ubC2tkbfvn0xfvx4+Pn58e49\nMDAQ9erVQ926dXHgwAGMGzcOampqqF+/Pn777TccPnyYb/bavn171KtXD3Z2dvDz88OhQ4cAAN99\n9x3c3NygpKQEMzMzTJgwAXFxcXy6DR8+HDdu3ECTJk3g6+uLnJwcNGjQQNh/U4U2dvnyZVhZWeHs\n2bMAGFs9fPgw3+rC1xw9ehSOjo5ISkpCQkICTp48CSsrK97zeOXKFTRs2BAtWrTADz/8ACUlJfj4\n+MDa2hqnT58WqpPYti3StrkC4OPjQ40bNyZVVVUyMTGhoKAgOnnyJJmYmFDdunXJwMCAevbsWakM\nc3NzCgsLIx8fH9LT0yMA1KhRIwoKCiItLS3icDikrKxMysrKpKamRhoaGrRq1SoiIrpw4QJ169aN\ndHR0qHfv3vT48WMiInJ3dydVVVVSVVUlLS0tcnFxoYEDB5KdnR05OjqSnp4e/fHHH0TEuPANHz6c\np8/XHhodOnQgVVVVAkAcDodUVFTo119/JSKi8PDwCr2etm7dSmZmZgK/Lw6HQ5qamhQUFEQGBgZk\nbGxMDg4O1K9fP1q/fj2fR9bvv/9OLVu2JG1tbdLR0SElJSW6cuUK+fj4kIaGBikpKZGJiQnt3r2b\nnjx5QgDI1taWvvvuOzI0NKSwsLAK783T05OCgoLIx8eHVFRUePeorq5OOjo6pKKiItDTrDIvFh8f\nHwJAKioqvHuNjo4mNzc3cnR0JGtrazI1NSUiouDg4Eq9zwTZ1/r166l58+bUvHlzmj9/foXXVhdR\nbZtrv0REkZGRpKWlRXFxcURENHnyZKpbty6pqqoSh8Phfb+DBg0iKysr0tfXJ01NTVJWViYzMzOe\n/Zb9Xn777TcaPHgwn16qqqqkrKxMJiYm1LdvXzI1NeXZdo8ePfj+b0JCQsjd3Z309PRIR0eH1NTU\nePbbuXNnUlJSIjU1NZ4NlQWAQO8u7v9/cXEx75iWlhbp6uryvq9t27YRALK2tiZra2sCQKmpqbz2\nmzZtol69ehERUVJSEvXu3ZsMDQ1JS0uL96xz9eJwOHTnzh0aPnw42dn9r70zD2vq2tr4GyZFxQFR\ni6KCgEZmBERQBAdErRNqFXAeoFqnWmu19uuVtk69xVqlg7ZX1KJSxaG0Cta2gIoD4FBQrIgWFK0o\nIlZwaBjW9wfmmJAEEnIgCezf8/Bozjl77XVy3mRlT2s7kLW1NffZqq4hyVlPM2fOJDs7OzI3NycD\nAwPS19fn7nHmzJn05ZdfUrt27Sg3N5cSEhKoV69eCvWwevVqsrS0lNJEVFQUpaenk5WVFbVs2ZL6\n9etHixcvlnpe4me2bt06IpL+zKmrbZ0JFHwg+UEjIvrggw+4KWbr16+n0NDQWm28ePGCli1bRj4+\nPkQkLZ5du3ZRv379uGsrKyu5B0NU9UU8fvx47vzZs2e5D9qLFy/I2NiYDh48yH0oxo0bx01bS0pK\nIgsLC7k+ZWdnk56ensy86tu3b1OzZs0oJSWFiIhef/112rJlC3d+/fr1nO8nT56kjh070pUrV7jz\n7dq1496v2oKclZWVUoGCiCggIID27t2r8D2WpLbpjuIPa3l5ORkZGdHVq1e5c9u2baNBgwYREdHO\nnTuVnqasrTRW/RJJf+lKIu/5DxkyhL7++mvudXZ2NhkaGlJFRQV3vTgQEhG99957XLLGwYMH0/Ll\ny6m0tJSIiDZt2iTz5S+eXk1E9PXXX9PQoUNl3qvqPs+cOZO71+TkZLn3GhYWRp988glNmTKF1q5d\nq/C9CA8Pl/qsSSLpQ3R0NPXt21fqvJeXF+3atYuIiAYNGsQ9O3VpNF1PdeHtt99GWloaUlNTMXXq\nVPz88884fvw4Kioq8OLFCyQnJ+Pu3bt48OAB4uLi8PTpUxgaGqJly5Zy+xZHjhyJrKwsHD58GOXl\n5diyZQsKCgq48y4uLjh58iTy8/Pxzz//SM1aEIlEEIlEMDMzg56eHhISEhTO7KlOz549MW/ePEyZ\nMgWpqamoqKhAVlYWJkyYgFGjRqF///5c/YcOHcLz589x48YNbN++net3LikpgYGBAczMzCASifDx\nxx+rtC96p06dcPPmTaWunTdvHtatW4erV68CqBqEjo2NVboueejr62PSpEn44IMPUFpailu3bmHT\npk2YOnUq59+dO3dkBi51mcaiX1UJDg7Gpk2bkJeXh9LSUqxatQpBQUFS02/XrFmD58+fIysrCzt3\n7uTGvkpLS2FiYoIWLVrg2rVr+Oabb2TsR0RE4PHjx8jPz8eWLVuU2mWTJAagO3XqhKKiIpnPz/Tp\n07Fjxw789NNPNXY7kZLdpCNGjMD169cRExOD8vJy7Nu3D9euXcOoUaM4P5T9TNZGkw4UZmZmmDFj\nBj799FNYWFggLi4O69atQ8eOHdGtWzds3LgRRITKykps2rQJXbp0Qfv27XHq1ClOYOJBLLG92NhY\nrFy5EmZmZrhx4wYGDBjA1Td06FBMnjwZTk5O8PDwwOjRo7myJiYm2LJlCyZNmgRTU1PExMRg7Nix\nUv7WNBj+5ZdfYu7cuZg6dSpatmwJR0dHODk5Sa3xWLp0KYyMjNCpUyfMmjWL+xIFgOHDh2P48OHo\n2bMnLC0tYWxszI2tVL9Pef68//77WLNmDdq1a4fPP/+8Rn/HjRuHFStWICgoCG3atIGjo6PC+em1\n3bfkucjISLRs2RI9evSAj48PpkyZglmzZgEAhgwZAnt7e7z22msyYzy6SmPSryrnZs+ejWnTpmHg\nwIHo0aMHWrRogcjISKnrfX19YWNjg6FDh2L58uUYOnQogKogsHfvXrRu3RphYWEICgqSsT927Fi4\nubnB1dUVo0aNwpw5c2Teq+p+SZ4TCoUIDg5Gjx49YGpqygXb/v37Q09PD25ubjLrLKrfr6L3Q/Jc\n+/btceTIEWzcuBFmZmaIiIjAkSNHuFl9S5YswYEDB2Bqaoq3335bYX3KICBlwxdDpwgPD0dMTAzO\nnj2r9HRQBoNRvwwdOhQhISGYPXu2pl1RCa1oUcjbVzsjIwNeXl5wcnLCmDFjpGZbMGonPDwcixcv\nlpnRwahfFO0RL0mD7JnN0DrS09Nx8eJFpbqytA5eRjrURJN5dpoCaWlp5OTkRC9evKDS0lKyt7en\nrKwsTbvVKKktl9XRo0e5GTjnzp0jT0/PhnSv0aEr2p4+fTq1adOGG2jWNbSm6ykvLw+jR4/G5cuX\nAQBt27blluHn5+dj+PDhUqtQGarx4Ycf4sWLF3j+/Dm6du2KFStWaNqlRkt1LUsyb948DBo0iPtV\nKRQKceLECbYnhRowbdc/GtkKVRnEuUjGjh2rMBcJX1uqNkXUydHT1ODzt9Tdu3elBjItLCxw584d\nmUDBtF13mLaVQxVda8UYhTyUzUVCL6elKfu3evVqlcvU5a8h6mksdWjzvdQH1e0qCgr1/R7Vx3uu\n7T5q6z17trqCuzBHMPYAWA0nJ0Jxcf35pyq8tSgeP36Ms2fPIi8vDwKBAJaWlvDy8kKbNm3qZE+c\niwSoShFx9OhRvlxlMGpEUssAcOzYMbW0LAnbM5tRnX4mWThU6o93EYEYhEAgCMeJE0Dbtpr27BVq\ntyhOnTqFMWPGYODAgfjhhx9w+/Zt5OXlISYmBj4+PhgzZoxUFlJl0ZY8O4ymgzwtA1Bby5KwPbMZ\nUmRJBwkAmDdPu4IEAPVnPS1dupSuX7+u8Hx2djYtXbq0Rht1zUVSF/eTkpJULlMXGqKexlJHjfWI\nREQFBfVbx0vkaVlSY3XV8tatW2nr1q3cNQsWLCBra2tycnJSuHudPG3z/Szq49lqu49adc9XrhCZ\nm9NU/T0EEAFEsbENc8+qfndqzaynuiAQCOrU38bQEcrKgMmTgS5dAImVtw2JpjTGtN3IycoC/P2x\nDBH4tiQEpaVAQgLwMvlvvaOqvngbzC4oKMCcOXO4NMdXr17F9u3b+TLPaGqIg0R5ORAR0aBVMy0z\n6pWsLDxw9kfIvQh8fq8qSADAy0whWglvgWLmzJkYNmwY/v77bwCAra0tNm3axJd5RlNCMkjExgLN\nmjVo9UzLjHrjZUtildGrMQkxcvaS0hp4CxQPHz7E5MmTuayUhoaGMDDQ2mUaDG1Fw0ECYFpm1BMv\ngwQiIrCHpIOErS2wZ4+G/FIC3gJFq1atpLYLPHfuHC/TCRlNCC0IEgDTMqMekAgSYckheLnxIgCg\nY0cgLU0LZzpJovaQ+kvOnz9PXl5e1Lp1a/Ly8iIbGxv6448/lCo7a9Ys6tixo1R+nNTUVPLw8CAX\nFxdyd3eX2ZSHqG6znhhaikhEFBhINHo00YsXGnVFUssAVNIyXzBtNyJezm6iPXsoNJTIyIi4WU5t\n2xIVFze8S6rqi1c1ikQiunLlCl2+fJlEIpHS5eQlUvP19eV2moqPj+d28pKEfZgaCVoUJMSItQxA\nJS3zBdN2I+FlkPhu0B7S138VIMR/I0dqxi1V9cVbx2t5eTni4+ORl5eH8vJy/PLLLxAIBHjnnXdq\nLevj48OtghVjbm6Of/75B0DVSlm2erWRoiXdTZJIahkAtmzZorSWGQwOie6mxXNDUFEhfdrAQLvH\nJSThLVCMHj0axsbGcHR0lNqSsK5s2LABAwYMwLvvvovKykqcPXtW7nXh4eHc//38/ODn56d23YwG\nQguDRHJyMkJDQ2FgYMCtmC4Vz19kMJRFIkgIPw7B8+fSp/X0gIsXtXxcQhK+mjKOjo5qlc/NzZXq\nehoyZAgdOnSIiIj279/PbXAuCY/uMxoaLexuEiOpZU1pjGlbh5EYk+jVS7a7ycyMKC9Psy6qqi/e\nZj0NGzasxn2PVSUtLQ2BgYEAgIkTJyItLY032wwNo4UtCUn41jKjCVFtdtONG9Kn/fyAwkKge3eN\neFdneAsU3t7eCAwMRPPmzWFiYgITExO0bt26zvZsbGxw4sQJAEBiYiJ69uzJl6sMTaLlQQKQ1jIA\ntbXMaCJIBAmEhODIEUiNSwiFwOHDmnNPLfhqynTv3p0yMjKooqJC5bLVE6lFRUVReno69e3bl5yd\nnalfv3508eJFmXI8us9oCLS4u0kSSS2rqrGEhATq1asX2djY0IYNG2TOFxYWUkBAADk7O5O9vT3t\n2LFDrh2mbR1DoruJiGS6nDp00Mw0WEWoqi/e1Ojj40Pl5eV8mVMK9mHSIXQkSBBJa1kVjZWXl5O1\ntTXl5uaSSCQiZ2dnunr1qtQ1q1evppUrVxJRVdAwNTWlsrIyGVtM2zpEtSBBRNSmjXSgGDtWg/7J\nQVV98TbrycrKCoMGDcKIESO43ejYlEIGAJ3obpJEUssAsHHjRqW0nJaWBhsbG1haWgIAgoKCEBcX\nh969e3PXmJubIzMzEwDw5MkTtG/fnqUH0WWqdTcBQFgY8OTJq0uEQmDnTs24xxe8BgorKyuIRCKI\nRCK+zDJ0HR0LEoC0lgHlp8fK2w87NTVV6prQ0FAMHjwYnTt3RklJCfbv38+f44yGRU6QAIDdu6va\nEWJ69dKhabAK4C1QiNczPH36FC1btuTLLEOX4SFIhIUB168DLVoAe/c2zAdOUsvh4eFYvXq1UuUU\n7X0tybp16+Di4oLk5GTcvHkT/v7+yMjIgImJiUI/ALZGSOuQEySEQiA7W/oyQ0PtaE0kJycjOTm5\n7gb46vM6ffo09e7dmywsLIiI6I8//qD58+crVVZerqfJkyeTi4sLubi4kKWlJbm4uMiU49F9Bt/w\nNCbh6/uqn/eNN/hzryYktQxAaS2fPXuWAgICuNfr1q2TGdAeMWIEpaSkcK8HDx5M6enpMraYtrWY\narmb5KXmEP9lZmraWfmoqi/e1Ojh4UG3bt2S+kK3s7NTqqy8XE+SLFu2jD755BOZ4+zDpKXwOHA9\nYkTVB87Do+FmjUhqWawxZbRcVlZGPXr0oNzcXPr333/lDmYvXbqUwsPDiYiooKCAunTpQkVFRTK2\nmLa1lGoD18bGioNEQoKGfa0BVfXF2zoKAOjWrZvUa2UH6Xx8fNCuXTu554gI+/fvR3BwsNr+MRoA\nnsck9u4F3ngDOH68Yft566JlAwMDfPnllwgICICdnR0mT56M3r17Y9u2bdi2bRsAYNWqVTh//jyc\nnZ0xdOhQ/Pe//4WpqWm93AODZ6otpjMwgExqDgAQCICUlIbb1rQh4G2Molu3bjh9+jQAQCQSYcuW\nLVKzPerKqVOn0KlTJ1hbW6tti1HP1MPAddu2QEOP90pqGQAiIiKU1vKIESO42VJi3nzzTe7/ZmZm\n+Pnnn/lxlNFwVMvdVH0sAgBMTQEvr6rBbF0fvK4Ob4Fi69atWLx4Me7evYsuXbpg2LBh+Oqrr9S2\nGxMTg5CQEIXn2YCflqCDs5vkkZycjB49emDevHn466+/AACXLl3iRcsMHeVlkFiGCHw+Rf53UUJC\n42pBVEfwsr9KLcrLyzFjxgzsUSNnbl5eHkaPHo3Lly9L2bWwsMDFixfRuXNnmTICgQA8uM9Ql0YS\nJABZLWtKY0zbWoJkkLjXeIKEqvriZYzCwMAAt27dwr///suHOY7ffvsNvXv3lhskGFpCIwoSQP1p\nmaGD1BIkzMyAvDzdCxJ1gdcFdwMGDMCYMWPQokULAMqvzA4ODsaJEydQVFSErl274uOPP8asWbOw\nb98+NoitzfAYJDSxXkIRkloGlF+ZzWhEvAwS/xNGYFOybJBISQH699eAXxqCt0BhbW0Na2trVFZW\nqrzRS0xMjNzjO3bs4MM1Rn3Ac0vi+nXgZbJghIU1/AC2JJJaBtjGRU0OiSDx5okQqVXWBgbAjRu6\nlyZcXXgLFHZ2dpg0aZLUMZaeoJFSD91NLxuh8PAAvv1WbXNqIall8cpspuUmgkSQWHA6BC9/K3A0\nxSAB8DSYDQCurq64dOlSrcf4hA34aQAlgkRdupEeP64q9+23mp9aKKlbscbqW8vVYdrWABJTYDu/\nG4J796RPZ2YCjo6acY1vVNWX2i2KhIQExMfH4+7du1i8eDFXeUlJCQwNDdU1z9AmlGxJ1KUbSRPr\nJaqjSMszZ85kWm7sSLQk5k0PkdpwSCAAMjIaT5CoC2rPeurcuTPc3NzQvHlzuLm5wc3NDe7u7hgz\nZgzbTrIxoUJ3kzZ1I6mCPC0DYFpu5IyyysLfDv4IuReB0CTpIAEAI0Y07SABgL+EMrdv35Y5du3a\ntVrLyUsISES0ZcsWEgqFZG9vT++9957csjy6z1BAaCjRYB8RpXQKJNFw5XI3FRdXJfDTph29VEFS\ny2KNKaNlPmHabiCuXKG7MKdg7JGbr0ko1F0d14Sq+uJNjT179qQffviBiIgqKyspIiKChEJhreXk\nJQRMTEykoUOHkkgkIiKiBw8eyC3LPkz1z2AfER1EIMVhNAWP1+6d6fhCUssAlNYynzBtNwBXrtB9\nfcVBwsencQYJIg3ucJecnIywsDAcOHAA9+/fh1AoRHp6eq3lfHx8kJeXJ3Xsm2++wfvvv8/1C3fo\n0IEvNxkqMH9uGd4+NxmEcqx1jsUv23V7MZ2ySGoZALKzs5XSMkOHyMrCA2d/vF0RgRi8WidhaFiV\nsyk1tWnOblIEb9ljzc3NERAQgDNnziAvLw8zZ85Eq1at6mQrJycHJ0+eRL9+/eDn54fz588rvDY8\nPJz7U2tjDoYU8+eWYeSuyaCycryBWJhbNtP4bKSGIDk5Gdu2bUNFRQU3LqGKlo8dOwahUAhbW1t8\n+umnCutwdXWFg4MDy02mCbKycM9RNkj4+wMiEVBQwIKEDHw1ZYYMGUJTp06l4uJiyszMJA8PD1q2\nbJlSZXNzc6W6nhwcHGjx4sVERJSWlkZWVlZyy/HoPuMl4jGJnw2rupuM8ILatWu8TXB5SGoZgNJa\nLi8vJ2tra8rNzSWRSCR3P4ri4mKys7Oj/Px8IiIqLCyUa4tpu374z0T5YxImJk1L46rqi7cWxYIF\nCxAdHY22bdvC0dERZ86cQZs2bepky8LCAuPHjwcAeHh4QE9PD0VFRXy5ylBAWBhwaF8ZFpyajMqX\nLYmW7Zrh0iXNr21oSCS1DEBpLaelpcHGxgaWlpYwNDREUFAQ4uLipK7Zu3cvJkyYAAsLCwBVaccZ\nDURWFuYf8se7kG5JtGoFXL7ctDSuKryNUQQGBuLUqVO4ceMGZs2aheLiYkyZMqVOtsaNG4fExET4\n+vri+vXrEIlEaN++PV+uMuQgDhLfPpkMA5RjbutYjBzcDDt2NL0PkKSWASit5bt376Jr167cawsL\nC6Smpkpdk5OTg7KyMgwaNAglJSVYsmQJpk2bJtceS6HPIy/HJN6plA4SXl5AfHzj17jW7Jm9evVq\nGjVqFNna2hIR0Z07d8jb27vWckFBQWRubk5GRkZkYWFBUVFRJBKJaOrUqeTg4EB9+vShpKQkuWV5\ndL/JERpatR/1iBFVTW7J2U0tDV5QXp6mPdQckloGoLSWDxw4QHPnzuVeR0dH08KFC6WuWbBgAXl5\nedGzZ8/o4cOHZGtrS9evX5exxbTNIwpmN0lsXd7kUFVfvLUoDh8+jEuXLnGLlLp06YKSkpJayylK\nCBgdHc2Xa4xqiFdL//NP1ev5c8vw8fXJKEI5wtrGIuuPZk16MK+uWu7SpQvy8/O51/n5+VwXk5iu\nXbvCzMwMxsbGMDY2xsCBA5GRkQFbW1t+b4IBoRDQz87Cr5DtbvL3b1rZX9WFtzGKZs2aQU/vlbmn\nT5/yZZrBM0eOvAoSZm3KsOvfyejrWo4fxsfiWm7TDhJA3bXs7u6OnJwc5OXlQSQSYd++fVyqcjFj\nx45FSkoKKioq8OzZM6SmpsLOzo5X/xlVP4aMcuQHCRMTzaeL0TV4a1G88cYbePPNN/H48WN8++23\niIqKwty5c/kyz+CR+/er/jVAGQ4ZToaRoBz4MRZ7dXzTIb6Q1DIADBkyRCktGxgY4Msvv0RAQAAq\nKiowZ84c9O7dG9u2bQNQtXe2UCjE8OHD4eTkBD09PYSGhrJAwTM1tSTYwHXd4C17LAAcP34cx48f\nBwAEBATA39+fL9NyYRk2VUcoBLKzq4LEPkxGq2blGPaP7u9MxzdiLW/cuBHHjx+vdy1Xh2m7bigK\nEkZGgJ8fsG8fCxKA6vriNVA0NOzDpDzi1N8nTwL6VBUkDFAO5+xYdO/JgoQi2J7ZuoH4B5AdpIOE\nQADk5rIFdNXRyJ7ZAHDw4EHY2tqidevWMDExgYmJCVq3bq1U2dmzZ6NTp05wlEjRGB4eDgsLBS6t\nnwAAIABJREFUC7i6usLV1RXHjh3jy9UmR1gYsGtXVepvySDx5UAWJOQhqWUAKmmZ0bCEhVVlK1YU\nJDIyWJDgA95aFNbW1jhy5Ah69+6tctlTp06hVatWmD59Oi5fvgwA+Oijj2BiYlLjPsXsV1fttG37\nauBa3N1kgHJ8ZB+L31OaRloOVZHUMmtRaDctWgDPn8sGiVatgCtXWJBQhMZaFK+99lqdggRQlRiw\nXbt2MsfZB0V9qgeJdq3KET2aBYmaUEfLjIZBKKzaUEhekBg8GMjPZ0GCT3ib9eTu7o7Jkydj3Lhx\nMDIyAlAVtcSpOOpCZGQkvv/+e7i7u2Pjxo1cSgVJ2OpVxQiFVf9KtiRcb8QithPrblJEcnIyKioq\n4ODggF69egGo6opSV8sM/pBsJUsGifuDQ1B8kA1W1we8dT3NnDmzyqBAIHV8x44dSpXPy8vD6NGj\nua6nBw8ecOnFP/zwQ9y7dw/bt2+XKsOa54qpPrvJAOXYNiQWR39jQaI2JLW8c+dO7rWyWuYDpm1Z\nwsKA3burWhGAdJCYnhCC4cM1658uobOznqoHCmXOsQ+TfOQFiVktY3HzDutuUhU2RqEdhIUB27cD\nlZVVr8VBYjki8FZKCFtlrSIaG6PIzs7GkCFDYG9vDwDIzMzEmjVr6mzv3r173P8PHz4sNSOKIR9x\nv231IPEGYnExiwUJZeFbywz1EAqB776TDRL/6xWBr4pZkGgQ6p5WShofHx86d+4cubi4EFHVdqh2\ndnZKlRUnBjQ0NCQLCwvavn07TZs2jRwdHcnJyYnGjh1LBQUFMuV4dF/n6dXrVbIzA7xK8Ndc8IIy\nMzXtnW4hqWUAKmmZL5i2q5DUNUBkh6r9JK6t3qNp13QaVfXF22D2s2fP4Onpyb0WCATcVqa1IS8x\n4OzZs/lyrUmQnV31r2RLYn77WFy7wHI3qYo6WmbwQ1gYEBUFVFS8OiZuSZSsjkCv8BDFhRm8w1ug\n6NChA5e/HwAOHDgAc3NzvswzakDe7KZmcbG4O4YNXNcFpmXNIjmrSYw4SJRviECvFSxINDh8NWVu\n3LhBgwcPpubNm5O5uTl5e3tTbm4uX+blwqP7Ok317iYjvNC0SzqNpJYBqKTlhIQE6tWrF9nY2NCG\nDRsUXpeWlkb6+vp08OBBueebqrardzWJu5v+FpjTg82su4kvVNUX77Oenj59isrKSpiYmPBpVi5s\nZkjV4HX1gevElGZsgI8Hnj59ilatWimtsYqKCvTq1Qu//fYbunTpAg8PD8TExMgs3quoqIC/vz9a\ntGiBWbNmYcKECTK2mqK2w8KA//2vKjyIsUMWThj5w/jLCLQMZS0JvlBVX7x1PW3cuFFmDUWbNm3g\n5uYGFxcXheVmz56No0ePomPHjjLTXzdu3Ijly5fj4cOHMDU15cvVRoNQKBskPvyEBQl1qa7lzz//\nXCktS+6ZDYDbM7t6oIiMjMTEiRORnp5eL/7rKtevSweJ/m2zcLK5P/Q2RgAhLEhoEt4CxYULF3D+\n/HmMHj0aRISjR4/C0dERW7duxcSJE7FixQq55WbNmoVFixZh+vTpUsfz8/Px66+/ojsbiZWLUAjc\nzJYOEiI0w//9n6Y9030ktQwA27ZtU0rLyuyZfffuXcTFxSExMRHp6ekyP64kaUpZB6qPS4zoloUj\nIhYk+EJr9sweMGAAlZSUcK9LSkrIx8eHnj59SkKhsMayubm55ODgIHVs4sSJlJGRQZaWllRUVCS3\nHI/u6xRt2siOSQBECQma9qxxIKllAEprWZk9sydOnEjnzp0jIqIZM2bQgQMH5NpqStqWNwX2np45\n0R42JlFfqKov3loUhYWFXI4nADA0NMT9+/fRokULNG/eXCVbcXFxsLCwgJOTE1/uNSqe/iPbkvjk\nE7AUBjxRVy0rs2f2hQsXEBQUBAB4+PAhEhISYGhoKLNlalOgekoO4NXsJv1NrCWhTfAWKKZMmQJP\nT0+MGzcORISff/4ZISEhePr0qUpbPT579gzr1q3Dr7/+yh2jGgZdmlLzHAAMBbJBYtUqsC4nnkhO\nToa5uTm6d+/OJQX09vZWSsuSe2Z37twZ+/btk1kj9Ndff3H/nzVrFkaPHt1kg4RkSg7gVZAw3ByB\nDotZkNAq+GzOpKWl0aZNm+iLL76g9PR0pctJdj1lZmZSx44dydLSkiwtLcnAwIC6d+9O9+/flynH\ns/taj7zupm7dNO1V40SsZQAqaTk+Pp569uxJ1tbWtG7dOiIi2rp1K23dulXm2pkzZzbJ6bGhoUR6\nerLdTfcNzKn0W9bd1BCoqi+1p8eWlJTUOhW2tmtqSghoZWWFCxcuyJ311JSmEJq1KcO3T6RbEgBQ\nXMzSKvOFPJ1W15gyeueDxqxt8WZDYtgU2IanwZMCBgYGYsGCBTh+/DgePXrEHX/06BF++eUXzJ8/\nH4GBgQrLBwcHw9vbG9evX0fXrl1lUjnXNCukqTB/rvwgkZLCggSfqKtlRu20bSsbJC6194fZDhYk\ntBleFtwlJiZi7969OH36NP7++28AQOfOnTFgwABMmTKl3sYNGvOvLo6yMhwykg0Sq1YBa9dq2LdG\nSHUtP3nyBEKhsN61XJ3GqG1x+nsx4iBhtIUNXDc0OrsfRV1ojB8mKRQEiXHjgMOHNexbE4HtR6E+\nihL8XTD1R/NIFiQ0AQsUjQUFQQKQXr3KqF9YoFCP6q0IgAUJbUBjGxcxeKSGIJGSokG/GAwVYEGi\n8cAChbZRQ5D45BOwPE4MnSE3V/o1CxK6i9oL7iRnh8hDmWR+8hIDfvjhh/jpp58gEAjQvn177Ny5\nUyqPTqOkhiDxzjtsUV19o0jL4uMsMaXyhIUBItGr1/bIwqUO/jD8ggUJXUTtMQpLS8sap7DmVv9Z\nIYdTp06hVatWmD59OhcoJOerR0ZGIiMjA//73/+kyjWWflwAQFkZfm4xGVQuP0hs3KhB35oI8rSc\nl5fHZYNVRst8ocvart7l5KSfhQvt/WHA0nJoDQ2eZjwvL09dE/Dx8ZGxI7moqbS0FGZmZmrXo7WU\nleFws8nQJxYkNIk8LQsEggYNELpOWBggsTkg7JCFX4gFCV2Ht1xPlZWV2LNnD3Jzc/Gf//wHt2/f\nRkFBAfr27Vtnmx988AGio6PRokULnDt3Tu41Op/rqYYg8dZbLEg0NMnJyUhKSkJmZiYeP34MALxo\nuSlQPVU4S/DXeOBteuy8efOgp6eHxMREXLt2DY8ePcKwYcNw/vx5pcrXlMZjw4YNyM7OlrtqW1eb\n5wBqDRJffaVB35owklrOzs5GUVGRSlrmA13TdlgY8N13r16zBH/ajcamx6ampuLrr7+GsbExgKqB\nv7KyMl5sh4SENL7dwGrpbmJBQnOoq+Vjx45BKBTC1tYWn376qcz5PXv2wNnZGU5OTujfvz8yMzN5\n810TiDPBimFBovHBW6AwMjJChcTSy8LCQujp1d18Tk4O9/+4uDi4urqq5Z82MX9u1ewmeUHik09Y\nd5OmUUfLFRUVWLhwIY4dO4arV68iJiYGf/75p9Q1PXr0wMmTJ5GZmYkPP/wQYWFhvPrfkFRPF86C\nRCOlbklqZYmOjqbRo0dT586d6f333ydbW1vat2+fUmWDgoLI3NycDA0NycLCgrZv304TJkwgBwcH\ncnZ2pvHjxzeKNOOhoUTN9GRThYv/vv5a0x4yiKS1DEAlLZ85c4YCAgK41+vXr6f169crvP7Ro0fU\npUsXmeO6om1fX+lU4XdhTg82s1Th2o6q+uJtMHvq1Klwc3PD77//DgByN5VXRPXNXYCqtRWNibZt\n5e9MBwACAXDqFFtMpy1IannRokUqaVmZfbMl2b59O0aOHCn3nLZP1JAcvBa3JEpWR6AXa0loHeru\nma32YHb1RUpic+L56PW5SElXBvxqChI7dwIzZmjWP0YV8rRsZmaGoqIiAMpp+eDBgzh27Bi+ezmy\nu3v3bqSmpiIyMlLm2qSkJCxYsACnT59Gu3btpM5pu7blBYndzhF47w8WJHSBBl9H0adPH67S27dv\nc4IvLi5G9+7dm/QcdPGewGXPZYOEmRlw/jzQvbumvWSIUaRlMzMzpbWszL7ZAJCZmYnQ0FAcO3ZM\nJkhoO2FhskHiiy4RWJXMgkSjha8+r7lz59LRo0e51/Hx8RQaGsqXebnw6D7vtGlT1W9bfftSfX2i\nzExNe8eoCUktA1BJy2VlZdSjRw/Kzc2lf//9l5ydnenq1atS19y6dYusra3p7NmzCu1oq7YltzEV\nj0n8x2YPFRdr2jOGKqiqL97UaG9vr9QxPtHmD5O8IOHjQ+wDpQNI6lasMVW0XNu+2XPmzCFTU1Ny\ncXEhFxcX8vDwkLGhrdo2NpYOEmGt2MC1LqKqvnhbcDds2DAMHDgQU6dOBRFh7969OHnyJH755Zda\ny8pLCrh8+XIcOXIERkZGsLa2xo4dO9CmTRupctraj9u5M1B471V30xTDWFzJaca6mXQESS1bWVlh\nzZo1SmuZL7RR2+IcTuLupncRgfV5IUzXOojGFtzFxMTgwYMHCAwMxPjx4/HgwQO5s5nkMWvWLBw7\ndkzq2LBhw5CVlYWMjAz07NkT69ev58vVeuefh6+CxKyWsch/wIKELiGpZQAqabmxEhYGXL8uHSQW\npLAg0VTgfYe7kpISANJJ/ZShphQehw8fxsGDB7F7926p49r4q6t6FtihI5vh6FFNO8WoCyUlJWjd\nunWT3+EuLAzYtQuwEb0KEvf8QpCUpGnPGHWlwWc9ibl8+TKmT5/OTSXs0KEDdu3aBQcHB7VtR0VF\nITg4WO45bZprPn9uGYLjJsNAUI5xiIW9azPs2aMxdxh1IDk5Gfv27cOPP/6IZ8+eAQDc3Nx407Iu\ncuSIdJA42joEt9ie7U0LvgZH+vXrR4mJidzrpKQk8vLyUrp8bm4uOTg4yBxfs2YNjR8/Xm4ZHt3n\nhTHehbQJS8gIL8jCgg1c6yqSWgagspb5QFu0HRpKZP9y4DoYe8jAgCgvT9NeMdRFVX3x1qJ49uwZ\nBg0axL328/PD06dP1bK5c+dOxMfHc6u9tZ2yNmZYii/g4QEcP161KImhe9SHlnWV64ezcPxlSyIG\nIRg5jK39aYrwNphtZWWFTz75BHl5ecjNzcWaNWvQo0ePOts7duwYPvvsM8TFxaF58+Z8uVmv7N0L\nvPEGCxK6jqSWAaitZZ0lKwt7H74KEq1bg3WlNlF4CxRRUVF48OABxo8fjwkTJqCwsBBRUVFKlQ0O\nDoa3tzeys7PRtWtXREVFYdGiRSgtLYW/vz9cXV3x1ltv8eVqvdG2LbB/PwsSuo6klgGopOVGQ1YW\nHji/ChIAMGAA03ZThfdZTw2JNs0MYTRONKUxjWo7KwuP+/pjwbMI7H0ZJAwMgMJCFigaCw0+62n0\n6NEKKxUIBPjpp5/UrYLBaBAUaVl8vEloWRwknr8KEgAwaBALEk0ZtVsUHTp0gIWFBYKDg+Hp6QlA\nOoOsr6+v+l4qgLUoGHwiT8t+fn5ISkqqdy1XRyPafhkkFv8bgeiKV0FCXx94+JAFisaEqvpSO1CU\nl5fj119/RUxMDC5fvozXX38dwcHBsLe3V8esUrBAweATeVpeu3Zt0+h6ysoC/P0x82EEdpVJZ4HN\nzAQcHRvOFUb9o7K+eJiSy/HixQvasWMHtW/fniIjI5UuN2vWLOrYsaPUOor9+/eTnZ0d6enp0YUL\nF+SWq4v7SUlJKpepCw1RT2Opo6HqUaUOsZYBqKTlhIQE6tWrF9nY2NCGDRvkXrNo0SKysbEhJycn\nunjxotxr5Gmb7/eIs3flCpG5Oc0x3iO14yKgeqbjevNRS+3Vh82GsKfqdycvs55evHiBgwcPYurU\nqfjqq6+wZMkSLk+OMsjL9eTo6IjDhw9j4MCBfLjIoc4uT9pWT2Opo6HqUaaO6loGoLSWldkvOz4+\nHjdu3EBOTg6+/fZbzJ8/n1f/VSE5OZlrScx9HIHtz9VvSdSLj1psrz5saqM9tQezp02bhqysLIwc\nORL/+c9/4FiHNqqPjw83Z12MUChU1zUGQyXkaVkgEKBLly5KlU9LS4ONjQ0sLS0BAEFBQTLbqP70\n00+Y8XJLQ09PTzx+/Bj3799Hp06deL+f2ti7uRBhH0lPgRWTkMC6mxivULtFsWfPHuTk5GDz5s3w\n9vaGiYkJ99e6dWs+fGQwGgR5WgagtJbl7Zd99+7dWq+5c+cOT3egAo8eYczj7+UGidhYYPjwhneJ\nocXw1A2mNopyPfn5+dU4RsH+2F99/ynLgQMHaO7cudzr6OhoWrhwodQ1o0aNopSUFO71kCFD5Opb\n0/fM/hr/nyrwlutJExCb8cTQIpTZL7v6NXfu3JHbtcW0zdAmeEvhUZ+wDw1DF3B3d0dOTg7y8vIg\nEomwb98+jBkzRuqaMWPG4PvvvwcAnDt3Dm3bttXI+ASDoQpa0aIIDg7GiRMn8PDhQ3Tt2hUfffQR\nTE1NsWjRIjx8+BCvv/46XF1dkZCQoGlXGQyFGBgY4Msvv0RAQAAqKiowZ84c9O7dG9u2bQMAvPnm\nmxg5ciTi4+NhY2ODli1bYseOHRr2msFQApU6qnQMeeszioqKaOjQoWRra0v+/v5UrOamEfLqePfd\nd0koFJKTkxMFBgbS48ePea9DTEREBAkEAioqKlKrjprq2bJlCwmFQrK3t6f33nuP9zpSU1PJw8OD\nXFxcyN3dndLS0tSq4/bt2+Tn50d2dnZkb29PmzdvJiL+n319o4y/iu5VEr7Wdqhic/fu3eTk5ESO\njo7k7e1NGRkZatkTk5aWRvr6+nTw4EG17SUlJZGLiwvZ29uTr6+vWvYKCwspICCAnJ2dyd7ennbs\n2FGjvZo+02JUeSa12VP1eVSnUQeKkydP0sWLF6XevOXLl9Onn35KREQbNmygFStW8F7H8ePHqaKi\ngoiIVqxYUS91EFV9SQQEBJClpSUvgUJePYmJiTR06FASiURERPTgwQPe6/D19aVjx44REVF8fDz5\n+fmpVce9e/fo0qVLRERUUlJCPXv2pKtXr/L+7OsbZfxVdK9iysvLydramnJzc0kkEpGzs7PUeSKi\no0eP0ogRI4iI6Ny5c+Tp6VmjX8rYPHPmDPcDKSEhoUabytgTXzdo0CB6/fXX6cCBA2rZKy4uJjs7\nO8rPzyeiqi96deytXr2aVq5cydkyNTWlsrIyhTYVfabFqPpMarOnyvOQh06MUdQVHx8ftGvXTuqY\n5Dz2GTNm4Mcff+S9Dn9/f+jpVb21np6eak9/lFcHALzzzjv473//q5bt2ur55ptv8P7778PQ0BBA\nVT4kvuswNzfHP//8AwB4/Pix0usWFPHaa6/BxcUFANCqVSv07t0bd+/e5f3Z1zfK+CvvXv/++2/u\nvOTaDkNDQ25th6J6JNd2KEIZm15eXmjTpg1ns6bPgDL2ACAyMhITJ06sVYPK2Nu7dy8mTJjATTYw\nMzNTy565uTmePHkCAHjy5Anat28PAwPFPfuKPtNiVH0mtdlT5XnIo1EHCnlILm7q1KlTjW8+H0RF\nRWHkyJG8242Li4OFhQWcnJx4ty1JTk4OTp48iX79+sHPzw/nz5/nvY4NGzZg2bJl6NatG5YvX471\n69fzZjsvLw+XLl2Cp6dngz97dVHVX8l7FVMfazuUsSnJ9u3ba/wMKOtjXFwct5JdIBCoZS8nJweP\nHj3CoEGD4O7ujujoaLXshYaGIisrC507d4azszM2b96s0J4y1Od6m9qehzy0YjBbUwgEghoFpy5r\n166FkZERQkJCar9YBZ49e4Z169bh119/5Y5RPc0MKy8vR3FxMc6dO4f09HRMmjQJf/31F691zJkz\nB1u2bEFgYCBiY2Mxe/ZsqXurK6WlpZgwYQI2b97MLZ4TU9/PXln8/f1RUFAgc3zt2rVSr2vzt7S0\nFBMnTsTmzZvRqlUrqXLKUF0/NZVT5X1LSkpCVFQUTp8+rZa9t99+Gxs2bOCS2dWkd2XslZWV4eLF\ni/j999/x7NkzeHl5oV+/frC1ta2TvXXr1sHFxQXJycm4efMm/P39kZGRIaM7VVDlmSiLMs9DHk0u\nUHTq1AkFBQV47bXXcO/ePXTs2LFe6qnP/b5v3ryJvLw8ODs7A6iai+/m5oa0tDTe78fCwoLb6c3D\nwwN6enooKipC+/bteasjLS0Nv/32GwBg4sSJmDt3rto2y8rKMGHCBEybNg3jxo0D0HDPXhVqCojK\n+iu+16lTp3L3KobPtR2q2ASAzMxMhIaG4tixYzV2iyhj78KFCwgKCgIAPHz4EAkJCTA0NJSZfqys\nva5du8LMzAzGxsYwNjbGwIEDkZGRITdQKGPvzJkz+OCDDwAA1tbWsLKyQnZ2Ntzd3RXed02o+kyU\nQdnnIY8m1/U0ZswY7Nq1CwCwa9cumQ8WH9T3ft+Ojo64f/8+cnNzkZubCwsLC1y8eLFevvjGjRuH\nxMREAMD169chEol4DRIAYGNjgxMnTgAAEhMT0bNnT7XsERHmzJkDOzs7vP3229zxhnj2fKKMv4ru\nVUx9rO1Qxubt27cxfvx47N69GzY2NjXepzL2/vrrL07vEydOxDfffCM3SChrb+zYsUhJSUFFRQWe\nPXuG1NRU2NnZ1dmeUCjkfuzcv38f2dnZau2zzvd6G1Weh1xUGvrWMYKCgsjc3JwMDQ3JwsKCoqKi\nqKioiIYMGcLbFMnqdWzfvp1sbGyoW7du5OLiQi4uLjR//nxe6jAyMuLuQxIrKyteZj3Jq0ckEtHU\nqVPJwcGB+vTpo3YKZHnPJD09nfr27UvOzs7Ur18/paZn1sSpU6dIIBCQs7Mz9wwSEhJ4f/b1jSJ/\n7969SyNHjiQixfcqSXx8PPXs2ZOsra1p3bp1RES0detW2rp1K3fNggULyNrampycnBSmzFHF5pw5\nc8jU1JTzycPDQy17ksycObPW6bHK2Pvss8/Izs6OHBwc5E4rVsVeYWEhjRo1ipycnMjBwYH27NlT\noz153xvqPJPa7Kn6PKqj03tmMxgMBqP+aXJdTwwGg8FQDRYoGAwGg1EjLFAwGAwGo0ZYoGAwGAxG\njbBAoYXo6+vD1dWV++MrTcfrr7/OpRlQ5VxN7Ny5E4sWLVLXNUYTgWlbN2lyC+50gRYtWuDSpUu8\n2z169KjMMfGkN3nnlEEbVjczdAembd2EtSh0CEtLS6xatQqurq5wd3fHxYsXMWzYMNjY2HB7HiQn\nJ2PgwIEYNWoUhEIh5s+fz31gLC0t8ejRI+Tl5aFXr16YMWMGHB0dkZ+fz50DgO+//x7Ozs5wcXHh\nEpP9/PPP6NevH/r06QN/f388ePBAM28Co1HCtK3lqLTqgtEg6OvrcwtjXFxcaP/+/UREZGlpyS2g\nWbp0KTk6OlJpaSkVFhZSp06diKgqx37z5s0pNzeXKioqyN/fn0vJLE5HnpubS3p6epSamsrVKT53\n5coV6tmzJ7eA79GjR0REUovTvvvuO1q2bBkREe3YsUNmX2gGQxFM27oJ63rSQoyNjRU2z8WpAxwd\nHfH06VO0bNkSLVu2RLNmzbh+2L59+8LS0hJA1e6BKSkpmDBhgpSd7t27o2/fvlLHiAiJiYmYNGkS\nTE1NAYDLCZOfn49JkyahoKAAIpFIrfQEjKYL07ZuwrqedIxmzZoBAPT09GBkZMQd19PTQ3l5OQDp\nvlUi4vbGkKRly5Zy7Yuzc1Zn0aJFWLx4MTIzM7Ft2zY8f/5crftgMKrDtK29sECho8gTvJi0tDTk\n5eWhsrIS+/btw4ABA5SyKRAIMHjwYMTGxnJ9usXFxQCqNmPp3LkzgKrZIAxGfcG0rX2wQKGFPH/+\nXGoK4apVq2Suqb4/geT/PTw8sHDhQtjZ2cHa2hqBgYEy11Sf0SF+bWdnhw8++AC+vr5wcXHBsmXL\nAADh4eF444034O7ujg4dOnDXa8u+DgzdgGlbN2FJARsZycnJ2LhxI37++WdNu8Jg8ArTtuZQu0Uh\nuYCmT58+uHXrFvr37w8AuHXrFmJiYtR2Uh4nTpzA2bNnudczZ87EwYMH62xP3fKS+Pn54cKFC7XW\n16NHD+69i4yMxOrVq7mNjr744os69ZXW9VdQXl4eHB0dVS5XG9euXYOXlxeaN2+OjRs3KrwuNzcX\nnp6esLW1RVBQEMrKyrhzixcvhq2tLZydnetlDj5DN2C/8DWH2rOe5C2gEW+zl5ubi7179yI4OFjd\namRISkqCiYkJvLy8AKi/OIZPESpjSyAQICIigts9rjqbN2/GtGnTYGxsrFLdvr6+8PX1ValMfdK+\nfXtERkbixx9/rPG6FStWYNmyZZg0aRLmz5+P7du3Y968eYiPj8eNGzeQk5OD1NRUzJ8/H+fOnWsg\n7xnahLZpuylRL2MU4j17V65ciVOnTsHV1VVms/Hk5GT4+vpi3LhxsLa2xsqVKxEdHY2+ffvCycmJ\n25e5sLAQEydORN++fdG3b1+cOXMGt27dwrZt27Bp0yb06dMHKSkpAICTJ0+if//+sLa25loHRITl\ny5fD0dERTk5O2L9/P3d84cKFEAqF3CKb2nrhwsPDMWPGDAwcOBCWlpY4dOgQ3n33XTg5OWHEiBHc\nzAxlqV6fuFUTGRmJv//+G4MGDcKQIUNkyllaWmLFihVwcnKCp6cnbt68KXNNcHAw4uPjZWzfunUL\nAwcOhJubG9zc3KRaZWKqpy4YNWoUtwPd8ePH4e3tDTc3N0yaNAlPnz6t8R47dOgAd3d3GBoa1vg+\nJCUlYeLEiQCAGTNmcIElLi6OWxjl6emJx48f4/79+zXWyWAw+EXtQCE5OCWezyz+Nf3pp5/Cx8cH\nly5dwpIlS2TKiqej/fnnn4iOjsbNmzeRlpaGuXPnIjIyEgCwZMkSLF26FGlpaThw4ADmzp2L7t27\nY968eXjnnXdw8eJFDBgwAESEgoICnD59GkeOHMHKlSsBAIcOHUJGRgYyMzPx22+/Yfkbap4WAAAE\nxElEQVTy5SgoKMDhw4dx/fp1/Pnnn/j+++9x5swZzu/Vq1cr7AfNzc1FUlISfvrpJ0ydOhX+/v7I\nzMyEsbGxSqkCxAFM3GV35coVriWyaNEidO7cGcnJyXL33BYIBGjbti0yMzOxcOFCuVtgTp48mQuK\nIpEIiYmJGDVqFDp27Ihff/0VFy5cwA8//IDFixfX6qvYr4cPH2Lt2rX4/fffceHCBbi5ueHzzz+v\n9T2rjaKiIrRt25ab6tilSxfcvXsXAPD333+ja9eu3LUWFha4c+dOnephMBh1Q+2up5oW0NT2C93D\nw4PbB9bGxgYBAQEAAAcHByQlJQEAfvvtN/z5559cmZKSEu5XrKR9gUDA7Sncu3dv7ldnSkoKQkJC\nIBAI0LFjR/j6+iI9PR2nTp3ijpubm2Pw4MGcrY8++kiuvwKBACNGjIC+vj4cHBxQWVnJ+ezo6Ii8\nvLwa77e6rZq6nmpD3J0XFBSEpUuXypwfPnw4lixZApFIhISEBPj6+qJZs2b4559/sHDhQmRkZEBf\nXx/Xr19Xqj4iwrlz53D16lV4e3sDqApA4v8res/4oLqOWD81g9GwaHRltniBDVC1qEZywY24G4eI\nkJqaKrUARxGS14i/XBQtspG8RhXEdejp6Ul1p+jp6aGiokIlW3xNOBMIBKisrESfPn0gEAgwduxY\nhIeHw8/PD7/88gv279/PBZZNmzbB3Nwc0dHRqKioQPPmzWXsGRgYoLKyknv94sUL7v/+/v7Yu3cv\nL36Lad++PR4/fozKykro6enhzp076NKlC4Cq1kV+fj53reQ5BoPRMNTrOgoTExOUlJSoZWPYsGHY\nsmUL9/qPP/5QybaPjw/27duHyspKFBYW4uTJk/D09MTAgQO54/fu3eNaMOog74t/+vTpSE9PV9mW\niYlJjamR9+3bx/3r7e0NPT09/PHHH7h06RLCw8MBVHU/RUVF4dSpUxg+fDiAqsVFr732GoCqBGny\ngpulpSX++OMPEBHy8/ORlpYGgUCAfv364fTp09yYyNOnT5GTk6PU/dQUFAUCAQYNGoTY2FgAwK5d\nu7jW4ZgxY/D9998DAM6dO4e2bdtyrVAGg9EwqB0o5HUDiI85OztDX18fLi4uMoPZNc0Mkjy3ZcsW\nnD9/Hs7OzrC3t8e3334LABg9ejQOHz4sNZgtb9FNYGAgnJyc4OzsjCFDhuCzzz5Dx44dERgYCFtb\nW9jZ2WHGjBlcFwpQc3+7Mgt7JLl8+bLCX8A1daGEhYVh+PDhcgezgapVpc7OzoiMjMSmTZvkXjNs\n2DCcPHkS/v7+MDCoajy+9dZb2LVrF1xcXJCdnc1NPJD0Z8CAAbCysoKdnR2WLFkCNzc3AICZmRl2\n7tyJ4OBgODs7w9vbG9nZ2QAUv2cFBQXo2rUrNm3ahDVr1qBbt24oLS0FULVPQEFBAYCq8azPP/8c\ntra2KC4uxpw5cwAAI0eORI8ePWBjY4M333wTX3/9tcL3jMFg1A9swV098uTJE4SGhnK//vnCysoK\nFy5c4JKbMRgMRn3CUnjUI61bt+Y9SABsMJfBYDQsrEXBYDAYjBphLQoGg8Fg1AgLFAwGg8GoERYo\nGAwGg1EjLFAwGAwGo0ZYoGAwGAxGjfw/VL1XcDTSAWEAAAAASUVORK5CYII=\n" - } - ], - "prompt_number": 12 - }, - { - "cell_type": "code", - "collapsed": false, - "input": "", - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] +{ + "metadata": { + "name": "WAFO Chapter 1" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "CHAPTER 1 demonstrates some applications of WAFO" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "CHAPTER1 gives an overview through examples some of the capabilities of WAFO. WAFO is a toolbox of Matlab routines for statistical analysis and simulation of random waves and loads. The commands are edited for fast computation.\n" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Section 1.4 Some applications of WAFO" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Section 1.4.1 Simulation from spectrum, estimation of spectrum " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Simulation of the sea surface from spectrum. The following code generates 200 seconds of data sampled with 10Hz from the Torsethaugen spectrum." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.spectrum.models as wsm\n", + "S = wsm.Torsethaugen(Hm0=6, Tp=8);\n", + "S1 = S.tospecdata()\n", + "S1.plot()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEXCAYAAABPkyhHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX/P/DXsLiwI7KJG4rihoKiiKGMW+5iWeaO28/6\nttr3U330W5ZtWi750ZZPWaaWn8xsMXMhNEVNS0MxNUshRUHccGMRWWbO74/7YRyUZWZg7hmY1/Px\n4AEzc+fOe444L845956rEUIIEBGRXXOQXQAREcnHMCAiIoYBERExDIiICAwDIiICw4CIiMAwICvS\narVYuXKl7DLsUlJSEpo1a2by9mr8W7m7uyM9Pd2qr0GWYxjUEW5ubnB3d4e7uzscHBzg4uJiuL1u\n3Tqrv/68efMwadKkMvdpNBpoNBqrv7Y13bhxA9OmTUNgYCA8PDwQGhqKt99+26qvWV5bWpsa/1a5\nublo2bIlAGDKlCmYO3euVV+PzOMkuwCqGXl5eYafg4ODsXLlSvTr18+sfZSUlMDJib8Sxp599lkU\nFBTgr7/+gqenJ06ePInjx49Lran0PNHaHrRkW9gzqOMKCwsxa9YsBAUFISgoCM8++yyKiooAKEMJ\nTZs2xcKFCxEYGIjp06fj6tWrGD58OLy9veHj44M+ffoYPnyysrIwevRo+Pn5oVWrVnj33XcBAAkJ\nCViwYAHWr18Pd3d3REREGF4/PT0dMTEx8PDwwKBBg3D16lXDYw8//DACAwPh5eWF2NhYnDhxwvDY\n3cMWq1evRu/evQ23ExMTERoaCi8vLzzxxBOIjY0ts/2nn36KDh06oFGjRhg8eDDOnTtneMzBwQEf\nffQR2rZtC29vbzz55JMVtl9ycjLGjRsHT09PAEBoaChGjx5dZl/vvvsuWrduDV9fX7zwwgswPqm/\nsjr++OMPDBw4ED4+PggICMCCBQvw448/ltuWWq0WL730Eu677z64urri9OnTWLVqFTp06AAPDw+0\nbt0aK1asqPB93G379u1o164dvLy88NRTT0EIYXLdlbVfWloaYmNj4eXlBV9fX4wdO7bM8/7++2+s\nWLECX3zxBRYuXAh3d3eMHDkSixcvxkMPPVSmxqeffhqzZs0y+T1RNQmqc1q2bCl++uknIYQQc+fO\nFdHR0eLKlSviypUrolevXmLu3LlCCCF27dolnJycxOzZs0VRUZEoKCgQs2fPFo899pgoKSkRJSUl\n4ueffxZCCKHT6UTXrl3F66+/LoqLi8Xp06dFq1atxI8//iiEEGLevHli0qRJZeqIjY0VrVu3Fqmp\nqaKgoEBotVoxe/Zsw+OrVq0SeXl5oqioSMyaNUuEh4cbHtNqtWLlypVlto2JiRFCCHHlyhXh4eEh\nvvvuO6HT6cSyZcuEs7OzYfuNGzeKkJAQ8ddffwmdTifeeOMN0atXL8O+NBqNGDFihLh586Y4d+6c\n8PX1FQkJCeW25YwZM0THjh3FqlWrxKlTp+55XKPRiH79+onr16+Lc+fOibZt24pPPvmkyjpycnJE\nQECAeOedd0RhYaHIzc0VBw4cqLQtW7RoIU6cOCF0Op0oLi4WW7ZsEadPnxZCCLF7927h4uIiDh8+\nbPi3bdq0abnv6cqVK8Ld3V188803oqSkRCxdulQ4OTlVq/1Kfw/Gjh0r5s+fL4QQorCwUOzbt6/M\n8/7++28hhBBTpkwx/B4KIcSFCxeEq6uruHHjhhBCiOLiYuHn52d4P2R9DIM6yDgMWrduLbZt22Z4\n7McffxQtW7YUQigfGPXq1ROFhYWGx19++WURFxcn0tLSyuzz119/Fc2bNy9z3/z588XUqVOFEEK8\n8sorYuLEiWUe12q14s033zTc/uCDD8TgwYPLrfn69etCo9GInJwcw3MrCoM1a9aU+XASQohmzZoZ\nth88eHCZ5+p0OuHi4iLOnTsnhFA+lIw/pMaMGSPeeuutcusqKCgQ8+fPF926dRPOzs4iJCSkTHtq\nNBrDB2Hpe+zfv3+ldZw9e1Z88cUXomvXruW+ZkVt+corr5S7falRo0aJZcuWCSEqD4M1a9aI6Ojo\nMvc1bdq0Wu339ttvCyGEmDx5spg5c6bIzMy853XvDoOXXnqpzOODBw8WH3/8sRBCiB9++EF07Nix\n0vdLNYvDRHVcVlYWWrRoYbjdvHlzZGVlGW77+vqiXr16htvPP/88QkJCcP/996N169aGydKzZ88i\nKysL3t7ehq8FCxbg8uXLlb5+QECA4eeGDRsa5jZ0Oh1mz56NkJAQeHp6Ijg4GACQnZ1t0ntq2rRp\nmfuMb589exbPPPOMoU4fHx8AwPnz58uty8XFpcyci7EGDRpgzpw5SE5OxtWrVzFmzBg8/PDDuHHj\nhmEb46N2jNu3sjoyMzPRqlWrKt+rsbuPDtq2bRt69uwJHx8feHt7Y+vWrWWG4SpSXvsZ79uS9svN\nzQUALFy4EEII9OjRA506dcKqVatMfn/x8fFYu3YtAGDt2rWqT6LbO4ZBHdekSZMyh/OdO3cOTZo0\nMdy+exLSzc0Nixcvxt9//41NmzbhnXfewc6dO9G8eXMEBwfj+vXrhq+cnBxs3rwZgDIebI4vvvgC\nmzZtwk8//YSbN2/izJkzAO5Mjrq6uiI/P9+w/cWLF8u8p8zMTMNtIUSZ282bN8eKFSvK1Jqfn4+e\nPXuaVePd3N3dMWfOHOTn5xvqBVBmPP3cuXMICgqqtI7o6Gg0a9YMp0+fLvd1KmpL43+rwsJCjB49\nGi+88AIuX76M69evY+jQoWXG/SvSpEkTZGRkGG4LIcrcrk77+fv7Y8WKFTh//jw++ugjPP744+W+\nz/Imv+Pi4nD06FEcP34cW7ZswYQJE6p8Pao5DIM6bty4cXjjjTeQnZ2N7OxsvPbaa5X+xbVlyxak\npaVBCAEPDw84OjrC0dERPXr0gLu7OxYuXIiCggLodDocP34cycnJAJQPgfT09Hs+jCr6cMrLy0P9\n+vXRqFEj5Ofn4//+7//KPB4eHo5vv/0WBQUFSEtLKzM5PHToUBw7dgzff/89SkpK8P7775cJi8ce\newzz5883TEjfvHkTGzZsqPA9V/YB+vrrryM5ORlFRUW4ffs2li1bBm9vb4SGhhq2Wbx4MW7cuIGM\njAwsX74cjzzySJV1DB8+HBcuXMCyZctQWFiI3NxcHDx40OS2LCoqQlFRERo3bgwHBwds27YNiYmJ\nFb4PY8OGDcMff/yB7777DiUlJVi+fHmNtd+GDRsMwezl5QWNRlNuuPn7+98TEg0bNsTo0aMxfvx4\nREVF3dN7IetiGNRxL730EiIjI9G5c2d07twZkZGReOmllwyP3/0XWmpqKgYOHAh3d3f06tXLcKSO\ng4MDNm/ejCNHjqBVq1bw9fXFzJkzkZOTA0A5MggAfHx8EBkZWe7+jY9lnzx5Mlq0aIGgoCB06tQJ\n0dHRZbZ99tlnUa9ePfj7+2Pq1KmYOHGi4fHGjRtjw4YNeOGFF9C4cWP8+eefiIyMRP369QEAo0aN\nwj//+U+MHTsWnp6eCAsLw48//ljhe67sGHsHBwdMnToVvr6+CAoKwk8//YQtW7bAxcXFsE1cXBy6\ndeuGiIgIDB8+HNOmTauyDjc3N2zfvh0//PADAgMD0bZtWyQlJZnclu7u7li+fDnGjBmDRo0aYd26\ndYiLi7vnfZXHx8cHGzZswOzZs9G4cWOkpaUhJibG8Hh12i85ORk9e/aEu7s74uLisHz5csO5BcbP\nmz59Ok6cOAFvb288+OCDhvvj4+Nx/PhxDhFJoBGm9CuJbJher0ezZs3wxRdfIDY2VtXXdnBwQFpa\nmtnj/1S+jIwMtGvXDpcuXYKbm5vscuyK1DOMWrZsaRiKcHZ2NnSTiaqSmJiIHj16oGHDhli0aBEA\nVHtOgOTS6/VYsmQJxo0bxyCQQGoYaDQaJCUloVGjRjLLoFrol19+wfjx41FUVISOHTti48aNhmEi\nNfEs4JqRn58Pf39/BAcHIyEhQXY5dknqMFFwcDCSk5MNh64REZEcUieQNRoNBgwYgMjISHz88ccy\nSyEismtSh4n27duHwMBAXLlyBQMHDkS7du0M68+w+01EZBlLBnyk9gwCAwMBKGfBPvDAA/dMIIv/\nLp5lS1+vvPJKje1LrxfQagXGjrWdmmyxnVgT62JNpn9ZSloY3Lp1y3AKe35+PhITExEWFiarHCkS\nE4EDB4CzZ2VXQkT2Ttow0aVLl/DAAw8AUNbRnzBhAu6//35Z5Uixbh0waxawZo3sSojI3kkLg+Dg\nYBw5ckTWy1tMq9XW2L6uXgXi4oAlS4CiIsBovThpNdUU1mQaW6wJsM26WJN12ewZyBqNplrjX7VB\nr17AokXAhAnAzp0AT2Ilouqy9LOTaxNJdO0a4OMDtGjBeQMikothINHVq0CjRgwDIpKPYSCJXg9c\nvw54ezMMiEg+hoEkOTmAqyvg7Aw0b84wICK5GAaSXLumDBEB7BkQkXwMA0lKJ48BICAAuHRJbj1E\nZN8YBpKUTh4DyrzB9ety6yEi+8YwkMS4Z+DtDdy4IbceIrJvDANJjHsGrq5AcbFyFjIRkQwMA0mM\nJ5A1GsDLi0NFRCQPw0CSq1fvDBMBnDcgIrkYBpIY9wwA9gyISC6GgSTGE8gAewZEJBfDQBLjCWSA\nYUBEcjEMJLl5E/D0vHObYUBEMjEMJMnNBdzd79xmGBCRTAwDSRgGRGRLGAYSCAHk5QFubnfuYxgQ\nkUwMAwlu3QLq1wecjK5AzSUpiEgmhoEEdw8RAewZEJFcDAMJygsDnnRGRDIxDCRgz4CIbA3DQIK8\nPIYBEdkWhoEE5fUMPDyUieWSEjk1EZF9YxhIUF4YaDTKfbm5cmoiIvvGMJCgvDAAlN5BTo769RAR\nMQwkyM0te8JZKYYBEcnCMJCAPQMisjUMAwkYBkRkaxgGElQUBp6eytLWRERqYxhIwJ4BEdkahoEE\nDAMisjUMAwkYBkRkaxgGElQWBpwzICIZGAYSVDaBzJ4BEckgNQx0Oh0iIiIwYsQImWWojsNERGRr\npIbBsmXL0KFDB2g0GpllqK68VUsBhgERySMtDDIzM7F161bMmDEDQghZZahOr1dWJ3V1vfcxhgER\nyeJU9SbW8eyzz2LRokXIqeTTb968eYaftVottFqt9Quzsvx8wMUFcCgnhjmBTETmSkpKQlJSUrX3\nIyUMNm/eDD8/P0RERFT6JozDoK6oaL4A4AQyEZnv7j+UX331VYv2I2WYaP/+/di0aROCg4Mxbtw4\n7Ny5E5MnT5ZRiuoqWrEU4DAREcmjEZIH7Hfv3o3Fixfjhx9+KHO/RqOpk3MJycnAo48Chw7d+5he\nDzg7A0VFgKOj+rURUe1n6WenTZxnYE9HE1U2TOTgoPQaeLUzIlKbtAnkUrGxsYiNjZVdhmoqCwPg\nziSyl5d6NRER2UTPwJ5UFQacRCYiGRgGKjOlZ8AwICK1MQxUxjAgIlvEMFAZw4CIbBHDQGWmTiAT\nEamJYaAyTiATkS1iGKisohVLS3GYiIhkYBiojHMGRGSLGAYqYxgQkS1iGKiME8hEZIsYBiqrbNVS\ngBPIRCQHw0BlHCYiIlvEMFAZw4CIbBHDQEUlJUBhoXLZy4owDIhIBoaBivLylPmCyi7fwAlkIpKB\nYaCiqoaIACUsCgoAnU6dmoiIAIaBqkwJA17tjIhkYBioyJQwADhvQETqYxio6MYNwNu76u0YBkSk\nNoaBim7cMO3axpxEJiK1MQxUZGoY8CxkIlIbw0BF5vQMGAZEpCaGgYoYBkRkqxgGKmIYEJGtYhio\niBPIRGSrGAYq4gQyEdkqhoGKrl/nMBER2SaGgYp40hkR2SqGgYo4gUxEtsqpqg1Wr14NTWVrLhsR\nQmDKlCnVranO4gQyEdmqKsPA29sbMTEx8PHxqXJn33//fY0UVRfdvq18b9Cg6m05gUxEatMIIURV\nG4WFhSEkJAQeHh7o3r07oqKiEBERgV9++QWXL1/G6NGja74wjQYmlFZrXLwIhIcr36uSmQlERQHn\nz1u/LiKqWyz97DQpDFJTU9GmTRvcunULCxYsgJubG44ePYq8vDy0atUKS5cutajoSgurY2Hw11/A\nqFHK96rk5ABBQbymARGZz9LPziqHiQCgTZs2AAAXFxeEhIQgPj4eAFBUVMShIROZOl8AKBe3uXVL\nudqZo6N16yIiAiw4msjZ2RlTpkzBt99+i9TUVGRmZlqjrjrHnDBwcABcXdkzICL1mNQzMDZ+/Hh0\n69YNa9euxa5duzB58mSLXvj27duIjY1FYWEhioqKEBcXhwULFli0r9rA1BPOSpVOIpvzHCIiS5kd\nBgAQGhqK119/vVov3KBBA+zatQsuLi4oKSlBTEwMfv75Z8TExFRrv7bK3DDguQZEpCazh4k++eQT\n/PrrrygqKsK+ffvw9ddfW/ziLi4uAJS5B51Oh0aNGlm8L1t3+TLg72/69gwDIlKT2WFw+fJl7N69\nG1OmTMFbb72Fn3/+2eIX1+v1CA8Ph7+/P/r27YsOHTpYvC9bd/ky4Odn+vYMAyJSk9nDRE2bNjXM\nE1T3aCIHBwccOXIEN2/exKBBg5CUlAStVmt4fN68eYaftVptmcdqm8uXgb59Td+eZyETkSmSkpKQ\nlJRU7f2YHQalRxONHDkSoaGhNXI0kaenJ4YNG4bk5OQKw6C2u3TJvGEinoVMRKa4+w/lV1991aL9\nmD1M1LRpU8yZMwcpKSn48MMPLZ7wzc7Oxo0bNwAABQUF2L59OyIiIizaV23AYSIismVm9wzef/99\nrFmzptpHE124cAHx8fHQ6/XQ6/WYNGkS+vfvX6192jKGARHZMrPDwMvLC7t370bfvn3h7Oxs8QuH\nhYXh8OHDFj+/NiksBPLzTbuWQSkPD+DcOevVRERkzOxhIi8vL/z2228YM2YMhg4dirlz51qjrjrl\nyhXA1xcwcSVwAEpw/HcUjYjI6szuGQwfPhy+vr548cUXIYTAOf75WiVzzzEAgEaNgGvXrFMPEdHd\nqgyDkydPwsHBwbBYnfGEsUajQYsWLaxXXR1x6ZJ58wWAEgZXr1qnHiKiu1UZBq1bt0ZSUhISExPh\n4OCA7t27IzIyUo3a6gxzJ48BwMeHPQMiUo9J1zMwdvDgQRw6dAh6vR6hoaHQarVwcrJoiaPKC6tD\n1zNYuFCZN1i0yPTnXLwIdOmi9CqIiExl1YvbVOTkyZNISkpCUVERgoKCMGjQILi6ulq6u7KF1aEw\neO45Zc7g+edNf05RkbKMdVGReRPPRGTfrHpxm4qEhoYiNDQUAJCVlYXNmzfjkUceqc4u66Tz55VL\nXpqjXj3lesm5ucphpkRE1mT2oaX5+fm4VM7YRZMmTRgEFThzBggONv95nEQmIrWY3TNYu3Yt6tev\nj2+//RaNGzfGmDFjMHjwYGvUVmecOQO0amX+80onkS0JEiIic5jdM2jYsCE6dOiAa9eu4dNPP0UO\n10yoVH6+MtQTEGD+c3muARGpxeww6Nq1K7788kssX74cq1evRklJiTXqqjPS04EWLSybBOYwERGp\nxexhok6dOuGdd94BAFy9ehV+5h5Ab2dOn7Z8mIfnGhCRWqp1NNHAgQNrqo46y9L5AoDDRESkHrOH\nicg8lh5JBCg9Aw4TEZEaTAqDvLw8AEBxcTF0Op1VC6prqhMG7BkQkVqqDIOFCxfitddew//+7//i\n5s2beOyxx9Soq85ITQVat7bsuQwDIlJLlXMGUVFRiIqKgrOzM9avXw+9Xq9GXdLl5wMTJwLt2gHz\n51t2NNCtW0rPoH17y2rw8QGysy17LhGROarsGbi6umL16tVwdHTE+PHj0adPHzXqkm7cOGUZiIQE\nYPFiy/Zx9KgSBPXqWfZ8Pz9lxVMiImur1kJ1R48eRVhYGDRWWElN5kJ1168r5wZcvgxkZgLR0cDZ\ns4CLi3n7+eADICUF+Phjy+rIyQGaNAH+O2VDRFQlSz87zT6a6LPPPsOsWbOwevVquLq6Yt26dWa/\nqK378UcgNlZZKC4kRAmDtWvN38/hw0DXrpbX4e4O6PUMAyKyPosOLX355Zfh5+eHRYsWITU1taZr\nkm7LFmDYsDu3n3kGeP998/dT3TDQaJSlr3lNAyKyNrOHibZu3Yo+ffrAzc3NWjUBkDdMJIQyVp+c\nrAwVAcpf582bA9u3mz4ZfOsW4OurXNTG3OElYz17Au+8A/TqZfk+iMh+qDZMlJCQgOHDh2P06NF4\n++23cfDgQbNf1JZlZQEODneCAFBuP/wwsH696ftJSgIiI6sXBAB7BkSkDrPDQKvVIikpCZ9//jmi\no6ORnJxsjbqk+esv5XDSuz3yiBIGpgZuQgIwZEj16wkIYBgQkfWZHQYajQa//fYbXFxc0KdPHzz+\n+OPWqEuaisIgKgooKACOHTNtP9u2ATVxmQd/f+V6yERE1mT2QnW7d+8GALz22mto0KABYmNj8eST\nT9Z4YbJUFAYaDTBmjNI76Ny58n2kpipHAHXpUv16/P2B48ervx8iosqYHQajR4+GRqNBTEwMCgoK\n8Mcff1ijLmlOngSGDi3/sUceAcaOBd54o/Izkj/7TAmOmjj9wt8f+Omn6u+HiKgyVQ4THTp0qMzt\n3r17IyYmBoBy1bPIyMgKt62NKuoZAHcOE61smkSnA1avBqZPr5l6AgI4TERE1ldlz2Dbtm04buI4\nRUZGBrp161btomTJy1PWAmrevPzHNRpgyhRg5Uqge/fyt0lIUD7AqxpKMhWPJiIiNVRrOQprknGe\nwZEjwKRJlU8SZ2UBnToB584Bd59qIQQQEwM8/jgwYULN1JSTAwQGKkFlhVU/iKiOUe08g7osMxNo\n1qzybZo0AXr3VuYF7paYqKxrNHZszdXk7g44OgI3b9bcPomI7sYwMHL+PBAUVPV2c+cqk8i5uXfu\ny88Hnn4aePNN5cO7pmg0yrDVuXM1t08iorsxDIycP6/85V+VyEhgwADghReUoaGSEmVoKCoKeOCB\nmq+LYUBE1mb2oaUAcPv2bWg0GtSvX7+m65Hq/HnlA90US5cqi9kNGKCM53t4AN98Y526GAZEZG0m\nhYFer8fGjRuxbt067N+/H3q9HkIIODo6Ijo6GhMmTMCoUaOscl0DNZk6TAQoVyH76Sfg+++Vi9c8\n8EDNDg8Za9GCYUBE1mVSGGi1WvTu3RvPPfccwsPDDT2CwsJCpKSkYNOmTVi6dCn27Nlj1WKtLSvL\n9DAAAFdXYPx469VTqnlzZVltIiJrMenQ0sLCQkMA6HQ6ODg43NMLMN7GFBkZGZg8eTIuX74MjUaD\nmTNn4umnn75TmIRDS318lJPOfH1Vfdkq7d0LzJkD/Pyz7EqIyNZZ+tlp9nkGffv2Rf/+/REcHAwP\nDw+MGDHC7BcFgIsXL+LixYsIDw9HXl4eunXrho0bN6L9fy8YoHYYFBQA3t7Kd1sb7Tp7Vjl/ISND\ndiVEZOss/ew0ewJ5165dhp/37NmDWbNm4V//+pfZLxwQEICAgAAAgJubG9q3b4+srCxDGKgtK0s5\nucvWggBQjnC6dAkoLgacnWVXQ0R1kUWHlp4+fRo///wzOnbsiG9q4BCa9PR0pKSkIMrUQ3mswJzJ\nY7U5OyvLUpw/L7sSIqqrLDq0NCAgAEePHsUzzzyDF198sVoF5OXl4aGHHsKyZcvuuZTmvHnzDD9r\ntVpotdpqvVZlTD3HQJZWrYDTp4GWLWVXQkS2JCkpCUlJSdXej9lzBsnJyYaVSoUQCAsLM3khu7sV\nFxdj+PDhGDJkCGbNmlW2MJXnDP71L+XDdvly1V7SLDNnAhERwP/8j+xKiMiWqTZnEBQUhI0bN6Ko\nqAh//fUXBlt4OS8hBKZPn44OHTrcEwQyZGfb3lFExkJDlSOdiIiswaQwEEIYDiUNDAzEqFGjKt3G\nFPv27cPatWvRuXNnREREAAAWLFhgcbhU15UrQHi4lJc2SWgosH277CqIqK4y+aSz4cOHIy4uDm3b\nti3z2MmTJ7Fx40Zs2bLFrJPOYmJioNfrzavWiq5csf2ewcmTsqsgorrKpKOJEhMT4ePjgyeeeAKB\ngYFo27Yt2rRpg8DAQDz55JPw9/fHjh07rF2rVWVnA40by66iYsHBwIULynkQREQ1zewJZJ1Oh+zs\nbGg0GjRu3BgODtZZ+FTtCeT27YGvvwY6dlTtJc3Wvj2wfn3NXUWNiOoeq17c5uDBg7hw4QIAwNHR\nEQkJCZgxYwZmzZqFa9eumf2itsjWh4kA5drMnEQmImswKQweffRRw7pDe/bswezZsxEfHw8PDw/M\nnDnTqgWqQacDbtwAGjWSXUnlwsKAo0dlV0FEdZFJYaDX69Hov5+U69evx6OPPorRo0fjjTfeQGpq\nqlULVMO1a4CnJ+Bk0Sl46unaFTh8WHYVRFQXmRQGOp0OxcXFAIAdO3agb9++hsdKSkqsU5mKasMQ\nEaCEwaFDytXViIhqkkl/C48bNw6xsbFo3LgxXFxc0Lt3bwBAamoqvLy8rFqgGmz9SKJSzZoBer1y\nVJEtL51BRLWPSWHw4osvol+/frh48SLuv/9+wxFEQgi8++67Vi1QDbWlZ6DR3BkqYhgQUU0yeZQ8\nOjr6nvvuPgGttqotYQDcGSoaPlx2JURUl1jnJIFaprYMEwFAVBSwf7/sKoiormEYQOkZ1JYw6N0b\n+OUXoA7M2xORDWEYQDm01MdHdhWm8fFRrmnAQ0yJqCYxDKCEga2fcGYsNhbYvVt2FURUlzAMUPvC\noE8fhgER1SyGAYDr12tXGPTrB+zZA9y+LbsSIqorGAZQegbe3rKrMJ2Pj7JOEXsHRFRT7D4MhFB6\nBrUpDABg2DBgyxbZVRBRXWH3YZCXB9Svr3zVJsOHK2HAdYqIqCbYfRjUtiGiUmFhShD8/rvsSoio\nLmAY1LIjiUppNMCYMcqVz4iIqsvuw6C2HUlk7JFHgK++4lAREVWf3YdBbR0mAoDwcOWCPAcPyq6E\niGo7hkEtHSYClKGiqVOBTz6RXQkR1XYMg1ocBgAQHw98/TWQmyu7EiKqzew+DGrznAEABAYCWi0n\nkomoeuwVy8KpAAATQElEQVQ+DGrznEGpGTM4VERE1cMwqOXDRAAweDBw/jxw7JjsSoiotrL7MKjt\nw0QA4OioTCR/9JHsSoiotrL7MKgLw0QA8NhjwBdfKOFGRGQuhkEdGCYCgCZNgBEj2DsgIstohLDN\n81c1Gg3UKM3dXRlv9/Cw+ktZ3e+/A0OHAmfOAPXqya6GiGSw9LPTrnsGRUXKBWLc3WVXUjO6dAHa\nt+dhpkRkPrsOg+vXAS8v5UzeuuIf/wCWLOF6RURkHrsOg7oyX2Bs0CAlCLZulV0JEdUmdh0GdeGw\n0rs5OABz5wKvvsreARGZzq7DoK4cVnq3Bx8ECgqAhATZlRBRbSEtDKZNmwZ/f3+EhYXJKqFODhMB\n7B0QkfmkhcHUqVORIPlP17o4TFTqoYeUlUzZOyAiU0gLg969e8Nb8hhNXR0mApTeweuvA3PmADqd\n7GqIyNY5yS6gMvPmzTP8rNVqodVqa3T/164BISE1ukub8sADwOLFwH/+A0yeLLsaIrKGpKQkJCUl\nVXs/Us9ATk9Px4gRI3CsnOU21TgDeeJE5VDMSZOs+jJS7dsHjB8PnDwJNGgguxoisjaegWyBujqB\nbOy++4CuXYHly2VXQkS2zO7DoK7OGRh76y1g0SLgwgXZlRCRrZIWBuPGjUOvXr1w6tQpNGvWDKtW\nrVK9BnvoGQBAaKhyNbTnnpNdCRHZKrtetdTXF/jjD8DPz6ovYxPy84EOHYA1a5RrJhNR3cQ5AzPp\n9XcWqrMHrq7A0qXAE08oq7USERmz2zC4eVP5gLSndf8feAAIDgYWLJBdCRHZGrsNg6tXgcaNZVeh\nLo1GuRLa++8DR47IroaIbIndhkF2NuDjI7sK9QUFKUcWxcdzuIiI7rDrMLC3nkGpyZOBZs2A116T\nXQkR2Qq7DYOrV+2zZwAow0UrVwKrVgE7dsiuhohsgd2GgT33DADA3x/47DOll3DxouxqiEg2uw0D\ne5xAvlv//srJaBMnAiUlsqshIpnsNgzsdQL5bq+8oix3/cILsishIpnsNgzYM1A4OgLr1wObNyvz\nCERkn2z6egbWZO9zBsa8vYEffgD69AFat+ZyFUT2yG57BhwmKis0FPjyS2DMGCAlRXY1RKQ2uw0D\nDhPdq29f4MMPgWHDgFOnZFdDRGqyy2EiIez7PIPKPPigsoDfwIHATz/V7cuCEtEddhkGOTlAw4b2\ntUidOaZPB3Q6Ze5gxw6gXTvZFRGRtdllGHDyuGozZwL16wP9+ilHGnXtKrsiIrImuwyDS5eUC9tQ\n5eLjATc3YPBg5aI4Q4bIroiIrMUuJ5CzspTVO6lqo0cD338PTJsGfPCBMt9CRHUPw4CqFB0N7N0L\n/PvfwNSpQEGB7IqIqKbZZRicPw80aSK7itolJAT49VflGgi9egEnTsiuiIhqkl2GQVYWw8ASrq7A\nf/4DPP44EBsLLFmiHHVERLUfw4DMotEA/+//AQcOKHMJ/foBp0/LroqIqstuw4BzBtXTqhWwaxcw\nciTQowfw8stAfr7sqojIUnYZBpwzqBmOjsA//gEcOQKkpQHt2yvrG/GII6LaRyOEbf7X1Wg0sEZp\nubnKVb7y85UhD6o5e/cCs2YpYfDKK0qvgW1MpC5LPzvtrmdw4YLSK+CHVM3r3RtITlaCYN48oFs3\n4NtvOclMVBvYXRhwvsC6NBogLg44fFgJhUWLlMNSFy0Crl2TXR0RVcTuwoDzBeooDYVffgG++go4\ndky5cE58vLIaql4vu0IiMmZ3YfDXX0DbtrKrsC/duwOffQacPAlERADPPw+0bAnMmQMcPMhgILIF\ndhcGx48DnTrJrsI++fkpE8yHDwNbtij3xccDzZoB//M/QEICUFgot0Yie2V3RxO1aQNs2qQcBkm2\n4eRJ5QS2779XhpOio5WrrvXrpyyd7WSXa+sSWcbSz067CoP8fOU6Bjk5gLNzje6aasi1a8CePcDO\nncpJbRkZQM+eQFSUcnJbjx5cfpyoMgwDEyQnK1fx+v33Gt0tWdHly8ok9MGDytdvvwHe3kB4OBAW\npgz5deqk9PgY8EQMA5OsXg1s364stka1k14PpKYCR48q8z/HjinfMzKUQGjbVjlqqfSrVStlToJD\nTWQvGAYmeOYZICBAOYqF6pZbt4A//1SWxfj7b+Xr9Gnl++XLSiC0aKEcVhwUpHw3/jkwkD0Lqhtq\nXRgkJCRg1qxZ0Ol0mDFjBv75z3+WLayGw6C4GGjeXBmLrs7kcVJSErRabY3VVRNYU+Vu3wbS04HN\nm5PQuLEWWVnK+SZZWTD8fPky4OWlzCn5+CjfjX82/u7tDXh4AJ6eyrLe1Tmb3ZbayZgt1sWaTGPp\nZ6eUzrNOp8OTTz6JHTt2ICgoCN27d8fIkSPR3oqH+GzZogwbVPclbPEfnzVVrkEDoF074Msvk/Dc\nc9pyt9HpgCtXgKtXgezsO9+zs5UlTI4du3PfjRvKQQg5OcpV39zdlXAoDYjSnz08lLBwcSn/q2FD\nYMOGJDRsqC1zf4MGQL16ypeTk5ylU2zp368Ua7IuKWFw8OBBhISEoGXLlgCAsWPH4vvvv7daGFy7\nBrz1FvDYY1bZPdUBjo7KEGJAgHnPKylRFj8sDQfjr5s3leGr0q9r18reLihQrhj355937svPV861\nKCxUriqn1yuhUL/+nYAo/bmq+5ydlTAx/nJ0NO2+Q4eAlSsr387RUQkqBwfzvyx5XmGh0q4V7c/4\ni8wnJQzOnz+PZs2aGW43bdoUBw4cuGe74cPvfW5FvZ+K7r99W5lgnDBB+SKqSU5OyrCRt7dlz583\nT/mqiE6nhEJR0Z2AMP65ovsKC5WgKilR9lH68933FRWVv01WFrB/f8XPKy5Wgqr0S4iyt035Mvc5\nBQXAe+/d+zydTrmvvM+Au0Oisi9zt9dogLw84KOPKt8mOhpYt86y3w81SZkz+Oabb5CQkICPP/4Y\nALB27VocOHAA77777p3CGO9ERBapNXMGQUFByMjIMNzOyMhA06ZNy2xjowc5ERHVSVLWJoqMjERq\nairS09NRVFSE9evXY+TIkTJKISIiSOoZODk54b333sOgQYOg0+kwffp0qx5JRERElZO2aumQIUNw\n8uRJvPfee1izZg3atGmDt99+u9xtn376abRp0wZdunRBSkqK1WtLSEhAu3btKqwpKSkJnp6eiIiI\nQEREBN544w2r1zRt2jT4+/sjLCyswm3UbqeqapLRThkZGejbty86duyITp06Yfny5eVup2ZbmVKT\n2m11+/ZtREVFITw8HB06dMCcCs7EVPt3ypS6ZPxeAcoh8RERERgxYkS5j6vdVlXVZHY7CYlKSkpE\n69atxZkzZ0RRUZHo0qWLOHHiRJlttmzZIoYMGSKEEOLXX38VUVFR0mvatWuXGDFihFXruNuePXvE\n4cOHRadOncp9XO12MqUmGe104cIFkZKSIoQQIjc3V7Rt21b675QpNcloq/z8fCGEEMXFxSIqKkrs\n3bu3zOMyfqdMqUtGWwkhxJIlS8T48ePLfW1ZbVVZTea2k9TrGRifb+Ds7Gw438DYpk2bEB8fDwCI\niorCjRs3cOnSJak1AepPcPfu3RvelRy/qHY7mVIToH47BQQEIDw8HADg5uaG9u3bIysrq8w2areV\nKTUB6reVi4sLAKCoqAg6nQ6NGjUq87iM3ylT6gLUb6vMzExs3boVM2bMKPe1ZbRVVTUB5rWT1DAo\n73yD8+fPV7lNZmam1Jo0Gg3279+PLl26YOjQoThx4oTV6jGV2u1kCtntlJ6ejpSUFERFRZW5X2Zb\nVVSTjLbS6/UIDw+Hv78/+vbtiw4dOpR5XFY7VVWXjLZ69tlnsWjRIjg4lP+RKaOtqqrJ3HaSGgam\nnktwd7pZ8xwEU/bdtWtXZGRk4Pfff8dTTz2FUaNGWa0ec6jZTqaQ2U55eXl46KGHsGzZMri5ud3z\nuIy2qqwmGW3l4OCAI0eOIDMzE3v27EFSUtI928hop6rqUrutNm/eDD8/P0RERFT6l7aabWVKTea2\nk9QwMOV8g7u3yczMRFBQkNSa3N3dDV3ZIUOGoLi4GNeuXbNaTaZQu51MIaudiouLMXr0aEycOLHc\n/wAy2qqqmmT+Tnl6emLYsGFITk4uc7/s36mK6lK7rfbv349NmzYhODgY48aNw86dOzF58uQy26jd\nVqbUZHY7VW/6onqKi4tFq1atxJkzZ0RhYWGVE8i//PKL1SdmTKnp4sWLQq/XCyGEOHDggGjRooVV\nayp15swZkyaQ1WgnU2qS0U56vV5MmjRJzJo1q8Jt1G4rU2pSu62uXLkirl+/LoQQ4tatW6J3795i\nx44dZbaR8TtlSl2y/v8JIURSUpIYPnz4PffL+v9XWU3mtpPUS35UdL7BRx99BAB49NFHMXToUGzd\nuhUhISFwdXXFqlWrpNf09ddf49///jecnJzg4uKCL7/80qo1AcC4ceOwe/duZGdno1mzZnj11VdR\nXFxsqEntdjKlJhnttG/fPqxduxadO3dGREQEAGD+/Pk4d+6coS6128qUmtRuqwsXLiA+Ph56vR56\nvR6TJk1C//79pf7fM7UuGb9XxkqHf2S3VVU1mdtONntxGyIiUo/UOQMiIrINDAMiImIYEBERw4CI\niMAwIBvi6OhoWFQrIiLCcLRNbbd69Wr4+vpi5syZ1drPvHnzsGTJEsPtX3/9tcJ93r59G+Hh4ahf\nv770c2CodpB6aCmRMRcXlwpXeyw96E32WdWW0Gg0GDduXLmrlZaUlMDJybT/hne/923btmHIkCHl\nbtugQQMcOXIEwcHB5hdMdok9A7JZ6enpCA0NRXx8PMLCwpCRkYFFixahR48e6NKlC+YZXTz4zTff\nRGhoKHr37o3x48cb/oLWarU4dOgQACA7O9vw4ajT6fD8888b9rVixQoAyrK/Wq0WDz/8MNq3b4+J\nEycaXuO3337Dfffdh/DwcPTs2RN5eXmIjY3F77//btgmJiYGx44du+e9GB/BvXr1aowcORL9+/fH\nwIEDkZ+fjwEDBqBbt27o3LkzNm3aVO77OnnyZJl97ty5EwMGDMAff/yBqKgoREREoEuXLkhLS7O0\nycmOsWdANqOgoMBwUlarVq3wzjvvIC0tDZ9//jl69OiBxMREpKWl4eDBg9Dr9YiLi8PevXvh4uKC\n9evX4/fff0dxcTG6du2KyMhIAMpf0+X1JlauXAkvLy8cPHgQhYWFiImJwf333w8AOHLkCE6cOIHA\nwEDcd9992L9/PyIjIzF27Fh89dVX6NatG/Ly8tCwYUNMnz4dq1evxtKlS3Hq1CkUFhZWes2JUikp\nKTh27Bi8vLyg0+nw3Xffwd3dHdnZ2YiOjsbIkSNx6NChCt9XdnY2nJ2d4e7ujg8//BDPPPMMxo8f\nj5KSEpSUlNTUPwnZEYYB2YyGDRuWGSZKT09HixYt0KNHDwBAYmIiEhMTDYGRn5+P1NRU5Obm4sEH\nH0SDBg3QoEEDky6hmpiYiGPHjuHrr78GAOTk5CAtLQ3Ozs7o0aMHmjRpAgAIDw/HmTNn4O7ujsDA\nQHTr1g0ADAvNPfTQQ3j99dexaNEifPrpp5g6dWqVr63RaHD//ffDy8sLgLJK55w5c7B37144ODgg\nKysLly5dwt69e+95X6U9jMTERAwaNAgA0KtXL7z55pvIzMzEgw8+iJCQkKobm+guHCYim+bq6lrm\n9pw5c5CSkoKUlBScOnUK06ZNA1B2GMb4ZycnJ+j1egDKpKqx9957z7Cvv//+GwMGDIAQAvXr1zds\n4+joiJKSkgrnKlxcXDBw4EBs3LgRGzZswIQJE0x6X6ULiAHAf/7zH2RnZ+Pw4cNISUmBn58fbt++\nDY1Gc8/7Kq0jISEBgwcPBqAsC/LDDz+gYcOGGDp0KHbt2mVSDUTGGAZUawwaNAiffvop8vPzAShr\nyF+5cgV9+vTBxo0bcfv2beTm5mLz5s2G57Rs2dKw6mVpL6B0Xx988IFhSOXUqVO4detWua+r0WgQ\nGhqKCxcuGPaVm5sLnU4HAJgxYwaefvpp9OjRA56enlW+j7tXgMnJyYGfnx8cHR2xa9cunD17FhqN\npsL3JYTA0aNH0aVLFwDAmTNnEBwcjKeeegpxcXHlzlkQVYXDRGQzyvvr2/i+gQMH4s8//0R0dDQA\nZYnetWvXIiIiAo888gi6dOkCPz8/dO/e3fCB+9xzz2HMmDFYsWIFhg0bZtjfjBkzkJ6ejq5du0II\nAT8/P3z33XcVzjE4Oztj/fr1eOqpp1BQUAAXFxds374drq6u6Nq1Kzw9PU0aIip9T8avMWHCBIwY\nMQKdO3dGZGQk2rdvDwD3vK/S4bJDhw4ZhsoA4KuvvsLnn38OZ2dnBAYG4sUXXzSpDiJjXKiO6pxX\nX30Vbm5u+Mc//qHK62VlZaFv3773HO1Tas2aNUhOTsa7775bI6/35ptvok2bNhgzZkyV2wYHB+PQ\noUPlXjqSyBiHiahOUut8hM8++ww9e/bE/PnzK9ymYcOG2LZtW7VPOiv14osvVhkEpSedlZSUVHhZ\nRCJj7BkQERF7BkRExDAgIiIwDIiICAwDIiICw4CIiMAwICIiAP8fvGBef9YdgfQAAAAASUVORK5C\nYII=\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.objects as wo\n", + "xs = S1.sim(ns=2000, dt=0.1)\n", + "ts = wo.mat2timeseries(xs)\n", + "ts.plot_wave('-')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD9CAYAAABHnDf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYVdX6x78HxcwhzQlRVJwQEARE0RzymPM8VWqZpt5b\n3ZvVtTKzfsXhdh26Nlyzm02m3TTLMpwlNdlqDjkAoqDgAAqI84gTAuv3x9vmDOxzzp7OAKzP8/jI\n2WefvddZZ+/vftf7vutdBsYYA4fD4XAqFD6ebgCHw+Fw9IeLO4fD4VRAuLhzOBxOBYSLO4fD4VRA\nuLhzOBxOBYSLO4fD4VRAdBH34uJiREVFYdiwYXocjsPhcDga0UXcFyxYgNDQUBgMBj0Ox+FwOByN\naBb33NxcbNy4EX/5y1/A50NxOByOd6BZ3KdPn4758+fDx4e77zkcDsdbqKrlw+vXr0ejRo0QFRUF\nQRAk9+GuGg6Hw1GHFm+IJnN79+7dWLt2LVq2bInx48dj27ZtmDhxomQD+T+G2NhYj7fBW/7xvuB9\nwfvC8T+taBL3OXPmICcnB1lZWfjhhx/w2GOP4X//+5/mRnE4HA5HG7o6ysuzC8aeW4nD4XDKI7qJ\ne69evbB27Vq9Dud23CHuRqPR5ecoL/C+MMP7wgzvC/0wMD2cO45OYDDo4j9yJYwBr7xiwoIFJpTj\nwQeHw6lAaNVOTdky5R1BECAIAvbuBX79NQ6ZmUDXrmQ9cAuCw+GUZzRZ7nfv3kWvXr1w7949FBYW\nYsSIEZg7d671CcqB5d62LRAWZsIff5iQnQ1Uq+bpFnE4nMqOVu3U5HOvXr06EhMTkZKSgtTUVCQm\nJuL333/Xcki3k5MDXLsGdOgAtGkDbNrk6RZxOBxv4d49YM4cICvL0y1RjuaAao0aNQAAhYWFKC4u\nRr169TQ3yp0kJgJGI9C7txGjRwPr1nm6RRwOx1v47jvg//4PePllT7dEOZrFvaSkBJGRkfDz80Pv\n3r0RGhqqR7vcRnIyEBNDfvZhw4D164GSEk+3isPheAOrVgGLFwPbt9MIvzyhOaDq4+ODlJQUXL9+\nHQMGDIAgCGWCkSaTqfRvbwtWpqcDffvS361bA/XrAwcOkOBzOBz3I6UhnqCwkER95Urg22+BP/4A\nBgxw3fnEBA+90C3PvU6dOhgyZAgOHDhQ5j0TSOBNJhOMggBYiD1MJo++HrjXhG5bzK8/rG3CvVne\n0z7+mr/mrz3z+tgxYH5NE2p/aEL37sCuXa49n9FohAmgf5b7qIVp4OLFi+zq1auMMcZu377Nevbs\nybZu3Wq1j8ZTuJQbNxirUYOx4mLztrVrGevTx3Nt4nAqO7GxsZ5uAmOMse++Y2zsWPp73TrG+vVz\n7/m1amdVLQ+G/Px8TJo0CSUlJSgpKcEzzzyDPn36aH/iuImTJ4FWrQDLasW9egFPPQXcvQtUr+7a\n83vL8JPD8TSCICA+XsBXXwF37sSVbvekGzc1lbLoAPr/yBGPNEM1msQ9PDwcSUlJerXF7Zw+DbRo\nYb3toYeA9u2BPXuA3r1de/7KKO6V8TtznGM0GvHjj0ZMnQp8/TXwwgsmNG7s2TalpgLTptHfzZoB\nBQXAlStAeUkIrNQrbEiJOwD06QNs2+a68+7YAfTvTxdLZYMXaOPYY/164KWXgJAQYNkyT7fG2nI3\nGMjoS0vzbJuUoMlyL++cPg0EBpbd3q0b8J//uOacgiBgwgQBBQXAli1xqFWLtntbFpErmDmTMg/e\nfhvw9fV0azjexJkzNGGobVvgiSeM2LgReP11z7Xn4kXg9m2y2EXCwsg107On59qlhEov7l26lN3e\nuTOlQzIG3QuJhYQYUVBgRHw8MGGCTlFxL0cQBGzYIGDhQuDevThMmEDWWWV4oHHksXs30L073W8v\nvmjE7NnAnTvAgw96pj2i1W55/4viXl7Q7JbJyclB79690b59e4SFheGTTz7Ro12luHIYb88t06gR\n+d5PnND/nLt20cggJoasg3v39D+Ht7k+jEYjIiJMGDrUhAEDYlGnjgkmk4kLO6eU5GSgUyf6+6GH\nSEj/+MNz7bF0yYi0b1/JxN3X1xcff/wx0tLSsHfvXvz3v//F0aNH9WgbAM+IOwBERtIPrDe7dgE9\negA1awLNmxtdcg5vE3cAOHSIbt42bYDNmz3dGu/CG38vd3PsGI3mRLp0Afbt81x7Dh0CwsOtt4WE\nADpKm8vRLO6NGzdGZGQkAKBWrVoICQnB2bNnNTfszBnq3NWrXVMO4PZt4OZNstKlCA2l2at68/vv\nJO4A0LOnESkp+h37xAkqWZycrN8x9SI9nfp0zBgjbtwALlzwdIu8By7uJO7BwebXMTGeFfekJKBj\nR+ttTZrQSPvyZc+0SSm6+tyzs7ORnJyMLjaObEu/shw/qyAImDZNQJ06wO7d5KMNCtLXR3vmDAVL\nfOw83kJC9K8QefcuDes6d6bXQUHA8eP6HHvbNgGTJglo3BhYuzYO//d/QNWq3uPXFsW9TRsjIiPp\nAeTKqdzlBV7HiKb5nz5N5T9EYmKAt97yTHvu3CFDydYtYzDQA+joUbOBpid6lx/QbfrozZs3WXR0\nNIuPj7faruYU584xVqcOYwUFjI0ZE8v69tWrlWYSEpjD4+7fz1hEhL7n3LePschI8+uffmJsxAh9\njv3++4z17k2zbQMCYtm2bfocVw8KChh78EHGioro9fTpjM2b59k2qSUxMVHT54uKGLt2jbEtWxLZ\noEGxzNc3lgFgsbGxLDY2VvPxyyPHjjHWqpX1tpISxurWZSw/3/3t2buXsago6fcmTWLsyy/d0w6t\n8qyL5X7//n2MGTMGEyZMwMiRIzUfb/VqYPBg8ku3awd88glw4wYFWvTCkb8dMFvVembM2A719LLc\ns7KA99+nDB8fH6B5c/dMwpLLsWP0XatUodcREcCvv3q2TWrRMgnr/n0qL33wIMCYEb16GbF7N9Cv\nHzB4sKnSFqs7c6bsvWgwANHRdM8MHuze9uzcCTzyiPR75cnvrtnnzhjD1KlTERoain/84x96tAk/\n/QQ8/jj93a+fEY88Avz2my6HLsWZuD/0EPDAA8ClS/qd01bc27QBTp0Ciou1HXfGDGD6dKBlS3rd\no4cRx45pO6aeiC4ZkZAQICPDc+1Ryy+/0ENJbbzg55/JVXbnDnD1KgWWO3Wih93Klfq2FSg/vvyc\nHOt8cpGICApsupvffqOJjFJUKnHftWsXli1bhsTERERFRSEqKgoJCQmqj3fxIrB/PzBwIL0mn/Gf\nFdl0xJm4AzTBKTtbv3PainuNGkCDBnRxq+XECZrx+tpr5m0jR7pH3IuLgVmzgC+/dLyfrbi3a0fi\n7uWrL5YiCAKeecaEyZNN2Ls3Dl27UiqnUvFctw6YOJGs0j/XuAEATJhgxOrV+rYZKF/i3rx52e2e\nEPfbt0lr7A3OQkMrkbj36NEDJSUlSElJQXJyMpKTkzFQVGYVrFlDwm558XfuTIKvJ3LF/fRpfc53\n/z6JnG2Qpm1bIDNT/XGXLAGeecZ6ske7duQKcbV4/vADsGED8O67jjOLbMW9Th2gdm0gL8+17dOL\nXr2MSEszYelSE955JxZFRSYMH64sT7+khCxCce0AS6ZMMeLKFeDcOd2ajNRUoKhIv+MpQelDxZss\n9/XrKePMXv2Yli1p5HbrlnvbpQavqy2zbBkwdqz1tuhoyq7Q6r6wRMrPZ4uelnt6Oh2vZk3r7UFB\n2sR940Zg9GjrbfXqUUVLPcVCiv/9D3jnHWDKFFrMwB624g6YH0BK8JQlmppKBaNGjKCYxl/+Qt9d\nCSdO0G8idc35+FB2iB6TdgRBwOjRJkRFmTB7dhxMJnWjDK1tUIKYuWZLSAjdf3fu6NIsWfz4IzBu\nnP33q1Qhd2p5cCt6lbhnZNCQZ+hQ6+316tEKSSdP6nOeoiIgPx9o2tTxfi1a6Ge5S+XNAtrE/eJF\n8tlLBeKaN9fm7nHGlSvA3r0U7Bo/HlixQnqkcOcOkJtrneYGUEqZ0hvEU+L+ww/0HX18yE04YIDy\nwnLp6WUnxVjSpYs+4t6rlxHp6SZs2WJC3bqxGDrUvbOBV682l+6Qiz3LvVo1MgLcNSu0oADYuhVw\nlhNSXvzumsV9ypQp8PPzQ7ijK1cGV68Cf/sb+Y6rVSv7vp5BuLNnafKSs+JVelruBw/qL+579lBU\nX+p7NG1Kouoqdu+mh0rNmjRVvEoV6ZswI4OE3baNSi13T7kYAGDLFmDQIPrbaDQiOpoe+koCq0eP\nWs/AtKVrV33Efc8e+r93byAqCli6VPsxLWGMRtdvvEHuuO+/B65fpwfv8OEmPPusCRs2xGHsWHkj\nBsbsizvgXtfMpk2OXTIilUbcJ0+erCmAClB2THAw3fDTp0vvExysfBhvjzNnpAM4tugp7q6w3FNT\nqUyCFAEBrvVp79lDNXIAChAOHiw96UvKJQNQrEFO7R5BEDB+vAm+vibExbnfzXDlCv0+Xbuat1Wt\nSlkuBw/KP469fhCJiSGLV+ukpjVrgCefpN/k2WeNWLtW39jLG28ACxaQAFapQqOaFi0Ak8mIQ4dM\n2LfPhMcfj8WNG/JGDNeu0XHq1JF+353ivmZNWRenFOVF3HWZxJSVlcXCwsIk33N2iv37GWvUiLED\nBxyf4/PPGZsyRW0LrVm+3Lx8liOuXmWsdm3t5ysqYqxmTZq8YkthIWMPPMDY3bvKj/vEE/RdpJg9\nm7GZM5UfUy5GI2ObNplfr1tH22x5+23GpFZNS0tjLChI3rm6dqXvU6tWrKp+0sKqVYwNHFh2+/Tp\njM2dK/840dGM7dnjeJ+AAMZOnVLWPlvCwxnbvZv+LilhLDCQsSNHtB1T5ORJxho0YOziRevt58/T\n73/lCr2eOTOW1apF17YzUlIYa9/e/vtbtzLWs6f6NiuhRQuaUOWMQ4cYCw52eXO8YxKTMxyVH/jX\nv2h4Fx3t+BjBwcB33+nTHjnBVICsiZIS7ROoMjIAf39p68TXl9py8qRjy06K1FTqOymaNnVNbRyA\nXCQHDlhbs717k1/atq/S06UDVC1bkmujuNg8uUmKa9fI3bN9O63Q88svdB53YS/nOTJSfnmKkpKy\nhbGk6NCBrFRxvoJScnNptCbGYAwGyjxLSKCKhlpZtoyWoGzQwHp7o0bWcbKBA43YsMFcLM4Rjlwy\ngNlyd0X5bUvOnqVaU0FBzvcNCqKJg/fv67sugVeWH1BruYtlBm7dcn6Oc+cYq19fbQut+dvfGPv0\nU3n7tmvHWHq6tvMtX87Y44/bf3/oUMZ++UXZMW/fZqx6dfvW0dat0pa0HqSmUr/Y0q9f2e/RqhVj\nR49KH6dJE8bOnHF8rt9+Y6x7d/p71qxENmyY8vZqoV07xpKSym5PTmYsNFTeMbKz6bs6Y9YsxuLi\nlLXPkq++KjsiXbNGvwXfw8IY+/13efs+/zxjCxY43++zzxj7618d7+PvT33oSuLjGRs0SP7+rVtr\n1wVnaJVnj2bLxMeTr9Yyp90ejRqRlafHjNHTp+X53AHyXWsNTB496thyCg9X7ldMTycLwp7l4O9P\nGUGuQKrWNUBBR0tr9upVCjras4ZatXKeAXXggNn6e/NNI7Zvp+O6g9xcut4iIsq+164dZSrJCfQ6\n87eLiJa7WjZtMgd+RR57jAK1WvOy8/NpVGBvWr4tcktmy4l/ucPvnp5OiQFyKQ9+d4+K+6pVwJgx\n8vY1GCi/VI8FNOQGVAH9xN2ynKkt0dHKgnOAfYEV8fd3XZ774cPSaX2iuIsBvORkusntVd5s1YoE\n0hHJyeZA9EMP0SSg+Hj1bVfCr7+SS0aq/Q8+CPj5yQu4O8uUEYmIUL+GQFERuZBsK23WqkW/gdYZ\n3tu3A48+av+3tEVuyWxnbhmArnNXrHtgSUYGPbDlYk/cvWnWtWZxHz9+PLp164bMzEw0a9YMS5Ys\nkfW5y5epXrOSyazlVdyd+VvViLs9gRWpW5dyzF0xAeTwYekHS7t2lEkiLiK8a5d0Dr6IHHE/dYp+\nd5Fx4yhDwx0kJJS1hC0Ryyg4Q67l3rYt+X7VLJx++DDVG2/cuOx7vXsDiYnKj2mJINifki+FKO7O\nxE6OuGt56MlFD3Hfu5fias8+6x0ir1ncV6xYgbNnz+LevXvIycnB5MmTZX0uPp6q4dnO2HRE69ba\nJzJdv04Brrp15e2vVdyLiqjNjgI1LVrQxaDkweXMcjcY6EY/f17+MZWcW+rBIqZEbthAr9evd1zR\nT87vaVsmYsgQMgpcvdhHURFNaHFkfMgVd7mWe9WqtJ+aSTu7d5tTU2157DHt4p6YqEzcGzSg+SrO\nXINyLXdXumUYUy7uHTrAaqEdxoDnngMWLqQH7eLFZT9z4AAtDq93EUR7eMwts2wZLRCtBD0sd9Fq\nlxt51yruWVnkInG00K/BUNZf7Qxn4g6QuOvtmrl2jf4FBkq/P3Ei8OmnJFAnTjheKd6Z5X73Lp3L\n39+8rUYNEviff1bVfNns2UNZK1KWsIicWbaMUV/I9eeq9S87EveuXakNN24oPy5AvvbLl51fb7Y4\nc82UlNCxAwIcH6ddO3oI3L6t7PxyuXiR3E22WUCO6NCB7m2xT3fupJjgxIkk7G+/bb1i06pVdN0y\nRpb9N9/o+hUk8Yi45+TQ083RkFcKPSx3uWmQIlrFXa7VNnQoXQByOH+eLiRL0ZNCrrgrSb86cYLc\nB/Z8r126mGdHzpolPdtYxFlA9cwZ6n/bc4nlDlyJVHDSFjmW+5kz5PeuX1/eedX6lx2Je/Xq5B7b\nuVP5cQGz1S7X3y4SGmp20Ulx/jy5MRwZPgAlDbiyDMGxY3R8JamWvr4UyzhwgF4vWQJMnkzHiIwE\nnniCSnEzRuWcX3yR3Hxz5tCM5zfeoGvDlWgW94SEBAQHB6Nt27Z4//33ZX3mk0/Ian/gAWXn0sNy\nV5IpA2gXd9u1Ie0xdCgt3CHnxj50iETA2cXoCnHPynKeh710KYmeZRliKfz8zGvZSpGdLf0g7t+f\nLEJX1s6RK+7OZk3bc2HZQ43lfuUK/XPk+uvWTX15g23byLWjFGflcZXEvlzpd1fqkhHp1Ytq8l+/\nTjV1LD0R//oXzUqPjKT74NdfyeABSA9eeIH2cSWaxL24uBjTpk1DQkIC0tPTsWLFChx1kh906RIN\nW2bMUH6+xo0ppUvt8BJQdkEBZHHdvq1+SCjXcq9WDfj734H//Mf5vgcPOp/0BcgT95s3lU15z8qy\n75IR8fEhq9zZw8dgcFxW+fRp6XNVqwaMGuWaBS4A8hOfPm09SUuKpk0p+Hn9uv19kpKkUyntIVru\nSn6TtDQSUkeWtZqgPUCW59at6sS9fXvHlrucstsirvS7qxX3J56gKpJLlpDBYenCq1uXEgo++ogM\nANtr4KWXqOzKtWva2u4ITeK+b98+tGnTBoGBgfD19cW4ceOwZs0ah5/59FNKf3TmZ5PCYNDumlEq\n7gYD3cRq67TItdwBepqvXk0ZE47QQ9wFQcCsWSY0aGDCe+/Jr9mSna1+BqUUgYH0wJDC0c3vyqyZ\n334j11JVJ/O3DQaylh25ZrZtUxaIrFePXBVKqpGmpTmfgRodrbxaI0Duntq11Ymf6Jaxd06l4u5K\ny13uPWpJZCS5Rl97DXjzzbLv16xJqbRSSSN+fpRaun698vPKRZO45+XloZlFqDsgIAB5DlTw9m3g\ns8+cD9cd4W5xB9S7ZhiTb7kDNEqYMMG59b5/v3ZxNxqNCAszoV8/Ex56KBZPPCGv0JMcy10JLVva\nzxV3dPMbjeSic0Uu/7Zt9pdZs8VRUPXWLXoQOwoqS6HUSpWTatmsGV2PSo2Ur76ia1LN1P9Gjehz\n9jKb1LhlXJFiqNZyNxjIf56dbXa5KGHECLhkBS4Rw5/TXFWxatUqJCQk4KuvvgIALFu2DH/88QcW\nLlxoPoErC0JwOBxOBUaDPGuz3Js2bYoci6hWTk4OAiT8LYwxMMYwbhzDV1+x0tdq/i1axPCXv6j7\n7P37DNWqMRQWKvvczJkMc+YoP9+2bQw9eyr/3PjxDB98QH8nJiZavfef/zBMnSrvOKdOMbRoYf/9\nJk1onzffTMSTTzo/XkkJQ/XqDAUF2n5Dy38rVzKMGiX9XrNmDFlZ9j/7zjsMb72lX1sYYzh5ksHf\nn76rnP1XrGAYM8b6GouOZggOZujalSEzU3kbli9neOIJ+fu3b89w6JDz/WbNYjCZ5B938GCGBQu0\n9efzzzMsXCj9XocODAcPyj/WgAEM69bp+3sfPcrQpo2+x1TyLzCQ2iD1nlY0iXunTp1w/PhxZGdn\no7CwED/++COGDx8uue/9+xQxdjSpRQ5aMmby8uQt0mGLWreMEn+7Ja+9RjWz790j33hJCQXt7t+n\nYPTjj8s7jp8fuS2krpPr1+lfYCCt4bl3r/PjnTtH/lclE8+cYc8tc/8+pco5Wi2rSxea0CTFhQtU\nwVCpT3PfPqqfInfAaZsOuXQplUlIT6dc+bZtlZ0fUL4wTU6OvBiWEr/1wYOUrvzCC/LbIYWjXHcl\nPnfANUFVMQ3SU3TrRnENV6BJ3KtWrYpPP/0UAwYMQGhoKMaOHYsQOw7m3bvpRm7SRMsZtfnc1fjb\nAfXirsTfbkl0NBXLmjWLbozgYBK52rUpgGdbP8QeNWpQuqlURF5sm8FAmS0XL9pPSRSRkwapFHsL\nouTl0cPJ0YM4JobiD1KZJe+9R5NIJk9WlpGQlKTMfxoURMaGuL7vV18BM2dqK08bFERpsXLWDL5x\ng2bTPvyw832VpFkuWkQZHY7mKcjBXsbM9evUbmerHlkSFUW/j54omWDmCqKjrWe66onmPPdBgwYh\nIyMDJ06cwKxZs+zut2FD2bVR1dCsGVlld+8q/6y7xV2t5S4IAlq3NiE+3oSffopDly4mvP66CatW\nCfjpJ2XCYa+AWHq6+cFTpQq101mhJ70zZQAKIhcWlk0nzM52Hrht2JBSzmwf9nfv0oLd335LI8VF\ni+S3x7JQmRxq1qR2ZGcD330n4MwZ+cFYR8ds0EDeJBdxhqeca0Ju7RrGaJQ9YoS89joiIoLEy/ZB\ndeoUXUtKruXOnelhrgbGaDS8ZYv1dmc1mlyNs3RRLbhthur69fqIe9WqdFGoWZquvFjuRqMR8+eb\nkJVlQmxsLL77jjJZhgwxKrYI7WXMHD1qnWEh5yLTO1MGoJtbyjUjd8geFUWCbMmePfTdGjemmYGL\nF8vLG2dMueUOAD16UPrkl18KGD/eeQqlHOQuKynXJQNQu0JDSdAckZlJv4sal5ItDRrQCMzWcFBz\nb7RuTQ8mNRlSq1bR5Mlx46wnvymdZKY35V7cT52iGXRy0vfkEBmpbiijVtwbNaKh/b178j9z8yZ9\nZzXn0xNH4m55c8kp0eoKtwwg7ZrRIu6JiZSnDpC1V6MGlax1Rk4OuSGclXWwZfhwWiUsOVm7j1pE\nrrjn5jovvGWJHL/71q1UWlmvRLeuXc0Ld4uoEXeDQb31vnQpueqmTgXEifQFBXSdedLn3rQpVW61\nrEOjF24R959+ohtAaW0Ke0RGlr2h5aC0royIjw+JpLPJRZaIvnKt39lZ3rkz7Im7pVsGoAvc2WhI\njqtEDVITmbSIu+V0eYMB+MtfyBfuDDVWuyAISE014ehRE27disP33+uzgLcScVcyIVCOuG/ZQhVb\n9aJ377LuENuRo1zUiHtxMfD77/Sdpk8Hli+nBV+2b6egvNIyKHpiMMivfa8U1dLz008/oX379qhS\npQqSnEQ5vvtOeQVIR6gNrGRnq7ekmzVTVuhHr0CNK8T99m2aYt+qlXmbHHF3leUu5ZaR+yARrwUx\nI6iggEZ13bub95kwAdi40bl1lJysXNyNRiPmzDHh0iVyoYkzfbX+bkrcMkosd2dB1aIiqt2uptyA\nPQYPJnEvLDRvS01Vt66rGnFPTaXRWMOG9P+QIfSw1/shphZXuWZUi3t4eDji4+Px6KOPOt3X15f8\nknrRtSvd0ErqvTCmTZzatlXm55czJdwdSIl7RgallFr6hlu3JkG9f1/6OMXFZCWqGfk4Q4tbpmlT\n+m3FUdWuXeT+s1y6sV49GjnGxlKp4L59yf9qixpxdxXt2slbxk2N5X74sP2Znvv3U7/7+ck/pjP8\n/MivLdb5z8+nGlNq4lExMZSuqiQNXExvFZk5k1wzS5dSfRhPI6d0tBpUi3twcDCC5CwVDmDdOv1c\nMgDlEUdGKithmp9PqYS1a6s7p9I1E71Z3KX8ndWrU5qqvVIAeXkUHHPFENbWLVNSQqIlZ5RlMFB2\ni+iasVfB8OOPyYJbuBB45hlg3ryycRut4q7VWrekSRPyxTpbL1apuNevT/eAvd9561bXWLPPP091\npQDg888F9OhBWVpKEddGsFePSIrMTOustfBwKvj144/6BI21EhSkLkHEGTrE9Z3z9dem0r+NRqMu\nN8GQIRQBl5vzffIkWadqCQ6m4apcjhzxbnGX8neKF5nUBe8qlwxgdsswRmKdm0siVL26vM936wbs\n2EHZWAkJVL/Ilvr1aR+R/Hyq4bN0Kb2+dIlyxrV8Rz3F3WAwW3SOqlMqdcsAZr+71HfdupXmV+jN\nk08C//wnsHYt8NNPAqZNM6o+luiasXQrOiIzs2x9n759VZ9ed8T7ThAEzbEaSxyKe79+/XBOIho3\nZ84cDBs2TPZJTCaT4oY549lnyfqcN0/eRAit4q7Ecr92jYTC05kygLS4p6fTzWaLONtyyJCy77lS\n3MUlD69do8k4J09ar5vqjL59KeXxlVdI7Lp0cf6ZqVPpIXbrFuWVp6Q4XszbE4j14u2J+82b5MeW\nM4HJErEIl20e++XL1A9KC53JoVo1Wn1oyBDq42eeUX8s0TUzdqy8/TMzHde69zStWtF1262bteEb\nFxen6bgOxX2LbYjbi2jcmHJW333XPNxzxMmT8p/0UrRsSSJ5+7a1P1cKOfW13UXDhpSSWVRk9rE7\nstzt5UC7KlMGMNd1z8oioTpxQpm4x8SQtR8bS9a7nDzzhg3pIbBhAz3ovMnfLuIsqCqmQSpNWezQ\ngVwSAFmKF9i0AAAgAElEQVSLoqCsWkVrxupZXkJEtEqfew744IM4fPghbVczku/cmUYBcrh/n+I3\nWgw7V1OtGv2Op06pm/RoD13kR48iN2qYPZsCZJZ1URITqYNsZyVqtdyrVqXPy/GNeYtLBiC/Zv36\nVF4AoIs9K0vaknFUm9yVljtAfSvWDDpxQtlv5etrDpZK1dW2h2VN+Ph4wSro5g04W8ZPqb9dpH9/\nuk+uXyfRzcujB/5HH1G5BldgNBphMpkwf772rKJOnehhXFTkfN/sbAq6ezLdUQ6u8LurFvf4+Hg0\na9YMe/fuxZAhQzBI6YKoOlCvHvlXJ0ygIWpeHq2v+frrwFtvkcUqolXcAUptdDa7D/B8vQpbLF0z\nJ06QIEhd7I7SIV0t7uHh5vzr48eVWe4A1UG5dk1Z7vSoUTSz9OJFIClJ8Co/LCDPclcj7vXrU9D0\n1Vcp57tDB3KXDB0qP4blSerWpYCzHDept7tkRLxK3EeNGoWcnBzcuXMH586dw6ZNm/Rsl2xGj6Za\nHkOG0JDylVdo0srw4eYVxouL9cleiYqSNzPWm8XdUS2NgADKzpCqPeJKtwxgnX998KB7XCR169Ki\nH+PG0SxkuYtYu4u2bemhai89VU0wFSBrvUULE5KTTThxIg5//7sJEyeaMHSooNusVEfoEXiWm+9e\nmcXdLdkyruazz4D//pdWmReHlZMnk2Xy+utkCTZqZA7cqSUy0jx12R6MkYCWR3H38THn81sWzyos\npM+rERK5iAWm4uMF3LhhVGy5q0EQBPj7C1i/HsjLi4MY99cro0srYnqqPTdabq6yImcilt/PZHJN\nwoOz82ulUycyAqZMcbxfRoZna8fIJSjIHAfRiwoh7lWqAC+/bL2tZ08SpIwMYPlyAR07GjWfR6xp\nI6bsSXHhAr2vtD6JKwkIMK/JmZoKTJxof1/RgrAUjTNnSGT0KIhlj5Yt6SHy1VcCoqOVF0hTg6dF\nTg6ia8aeuOtRubE8Ehwsr1Z/Ziat2ezt2FruR45oP6amgOqMGTMQEhKCiIgIjB49GtcdLQPvZqpU\nMa9OvnmzgM6dtR/Tz4+sKUdlCESXjDetLihaxWLVQ9uV2C2RCuK5otSvLT4+5ErbtEn7gi4VCTEd\nUgolFSHt4Q0jFDW0bUsjcmeUF7dM06YUM7p5k+7T/v21H1OTuPfv3x9paWk4dOgQgoKCMHfuXO0t\n0pHx44HPPydXhIK0fIc4q0jpbf52wFx/ZcUKWtXJUWBZyvfn6mCqIAgwmUx46CETgDhcvqxP8S0l\neKvIhYTYLyqlNqBqibd+b2e0aEErdTla16GggHL3XelO1AsfH/qtDx+mUbachVqcoWmg3c9innKX\nLl2watUqzQ3SCzGvtmVLYPfuOKxcSdu1+lNFcbc3HD5yRJ0f1JW0akWTqr7+WsBjjzl2ebRrV7bu\niriwgquw/E1q1/aMe8RbRa5jR+l5HDdvUglqJSsZVSSqVqUA/8mT9hMlxPkS3jDfRA7du1NtpIcf\nphIaYpquWnTzon7zzTcYP3685HuWN6u7glXieciXqp9gREVR+pg9MjJo7U5vwseHsom+/x745RfH\n+4qWu2Vc4cSJ8uG3rIiEh1P/206eO32axM2b3H/uRnTN2BP3zEzP1mpXysMPC1i8WECVKvrUvHEq\n7nJKEMyePRvVqlXDU3ZUzRsDVWqJjARmzLD//qlT3jUbThzB0Nq1cTh0iFIO7T1kH36Y4grnz1OW\nDUA3kLsKLHmrBe0pHniAhuuHDllXNlS6uHRFxJnfvbz420WmTTNi3jwaWW/bBqxZ48LyA4DzEgRL\nly7Fxo0b8dtvv2lqiCvRUzBatyY/3tWrZWt63L1LBaiaNtXtdJqxFPGaNeU9aMWZqo0bkwWvtByA\nFri4l6VTJ+DAAWtxz87m4t62reNFezIz9a1L72oaNgSWLaO/9Si5rMkblZCQgPnz52PNmjWoLreE\nnwfQUzB8fGhGn9SCB1lZVCxMTSlTb8IyqHruHLkD6tTxbJsqM507W5fYAMxumcqMM8v96NHy5ZYB\nKMNPrxrzmsT9pZdeQkFBAfr164eoqCj8/e9/16dVXk5QkPRFdeqUtuJkrkbuQ659e3MpgJQUephx\nPEefPlQmwXKRb265Oxb3khISd2+p8eQJNAVUj8tJNK2AtG5NUXpbKoq4d+9OSyMC5A7o1Ml1beI4\np2VLWqDm8GHzHIX0dNfUXS9PNGtG9aMKCmh2uiVZWbS4zEMPeaZt3kA5SRLyLtq0KZ/iLpeOHen7\nXbsGJCQIXNy9gP79gV9/pb/v3aPfR80ydRUJHx+6F6VqsnjjfBN3w8VdBY4sd2/KlFFLtWpUvmHN\nGiA5WUC3bp5uEWfIEGD1avr72DGy5r04zOU27JVF5uKuQdzfeecdREREIDIyEn369EFOTo6e7fJq\nRHG3LWNfUSx3AHjuOVrtyt8ff6ZRcjxJ376UtXTyJPDDDwKPg/yJvTLVhw9Xbn87oEHc33jjDRw6\ndAgpKSkYOXKk5iWhyhP16tGQ8NIl8zbGXD+T010IgoCUFBPGjzfh1Km40oUV3FkOgGONry9VOv34\nY2DdOgG9e3u6Rd6BPct93z4gOtr97fEmVAdUa9euXfp3QUEBGjRooEuDygui9d6wIb2+cIFWZa8I\nARzL3PigoIo1Ca0889pr5Ge/fVt6DdzKSFAQLXRuSX4+xYv0XLKuPKIpW+btt9/Gd999hxo1amCv\nbSKuBSbBBJPRVPo3gHL/unVrE06dAhLu0usBD5jQqpX3tE+v1wKECvn7lbfXRhghCAKCnhOwd+92\nLFgAAEB2YDYCAwM93j5PvV59zYTD9YHiYhOqVKH309OBbt1M8PHxfPu0vtaCgTlYAFVO6QEAmDdv\nHjIyMrBkyZKyJzAYEBsbW/raWxZC0Mpbb5Gl/s479Pr77ykAqXfBfU9juYAyxzsQ3WQcom1bID7e\nHECdOpXmZrzyimfbpRSxVIhIXFycpvWpHYq7XM6cOYPBgwfjiESFeYPB4LEFtF3J4sXAzp3A0qX0\nevZsqtQ3b55Hm8WpBHBxt+bppyngPHkylcpt0gTYs6f8Jzdo1U7VAVXLCUxr1qxBlDsWvfQiWrWi\nAKqIq2ueczgifCRlTUwMsHs3Wb6bN9PkpvIu7HpQVe0HZ82ahYyMDFSpUgWtW7fGokWL9GyX12Ob\n637qFDB2rOfaw6k8cHG3ZtgwGjn7+wvYv9+I55/3dIu8A13cMg5PUEHdMsXFVGXx6lXyvbdsCWzZ\n4r7qiRwOx0z37sC1aybcv2/C4cNUKrm8o1U7ubhroF07CuS0bUu1LW7epNmdHA7HPYhByIsXgc8+\ni8MLL8TCz69iJG5o1U7VbhkOiXpGBk1gatGCCzuH424sRbxhQ/BAswWaa8t8+OGH8PHxwZUrV/Ro\nT7kiKooWCzh0yFytj8PhcLwBTeKek5ODLVu2oEUlLSzdsSOQlETTwbm4cziepby7YfRGk7i/+uqr\n+Pe//61XW8od0dHA/v3Anj0CKlkmKIfjdXBxt0a1uK9ZswYBAQHoUInL0zVrRsvPnT4NXsiJw+F4\nFQ4DqvbKD8yePRtz587F5s2bS7c5iupaBjkqQhQbMEfpBw0Cjh+PgziAqSjfj8PhuBfb8gNaUZUK\neeTIEfTp0wc1atQAAOTm5qJp06bYt28fGjVqZH2CCpwKKcKng3M4HL3xSCpkWFgYzp8/X/q6ZcuW\nOHjwIOrVq6e6IRwOh8PRD12W2TMYDHocptzC3TAcDsfb4DNUORwOxwvxWFVIDofD4XgvXNw5HA6n\nAsLF3Y3wBabN8L4ww/vCDO8L/VAt7iaTCQEBAYiKikJUVBQSEhL0bFeFhF+4ZnhfmOF9YYb3hX6o\nrgppMBjw6quv4tVXX9WzPRwOh8PRAU1uGZ4Fw+FwON6J6lTIuLg4LFmyBHXq1EGnTp3w4Ycfom7d\numVPUMlz4DkcDkctLluJyVFtma5du6Jhw4YAgHfeeQf5+flYvHix6oZwOBwORz90mcSUnZ2NYcOG\n4fDhw3q0icPhcDgaUe1zz8/PL/07Pj4e4eHhujSIw+FwONpRbblPnDgRKSkpMBgMaNmyJb744gv4\n+fnp3T4Oh8PhqEC15f6///0PqampiI6Oxp49e9C3b9/S965cuYJ+/fohKCgI/fv3x7Vr10rfmzt3\nLtq2bYvg4GCrevAVgSlTpsDPz89qFDNjxgyEhIQgIiICo0ePxvXr10vfq6h9IdUPIlJr7lbUfgDs\n98XChQsREhKCsLAwzJw5s3R7ZeuLffv2ISYmBlFRUejcuTP2799f+l5F7oucnBz07t0b7du3R1hY\nGD755BMAOmsn08iOHTtYUlISCwsLK902Y8YM9v777zPGGJs3bx6bOXMmY4yxtLQ0FhERwQoLC1lW\nVhZr3bo1Ky4u1toEr0GqLzZv3lz6HWfOnFkp+kKqHxhj7MyZM2zAgAEsMDCQXb58mTFWsfuBMem+\n2LZtG+vbty8rLCxkjDF24cIFxljl7ItevXqxhIQExhhjGzduZEajkTFW8fsiPz+fJScnM8YYu3nz\nJgsKCmLp6em6aqfm8gM9e/bEww8/bLVt7dq1mDRpEgBg0qRJWL16NQBamm/8+PHw9fVFYGAg2rRp\ng3379mltgtcg1Rf9+vWDjw91c5cuXZCbmwugYveFVD8A0mvuVuR+AKT7YtGiRZg1axZ8fX0BoDTr\nrDL2hb+/f+lo9tq1a2jatCmAit8XjRs3RmRkJACgVq1aCAkJQV5enq7a6ZLaMufPny/1v/v5+ZUu\n7HH27FkEBASU7hcQEIC8vDxXNMEr+eabbzB48GAAla8v7K25W9n6AQCOHz+OHTt2oGvXrjAajThw\n4ACAytkX8+bNw2uvvYbmzZtjxowZmDt3LoDK1RfZ2dlITk5Gly5ddNVOlxcOMxgMDicyVZZJTrNn\nz0a1atXw1FNP2d2novbF7du3MWfOHMTFxZVuYw7i+BW1H0SKiopw9epV7N27F/Pnz8eTTz5pd9+K\n3hdTp07FJ598gjNnzuDjjz/GlClT7O5bEfuioKAAY8aMwYIFC1C7dm2r97Rqp0vE3c/Pr3TyU35+\nfum6qk2bNkVOTk7pfuLaqxWdpUuXYuPGjVi+fHnptsrUFydPnkR2djYiIiLQsmVL5ObmIjo6GufP\nn69U/SASEBCA0aNHAwA6d+4MHx8fXLp0qVL2xb59+zBq1CgAwOOPP17qaqgMfXH//n2MGTMGzzzz\nDEaOHAlAX+10ibgPHz4c3377LQDg22+/LW348OHD8cMPP6CwsBBZWVk4fvw4YmJiXNEEryEhIQHz\n58/HmjVrUL169dLtlakvwsPDcf78eWRlZSErKwsBAQFISkqCn59fpeoHkZEjR2Lbtm0AgMzMTBQW\nFqJBgwaVsi/atGmD7du3AwC2bduGoKAgABX//mCMYerUqQgNDcU//vGP0u26aqfWqO+4ceOYv78/\n8/X1ZQEBAeybb75hly9fZn369GFt27Zl/fr1Y1evXi3df/bs2ax169asXbt2pVHyioJtXyxevJi1\nadOGNW/enEVGRrLIyEj2t7/9rXT/itoXYj9Uq1at9JqwpGXLlqXZMoxV3H5gTLovCgsL2YQJE1hY\nWBjr2LEjS0xMLN2/MvSFpVbs37+fxcTEsIiICNa1a1eWlJRUun9F7oudO3cyg8HAIiIiSrVh06ZN\numqny9dQ5XA4HI774SsxcTgcTgWEizuHw+FUQLi4czgcTgVE9TJ7lgQGBuKhhx5ClSpV4OvrW6Fm\nknE4HE55RBdxNxgMEAQB9erV0+NwHA6Hw9GIbm4ZnnTD0ZPLly8jKioKUVFR8Pf3R0BAAKKiolC7\ndm1MmzZN9/M9++yzaNWqFb788kvdjjljxgz4+/vjww8/1O2YHI5cdEmFbNWqFerUqYMqVarg+eef\nx1//+lfzCSrglGEOh8NxB5rkWY+E/LNnzzLGqHRpREQE27FjR+l7Op2iQhAbG+vpJngNSvrCZDKx\nDz74gDHGWGJiIhs6dGjpMSZOnMh69uzJWrRowVatWsVee+01Fh4ezgYOHMju37/PGGPswIEDrFev\nXiw6OpoNGDCA5efnlznHs88+y37++efS1ytXrmRhYWEsIiKCPfroo4wxxoqKitjrr7/OOnfuzDp0\n6MC++OKL0v3nzZvHwsPDWUREBHvzzTcl265HX1R0eF+Y0aqduvjc/f39AVDp0lGjRmHfvn3o2bOn\nHofmcBySlZWFxMREpKWloWvXroiPj8cHH3yA0aNHY8OGDRg8eDBeeuklrFu3DvXr18ePP/6It99+\n2+li7u+99x42b94Mf39/3LhxAwCwePFi1K1bF/v27cO9e/fQo0cP9O/fH0ePHsXatWuxb98+VK9e\nHVevXnXHV+dwHKJZ3G/fvo3i4mLUrl0bt27dwubNmxEbG6tH2zgchxgMBgwaNAhVqlRBWFgYSkpK\nMGDAAABUzyY7OxuZmZlIS0srXSmsuLgYTZo0cXrs7t27Y9KkSXjyySdLi3xt3rwZhw8fxs8//wwA\nuHHjBo4fP47ffvsNU6ZMKa0dJFXLnsNxN5rF/fz586VV3YqKivD000+jf//+mhtWETEajZ5ugteg\nV19Uq1YNAODj41O6+IX4uqioCIwxtG/fHrt371Z03EWLFmHfvn3YsGEDoqOjcfDgQQDAp59+in79\n+lnt++uvv2ryjfLrwgzvC/3QnC3TsmVLpKSkICUlBUeOHMGsWbP0aFeFhF+4ZvToCzmC2q5dO1y8\neBF79+4FQGVW09PTnX7u5MmTiImJQVxcHBo2bIicnBwMGDAAn332GYqKigBQRcfbt2+jX79+WLJk\nCe7cuQMAit0y/Loww/tCP3TxuXM4rkbMurJcwMB2MQPbzCyDwQBfX1/8/PPPePnll3H9+nUUFRVh\n+vTpCA0NtXsOAHjjjTdw/PhxMMbQt29fREREoEOHDsjOzkbHjh3BGEOjRo2wevVqDBgwACkpKejU\nqROqVauGIUOG4F//+pcruoHDkY3Lq0IaDAaeA8/xeiZPnoyhQ4dizJgxku8LgqDKqjSZTKhduzZe\ne+01jS3kVDa0aqcuk5iKi4sRFRWFYcOG6XE4Dsft1KlTB++8847dSUyCICg+5owZM7B8+XLUqlVL\nY+s4HOXoYrl/9NFHOHjwIG7evIm1a9dan4Bb7pxyjiAAL79swm+/mdCwoadbw6ksaNVOzT733Nxc\nbNy4EW+//TY++ugjrYfjcLwGQRCwebOA//4XuHEjDsOGAQMHUtCPB/443o5mcZ8+fTrmz59fOtGD\nw6koGI1GbN5sxLBhwMMPA/HxJphMnm4VhyMPTeK+fv16NGrUCFFRUQ59kiaLO4JbPZzyQnIy8PXX\nQEoK8OWXwP37wJkzQPPmnm4ZpyIiCIKq2I49NPnc33rrLXz33XeoWrUq7t69ixs3bmDMmDH43//+\nZz4B97lzyiG7dwOjRwMLFwJPPEE33oIFRowdC4wb5+nWcSoDWrVTt1TI7du344MPPsC6deusT8DF\nnVPOyM4GYmKAb78FBg0yb58zB7h6FZg/32NN41QivCIVUoSX9+VUBD75BJg82VrYASA4GMjI8Eyb\nOByl8ElMHI4FjAF+fsCePUDr1tbvpacDI0cCmZmeaRuncuFVljuHU97JyABq1Cgr7ABtO3MGKCx0\nf7s4HKVwcedwLNi1C+jRQ/q9Bx4AAgKAU6fc2yYORw2axP3u3bvo0qULIiMjERoayitCcso9SUlA\n58723w8MJOudw/F2NIl79erVkZiYiJSUFKSmpiIxMRG///67Xm3jcNxOVpa0S0akeXMu7pzygWa3\nTI0aNQAAhYWFKC4uRr169TQ3isPxFFlZZJ3bg4s7p7ygWdxLSkoQGRkJPz8/9O7dW7JONodTHmCM\nctydifvp0+5qEYejHs21ZXx8fJCSkoLr169jwIABknWvefkBTnng3Dmgdm3AUYVebrlzXIXe5Qd0\ny5apU6cOhgwZggMHDpR5zwQSeJPJBKMgwKr6ksnEX/PXXvE6OxuYXc3x/lFrTRh5yDvay19XrNdG\noxEmgP5Z7qMSTZOYLl26hKpVq6Ju3bq4c+cOBgwYgNjYWPTp08d8Aj6JiVNO+P57YO1a4Icf7O9z\n5w5Qty7978MTiTkuxKP13PPz8zFp0iSUlJSgpKQEzzzzjJWwczjlCWfBVAB48EES9/PnAX9/tzSL\nw1GFJnEPDw9HUlKSXm3hcDxKVpbjHHeRgAAgN5eLO8e74QNLDudPsrOBli2d79e4MVnuHHXoGTTU\nG29um1LKvbgnJgLPPgvcuuXplnDKO1lZ8sX93DnXt6ei4s0C6s1tU0q5F/dXXwXWrweWLPF0Szjl\nmeJicrXIWWWpvIq7NwhXWhpQUuLpVlhTVAT89a9UDTQtzdOt0Q9NPncAyMnJwcSJE3HhwgUYDAY8\n99xzePnll/Vom1Nu3qTyq0uWAN98A0yb5pbTciogublAw4ZUHMwZjRuXz7ruUnNQ3HnuhQsF/PIL\nAMSVZhp5w7yXF18UsGWLgCFDgCVL4vDmm0D16t7RNk0wjeTn57Pk5GTGGGM3b95kQUFBLD09vfR9\nHU5hlx07GIuJYezqVcZq1WLszh2XnYpTwREExnr0kLfvypWMjRnj2vbozYIFjD35ZKxH29C9O2Pf\nf8/YAw/EssuXPdqUUgoKGKtfn7Fjx+h1aGgs++wzz7ZJRKt2arbcGzdujMaNGwMAatWqhZCQEJw9\nexYhISFaD+2UpCQgOppS04KDgf37gZ49XX5aTgVErr8dKF9uGUEQsGaNgP/8BwDi0K4d5ee72yrN\nywOOHgXGjAH+9S/gl1+Av/zFbae3yy+/AF26AO3a0esOHYCffwb+9jfPtksPNIu7JdnZ2UhOTkaX\nLl2stlvOttLzokpKMov5I48Ae/dWDHH35PC5slJRxd1oNCItzYjJk4ENG4Bhw0yy0j31Zu9eoFs3\noFo1YPhwI377zTvEfcUKYOJE8+unnjLiqaeA+/cBX1/3tkXv8gO6+Uxu3rzJoqOjWXx8vNV2HU9R\nhrAwxg4epL+//56xUaNcdiq3Ehsb6+kmVDqeeYaxb76Rt++NG4zVqMFYSYlr26QXY8cytmQJY1FR\nnnM5vP02Y+++S39nZjLWvLln2mHJnTvkzr1yxXp7+/aM7d+v7diJiYnaDsC0a6cu2TL379/HmDFj\nMGHCBIwcOVKPQzrl9m3g5EkgLIxed+1K616W90oHmzcDGzfS9HZ34A0ZFN6A3Bx3wFxYrKDAZc3R\nDcaAHTtoRBsTY/TY+q9JSUDHjvR3mzZ0/+bleaYtIr//DoSHAw8/bL09JgaQKJGlCG+4rzSLO2MM\nU6dORWhoKP7xj3/o0SZZpKYCISE0zANo2jhjQE6O25qgK4Ig4O23TRg1yoT9++MwYoQJJpPJ5ReJ\nN1yE3oASt4zB4B2umS++cJ4CfOoUtbdVK2DwYM+J+5EjJKQAtadjRyA52TNtEfnjD+klFUNDgWPH\n1B2zoAAYPZrqE12/rq19WtHsc9+1axeWLVuGDh06ICoqCgAwd+5cDBw4UHPjHGFpCQB0wYjWu5xc\nZW/DaDTi9GkjevcG6tcHjh41QYfCcA65ehW4csW15ygP3LsHXLgANG0q/zMNGwKXLgFt27quXY64\neJFSf6tUAYYPp2tGiu3byWo3GICgIHhE3MX+tbwvw8OBw4eBoUPd3x6RgweBsWPLbg8OBrZuVX48\nQRAQGyvg0iUgIyMO/fsDgwZ5LqVSs7j36NEDJR6YlXDwYNk6IGJQVeoHKw+sWAFMnQocOgSsWgXc\nuAE89JD+5xEEAdu2CVi0CLh0KQ6FhWSJelter7sCy2fOkLBXVXA3NGhA4u4pdu0C+vQBatYE1q2j\nWdpSbN0K9O1Lf7dqRSNbdwcLs7KAZs2s+zc8nFyQniQpCXj//bLbg4PVWe6PPmrEqVNGJCQAS5cC\nixebsGEDXSueoNzOULW13AGz5e5u9HBt3LkD7N4N9O8P9O1rRKdOdAO7AqPRiLAwE9q1M2HgwFic\nP08uIG8SdsB9LiMl/naR+vWBy5dd0hxZ7NxJFvnIkVSmWIriYuC33+ghAJAL08+PJmy5k1On6MFi\niWi5e4rLl2nkKrVebsuW5HJTGvfas4f89+3b00O3Tx/7v407KJfifu8ezRDs0MF6e6dOdMHcu+fe\n9ughQjt2AJGRQJ06JL7du9MoxFUsXw688AI9IAUBOHvWdedSSkkJMHkysG2be86nxN8u4mnL/fff\nyV/cpw+5XsTBc3ExMGEC5ZN/+CG5Qiy/W4sW7l8m8OTJsiIaEgIcP06jCE+QlARERUnX5K9ShSp/\nKo3f7dwJPPYY/W00GjFqFLB6tfa2qkWzuE+ZMgV+fn4IF6MlbiA1lXyd1atbb69Zk56au3e7rSmY\nPZvcKbdvazvO3r3WwZ2YGGDfPm3HtMfduyTogwYB/foZMXo0ib03IAgCnnrKhA0bTNi5Mw7Tprk+\nsKxG3D1pud+6RQHKmBigSRN60KSm0nvx8eRS6NQJWLkSWLjQ+rOeEPfTp+m8ljz4IG3zhuwdKdSs\nlbtnD7mGARL3Pn3IaPNULR3N4j558mQkJCTo0RbZWHaiLYMH02QNVyMIAl580YS5c03IzIzDmDHa\nRGjfPrpZRURxt0zt/PprKpSmNd1TEGjUU78+XYSTJgHffqtfGqkWITYajWDMhDlzTIiJiUWzZq53\nGZ04IT08d4QnLfc//gAiIkggAaB3b/pNGQPmzgXefReYNYvS+bp2tf6sJ9aAzc+nh5Atan3benDw\nIM1ut4eah+Aff1j3t58fBd49VYxMs7j37NkTD9smirqYXbtotpsUQ4e6R9yNRiNKSkyYMcOEp56K\nxd276kWIsbLi7u9PI5GTJ+n1jRvA9OnAd9/R8E8L69cDQ4aYX/foQSMPvdZd0SLu9+4BCQnAiBFk\nTYeuKrIAACAASURBVLvD7X7ihPKsF09a7qK/XaRPH+qzLVtoVOYoA8UTlrs9cW/XznMF2JxZ7i1a\nKHsIXr5MPnrbTL3u3d3rSbBE1/ID9tCz/EBxMQ115syRfr9jR+DaNbph27RRfRqnXL1KuaxHjwKf\nfAKsWUM3lq2rSA7Z2VSN0PYGEK33Nm3ogfXoozTcTkigv9XAGIm75QPQx4emYC9d6tiakXv84mL1\nn09OJlFv2JCmgk+YQCVZlWSyKIExddeKJy33338HXnnF/HrwYKqF8te/0n3haG3XFi2An35yfRst\nOXtWetWqoCC6l93NtWu02EpQkP19mjenWIZcjh6lOILBYL09KsrsMnOG3uUH3C7uSjlyBPjoI+Cp\npyila8cOulDsDaN9fMgq3bDB+gbQm88/p/M0bgz072/Etm3kN1fz3BILoNkiivtTT1Exo8cfp+8u\nlb4ll7Q0ugBDQ623P/ssPThef72sf1QOgiAgMVHAd98BWVlxuHbN7PZR8jDfu9fschs+3Ah/f7px\nXBXSOX+e3Bt16ij7nKcs9/v3afhvOXKtWZPcaklJwPjxjj/vTW6Zdu3I1ehukpPJrVWliv19xKUU\n5SKKuy1hYfizzLFzbO+VuLg4+Q2QwC3irpbCQuCJJ0hEJ02i7I7du60L/UgxZAjw2WeuE/fcXHrg\niO4Ro9GImBi6udSI+6lT0pZjTAzw1ls0623rVuDLL+nhdeCAemt29WoatttaGIGBwJtvAqNG0epW\nSsXOaDTi0iUjGjYky/vmTVOZYJ4c9uyxdhl16kTf11Xifvy4uhGeqyz3s2eB994Dnn5aevbkjh0k\nIvXqWW8fMsS63+whijtjZa8BV3DrFt3HUteT6JZxV1tEDh507JIByIjKz5d/zGPH7Iv7kSPu/46A\nl6dCrl9Pw/P588mC3buX8kidleN89FGybuRGqZUMha5fp2HwG29QQEgkMhJISZF9GCtOnZLO1oiO\npglNP/9Mvrv69en7N2pk9sUroagI+Oor+xNeXnuNzjN8uLraNp9+CsyYQX2xdi3d1EqxDZaL4u4q\n1PjbARLXK1f0r2X04ouUYz1mjLSF/csvlNuulpo1qTbOhQvqjyEi577JzyehlBI2cXKPu91brhB3\ne3MlGjUig8wTpSo0i/v48ePRrVs3ZGZmolmzZlii43p3GzfSRW4w0AzCDRuA7793vlpO/fpkKWRl\nyTuPXHFnjPKvu3cn94UlWsQ9K6vsJA8AqF2bzjV5MvDMM+btISHqsgzWrKGZgvb86gYDsGABXdiz\nZik79oUL9P2HDQOGDTMiOFi5PzUvjwK7lpa0q8VdreVerRpQo4a+9UOOHSOjZMUK4KWXyIgRYxiC\nACxeTHGep5/Wdh69gqpy7puzZ6VdMgBdb54IqtomL0hRvz5di3fvyjtmTg7dW7YYDGbr3d1oFvcV\nK1bg7NmzuHfvHnJycjB58mQ92gXGgE2bKBdbDZGRZPU6oriY3DfXrsk75s6d9CP95z9lLZHQUBIK\nuReDJfYsd4B8kl99ZV1SQW0K2YIFgLMVEH18yOX07bfK6s6sXQsMGEAPXqPRiEcfVZ4lsGcPpZJZ\n9m1UFPW5mlGAHI4fV18fRm+/+88/kxuyenUaGebm0kM9MhL4xz8oG2b5cu21k/Twu2/fTu47Z8Fz\n0XK3hxJx1yPYePEi/WaWo24pDAZKZZRrcdsTd4Dm3nhC3L3W556aSoEutTdeRAQdY/Ro6fcFQcAn\nnwiIjweAONStS9sdBQAXLaJhs9TIoXp1sgDT0pRlnJSU0I0WGCj9fvPmZRc1CA5WXpogOZlGCKNG\nOd+3SROgXz9lq+WsXm1tUT7yCPWXEiyDqSK1atGDLy2NhF5vtGRVieKuNEfeHj//TJlXAI0Mtm2j\n108/DQwcqJ/PVovlLmZ0fPIJcPVqHCZMIIG2d984stwB5eKuJDjPGPD3v9N1v2oVuaT++INqUjnK\nKBIRXTP27k2RwkIyhP5ckK4MwcHl1HJ3FRs3km9b7QXdti3duPYwGo3IyTFh9WoTHnggFi++6DhP\n/fx5Gkk4CuZGRCivl3H2LPlvxQkpclBjuX/+OQ3z5RaMeuIJ+SlzN2+SC2bwYPO2Rx5RFvcA7E9O\nc5VrRkyDVGtAiH53PThzhtxS3bubt9WvD8TF0ehVz2CcFnE3Go0YMcKEBg2oLtFDDzm+b5xZ7kFB\n8sT9xAnlcYK9e2m0U7s2MHMmbduwgeo3yUGu3z0vj4TdXvaNpyZraRb3hIQEBAcHo23btnhfS46e\nDaK4q6VVK8dBxwsXaEg+eDANp5y5EL75hkYBjuZrhYUpF3dHLhl7iBeL3GBeYSFZLhMmyD/HwIHU\nJ3LKKiQkUGqeZUZEo0YkfnIv6sJC8tlL+UJdJe75+eQ3V5oZJKKnuO/YQYkAjtLz9ELN1HpLtm+n\nGiotWjiPq2h1ywiCgLfeMiEiwoRFi+Lw0kvyZ4J/8w2NPL/8kgyVpCQaYcoNSDduLE/cHblkAM9N\n1tLklikuLsa0adOwdetWNG3aFJ07d8bw4cM1L4599Sr5y3v1Un+M1q0di/tvv9HxfX2Brl2NSEqi\nWZFSFBfTBbJypeNzhoebh9VysRdMdUSDBiQC58/bHwpasn07WUhKfLW1a5Ovd9cuctE4YvVqaXdP\n165kPdnm1EuRnEwWtLjKkSWdOjlflEINWvztAFnWeom77axTV6J09qUtu3ZRRlXTpkb88ANlu9gr\na+vMLdOqFT1oSkqkXSVGoxH5+bTOQUEBcP++vHUObt0iN1daGhlk771Ho6KePeX/5nIt99xcyou3\nR9OmNLp1VQlve2iy3Pft24c2bdogMDAQvr6+GDduHNasWaO5UZs304+gxFVhi78/XQw3b0q/v2WL\neXg2apTR4dT7X36h4IqzhYXdZbkDyoZ627Y5F2gp+vRxvmjB3bs0ypJ6MHbpQq4ZOYjBVCkiIui7\n6r2sXWam41mKzqhXT7+A6s6d6mcdK0WLW4YxEvcePYDHHjOWxrbs4cxyr1EDqFvXsYiKtes7daJs\nITlpuqtWkZiLD5bnnqMAsNwJRQC1W05A1Znl7uMj3/2kJ5rEPS8vD80svlVAQADydFgY0bb2iRrE\npcXsWe87dlDBJcDxkl937lAhprffdn7O5s3JYlByw6upSAhQOuTRo/L23bbNXNNbCX37Ohf3X38l\nC19qBKFU3O0Vg3vwQXrYb9wo71hyOX5cu7jrYblfuULWn20Ja1dRvz7NdL16Vflns7PpfzHI6CzN\nz5nlDtB9euqU/ffFOjBDhxoRFUWGmS1FRTRCvXuXHkCffw5MmWK9T9eu0iNDe8i13J2JO0CuGXf7\n3Q1/rrKtilWrViEhIQFfffUVAGDZsmX4448/sNBiaqLB3dOyOBwOp4KgQZ61We5NmzZFjkVF+5yc\nHARIOJ8YY7L/LV/OYDTK39/RvxdfZFiwoOz2rVsZeva03hYTw7BrV9m2hIYy3Lgh/5zPPcewcKH8\n/Zs0YTh9Wvl327CBoV8/5/slJTGEhanvwyFDGFaulH7v9m2GOnUYzp+3//mYGIYdOxyfIy+PoX59\nhpIS+/sUFDA0asSQlua4T+rVY5g2Td53Cw1lSE1V3zfr1zMMHqz+8+K/BQsYXnhB+3GU/HvpJYYP\nP1T+uQkTGL74wvx6xw6GRx6R3vfECYYWLZwf89136Z/UeydPMjRvbn59+jRdK/fvW2+rV4/hwgX6\nTiEhDFu2aO+jnBy6P53tFxXFsH+/432+/57h8ceVnV8rmsS9U6dOOH78OLKzs1FYWIgff/wRw4cP\nV328oiJK/ZLjApFDixbmYaQlUrWcbScaFBcDJhPw3/9ScFEu4eHyc1rv3iUXjpKFmUXk+tzFFWfU\n0r+//bUuN20iP2ijRvY/L8c1IzV5yZaaNWlW8DvvSL9//z7lNC9ZQsFyZyvgFBeTK0BLjrpePvfD\nh93nkhGJiqL7wBnFxZQW++yzlDm1dau1i0+8b6S0SI5LBnDslsnNtU4EaN6cXEKWZa+//56K6jVs\nSOsdpKeb143VQqNGlFXnbKKWHLeMJ9IhNYl71apV8emnn2LAgAEIDQ3F2LFjNWXKLFtGfi41/mEp\nAgOlA0f2xN2yqP6ePTQxSWnGjpKganY2XRRq0t9atKAsBWdBRmd1q50hirvUzbtyJfDkk44/L1fc\n7fnbLZk2jaaOS61QtW4d3fjDhwP//CfNsnXEmTMkBjVqOD+vPfTyuael0fXnTh57jOIlzpa527iR\nYhM3blBsqE0b6wdivXrkx5Zaki4vz3EWiUjLlvbFPSen7DFGj7YOjC5frr0kgxTVqlGarKMH+J07\n1DcNGzo+VlAQ5eprKYetFM157oMGDUJGRgZOnDiBWUoLklhQWEhW+3vv6TsTT4nlbinuGzZQnRSl\nbREtdzmjKrXBVIAeCG3bOo/AJydrs9zbtaM0Ndvl0K5do/z2MWMcf75LF0qHdNQfjjJlLHnwQZqG\n/9//ln1vwway3gDK3MnIcByk05oGCeiXCnnypGvXHpCiRQsSHGdB6o0baeLeypU0ov7227L72Auq\n5uXJG5U6s9ylxD0+nq7LxYsFXL8uXUFTD5xlzIjf0dmM15o1KV3UneWWvWaG6ooVdIHrmesrZblf\nvSpdqF9K3NVk7NSvTz+knMV1pVaFV4KzjJniYkpTi4xUfw6Dgaz3X3+13v7DD5ReWb++48+3bk0X\nvr12Opq8JMXEiVQAzTLFlf1Zh0ic9ObrS7M6N22yfxytaZAApfBdu6ZtjcybN+mfo3RBV/F//0e1\nhs6ft7/PkSNkHFStSvtKXa/2Rqtyxd3fnx6SUnWZpMQ9OJjyxXfsAD7/XMDEifLKCajB2UQmOS4Z\nkeBg96ZDeo24f/opLSOnJw0bkp/QUgiSkkjsbF0hAQG075Ur9HQ9e5asTjXIdc1osdwByv+2l8IJ\nkIA1bqx+BqbIsGGUN2zJkiVlU82kMBiofvy6ddLvp6TQQ11uXKNhQ7LS1q41bzt0iFwDltbv4ME0\nsrCHHpZ71ap0Xi2VIcV5Dp5IKhs8mCqOjh4tPbJiTJ7LKCJCukhfbq48ca9She4/KYPI3gShmTOB\n55+nh8+0ac7PoZbGjR1b7krE3d3pkF4h7idOUCcNHKjvcQ2GshM27C2MazCQSyUpCfj4YwEDB6qf\nCi43qKp2ApOIuFKTPbQGU0UGDaKH1ZkzNB08OZkefnJrdDzxBMVTpARErr/dkiefBH780fx648ay\n1UO7d3fsDtLDcge0+921BnW18u67tG6t1OSe8+fJInbmT7Yn7nItd8C+CzU3t6x4CoKAU6dMaNbM\nhLt34/D559oWp3eE3uLuzHLfsqWsIaUW1eUHfvrpJ5hMJhw7dgz79+9HRw1RuzVrKBDmiqGV6JoJ\nC6PXBw+SJSpFv37kfli9WsDHHxtVnzMsjDI2nKGm9IAlnTqR5W5vVSa9xP2BByhb4qOPgLp1BaSk\nGPHqq/Iffr16UeAuMZECeZbs2aO8rPOIEWStXbtGrpGNG8tm0TRtSgExe4so6CXuot9drUBnZTmv\nOuhKfHyoL5cvLxs/SU+n0hHORhUhIfSQsl1DWKm4SyU/SFnulhUoTSZty3g6w9/fsYs1J0d+plO7\ndvizCq00+/dTiedateSvReEI1XIaHh6O+Ph4PKrDnOktW7QVCXOErUVgz3IHqA2LFpGPTcsoQo7l\nzph2y71OHcoQsYwVWOLouyplxgzys8fHkzA+/7z8zxoMdBO+/rp1tgBjtAiF0kuoTh16SKxZQ9bl\nkSPSWU2dO0uPbAoLSXi09L2I1nTIs2fVpcLqyfDhZIzYFolLT5eXxfPAA+TisrwOS0roPpL73aTi\nY4WF1Ld+fvKO4Qr09rk7csvMnk1GiiAAH3+sqJmSqBb34OBgBOlg+hQVUfVBVxVNsrxo7AVTARrq\nbdhgQseOJty7F4d589QP9UJDafjlKM3s0iUSPdu1MJUSE0PuB1tKSsiq10PcBUHAF1+YMHKkCamp\ncejf34R//1tZ34wdS9kuX3xh3nbsGFl6akR27FhyzaxcSeJkaTGKxMSQNWTLqVN0Q8otf+wIrW4Z\nbxD3evXI+ratvCla7nKwdc1cukRxFKnfRQopt0x+vuNSugAU1XdXgxy3jJx0T4D2u36dUidtuXCB\nRraTJ9N+SmtUSeGWxTosh022Rf1TUsj6dJZ1oZYWLVBaFMxeMNWyXTTM0zbUq1GDfqDjx+3fHJmZ\nNEzTGkh77DEKLtpa0idOkMvCXrU+JVj+Zo0bq+sbg4FWlerZk9wwp08LOHDAqKqgGUCutRdfJMvc\nXjGozp0ptdYWPYKpInqIu5yJPq6mWzcq0GU5ikpLc57qKiKOksQguxLRA6Qtd2fVFgHvEHe5lruP\nD113mZnkUrVk1SqgUycB//63oLqttjgU9379+uGcxDebM2cOhtlzXEvw5JMmGAzSq4OLdaxdRWCg\n2SI4cEA/N4UzRNeMM3HXSv/+wCuv0CjB0hLV0yWjFyEhtHzc1KlAz54CVq0y4rPP1B2rVi1KV83L\ns3/9iEst2paT1cvfDmjPdfcmcbfNYZfrlgEogP3ll+bXSvtYynKXI+6uxlGee0EBBaOVGKZiOqSt\nuP/4IzB9uhEjRhhLt8XFxSlvsAUOxX2LVPk1FXTpQgG/zMyykfedO63XB9Wb4GDKsS4uJvePnJls\nelgDYjqkvRmceglM48bk1vjjD+uJHAcOlL2A9EBr37z2Go00vvyS2q7FHecsy6ZhQ3INZGdbB64z\nM/Wb7l+vnvrgF2PeI+5dutBIiDEaZV28SPeMXH93RARlU125Yl6kRYnxEhBALlNLI8UbxL1uXZqF\neudO2RLkYvuUjL4jIujetNShM2dIK/TOFtQlP8VZkZvhw2l4Z+lvBciicvUiBQ8/TDdPWhr5ji2X\nMbOHHuLuLKialuZ8kV65DB1a1jUhCNoWO7GHlr4RBAHvvWdCr14mnDsXhz59TIiLc00Km0hUFLn+\nLDl2THoUqQYtbhlx/oWS2kWuIiCARjfiDMq0NHmZMiJVq1KMQ1zRLCNDmbj7+tKDJDfXvM0bxN1g\nsO+aUeKSEXnssbKZdMuX0+xqqbWZtaBa3OPj49GsWTPs3bsXQ4YMwSAH+WwTJ1JRp2++sc47PnyY\nhjSuDijFxJC/18dHcFvwytFEJsYoCCpnyr0cnn6aZvgWFdHrK1fIr+xscRF3QzENE2bPNiE2NhYf\nfOB4/U09iIwsO9Hr6FH9HqxaxF202r2hKrbBYD1vQolLRsRoNAvX0aPK3Y62fndvEHfAvrirmYQY\nHU0PhdxcMnaKi4GlSykFUm9Ui/uoUaOQk5ODO3fu4Ny5c9jkYK53z55kQfn6WmcvbNtWNu/ZFQwc\nCCxcSNa0u2jblvzBt26Vfe/kScoi0OvCbdeObgyxRMC//y2gd2/K867sREZaW+6XL5OfVK/p/lp8\n7t7ikhHp3Nl8fzqKF9ljxAhKlS0oADIyBMX3m63fXWlQ1lXYW7RDTSpz1apkjH3xBYn78uV0Dcnx\nKCjFLTNUa9Qgy2DcOMqVFtm2zbwakqsQBAGZmSaMHWvCzp1xMJlcN5vNkqpVSXTT08u+t2WL/q6o\nadMoT5YxYMUKAZMm6Xt8vXF1loOIrVsmI4Osdr2sZS157t4m7paWu5qYTVgY+aVnzQKaNBFkp0GK\n2E5k8hbLvUkTa3eRiNryIa+8QitF7dhBMagFC1wzenNLKqTI2LE0C/SDD2g2286dwOLFrj2nZRpf\ncLBrZ7PZEh5OrhlL90heHk1QUJslYo9x46g+T69eNFoYOlTf4+uNu8Q9MJDyisVFnPV0yQD6uGW8\nhU6dKMvq9m0gNVVAVJRR0ecNBuBf/yL/8VNPKT9/YKDZZ19URLnfniioZou90uFqxF0QBAiCgCFD\ngG+/jcOUKZT1deuWUfd7QpO4z5gxA+vXr0e1atXQunVrLFmyBHUcVKkKDaUbbPt2GuZ07ep4oYfy\njijuIl9/TQWPXnlFn8UELNm5U0CvXgJSUoDLl+MwZw5tt51XUNnw8TG7Zvr21V/cH37YXBlSafmM\ns2etF6LwNPXqkZB9/jmVmahRw6jo84Ig4PBhAe++C/zzn3GlcwnkXoMt/r+9s41pq/7i+LeTGYa6\nKchAV8COAbU8CARdNqebkrpk2ZhzM8p0GjQagzrnQzKNIZQXPEzUDZ8TFbdsyUBnlpE5a+E/OzWM\nGdbpNkFAbWMFXDYYBpZFNjj/Fz/L01oo7b3tpfd8XvXetvece7ic++u55yFBDN4AhH+48UZpCs38\nJSHBfaWzL859rC1uuUXmxSb5gcVioaGhISIi2rp1K23duvWKz0wU8emnRJmZROnpRF9+6Y/06fPt\nt98GVN6RI0TZ2ULur78SRUURtbfLL7e4uFh+ITOIzZuJKivF67vvJvrmG2mPP28eUW/v9L/34INE\ne/dKq4u/lJYSAUTLlxf7dRxfrsH2dqKFC8Xr774jWrLELxUko6mJKCdn/L7+fqI5c4iGh30/7lQ2\n8tM9k18rd+OY8sLFixfjSy/amRUUiNVTeDiwbp0/0qdPoFewS5eKu3tdnRUnTqxAUZF0lZGM92Rm\nivFwDQ1WHD++wudWzp5whWZuuGF631NaWMZqteLCBet/vfBL4FpUBurXX1yciG0PDfnfDltK3BVY\nuRq++RMrl9umksXcq6urkZ+f7/a9ie0HKitXSCVW0YSFiV7Ze/aIC/fZZwMjV81hGHcsXw68+ioQ\nHm6FTrfC7/72E4mJEaly0+0MOZ2uiYFAym6LvlyD4eEic6S723M3z2AQEyOeY/X3j9YkdHT4Pz1r\noo1c8XipmNK5e9OCoLS0FFdffTU2eniKEsiHmErB9YeKjATOni3BI4+Ih02BWAWxcx/PwoXCUezf\nP71ult4SHy+Kf+68UziA6mohZ7JsESLhxJS0cpcSX69B1yrZbpcnPdAXNJrRSnfXxLBTp6RPrZ7o\nG2RtPwBM3YJg586dOHToEP7nTQNzFTH2DxURoc4bnBJw3WSTk4Fjx0pw+bJYlUp5k3U5d0CktRUV\niWrDZ57x/J2eHnFdTCxpVwrBWiC4MlPsduDRR4OigltcYzjHOnfXzF6l4ldYxmw2o7KyEkeOHEH4\ndJNaGSYAjHXiCxfKc5ONjx/t033wIPD002J+62TOXWnx9okEy7knJAjHbrNZkZoaHB3cMXHG8smT\ngJ8La9nxq4jp+eefx8DAAIxGI7KyslBYWCiVXiEFh0lCG9fKvadH/HR/5ZXJxx8Cyou3K4WMDNEh\nkciK2NhgazNKevpoMdzZs6LJmRRdXeXEr5V7R0eHVHqENOzclYFcf4f4eBEnrq8XD28XLRIl+K4x\ngO5Q+so9WBiNojxfae2qly0D8vNF8eV771lx110r3I62VBIKV49hpEMu567Xi35B+/eLPkYazegw\nZE9pl0qYwKQ0XM9HCguBDz4IfCrmZMybJ9or/PCDSG1+/PHg6uMN7NwZxk/mzBG59J9/DlRWin2u\neZmenHtnp3Q95UOFsU48Olp5SQgPPST65rS1iXYfSsdn515UVIS6ujpoNBpERUVh586diJtuc2OG\nCRGqqsRoQ1c7gamGIXd1iXGDzMzAarXi3DkrwsKAixdL8NFHYr8SflV4QvNfmeu06e/vx3X/ZfS/\n++67+Pnnn/HJJ59cKUCjmXKYB8OEGrW1wBdfAPv2uX8/I0P08c7ODqhaMwar1apYp+nqLCs3/vpO\nn7NlrhszPmZgYAA3SjGJmWFChEWLxEreHcPD4j2p5riGIkp17DMJv2Lur7/+Onbv3o2IiAg0NTV5\n/JzJaoJphWnkNQDe5u2Q3t6SacJvv7l//59/gMhIE669Vjn68rb3245bHHAhtzx/mDQs403rAQCo\nqKhAW1sbPvvssysFaDQoLi4e2VZyjIphpCQ6WlQyTszXtliAigoxrIZhXEzsLVNSUuJXWMbnmPtY\n/vzzT6xatQqn3UyE5pg7o1aWLBHZM8uWjd+/YwfQ3i79wBYmtAhazH1sAdOBAweQlZXlsxIME4ok\nJbmPuzc2ek6RZBipCPP1i6+99hra2tpw1VVXITExER9++KGUejHMjGfRIpET7cLpFJWr9fUidZJh\n5MRn577PU44XwzAARAn99u3itdksCl/Cw0VffyXMBmVCG0li7pMK4Jg7o1LOnRMDPPbts2Lz5hV4\n+20uXGK8x1/fyc6dYWQkJQWYO9eEiAgTrFb/xrIx6iJoD1RdvPXWW5g1axZ6e3v9PVTII+UIrZmO\nWmxRWAg0NwNvvunZsavFFt7AtpAOv5y70+lEfX09EhISpNInpOELd5RQt4XVaoXJZML58yYAJfjq\nKxNMJpPb8w51W0wHtoV0+PxAFQBeeuklvPHGG1i7dq1U+jBMSDCxWE9pHQ6Z0MfnlfuBAweg1WqR\nwX1LGYZhFIdP7QdKS0tRVlYGi8WCuXPnQqfTobm5GVFRUVcK4CdIDMMwPhHwbJnTp08jNzcXERER\nAIC//voLCxYswI8//oj58+f7rAzDMAwjDZKkQup0Ohw/fhyRkZFS6MQwDMP4id+pkACHXhiGYZSG\nJM79jz/+cLtqN5vN0Ov1SEpKwrZt26QQNWNwOp245557kJqairS0NLzzzjsAgN7eXhiNRiQnJ+O+\n++5DX19fkDUNDENDQ8jKyhppFa1WO/T19WHDhg249dZbYTAYcOzYMdXaory8HKmpqUhPT8fGjRvx\n77//qsYWTzzxBGJiYpCenj6yb7JzLy8vR1JSEvR6PSwWi1cyJHHu7hgaGsJzzz0Hs9mMlpYW7N27\nF62trXKJUxyzZ8/G9u3b8csvv6CpqQnvv/8+WltbUVFRAaPRiPb2duTm5qKioiLYqgaEqqoqGAyG\nkV95arXDCy+8gFWrVqG1tRUnT56EXq9XpS0cDgc+/vhj2Gw2nDp1CkNDQ6ipqVGNLQoKCmA20gFR\nPwAAA3ZJREFUm8ft83TuLS0tqK2tRUtLC8xmMwoLCzE8PDy1EJKJxsZGWrly5ch2eXk5lZeXyyVO\n8axdu5bq6+spJSWF/v77byIi6u7uppSUlCBrJj9Op5Nyc3Pp8OHDtHr1aiIiVdqhr6+PdDrdFfvV\naIuenh5KTk6m3t5eunTpEq1evZosFouqbGG32yktLW1k29O5l5WVUUVFxcjnVq5cSUePHp3y+LKt\n3Ds7OxEXFzeyrdVq0dnZKZc4ReNwOHDixAksXrwYZ86cQUxMDAAgJiYGZ86cCbJ28vPiiy+isrIS\ns2aNXm5qtIPdbkd0dDQKCgqQnZ2Np556ChcuXFClLSIjI/Hyyy8jPj4eN998M66//noYjUZV2sKF\np3Pv6uqCVqsd+Zy3vlQ2584PWQUDAwNYv349qqqqxg0VB4SNQt1OBw8exPz585GVleUxZ1cNdgCA\ny5cvw2azobCwEDabDddcc80VYQe12OL333/Hjh074HA40NXVhYGBAezZs2fcZ9RiC3dMde7e2EU2\n575gwQI4nc6RbafTOe7uowYuXbqE9evXY9OmTbj//vsBiDuyqzCsu7s75OsCGhsbUVdXB51Oh/z8\nfBw+fBibNm1SnR0AseLSarW4/fbbAQAbNmyAzWZDbGys6mzR3NyMpUuXIioqCmFhYXjggQdw9OhR\nVdrChaf/iYm+1FVXNBWyOfecnBx0dHTA4XBgcHAQtbW1yMvLk0uc4iAiPPnkkzAYDNiyZcvI/ry8\nPOzatQsAsGvXrhGnH6qUlZXB6XTCbrejpqYG9957L3bv3q06OwBAbGws4uLi0N7eDgBoaGhAamoq\n1qxZozpb6PV6NDU14eLFiyAiNDQ0wGAwqNIWLjz9T+Tl5aGmpgaDg4Ow2+3o6OjAHXfcMfUBpXxA\nMJFDhw5RcnIyJSYmUllZmZyiFMf3339PGo2GbrvtNsrMzKTMzEz6+uuvqaenh3JzcykpKYmMRiOd\nP38+2KoGDKvVSmvWrCEiUq0dfvrpJ8rJyaGMjAxat24d9fX1qdYW27ZtI4PBQGlpafTYY4/R4OCg\namzx8MMP00033USzZ88mrVZL1dXVk557aWkpJSYmUkpKCpnNZq9kyD6sg2EYhgk8soVlGIZhmODB\nzp1hGCYEYefOMAwTgrBzZxiGCUHYuTMMw4Qg7NwZhmFCkP8D0TTAdPkdbBwAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 4, + "metadata": {}, + "source": [ + "Estimation of spectrum " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "A common situation is that one wants to estimate the spectrum for wave measurements. The following code simulate 20 minutes signal sampled at 4Hz and compare the spectral estimate with the original Torsethaugen spectum.\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "Fs = 4; \n", + "xs = S1.sim(ns=fix(20 * 60 * Fs), dt=1. / Fs) \n", + "ts = wo.mat2timeseries(xs) \n", + "Sest = ts.tospecdata(L=400)\n", + "S1.plot()\n", + "Sest.plot('--')\n", + "axis([0, 3, 0, 5]) # This may depend on the simulation\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEXCAYAAABPkyhHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6wPHPsMi+C8jmhoqiCLihhonlkhuWlqWWqNly\nb5t16/6y1ZbbZmVZN23V1Ba72mKWpi24ZqbiviGKyiIIiOzbzPn9MUEiKDPDcpiZ5/16zQs45zvn\nPMcj8/Bdj0ZRFAUhhBBWzUbtAIQQQqhPkoEQQghJBkIIISQZCCGEQJKBEEIIJBkIIYRAkoEQRpkx\nYwZPP/20QWVTU1OxsbFBp9M1WzyfffYZo0aNarbjC+shyUCoYuvWrQwePBhPT098fHyIjY1l165d\nzXrOjh078uuvvzbqGBqNBo1G00QRNd60adP46aefan62sbHh5MmTKkYkzJWd2gEI61NQUMC4ceN4\n//33mTx5MuXl5WzZsgUHB4dmPa9Go+Fqcyyrqqqws2v4V6K1z9Ns7fGJ1klqBqLFHT9+HI1Gw623\n3opGo8HR0ZERI0YQEREBwNKlS7nmmmt44IEH8PT0pEePHrX+or948SJ33nkngYGBBAcH8/TTT9dq\nivnwww8JDw/H3d2dnj17kpSUxB133MGZM2cYP348bm5uvP766zXNOJ988gkdOnRg+PDhANxyyy0E\nBATg6enJ0KFDOXz4sEHXpdPpePTRR/H19SU0NJQffvih1v6rxb106VJiY2N57LHH8Pb2pnPnzqxf\nv77mvUuXLiU0NBR3d3c6d+7M559/XrN9yJAhAFx77bUAREZG4u7uzldffUVERARr166tOU5lZSVt\n27Zl3759ht0sYT0UIVpYQUGB4uPjoyQkJCjr1q1T8vLyau1fsmSJYmdnp7z11ltKVVWVsnLlSsXD\nw0O5cOGCoiiKcuONNyr33nuvUlJSomRnZysDBgxQ3n//fUVRFOWrr75SgoKClF27dimKoignTpxQ\nTp8+rSiKonTs2FH55Zdfas5z6tQpRaPRKAkJCUpJSYlSVlZWc/6ioiKloqJCmTNnjhIVFVXznhkz\nZihPPfVUvde1aNEipXv37kpaWpqSl5enxMXFKTY2NopWq20w7iVLlij29vbKRx99pOh0OmXRokVK\nYGCgoiiKUlRUpLi7uyvHjx9XFEVRzp07pxw6dKjmfbGxsTUxaDQaJSUlpebn1157Tbn11ltrfv72\n22+V3r17G3CXhLWRZCBUceTIEWXGjBlKcHCwYmdnp8THxytZWVmKoug/4Ko/CKsNGDBAWb58uXLu\n3DnFwcFBKS0trdn3+eefK8OGDVMURVFGjhypLFy4sN5zXikZnDp16opxXrhwQdFoNEpBQYGiKFdP\nBsOGDav5cFcURdmwYYOi0WgUrVbbYNxLlixRunTpUrOvuLhY0Wg0SlZWllJUVKR4enoqq1evVkpK\nSmqds6FkkJ6erri6uiqFhYWKoijKpEmTlPnz51/xeoX1kmYioYru3buzZMkSzp49y8GDB8nIyGDO\nnDk1+4OCgmqV79ChAxkZGZw5c4bKykoCAgLw8vLCy8uLe++9l/PnzwOQlpZGaGioUbGEhITUfK/T\n6Xj88cfp0qULHh4edOrUCYCcnJwGj5OZmVnrWO3bt6/5/vTp01eNG6Bdu3Y13zs7OwNQVFSEi4sL\nK1euZPHixQQGBjJu3DiOHTtm0LUFBgZyzTXXsGrVKvLz81m/fj3Tpk0z6L3CukgHslBdWFgYCQkJ\nfPDBBzXb0tPTa5U5ffo0EyZMICQkBAcHB3Jzc7Gxqfu3TEhICCdOnKj3PFcaBXTp9s8++4w1a9bw\nyy+/0KFDB/Lz8/H29jaoUzYgIIAzZ87U/Hzp9w3F3ZCRI0cycuRIysvLefLJJ7nrrrvYvHmzQe9N\nSEjg448/prKyksGDBxMQEGD0+YXlk5qBaHHHjh3jzTffrPnAP3v2LF988QWDBg2qKZOdnc3ChQup\nrKzkf//7H0ePHmXMmDG0a9eOkSNH8sgjj1BYWIhOpyMlJaXmg3H27Nm8/vrr7NmzB0VROHHiRM2H\nsr+/PykpKVeNraioCAcHB7y9vSkuLuaJJ56otf9qSWHy5MksXLiQ9PR0Lly4wCuvvFKzLyAg4Kpx\nX012djbfffcdxcXF2Nvb4+Ligq2tbb1l67vGm266iT179rBw4UKmT5/e4PmEdZJkIFqcm5sbf/zx\nBzExMbi6ujJo0CB69+7NG2+8UVMmJiaG5ORkfH19efrpp1m9ejVeXl4ALFu2jIqKCsLDw/H29uaW\nW27h3LlzANx88808+eSTTJ06FXd3dyZOnMiFCxcAmDt3Li+++CJeXl68+eabQN3awvTp0+nQoQNB\nQUH06tWLQYMG1SpztXkGd911F6NGjSIyMpJ+/foxadKkWmWvFnd9x63+WafTsWDBAoKCgvDx8WHL\nli0sWrSo3vfNmzePhIQEvLy8WLVqFQCOjo5MnDiR1NRUJk6caNA9EtZHoxhS/xWiBS1dupSPP/6Y\nLVu2qB2KxXjhhRdITk5m2bJlaociWilV+ww6duyIu7s7tra22Nvbs3PnTjXDEcIi5eXl8cknn7B8\n+XK1QxGtmKrNRBqNhsTERJKSkiQRiBqtbckHc/bhhx/Svn17Ro8eTWxsrNrhiFZM1WaiTp06sWvX\nLnx8fNQKQQghBK2gZjB8+HD69evHhx9+qGYoQghh1VTtM9i2bRsBAQGcP3+eESNG0L1795p1VqSZ\nQAghTGNKg4+qNYPqyS++vr7cdNNNdfoNFP1yGRb5evbZZ1U79333KYDChQuWeX2Wfv/k+uTarvYy\nlWrJoKSkhMLCQgCKi4vZsGFDzaqVovksWQI//wwREXDggNrRCCFaC9WSQVZWFkOGDCEqKoqYmBjG\njRvHyJEj1QrHarz4IixbBoMGwf79akcjhGgtVOsz6NSpE3v37lXr9KqLi4tr8XMqCqSn62sFvXs3\nbzJQ4/paklyf+bLka2uMVjsDuaGnUgnjnT8PPXpATg5s2QKPPQY7dqgdlRCiKZn62SlrE1mRtDQI\nDtZ/HxEBBw9CMz6rXQhhRiQZWJG0NKh+TICnJ7RtC/LsdCEESDKwKunpf9cMoPn7DYQQ5kOSgRW5\ntGYA+mQgz0UXQoAkA6tyaZ8BSDIQQvxNkoEVubyZqGtXOHVKvXiEEK2HJAMrcnkzUUAAZGaqF48Q\novWQeQZWxM1NnxA8PPQ/a7Xg6AjFxdCmjbqxCSGahswzEFdVUKD/6u7+9zZbW/Dzg6wsdWISQrQe\nkgysRHUT0eUrg0tTkRACJBlYjctHElULDISMjJaPRwjRukgysBKXjySqJjUDIQRIMrAal48kqiY1\nAyEESDKwGldKBlIzEEKAJAOrkZ0N7drV3S7JQAgBkgysRk4O+PjU3S7NREIIkGRgNXJz9UtWX05q\nBkIIkGRgNXJz668Z+Pnp91VVtXxMQojWQ5KBFVAUyMsDb++6++zs9DUGmYUshHWTZGAFLl4EZ+cr\nrz8kTUVCCEkGVuBKTUTVpBNZCCHJwArk5NTfeVxNagZCCEkGVqChmoEkAyGEJAMrcKU5BtXatYNz\n51ouHiFE6yPJwApcaY5BNV9ffcIQQlgvSQZWoKFmorZt4fz5lotHCNH6SDKwAg11IEvNQAghycAK\nSM1ACNEQSQZWoKEOZB8fuHABdLqWi0kI0bpIMrACDXUg29uDm5s+IQghrJMkAyvQUDMRSFORENZO\nkoGFU5SGm4lAOpGFsHaSDCxccbF+ZVInp6uXk5qBENZNkoGFM6RWAFIzEMLaSTKwcA11HleTmoEQ\n1k3VZKDVaomOjmb8+PFqhmHRDOk8BqkZCGHtVE0Gb7/9NuHh4Wg0GjXDsGjGNBNJzUAI66VaMkhL\nS+PHH39k9uzZKIqiVhgWT5qJhBCGsFPrxA8//DDz58+noKDgimXmzZtX831cXBxxcXHNH5iFkQ5k\nISxbYmIiiYmJjT6OKslg7dq1+Pn5ER0dfdWLuDQZCNPk5kJYWMPlpGYghHm6/A/l5557zqTjqNJM\ntH37dtasWUOnTp2YMmUKv/76K9OnT1cjFIsnHchCCENoFJUb7Ddt2sTrr7/O999/X2u7RqORvoQm\nMGIEPPoojBp19XKKop+YlpcHzs4tE5sQoumZ+tnZKuYZyGii5mNoB7JGI7UDIayZ6slg6NChrFmz\nRu0wLNalzUTv/fke+87tu2JZGV4qhPVSPRmI5nXpU84Kygt4c8ebVywrnchCWC9JBhastBSqqsDF\nRf/z3X3vZs2xNeSU1N8WJM1EQlgvSQYWrLqJqLpLxtvJmz4BfdiVsave8lIzEMJ6STKwYLm54NXu\nIrO+m1WzLbpdNEmZSfWWl5qBENZLkoEFy80Fh5CDHDp/qGZbVLso9mbtrbe81AyEsF6qLUchml9O\nDuB/gAi/iJpt47qN45qQa+otLzUDIayXJAMLlpsLFZ61k4Gnoyeejp71lpehpUJYL2kmsmA5OVDg\ndIAI/4iGCyPNREJYM0kGFiwnVyHHpnbN4GqkmUgI6yXJwILl5sJD7b7B18XXoPLe3pCfD1ptMwcm\nhGh1JBlYsNwcDUNC4gwub2sLnp76xeqEENZFkoEFu9Ly1eeLz9P93e71vkf6DYSwTpIMLNiVnnLW\n1rktGYUZ5JXWrQJIv4EQ1kmSgQW70vLVGo2G7m27czTnaJ19MrxUCOskycBCVVZCSQl4eNS/v4dv\nD46cP1Jne9u2UjMQwhpJMrBQublge8vtHM2p+4EP0N2nO0dzpWYghNCTZGChcnNB2/5X3Bzc6t3f\nw7cHx3OP19kuHchCWCdJBhYqPascrUMuAa4B9e4f23UsqyevrrNdOpCFsE6yNpGFOpqehlNVILY2\ntvXut7e1r3e71AyEsE5SM7BQx7PO4Klpb/T7pGYghHWSZGChUi+cwa+NaclAagZCWB9pJrJQ7pkT\niBt4ndHvqx5aqih/Py5TCGH5pGZgofIyPAkPDrlqGUVRyC/Lr7XN2RlsbKC4uDmjE0K0NpIMLNS5\nc9Cu3dXLJJ1L4tol19bZLp3IQlgfSQYW6tw5CKh/VGmNMJ8wkvOS0epqr1nt5wfZ2c0YnBCi1ZFk\nYIG0Wv2kM98GHmPg0sYFPxc/UvNTa23394esrOaLTwjR+kgysEDnz+sfVGNnwPCACL8I9p7bW2ub\nJAMhrI8kAwuUdPIMxZPr9gXUZ1DwIH5P+73WNkkGQlgfSQYW6HDaWewcKg0qG9s+lgtlF2pt8/eX\nPgMhrE2DDQlLly5FY+CAc0VRmDFjRmNjEo10IjsdD02QQWWHdhzK0I5Da23z94ft25sjMiFEa9Vg\nMvDy8iI2Nhaf+h6ZdZnvvvuuSYISjXMmPw1fh2CT3y/NREJYnwaTwYQJE4iIiKBLly64u7vTv39/\nYmJiiI6O5vfffyc7O5tJkybVlBXqyyxKJ9jTsJpBffz8JBkIYW0MWo7i66+/pmvXrpSUlPDyyy/z\n66+/8tZbb1FUVETnzp1rkoFoHXIq0hjs1dfk90vNQAjrY1Ay6Nq1KwDOzs506dKFhIQEACoqKqRp\nqBUK2fc+Y8fWv0S1Iby9obAQKiqgTZsmDEwI0WoZPZrI3t6eGTNm8PXXX5OcnExaWlpzxCUaISfN\nk05BLka9Z++5vfyZ/iegX5vI11dGFAlhTYxOBlOnTmXu3LkkJSWxePFiYmNjTTpxWVkZMTExREVF\nER4ezty5c006jqXJK83jQNaBRh0jM7PhdYkutydzD69ue7XmZxleKoR10SiKoqh18pKSEpydnamq\nqiI2NpbXX3+9JrloNBpUDE0Vnx/4nLu+vwu3Nm7Eh8Xz0vUv0da5rVHHKCrS/1VfUmLcEtS5Jbl0\nXtiZtIfTcHNw44Yb4KGHYPRoIy9CCKEqUz87ja4ZfPTRR+zYsYOKigq2bdvGqlWrjD5pNWdnZ0Df\n96DVavH29jb5WJZgasRUzj92nuMPHMfe1p5u73Rj2KfDyCjMMPgYqanQsaPxzyLwcfZhaIehrD6i\nfy6ydCILYV2MTgbZ2dls2rSJGTNm8Morr7B161aTT67T6YiKisLf359hw4YRHh5u8rEshbO9M+4O\n7vx3zH85+M+DPBH7BJ6Onga/PyVFoXNn086dEJnAp/s+BSQZCGFtjH7SWXBwMNOnTwcaP5rIxsaG\nvXv3cvHiRUaNGkViYiJxcXE1++fNm1fzfVxcXK191iDQLZBAt0Cj3rP46PNcDHcC/m30+cZ1G8c9\na+/hdP5p/P07kJ5u9CGEEC0sMTGRxMTERh/H6GRQPZooPj6esLCwJhlN5OHhwdixY9m1a9cVk4Ew\nzOmLp4jwGWLSex3sHPjm1m9wc3DD3x/27Gni4IQQTe7yP5Sfe+45k45jdDNRcHBwk4wmysnJIT9f\n/8jF0tJSNm7cSHR0tEnHsibbzmzjjm/uuOL+7IrT9AjsYPLxh3QYgreTt8xCFsLKGF0z+O9//8un\nn37KCy+80KgTZ2ZmkpCQgE6nQ6fTcccdd3D99dc36pjm6sj5I1RoK4hsF9lg2ch2kXx/7HtyS3Lx\nca67XlSB5jR9Qk1PBtWkz0AI62J0MvD09GTTpk0MGzYMe3vTZ7lGRESwR9ohAFi6bylubdwMSgau\nbVwZ0mEIG09u5LZet9XaV6XVUumYzqAe7RsdkyQDIayL0c1Enp6e/Pnnn0yePJkxY8bw9NNPN0dc\nViUpM4nodoY3kY0KHcVPKT/V2X4gNRObUj98vR0aHZOvL+TnQ6Vhj0UQQpg5o2sG48aNw9fXlyef\nfBJFUThz5kxzxGU1FEVh77m9RLWLMvg9o0JH8fLWl1EUpdazJsqyg4neeqJJ4rKxUfD315CZCe0b\nX9EQQrRyDdYMjh07RnJycs3PsbGxhIWFAfqZbh06NL592pplFmUCGDWEtIt3FzwcPOo8yP7UKQjt\n0PhaQWllKSELQggK1iJLTwlhHRqsGYSGhpKYmMiGDRuwsbGhf//+9OvXryViswoHsg7Q27+3wU+T\nA30SPvCPA9ja2NbafvIkJk84u5STvRMOdg54dE4mLa174w8ohGj1GkwGdnZ2DB8+nOHDhwOwc+dO\nFi1ahE6nIywsjLi4OOzsjG5tEn/xdvLm9t63G/2+yxMB6GsGAwc2RVQQ1S6KksC9pKdLMhDCGhj9\nKT5gwAAGDBgA6JuQPv74YyoqKggKCmLUqFG4uBi3dLK16x/Un/5B/ZvkWCdPwpQpTXIoovyj+NVz\nL2lptzVcWAhh9hr1J31YWFhN/0FGRgZr167l1ltvbZLAhHGKKoo4nKLQrZtbkxwvql0Uq9r8V/oM\nhLASRg8tLS4uJqueAeiBgYGSCFS0cPOnXBz0ECEhTXO8qHZRZGmPyPpEQlgJo5PBihUrWLduHfHx\n8cyaNYv169c3R1zCQF8d+oqckhz+u+stwnVTjF66+kqC3YPZfHOK1AyEsBJGJwMnJyfCw8PJy8vj\nk08+oaCgoDniEgbadHoTAz4cgGN5B0Z0HtFkx9VoNLQPtiMzE3S6JjusEKKVMjoZ9OnThy+//JKF\nCxeydOlSqqqqmiMuq5CSl8Jn+z9r1DHmj5hPR8+OdDj+Gn36NFFgf3F0BHd3OH++aY8rhGh9jE4G\nvXr14s0336RPnz4EBQXRs2fP5ojLKuxI28Ha5LWNOoazvTO/JvzKyW19mjwZAAQHI01FQliBRo0m\nGjGi6ZolrNHJCyfp7NX4WWK5uZCXB6GhTRDUZYKC9Mmgb9+mP7YQovUwumYgmk7KhRQ6ezY+GSQl\nQVQU2DTx3VQUBZ/252VEkRBWwKCPj6KiIgAqKyvRarXNGpA1OXnhJKHejf9zfs8emqWJqKiiiC/8\nO3I2TWn6gwshWpUGk8Frr73G888/zyOPPMLFixe59957WyIuq5ByIaVJmol27IDmWC7KzcENJxs3\nkjMzmv7gQohWpcE+g5iYGGJiYrC3t2flypXoZJyhwX74AZ59FuLjYe5cuPRZQIqi8FDMQwS5BTXq\nHBUV8OuvsHhxI4O9gvYuXUnJTwYaF6cQonVrsGbg4uLC0qVLsbW1ZerUqVx77bUtEZfZe+opePhh\neOwx2LYNhgyBkpK/92s0Gv59zb/rXXDOGFu2QFgY+Pk1MuArCPPtypni5IYLCiHMmkZRFJMbhPfv\n309ERIRRyy8bSqPR0IjQVHXhgn4p6UOHIDAQFAWmTtV//8YbTXuuRx4BT0945pmmPW61FxJfYt4r\nFyld8ypt2jTPOYQQTcfUz06jx58sW7aMOXPmsHTpUlxcXPjiiy+MPqml+/hjGDdO/+EPoNHAwoXw\n2Wfwxx9Ne64ff4SxY5v2mJfq5d8DV48KTp9uvnMIIdRn0mDEZ555Bj8/P+bPn1/rKWgCqqrgnXdg\nzpza23194a234O67m255h5QUuHgRog1/fLLRbupxE/1zF5CS0nznEEKoz+hJZ23btqVNmzaMGTOG\nMWPGNEdMZm3tWggJqX+S1q23woIFsGoVTJ7c+HN9842+VtDU8wsuFxqKJAMhLJzRHyPr169n3Lhx\nTJo0iVdffZWdO3c2R1xma+NGmDSp/n0aDTz/PMybB0/8/CTni01f9EerhUWLYPZskw9hMEkGQlg+\no5NBXFwciYmJLF++nEGDBrFr167miMtsbd0KsbFX3j9yJHh66Xhj+wIc7RxNPs+6deDtDTExJh/C\nYJIMhLB8RicDjUbDn3/+ibOzM9deey3//Oc/myMus5Sfr3/0ZFTUlctoNHD/E2fRFnvhZGv6U8ne\neQfuv58me37B1UgyEMLyGZ0MNm3axGeffcb48eO55ZZbePfdd5sjLrP0++/Qv3/tyWX18ex2GLey\nHqxYYdp5Dh3Sr0fUUg+W8wzMISX3NGY60lcIYQCjO5AnTZqERqMhNjaW0tJSDh061BxxmaWGmoiq\nHc05wnUR4Tz/PEyb1nDyuJSiwL/+Bf/3f/rnDbSEjWe/gWt3cO7cxwQEtMw5hRAtq8Gawe7du2v9\nPGTIEGL/+sRzcnKi3yWL4lxe1toYmgyO5BxheGQPOneGjz4y7hw//ACpqfDAAyaFaJLOXp1p0y5F\nmoqEsGAN1gzWrVvHwYMHDTrY2bNn6WulC9+Xl8Pu3TBwYMNlZ0bNJMgtiEGv6zuUJ08GH5+G31dS\nop9x/PbbtOhs4FDvUKrcTpKSYliyE0KYn0YtR9GczG05ip074a67YN8+4953//36SWjvvddw2Vmz\n9Enns8Y9KdNoVboqHJ935d+6i7z0vEPLnlwIYZQWW45C1O/IEejVy/j3vfACfP01bN589XJLluiX\nqn7/fdPiaww7Gzt824SwO+VUy59cCNEiJBk0kaNHoXt349/n5QXLl+tHBp08WX+ZlSvh8cf1M5dd\nXRsXp6mu7zCaIydKGi4ohDBLkgyayNGj0KOHae8dMUK/5PWYMfqnllUrL4f58/VLYW/cCOHhTROr\nKZZMXsj5/X1qLcMthLAcRg8tBSgrK0Oj0eDgIO3H1UytGVS77z5wdtYnhIEDwd0dNm3SNz1t3gxd\nujRdrKawt4du3eDw4eZ5qpoQQl0GdSDrdDq+/fZbvvjiC7Zv345Op0NRFGxtbRk0aBDTpk3jxhtv\nbNLnGphTB3JlJbi56WcgX23sf6W2kmGfDuOX6b/gYFd/Ir1wQT98VKvV1zQGDGimoE1wxx1w3XUw\nc6bakQghrsTUz06DagZxcXEMGTKERx99lKioqJoaQXl5OUlJSaxZs4YFCxawuaFeUAuVkgLBwQ1P\nAvsz40+KK4uvmAhA34dw++1NHGATiYiA/fvVjkII0RwMSgYbN26sSQBarRZFUWqaiQYOHMjAgQMp\nLy836sRnz55l+vTpZGdno9FouPvuu3nwwQeNv4JWwND+gl9O/sJ1na5r/oCaSUQEbNigdhRCiOZg\nUDK4tG9g+PDhXH/99XTq1Al3d3fGjx9fp4wh7O3tWbBgAVFRURQVFdG3b19GjBhBD1N7YVVkSH+B\nVqdl1ZFVvDb8tZYJqhkU+vzGvqP9ANMX2BNCtE5Gjyb67bffeOqpp5g2bRoeHh7MufyRXgZq164d\nUX8t7+nq6kqPHj3IyMgw6VhqO3Kk4WTw3p/v4eXoxcjQkS0TVDN4++BTlHntIStL7UiEEE3NpKGl\nJ0+eZOvWrfTs2ZPVq1c3OojU1FSSkpKIaYnF+ZtBQ81EiqKw8eRGFo1d1KSd7C0t3DecdhGHOXBA\n7UiEEE3NpKGl7dq1Y//+/Tz00EM8+eSTjQqgqKiIm2++mbfffhvXy2ZUzZs3r+b7uLg44uLiGnWu\n5qAo+mQQFnblMhqNhjVT1rRcUM0kvG04f3Y8zK5dMHy42tEIIQASExNJTExs9HGMXpto165dNSuV\nKopCRESEwQvZXa6yspJx48YxevToOs1N5jK0NDdXPwfgwgW1I2l+G1I28K9vXqXjpl/4/nu1oxFC\n1KdZh5ZeKigoiG+//ZaKigqOHj3KDTfcYPRJQZ9I7rzzTsLDw03ud2gNTp+GDh3UjqJlhPuGk6U7\nRMZ2/eJ6NjJ/XQiLYVAyqB5KChAQEMCNN9541TKG2LZtGytWrKB3795ER0cD8PLLL5ucXNRSXzK4\nddWtPDv0WcJ9VVw/ohkEuQUR330cP3tUcvy4faNmXAshWheDJ52NGzeOCRMm0K1bt1r7jh07xrff\nfssPP/xg1KSz2NhYdDqdcdG2Qpcngz2Ze/j97O908+l25TeZKY1Gw0fxH3H7V7BtW+OW3xBCtC4G\nVfQ3bNiAj48P9913HwEBAXTr1o2uXbsSEBDA/fffj7+/Pz///HNzx9oqXZ4MFu1axD/7/xM7G5P6\n5s3CNdfok4EQwnIY3YGs1WrJyclBo9HQtm1bbJqp4dhcOpBvukn/HOObb9ZPLAt8M5Add+6gk1cn\ntUNrNvv365/OdvSo2pEIIS7XrA+32blzJ5mZmQDY2tqyfv16Zs+ezZw5c8jLyzP6pJbk0prBjrQd\n+Lv4W3QiAOjZE86dg/Pn1Y5ECNFUDEoG99xzT81yE5s3b+bxxx8nISEBd3d37r777mYNsLW7NBkk\nnUtiYo/EIMRqAAAbw0lEQVSJ6gbUAmxtYehQ/TMWhBCWwaBmosjISPb99XDf++67D19f35oJYZfu\na9LAzKCZqKgI/PyguBiqB1IZO6rKHH1x4AtObO3DkS1hfP652tEIIS7VrM1EWq2WyspKAH7++WeG\nDRtWs6+qqsrok1qK06ehffu/EwFg8YkAYNPpTSid1/PTT2DFt18Ii2JQMpgyZQpDhw4lPj4eZ2dn\nhgwZAkBycjKenp7NGmBrZk0Tzi41MHggR4p20L497NihdjRCiKZg8Gii33//nXPnzjFy5EhcXFwA\nOH78OEVFRfTp06fpAzODZqJFiyApCT74QO1IWtaR80cY8/kYpp0/RVUVvPKK2hEJIao1+3IUgwYN\nqrPt8glo1sZaawZhbcOo0FYQMewYLzwUJslACAsgq8s0QnUyyCnJYVPqJrXDaTE2GhvGdxvPaYfv\nyc8HE9cpFEK0IpIMGuHMGX0y+OnET7yz8x21w2lRD8U8xA1dR3L77bB8udrRCCEaS5JBI6SlQUgI\n7EjfwcDggWqH06J6+Pagt39v7rgDVqwArVbtiIQQjSHJwEQ6nX4WbkAA/JH2BzFB5vmUtsbq2VP/\nb/Drr2pHIoRoDEkGJsrJAXd3UGzLOHT+EH0D+6odkmqmT4elS9WOQgjRGJIMTJSeDoGBsPfcXrr5\ndMPZ3lntkFQzbRr8+KO+piSEME+SDEyUkQFBQeBk58SDAx5UOxxVZekOM/lWhUWL1I5ECGEqSQYm\nqq4ZRLaLZGb0TLXDUY2iKMz6bhYdJ3zK4sVQVqZ2REIIU0gyMFF1zcDaaTQa3h3zLm8fepxeMVms\nWKF2REIIU0gyMFF1zUBAv8B+zO4zm8Lh03n5FR1/rWkohDAjkgxMJDWD2ubFzaONazE2g99i2TK1\noxFCGEuSgYmkZlCbnY0dn974KeUR7/P8S2VUVKgdkRDCGJIMTJSRAZsLP2FP5h61Q2k1Qr1DOfHI\nAXp0dbS6lVyFMHeSDExQXg75+fBl8gcUVxSrHU6r0sa2Da+9Bi+8oP83EkKYB0kGJsjMBP8ALQez\nDxLZLlLtcFqd3r0hPh5efFHtSIQQhpJkYIKMDPAJPYmviy/uDu5qh9MqvfCCfomKY8fUjkQIYQhJ\nBiZITwenDocJ9w1XO5RWq107ePppuOceaOUPrBNCIMnAJBkZgK8kg6vJL8tnQ9txFBXrWLJE7WiE\nEA2RZGCC9HQY4DmGhMgEtUNptTwdPTlbcIZ/vLyVxx+HrCy1IxJCXI0kAxNkZEDf4Eh6+fVSO5RW\nbUqvKSRVfMXMmfDww2pHI4S4GkkGJkhPl9nHhhjbbSzrTqzjmWcU/vgD1q1TOyIhxJVIMjBBRobM\nPjZEhF8E5VXlpJUeZ/FifWfyhQtqRyWEqI8kAyMpitQMDKXRaBjddTS/pf7GiBEwYQL84x8yukiI\n1kijKK3zV1Oj0dAaQyso0NcKCgtBo1E7mtavpLIEJzsnNBoNpaXQrx88/jjccYfakQlhmUz97JSa\ngZHS08Fx5Iv8lipPgDeEs70zmr+yppMTfP45PPIInDqlcmBCiFokGRgpPR0qO/6AvY292qGYpcjI\nv2sGVVVqRyOEqCbJwEjp6QqlrkdkwlkjPPywvpbw3HNqRyKEqKZaMpg1axb+/v5ERESoFYJJjqZn\nYm/jgI+zj9qhmC0bG1ixQr920dq1akcjhAAVk8HMmTNZv369Wqc32ZGcwwTaS63AWIfPH6awvLDm\nZ39/+OormDULTpxQMTAhBKBiMhgyZAheXl5qnd5kp4oO09mth9phmJ1/b/w360/UTv6DBsGzz8Kk\nSVBSolJgQggA7NQO4GrmzZtX831cXBxxcXGqxVLN7sgU7r2tTO0wzM7wzsPZeHIjt/S8pdb2f/4T\nduzQT0hbtkyG6wphrMTERBITExt9HFXnGaSmpjJ+/HgOHDhQZ19rnWcQEgJbt0KHDmpHYl4OZh8k\n/ot4Tj50ss6+khIYMkRfQ3jiCRWCE8KCyDyDFqDT6VffDAhQOxLz09O3J6VVpZy8UDcZODvD99/D\n4sXw5ZcqBCeEkGRgjOxs8PSENm3UjsT8aDQafVNRysZ69wcG6kcWPfggbNvWwsEJIdRLBlOmTGHw\n4MEcP36ckJAQlpjBE1DS02WBusaY2msq3k7eV9zfuzcsX65vLkpObsHAhBCyNpExqpsyfvhB7Ugs\n24cfwssvw+bNEBysdjRCmBdTPztb9Wii1ua/R+dS2iUMmKF2KBbtrrvg4kUYPhw2bdLPSRBCNC/p\nMzDC8aI9hPj4qh2GVXj0UbjtNhgxAvLy1I5GCMsnycAIWdrDRAbK7OOW8uyzMGoU3HAD5OerHY0Q\nlk2SgYEKygsos8kjupNMMGgpGg289pp+pvKwYXD+vNoRCWG5JBkY6GjOUezyu9GhvfyTNVZ6QToj\nl49Ep+gaLKvRwFtvwdixcO21kJbWAgEKYYXkk81AR88foyozXEa3NIFAt0Cyi7NZe9ywJUs1Gnjx\nRZg5U58QUlKaOUAhrJAMLTVQRoZCZL8Szme4qB2KRfjl5C/M+G4G++7dd9W5B5dbvBiefx6++QZi\nYpoxQCHMlAwtbWZpaRraB0giaCrXd76eiT0mMu3raXwx6Qs8HT3rlDmYfZBP932Kq70rYW3DGNJ+\nCPfeG0RQEIwbB//9L0yerELwQlggaSYy0Nmz0L692lFYlteGv0aoVyhjPhtT7/42tm3wdfalSqli\n5aGV9F7cm9hPYlG6rWHjRv3w05deglZUgRTCbEkzkYEWLNA/xH3hQrUjsTyn80/TwbPhUVoV2go2\npmzEtY0rQzsOJTMT4uOhc2f46CNwc2uBYIVo5WTV0mYmNYPmY0giAH1NYWy3sQztOBTQrx67ZQt4\neUG/flDPSuhCCANJMjBASWUJp89oCQlROxJxOUdHfafyo08W0O+NeJ5ZvEuajYQwgSQDA7y27TV2\nOM6TmkErNvN2Z566eQIvp46n05xZHDp9Tu2QhDArkgwMsC9rH8WnIqRm0IrZ2djx9Lg7yXjiGP5u\nvkQs6sX0D16hvKpc7dCEMAuSDAyQlJlE8YloecKZGfB1d+ePF1/l8+t2sHrndibcs5esLLWjEqL1\nk2TQgLzSPHJL8ghwDMXWVu1ohKFuG9mF7LfXENk2hl69YNEi0GrVjkqI1kuSQQP2nttLR6dIOneS\nfypz4+ICr74Kv/0Gn38OgwfD77+rHZUQrZN8wjXgXNE5Aipj6d5d7UiEqXr10j8k57779DOWhyYk\nkpwsQ46EuJRMOjPAAw/oJzY9/LDakYjGulhUQcSbQ8lKDiLBYynPznUlKEjtqIRoOjLprBkdOwZh\nYWpHIZqCh2sbkp9I5OZxHnzjPYieQ1K47z79pEIhrJkkAwMcO4Y0E1kQBzsHVkz+iHnj7sX+3sGc\nd99AVBTMmiWzmIX1kmTQgOJiyM6GDvKAM4ui0Wi4b8B9rL71f5wJfYYDR8rp0kX/mM2RI+HHH2X0\nkbAu0mfQgL174fbb4eBBtSMRzUVRFDQaDQDl5bBypX5BwvPn9bWFmTP/XpeqUlsJgL2tfZ3j3P/j\n/Xg6ejI4ZDDXdrgW1zauLXYNQlQz9bNTksFV/HLyFzL+GMx3q51YtUrVUIQKnvr2fb7fcZhjRzX4\nBF3Asf0hMqsOs3bqWq7rdF2d8htSNrDlzBa2ntnK7ozdDAoZxPhu47m77920sW2jwhUIayQPt2li\nZVVlxH8Zz5zKLOk8tlJDenXEt10Z5RU6Thzqze6f7iF3e2+WHHWl6BZ9c5Kj49/lR4aOZGToSAAK\nygv4+eTPJKYmYmcjv2ai9ZOawRVsPr2Zf234F11/+5MbboDp01ULRbQimZmwejX873+wf7/+iWsT\nJ8Lw4fI8BdE6yNDSJvb98e8Z3WW0jCQStQQEwP336yexHT4MAwfCe+9BYCBcdx3Mn6/vX2rod7GV\n/g0mrJjUDOqhKApd3+nKl5P+R1xYNGlp4Fn3Eb1C1Cgq0i978eOPsG6dfiTSsGEwdKj+FRoKf/VR\nk1uSy/gvxvNR/EeE+4arG7iwOFIzaEKHzh+iSleF5lwU7dtLIhANc3WF8eP1C+KdOgU//wzXXAO/\n/KJPBsHBMHUqvPsunDjgw8zedzN06VC+PvK12qELAUjNoF5Hc46SlJlE+k9TSE3V/wILYSpFgZQU\nfdPSjh3w559w/Di0H7iL9GtuJtL9Ol6Me5XYaF/spK9ZNJIMLW0GY8bA7Nn6DkIhmlJpqX4Oy5ad\nhSxJfZpkxy+wX3SCsI5u9OoFPXtS87VjR7CROrwwkCSDJlZZCT4++iq/j49qYQgrUVBegG2VO0eO\n6DugDx3Sfz14SOFCnobu3aFrV+jSRf+q/t7X9+++CCFAkkGT275dP2pkzx7VQhCCDSkbuO+HB+jn\nPpYOFWNQMvqQfsKb5GQ4cUL/R0uXLvoZ0u3bQ0BwOR1C7OjYwZaQEP3oJ2l6si6SDJrYiy9Cfj68\n/rpqIQiBTtGxJ3MPPyb/yIaUDezP2k+lrpJ7+93LglELyMvT90ecOaNfeXXtuffZ1OYxnPP7oT09\nkLITA/HTRdKhrT+Bfo74+1Pr9XvlYvYU/kho2/Z09wsl1DuUrt5dCfUOlVnTZkqSQSOdvXiWcm05\nXby7oCgwaBA884y+30CI1kJRFMqqylBQcLZ3rrdMXmkeO9N3siNtB7+f3cH+cweZFPgIQ9s8wrlz\nkJX19+tU8UGyKpO5oJwBr5PY+59A8Uom7NzTRCh34O0NXl7g7a1/ba14h1OVO/BwdsbTxQUvVyds\nbOGW8FvoE9CnTixnL57F3cEdD0eP5v6nEX8xu2Swfv165syZg1arZfbs2fzf//1f7cBaMBmcvHCS\nEctH8FDMQzwY8yCrV8O8eZCU1HxV7MTEROLi4prn4K2AXJ95URQoKNAniOxs2Lw5kaCgOC5cgLw8\nar6eqthJdlUyheXFFFeUUFpVgp2tBs/s8XhX9cLNjVqv/QGPcMT5A5w0ngTY9aS9Y08CXdpzXcBE\nQtu2x80NnJzA2Vn/1c6hAidHG2wu6wix0djULCbYWJZ27y5nVmsTabVa7r//fn7++WeCgoLo378/\n8fHx9OjRo0XjyCvN4+M9H/Pa9td4Pu55/tH/H5SUwL/+BUuXNm9bq6X/h5TrMy8aDXh46F/dusHP\nPyeSkBBXT8kBf730FAUKC+HiRf3Xy18DC9/kYsHrpBed4czFQ2RqD3FSd5Lj64pQsvWT9UpLoaRE\n//Xi+HiUThvrnLXz9g34F19fK3E4O8Mev4cptj+Js8YHV1sfnGxd0dhWEet8J+0cO+LgAG3aUPN1\nS8EytnzzBaNy0vB29sLbyQsfF09CvTvh7uxEmzZgb6//3bezg2MXDnGhLIfiymLKq8qxt7XHwdaB\nAUEDLK62o0oy2LlzJ126dKFjx44A3HbbbXz33Xd1kkFRRRE6RVfr5drGFUc7xzrHzCrKoqC8AJ2i\no0pXRWlVKSWVJYT5hOHv6l+n/Jz1c1iydwmju4xm68ythLUN48wZeOwxiIkBC/o9F6LZaDTg7q5/\nXZkN0PGv19gGjrgerRbKyv5OEKWlUHJj7aRR/X1AwR1klZ+moDKXgqpcyrTF6MrbcCZHQ3aZfkny\n8nKoqNB/TfEs4+zpPE5uXE+FbR6Vtvlo7fPxTlwBmX2oqICqqr9fFaPfAK8UNFXOaHSOaOwq0NiV\n475tIY6FHtjZ1U4ep64fRJnbIWy1LtjqXLDTuWKrc6J36sd4VobXKmtnB3t8HqPQPgUbjS02Ghts\n0H8dXP48PjadsbXVDyu2tdW/kmw+oESTjZ2mDfY29tjbtMHOxp4oh5vwsPfF1tb0e6lKMkhPTyck\nJKTm5+DgYP7444865TxfbIcGG1Bsar5GpH5AQL5+4P+lNaHD7V8i2/NHNIoNYIOtzhlbrQtd0+fh\nU1A3GZQ4PEhM5YsUbHbl/vchNxdOn4a77oLHH2/ySxZCGMjWFlxc9K+G9fnrZai7mTcvg3nz5hlY\n/hN0On1iqKysnSjq+7msYgtF5cUUlhfrv1YUUVpZSnBcCPa6uu/1LxlDYVUeVTodWp0W7V9fO9q4\n46gDnU6/tEn1q6pKoUQppUopoEqpQKtUUqVU4FA8EpdK30Y9kEmVPoPVq1ezfv16PvzwQwBWrFjB\nH3/8wTvvvPN3YDJ4WgghTGI2fQZBQUGcveQJ5GfPniU4OLhWmVY6yEkIISySKpPc+/XrR3JyMqmp\nqVRUVLBy5Uri4+PVCEUIIQQq1Qzs7Ox49913GTVqFFqtljvvvLPFRxIJIYT4m2rLX40ePZpjx47x\n7rvv8umnn9K1a1deffXVess++OCDdO3alcjISJKSklo40sZZv3493bt3v+L1JSYm4uHhQXR0NNHR\n0bz44osqRGmaWbNm4e/vT0RExBXLmPO9a+j6zPnenT17lmHDhtGzZ0969erFwoUL6y1nrvfPkOsz\n5/tXVlZGTEwMUVFRhIeHM3fu3HrLGXX/FBVVVVUpoaGhyqlTp5SKigolMjJSOXz4cK0yP/zwgzJ6\n9GhFURRlx44dSkxMjBqhmsSQ6/vtt9+U8ePHqxRh42zevFnZs2eP0qtXr3r3m/O9U5SGr8+c711m\nZqaSlJSkKIqiFBYWKt26dbOo3z1Drs+c75+iKEpxcbGiKIpSWVmpxMTEKFu2bKm139j7p+rCuJfO\nN7C3t6+Zb3CpNWvWkJCQAEBMTAz5+flkZWWpEa7RDLk+MN/O8iFDhuDl5XXF/eZ876Dh6wPzvXft\n2rUjKioKAFdXV3r06EFGRkatMuZ8/wy5PjDf+wfg7KxfjqSiogKtVou3t3et/cbeP1WTQX3zDdLT\n0xssk5aW1mIxNoYh16fRaNi+fTuRkZGMGTOGw4cPt3SYzcac750hLOXepaamkpSURExMTK3tlnL/\nrnR95n7/dDodUVFR+Pv7M2zYMMLDaz9C1dj7p+ritobOJbg8e5vLHARD4uzTpw9nz57F2dmZdevW\nceONN3L8+PEWiK5lmOu9M4Ql3LuioiJuvvlm3n77bVxdXevsN/f7d7XrM/f7Z2Njw969e7l48SKj\nRo2qd4kUY+6fqjUDQ+YbXF4mLS2NoKCgFouxMQy5Pjc3t5rq3ujRo6msrCQvL69F42wu5nzvDGHu\n966yspJJkyZx++23c+ONN9bZb+73r6HrM/f7V83Dw4OxY8eya9euWtuNvX+qJgND5hvEx8ezbNky\nAHbs2IGnpyf+/nWXl2iNDLm+rKysmuy9c+dOFEWp0/Znrsz53hnCnO+doijceeedhIeHM2fOnHrL\nmPP9M+T6zPn+5eTkkJ+fD0BpaSkbN24kOjq6Vhlj75+qzURXmm/w/vvvA3DPPfcwZswYfvzxR7p0\n6YKLiwtLlixRM2SjGHJ9q1atYtGiRdjZ2eHs7MyXX36pctSGmzJlCps2bSInJ4eQkBCee+45Kisr\nAfO/d9Dw9Znzvdu2bRsrVqygd+/eNR8iL730EmfOnAHM//4Zcn3mfP8yMzNJSEhAp9Oh0+m44447\nuP766xv12dlqH24jhBCi5ajaTCSEEKJ1kGQghBBCkoEQQghJBkIIIZBkIFoRW1vbmkXDoqOja0Z+\nmLulS5fi6+vL3Xff3ajjzJs3jzfeeKPm5x07dlzxmGVlZURFReHg4GCWY+dFy1N1aKkQl3J2dr7i\nyorVg97MbQYs6GOeMmVKvStnVlVVYWdn2K/h5de+bt06Ro8eXW9ZR0dH9u7dS6dOnYwPWFglqRmI\nVis1NZWwsDASEhKIiIjg7NmzzJ8/nwEDBhAZGVnrObb/+c9/CAsLY8iQIUydOrXmL+i4uDh2794N\n6CfqVH84arVaHnvssZpjffDBBwA1U/pvueUWevTowe23315zjj///JNrrrmGqKgoBg4cSFFREUOH\nDmXfvn01ZWJjYzlw4ECda7l0BPfSpUuJj4/n+uuvZ8SIERQXFzN8+HD69u1L7969WbNmTb3XdezY\nsVrH/PXXXxk+fDiHDh0iJiaG6OhoIiMjOXHihKn/5MKKSc1AtBqlpaU1E4Q6d+7Mm2++yYkTJ1i+\nfDkDBgxgw4YNnDhxgp07d6LT6ZgwYQJbtmzB2dmZlStXsm/fPiorK+nTpw/9+vUD9H9N11eb+Pjj\nj/H09GTnzp2Ul5cTGxvLyJEjAdi7dy+HDx8mICCAa665hu3bt9OvXz9uu+02vvrqK/r27UtRURFO\nTk7ceeedLF26lAULFnD8+HHKy8uv+nyHaklJSRw4cABPT0+0Wi3ffPMNbm5u5OTkMGjQIOLj49m9\ne/cVrysnJwd7e3vc3NxYvHgxDz30EFOnTqWqqoqqqqqmuiXCikgyEK2Gk5NTrWai1NRUOnTowIAB\nAwDYsGEDGzZsqEkYxcXFJCcnU1hYyMSJE3F0dMTR0dGgR6hu2LCBAwcOsGrVKgAKCgo4ceIE9vb2\nDBgwgMDAQACioqI4deoUbm5uBAQE0LdvX4CaRc9uvvlmXnjhBebPn88nn3zCzJkzGzy3RqNh5MiR\neHp6AvrVJ+fOncuWLVuwsbEhIyODrKwstmzZUue6qmsYGzZsYNSoUQAMHjyY//znP6SlpTFx4kS6\ndOnS8D+2EJeRZiLRqrm4uNT6ee7cuSQlJZGUlMTx48eZNWsWULsZ5tLv7ezs0Ol0gL5T9VLvvvtu\nzbFSUlIYPnw4iqLg4OBQU8bW1paqqqor9lU4OzszYsQIvv32W/73v/8xbdo0g66reoE0gM8++4yc\nnBz27NlDUlISfn5+lJWVodFo6lxXdRzr16/nhhtuAPTLZnz//fc4OTkxZswYfvvtN4NiEOJSkgyE\n2Rg1ahSffPIJxcXFgH699vPnz3Pttdfy7bffUlZWRmFhIWvXrq15T8eOHWtWc6yuBVQf67333qtp\nUjl+/DglJSX1nlej0RAWFkZmZmbNsQoLC9FqtQDMnj2bBx98kAEDBuDh4dHgdVy+AkxBQQF+fn7Y\n2try22+/cfr0aTQazRWvS1EU9u/fT2RkJACnTp2iU6dOPPDAA0yYMKHePgshGiLNRKLVqO+v70u3\njRgxgiNHjjBo0CBAvwTxihUriI6O5tZbbyUyMhI/Pz/69+9f84H76KOPMnnyZD744APGjh1bc7zZ\ns2eTmppKnz59UBQFPz8/vvnmmyv2Mdjb27Ny5UoeeOABSktLcXZ2ZuPGjbi4uNCnTx88PDwMaiKq\nvqZLzzFt2jTGjx9P79696devHz169ACoc13VzWW7d++utULlV199xfLly7G3tycgIIAnn3zSoDiE\nuJQsVCcsznPPPYerqyv/+te/WuR8GRkZDBs2rM5on2qffvopu3bt4p133mmS8/3nP/+ha9euTJ48\nucGynTp1Yvfu3WazNLNQjzQTCYvUUvMRli1bxsCBA3nppZeuWMbJyYl169Y1etJZtSeffLLBRFA9\n6ayqqgobG/k1Fw2TmoEQQgipGQghhJBkIIQQAkkGQgghkGQghBACSQZCCCGQZCCEEAL4f2jy9u5K\n3hGSAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Section 1.4.2 Probability distributions of wave characteristics." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Probability distribution of wave trough period: WAFO gives the possibility of computing the exact probability distributions for a number of characteristics given a spectral density. In the following example we study the trough period extracted from the time series and compared with the theoretical density computed with exact spectrum, S1, and the estimated spectrum, Sest.\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "import wafo.misc as wm\n", + "dtyex = S1.to_t_pdf(pdef='Tt', paramt=(0, 10, 51), nit=3)\n", + "dtyest = Sest.to_t_pdf(pdef='Tt', paramt=(0, 10, 51), nit=3)\n", + "\n", + "T, index = ts.wave_periods(vh=0, pdef='d2u')\n", + "bins = wm.good_bins(T, num_bins=25, odd=True)\n", + "wm.plot_histgrm(T, bins=bins, normed=True)\n", + "\n", + "dtyex.plot()\n", + "dtyest.plot('-.')\n", + "axis([0, 10, 0, 0.35])\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEXCAYAAABMCOQqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X98jfX/x/HH2Xb82i/DGvvBMOwHZkyiZH4lYjGU3/Kr\npRCpJJ/PF/3wCR+VQiHJr9AnhcRCmkSzmN/DkDEzM2zGhm1n1/eP1clsO862s13n7Lzut9u55VzX\n+/2+nudoL9eu631dl0ZRFAUhhBAVmo3aAYQQQpQ9KfZCCGEFpNgLIYQVkGIvhBBWQIq9EEJYASn2\nQghhBaTYC7O0Z88efH19y2Vbp0+fpkWLFjg5ObFgwYIy396JEycICgrC2dmZ/fv3l/n2jPX777/j\n7OxMUFAQx48fVzuOMDEp9sIgb29vqlWrhpOTEy4uLjz++OMsXryYsr48o3379pw6dSpfjl27dpXJ\ntubMmUPnzp1JT09n3Lhx+dYFBATg6OiIo6MjdnZ2VK1aVf/+gw8+KNH2vvzyS3x8fLh58yZt2rQx\nxUcw2s8//4yvry/29vZ06tSJixcv6te1bduWtLQ0GjduzLJly8o1lyh7UuyFQRqNhi1btpCens7F\nixd56623mD17NqNGjSr3HGX1D8yFCxfw9/cvdN2JEye4desWt27don379ixcuFD//q233irR9lJT\nU/Hz8ytN5BK5du0affv25f333yc1NZXg4GCef/75fG00Gg3+/v5cv3693POJsiXFXhjN0dGRXr16\nsX79elasWMGJEycAuHfvHq+//jr16tWjdu3ajB07lrt37wIQGRmJp6cnH374IW5ubri7u/PVV1/p\nx9y6dSsBAQE4OTnh6enJvHnz9P28vLwAGDp0KBcvXqRXr144Ojoyd+5cevbsWeCQS/Pmzdm0aVOh\n2Tdv3kxAQAAuLi507NhR/1tDp06diIyMZNy4cTg5OXH27FmD38H9/+AsXboUf39/nJycCAgI4NCh\nQ0Z9j9nZ2Wg0mnzLunfvzsKFC/MtCwwMZOPGjUaNaYzvvvuOpk2b0rdvXypVqsSMGTM4cuQIcXFx\n+dppNBpycnJMtl1hHqTYi2Jr3bo1np6e/PbbbwC89dZbnD17liNHjnD27FkSExN555139O2Tk5NJ\nT0/n8uXLLFu2jFdeeYWbN28CMGrUKJYsWUJ6ejonTpygU6dOBba3atUq6taty5YtW7h16xZvvPEG\nw4cPZ/Xq1fo2R44c4fLlyzzzzDMF+sfFxTFo0CA++eQTrl27Ro8ePejVqxc5OTns2rVLv8eenp6O\nj4+Pwc/+d5H+3//+x8yZM1m1ahXp6en88MMP1KxZ86Hf3Y0bNzh48CD16tXLt3zQoEGsXbtW/z42\nNpaLFy8W+nkAqlevjouLS6GvOXPmFNrnxIkTBAYG6t9Xq1YNHx+fAsfn69aty8GDB7lx48ZDP4+w\nHFLsRYm4u7tz48YNFEVh6dKlfPjhh1SvXh0HBwemTp3KunXr9G21Wi3/93//h62tLd27d8fBwYHT\np08DUKlSJU6cOEF6err+5KAxevXqRVxcHOfOnQPy/kEYMGAAdnZ2BdquX7+enj170rlzZ2xtbXn9\n9de5c+cO+/bt07cp7iGiL774gilTptCqVSsAGjRoQN26dQ32+fTTT6lVqxbVq1dn2LBh+db17t2b\nw4cPk5CQAMCaNWvo27cvWq220LHS0tJITU0t9PXmm28W2icjIwMnJ6d8y5ycnLh9+3a+ZUOGDKFm\nzZrUqlWLTz75xOBnEpZDir0okUuXLlGjRg2uXbtGZmYmrVq10u9Zdu/enWvXrunb1qxZExubf/5X\nq1atmr7AbNiwga1bt+Lt7U1ISAhRUVFGbb9KlSo899xzrFq1CkVRWLduHUOHDi20bVJSUr5CrNFo\n8PLyIjExMd+y4n7+hg0bFqvP+PHjSUpKIikpqcDhJkdHR5555hn93v26desYPHhwscZ/GAcHB9LT\n0/Mtu3nzJo6OjvmWbd68mUuXLpGUlMSECRNMmkGoR4q9KLY//viDy5cv88QTT1CzZk2qVq1KbGys\nfs8yLS2tQFEpSnBwMBs3biQlJYXevXvz3HPPFdqusGI8fPhw1qxZw86dO6lWrVqRM1vc3d25cOGC\n/r2iKCQkJODh4WFUxsJ4eXk99Ph+Ydzc3Gjbti2xsbEF1g0cOJC1a9fy+++/c/fuXTp27FjkOA4O\nDvpZQQ++ipolFBAQwJEjR/TvMzIyOHfuHAEBAfnanTx5krZt2+Lm5lbszyfMlxR78VB/H+JIT09n\ny5YtDBw4kKFDhxIQEICNjQ1jxoxh4sSJpKSkAJCYmMj27dsfOm52djZr1qzh5s2b2Nra4ujoiK2t\nbaFt3dzc9Ids/ta2bVs0Gg2vv/56gcMi93vuuef48ccf2bVrF9nZ2cybN48qVarQrl27Ap/RWKNH\nj+a///0vMTExKIrC2bNn801jNKRy5cpkZ2cXWN6jRw8uXLjA9OnTGTBggMExbt++rZ8V9OCrqFlC\nffr04fjx43z33XfcvXuXmTNn0qJFCxo3bpyvXU5ODpUqVTLqswjLIcVePFSvXr1wcnKibt26/Oc/\n/2Hy5MksX75cv3727Nn4+Pjw2GOP4ezsTNeuXfPN8DB0iGT16tXUr18fZ2dnlixZwpo1awrtN3Xq\nVN577z1cXFz48MMP9cuHDRvGsWPHGDJkSJHbaNy4MatXr2b8+PG4urry448/8sMPP+Q7vl/cwzj9\n+vVj2rRpDBo0CCcnJ8LCwkhNTTWqr42NDTqdrsDySpUqERYWxs8//8ygQYOKlccYtWrVYsOGDUyb\nNo0aNWpw4MCBfOdW/paTk5PvsJuoGDTy8BJhyVatWsXSpUv59ddf1Y5itGnTpnHo0CE2b95c6All\nNeXk5BAWFoa/v3+JLxoT5kn++RYWKzMzk4ULF/Liiy+qHaVYRo8ezZ07d3B3dyc6OlrtOHpRUVHU\nqVOH9PR0i/tOxcPJnr2wSD/99BN9+/ala9eubNiwwSwOO1y8eLHAyU7IO0QUGxuLp6enCqmEyCPF\nXgghrID6u0NCCCHKnOpnh4o7C0IIIUSe4hyYMYs9e0VR5KUoTJ8+XfUM5vKS70K+C/kuDL+KyyyK\nvRBCiLIlxV4IIayAFHszEhISonYEsyHfxT/ku/iHfBclp/rUy7J8ApEoGzVqgJF3BiiSiwvI7dKF\nKLni1k4p9qLYNBoo7V+ZKcYQwpoVt3bKYRwhhLACUuyFEMIKSLEXQggrIMVeCCGsgBR7IYSwAlLs\nhRDCCkixF0IIKyDFXgghrIAUeyGEsAJS7IUQwgpIsRdCCCsgxV4IIayAFHshhLACUuyFEMIKSLEX\nQggrIMVeCCGsgBR7IYSwAlLshRDCCkixF0IIKyDFXgghrIAUeyGEsAIPLfYRERH4+vrSqFEjZs+e\nXWD9pk2bCAwMJCgoiFatWrFr1y6j+wohhCgfGkVRlKJW6nQ6mjRpws6dO/Hw8KB169asXbsWPz8/\nfZuMjAzs7e0BOHbsGH369OHs2bNG9QXQaDQYiCDMkEYDpf0rM8UYQliz4tZOg3v20dHR+Pj44O3t\njVarZcCAAWzatClfm78LPcDt27epVauW0X2FEEKUDztDKxMTE/Hy8tK/9/T0ZP/+/QXabdy4kalT\np5KUlMT27duL1RdgxowZ+j+HhIQQEhJSnM8ghBAVXmRkJJGRkSXub7DYazQaowbp3bs3vXv3Zs+e\nPQwdOpRTp04VK8T9xV4IIURBD+4Iz5w5s1j9DR7G8fDwICEhQf8+ISEBT0/PItu3b9+enJwcbty4\ngaenZ7H6CiGEKDsGi31wcDBnzpwhPj6erKws1q9fT2hoaL42586d058kiImJAaBmzZpG9RVCCFE+\nDB7GsbOzY8GCBXTr1g2dTseoUaPw8/Nj8eLFAISHh7NhwwZWrlyJVqvFwcGBdevWGewrhBCi/Bmc\nelkuAWTqpcWRqZdCqM+kUy+FEEJUDFLshRDCCkixF0IIKyDFXgghrIAUeyGEsAJS7IUQwgpIsRdC\nCCsgxV4IIayAFHshhLACUuyFEMIKSLEXQggrIMVeCCGsgBR7IYSwAlLshRDCCkixF0IIKyDFXggh\nrIAUeyGEsAJS7IUQwgpIsRdCCCsgxV6U2smUk2w/t52UjBS1owghimCndgBhmRRF4beLvzF772wO\nXD6Aby1fDl85jGNlR4JqB9GyTkv9y9PJU+24Qlg9jVKcx5OXRYBiPiFdqEuXq8MuYDOPvT6Ha5nX\neL3t6wxvMZwqdlVQFIXzaeeJSYrh0JVDxCTFcODyAZo+0pSpT0yla4OuaDQaADQakL92IUquuLVT\nir0wii5Xx/LDy5m7by5xR535duIUevv2xtbG1mC/bF02646v44O9H1DFrgpvPf4WYX5h2NnaSrEX\nohRMXuwjIiKYOHEiOp2O0aNHM2XKlHzr16xZw5w5c1AUBUdHRz777DOaN28OgLe3N05OTtja2qLV\naomOji51YKGOqT9PZce5Hcx7ah4h9Z9EUTTF6p+r5LIlbgv/+e0/3Lhzg7gv34SjQ0FXqUR5XFzg\nxo0SdRWiQih27VQMyMnJURo2bKicP39eycrKUgIDA5XY2Nh8bfbt26ekpaUpiqIo27ZtU9q0aaNf\n5+3trVy/ft3QJpSHRBBm4OujXyveH3srV29fVRRFUUrzV5abm6v8cv4XhSFPKQ3nN1SSbiWVaBz5\n30ZYu+LWToOzcaKjo/Hx8cHb2xutVsuAAQPYtGlTvjZt27bF2dkZgDZt2nDp0qUH/zEx/l8eYXZi\nkmKYEDGBjc9vxNXetdTjaTQaQrxDYPVPDG4+mP7/60+WLqv0QYUQBhmcjZOYmIiXl5f+vaenJ/v3\n7y+y/bJly+jRo4f+vUajoUuXLtja2hIeHs6YMWMK7Tdjxgz9n0NCQggJCTEyvihLybeT6bO+D58/\n8zmBtQNNPv70DtOJSYrhtZ9eY0GPBSYfX4iKJDIyksjIyBL3N1js/545YYxffvmFL7/8kr179+qX\n7d27lzp16pCSkkLXrl3x9fWlffv2BfreX+yFecjSZdHvf/0YHjicvv59y2QbNhobVvdZzaNfPMry\nQ8sZETSiTLYjREXw4I7wzJkzi9Xf4GEcDw8PEhIS9O8TEhLw9Cw4Z/ro0aOMGTOGzZs34+Liol9e\np04dAFxdXenTp0+hJ2iF+VEUhfHbxlOzak1mhMwo0205V3Hm++e/582db/JH4h9lui0hrJnBYh8c\nHMyZM2eIj48nKyuL9evXExoamq/NxYsXCQsLY/Xq1fj4+OiXZ2ZmcuvWLQAyMjLYvn07zZo1K4OP\nIEzt8wOfs/fiXlb1WYWNpuwvsvZ39WdJzyX0/aYvybeTy3x7Qlgjg4dx7OzsWLBgAd26dUOn0zFq\n1Cj8/PxYvHgxAOHh4bzzzjukpqYyduxYAP0UyytXrhAWFgZATk4OgwcP5qmnnirjjyNKa3f8bmbs\nnsG+kftwrOxYbtvt49eHmCsxPPftc+wcuhOtrbbcti2ENZCLqoTetcxrNP+sOSv7rKRLgy5FtjPF\n1a+FjaHL1RG6LpSGLg35pPsnxe4vhDUpbu2UG6EJvfHbxjOw2UCDhb5QubmQVfrpk7Y2tqwJW8O2\ns9tYfXR1qccTQvxDir0AYOOpjRy8fJB3O75b/M7PPgsXLpgkR/Uq1fmm3zdM3j6ZtLtpJhlTCCHF\nXgA37tzgla2vsCx0GdW01Yo/wPz50LBh/mV37sC0abB3b96fiyGoThA9G/dk1p5Zxc8ihCiUFHvB\nxIiJ9PXrS/t6Ba+BMEqDBmDzwP9Kd+/m/XfcOHjyyQJdqpEBiYlFDvlux3dZdmgZ51PPlyyTECIf\nOUFr5X6M+5Hx28ZzbOwx7CvZG9Wn2CdHFSWv031aaQ5y8Lk5sH59kd3e3f0ux1OOs75fwTZyglZY\nOzlBK4yWdjeN8C3hLAtdZnSh5/x5VjIUcnKM31AhV2LH0MpgoQeY3G4y+xL2sS9hn/HbEkIUSoq9\nFZu8fTK9mvSiY/2OxnU4fRo6dCCKx8Cu7B9yVk1bjfc7vc9rP70mv/0JUUpS7K3UT2d/4uc/f2ZO\nlznGd9q1C2bMYBGvlE2onTth27Z8i4Y0H0J2bjbrTxj+LUAIYZgcs7dC6ffSafZZM5b2WspTDYu4\nqjktDapXL3RVWV1Uxd698NxzMHYsvP22/qTv7vjdDN84nFPjTlHFrorJMghhyeSYvXioabum0aVB\nl6ILfUYGtGwJ2dnlG+zxx+GPP+DwYUhN1S/u4N2BoDpBzI+aX755hKhAZM/eysSmxNLhqw6cfOUk\ntarVKrqhTge2hT9ftsz27A2Iux5Hu2XtiH0llkfsH5E9e2H1ZM9eGDR5+2TefuJtw4Ueiiz0amlc\nszFDmg9heuR0taMIYZGk2FuRiLMRnLtxjlcefeAE686deTNtzNW1a5CTw/91+D++jf2Wkykn1U4k\nhMWRYm8lcnJzeO2n1/jvU/+lkm2lf1ZERcHAgXDjhnrhHubf/4YtW6hRtQavtnmVeb/PUzuREBZH\njtlbiYXRC/nu1HfsHLrzn8dNZmWBnx98+inc9+zghyn3Y/Y5Ofp5/SkZKTRe0Ji0d+JQMkr/AHQh\nLJUcsxcFpN5J5Z1f3+HDpz7M/1zhSpXg4MFiFXpV3HcBl6u9K2F+YdBqiYqBhLA8UuytwHt73uPZ\nJs8SWDuw4Moi5tKbs1fbvAqtF5GlK/099IWwFlLsK7gz18+w4vCKkt2n3hzl5tJ8+VYqX/Xh29hv\n1U4jhMWQYl/BvbHjDV5v9zpuDm55C1avhtu31Q1VGjY2sGcPI3b483HUx3K+RwgjSbGvwH45/wtH\nko8w8bGJeQtyc+HECZM8QlBV//43byVvJf3WNaIuRamdRgiLILNxKihdro5WS1oxrf00+gf0N+nY\nalxB+6Cumh30+u04+5L2s67futKFEcICyWwcAcDKIytxqORAP/9+akcpEzvpygvBo9h+bjsJNxPU\njiOE2ZNiXwHdzbnL9MjpzOk6J/9UywrGqbITwwKHsejAIrWjCGH2HlrsIyIi8PX1pVGjRsyePbvA\n+jVr1hAYGEjz5s15/PHHOXr0qNF9RdlYGL2QoDpBtPNqB3PmwObNakcqM+MfHc8XMV+QmZ2pdhQh\nzJtiQE5OjtKwYUPl/PnzSlZWlhIYGKjExsbma7Nv3z4lLS1NURRF2bZtm9KmTRuj+/51vsBQBFFM\naXfSFNc5rsrx5OOKsm2bori7K0piokm3YYq/stKOoe9/+bIy6f0nlcUHFpc6kxCWpLi10+CefXR0\nND4+Pnh7e6PVahkwYACbNm3K16Zt27Y4OzsD0KZNGy5dumR0X2F6c/bN4ZnGzxDg6g8ffgjr1oG7\nu9qxys6JE4zNDJBpmEI8hMEHiSYmJuLl5aV/7+npyf79+4tsv2zZMnr8del9cfrOmDFD/+eQkBBC\nQkKMyS4ekHQric8PfM6h8EN5010iIvRPe6qwunTBp3NntItbsOPPHUU/kEUICxcZGUlkZGSJ+xss\n9sU5uffLL7/w5Zdfsnfv3mL3vb/Yi5J759d3eKHFC9R1rpu3oKIX+r9oNBpebfMq8/fPl2IvKqwH\nd4RnzpxZrP4Gq4GHhwcJCf9Ma0tISMDT07NAu6NHjzJmzBg2b96Mi4tLsfoK0zhz/Qwbjn3D20+8\nrXYUVQxqNogDlw9w+poZ35dfCBUZLPbBwcGcOXOG+Ph4srKyWL9+PaGhofnaXLx4kbCwMFavXo2P\nj0+x+grT+c/mNziyvAo1bR3UjqKKKnZVGNtiDJ/sl+fUClEYg4dx7OzsWLBgAd26dUOn0zFq1Cj8\n/PxYvHgxAOHh4bzzzjukpqYyduxYALRaLdHR0UX2FaZ38PJBfkr9gwU/7YbKldWOo5opi44yxmEX\nqZ3ex6Wqi9pxhDArcrsEC1OjBqSmPrBwaFc42RcOvPTQ/i4upX8olTncLqHQ/lu3khg+iK9XT+GN\nDlNLlU8Icye3S6jgUlPzitzfrx3ndtKo9QWyokblW17Uq8A/FBVJ9+7Y+wey84f5ZOuy1U4jhFmR\nYm/Bcr/+mulb3+S9Tu+htdWqHUd9Gg3VIyK527QJ35/6Xu00QpgVKfaWascOMqZMwsbWtsLe7KxE\nNBomtpnIR1EfqZ1ECLMixd4SZWWRO34c457KYW6vT7HRyF/j/UKbhJJ8O1nudS/EfaRKWCI7O1YN\nb0HuM915zPMxtdOYHVsbWya0mcD8qI/VjiKE2ZDZOBZGo4E/b5wneGkwR186ioeTR7H7qz2TxhRj\nPKx/+q1rxPvWpsbvh/Gs27TkGxLCTMlsHCvwxo43mNhmYrELvTVxcqzFdx8MZ0HcarWjCGEWZM/e\nwmi8d1Nv4nBOvnKSqtqqxe9vBnvlphjDmP5/pv5Jmy/aEP9qPPaV7Eu+MSHMkOzZV1Q5OeS+9y6V\nnhrPnK5zSlTorU0DlwY8UfcJVh1dpXYUIVQnxd5S3LvH/hvHycp2pr+/aR8gXpFNbDORj6M+JlfJ\nVTuKEKqSYm8hbtrm0Md9N/w0v0I/V9bUnqz3JJ6Zdpx7dZjaUYRQlRR7C/Hur+/Ss3FPSGqpdhSL\notFoeKHjJBzXboC/nrUghDWSE7QWIO56HO2WtePEyyeo7ehW5ic2LWGM4vTP1mUzbUgd3k6oT/Xf\n/ij5RoUwI8WtnQZvcSxUFhVFblwcr2hWMeXxKbg5uKmdyCJpbbU0mfQ+k39ZwTK1wwihEjmMY66S\nk6F/fzZd/ZWMrAwmtZ2kdiKLNrTVCH6ufJl9CfvUjiKEKuQwjrl66SWSquXSvM73RI+Opr5LfaB8\nD3+Y8xgl6b/k4BI2nNzAT0N+KvmGhTATMs++gsj44F261P+Vj7t9rC/0onReaPECp66dkhukCask\nxd5Mvfbbv2jp2ZrBzQerHaXCqGRbibefeJt1yybBrl1qxxGiXEmxN0Pfn/yeHed2sLDHQrWjVDgj\ngkaQmHKO0wmH1Y4iRLmSYm8uUlPh2DES0xN56ceXWBO2BqfKTmqnqnAq2Vai0/CZTLLbqXYUIcqV\nFHtzcfgwuevXM/T7oYxrPY62Xm3VTlRhjQwaybGrx4hOjFY7ihDlRoq9kWrUyJsBUppXjRoGNtCx\nI3OfdiQnN4e3279dbp/LGlW2q8zUJ6byzu531I4iRLmRqZdGMvl0Q0XJW/CXPRf20Pebvhx48QB1\nneuWWQ5zmDZpijFK2/9ezj18PvXhh45LaeEbAlWqlHwwIVRg8qmXERER+Pr60qhRI2bPnl1g/alT\np2jbti1VqlRh3rx5+dZ5e3vTvHlzgoKCePTRR40OVaEpCixYAIMG6RftOLeDsG/CWB222mChF6ZT\n2a4yUx6fQkb4SFi0SO04QpQ5g3v2Op2OJk2asHPnTjw8PGjdujVr167Fz89P3yYlJYULFy6wceNG\nXFxcmDx5sn5d/fr1OXjwIDUMHL+wuj370GfhyhVYtQoaN+b7k98TviWcDc9toH299mWew1Q3zLT0\nPXuAuzl36TatHju/yEIbewrc5HYUwnKYdM8+OjoaHx8fvL290Wq1DBgwgE2bNuVr4+rqSnBwMFqt\nttAxLKGQl5ncQu6hHh4Ov/0GjRuz8shKXt76MhFDIowq9KaiKKV7VRRV7KrQM/R1vunTCK5eVTuO\nEGXK4I3QEhMT8fLy0r/39PRk//79Rg+u0Wjo0qULtra2hIeHM2bMmELbzZgxQ//nkJAQQkJCjN6G\n2Xr1VQgOhqFD8y/v0QOABdELmL13NruG7cLP1a+QAUR5eKHFCzTyeZ8ePp64qB1GCAMiIyOJjIws\ncX+Dxb60D8nYu3cvderUISUlha5du+Lr60v79gX3YO8v9mYnLQ3GjgXWFr4+JweuXYPatfMvnzED\nnJ0LNFcUhVl7ZrH88HL2jNiDd3VvUycWxeBq70r3Rt1ZfXQ149uMVzuOEEV6cEd45syZxepv8DCO\nh4cHCQkJ+vcJCQl4enoaPXidOnWAvEM9ffr0ITrazOc1KwrodPmXVaoEL75YsO2VKzB8eF6RnzWr\n4HoXF7B54Ou1u8sbO95g3Yl1UujNyIstX2RJzBLrPuQoKjyDxT44OJgzZ84QHx9PVlYW69evJzQ0\ntNC2D/6gZGZmcuvWLQAyMjLYvn07zZo1M1FsE7tzB774Apo1g82b86+rVg06dizYJz097zBNTAx8\n8onB4a9mXGVm5EyY6M3p66fZ/cJu6jjWMeEHEKUR4h3CvZx7/H7pd4iLg5s31Y4khMk9dJ79tm3b\nmDhxIjqdjlGjRjF16lQWL14MQHh4OFeuXKF169akp6djY2ODo6MjsbGxXL16lbCwMABycnIYPHgw\nU6dOLRjAHGbjzJ0Lu3fDpEnQqVOhU1ZKMvvjxNUTfBT1ERtObqC/f3+WjpqIctW/VFHNYRaLOYxh\nigz3++++/3L86nG+2lMTevWCinDeSFRoxa2dclGVkYwpLoqicCn9EtGJ0SyNWcqR5CO8HPwyLwW/\nhKu9q1lMezSHQm2KMUxd7FMyUmj0aSPOv3oel6pyqlaYPyn2ZeTB4pKr5HL62mkOXTmU90o6xOEr\nh7G1sSWodhDPBzzPwGYDqWJXpcgxTJGjvPubyximLvYAAzcMpJ1nOzlRKyyCFPsyotFA+t1b7Phz\nB1vitvDjmR+x19rTsk5LgmoHEVQniKDaQQaPxVeUImkOY5RFsf/l/C9MiJjA0ZeOlnommhBlTR44\nboxvv807CTdq1EObXki7wA9xP8CQH3D/cB9tPdvSq3Ev/vXkv2jg0qAcwory8veJ2qhLUXl3Hc3M\nBFtbqFxZ7WhClJp1FvvWreGvmUJFiUmK4Z3d77A3YS/PNHoGDr7I5S++xbGyYzmFFA9T2p1vFxe4\nceP+8TS82OpFFh9cnFfsX34ZWrSAiRNLtyEhzIAcxnnAwcsHmbl7JgeTDjLl8SmMaTmGqtqqZnHo\nwhRjmEMGU4xRVhnynag9ewm6doUzZ8BR/pEX5kUeOF5CBy4foNfaXjy77lm6NujK2fFnmdBmAlW1\nVdWOJspNrqjbAAAd70lEQVSRq70rT/s8zeqjq/Ouuxg8GE6fVjuWEKVmPXv2ubkFr2gFsnRZDP1+\nKHsv7uWtJ95idMvR+WbQ/JNT/b1ZU4xhDhlMMUZZZpATtcISyJ59Ya5cgaZNITs732JFURi1eRR3\nc+5ydsJZxj06rtBCL6zL/SdqhagorKPYz58PnTvDA7dhfnvX25y9cZa1fddKkRd695+oFaKiqPiz\ncXJzISICvv8+3+JFfyziu5PfsXfkXqppq6kUTpir4YHDafRpIxLTE/Fw8shbeO+eTMMUFqvi79nb\n2MDBg+DtrV+08dRG3vv1PbYN3katarXUyybMlqu9K28+/ib9/tePezn38u6G2rKlPOREWCzrOUH7\nl30J+3h23bNEDI6glXsro/uZw0lJU4xhDhlMMYapMhhukAvP9YXbdeDHRThwi9vkn4L54Fx9IcqL\nnKA14PS104StD2Nl75XFKvSi4jL4CMZcG26uWEHjp3/my5jl3FIcC7RJTVX7EwhhHKvYs69RA1Kz\nr8CodrD733B4RInGUXtv1hRjmEMGU4xRnhliU2Lp8FWHQn8bLIt79AhhDNmz/9umTbB8OZC39/Xs\n0pd4O3QgyqERVv2QbVF8/q7+fP7M5/T9pi/XMq+pHUeIEqm4xb5ZMwgKyvuz114OXTnEv5/8t7qZ\nhMXq69+XAU0HMODbAeRcvgQjRkBWltqxhDBaxS32DRpAixZ5v+Y89QbvdnxX5tKLUnmv03toNBr+\ndeJTuH4d3npL7UhCGK3iFvu/bDy1EbQZDG42WO0owsLZ2dixtu9a1p1Yz+apYfDTT7iTqHYsIYxS\noU/Q5uTm0HRRU07P/xjlzNOlGsscTkqaYgxzyGCKMdTMcPDyQbqv6c6BkVHUq9VAzukIVcgJ2gMH\n9D/By2KW5V39eLabyqFERdLKvRWTHpvEqK3heXPxhbAAFavYnz4NzzwDd+6QkZXBzN0zmdNlDiB3\nLhSm9cbjb3A76zYEf6Z2FCGMYhHFvkaNvF+5H/Z633clc68OQ2NfDYeuH5L0eweCPeTiKWF6djZ2\nrOi9AkJmcOb6GcjIgP371Y4lRJEsotinpho3F37aLAfeODqM5NtXqfnMfM4tfV+Op4oy07hmY9j9\nfwzfOBzdqZOwfr3akYQo0kOLfUREBL6+vjRq1IjZs2cXWH/q1Cnatm1LlSpVmDdvXrH6mtzUqdCs\nGe/++i6Dmw+WB4KLsvfHK1Sxq8LcOzvhww/VTiNEkQzOxtHpdDRp0oSdO3fi4eFB69atWbt2LX5+\nfvo2KSkpXLhwgY0bN+Li4sLkyZON7gvGnVEuzqyJczfO0eaLNpx85SSu9q7F7m+KDOY8hjlkMMUY\n5pDh7zHiUy8QvDSYXcN20cytWekGFMJIJp2NEx0djY+PD97e3mi1WgYMGMCmTZvytXF1dSU4OBjt\nAw8GMaZvWZi2axqTHpukL/RClDVvl3pc+3oOzWcMRWOXZdT5pftfNWqo/QmENTD48JLExES8vLz0\n7z09Pdlv5Emo4vSdMWOG/s8hISGEhIQYtY0HHU0+yp6Le1gWuqxE/YUoibxzRi/w7Lrvad7/Hd7r\n9B78+CPs2QP/+c9D76Usj7kVxoiMjCQyMrLE/Q0W+9I8bLk4fe8v9iXy6qswciRfJi1ndMvR2Fey\nL914QhSTRqNhSa8ltPi8Bb0a96JN27Z555CqVYP/+z+144kK4MEd4ZkzZxarv8HDOB4eHiQkJOjf\nJyQk4OnpadTApelbbIMHk1XPk6+Pfc2w5sPKZhtCPERth9p89sxnDNgwgNSqGtixA44cgcxMtaMJ\nYbjYBwcHc+bMGeLj48nKymL9+vWEhoYW2vbBEwXF6Vtqjz7K1it78HP1o2GNhmWzDSGM0MevD719\nezN843ByH3GFDRvy9u6FUJnBYm9nZ8eCBQvo1q0b/v7+PP/88/j5+bF48WIWL14MwJUrV/Dy8uKj\njz7ivffeo27duty+fbvIvmXlq8Nf8ULgC2U2vhDGmt1lNimZKfx333/VjiKEnkXcCO1hU+SuZlyl\n8aeNSZiUgGNlxwLrzWmantpjmEMGU4xhDhkMjZFwM4HWS1vzTf9veLLek/+s0OnA1tbkOYT1sa4b\noaWkgKLw9bGvedb32UILvRBq8HL24qveXzFowyCSbyfnLczKgjZt8u6FL0Q5s9xiryjQrh0cOSKH\ncIRZetrnaUYGjWTQd4PQ5eqgUqW8x2XWrKl2NGGFLLfYR0eDjQ2H3RTS7qbRwbuD2omEKGB6h+lo\n0DBj94y8BR4equYR1styi/3p0xAezldHVjAscBg2Gsv9KKLisrWxZU3YGpYfWs62M9vUjiOsmEWf\noM3SZeH5oSe/j/rd4JRLcz+ZV55jmEMGU4xhDhmKM8aeC3vo979+HBhzAC/nv64sz82FHTvQPN1N\nTtCKYrOqE7Rbz2zFt5avzK0XZq99vfZMemwSg78bTE5uTt7CW7dg3DhGIrf3EGXPoov9V4e/4oUW\nL6gdQwijvPn4m1SyrcR7v76Xt8DZGbZsYRZvw8GD6oYTFZ7FHsZ52Nz6h/Uvfs6KMYY5ZDDFGOaQ\noSRjJN1KouWSlqzvt14//95Xc4pT2T5gZ/BWVULkU/EP48TEwLff8vWxrwltEipz64VFqeNYh2Wh\nyxjy3RCuZ+bNtz+NrxR6UeYsr9jb2kLlyqw4skIO4QiL1KNRD/r592PU5lHF2jMTojQsr9gHBnK4\ntRc37twgxDtE7TRClMh/Ov+HhPQEPjvwWcGVx47J/ROEyVlesQdWyNx6YeEq21Vmbd+1TI+cDm5H\n/1mRmwtTpkBionrhRIVkcdVSl6uT+9aLCqFxzcbMe2oe9BtAZvZf97y3sYGtW6Gsnv0grJbFFft9\nCfuo41CHRjUbqR1FiFIb2nwoJLVk/LbxcvxelCnLKfa5udCrF1uPfMuzvs+qnUYIk9BoNPDjIo5c\nOcLLW18mV8lVO5KooCyn2B86hHL2LP+L/5HeTXqrnUYI07nnxK7huziZcpKh3w8lW5f9z7rMTBgz\nBtLS1MsnKgTLKfbbt3OjfTDZudm0qN1C7TRCmJRTZSe2Dd5G+r10wr4J4072nbwVVauCvT107w63\nb6sbUlg0yyn2o0ez+ml3nm3ybN6vvkJUMFW1Vfnuue9wquxE9zXdSb+XnneJ7kcfQbNmeQ8wF6KE\nLKfYu7qy5vovPNtEjteLiktrq2VVn1X4u/rTeWVnrmVeyyv4ixdDnz5qxxMWzGKu0U5MT+TsjbP5\nn+cpRAWR/5dVG2AhdJ6G65EnYeUOuFX0Q09cXODGjbJOKCydxRT7zac306NRD7S2WrWjCGFyBWdd\naoBZzN3rwgKfdmwZuIVmbs0KdtBokKOawhgWcRinKplsPL2R3r4yC0dYlzcef4MPOn9A55Wd2fnn\nzn9WLFkCs2erF0xYHPO/xXFSEmc8nqDVe1dJnHy5RHe5tNTb4ZbFGOaQwRRjmEOG8hxjz4U99P9f\nf2Z1nsXIoJFw8ybk5EDNmibJICyPyW9xHBERga+vL40aNWJ2EXsSEyZMoFGjRgQGBnLo0CH9cm9v\nb5o3b05QUBCPPvqo0aHyqVMHf/+ZtPd+Um5nLKxW+3rt2f3Cbt7f8z7/2vUvFCcnqFlT7VjCghgs\n9jqdjnHjxhEREUFsbCxr167l5MmT+dps3bqVs2fPcubMGZYsWcLYsWP16zQaDZGRkRw6dIjo6OgS\nh8zx/VFm4Qir16RWE6JGRfHz+Z8Z8v0Q7uXcy98gJ0edYMIiGCz20dHR+Pj44O3tjVarZcCAAWza\ntClfm82bNzN8+HAA2rRpQ1paGsnJyfr1pT1KlKXLAp8IQpuElmocISoCV3tXdg3bxb2cezy1+imS\nb//1s3bvHgQFwbZt6gYUZsvgbJzExES8vLz07z09Pdm/f/9D2yQmJuLm5oZGo6FLly7Y2toSHh7O\nmDFjCt3OjBkz9H8OCQkhJCRE/z4yPhKu+VLboXYxPpYQFVdVbVW+6f8N0yOn0+yzZtByFrmVRmLz\n+efQrx/MnAkvvqh2TGFikZGRREZGlri/wWJv7JWqRe29//bbb7i7u5OSkkLXrl3x9fWlffv2Bdrd\nX+zzOX6c7bHfwCmZhSPE/Ww0Nrzb8V36+fWjRdyLdPhqBYt7Lsb/99/hvt+sRcXx4I7wzJkzi9Xf\n4GEcDw8PEhIS9O8TEhLwfOA+2w+2uXTpEh4eeReAuLu7A+Dq6kqfPn2KfdxeGTmSC5GbpNgLUYTA\n2oGwbB8Dmw6kw1cd+NefX3CnZXO1YwkzZLDYBwcHc+bMGeLj48nKymL9+vWEhuY/dh4aGsrKlSsB\niIqKonr16ri5uZGZmcmtW7cAyMjIYPv27TRr1qzANop0/Tq6U7GcalwDrjcp5scSwoootrzc+mWO\nvHSEuOtxNPusWf45+cnJcOeOevmEWTB4GMfOzo4FCxbQrVs3dDodo0aNws/Pj8WLFwMQHh5Ojx49\n2Lp1Kz4+Ptjb27N8+XIArly5QlhYGAA5OTkMHjyYp556yvhkycns69GcZ5o+yfESfjghrIm7ozvf\n9P+GH+N+ZPTm0TxZ70nmPTUP1+XLwckJXn5Z7YhCRWZ9UVWzz5qxpOcS2tVtKxfgmGgMc8hgijHM\nIYO5jFFY/9tZt5keOZ3VR1czp8schjUfisbGIi6YF0Yq7kVVZlvsz904xxPLnyDxtURsbWykMJho\nDHPIYIoxzCGDuYxhqP/Bywd5ccuLVK9Snc+f+fyfx3nm5uY971ZYLJNfQauWTac30atxL2w0ZhtR\nCLPXyr0V+0fvp2ejnrRd1pb3f30/79qVuXPzpmneN7lCVGxmW0m3xG2hV+NeascQwuLZ2dgxqe0k\nDr54kN8v/U7TRU1ZE1KT3AD/vAuxjstZMWtglodx7nyxmDanXmPfrGQcKjnIr/wmHMMcMphiDHPI\nYC5jFKe/oihExkcyc/dMLqVfYpZPOH26TkCrrVzyAEIVxT2MY5b3sz919QRN3VvgUMlB7ShCWATj\n72mvATrmvert5vkO78D2z6h28G1SI4dRybZSiTPUqAGpqSXuDsiDWMqSWR7GWRKYTavHwtSOIYTF\nUJQSvOI7oKz4mT2vrSSz/jc0/rQx86Pmc2/SBHjgHljGSE0tYY77XqX9x0IUzeyKvaIoRJyN4Gmf\np9WOIoRVeKLuE7BqO+v6rSMqMYpm9it47e4mjl+VY/kVidkV+7jrceTk5uDv6q92FCGsymOej7G2\n71p2TzlF9dredFvdjZCvQvg29luy793Jm64pLJbZnaD9OOpjYlNiWdJryX1t5GSeqcYwhwymGMMc\nMpjLGGWVIVuXzfenvmdB9AKa7D7B7J1Q6ZVXcQgfl3eAvpxyiMJZ9kVVp0+zYVI3NPM+JMwv7L42\n5vnDYIljmEMGU4xhDhnMZYzyyHAk6TBbVv0bn3U/obRsif/7S2julv+Ga+bwXVgTi76oKuunbWRc\nTaRz/c5qRxFC3CewTgumvfkDnfYkcm5YL7qv6U7HFR3ZeGojulwdZGerHVE8hFnt2V95+gm+8Erh\nX0tPP9DG/Pd8LGUMc8hgijHMIYO5jKFGhixdFhtiNzB//3wS0xKImXebJlWWceVsaKmmb8qevfEs\nep79V8/Ww75eJ7VjCGGVjJ+rD1AJGJj3co2lQcP/cTtgHm7/HUO3ht0IbRJKjwbdqF7JCbTasgks\nisWs9uybLGjCur7rCKoT9EAby9vzMdcxzCGDKcYwhwzmMoY5ZPh7jKRbV/jh9A9sjttMVuTPfPN1\nDpdDWlErfBKuPZ8rlxzWwmJP0P6Z+iftlrXj8uTLBW5+VpF+GNQewxwymGIMc8hgLmOYQ4bCxsjI\nyuDX39Zw7esviEk9wd6nA+jt25vevr3xq+VHYY89lWJvPIst9ov+WMT+xP2s6L2ikDYV84dBjTHM\nIYMpxjCHDOYyhjlkeNgY2bpsfr3wKxtPb2TjqY1UtavK9Dh36rQKwb/fS9R2qG2yHNbCMot9bi6h\na0MZ1HwwA5oOKKRNxf9hKK8xzCGDKcYwhwzmMoY5ZCjOGIqicOjKIU5v+pJf7p7k23uHcLV3pUO9\nDiz915MkfeFB7Sat8p6uJYpkkcX+XnQUUQMeJ+BYMjWr1SykjXX9MJTlGOaQwRRjmEMGcxnDHDKU\nZoxcJZdjycfYfWE3r364m2/jfqR7bBZptatzaMm7PPrEc7jau5YuXAVkkcUe7x04t3+Lm6sOFNnO\nmn8YTDmGOWQwxRjmkMFcxjCHDKYcQ5eby7FLMRz/eS3/08TyS9I+6levT6f6nWhVpxUd5m8i+53p\n1HFrSBW7KqXboAWzyGL/+vbXcdA6MD1kehFt5IfBVGOYQwZTjGEOGcxlDHPIUJZjZOuyOXD5AD+f\n/5kTV44RtOUgi4KyScq4glNlJzydPKlr785bq+KhoQ9VAwKpPmgEXs51sbWxLV0gM2aRxb7poqZ8\n0esL2ni2KaKN/DCYagxzyGCKMcwhg7mMYQ4Z1BgjV8klJSOFS+mXSLz2J1W+/gblzBm4mszoMDuu\nZV6jfvX6+NTwwdumBr23/snxl/vxiP0j+ldtezdqVqtV6Mwgc2eRxb7m7Jokv55c5L/C8sNgujHM\nIYMpxjCHDOYyhjlkMKcx/paZncm5G+c4l3qO1OQLuP74C9s71uVqxlX9q/L5BH75NJ2U6pU436AG\nX0/pTl3nung5eeHu6E5trQu172mp5dMcra15XRxm8mIfERHBxIkT0el0jB49milTphRoM2HCBLZt\n20a1atX46quvCAoKMrqvRqNh8LrnWP38egMfyjp+GCIjIwkJCSnTHBXlu7CUz2GKMaztuzAsEggp\ncm2xn3SlKGSkXCY5LoaU5PMcq1+NhPQELt68SNKtJKqdvcD4ded5arAOp8pOuNm74ebghl9GNZ6L\nSEBTvTpZ9etxvf8z1KpWi1rVavGI/SPU0jpTSQfY2xcjTPGY9HYJOp2OcePGsXPnTjw8PGjdujWh\noaH4+fnp22zdupWzZ89y5swZ9u/fz9ixY4mKijKq799GJrsX4yNWXMYUe2sh38U/rO27MFS/ZsyI\nZMaMkCLXF/tojEaD/SMeNHjEgwZAoQeSZ8A9JZfrmddJzkgm+XYyty+exebcDnQ3rpOWfIHvT33P\ntcxrpGSkkJKZgndcCrN2aQifUB9Xe1cesX+EGlVr0ORqLj3WxYCzE5m+Plx7oT/OlZ3RaDTkKrlw\n+za2N9LIdHclV8nFRmODQyUHnCo74VjZEafKTjhUcihw4akxDBb76OhofHx88Pb2BmDAgAFs2rQp\nX8HevHkzw4cPB6BNmzakpaVx5coVzp8//9C+fwvoO7bYwYUQorzYaGxwtXfF1d6Vpo80hQadISRc\nv77/A+1zlVzS7qbxQ0YKVzOukpKZwo07N7hnk0DsozfITUslJTOOrdGfcvPuTRQUbDW2BJy/TZ9f\nrjBnjD+2NrbocnXczrpN49hk3luVSKKtwq91c3k9rPjP5zZY7BMTE/Hy8tK/9/T0ZP/+/Q9tk5iY\nyOXLlx/a929uHo2LHVwIIcyVjcaGGlVr5O3N12ryz4qWQM9/3o4von+Bh7LeuQPjLsPduzTR2jGo\nnjtObxfvojODxd7YM9SlPcdrzHZKe7LcFCfby2OMmTNnlnmOivJdWMrnMMUY8l38ozy+i4rIYLH3\n8PAgISFB/z4hIQFPT0+DbS5duoSnpyfZ2dkP7Qul/4dCCCHEwxk8yh8cHMyZM2eIj48nKyuL9evX\nExoamq9NaGgoK1euBCAqKorq1avj5uZmVF8hhBDlw+CevZ2dHQsWLKBbt27odDpGjRqFn58fixcv\nBiA8PJwePXqwdetWfHx8sLe3Z/ny5Qb7CiGEUIGiom3btilNmjRRfHx8lA8++EDNKKq6ePGiEhIS\novj7+ysBAQHK/Pnz1Y6kqpycHKVFixZKz5491Y6iutTUVKVv376Kr6+v4ufnp/z+++9qR1LNrFmz\nFH9/f6Vp06bKwIEDlbt376odqdyMGDFCeeSRR5SmTZvql12/fl3p0qWL0qhRI6Vr165KamqqwTFU\ne+D43/PwIyIiiI2NZe3atZw8eVKtOKrSarV89NFHnDhxgqioKBYuXGi13wXA/Pnz8ff3t8hL2E3t\n1VdfpUePHpw8eZKjR49a7W/H8fHxLF26lJiYGI4dO4ZOp2PdunVqxyo3I0aMICIiIt+yDz74gK5d\nuxIXF0fnzp354IMPDI6hWrG/fw6/VqvVz8O3RrVr16ZFixYAODg44Ofnx+XLl1VOpY5Lly6xdetW\nRo8ebfUn72/evMmePXsYOXIkkHdo1NnZWeVU6nByckKr1ZKZmUlOTg6ZmZl4eHioHavctG/fHhcX\nl3zL7r/Gafjw4WzcuNHgGKoV+6Lm51u7+Ph4Dh06RJs2hd8UrqKbNGkSc+fOxcZGtf81zcb58+dx\ndXVlxIgRtGzZkjFjxpCZmal2LFXUqFGDyZMnU7duXdzd3alevTpdunRRO5aqkpOTcXNzA8DNzY3k\n5GSD7VX7iZJf0Qu6ffs2/fr1Y/78+Tg4FP8KOUu3ZcsWHnnkEYKCgqx+rx4gJyeHmJgYXn75ZWJi\nYrC3t3/or+oV1blz5/j444+Jj4/n8uXL3L59mzVr1qgdy2xoNJqH1lTVir0xc/itSXZ2Nn379mXI\nkCH07t1b7Tiq2LdvH5s3b6Z+/foMHDiQXbt2MWzYMLVjqcbT0xNPT09at24NQL9+/YiJiVE5lToO\nHDhAu3btqFmzJnZ2doSFhbFv3z61Y6nKzc2NK1euAJCUlMQjjzxisL1qxV7m4f9DURRGjRqFv78/\nEydOVDuOambNmkVCQgLnz59n3bp1dOrUSX8NhzWqXbs2Xl5exMXFAbBz504CAgJUTqUOX19foqKi\nuHPnDoqisHPnTvz9/dWOparQ0FBWrFgBwIoVKx6+k1iW04UeZuvWrUrjxo2Vhg0bKrNmzVIziqr2\n7NmjaDQaJTAwUGnRooXSokULZdu2bWrHUlVkZKTSq1cvtWOo7vDhw0pwcLDSvHlzpU+fPkpaWpra\nkVQze/Zs/dTLYcOGKVlZWWpHKjcDBgxQ6tSpo2i1WsXT01P58ssvlevXryudO3c2euql6g8vEUII\nUfZkyoMQQlgBKfZCCGEFpNgLIYQVkGIvhBBWQIq9sHqLFy9m1apVRrePj4+nWbNmBZZHRkbi7OxM\nz549C+n1j44dO+Lo6MjBgweLnVWIkjJ4i2MhKjqdTkd4ePjDGxrpySef5IcffjDY5pdffqFjx45y\nFbkoV7JnLyxafHw8vr6+DBkyBH9/f/r378+dO3cAOHjwICEhIQQHB/P000/rrzYMCQlh0qRJtG7d\nmvnz5zNz5kzmzZsHwOHDh3nssccIDAwkLCyMtLQ0/ViBgYG0aNGCRYsWGZUtKSmJJ598kqCgIJo1\na8Zvv/1WBt+AEMaRYi8sXlxcHK+88gqxsbE4OTmxaNEicnJyGD9+PBs2bODAgQOMGDGCadOmAXn3\nEcnOzuaPP/7gtdde0y8DGDZsGHPnzuXIkSM0a9ZM/7zTESNGsHDhQg4fPmx0rrVr1/L0009z6NAh\njh49qr+zqRBqkMM4wuJ5eXnRtm1bAIYMGcInn3zC008/zYkTJ/R3RtTpdLi7u+v7PP/88wXGSU9P\n5+bNm7Rv3x7Iu21s//79uXnzJjdv3uSJJ54AYOjQoWzbtu2huVq3bs3IkSPJzs6md+/eBAYGlvqz\nClFSsmcvLN79x74VRUGj0aAoCgEBARw6dEi/Z33/wx/s7e0fOm5RF5cbe9F5+/bt2bNnDx4eHrzw\nwgvFOgkshKlJsRcW7+LFi0RFRQHw9ddf0759e5o0aUJKSop+eXZ2NrGxsUWOoSgKTk5OuLi46I+t\nr1q1ipCQEJydnalevTp79+4FMPrWuhcvXsTV1ZXRo0czevRoq71jpTAPchhHWLwmTZqwcOFCRo4c\nSUBAAGPHjkWr1fLtt98yYcIEbt68SU5ODpMmTSryTol//3awYsUKXnrpJTIzM2nYsCHLly8HYPny\n5YwcORKNRsNTTz1l1EyayMhI5s6di1arxdHR0arv4CnUJzdCExYtPj6eXr16cezYMbWjEBkZybx5\n8x469RLy5trPmzePli1blkMyIeQwjqgAzGW+euXKlTl+/LhRF1WdP38erVZbTsmEkD17IYSwCrJn\nL4QQVkCKvRBCWAEp9kIIYQWk2AshhBWQYi+EEFZAir0QQliB/weWrgqv8QBDmwAAAABJRU5ErkJg\ngg==\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Section 1.4.3 Directional spectra" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Here are a few lines of code, which produce directional spectra with frequency independent and frequency dependent spreading." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "plotflag = 1\n", + "Nt = 101; # number of angles\n", + "th0 = pi / 2; # primary direction of waves\n", + "Sp = 15; # spreading parameter\n", + "\n", + "D1 = wsm.Spreading(type='cos', theta0=th0, method=None) # frequency independent\n", + "D12 = wsm.Spreading(type='cos', theta0=0, method='mitsuyasu') # frequency dependent\n", + "\n", + "SD1 = D1.tospecdata2d(S1)\n", + "SD12 = D12.tospecdata2d(S1)\n", + "SD1.plot()\n", + "SD12.plot()#linestyle='dashdot')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEXCAYAAACu1P9TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VEX7wPHvbnbTe0IC6XQChN6lShMVVF5AkN5EBcGC\nBUUBRREpChYUX8QXFEX0JyCgIkoEFWkC0iGQ3kN62Wyb3x83LgmkLIGEkMznHI7sLTNzL8dnZ+fO\nfUYlhBBIkiRJtZ76djdAkiRJqh4y4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVETLg\nS1Xu8ccfZ/HixdVSV+vWrdm3b1+V1hEVFYVarcZsNldpPZJ0q8mAL92UkJAQHB0dcXV1xcPDg7vu\nuouPP/6Y4q93rFmzhvnz59/yuidNmsQrr7xSYtupU6fo3bv3La/rRvz+++/06NEDd3d3vLy86Nmz\nJ0eOHKnSOkNCQvj111+rtA7pzicDvnRTVCoVO3bsIDs7m5iYGF588UWWLl3K1KlTrTrfaDRWcQur\nV3Z2Nvfffz9z5swhIyOD+Ph4FixYgJ2dXZXWq1KpKO8dytp2n6VKEpJ0E0JCQsQvv/xSYtuhQ4eE\nWq0Wp0+fFkIIMXHiRDF//nwhhBB79+4V/v7+YunSpaJ+/fpiwoQJwmw2iyVLlojGjRsLLy8vMWrU\nKJGenm4pb//+/aJ79+7C3d1dBAYGis8++0ysXbtWaLVaYWtrK5ydncWwYcOEEEIEBweLPXv2CCGE\n0Ol0Ys6cOcLPz0/4+fmJp556ShQWFpZox4oVK4SPj49o0KCBWL9+vaXOHTt2iHbt2glXV1cRGBgo\nFi5caNkXGRkpVCqVMJlM192Pw4cPC3d39zLv1/r160WPHj3ErFmzhJubm2jRokWJ+5eZmSmmTJki\nGjRoIPz9/cX8+fNL1LN27VoRGhoqXFxcRMuWLcXff/8txo0bJ9RqtXBwcBDOzs5i2bJlljauW7dO\nBAUFiT59+ojw8HAREBBQoj3BwcGW+hcsWCBGjBghxo0bJ1xcXERYWJi4cOGCePPNN4WPj48ICgoS\nu3fvLvPapJpP9vClW65z584EBASwf/9+QOl9qlQqy/7k5GQyMjKIiYnh448/ZvXq1Wzfvp19+/aR\nmJiIh4cHM2fOBCA6Opp7772XOXPmkJaWxvHjx2nXrh3Tp09n7NixvPDCC+Tk5LBt27br6nrjjTc4\ndOgQJ06c4MSJExw6dKjEs4Tk5GSys7NJSEhg3bp1zJw5k6ysLACcnZ35/PPPycrKYufOnaxZs8ZS\nR3maN2+OjY0NkyZN4scffyQjI+O6Yw4dOkSTJk24cuUKixYtYvjw4WRmZgLKMJWtrS2XLl3i2LFj\n7N69m//+978AbNmyhUWLFrFx40ays7PZvn07Xl5ebNy4kaCgIHbs2EFOTg5z58611LVv3z7OnTvH\njz/+WOovgOL/LgA7duxgwoQJZGRk0L59ewYOHAhAQkICr7zyCjNmzKjwHkg12O3+xpHubKX18IUQ\nolu3buLNN98UQggxadKkEj18W1tbS09bCCFCQ0NLlJGQkCC0Wq0wGo3izTffFMOHDy+17uLlltae\nxo0bix9++MGy76effhIhISGWdjg4OJToPfv4+IiDBw+WWtecOXPE008/LYQov4cvhBBnz54VkyZN\nEgEBAUKj0Yhhw4aJ5ORkIYTSw/fz8ytxfJcuXcTGjRtFUlKSsLOzEwUFBZZ9mzZtEv369RNCCDFo\n0CCxevXqUuu89t/h3zZGRkZatu3du/e6Hn7x8xYsWCAGDRpk2bd9+3bh7OwszGazEEKI7OxsoVKp\nRFZWVqltkGo+ze3+wpFqp7i4ODw9PUvdV69ePWxtbS2fo6KieOihh1Crr/7g1Gg0JCcnExcXR6NG\njSrVhoSEBIKDgy2fg4KCSEhIsHz28vIqUaejoyO5ubkAHDx4kBdffJHTp0+j1+spLCxk1KhRVtXb\nokUL1q9fD8D58+cZN24cTz31FJs2bQLA39+/xPHBwcEkJCQQExODwWCgQYMGln1ms5mgoCBAuaeN\nGze+kVtAYGDgDR3v4+Nj+buDgwPe3t6WXwEODg4A5Obm4urqekPlSjWDHNKRbrnDhw+TkJBAz549\nLduKDx1cO4wQFBRkGf74909+fj5+fn4EBgZy6dKlUuu5tpxr+fn5ERUVZfkcExODn5+fVdfwyCOP\n8OCDDxIXF0dmZiaPPfZYpaZhNm/enIkTJ3Lq1CnLtvj4+BLHREdH4+/vT2BgIHZ2dly5csVyH7Ky\nsjh58iSgBO+IiIhS6ynrXhTf7uTkRH5+vuWzyWQiNTX1hq9JunPJgC/dNFE0Npydnc2OHTsYM2YM\n48ePp1WrVpb9opwZJI899hgvvfQSMTExAKSmprJ9+3YAxo4dy549e9iyZQtGo5ErV65w4sQJAHx9\nfbl8+XKZ5Y4ZM4bFixeTlpZGWloar732GuPHj7fqmnJzc/Hw8MDW1pZDhw6xadOmCr9gQOnRr1y5\n0hLUY2Nj+fLLL+nevbvlmJSUFFavXo3BYGDLli2cO3eOe++9l/r16zNo0CCeeeYZcnJyMJvNXLp0\nyfJewbRp01i+fDl///03QggiIiIs98zX17fML8Z/NWvWDJ1Ox65duzAYDCxevJjCwkKr7odUO8iA\nL920oUOH4urqSlBQEEuWLOHZZ5+1DGnA9Q9trw2cc+bMYdiwYQwaNAhXV1e6d+/OoUOHAKVXu2vX\nLlasWIGXlxft27fnn3/+AWDq1KmcOXMGDw8Phg8ffl275s+fT6dOnWjTpg1t2rShU6dOJd4HKC+A\nf/jhh7z66qu4urry+uuv8/DDD5fYX9a5Li4uHDx4kK5du+Ls7Ez37t1p06YNK1assBzTtWtXLl68\nSL169XjllVf49ttv8fDwAGDDhg3o9XpatmyJp6cnI0eOJCkpCYARI0bw8ssv88gjj+Dq6srw4cMt\nD4XnzZvH4sWL8fDwYOXKlaW20c3NjQ8//JBp06YREBCAs7NziSGfa/+dSivDmi89qeZSifK6XpIk\n3VKfffYZ69ats8xgkqTqJHv4kiRJdYQM+JJUjUobNpGk6iKHdCRJkuoI2cOXJEmqI2r0i1fyp68k\nSVLllDZ4c9t6+Dqdjq5du9KuXTtatmzJvHnzSj3u3zncNfHPggULbnsbZBtl++6ENtb09tW2Npbl\ntvXw7e3t2bt3L46OjhiNRnr27Mnvv/9e4u1MSZIk6da5rWP4jo6OAOj1ekwmU5m5VyRJkqSbd1sD\nvtlspl27dvj6+tKvXz9atmx5O5tzw/r27Xu7m1Ah2cabV9PbBzW/jTW9fVA32lgjpmVmZWUxePBg\n3nrrrRIXpFKpWLBggeVz375974h/FEmSpOoUHh5OeHi45fOiRYtKHcuvEQEf4PXXX8fBwaHE4g0V\nLdsmSZIkXa+s2HnbhnTS0tIsq/wUFBTw888/0759+9vVHEmSpFrvts3SSUxMZOLEiZjNZsxmM+PH\nj6d///63qzmSJEm1Xo0Z0imNHNKRJEm6cTVuSEeSJEmqXjLgS5Ik1REy4EuSJNURMuBLkiTVETLg\nS5Ik1REy4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBL\nkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVETLgS5Ik1REy4EuSJNURMuBLkiTVEbdtEXOpdGaz4Oef\nLxETk4Wfnwt9+4bg5GR7u5slSVItIBcxryGEEHz//QXmzfsFBwcN7drVJyIindOnU5k1qzOzZ3fF\nw8PhdjdTkqQ7QFmxU/bwa4D4+GymTNlOQkIOb789gHvvbYpKpQLg7NlUVqw4QLNm77NkSX+mTm1v\n2SdJknQjZA//Ntu27RwzZuzgiSc689JLvdBoSn+scupUCmPH/h+hod6sX/8ADg7aam6pJEl3irJi\npwz4t0lGRgFz5/7Mr79GsmnTcLp3D6zwHJ3OyNSp24mISGfnzkfw9nashpZKknSnkQG/koxGMydP\nJnPiRDLZ2YW4u9vTtKknLVvWw83N/obLS0rKZf36Y7zzzl+MGNGSpUsH4OJiV+KYMzFwORkCvaFN\nCBQfwRFCMG/eL3z//QV27x6Hv7/rTV6hJEm1jQz4N8hgMLF8+Z+8994h3Nzs6dTJDzc3OzIydJw/\nn8a5c2n4+DjRsaMf7dr50rJlPUJC3PHycsTGRoVOZyQtLZ/Y2GzLw9ejRxNISMjhoYdCmTu3O61a\n+ZSo80wMPL4GLiUpgf5CApjNsHAMjO9XMvAvW/YHK1f+xaefDmPIkKbVe3MkSarRZMC/ARkZBTz4\n4GYcHDQsWzaQsDDf644xmcxERKRz9Ggix48nce5cGtHRWaSnF2AymXFw0OLp6UBAgCuNG3vQqlU9\n2rdvQOvWPqWO0+88DJNWwetjYdog0Ngo238/A3M+gSYN4NPZ4FTsR0V4eBQTJ27lvvua8vbbA3F2\nltM3JUmqgQE/NjaWCRMmkJKSgkql4tFHH2X27NklG3cbAr4QguHDv8bX14kPP7wPtbrqZ8TsOqIE\n++3zoVvz6/fr9DDtPUhIh10LwL5YXM/M1PH00z8RHh7F++8P4b77mlV5eyVJqtlqXMBPSkoiKSmJ\ndu3akZubS8eOHdm6dSuhoaFXG3cbAv66dX/zwQeHOXBgKnZ2VT9rNfwkjHobvp8PXZtDBkY+JIlI\ndARhx8N40xwHTCYY/w7kF8K3L4KNTclyfv75EjNn7qJ5c2+WLRtIixbeVd52SZJqprJi521LrVC/\nfn3atWsHgLOzM6GhoSQkJNyu5gDKuP3Chb/x8cf3V2uw3/ycEuzPkM+DnMUGmIAPPmiZRgTrSUZt\nI/hsDmTmwUsbry9r4MDGnDz5OH37BtOr13omT97GuXNpVX4NkiTdOWrEi1dRUVEcO3aMrl27Xrdv\n4cKFlr/37duXvn37Vlk7tm07T6NGHnTu7F9ldQAIAZ/shvmfw1fPQb82cAkdj3GJVwlkAO4A9MaV\nYXgyi8tkY2KO1o9vXoQuz0LbhvBIn5Ll2tlpePbZHkyZ0p733jtEnz6f0a1bAM8/34O77gqq0muS\nJOn2CQ8PJzw8vMLjbvtD29zcXPr27cv8+fN58MEHS+yr7iGd/v038OijHXj44daWbYUG5YFq+ClI\nz4F6btC+EfRvC/5eN17HqWh4/jNIzIBNz0JoIORhYhTnmYovD+FJNr+h4yJ2NMKNvmRgZgIXmYAP\no/DmnyjoPx9+XAgdm5RdV36+gf/97zjLlx/Az8+Fl1/uxeDBjeWbupJUy9W4MXwAg8HA/fffz5Ah\nQ3jqqaeu21+dAT89vYCQkHdJSXkOe3vlh8/JKBixFBp4wLAu4OUCKVlw+CL88g+0CIAxvWDEXVDf\no+yyM3Jh5xHYuBeOXYZ5I+CJe8Gu6GXZl4kGYDF+xLCIPI7jRh9yOYLASGM+Ig4XxnGRDTSlMfZ8\n8wfMXQ9HVoJ3BVPxjUYzX399mjff3I+Tky2vv96PgQMbycAvSbVUjQv4QggmTpyIl5cX77zzTqnH\nVGfA//rr02zYcIIdOx4B4Gws9HkJVk6FcX2vP15vgD0n4IvflFk2zfyhe3No6KsE8sw8ZT790Qi4\nmAj9wmBUTxjRo+Qsm52k8wFJbKE5mayggAs0ZBU2OCEQJPMR6WynKV/wHWa+Jo0vaY4WFS/+D/46\nD7sXga0VmRbMZsGWLad59dVwAgJcWbZsIB06NLg1N1CSpBqjxgX833//nd69e9OmTRtLT3PJkiXc\nc889VxtXjQF/1qxdNGrkwTPPdMdshu7Pw+T+8NiQis8tNMDB83DwAsSkgt4Iro4Q4gMdGkPHxqUH\n5AyMDOMsH9GYEC5ymdmEsg1NgQqSz4N3I3D2Jp63MZBKMG8zmQjux4MReGMywQNvQOtgeGui9ddq\nNJpZt+5vFiwIZ8KEtrz2Wj/LrxpJku58NS7gW6M6A37fvp8xf35vBgxoxNa/4I2v4eByUFfRPCaB\n4BmiaIAtz+PPRabgyX14xTeDd/uDuz9kxsPDqzF1GsZZhhLMW0QQynNEs4tQbFGTkgntn4L1c2BQ\n+xtrQ0pKHjNn7uLMmVQ+//wh2reXvX1Jqg1q3LTMmkQIwalTKbRuraQ6+N+v8PiQqgv2ANtIJwId\nc2hALkfRE4tnTnf44D4YtQpePgazf4ItT2Fz8Qh+zCaJD2mPM8HYsYMMAHzcYdNcmPAORKfcWBt8\nfJz4+usRzJvXk0GDPufdd/+67bmLJEmqOjLgA8nJeQD4+jqRlg17TyoPYqvKMXJZTgIrCcEONUms\nwZdHUf34NrQZBp3HKAcGtocJn8Gnj+CR3wM9seRxnMfwZS3JmFCCc5/W8PxwZXgnt+DG2qJSqRg3\nrg0HD07jiy9OMmLEFrKydLf2giVJqhFkwAfOnUsjNLQeKpWKb/+EezsqY/D/+okM7uEM7TjOUM7y\nf1xBULmecAQFPEkkSwimKQ7kc4pCovDM7gZ/bYAh87m8Zw/fT5/O2e++g1b3QMvBqPZ+iA9TSOEz\nOuGMNxp+JtNS7tMPKM8Kpr9fuXvQqJEHv/8+GR8fJ7p1W0dmpgz6klTbyICPkrLYz88FgL8vQc+W\nV/ftI4s3iGMxQfxBGIsI5HNSeYFo9JhvqB4DgpeJ4Uka0AtlLmUWv+HOENRn9kLzu8ktgC0jR+LR\npAk7Hn2UxGPHoMcUOP4d7gwih78AM8Pw5FeyLGWrVPDBY/D7WWXmTmXY2WlYs+Y++vUL4fHHd1au\nEEmSaiwZ8IG0tHzLYiIRidDUT9luRLCYOJYRQiecccKGDjjzJc3Ix8yTRFJoZdAXCBYSgxcaRnL1\nja0cDuBCdzj/K7Toz5E1a2g9ejQ9X3iBe1atYtvkyYjgLpAegzZTjwZPdFykJ678SQ7mYr807G1h\nwWiYt0F5m7eyVqwYxIkTSWzadLLyhUiSVOPIgM/1Ab9xfWX7z2Tig5auuJQ43g4179IQF2x4kssV\nBn0zgreI5wIFLCMENco0VBO5FHAOZ9rDhXAMgd058tFHdC16Ca316NEUZmeTeOIfCB0IZ3fjTCdy\nOYIftrhhwzlKDtpP6g8pmbDjcOXvh4ODls8/H85TT/1IbGxWxSdIknRHkAGffwO+A4UGSM6EoHrK\n9vWkMIXrc+EDaFDxFsG4ouFRLpGPqdTjCjDzDFGcIZ91NMGJq2kus/gNZzqhvpIMRh2Rp2LxDg3F\nu7mSI1mlVtNu8mSOrVsHze+GC+FFAf8oAD1w5XeyS7bLBpZPgefWg8FY+XvSoUMDZs/uyrRp38uZ\nO5JUS8iAD+Tm6nF2tiUtGzxdlKBpRnCKfPpSdt4CDSreJphCzBwht9RjDpNDHIX8lya4XpOrroBz\nONEBki+AX2tSz57Fr1OnEsc0GTyYuL/+Ar8wSD6HPU0oLErF0BpHIrj+4eo9HZSXvyISb/ROlPTC\nC3fx55+x8gGuJNUSMuAX+fdt3+LZZVRgGX4pixoV7mjKnLMjAG+02JVxq1X/blepi/5T8ji1RlNi\nf/EWlvWPp1Ip4/k32zHXam3QatU3XY4kSTWDDPiSJEl1hAz4kiRJdYQM+CjDOWazQK0CU7EJNyqo\ncAZODiZiKcS2jKEfW9REoSMJ/fX1osZMIahtwKhHZWODqbCwxDH6vDxlWMdYCCobBAb+HdbRI0r9\nBzSalJTM2pvMh5aZqUOnM5a66LokSXce+X8y4OZmR1aWjnpuSlpjnV4Zm++JK9tJL/O8TIxM4iLd\ncblu6ua/uuLMQ3gxlgtcuuYBqzOdyOEP8G8DsccI6NyZyF9/LTEr5uw339B0yBCIPgyB7cnnNA60\nAOAoubTB6bo6P92j5OpvcpO50J5++icmTWqHq6vdzRUkSVKNUG4fcMWKFRUW4OzszIwZM25Zg24H\nb29H0tIK0NgoUzIjk5WVqKbiwwJi+Q9e1z28zcTINCLoigvP4YeqjB6+GhUzqE99bJlKBJtohh9K\nQnxnulLAMxhdtGg8gwgMsMOo0xH7xx8E9eyJsbCQk5s2Me3QIdjxOPScTi5/4kpPBII/yGYG9UvU\nl5MPCzbBzleVh7eVtXXrOfbvj+b48ccqX4gkSTVKuT385cuXk5ubW+afnJwcli9fXl1trTJKwM8H\nlF7xv9MZO+GMCzb8H1dKHJ+InvFcpEcFwb64B/BkMj48ziV0RcNEamxxpgO5HIKmfVBF/EbXp57i\nwMqVAPyxdCl+nTvj4e8Ll/5AtOhPHkdxpiMX0WGHmiBsS9SzYhv0b6Pk4a+spKRcHntsBxs2PISz\ns23FJ0iSdEcot4c/btw4FixYUG4BeXl5t7RBt8O1Af9CgrJdhYo3CGIKEaRipCNOnKeAtSQzFV8m\n4XND9UygHsfJYzWJPI+yULoz3cjhAO4t+sO+NbSb+h2/LVrElpEjif3zT6YfOQIXwiGwPXoH5SUr\nWwL5gxTuwrXEl01KJry3Aw5X/MOsTHq9iQkTvuPRRzvSo0dg5QuSJKnGKbeHv2zZsgoLsOaYms7f\n34WYGCWFQI8W8PPxq/ua4MBamhBPIatI5DT5fETjGw72oHyBvEwA4WSxASV5vTv9yWQ3xhZdIfY4\nttnRPHr0KA3792fsDz/gUr8+/PoudH6EdLbhSl/MwNdcYQjulrL1BmX93SeGQKP6ZTSgAvHx2fTr\n9z8cHbW8+mqfyhUiSVKNVe6KV8XH8IuvoPLvS0rPPPNM1Taumla8yszUERj4DllZL6IzqPCfBKff\nBz+vCk+tlAT0jOE8rxNEb9yIZh62BNJgdx6c+xme/OnqAPze9+DAekzP7+G05n6a8xW/4MIXpPI5\nTS09/OnvQ1o2fPti5RZu+fHHCCZP3sasWZ2ZN68XarVc4FyS7lSVWvEqJyeH3Nxcjh49ypo1a0hI\nSCA+Pp6PPvqIv//+u8oaW93c3e1xd7cnOjoTRzsY3h027au6+vywZSUNmU8MaRjwZQZpfIHp7qmg\nL4BtL4HJAAc+g12vw/RvSNN8iys90RLIWpKYQX1LsF/3M/xxFjY+fePBXqcz8vTTPzF9+vd89dV/\nePnl3jLYS1JtJazQs2dPkZ2dbfmcnZ0tevbsac2pN8XK5t0S99zzudi+/ZwQQog/zggRMlWIfF3V\n1rlSxItZ4pIQQohI8ZxIEB8IkZMqxJLOQjyhEeKN9kLE/C30IlmcEN1FgbgkfhIZYqQ4J8zCLIQQ\n4mSUEN5jhTgTc+P1HzgQK1q0eF+MHPm1uHIl/1ZemiRJt1FZsdOqV3NSUlLQarWWz1qtlpSUG1xA\ntYYLC/Ph2LEkhg5tTo9Q6NQU5n8OK6aWf54QcCoadh+HwxeVdWUNJnBxgIa+0L4R9G4FYcHX975n\nUp8HOcfPZNKb2ZxnFB7O92D/4iEw6sFGi1CZiGEO3oxETQirOcdz+KNCRU4+PLIclkxQppFaKyEh\nh4ULw/n++wusWnUPo0a1uvEbJknSHceqgD9hwgS6dOnC8OHDEUKwdetWJk6cWNVtq1b9+zdk8eL9\nloeVax6H7s8pb94unQR22pLHn4uDr3+HTb+BzqAsi3hfJyXI22khKw8uJcHRCFj9PRToYeRd8Ojg\nq8HZFjVvEsyTXGYLzfHjGS4zk8Z8hJ0mGBN5RDMPgYH6zGQliTTCnt64YjbD+HegW3OYOtC6a0xN\nzWPZsj9Zt+4YU6e258yZJ/DwcLh1N1GSpBqt3Ie2xR09epT9+/ejUqno3bs37du3r+q2VdtDW4CC\nAgM+PsuJiXnKEgQzcmHae7DvNAxsB96ukJIFhy5AoQH+0wPG9oEuzSp+yelcHGzcq4y3928LSydC\ngLeyby1J7Ceb9TQlg80kshoHmlHABdzpTwCvcJBC5hHNd7TAAw2LN8OuoxD+Bthqy687Pj6blSv/\nYv36Y4we3ZqXXupFQEDZaZ8lSbqzlRU7rQ74AMnJyeh0OsssnaCgoFvXwlJUZ8AHePjhb+jVK4hZ\ns7qU2B6ZDPtOQUYe1HNVhmlCAyv3JmtuASz9Fj7+CT6ZBQ90VXLvT+cSzXHgOfzQiwQ+WPM7Wzdn\nkpZqJKynP5dfbsDq4JZ0x4XtB+GJj+DQ8vJnEp09m8ry5Qf47ruzTJjQlrlze8hAL0l1QJmx05oH\nANu2bRNNmjQRjo6OIiQkRKhUKtGyZctb8WyhXFY275YJD48UoaHvC7PZXOV1/XVOCP9JQqzarnzO\nEAYxTJwRbxVGiwce+FJ06fKJ+OmnCPHZ3xEiaMFm4ea9VHz11UlxOlp5SPvXubLLPnw4Xgwdukn4\n+CwTixaFi7S0vCq/HkmSao6yYqdVETUsLEykpqaKdu3aCSGE+PXXX8XkyZNvXevKUN0B32w2i7Zt\n14itW89WS31RyUI0flSID3cqnxONOhE88lMRMOwT8Z4+TswUl0Rv8Y/4U2SJ48cThX/ASuHZ9Q/x\nv1/KKC8qQ4we/Y3w81sh3n//oMjP11fLdUiSVLOUFTutmrWt1Wrx9vbGbDZjMpno168fR44cuemf\nHVOmTMHX15ewsLCbLutWUKlUrFgxiJkzd5GaWvUpI4J94OfX4I0tsOFX2LjyCAEJghWbh2LQquiH\nG7toSXdcadi0Pp5DpmK+fBj95ZLvQBgMJpYs2U/Hjmtp3tyLCxdmMXNmFxwcKhjclySpTrFqlo6H\nhwc5OTn06tWLsWPH4uPjg7Oz801XPnnyZJ588kkmTJhw02XdKv37N+KRR8J4+OFv+L//exh3d3ur\nz9XrTWRm6jCZzNjba3B1tcPGpvzv1Ia+StDvMzuNgl//4MSx6TSy9yhxTGwqPLQEend05clnx9Gn\nz3qaNfOid+9gTp5MZsKErfj6OnH48HQaNvQooyZJkuo6qx7a5uXlYW9vj9ls5osvviA7O5uxY8fi\n5XXzuQeioqIYOnQoJ0+evL5x1fzQ9l8Gg4lnn93Nzp0XeeWV3gwfHloiJ7zBYOLixXSOHUvk6NFE\njh9P4ty5NFJT83F3t0ejUaPTGcnL0+Pr60zjxh60bFmPDh0acNddgbRo4W158A0ghOCu3hu5aG7G\ng2O68epi834SAAAgAElEQVTDEFgPrmTDxnB4cwvMfRCeG648KP7hh4tMn/49M2Z0ZPXqQyxdOoDJ\nk9uVKFOSpLqr0rN0jEYjAwcOZO/evVXSsJoY8P+1e/cl3n33L/btiyYoyA1XVzsyMnTExGQRGOhK\n27b16dixAe3b1yc0tB4BAa4l0hIYDCbi43OIiEjn9OkUjhxJ5LffonBzs+fFF+9izJgw1GoVX399\nmtde+43f/niMN75Rs+5nZS6/Tg+D2sOro6FNyNV26fUmOnT4mJiYLI4efZSmTaso6Y8kSXekm5qW\n2b9/f7799lvc3d0rOvSGVRTwi6dn7tu3L3379r3lbahIYaGRixfTyc4uxN3dnkaNPLC3r9z6gWaz\n4JdfLjN//l5UKli+fCAjRmxh69bRdOsWAIDBCFdywN0J7K9JR5+bq2fUqC1otWpycw107x7A4sV3\n3+wlSpJ0BwsPDyc8PNzyedGiRZUP+MOGDePYsWMMGjQIR0dH5USVitWrV990Q2tiD18Iwbp1x1iy\n5HfuvrshCxf2wd//1s5fN5sFH310mKef3k2/fiH88MNYy5CMwQhf7oO4K9C9OfRro5wTG5vFAw98\nRbt29fn44/vJyNDRocPHfPLJUIYMaXpL2ydJ0p2rrNhpVTd1+PDhDB8+3BKQhBC1erz4669Ps2LF\nAdatG8bOnRfp0+czfvtt0i0N+mq1CkdHW4KD3UhKyuXBBzfz8cf3Y+vkTK8XoYEndGwM096Hvq0F\nvdxP8sJzu5k7tztz5/ZApVLh4+PEpk3/YdSoLRw6NJ2gILdb1j5JkmqhKp0MWoHRo0eLBg0aCFtb\nWxEQECA+/fTTEvtvV/N6914vtmw5bfm8ZMl+0bbtGpGXd+vmtZ87lyq8vd8W//yTJAoLjeKll34R\nHl7LRMjoNPHEBwYhhBAGg0l8uuG0cBkQI3zuPiUOHYortaylS38XXbp8IgoLjbesfZIk3bnKip3l\nRtTp06dXWLA1x1TW7Qj4ycm5ws1tSYngaTabxfjx/yeGDt0kjEbTTddx9myqCAhYKdavP1Zi+9yP\n8oXf8BTh7rFUtG27Rri7vyV69FgnNn97UTSdYRZf7y+9PLPZLIYN+1I8+eSum26bJEl3vrJiZ7lj\n+PXq1WPMmDHljqP/8MMPRERE3PJfHnB7xvA3bjzB1q3n+fbbUSW2GwwmBg36nJ49g3j99X6VLn/f\nvmhGjdrCW28NYNKkdpbt5+Pgrhfg6DtgL3JJSMihQQMX6tdX3nfYfxrGroBza8DR7vpyMzN1dO78\nCa++2pvx49tWun2SJN35KjWGv2zZsgrH6nv16nVzLath9u2L4e67Q67brtXa8NVX/6FTp0/o2TOQ\nwYOb3FC5QghWrz7IG2/s54svhjNwYOMS+59eBy+PUt6+BWd8fUu+2NarlZIKecVWeOXh68t3d7fn\nu+8epl+//xEW5ku7dpVc2FaSpNqr2n5jVMLtaF6PHutEeHhkmft/+eWyCAhYKdLTrV8hKjU1Tzzw\nwJeiQ4ePxaVL6dft33NciEbThSgsekSgF2axT2SJv0WOZWUrIYSISFASp2WVkwvtyy9PikaNVskV\nrCSpDisrdlZiueva7fz5NFq08C5z/913N2T48FDGj/8Oo9Fcblm5uXqWLv2dli0/oEkTT/78cwqN\nGpVMfWA0wbOfKqtW2WohGT33coYPSWQeMTzKJQpR6mncQMnL/9/dZdc5enRrhg1rzpQp227rS2uS\nJNU8MuAXk59vIC/PgI+PU7nHLV8+EL3exJw5P5YaVFNS8li0KJxGjVbx999J/PbbJJYvH4Sd3fUj\naKu/VxZWGXkXFGDmcS4zCm++pDk7CcUZG14hBoFSz8x74aMflaUVy/LWW/2Jisrks8+O39gNkCSp\nVrvhgG8ymcjOzq6Kttx2sbFZBAS4VvjcQqu14ZtvRrFvXzTvvXcIAKPRzO7dl3jkkW9p1uw94uJy\n2LdvMps3jyA0tF6p5UQmK3lyPnxMyZHzKckEYcc0fACwQcUSgjlLAftR7nmPUNDaKA9xy2Jnp2HD\nhod4/vk9REdnVuJOSJJUG1kV8MeMGUN2djZ5eXmEhYURGhrK22+/XdVtq3axsdkEBlr3cpWrqx3f\nfz+Gt976nY4d1+Lnt4KXX/6Vbt0CuHx5Dp98MrTcoSGjCcathJdGQjN/SMHA56TyHH6ouPqFY4+a\nmdTnA5IQCFQqmDwA1v9SfvvatPHlmWe6MWPGDjm0I0kSYGXAP3PmDK6urmzdupUhQ4YQFRXFxo0b\nq7pt1S42NovAQOvfVg0JcefMmZmsWXMfBw9O4/Dh6cye3RVPz/IXBhcC5n4Kjrbw1DBl24ck8h+8\n8Of6OZeDcCcfMwfIAWBcX/juL2W5xPLMnduDpKRcvvrqlNXXJElS7WVVwDcajRgMBrZu3crQoUPR\narW1MrVCSkoevr4lx+9TMmH2Wuj0DMz4QJkvX5y7uz1duvhbnYfeZFKC/W+n4esXQK2GBPT8RCZT\n8cWMnihe4CS9ieRpTOShRsUYvNlGOgD1PaBzE9h9rPy6tFobVq8ewssv/4rBYLL6PkiSVDtZFfBn\nzJhBSEgIubm59O7dm6ioKNzcal/elvR0XYneuRDwwBtQaIB3pkKAN/R8EV7aAHrDjZd/IR4GvAon\nopRFTzyKptp/SjL/wQsPNMSzDBM5NGMTNrhwiRkIBANx5zey0RfN2HmgK2w7VHGdvXsH06iRBxs3\n/nPjDZYkqXapzBxPs9ksDAZD5SeJWqmSzau0adO2i7Vrj1g+/3hUiNAnhDAWS1GTnCHE0NeF6PKs\nENEp1pV7JkaI6e8J4fWIEMv+r2R58aJQdBMnRKrQi2xxQJwSA4VBZAkhhDALkzgrhosM8ZMQQohx\n4rz4VWQKIYSISRHC8xEhDFakz9m3L0o0bPiu0Otlrh1JqgvKip1WZcvU6XR8++23REVFYTQaAeXV\n3VdffbUKv4qq35Ur+SV6+K9vhlcfBhubq8f4uMO2l5U3XrvOhc3PQe/WJcsxm+FcHPx0DLb8oczG\neXQwnP0Q6l3zw+gjkhiFN15ouMgHNOBJNCgPjlWo8eNp4ngTN+5mMB7sJpN+uBFYT1kecf/pq+mT\ny9KrVzDBwe5s3nyaceMqOFiSpFrLqoD/wAMP4O7uTseOHbG3t36N1ztNRoYODw8l4Kdlw6kYZX78\ntVQqmPuQsgrViKXg5wkNPEBngNQsJcD7uEH/tjB/lPKylLaUOx2Jjj1ksouW5HEMA6l4MKTEMS7c\nhRoncjlMPzrw8b+zdVAxtDP88HfFAR9g7tzuvPbaPhnwJakOsyrgx8fH89NPP1V1W2673Fw9Li7K\nElMnIqFtSMne/bUGtYfo/8LJaOULwt4WvFyUnrerY/l1CQSLiWMG9XFHQxRfUo+xqNDAyR2QFglh\n96PybogbfclmP350wwYV8egJwI6+YfDceuuubfDgJkydup2IiHSaNPG07iRJkmoVqx7a9ujRg3/+\nqf0P/XJyCnFyKhbwG1Z8joMddGkG93aCu9so51QU7AG2ks4VDIylHkYyyWYfngyF87/CF49C1EH4\n4F7Q5+NKb7LZjwoVbXHkOHmAkkztbBxk5VVcn0ajZuTIVnKKpiTVYVYF/P3799OxY0eaNWtGWFgY\nYWFhtGlT+4YGSvTwo0oP+NEUcpZ8sjBWup4j5LKCBJYRggYV6WzHlT5odBrYMAXGrYPJn0NQJ/i/\n53GkFUYyKCSedjhxoijg22mhS1PYf8a6ekeNasmWLVYeLElSrWPVkM4PP/wAUGKJw9ooN1ePs7MS\n8P+Jgln3Xd2XjoHHuUwSejzREIeeRthzD+4Mwr3UF6auJRBsJZ3lJLCcYJrigEBwhS0E8Cr89T8I\n6giti8bxR74LrzZGNWwxLo53kcMftOVefuBquoR+YbD3H7i/c8XXd9ddQaSm5nHhwhWaNfO6kVsj\nSVItYFXADwkJ4fjx4+zfvx+VSkWvXr1o27b2LbKRn2/A0VELQHQKNPJVtgsEC4ilPU48RzNsUKHH\nzBFy+ZFMRnEBf2wZgBvdcaE5DtgW/XhSArqRA+SwmTSyMLGBpjRGefhdwBnMGHCmExx5Bga/eLVB\nzl7QqDuc/xXH9mEUcI6m/IfL6DAjUKOiUxNY9p1116dWqxg4sDHh4VEy4EtSHWTVkM6qVasYN24c\nqampJCcnM27cOFavXl3VbatWJpMZo9GMra0NOj3k6cDTRdkXTjYxFPIMftgU5bmxRU0PXHmNIH6j\nNU/jRypG5hNDV/6hDycZwGm6cZKhnOVHMhiNN9/RwhLsATLYhQdDUGUlQeIpaDGgZMNaDIBze3Cg\nCQVcxAUbnFCTjPLmV6sgOBVt/XX26BHAH3/E3tS9kiTpzmRVD/+///0vBw8exMlJSTvw4osv0q1b\nN2bPnl2ljatOhYUm7O01qFQqEjOU9AX/Zo/4gQweoZ6l134tDSq640J3lG8IPWYyMGJA4IwNbtiU\nSIj2L4GZDH6gMWvhxFZofR9o7dDn5qJ1clKG0FoMgP0fY89r6IhAIGiEPZfR0QBbArzBaIbEdGhg\nxeSbHj0CWbHiQKXvkyRJdy6r0yOr1epS/15b6HRG7O2V77/EdGVePSjBex/Z3I31qSRsUeOLLQHY\n4Y6m1GAPkM1vaPDCgSZwYhu0fRBdZiarGjbk3eBgLu7aBX5hkJeOJlOHCjVG0iwBH5QvpQ6N4O9L\n1rWtZct6JCfnkZpqxdQeSZJqFasi9+TJk+natSsLFy5kwYIFdOvWjSlTplR126qVTme0LFByJUdZ\nlATgNPkEYEs9tCWOFwjyOEEiH5DP2UrVmcYWfBgHJiNE7IcWAzj26ac0HjSIfq+/zu9vvaVkVwto\niyrhNHY0REcUwdgRg95STlgInI6xrk4bGzUdOjTg2LGkSrVZkqQ7l1UB/5lnnmH9+vV4eHjg5eXF\nZ599xtNPP13VbatWBoMJrVa5Hbk6cCnKsHCZQppSMt2xgStE8iRRPI+RTC4xnVQ+v6H6zBSQy2Fc\n6QspF8GtATi6c3LTJtpNnkzLESNI/Ptv9Lm54BUC6TFo8cbIFbzRcoWr2duC6kHcFevrbtzYg8jI\njBtqryRJd75yx/Czs7NxdXUlPT2dhg0bEhISAijTM9PT0/H0rD1vbBqNZrRa5bXa3AJwLorxkeho\nWGzKpcBIJHNwJJQQVqLGFl8mc5FJgIp6jLWqvmz+xJHWaHCDuF3g35aMyEiy4+II6dcPtY0Nfp06\nEb1/P009gyA9Bg1eGEnDEw3pxd4DCPCCfeWsgHWtkBB3IiPlSliSVNeUG/DHjBnDzp076dChQ6n5\n7yMjI6usYdXNYDCj0Vzt4TsXTaSJpZAhXM11n8RHqHHAn3moin4g2eJHE9YTwSQEJnyYUGF9qWzA\ni/8oH+JOQGA74g4cILhXL9RF+Rwa9u9P5J49NB0RBhf2oqErBq7gjYYrxQO+N8SlWX+tDRu6s337\nBetPkCSpVig34O/cuROAqKio6mjLbXXtkI5TUcBPwkB9lJexzOhI5XNa8J0l2P/LDn+a8j8imAaY\n8WFSmXXlcRI9iXhwr7Ih4ST0fJTEX/ZRv0MHy3Ehffvy83PPwfR7i4Z07iWf03iiKTGkE+B1Y0M6\nDRt6EBUle/iSVNdYNYbfv39/q7bdycxmgVqt/IrRG8C26KswDxMuKD3uQmLQUg9bGpRahi1+NOJD\nklmHmcIy68rjOK70UhKlAWQlgrs/OYmJuAUFWY5zadCA/LQ0cHAHXTZqHDFTgAM2FBQthAJK7p6c\nCpY7LM7Dw56sLJ31J0iSVCuUG/ALCgq4cuUKqamppKenW/5ERUURHx9/05X/+OOPtGjRgqZNm7J0\n6dKbLu9mCIEl4JvMoCnKklmAGfuiaZV64rDFv9xy7AnBgZZksLPMY3RcxJ6mVzfkpoGzNwXp6TgU\ney5i5+pKYXY22DqAPh81dpgpxBYVegQCJcWFgy0UlP39ch1HRy15eZVYskuSpDtauUM6H3/8MatW\nrSIhIYGOHTtatru4uDBr1qybqthkMjFr1iz27NmDv78/nTt3ZtiwYYSGht5UuZVVvIdvNEPRcD6F\nCOyKvhcLicOWwArLqs8MongOD+5FTcn1AwSCHA7izZirG/OugJPXdQHf1sVFCfhaB9AXoMIOgR6b\nogElI6Dlaq59g7H0vPvXcnKyJT9fBnxJqmvK7eE/9dRTREZGsnz5ciIjIy1//vnnn5sO+IcOHaJJ\nkyaEhISg1WoZPXo027Ztu6kyb4bZLCwPpo2mqz18HWYcim6TnjjsCKiwLGc64EjLUqdqFnAGFSoc\naKFsMOjAbAQ75+sCvsbeHmEyYUIDhgLU2GIumn9vi9qyvi0oaZoL9FjFyUkrA74k1UFWpVZQqVRk\nZGTg4aHMVsnIyODLL7/kiSeeqHTF8fHxBAZe7S0HBARw8ODB645buHCh5e99+/alb9++la7TWsWT\ngZqKkpQpf89Hfc2c/LLYEUwB56/bricJLX5X3741FoKNLahUmPR6bGxtLceqVCrUWi0mkxkbsxHl\n+9kERX8zFyvXRq0MRVlDo1FjMJisO1iSpBovPDyc8PDwCo+zKuB/8sknJXr0Hh4erF279qYCfmnT\nPEtTPOBXJZXqatrn4sHTHjWFRb18O/zRU/GzCyOZpPMdTUvp4bvQnWjmYSQDDR5g76r08o16HDw8\n0GVkQHAwAGajEZNej1ajAq0DAj2qoncC9Ahsi6Vs0OmVsXxr5OUZLAu9SJJ057u2M7xo0aJSj7Nq\nlo7ZbMZsvtp9NJlMGAw3NyTg7+9PbOzVrI2xsbEEBFQ8XFJV1GqVpWevsSkZ8HVFfWlbAqwK+Mn8\nF3cGY8/1K6jY4IgLXcjhL2WDSgVOnpCnDOcUpKdbji3MycHW2RmVUQe2jpjRo8YWgcCAQFsU8M1m\n0BuVBVGsUTwNtCRJdYdVAX/w4MGMHj2aX375hT179jB69Gjuueeem6q4U6dOXLx4kaioKPR6PZs3\nb2bYsGE3VebNUKlUmM1KxNfYKOP4AHZFPXxQAn4h5acWNpHPFf4PH8rONeRACwq4eHWDkxfkpV0f\n8LOzsXN1BUNBUQ+/EBW2lmD/71CTzqAEeyt/NJGXp8fJSQZ8SaprrBrSWbp0KWvXrmXNmjUADBw4\nkGnTpt1cxRoN77//PoMHD8ZkMjF16tTbNkMHlB5+8YD/7xC3AyryiwK+HYEUEo3AgIrrA6ZAkMhq\nnOlQ7sNdB5qRxtdXNzh7Q04qDl5e5KWmWjYXZmUpAb8wr6iHr0ONHYXXDOfkF4JjxQtuWeTm6mUP\nX5LqIKsCvo2NDRMnTqRfv360aNHillU+ZMgQhgwZcsvKuxkajRqjUQnsjraQmq1s90ZLKkZCAS3e\nONGWFDbgy9QS5wvMxLGYfE7TiDXl1uVKL2JZTAEXcKAZ+DaHpLPUa9WKlGKLxSccOYJP69aQlQBu\nDTCSiQYPMjHiXuyfLikD6rtbf62xsdkEBLhaf4IkSbWCVUM627dvp3379pZhnGPHjt3W4ZeqoNVe\nnbni7KCkVwDww5b4Ym/NBjCfFNaTx9XALBDE8ToFnKcJ69BSflI5NQ74MJ4UNhQV2g7ijuPXqRNx\nxWYqRf7yC40GDID0GPAMxkgaGry4ghGvYgE/Nk3Jp2OtyMgMGjb0qPhASZJqFasC/sKFCzl48KBl\nWmb79u25fPlylTasuhXv4TvbKxkzARpiT2SxgG9HIEG8xiUeI5EPKeAC0TxHPmdpzMfY4GxVfe7c\nSzbhCEwQ0BbiTuDfpQvZcXFkXL6MEILLe/YUBfxo8AzCwJWigG8oEfDj0pR8OtaKisqiYcMb+Ekg\nSVKtYFXA12q1uLuXDBC1bdUrrdYGg0EJ+C4OkFcU4xtiRyQl8864cTfN+Ro98UQwHQ2eNOFTq4M9\nKMnWNHiRxwnwbwMJp7CxUdNyxAhOfvklKadOYevsjHtISFEPPwgjV9BaevhXx+Djrtx4Dz8kRAZ8\nSaprrBrDb9WqFV988QVGo5GLFy+yevVqevToUdVtq1a2tjYUFioph92cICNX2d4SR06Sjx5ziTVt\n7QggmDduqk4P7uUK3+Ls8IayyEn0ETpMm8bajh35Z8MGQocPVw5MPgf1mqAnHi0NSECPb7GAfyEe\n7ulQeh2lOXUqhdDQG/iGkCSpVrCqm/7+++9z+vRp7OzsGDNmDK6urrz77rtV3bZq5eCgobBQGcP3\ndVcehALUQ0tj7DlI7i2v05uHyeRnTORA2P1w8nsadOjAtIMHuWf1au5+803ISYGsRMwNGqEnCXuC\niURH42I5ev6+DB0aW1dnSkoeV64UEBpa75ZfjyRJNVuFPXyj0ch9993H3r17efPNN6ujTbeFvb0G\nnU7p4ft5QmKxFQAH4MZO0ulF2TNbBIIIdBwkl/MUkIoBPQJXbAjClg440w0X7It9x2pwx4WuZLIH\nr7YPwcYpMGwx/l26XC34xK/QtA86mzjsCEKFlssU0rAo4OcWKGP4oRXndAPgwIFYunb1tySKkySp\n7qiwh6/RaFCr1WRm1u4FMzQaNWazwGg04+4EhYarKYcfwouD5HKAnBLnCASnyGc58QzmDE9wmQsU\n0AoHRuPNVHy4B3ccsGE9KQzkNJ+RgomryXo8uI8MdkFIFyjMgcQzJRt2dg+0GICOCOxpggFBLIWE\nFKVYOB0Dzf2vJnuryB9/xNKjh5XfDpIk1SpWjeE7OTkRFhbGwIEDcXJyApQ3U1evXl2ljatOKpUK\ne3sNBQUGXFzsaOChPAxt6gfuaFhMEM8RxSi88EbLZXTsIxsbVNyDO6toSAscriZFu8bj1CeCAhYR\ny1/k8DbBuKLBjT7EshCDOg1t+//Aka9g6GvKSWYznP0JBs6lgO9xoClxFOKD1pKy+WQ0tAoqtcpS\n7dsXzRtv3H2zt0uSpDuQVQF/+PDhDP/3AWIRa5Of3UmcnW3Jy1MCfstAOBWtBHyAu3BlLY3ZRQYR\n6AjEltU0ojn2ZQb5azXBgU9pyhvEMptI1tIYWxxw5x6u8H/U7/UYLO8JfWaCqy8c3gSu9aF+C3J4\niQBe5hD5tMLRUuZvp6BXK+uuLzY2i4sX0+nVK/hGb40kSbWAVQF/0qRJVdyMmsHZ2ZacnELq13em\nbUP4Jwoe6n51f0scaVks2FaGFhWvEMgcInmbeOYTiDcjieQpfOs/iqrno/DFdBgwF755Bmb/hIFU\n9CTiRFuOk0g7lF9ZQsDek/DqaOvq/uabMzzwQHNsba0c/5EkqVYpdwx/5MiRAISFhV33p02bNtXS\nwOrk4mJrWfqvbUM4EVU19dig4k2C2E0mJ8nDkVbY4EoOB+C+BYAKvpoJD7wBge3JZj8udEOFhuPk\nWQJ+RKJSXpPSl9i9zubNpxk1ysqfA5Ik1Trl9vBXrVoFwPfff18tjbndnJ1tyc1Vlo1qGwLzNpR/\nfG4BvPIFhJ+C1CywtwVPZ2hUH9o1hP5toVOT0rNYuqLhGfx4nTg20wxvRpHGl7hq74LHS678lc1+\nXOlNPiaiKSS0aBGW8JPQL8y6LJmXLqUTGZnJgAGNrLkVkiTVQuUGfD8/ZQA7JCSkOtpy27m52ZOZ\nqbxV26SBEtDPxUGLUhJfRibDQ28qvwTWzlSSl+kMkJYNl5LgyEUYv1LJZDm+Hzw6GIJ9SpbxAJ5s\nIJVfyKIfQ0nkAwqIwIEmlmMMpJDDXwTwCn+QSyscLS+A/XQM7utk3bW9//5hJkxoi0ZTu96QliTJ\neuUGfGdn5zIfzqpUKrKzs6ukUbeLp6cD6elKEh0bG5gzDBZvhs+fLXnc9oMw/X14eRQ8eX/JHnZT\nP+jeAsb1VT6fioZP90CHp2FoZ3hjPPgX5b1RoWI2DVhJAv1ogQ8TSeAdGvOBpbxEPsSL/6DFk91E\nMwg3QJky+vNxWPN4xdeVmprH//53nH/+seJgSZJqrXK7e7m5ueTk5DBnzhyWLl1KfHw88fHxvP32\n28yZM6e62lhtvLyuBnyAWffB7uNwsGhp2vgrMHkVzPkEvnsJZg+teDildTCsnMr/t3fvcVWV6QLH\nf5vLCCiCmiASZyQhhJT7gHgpTMFLg854AfFeaJ6ZMzr1KTtjfpq0kuqYOpbdzJTSUtGOSqYeHBU1\nkTERkcQLOqLgLXEUQUFu6/yxh53E3rKVy9q4nu9f7rXfvdezHvVh8a53PYt/LtMX+sA/w9d7fn7/\nKdrTFitSuUFnxlNBIdf4BoBSMilmB65MpYIadlPMIPQ9cHYe1U8bdXZq+Ljee+8A8fG9pCWyEBqn\nU5S7H9ltnL+/P0fv6tNualtT0+l0mBFek3njjT1UVtbw5psDDNuSv4cZn0JHR33B/+MweHUMtH/A\nxTrZZ2H0OzDpaXgtTr9tLzdZyAU20oMKzpLHROzxpYwT/Jp3aE8/9nKTT7nMVzwO6H/D8POAF0fc\ne39Xr96iR48POXJkOh4eZvx0EEK0eqZqp9k3Xq1evZr4+HgA1q5dS7t25neGbC06dbLnxx+v1tkW\n2w+GBkPeJfB9FOzv48lSxgR4wvfvwlOzoUNb+NNvoT+OLMWKv1NMNI/Rg83c5ih2PG54cta3/Ish\n/z67r6zSTyv9ZVTD+5s7dw/jxvWSYi+EMK952tdff01ycjKurq64urqSnJzM119/3dyxtTh39/YU\nFta/LuHooG9O9stiX11dw4wZ2wgK+pTo6FV89lmm4aLvvbg6w7a5MG8tZJ3Rz+XPwI3FXKSCGmx5\nBCeeNhT7fMpJp4Tfo5/835YJXl2hewPLMQ8cKGDjxuO88UakGUcvhHjYmVXwPT09SUlJoaioiKKi\nIjZv3vxQrtzx8GhPQUGx2eP/8ped/PjjTyxfHsP06SH83/+doVu3vzFp0kZ++OHCPT/r6Qp/mwrj\nF+n79vSnPR78imSK6o39hMtMoDPt0N8wtXInTGmgO0JZWSXPPruZJUuG0KGDvdnHJIR4eMkavbt4\neOnHURQAABWPSURBVDhRUGDeyqNlyzLZtOkEGzaMISSkK6NG+bFhQyxnzszE39+V0aPXExmZxM6d\n/zR5HWJ8JHi7wf/8r/71K7jzMVc4yc8XjrdznR8oZQL6dsZXbujvro3rf+/4Xn11F0FBbowZIzda\nCSH0zLpoq5aWvmirKAr29vO5du0V2rb9lclxqalnmDx5E/v2PYuXl/Hn11ZV1bBmTQ5vvbUPN7d2\nvP/+UPz9XeuNO38Vgl+Af7ynn6LZynUWcIFpuFJCNau4ynK86PHvm60S18M/L8PyGaaP4+9//ydT\npmzi6NE/0LGjnN0LoTWmaqec4d9Fp9Px2GMdOHPmuskxRUW3mTJlE2vWjDJZ7EHfbnnixACOHfsj\n48b1YuDAL/ngg3/U+0v4j876lTa1d/UOowNz8SCTUi5Swcq7in15BSz9Tr/235SCgmImTtzIF1/8\nToq9EKIOswr+5cuXSUhIYMiQIQDk5uby+eefN2tgavHz60xu7lWj7ymKwvTpW4iP70VkZDezvs/G\nxornnw/hwIEEkpKyiY3dYGjfUOvFEZB+AjL+vd7/KZxYiCfz+A+8+blof7IdQrrrV/oYc+dOFaNH\nr+fFF3szcKC0UBBC1GVWwZ8yZQrR0dFcvHgRAG9vbxYvXtysgaklONiNAwcKjb63aNEBzp278UD9\n5L28OrJ//3O0b9+Gfv1WcOHCz9cKHNrA/AnwX59AVbXxzxfdhPnJ8O5k0/uYOXM7Hh7tmTXr4Xre\nsBCiaZhV8IuKioiLi8PaWr9KxNbWFhsbs5bwtzpDh3qxbVteve1btpxiwYJ0NmyIxc7uwY7dzs6G\n5ctjiIt7giefTOLcuZ+fIjbpaX3jtYWbjH/2v5P0F2r9TDzsZPnyw+zde46VK0c8lM8qEEI0nlkF\nv127dly7ds3wOiMjAyenh/NGnsDALty+XcmPP/5k2Hbs2E88++xmNm8eS7duzo36fp1Ox+zZ/fnj\nH0N55pmvKSur/Pd2WPYnWLRJ3wXzbp/vgP3HIXGi8e88cuQys2fvZOPGOBwdG3lnmBDi4aWY4dCh\nQ0pERITSvn17JSIiQvHy8lKOHDlizkeNSk5OVvz8/BQrKyslMzPT5Dgzw2tyr722S5kyZZNSXV2j\n5Ob+pLi7L1RWr85u0n3U1NQosbHrlRkzttbZviNLURxjFWXtXkU5fVFR5qxSlC6TFOVEgfHvuX69\nTOnefYmyZk1Ok8YnhGi9TNVOs5dlVlVVceLECRRFwcfHh1/9yvSyxYacOHECKysrpk+fzsKFCwkO\nDjY6rqWXZdb66adbDB++hhs3yrl69TaLFkUzeXJgk+/n+vUy/P0/YeXKEXX61Kcfh1eS9M/U7e2j\nv0GrS4f6n1cUhVGjknFzc+TDD4c1eXxCiNapUb10/P39GTt2LHFxcXTv3r3RwfTo0aPR39GcXFza\nsn//c+zenU9YmDvt2zfPNEmHDvYsXx5DQkIKR4/+J05OdgD08dX322nIkiX/4Pz5YtasMaOpjhBC\n88yaw09JScHa2prY2FhCQ0N57733OH/+fHPHpipraysGDXqs2Yp9rcGDvRgyxItXXvn7fX3uwIEC\nEhP3sX79GNq0eTgvoAshmtZ932mbl5fHm2++yVdffUV1tYk1hEBUVBSXL1+utz0xMZGYmBgABgwY\n0OCUzuuvv254HRkZSWRk5P2E2yoUF5fTo8eHfPttPKGhXRscf/XqLUJClvHhh8OIifFpgQiFEJYs\nLS2NtLQ0w+t58+YZndIxu+Dn5+ezbt06kpOTsba2Ji4ujpdeeqnhD96DOQVfjTl8NaxcmcXSpT+Q\nkZGAra21yXFVVTUMG/YVISFdefvtgS0YoRCitWhUa4Xw8HB+//vfU1NTw/r16zl48GCji30trRT0\nhkyZEkjnzg688873JscoisIf/vAdOp2uzkNahBDCHGad4Z84caJJL7Ru3LiRmTNnUlRUhJOTE0FB\nQWzbtq1+cBo6wwd9H5zevT9n4cJoxo7tWee9qqoa/vSnrWRmXmLXrkmy3l4IYZKp2mn2lM6WLVvI\nzc2lrKzMcCfnX//616aN8pfBaazgA+TkXGHQoFXMmxfJ9Okh6HQ68vNvkJCQgq2tFcnJY5r9QrIQ\nonVrVMGfPn06ZWVl7Nq1i2nTprF+/XrCw8ObvYGaFgs+wIkTRYwb9w3Xr5fTqZM9p05d49VX+/Py\ny32wsZEGp0KIe2tUwe/Vqxc5OTmGB5eXlpYyZMgQvv/e9HxzU9BqwQeoqVHIy7vG1au3CQlxw97e\nVu2QhBCtRKNuvLK317fodXBw4MKFC3Tq1MnokkvRdKysdPj4PIKPrLoUQjQRswr+b3/7W65fv86s\nWbMICQkBYNq0ac0amBBCiKZ1zymdxYsX07dvX4KDgw3tkMvLyykvL8fZuXFdI80KTsNTOkII8aAe\naEqnsLCQF154gePHj9OrVy/69etHnz596NNHHrAhhBCtjVkXbe/cucOhQ4c4cOAA6enpHDhwAGdn\nZ44fP968wckZvhBC3LdGXbQtKyvj5s2bFBcXU1xcTNeuXfH392/yIIUQQjSfe57hT5s2jdzcXBwd\nHQkLCyMiIoLevXvToYOR5uzNEZyc4QshxH17oF4658+f586dO3Tp0gV3d3fc3d1b5GKtEEKIptfg\nHH5NTQ3Hjh0zzN/n5OTQqVMnevfuzRtvvNG8wckZvhBC3LdG99IpKCggPT2d/fv3s2XLFq5du0Zx\ncXGTB1onOCn4Qghx3x6o4C9ZssSwKsfGxoY+ffrQt29f+vTpQ8+ePbG2Nt23vTmDFkIIYdoDrdLJ\nz88nNjaWxYsX07Vrw09iEkIIYbnu+xGHLUnO8IUQ4v416olXQgghWj8p+EIIoRFS8IUQQiOk4Ash\nhEZIwRdCCI2Qgi+EEBohBV8IITRCCr4QQmiEFHwhhNAIKfhCCKERUvCFEEIjpOALIYRGqFLwZ82a\nha+vLwEBAYwcObLZ++oLIYRQqeBHR0dz7NgxsrOzefzxx3n77bfVCEMIITRFlYIfFRWFlZV+1+Hh\n4RQWFqoRhhBCaMo9H4DSElasWEF8fLzJ9+fOnWv4c2RkJJGRkc0flBBCtCJpaWmkpaU1OK7ZHoAS\nFRXF5cuX621PTEwkJiYGgPnz53P48GG++eYb48HJA1CEEOK+Nfoh5k0tKSmJzz77jJ07d2JnZ2d0\njBR8IYS4fw/0TNvmsn37dhYsWMCePXtMFnshhBBNS5UzfG9vbyoqKujYsSMAERERfPTRR/WDkzN8\nIYS4bxY3pWMOKfhCCHH/5CHmQgihcVLwhRBCI6TgCyGERkjBF0IIjZCCL4QQGiEFXwghNEIKvhBC\naIQUfCGE0Agp+EIIoRFS8IUQQiOk4AshhEZIwRdCCI2Qgi+EEBohBV8IITRCCr4QQmiEFHwhhNAI\nKfhCCKERUvCFEEIjpOALIYRGSMEXQgiNkIIvhBAaIQVfCCE0Qgq+EEJohBR8IYTQCCn4QgihEVLw\nhRBCI1Qp+K+99hoBAQEEBgYycOBACgoK1AhDCCE0RacoitLSOy0pKcHR0RGADz74gOzsbJYvX14/\nOJ0OFcITQohWzVTtVOUMv7bYA5SWlvLII4+oEYYQQmiKjVo7njNnDqtWrcLBwYGMjAy1whBCCM1o\ntimdqKgoLl++XG97YmIiMTExhtfvvPMOJ0+eZOXKlfWD0+l4/fXXDa8jIyOJjIxsjnCFEKLVSktL\nIy0tzfB63rx5xqfDFZWdO3dOeeKJJ4y+ZwHh3dPu3bvVDqFBEmPjWXp8imL5MVp6fIrycMVoqnaq\nMoefl5dn+PPmzZsJCgpSI4xGu/snqqWSGBvP0uMDy4/R0uMDbcSoyhz+7NmzOXnyJNbW1nTv3p2P\nP/5YjTCEEEJTVCn4GzZsUGO3QgihaaqswzeXTqdTOwQhhGiVjJV21ZZlmsOCfxYJIUSrI710hBBC\nI6TgCyGERlhEwd++fTs9evTA29ubd9991+iYmTNn4u3tTUBAAFlZWRYVX1paGk5OTgQFBREUFMRb\nb73VovE999xzuLq60qtXL5Nj1MwfNByj2jksKChgwIABPPHEE/Ts2ZP333/f6Dg182hOjGrmsby8\nnPDwcAIDA/Hz82P27NlGx6mZQ3NiVPvfIkB1dTVBQUF1blK92wPnsInuB3hgVVVVSvfu3ZWzZ88q\nFRUVSkBAgJKbm1tnzHfffacMHTpUURRFycjIUMLDwy0qvt27dysxMTEtFtMv7d27Vzl8+LDSs2dP\no++rmb9aDcWodg4vXbqkZGVlKYqiKCUlJcrjjz9uUf8OzY1R7TzeunVLURRFqaysVMLDw5V9+/bV\neV/tHJoTo9o5VBRFWbhwoTJu3DijcTQmh6qf4R88eBAvLy+6deuGra0tY8eOZfPmzXXGpKSkMHny\nZADCw8O5ceMGV65csZj4QN0LzP3796dDhw4m31czf7UaihHUzWGXLl0IDAwEoF27dvj6+nLx4sU6\nY9TOozkxgrp5dHBwAKCiooLq6mo6duxY5321c2hOjKBuDgsLC9m6dStTp041Gkdjcqh6wb9w4QIe\nHh6G148++igXLlxocExhYaHFxKfT6UhPTycgIIBhw4aRm5vbIrGZS838mcuScpifn09WVhbh4eF1\ntltSHk3FqHYea2pqCAwMxNXVlQEDBuDn51fnfUvIYUMxqp3DF198kQULFmBlZbw8NyaHqhd8c9fa\n//InXUut0TdnP8HBwRQUFJCdnc2MGTP43e9+1wKR3R+18mcuS8lhaWkpo0ePZsmSJbRr167e+5aQ\nx3vFqHYeraysOHLkCIWFhezdu9doKwC1c9hQjGrmcMuWLbi4uBAUFHTP3zIeNIeqF3x3d/c6T7wq\nKCjg0UcfveeYwsJC3N3dLSY+R0dHw6+JQ4cOpbKykn/9618tEp851MyfuSwhh5WVlYwaNYoJEyYY\n/U9uCXlsKEZLyCOAk5MTzzzzDIcOHaqz3RJyWMtUjGrmMD09nZSUFDw9PYmPj2fXrl1MmjSpzpjG\n5FD1gh8aGkpeXh75+flUVFSwbt06hg8fXmfM8OHD+fLLLwHIyMjA2dkZV1dXi4nvypUrhp+4Bw8e\nRFEUo/OCalEzf+ZSO4eKopCQkICfnx8vvPCC0TFq59GcGNXMY1FRETdu3ACgrKyMHTt21GuMqHYO\nzYlRzRwmJiZSUFDA2bNnWbt2LU8//bQhX7Uak0PV77S1sbFh6dKlDB48mOrqahISEvD19eXTTz8F\nYPr06QwbNoytW7fi5eVF27ZtjfbOVzO+DRs28PHHH2NjY4ODgwNr165tsfgA4uPj2bNnD0VFRXh4\neDBv3jwqKysN8amZP3NjVDuH+/fvZ/Xq1fj7+xsKQGJiIufPnzfEqHYezYlRzTxeunSJyZMnU1NT\nQ01NDRMnTmTgwIEW83/Z3BjV/rd4t9qpmqbKoUX30hFCCNF0VJ/SEUII0TKk4AshhEZIwRdCCI2Q\ngi+EEBohBV9YFGtra0PTqqCgIMMKlNYuKSmJzp078/zzzzfqe+bOncvChQsNrzMyMkx+Z3l5OYGB\ngbRp08ai7gsR6lF9WaYQd3NwcDDZ/a92QZml3SVsDp1OR3x8vNEOl1VVVdjYmPdf8ZfHvm3bNoYO\nHWp0rJ2dHUeOHMHT0/P+AxYPJTnDFxYtPz8fHx8fJk+eTK9evSgoKGDBggWEhYUREBDA3LlzDWPn\nz5+Pj48P/fv3Z9y4cYYz4cjISDIzMwH9jTe1BbC6uppZs2YZvmvZsmWAvj1uZGQkY8aMwdfXlwkT\nJhj28cMPP9C3b18CAwPp3bs3paWlPPXUU2RnZxvG9OvXj5ycnHrHcvcK6KSkJIYPH87AgQOJiori\n1q1bDBo0iJCQEPz9/UlJSTF6XCdPnqzznbt27WLQoEEcO3aM8PBwgoKCCAgI4PTp0w+acvEQkzN8\nYVHKysoMNxU99thjLFq0iNOnT7Nq1SrCwsJITU3l9OnTHDx4kJqaGkaMGMG+fftwcHBg3bp1ZGdn\nU1lZSXBwMKGhoYD+rNjYbwWff/45zs7OHDx4kDt37tCvXz+io6MBOHLkCLm5ubi5udG3b1/S09MJ\nDQ1l7NixJCcnExISQmlpKfb29iQkJJCUlMTixYs5deoUd+7cueezCWplZWWRk5ODs7Mz1dXVbNy4\nEUdHR4qKioiIiGD48OFkZmaaPK6ioiJsbW1xdHTkk08+4c9//jPjxo2jqqqKqqqqpvorEQ8RKfjC\notjb29eZ0snPz+fXv/41YWFhAKSmppKammr4oXDr1i3y8vIoKSlh5MiR2NnZYWdnV6/9hTGpqank\n5OSwYcMGAG7evMnp06extbUlLCyMrl27AhAYGMjZs2dxdHTEzc2NkJAQAEPjstGjR/Pmm2+yYMEC\nVqxYwbPPPtvgvnU6HdHR0Tg7OwP6Do6zZ89m3759WFlZcfHiRa5cucK+ffvqHVftbwqpqakMHjwY\ngD59+jB//nwKCwsZOXIkXl5eDSdbaI5M6QiL17Zt2zqvZ8+eTVZWFllZWZw6dYrnnnsOqDtlcvef\nbWxsqKmpAfQXMu+2dOlSw3edOXOGQYMGoSgKbdq0MYyxtramqqrK5LUDBwcHoqKi2LRpE+vXr2f8\n+PFmHVdtgy6Ar776iqKiIg4fPkxWVhYuLi6Ul5ej0+nqHVdtHNu3b2fIkCGAvnXFt99+i729PcOG\nDWP37t1mxSC0RQq+aFUGDx7MihUruHXrFqDvDX716lWefPJJNm3aRHl5OSUlJWzZssXwmW7duhk6\nItaezdd+10cffWSY/jh16hS3b982ul+dToePjw+XLl0yfFdJSQnV1dUATJ06lZkzZxIWFoaTk1OD\nx/HLjiY3b97ExcUFa2trdu/ezblz59DpdCaPS1EUjh49SkBAAABnz57F09OTGTNmMGLECKPXEISQ\nKR1hUYydRd+9LSoqiuPHjxMREQHoW9muXr2aoKAg4uLiCAgIwMXFhd/85jeGovryyy8TGxvLsmXL\neOaZZwzfN3XqVPLz8wkODkZRFFxcXNi4caPJOX9bW1vWrVvHjBkzKCsrw8HBgR07dtC2bVuCg4Nx\ncnIyazqn9pju3sf48eOJiYnB39+f0NBQfH19AeodV+3UVmZmZp0uj8nJyaxatQpbW1vc3NyYM2eO\nWXEIbZHmaeKhNG/ePNq1a8dLL73UIvu7ePEiAwYMqLeKptYXX3zBoUOH+OCDD5pkf/Pnz8fb25vY\n2NgGx3p6epKZmWlRLbuFOmRKRzy0Wmq9/pdffknv3r1JTEw0Ocbe3p5t27Y1+sarWnPmzGmw2Nfe\neFVVVWXycXlCW+QMXwghNEJ+7AshhEZIwRdCCI2Qgi+EEBohBV8IITRCCr4QQmiEFHwhhNCI/wfH\nIpf6HamIVgAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 4, + "metadata": {}, + "source": [ + "3D Simulation of the sea surface " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "The simulations show that frequency dependent spreading leads to much more irregular surface so the orientation of waves is less transparent compared to the frequency independent case." + ] + }, + { + "cell_type": "heading", + "level": 5, + "metadata": {}, + "source": [ + "Frequency independent spreading" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#plotflag = 1; iseed = 1;\n", + "#\n", + "#Nx = 2 ^ 8;Ny = Nx;Nt = 1;dx = 0.5; dy = dx; dt = 0.25; fftdim = 2;\n", + "#randn('state', iseed)\n", + "#Y1 = seasim(SD1, Nx, Ny, Nt, dx, dy, dt, fftdim, plotflag);\n", + "#wafostamp('', '(ER)')\n", + "#axis('fill')\n", + "#disp('Block = 6'), pause(pstate)" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 5, + "metadata": {}, + "source": [ + "Frequency dependent spreading" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#randn('state', iseed)\n", + "#Y12 = seasim(SD12, Nx, Ny, Nt, dx, dy, dt, fftdim, plotflag);\n", + "#wafostamp('', '(ER)')\n", + "#axis('fill')" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Estimation of directional spectrum" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "The figure is not shown in the Tutorial" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Nx = 3; Ny = 2; Nt = 2 ^ 12; dx = 10; dy = 10;dt = 0.5;\n", + "# F = seasim(SD12, Nx, Ny, Nt, dx, dy, dt, 1, 0); \n", + "# Z = permute(F.Z, [3 1 2]);\n", + "# [X, Y] = meshgrid(F.x, F.y);\n", + "# N = Nx * Ny;\n", + "# types = repmat(sensortypeid('n'), N, 1);\n", + "# bfs = ones(N, 1);\n", + "# pos = [X(:), Y(:), zeros(N, 1)];\n", + "# h = inf;\n", + "# nfft = 128;\n", + "# nt = 101;\n", + "# SDe = dat2dspec([F.t Z(:, :)], [pos types, bfs], h, nfft, nt);\n", + "#plotspec(SDe), hold on\n", + "#plotspec(SD12, '--'), hold off\n", + "#disp('Block = 8'), pause(pstate)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Section 1.4.4 Fatigue, Load cycles and Markov models" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Switching Markow chain of turningpoints.\n", + "In fatigue applications the exact sample path is not important, but only the tops and bottoms of the load, called the sequence of turning points (TP). From the turning points one can extract load cycles, from which damage calculations and fatigue life predictions can be performed.\n", + "\n", + "The commands below computes the intensity of rainflowcycles for the Gaussian model with spectrum S1 using the Markov approximation. \n", + "The rainflow cycles found in the simulated load signal are shown in the figure." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#clf()\n", + "#paramu = [-6 6 61];\n", + "#frfc = spec2cmat(S1, [], 'rfc', [], paramu);\n", + "#pdfplot(frfc);\n", + "#hold on\n", + "#tp = dat2tp(xs);\n", + "#rfc = tp2rfc(tp);\n", + "#plot(rfc(:, 2), rfc(:, 1), '.')\n", + "#wafostamp('', '(ER)')\n", + "#hold off\n", + "#disp('Block = 9'), pause(pstate)" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Section 1.4.5 Extreme value statistics" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "import wafo.data as wd\n", + "xn = wd.yura87()\n", + "#xn = load('yura87.dat'); \n", + "subplot(211) \n", + "plot(xn[::30, 0] / 3600, xn[::30, 1], '.')\n", + "title('Water level')\n", + "ylabel('(m)')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "pyout", + "prompt_number": 10, + "text": [ + "" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAACOCAYAAAA4ut97AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXWuQVMd1/mZ2Zpdd9jX7ZplleT8WFtiEFRDxkg0UWiR2\nEVobFBsKZClxXCkpD4uyq2JUSkqvip0gxVaCIwjEUWK5bEWqRBAkGQQYq5AiEJaJjR6MpRIshtWC\nXrZ4dX5cn73n9u2+c+/svGD6q+ranTt37j3dffqc0+ec7g4JIQQMDAwMDAoO4VwTYGBgYGCQGxgF\nYGBgYFCgMArAwMDAoEBhFICBgYFBgcIoAAMDA4MChVEABgYGBgUKowAMDNKEvXv3oqWlJePvCYfD\nePvttzP+HoNrH0YBGFw1eOCBB9DV1eW4NmHCBOW1J5980vNZ2RLWBgb5DKMADK4aLFy4EAcPHgSt\nXTx16hQuXbqEI0eO4MqVK4PX3nrrLSxYsCCjtFy6dCmjzzcwyAaMAjC4ajBr1ixcvHgRR44cAQDs\n378fN9xwAyZOnOi4Nn78eDQ1NWHbtm1oa2tDZWUlxo0bhy1btgAAPv74Y9x44404efIkKioqUFlZ\nib6+Pggh8OCDD2L8+PGoq6vD5z//eQwMDAAAEokEwuEwtm7ditbWVixevDgpvSdPnsSqVavQ0NCA\nsWPH4tFHHx28XlZWNvhsADh8+DDq6+tx+fJlAMDWrVvR1taGmpoaLFu2DO+88076GtLA4HcwCsDg\nqkFxcTFmz56NF198EQCwb98+zJ8/H/PmzcO+ffsGr5H139jYiP/+7//GBx98gG3btuHP/uzPcPjw\nYQwfPhy7du1Cc3MzPvzwQ3zwwQdoamrCI488gmeeeQb79u3DqVOnEIvF8JWvfMVBw759+/CLX/wC\n//M//+NJ65UrV3DzzTejo6MDJ0+exAsvvIC///u/x+7du9Hc3Iy5c+fihz/84eD9TzzxBHp7e1FU\nVISnn34aDzzwAJ566imcPXsW8+fPx5o1a9LZlAYGFoSBwVWEe++9V6xcuVIIIcSMGTPEm2++KXbt\n2jV4bfr06WLHjh3K3/b09IjNmzcLIYTYs2ePiMfjju+nTJkiXnjhhcHPJ0+eFNFoVFy+fFmcOHFC\nhEIhceLECS1t/JkvvfSSGDVqlOP7+++/X6xfv14IIcQ///M/i8985jNCCCGuXLkiWlpaxP79+4UQ\nQixbtkw8/vjjg7+7fPmyKCsrE++8844QQohQKCTeeustj1YyMPAHMwMwuKqwYMECHDhwAAMDAzhz\n5gzGjRuHuXPn4uDBgxgYGMDPf/7zwRnAzp07MWfOHNTW1iIWi+HZZ59Ff3+/9tmJRAIrV65ELBZD\nLBZDW1sbIpEITp8+PXiP38Dxr371K5w8eXLwWbFYDA888AB+/etfAwBuueUW/PSnP0VfXx/27duH\ncDiMefPmDf72rrvuGvxdbW0tAOC9995Lqc0MDHSI5JoAA4MgmDNnDs6fP4/vfve7uP766wEAlZWV\naG5uxpYtW9Dc3IzW1lZ8+umnWLVqFb73ve+hu7sbRUVFWLly5WAAORQKuZ49atQobNu2DXPnznV9\nl0gktL9ToaWlBWPGjMHx48eV38diMSxduhTf//73cezYMYeLZ9SoUfirv/or4/YxyDjMDMDgqkJp\naSlmzZqFb33rW45Mn3nz5uFb3/oWFi5cCAC4cOECLly4gLq6OoTDYezcuRO7d+8evL+xsRH9/f34\n4IMPBq/98R//Mb7+9a8PBlzPnDmDZ555JiU6r7vuOlRUVODhhx/Gb37zG1y+fBmvv/46XnnllcF7\nbrvtNmzfvh0//OEPcdtttznouP/++3Hs2DEAwPnz5/GDH/wgJToMDLxgFIDBVYeFCxfizJkzgy4T\nAJg/fz7Onj07qBQqKirwyCOP4HOf+xxqamrw7//+7+ju7h68f/LkyVizZg3Gjh2Lmpoa9PX14a67\n7sKKFSuwdOlSVFZWYu7cuTh06NDgb/xY/3RPUVER/uu//gtHjhzB2LFjUV9fjzvvvNOhcFasWIE3\n33wTI0aMQHt7++D1np4ebNy4EatXr0ZVVRXa29sdQWe/sxADg2QICWEOhDEwMDAoRGRsBrBhwwY0\nNjY6LJtDhw7huuuuQ0dHBzo7O/Hyyy9n6vUGBgYGBkmQMQWwfv167Nq1y3HtnnvuwV//9V/j8OHD\nuO+++3DPPfdk6vUGBgYGBkmQMQUwf/58xGIxx7URI0bg/PnzAIBz585h5MiRmXq9gYGBgUESZDQG\nkEgkcPPNN+NnP/sZACu/ed68eQiFQrhy5Qp++tOfKvOqTZDLwMDAIDUEEelZzQK6/fbb8cgjj+Cd\nd97B3/3d32HDhg3ae4UQpgiBTZs25ZyGfCmmLUxbmLbwLkGRVQVw6NAhrFy5EgBw6623OlLsDAwM\nDAyyi6wqgPHjxw9u5PXjH/8YEydOzObrDQwMDAwYMrYVxJo1a/Diiy/i7NmzaGlpwX333YctW7bg\nK1/5Cj799FOUlpYObs9roMeiRYtyTULewLSFDdMWNkxbpI68XAgWCoVS8mcZGBgYFDKCyk6zFYSB\ngYFBgcIoAAMDA4MChVEABgYGBgUKowAMDAwMChRGARgYZBl33gksWgR0dQHnzuWaGoNChlEABgZZ\nxvHjwIsvAjt3WsrAwCBXMArAwCDLKCuz/nZ2AmYpjEEuYdYBGBhkGefOWZb/li1AdXWuqTG4lpA3\n6wBUB8IAwKOPPoopU6Zg2rRp2LhxY6Zeb2CQt6iuBp580gh/g9wjY1tBrF+/Hn/6p3+KtWvXDl7b\ns2cPnnnmGRw9ehTRaBRnzpzJ1OsNDPIWd95pxQHKyoAnnjCKwCB3yOqBMI899hi+9rWvIRqNAgDq\n6+sz9XoDg7yFCQIb5AsyNgNQ4Y033sC+ffvw9a9/HcOGDcPf/u3fYtasWcp777333sH/Fy1aZDZ8\nMrhmYILABunC3r17sXfv3pR/n9UTwdrb2/GZz3wGmzdvxssvv4zPf/7zePvtt91EmSCwwTUMEwQ2\nyBTyJgisQjwexy233AIA6OzsRDgcRn9/fzZJMDDIOUwQ2CBfkFUF0NPTgx//+McAgOPHj+PChQuo\nra3NJgkGBgYGBr9Dxg+E6e/vHzwQZsOGDdiwYQPa29tRXFyMHTt2ZOr1BgYGBgZJYBaCGRgYGFwj\nyOsYgIGBgYFB/sAoAAMDA4MChVEABgYGBgUKowAMDAwMChRGARgYGBgUKIwCMDBIAnOCl8G1CqMA\nDAySIF2btxlFYpBvMArA4JpAJoVrujZvM7uAGuQbsn4gDAB885vfRDgcxvvvv5+p1xsUGDIpXJ94\nAujtBXbvHtr+PWYXUIN8Q8YUwPr167Fr1y7X9XfffRfPPfccWltbM/XqawLGXRAMmRSu6dq8LV2K\nxMAgXcjqgTAA8Od//ud4+OGHM/XaawbGXRAMQYRrrpSr2QXUIN+Q1QNhnn76acTjcUyfPj3pvaoD\nYQrpKD3jLggGEq5+QMoVsJSB398ZZBaFNL7ThavmQJhPPvkEN9xwA5577jlUVlZizJgxeOWVV5Tb\nQes2NFq0yB64vb3X9sBVHRrid4Bc7QOJ6H/rLaC1FaisBBoagEQiPXXq6rJmVp2dxh2TTyik8Z0p\nBN5IU2QQJ06cENOmTRNCCHH06FHR0NAgRo8eLUaPHi0ikYhobW0Vp0+fdv1OR9aNNwoBCNHZKcTA\nQCYpz08sXGjVHxCit3fo9/nBHXdYz7vxRu8293ufH3D6qdTXp69OAwPWMwqRh/IZhT6+04GgIj1r\nCkDG6NGjRX9/v5ooTSWupoGbToFI8DtA0jmQcqF0iP6qKrseixc76xS0fXX3Z6KfDFLD1TS+8xV5\nowBWr14tRowYIYqLi0U8Hhdbt251fD9mzJjACuBqQjoFIsHvAFHdl6olz5XJunX6Z8TjttBOJFKr\nn0x/ImHXQ65T0PbV3Z+JfspnZELhGSWaP8gbBTAUpEsB5JIx8206m6olzwWv1zOuvz67gjRo++ru\nz0U/5XI2kgmFly0lahRNchgFwMAZc8yY7DAPMenixUL09OQPo6bDfdTSorfysyFIuQBIJKw+vf56\nf32qmz0FdTukQwjlcjaSiX7KlhIttNlaKjAKgIEzZrYs1FwzKQmoeNwpHNPhPqqudtZNFshez7/j\nDiGamoSoqbGUYyqCQm7bXLR1Ot5JfFlX5+yjbAjSdPnZeX8uXJgdYyffZtX5CKMAGDiz65jHy6JL\nZaqeTiZNxdrUZdCkarHecYcdjKVCdQsiDEtLnc9IRXjKbZtJgaBr+1TeKT+L+FI2SnTCOdVZRyZd\nJjKfZUMBmyBxchgFoMHAgNpl4CXEUpmqp5NJU3FhyRk0FRXegzSZkOA0VFU5Lb0gwjASsZ8TjabW\nPrxt77jD6sumpqEHnVXQ9XEq/at7lt/2S3XWkcrv/CoNoh0QoqMjfxRToaMgFYBfK17lBvIahEEC\nh5lM+6yrE6Ky0t9gljNo5PRJGcmEBNEQi7kFbRBhWFNjPSccFuLo0eT3J0NQ4Ra0f9I5u9A9y2/7\nyb8PKqSD1MFvuw4MCNHdLURrq9Oo8kNbLmJzhYK0K4DXX39dfOc73xH33HOP2Lhxo3jsscfE66+/\nnjKBvogCAg1YFdPS70nwAJa1KA8Ir0EYJHCYbqbmFu6cOfazY7FgmSPJhEwyIZGuGU0iYcUlglrr\n6XLFBFUYfuuti7l4PcsPb/N71qyx3HgUO/Gqi1dcxs97h9qufsZBNmNzhTbbSJsC2LFjh+js7BTL\nli0T3/jGN8Q//uM/iscee0x84xvfEMuWLROzZs0S//qv/zpkgpVEAVomv+MOy58ciQhRW2sxuYpp\nZR9lZ6d7IKUT6WZqTj8pruJiSxlwZua+9a4u72eqBkMyQZeuBVepQI4/DMUVk6l4gSrmIgfI5ff5\nUUb8HnkVtFdd/Lo0dXGhobarbhyUlNgJAFwxZTqwm6lEgXxVLGlTAJs3bxYffPCB9ofnz58Xmzdv\nDvQy30QBIhZz+hdVFj1gWV4qpiXG6uiw/dbp9oly62/2bNsfnQ6m5s+gAcMHFA1g7ltvbvZ+Zir1\n91LEqnbxYwGqfqu6xp8lz3yCwkuwBRnMuoVyfNVyMl7zwx/8HtmN51UXP2m8RUXJ+YDzdmOjO3tL\nl+68dq1tZBHdPA41VEUeFJlKysj2uhe/yKsYwPr160VDQ4NjO4i//Mu/FJMnTxbTp08XK1euFOfO\nnXMTBQw2bne3OhMFEKKsTO9S8FIKyZjBT0fraPLK5ggCL/r5gIpGk7dF0Pr7+Y0s6CklsLbWuuYV\nt1AJR9U1EliRiP+4QSqZW8mUFk95JMOE6CSBJ6dC6lI9hXAHs1V08Xt0/BR0Rsd5mfpUt7pbNbOh\n2aiXguPXu7udcShAiPJy/zPwVDL0ZFB7eK1i9wvVrDzfUlLTrgDeeustcffdd4uenh5x0003iZtu\nukncfPPNvh6+b98+8eqrrzoUwO7du8Xly5eFEEJs3LhRbNy40U3U7xSAypqqqhJi6VLL2uUCzw9D\n+B1Ifjqa30NWuB9mGApTE/0jR9ptceCA27cuP2coi9N0baab6tOsjF+TrXdVUJMEa22tLTBnz05u\nZU2aZLVDXZ3VBrp4kM6VJIRzGwseb1EpJyok2PmMVGXZqtwgI0fadfSyJINkaCWzQnkbt7cnnxXL\nMxvZyAmSIDEwYCmDkhL7GT093vR61U/Vn+lsKx1Us/J8Ev5CZEABtLe3i82bN4sXXnhB7NmzR+zZ\ns0fs3bvX9wu8NoT70Y9+JP7wD//QTRTgsJCIcaur1VZusgGeDLIFyN1PvKO5JUiWbixmWacqi05l\ndZBCAYRoaNArFTmYzZ+RbPrpFZhLNuVP5pYhcMWgSgn0mz0k9x0XEg0NesVKtHEXWDyutrxlZUT9\nQoqquNj+PhSy/lZU2HTz+pHwVFnTXi4Z2Q2iMjBkfvGboeWVjaZynQ4bZrcNWefyTGVgwBoLs2db\n/UBxiIoKtx+f90ljo9Weixa524PPnrq7VVyYvH5CuI0vneL386wgyLS7Kh1IuwLo7OxMmRghvBXA\nTTfdJP7t3/7NTRQgNm3aJDZt2iRaWzcJYI+LabiPkrsa+AD3Sk3j17iPlQ9smUm58CaBw5lh0iSn\nf5ULM3qWHMNQWV2RiFWPxYu9U1dpMHpZ58kCbSoBQe8ZMcJpsanacdIkq/2jUWtm5scVwcEHbnGx\nU6AvX67PYpEFcGmpJQhUljf1GykjnXtDJZwHBiw3T22tJQhlpcBjTCoQPdwNwnmVC1LOX93dyYUW\n97er4iay8lcVctPw9iotdc9uRo2y3Y2A9V6e+bRunXu2oLPa29v9CdFks0/+nnRls+VrcFeHPXv2\nDMrKTZs2pV8B7NixQ2zatEkcPHhQ/O///u9g8QudAvibv/kbccstt6iJYpXQ5UCHw25mjkbdA7y+\n3snIoZA1mPlUv7vbXiRWV6e3yPg7KyvdDMIHQDTqtHhoyssFgbyAZmDAss50FiIXrqr98WmGUl1t\nCatx4yyaamosYepHkNbV2UE/Loxra9VKgtc5HvfNFoM0UHvHYs4+IcuOQ+Wa45/5s1WzuAkTLHpJ\nkBHtpLTLy9081dOjzp6RZ4Z+3I/d3VbbcuHPwduXlIqX0FLFLmT+5TxIhQesice5sSIX2TDifMHb\nhX+WeVuODQSFnHBBszY/gfFUU8rJAPBLWxClkSlFk3YFsHHjRtHc3CwWLFggFi1aNFj8QqUAtm3b\nJv7gD/5A/OY3v1ETxSohdyy3SlXWlBDqbAe5EMNXVFg+WT6LCIfd1mhvr/N5xcXujqPBV1RkuYVI\n2PPBQIKgp0c9U+HvJJeXygrmA11l/ZGyUwlnfh8Jw1jMeqZKYMiCkb+T2tHvAi/VjINmUirLjkP2\nwZJClt/NU2OXLlW7i0pLhRg71tlGXV1W3/BrZGETr6hoS+Z+0OXmy+5C2mtp+nS3ayVIPj21p8wP\nlZWWIZBIWH1aWemsqyzgy8stg2TOHJvfQiG3AuWZSlVVtrGhcpmS0lHtC+UlFGWFz+uZDPLMygvJ\neFDVt6m4nzOVnpp2BTB27Fjx6aefpkyQrAB27twp2traxJkzZ/REAVpG4P5aPkj5gOKblgEWo/Hp\nazgsxLx5aqtHNSAoiCm7b4qLnQwsL3YiP6q8UlKXUcKZIhRSC1TOzM3NaoEgF8oQovaheuvcVbw0\nNzsVmezu4FY7zwbSZXrIewKRG2vdOqc/XjWVl40BHiTm2Ttc0IfDTuVO5cAB58ANhaz3x+Pu2WUk\nYtE1b56aNi6IuVKn/3WBYt6XJCAB79gQr2eyfHq6xhU49ZGKz6lwga8bG6R05UylCROssRaNusch\nCWxZmKuC7XI2ljz2dO5PIdyKlfMDDz7LCQTEY0SfKoNLhpyq7DfbKJ3nZ3CkXQF0d3eLvr6+lIih\nQ2Gi0aiIx+Pi8ccfF+PHjxejRo0SM2fOFDNnzhRf/vKX3UQBLuYgqBQA5b/LwoUsDy5oVa4jPtDl\na0VFVocODFgdpRKU5DOVO12OCeh8ssRo8rNVefdckcmZFOSrpnva253ZUjp/cGenc7BSG9PMZd06\nS8mOHOnOCedbRHNloKJfZcVR4S6E4cP12wtUVlptGo3a7hT53byNdCUedwo5VbaLzC/Nzd4rw2U/\nuOwWkRUHF2pUF1Xb8dgQ51ESksOHWwIxHLbqFA5bwrqoyOIp6tvaWrUyVBW5DeUZsY4/VWOIBDYZ\nIfyeUMiOd/GANKdzzBi7DlOnOvtNNsJkPud9wN81MKB3XxK/c1mjy1qSkx28Mpe4YlCt6UmHKyjt\nCmDBggWiurpaLFmyJHAaaKogBaDS8rKLgue/y5afLJD4VDWZEJILMVoi4S3IeKfLMQHZzdHebu2l\nohqUcuqkLLzLy+10QgrGqdwqHDyvHrAtei642tvdbied4qivdyoO3i5yvrdXMFJe7MSFoWypylYo\n7x/iGa5M+f0k1IqKLN5YuNBtUMiKQF5nocuyufFGJ93V1eqZE79/0SL7e85XRUX2KnchrN/JxkE0\n6ubvZIXPMoIW+f3ybEeOJQGWsOa/Ky31VkC1te6tT0IhdyxKNTtRKUyv8d7b66Rt1ix19hUV2XXE\nU6v5fki6vbfk2EIyt2KqSJsCuHLlihBCDKZ+8kJpoHRPugFAewg4NVxbm3stgDxNpMHLB6BqCsoF\nGh/EqhgC+YSXL3daoKpO535TYjDyv0aj7mA0FVr4xIUF5f5XVrrrKReaUZBioL9cWIfDdqoeZ87a\nWrdwUw04OS5QVWXR3N3tvJ98xiqaeT46d++o4hCq4nXfkiXW83idR460Bj0X+pRqSjzCBXFdnS00\nKyutfuf80d2tjqcAllUeiVj1nzdPH2yNRu0Z5sCA8xnxuHrmR4XqobO6iQ5ZGJKf3m87V1e7Z4hy\nhhrNvisqrLgBrXfQxeFkxS7vFuuHLirTpztdT/PmOflKfh6tNdGtcSD3DE8O8JplcH6irKpkmUut\nrRYvcGMsr2YACxYsEA8//LD45S9/6fruF7/4hXjwwQfF/Pnzg1PohyhgUIjIswCvaH8i4WYs2RKm\nTdaIKWSXUEODNThUQk925xAtiYTVkeSaIN99ImENQHlFrCrvXR7E5eXO93HrjRiOnkN/SYjJ7gSv\nwlPouDVSXKx2txHNJBBIwNCzhLCfJw/+cNhtzaksaa/Zwrx5zj7T+bLJLUhCT+f+qKmxBP6aNc4D\nTnQzM94mra3ObCOiu7bWXXcvnztguwGon0MhdZBW5pN43OK3eFwtOLu6nH56HpOiGYiqbvSe4mJr\nTNBn3t+kKIn3eV286koxFb886jUOAUvoysK8ocFWurxdYjH9rI8MOK7YePvzuAQZZLyodmslGrjx\noFo8mUpmlE52Brpf98Vvf/tb8fjjj4vFixeLpqYmMWHCBDF+/HjR1NQkFi9eLLZt2zak4LAnUcCg\noJEHiJeWvOMOp6VCPtCGBttvLa/MVDHY8uXOPO/ly533Vle7Mxc4o5SW2t9xxiwudisfslbkqSp/\nXijkDqiFw06Lh6ahfIAmK2TZ0CZ5XvERXaG60NqFkSPtfZGSzVSoNDY6lZacukuF/Mh8sRe1rywY\naXajWhdAhbeVLBRUQmz6dKfbRl4z4vUuv6WmxlJeKuVTVuZMgaQMNprlyfd3dNgCaPhwq684X3V3\nW6WlxWpL3obFxeoFb3xxXiKhbqegFjwvXrMZOcYnjxO58JTqcNiahcv3lJRYCnTMGO9nyWOQ17Go\nyF4jIo953j6Ubt7Y6HxXTY3/o039yM5A9/u56dKlS6Kvr0/09fWJS5cupURYENAMQBZ6NOhVwVae\n3+1VeF4999HyDqHsGp6ux7/nqYUqS4bcPbIloWJAwH4PDS55EMjCQJWv7pXHLRdaG6BiUtV7dKtY\n+eBSXY/FnNNcryL3HW/vsjKnEKAAnYo/5HYl8EBqMuFRXq72l3MhzwPg5I8ni4+7VnTv8BI2sn+a\n+syP8cJLa6s+uE3GiLyQUqaDK8lw2KpbS4vb560roZAQM2fa4yTZGD1wQO02ikaddQ6FvNswEnHz\nB419ub6yKy/VIq/9oTEA2DETXX9QSbajrx/ZGej+ob0uMwCQNFuBL36SGUYnsOStHfhgpgFPwT6e\nIib76eXFQXyAcCHvFSymwlPNyBJPJjBJUfB6eflzueVEg5jnZasGMbmyaDuAYcPUAre6Wq0EeZ/I\n7gO5v8rLnfQHdZ+o+ruoyFozQm1Lh8hTHWQlShYeF1Bc4ESjtpuI3GMquvy4Njo6bLeNPNMhX7DM\nc1VVdp9Rxg//3o+S1fUPFT7mKA6lGofyLEKlLKuqLJ7h46G4OLkA9Jua7afwcVJZaaet8jUkgHPG\n71UopkOfg8yY5dmXrm7JdvT1IzsD3T+012UGPA1UV2pqrI6UF4Zx/zQvulRNsuQXLrQan1bPyi4Y\n+p8W6ciuFppu803N+HRdLpRWxweul++UBgZNvbu7LcalYBcPjstCjNwWsqCk+MjateqBp3PF8JJs\ndsBLXZ23VUoDxe/zVL5kL4s7SKBRNwsYauE550JY/zc3W7NKyshSuTqopOKmU7Wb6ros8JMpFUqr\n9GonamfVrNWPuzKI8Of3FhVZrlHOv2PG2GeJ8N/V1qp9+vK7ly4NNtNOVsrK3O8guTYU2Rno/tRf\nlTmQAkjGgMOH+2OQ6mp33i3tc87f0dTktnjkPHDyqfJ7iorcefyc8eRUuOXL3e/xSlmjtQh+9pxR\nLf/v6nJav4Az68BL4MjCoLPTuQAraPEbF+AuvXA4ubsnlZKqZakayDrBXFQkxM6dTh6g2SufZa5Z\n4140pmqTZO2QTEFEIvp7uHCUA/Z++MPrN2SN85nHUGIFfgsZCCUl6etvr1Ja6o/HQyG98RRkSxWV\n7Ax0f+qvyhxoN1BZIHJrjxa9eDUwMebRo2ofsBfD0DNowFGQU+VqUVn5crCsq8tSIDTQiflLS22f\nKs8UUAU3k+1VLwe5qchB1hEjnDtiBmFw3VRW1/6667pZQFmZ1XZr1liKRlbAcmAv0wM6WfEjJEMh\nWyjwrLZk7hAVn6nep1rrMFSa01n4pnfpsqCD9H1Rkfe2MOksqWQ3yWNlKGdm540CUB0G09/fLxYv\nXiwmTJgglixZIgY05ixVYu1aZ5ZJVZV7Px7O1DqhQxkytFGariNKStRT1WQCT7X+gAKV3A8t59zT\nDpZyLjn5TktLbXrlrJNw2JmeR4XiDrJ1IWcdDCUNb6iFFGGQQUFBNL8rWdNZ5A36vIqXcJVTCrm1\nrbqX3x8ku2vYMOcz+f9eLpuhKgail4/RUMji72SuLT+FPzdIn+RziUTc7TKUBWF5owBUh8F89atf\nFQ899JAQQogHH3xQeRiMEHYlvCLzPAVQtQ0BL9wqkgOoyQaAfK2iQu2rJ8umuFhvhZWUOBenyXu2\neBWec+41AIuKLBoOHNArg3QMQL8lHLZcIFyY6YLoqudHIvbmYjp+4GmRumcRfwStgxyg1vFVkCKv\n4vXKgApee5T8AAAbIElEQVTaD5TEoBOQlZWWUaGzoIdiod9wg/PAIrkfg9RRLrW1tuLK9gwmm4V2\nDEgVeaMAhHBvBDdp0qTBfYVOnTolJk2apCbqd5VQnUpEq0e5S6OrSy9EZesnkbA1bmWl86ALVURe\nNfhpdStnxEjEUi46RSQz7fLldgB65Eh90BmwBnxQpqcAr04QBBWE0ajlkikt9RZ8cpoluZ/oOuU8\nc0EzebK3O6+ry7nFs9w+FOOor7fTBWmmQC5AipFQ9k0yFwKts+DXaOZE/R/EhSMrYT8ZYqkUry0i\nkgndUMg7nTpZnjzts5NsIVhRkT1+afGk1/18Vp7OIGy6SjpjC0Nx/3DZ6fv+ob3OG7ICqK6uHvz/\nypUrjs8OogBRW7tJhMObBLBJtLXtGVysQv5T7nah9Eta8OU1COvqnMKmpUXNgLQfPcUh/ApMHTPI\nLpeaGr0QogGsmvb7VQS0FkF+L+0/xPfF4d8vWeJUkPKA44NbpoUWgXnRpaozbZvg9Rvd90VF7u28\neenuVgdb+fOS9S1to6xbYd3W5q1QwmGnYK2rc2aIZcs/nQrf8qJTwH5LOGzH7nidu7rcfFZZ6U4j\n5VtRZ7ststFH8h5QfpDxA2GGAi8FIIQQsVhMTRTgGvBckMkZLbxwf5rKnx+E8WnZfLaDjbTCVzWA\nhsKII0ZYylPniyW3lG4pfHW18zxiWSCmmsOd7uwMsrZpaT5vS3mmVV9vucv4+RB8QNL/vb1642LJ\nEr1lKveXfF5yJoufOA8pRn5t6lRrlq2qUyqzUa8SiTh3AuWFb1Mi91tdnfesOV2lrc1qC5VbK1Ml\nm1lAYWQRjY2N6OvrAwCcOnUKDQ0N2nsvXXJ+vnDB+tvZCbzzDnDunPs3kQgwfLj9ee5coKnJmyYh\n1Nc7OoDmZuAnPwGuXPF+RlCUl3t/f/GiVeR7r1wBLl9O/b0dHUB1tf1sGaNGWd+/8459jdonEgGO\nHAFGj7Y+nz8P/PrX9n1FRVZ7y2hpSU6Xrg+8UFxs0SQjFAJ+7/eAnh5g926rPrp3CQGcOQNs3gz0\n9QG9vcDPfgaUlFjfU1t3dgJbtljPBYCqKus9hJ//HCgtVdPJ+2v4cGDyZP29AFBW5nz2UFBXB3R1\nOa+FQkA0an8Oh4Fp05z3vPEGsG+f3Q4cly+7x6YfFBWpr1+6BDz/PHD8uJOujg6L355/3qKZ/14I\n4OxZJ2+mwkMq/pHxxhvAyy8Dp08Hf36qePbZ7L0rqwpgxYoV2L59OwBg+/bt6OnpCfT7ESOsQa0T\nyJcuAe+/b38+cgR46SVg2DDv53JGaGqyhMf06cCxY4HIA2AJh/p66/+ODvv/WMwqDQ3AwYPOwaUa\n8O3tFh2vv24rsaoq629lpSUAg6K4GLjzTvV3kYglCAFb2RKiUUs4rlsH/PKX9nUadNEocPgw8NRT\ntnALhYADByxFoUJJid02yVBU5BQOsZglTGVBFA5bNL34oqW4b7vNMhTq6vTPjkSs0tMDfPQRsGmT\nU2g3N9uK5Ac/sNohkQBqaux3TpwIzJiRvB4ff2wJtOeft6/xvo9GLeWcTJjt3GnRsXix8/oNN9h8\nUVYGLFwIvPqqk7+FcBoAAwPA3r3O9r1wwRpHH3xgfe7oABobne8Khax3qXi3qsp+Z1sb0NrqbfTE\nYpahQHQVF1vGxdtv2+2hUzrDhiU3qFSIRoGZM236QyHrc0ODky8vXgTee8+/0gt7SFRZ4egU/de+\n5u9daUHqkw1vyIfBbN26VfT394vPfvazvtJAVVMjOinJbxASsIJtXot06ursqS6dziMf5KIrMh0U\n3KqutvyXDQ32NJxPUXXbCFCpr3f6Aenwb74YTA56y2mD8jm35N5JdpaB6sCOo0fVR3HSoja+pkDe\n31wV3KXV1AMD/rc0aGlRbyVAwdiSEvvELjngmqwv5dPi+O/otDKqH6X0rlrlbO9Ro4JP9elUrWQr\njqurnXUiF8HAgPO+JUvsHWhVKcIyH8q0qNqKzsX1ch3yZ9TXO4PQDQ3eLq9QyHkCWVAf//Ll3hsp\nqvpY5jM54B+L+dt+RHaxlZVZ/akbY/L9y5ap7xvKdhBBRXqwu7MEnQIALAa7/np3gIiY1++KUd3u\ngMXF+oAiHSQCOLf/BazBEfSADq/Cdz9VnTLkNSDpnITeXivoWVJiZ2jolGEo5F6TQIX2v5Gv19Xp\n0zNps7GmJvvsA9rugC9ik4XUsGHuwSevgaC+kGMltPVxsg3KghaVMOD+cS+e8Spz5ljCXOerp6Dn\nokXOvaookC0v4iPBEXRjs7Iyd7CV/ucnYemC4HyzPsAtbHVKntb2JKNPpxTa291nfMRibuXM3ykX\nP/GMsjJ3HIkvLpVP3hsYsJIPkm3Lrjtd0GwFAQwOcl1n0baqKquwqclu/IoKfScT0wRJ52tqcm4m\n19KiPkR+KIUHr+vrnQfA8wO1VXTLB0sEEQZjxugzPXQWEQ/UET20HkF1L6W+6nah5IHWSMReJU2D\npbJSLzBpp1jVuRBUVHS1t/tbWET9q9o6md/nxxAIujYjFrNo1FmYZEnLO3QSnap6L1pk9cOaNc49\nrKgf5cPp/ayH8DNz7upKnioKWMYcrQjn51PQqWC6c0JUs1Ud3fKZCJwndOeCAM7FpaSQ6ewP2u+J\nFIFKgZWVOd89fLhF91DPB76mFAAvVVV2x0aj3hYX7c3NmYyvqgXs1EIaOH4zfegAeoJKwHLhQ0rK\n65mhkJWJ0t3tzDjgg4ny+pMJdHk7WT+LzAC3Feu16IyECm1rQLuYqk684s9Lth0uzzCJRKwBoprl\nqA4ukZWmiv6yMqfgpvROOfNJJ4xoN0l+b3W1812ksEpL/WWhycJBpRj4c3SGBr+H9vmnE850yq2x\n0d0nnHdp/YWfg3rkftEpAjqNy2vdB2ALUf5OOm1LPomM3HKqA2CoPh0dTl4idy/fbYAXOqCFnwvC\n7+NuO93CUDqlTP6utNSSUfLus3l1JGQuQQrA7/YF7e3uTpAtZ75jpsoHH2SzMdU+8/w5pKgiEUu5\nqIQRDWJanMYhCyN+/iofOKp1AnzKLp9+5lW45U3uIt29S5c625v/L++lxOuoEiCRiPU8nUBQbQlB\nllMk4j5QRyd4olFnu5JvW9ePpMiKiqz60S6xdXXO95OLi+5V8RHFmng7hcNWvfm6ieJi9+FCjY36\nFETZ9ULPkHe95fwnjyGVMuW8xK3plhZL8HF+4sYACcVYzNlG1AZ8gR7vW116s2oMq/pKxcM0Fklp\ny0qeBLxqNsUPaOEuVD5L4lu06MaKatw1NanHgXyc7FBkZ6D7h/7K9AOAiMWSC+WiImsQyX5AzkzD\nh7v3hFd1DF2rrLQG3dKl6t1GyXIgrF1rM3llpfWdlzUZiThPzaLpIx+wxOC64GBJiTUY+UZ1xIyc\niZIF7XjuOw1YEtZeMQb5KER+EDY9Rx58QtgHqPC2oJWPukFN/RIK2cG6SMRtOQ0MOAVsLOYUaEuW\nOI++lM945fzT2Wn1i86N1NCQ3IWh2syvu9v5OR5XH59J90yd6j074ftkye8F7M0DSTCWl1ufVb5p\nebtscv9w5SHzY3GxFTvgSoRmquSSGTdOvw9+NKo/2IcbN8OHWzTX1FhKT7Vqn+ghnlTtnMs3hCQj\nJ9nmjrKskNdx1NZaz5ENmI4Od3tR0J/zOj8XO12yM9D96XltegHAYbF7Fb61rnyGquzWqanxXinM\nlYW8W6O8kRcJbdmqmDRJ7ZbQMRgf+DU1zsPEvdwlvG5LlzpPLyPavGISHR3u/WjIdSaE9RyVm00+\nmYp+ozt3ltOkGugU7E4k7H2aeObS0aPey//5Oaw0mKurnTOO4cMtXpLdgvKUm/uRvdwdTU16hUWb\nrVHGFvEwKR0uFKqr3W4zWWEIod7JlvOWqp/lBVv8Hd3dtrLr6HALLzoRTwibfn4+AgXgZf5UWbGq\nMeQnPsN309UpQHlvfxoHNFuWz/6QjQT+Hno3983L7jg6QpX3KecJGh/kVqSzHuRjYRcudJ7lkU5c\nMwpACPduoKrBRg0oT21jMX+ZGfQ7mdF6e52+UxKW8n3U8XSyl3zoiCq24HVIRiqltdUOQvldEak7\nBUm2Gnnb0+xA/l1jo5OR+bSaCxu5/rzU11szo5ISa8DwM1ZVrj9arUrCnw8yEpzr1jnfpXMpELjy\n5MYHt0YpA2RgwE1Xc7Obh2Sho9r2QKZRpo+nAZPgUAkhwLIo5fblZ03Qc7my4/1ZVGSfpyyEm36V\nMi4vt8YKZTVx5c+VS0OD9Vmmj7LE+Cl13KhQ8SltekcuqvJy23jhylveQp0/i58QSHtEUVygvt6m\nRz5ClWIRvE05vTJU9POEiHScBUy4ZhRAaalTmMm7eMquGDkrI5FQ+5XlU7hoI7HGRvdOndw/O2qU\nxRSLFzu3Q1AFBgF9UFnlt9WVyZOtHRZLSvTuINki190jH4hBVgoXzqp0S0qr46mkiYR7EHNrmg+W\nxkbnNJum8HKfqOju7VX7aGX/PR/w3AfO6yK7XlQDjr+rq8sa6CoeIqHC+4R4hgY7F+Dk+qqqcmbc\nkMDlLjyVINGlAXMhxC1PopnWacgCn0MXJyopsc+Y4IKOK8b2du9gbm+vEKtXq40SGh+xmHMmOmyY\nOybGz8vm/SOEW+EK4ewDlUKmADlPRyZBLAfFiVdU/aprUxmqcaZL7x4qrhkFwDs7FHJbHrW1TheD\nbO3T2Z+yIgFsZlJ1BOCeend2Ov2mXMDJTCczOA3uqiqn356EoCwM5bNKCQMD+mMbVa4yslpVATv6\nv6jIdjWRxc2zHmiQyO0jb/nLrS8h3PQQDdOnuxVMdbU95ea0kg9adtmVl1vv5lYm0SwLExp03M+s\n+j0JAP5+CqbLKa6yAdHc7JyJUAYQpWTKPnxuTcvuSlU8SOZDngZMylgWQqtX264GL+Ekz5x4G/PP\ny5c7XXxcgMrtQ39Vh6DzU+W8LHyVMOQxKW78eQlm+YhW1ZGwQjj5W+4fMnoo002OHfmFSvGoaB8q\nrgoFcP/994u2tjYxbdo0sWbNGvHb3/7WSZSkAORADR84vb1uAcUbVPWdPGjkaaFKw3MaVHv6c5eA\nvLBGlcJJi5YSCfWzuSKiU7/kgUqlocFWUJRVozpgnqy1jg59nr7KqlG1jyzI+ZSWn2zGFVx3t1Ng\nyNYpn3FR3bmFq4rfyDTT82nHzaYm77x81bnHdL4z1YXSKVWuG54dpHoPXyfBLeiKCrfVzWcUXAh6\nxSZUwtLLsuTWLu9D6g/VxmfcEJFBtPGFhyQo+fOjUXdSAH8GD8DrhKHK2lfFnFTtoGtbzt+8f+RZ\nqVfsKBn42hdOp98ZRBDkvQI4ceKEGDNmzKDQ/9znPif+5V/+xUkUUwBVVW6LkvsK+aBXRf9p+s1z\nvjnIamtosHO4eU4xdRYPhnHBy6eRs2dbgnXWLPfiLZ7CKTM5z07hFgtlPqh84LIwIr+kTvHJ7gWV\nn1g1JVZZfZxmrhTkAdfUZFv3Kt+z3A88s0ilhGVrUyUs6H5VnEa2UuXZl27WQy4nlQJS7UhJbUuW\nKq+DKhBJhZSmlxDkq3/lhVoyP6meI9cLcKciy8qdlLEf+Hm+Cn6Eoa5eOoWnEuxePMP5k8scOe0z\nqMBWJRQUbAygv79fTJw4Ubz//vvi4sWL4qabbhLPPfeckyjYh8JTwI0EXnm505Kg7B/a2kFuTJXV\nwME7hwd9uW+zqcli4PJyt+VMz1R1ssryp2u88+XslGRbBk+fbv1GDkBzxcWtfVW2wdGj1pT6wAF3\nBhFXLnxdAYeXUuCCtbXV39RZXvCjAgXnmprcK0EJVAeubEnxyX9pkKvaSOWWULnaZPdiPO6cCajO\ncVYFBXX+fxmqXHZV3yQLSHoFLuU0xSDCSfV82ZhKVfDp6qVTDCrB7vd9nL+92txPXXSGS8HGAP7p\nn/5JlJeXi/r6evGFL3zB9b2lADYJ6zCYTWLPnj1aQa7yYeqsAK8BIW8ZIQedenvd7+KCV3WAvfyd\nzjXV1OS+h+fM88U03H9NA4zHJ3TBTjnQpWJalRILYv3J1lNJiXtPfR28+olo17mAOFTKNhm9qnu4\nW4L6mdxBnA+SBYJ1bguehhkkHXCofmM/gnBgwFLcOiUb9PmyoEu34MuEK4XD74xKVxfZTZbOGEBe\nHwijwptvvimmTJkizp49Ky5evCh6enrE9773PSdRgKthdI0lL3PneeHch8t/42V906DmJzbRM8mq\nLCqyhBH33fN0x1jMqUB4EI0gW4GypcwFB3+PyhepchHJK0I5o8o54TJNFFBPZborhO2X5cJfd9ap\nVz8RZMXk5QLyWuyVSj1kdxJXcMQnw4bZe9XEYupdW72sUy+o3HGZFHYEv0I6iAUsu2zTGfzMJLzi\nDKnUxQ/Pp4q8VwD/8R//IW6//fbBzzt27BB/8id/4iQKcDG5jvF54JAv5PJy/ch5wiRgVecN80Ux\niYR7is87n9MoKwcC73wSkJGIM2isCxzqfJlykFzOhpGfx+/nLh5uqagYPsjUXRba8+YlF+46QSPH\neLxcJbKPPZmFmaxOqtiESjHoZiZBBbZMj5/20QUZhwK/gi2IBUzPyZYSSyd09UylLnLWUUHFAI4c\nOSKmTp0qPvnkE3HlyhWxdu1a8Q//8A9OogJUQjfdlq13P78hQc0FJA/0CuEUCF7LuLl/WTcdVq3U\nVCmTZL5MehenRx7A/Hc62jhUDJ9ssKsWUskZW179p6MlyCDTBZN1SFYnr9iE7NulkurMSUWPn/bR\nBRmHAr9tfrVZ86kinfVUxcoKKgbw0EMPDaaBrl27Vly4cMFJVIBKcEaV3So6H7DqN7xjZX8+7xw/\nwUrKLKLgMQd/H9/jXZUi59fiVg3WZP7tVDIukvnp5dW43F2iGzjpsAZ1qY1e/SMrKl2dvJQJnzF1\nd6dneb+X4k72Gy/XWKZwNVrzqSCd9aRnJRsbqeCqUADJkOpBZQMD/vKJ5d+ohKfuOUEtMlmz8/eR\nS0mXIue1pD3TCKpU+K6R1dXZne6rUg/99o+cPut1XzaQSnuRj5rWPQx1T3mD7CATY6OgFYAQ6WtU\n3XNStZ5TQbJsknwCd5vJZxJkGnLqoS5gp7o/G/0oRGZyvjkykVJocPWh4BVAPiCoz1oWDKosgXzx\nteoEmZ+4QqYgt3cyYei3f9JpoaVLQOvaP1/4wyC3MArgKkOyYCu5fjKRMpYKdBkM69YNba+UdCIf\nhWG6aEpnNorBtYegsjMMg5yirMz629kJbNnivtbcDLz4IvD880A0ClRXq59z553AokVAVxdw7lzm\n6a2oAM6cAXbutN6dSFifn3/e+pxLPPEE0NsL7N6tb69sI100qfgFsJ755JP5U1+DqwQZUkRDQp6S\nlREkC7amMx9biKH7onUZDPlodV+LMJa+gReCys7Q736UVwiFQshDstKGO+8Ejh+3rLknnvC22s6d\ns+7fssX7vq4uyxrv7PS2MhctsmYUgGWRPvlkanWQ6fJLp4GBQeYQVHYaBZADpEsIc6RbURgYGFx9\nCCo7TQwgB9D5cVXYu3evr2f69QHno3/cL/y2RSHAtIUN0xapIycK4Ny5c7j11lsxZcoUtLW14aWX\nXsoFGTlDfb1VqqqS35tu5r6ag4VmoNswbWHDtEXqyIkCuOuuu9DV1YX/+7//w9GjRzFlypRckJEz\n/OpX+ZMxY2BgULiIZPuF58+fx/79+7F9+3aLgEgEVX5M4WsIQVxABgYGBplC1oPAR44cwR/90R+h\nra0Nr732Gn7/938fmzdvRhlJRViBDAMDAwOD4MjrLKBXXnkFc+fOxcGDB9HZ2Ym7774blZWVuO++\n+7JJhoGBgUHBI+sxgHg8jng8js7OTgDArbfeildffTXbZBgYGBgUPLKuAJqamtDS0oLjx48DAJ5/\n/nlMnTo122QYGBgYFDxyshDstddew5e+9CVcuHAB48aNw7Zt2wouEGxgYGCQa+QkDXTGjBl4+eWX\n8dprr+FHP/qRQ/jv2rULkydPxoQJE/DQQw/lgry8wejRozF9+nR0dHTguuuuyzU5WcWGDRvQ2NiI\n9vb2wWvvv/8+lixZgokTJ2Lp0qU4l8ld7/IIqra49957EY/H0dHRgY6ODuzatSuHFGYH7777Lm64\n4QZMnToV06ZNwyOPPAKgMPlC1xaB+SJdmxClA5cuXRLjxo0TJ06cEBcuXBAzZswQx44dyzVZOcPo\n0aNFf39/rsnICfbt2ydeffVVMW3atMFrX/3qV8VDDz0khBDiwQcfFBs3bswVeVmFqi3uvfde8c1v\nfjOHVGUfp06dEocPHxZCCPHhhx+KiRMnimPHjhUkX+jaIihf5NVWEIcOHcL48eMxevRoRKNRrF69\nGk8//XSuycopxDW8J5IX5s+fj1gs5rj2zDPPYN26dQCAdevW4T//8z9zQVrWoWoLoPB4o6mpCTNn\nzgQAlJeXY8qUKXjvvfcKki90bQEE44u8UgDvvfceWlpaBj/H4/HBShUiQqEQFi9ejFmzZuG73/1u\nrsnJOU6fPo3GxkYAQGNjI06fPp1jinKLRx99FDNmzMDtt99eEG4PjkQigcOHD2P27NkFzxfUFnPm\nzAEQjC/ySgGYBWBO/OQnP8Hhw4exc+dOfPvb38b+/ftzTVLeIBQKFTS/fPnLX8aJEydw5MgRjBgx\nAn/xF3+Ra5Kyho8++girVq3C5s2bUVFR4fiu0Pjio48+wq233orNmzejvLw8MF/klQIYOXIk3n33\n3cHP7777LuLxeA4pyi1GjBgBAKivr8fKlStx6NChHFOUWzQ2NqKvrw8AcOrUKTQ0NOSYotyhoaFh\nUNh96UtfKhjeuHjxIlatWoUvfvGL6OnpAVC4fEFt8YUvfGGwLYLyRV4pgFmzZuGNN95AIpHAhQsX\n8P3vfx8rVqzINVk5wSeffIIPP/wQAPDxxx9j9+7djiyQQsSKFSsG95Davn37INMXIk6dOjX4/1NP\nPVUQvCGEwO233462tjbcfffdg9cLkS90bRGYLzIQoB4Snn32WTFx4kQxbtw4cf/99+eanJzh7bff\nFjNmzBAzZswQU6dOLbi2WL16tRgxYoSIRqMiHo+LrVu3iv7+fvHZz35WTJgwQSxZskQMFMi5iHJb\nPP744+KLX/yiaG9vF9OnTxfd3d2ir68v12RmHPv37xehUEjMmDFDzJw5U8ycOVPs3LmzIPlC1RbP\nPvtsYL7IyxPBDAwMDAwyj7xyARkYGBgYZA9GARgYGBgUKIwCMDAwMChQGAVgYGBgUKAwCsDAwMCg\nQPH/x7b+U3K6ZM4AAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 10 + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Formation of 5 min maxima" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "yura = xn[:85500, 1]\n", + "yura = np.reshape(yura, (285, 300)).T\n", + "maxyura = yura.max(axis=0)\n", + "subplot(212)\n", + "plot(xn[299:85500:300, 0] / 3600, maxyura, '.')\n", + "xlabel('Time (h)')\n", + "ylabel('(m)')\n", + "title('Maximum 5 min water level')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAACdCAYAAAC9+K9OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt4TNf6x78TEpIjZIRcNCQIaUQQDUqFtCfq8qsm6EWU\nupXDaVWrF0dx0Bunl/MUrbZ64nrEQR3qlDgOklBtRRsV5bTpg5GWpCSNSygaeX9/zJmdPTt7z+w9\nM3tmknk/z5MnM/uy1rvWXvt913rXu9YYiIjAMAzD+Bx+nhaAYRiG8QxsABiGYXwUNgAMwzA+ChsA\nhmEYH4UNAMMwjI/CBoBhGMZHYQPAuIzg4GCYTCZPi+FWNmzYgMGDB3taDJdiMpng5+eHmpoaXfOJ\niYnBvn37dM2DsQ0bAB8hJiYGTZo0QUVFhdXxpKQk+Pn5oaSkxOk8rl69ipiYGKfTcTULFy6Ev78/\ngoODERwcjObNm7vMUD322GP497//7ZK0HMFdyloPDAYDDAaDp8XwadgA+AgGgwEdOnTAxo0bhWPH\njx/Hr7/+2uBfQoPBgMzMTFy9ehVXr17FlStXvNJQOYOj6zmrq6tdLAlTn2AD4EOMHTsW69atE76v\nXbsWjz/+uJXy2LlzJ5KSktCiRQu0a9cOixYtEs5t2rQJHTp0wNWrVwEAOTk5iIyMFEYVfn5+OH36\nNABgwoQJ+OMf/4hhw4YhODgYKSkpKCsrw8yZM2E0GhEfH49vvvlGSFt8r+X++fPnAwDy8vIQFRWF\nN998E2FhYWjTpg22b9+OXbt2oXPnzggNDcWSJUsUy01EqhWkpUe9Zs0atGvXDqGhofjggw9w5MgR\ndOvWDUajETNmzBCuX7NmDVJSUqzK8eGHH6Jz584wGo146qmnZPO5ceMGAgMD8csvvwAAXnvtNfj7\n+6OqqgoAMH/+fDz77LMAbD+TAQMGAABCQkIQHByMw4cPAwBWrVqFLl26oGXLlhgyZIjVCM/Pzw8r\nVqxAp06dEBcXZ7dOLl++jMmTJ6NNmzaIiorC/PnzUVNTg5s3byIkJAQnTpwQrr148SKCgoJQXl4O\nAPj000/Ro0cPGI1G3HPPPTh+/Ljd/Bg3QoxPEBMTQ3v37qW4uDj673//S9XV1RQVFUVnz54lg8FA\nZ8+eJSKivLw8+vbbb4mIqKioiMLDw2n79u1COo899hhNmDCBysvLqU2bNrRz507hnMFgoFOnThER\n0fjx46lVq1ZUWFhIN27coPvuu4+io6Np/fr1VFNTQ/PmzaN7771X9l4iogkTJtD8+fOJiCg3N5ca\nN25Mr7zyClVXV9NHH31EoaGhNGbMGKqqqqITJ05QYGAgmUwm2bIvXLiQWrRoQS1btqSEhAR6//33\nFevpzJkzZDAYaPr06XTz5k3as2cPBQQEUEZGBl28eJHOnTtHYWFhlJ+fT0REq1evpv79+1uVY/jw\n4XT58mUqKSmh1q1b0+7du2XzGjBgAG3dupWIiAYNGkSxsbGUk5NDREQpKSlCvdt6JiaTiQwGA92+\nfVtId/v27RQbG0vfffcd3b59m1599VXq16+flYz3338/VVZW0o0bNxTrwJJmRkYGTZs2ja5fv04X\nLlyg3r1704cffkhERJMmTaK5c+cK97777rs0dOhQIiIqLCyksLAwKigooJqaGlq7di3FxMTQrVu3\niMjcJvft26f4LBj9YQPgI1gMwKuvvkpz5syhnJwcuv/++6m6utrKAEiZOXMmPfvss8L3S5cuUbt2\n7SgxMZGmTZtmda1YiU+YMIGmTp0qnFu+fDl16dJF+F5UVEQhISGy91runzdvHhGZDUBgYCDV1NQQ\nEdGVK1fIYDBQQUGBcP1dd91lZajEnDx5kkpLS6mmpoY+//xzioyMpI0bN8pea1F+58+fF46FhobS\n5s2bhe+jRo2id955h4jkDcChQ4eE74888ggtWbJENq/58+fT008/TdXV1RQREUHLli2jP/3pT/Tr\nr79SYGAg/fLLL7L3iZ+JVFkTEQ0ZMoSysrKE77dv36agoCAqKSkRZMzNzZVNW5pmWVkZNWnShH79\n9VfhfHZ2tmC89+7dSx07dhTO9evXj9avX09ERNOmTROMuIW4uDg6cOAAEbEB8AbYBeRDGAwGjBs3\nDhs2bJB1/wDA4cOHce+99yIsLAwhISH48MMPrSaOW7RogYceegjffvstnnvuOZv5hYWFCZ+bNm1q\n9T0wMFBwd6ghNDRUmKsIDAwEAISHh1uld+3aNdl74+PjERERAYPBgL59+2LmzJn4+OOPbeYnTVtt\nXgAQEREhfA4KClIs58CBA5GXl4fCwkIkJiYiLS0N+fn5OHz4MGJjY2E0GgHYfyZSzp49K7jajEYj\nQkNDAQDnzp0Trmnbtq3N8ovT+u233xAZGSmkN23aNFy8eBEAkJqaiuvXr6OgoAAmkwnHjh3DiBEj\nhHvffvtt4T6j0YiffvoJ58+fV5U3oz9sAHyMdu3aoUOHDsjJycHIkSPrnB8zZgwyMjLw008/4dKl\nS5g2bZpVhMk333yD1atXY8yYMVa+cGcJCgrC9evXhe+lpaUNfnK6b9+++P7777Ft2zakpqYiPj4e\nJSUl2LVrF1JTU4XrbD0TuTpq164dVq5cicrKSuHv2rVruPvuu4Vr1NZt27ZthegxS1qXL18WfPmN\nGjXCI488go0bN2Ljxo0YPnw4fve73wlyzJ0710qOqqoqPProo45WGeNi2AD4IFlZWdi/f7/QkxZT\nVVUFo9GIgIAAFBQUIDs7W1AWN27cwNixY7F48WKsWrUK586dw/vvvy+bh3RkYY8ePXpgw4YNuH37\nNnbv3o0DBw5oL5gCn3zyCSorK0FEKCgowLJly5Cenu5UmmrLZ+u6oKAg3HXXXXjvvfcwcOBAAEC/\nfv3wwQcfCN8B28+kdevW8PPzw6lTp4Trp02bhtdffx0nT54EYJ7E3bJli+YyAkBkZCTuv/9+zJo1\nC1evXkVNTQ1OnTpl9XzGjBmDf/zjH8jOzsaYMWOE41OmTMEHH3yAgoICEBGuXbuGnTt3ahr5MfrC\nBsAH6dChA3r27Cl8F/cGV6xYgT//+c9o3rw5XnnlFTzyyCPCuTlz5iA6Ohp/+MMfEBAQgL///e+Y\nN2+eoHzE6UhjvOVivsXfly5din/9618wGo3Izs4W3Ahy18p9t8WmTZvQqVMnNG/eHOPHj8ecOXMw\nbtw4xevVpG25Rq6c0utspTdw4EBUV1ejd+/ewveqqiohugeo+0zEPeigoCDMnTsX99xzD4xGIwoK\nCpCRkYHZs2dj9OjRaNGiBRITE63WKmgpHwCsW7cOt27dEqKKHn74YZSVlQnne/fujWbNmqG0tBRD\nhw4Vjt9111346KOP8NRTT6Fly5bo1KkT1q1b1+BHdvUJA2ntqjEMwzANAt1GAJMmTUJ4eDgSExOF\nY8eOHUPfvn3RrVs3PPjgg0I8OcMwDON+dDMAEydOxO7du62OPfHEE3jjjTdQVFSEESNG4M0339Qr\ne4ZhGMYOuhmAlJQUIYzNwg8//CCsmkxLS8PWrVv1yp5hGIaxQ2N3ZpaQkIBPPvkE6enp2LJlC378\n8UfZ63iSiGEYxjG0TOu6NQpo1apVWLFiBZKTk1FVVYWAgADFa+l/+7f4+t+CBQs8LoO3/HFdcF1w\nXdj+04pbRwBxcXFCOFpxcTF27tzpzuwZhmEYEW4dAViWj9fU1ODVV1/F9OnT3Zk9wzAMI0I3A5CZ\nmYl+/frh+++/R9u2bbFq1Sps3LgRcXFxiI+PR1RUFCZMmKBX9g0G8ZYAvg7XRS1cF7VwXTiOVy4E\nMxgMDvmzGKY+MHUqUFwMBAUB2dlASIinJWIaClp1J28FwTBuprgYyM8HcnLMxoBhPAUbAIZxM0FB\n5v+9egErV3pWFsa3YRcQw7iZS5fMPf+VK9n9w7gWrbqTDQDDMEwDwWvmAOQ2gysoKEDv3r2RlJSE\nXr164ciRI3pl73GmTgVSU4Fhw8w9PoZhGG/DrZvBvfjii3jllVdw9OhRvPzyy3jxxRf1yt7j8EQf\nwzDejls3g4uMjMTly5cBAJcuXcIdd9yhV/Yehyf6GIbxdty6FcSSJUvQv39/PP/886ipqcEXX3yh\neO3ChQuFz6mpqfVusUd2Nk/0MQyjL3l5ecjLy3P4fl0ngU0mE4YPHy78gHRaWhqefPJJjBgxAlu2\nbMHKlSvxn//8p65QPAnMMAyjGa+KApIagObNm+PKlSsAzLt9hoSECC4hK6HYADAMw2jGa6KA5IiN\njUV+fj4AYP/+/ejcubM7s2cYhmFE6DYCyMzMRH5+PsrLyxEeHo6XX34ZiYmJePLJJ3Hz5k0EBgZi\nxYoVSEpKqisUjwAYhmE041UuIEdhA8AwDKMdr3YBMQzDMN4DGwCGYRgfhQ0AwzCMj8IGgGEYxkdx\n62Zwo0ePRlJSEpKSktC+fXvZCCCG8TZ4Yz+moaJbFNDBgwfRrFkzPP7448JCMDHPP/88QkJCMG/e\nvLpCcRQQ40Wkppo39gOAhx8GNm/2qDgMo4hW3anbXkApKSkwmUyy54gImzdvRm5url7ZM4zL4I39\nmIaKWzeDs3Dw4EGEh4ejY8eOitfU983gmIYDb+zHeCv1ajM4C9OnT0fnzp3x7LPPygvFLiCGYRjN\neI0LSInq6mps27YNhYWF7s6aYRiGEeH2MNC9e/ciPj4ebdq0cXfWDMMwjAjdDEBmZib69euH4uJi\ntG3bFqtXrwYAbNq0CZmZmXplyzAMw6iEN4NjGIZpIPBmcAzDMIwq2AAwDMP4KGwAGIZhfBS37gUE\nAMuXL0d8fDy6du2K2bNn65U9wzAMYwfd1gFMnDgRM2bMwOOPPy4cy83NxY4dO1BUVAR/f39cvHhR\nr+xVMXUqUFxsXuqfnc2rPBmG8S10GwGkpKTAaDRaHXv//fcxZ84c+Pv7AwBat26tV/aqKC42b/KV\nk2M2BgzDML6EW1cC//DDDzhw4ABeeuklNG3aFG+99RaSk5Nlr3XHXkC8yVf9hkdwjK9Tr/YCSkxM\nxH333YelS5fiyJEjePTRR3H69Om6QrlpHcClS7zJV33GU9s0s+FhvBWvXgcQFRWFkSNHAgB69eoF\nPz8/VFRUuFMEK0JCzEqDX+Ba6tOPn3hqBMeuQ6ah4FYDkJGRgf379wMAiouLcevWLYSGhrpTBMYO\n9Um5ZWebe/579rjXiLPrkGkouHUvoEmTJuH06dNITExEZmYm1q1bp1f2zP/Q2qOvT8pNbgTnjhGM\npwwPw7ga3guogaPVT17f50X45xsZX8brfw+AcS9ae/SWXnV9pT6NYBjG09gdAZw4cQIHDhyAyWSC\nwWBATEwMUlJSkJCQoJ9QPAJwGfW9R68VXysvw4jRqjsVDcD69euxfPlyhIaGonfv3mjTpg2ICKWl\npSgoKEB5eTlmzpyJsWPHukx4QSg2AAzDMJpxmQuosrIS+/btQ3BwsOz5K1euYM2aNZoFZFyLO2PS\nOf6dYRoWuk0CT5o0CTt37kRYWJiwEGzhwoX429/+JmwBsXjxYgwZMqSuUD44AnBUubpz0lOvvKRl\nf/HF+mfU2Dgy3oDLJ4FPnz6N5cuXw2Qyobq6Wshkx44dNu+T2wzOYDBg1qxZmDVrlmoBfQVL/D1g\nViZqlasjk56OKiu9JlilZb9wwbG6cEXejublqnQYxp3YNQAZGRl44oknMHz4cPj5mZcNGAwGuwmn\npKTAZDLVOe5rPXu1OKpcs7O1T3o6qqwcyUsN0rKPGWP9XU9cZdTcEX3EowzG1dg1AE2bNsXTTz/t\nsgyXL1+OdevWITk5GW+//TZCFFqxOzaD8yYcVa6OhG06qqz0ChGVll1rXTijGF1l1PQyjmJ4lMFI\n0X0zuPXr1+PUqVMYPHgwmjRpIhzv2bOn3cSlm8FduHBB8P/Pnz8fpaWlyMrKqiuUG+cAvLlXpZds\nDS1U0lcWfw0bZt6io1cvXoXMyOPyOYATJ05g/fr1yM3NFVxAgPnHXbQSFhYmfLa4lTyNXK/KGcVr\n616t6Ypl69wZSE5WL4+tvOr7Yi8prnK/uNrgujo9yygjKAjIyPDOTgtTzyA7dOjQgW7evGnvMlnO\nnDlDXbt2Fb6fP39e+PzXv/6VMjMzZe9TIZbLGDqUCCDq1YuostJ8bOBA8zGA6OGHtaVn616t6Vpk\nCw7WLo8zZVDLlCnmfIYOra07T1BZaS6jszK4us70egbidFu39nz9M96DVt1p9+r09HQqKyvTLMjo\n0aMpMjKS/P39KSoqirKysmjcuHGUmJhI3bp1s5muOw2AnPIQK960NG0vl5xBsXXOlhK1yJaWppym\nI3K4CkcUnCNGw12GxtV1ptczcKZjwDRsXG4ABgwYQCEhITRo0CB64IEH6IEHHqDhw4c7LKAqodxo\nAMRYFE1aGlGrVo69XLZ6o3Ln1ChR8X1qlaGresW2cETBOWI03DGaIXJ9nUnTc5Uhc6ZjwDRsXGYA\nampqiIgoNze3zl9eXp7VNa7GUwZArGgiIuy/XK54obUqUXcpQzU4ojAdMRqu6El7g7vK1c/OHUae\nqV+4zAAMGDCA3njjDfr+++/rnPvuu+9oyZIllJKSol1CNUJ5yACIFY3JVPflkioRV7zQWl9isYzj\nx3uXO0VN2krlVeMKc0ZebzCc7nDLMb6NywzAjRs3KCsri9LS0igiIoI6depEsbGxFBERQWlpabR6\n9WqHJ4ftCuUhA2BP0UiViNoXWk65OeoLv+ce8+jEZLKWp317denpqQj1mDwX15PF4EVFmetBWlZb\ndeoNyrch9tht1bmj5xjHcfkcABFRdXU1lZWVUVlZGVVXVzskmBakhfCWxiJVIpWVZsUrp4zESF1L\njo4epNEflnmKXr3MMqhJT09FaCtte89QaYK8RYvacvn7136WK6stIyI2nK7GVQbe21BTBkej3rxh\nRNYQ0cUAOMLEiRMpLCzMKgzUwltvvUUGg4EqKirkhQIUXS0WBWoPPV5ARydxLcpNbvQgF2k0ZYq5\nnC1bWp+Ti/6IijKfV6vY9eqF2lOy9urJXt02blz3s7SsSnWgt7KRS19tnmrbqScMipa2rTbqzd65\nhmA4PYnXGIADBw5QYWFhHQNQUlJCgwcPppiYGJsGQE5ZanmJ3dXDUKN4KyutJ5XHjzcry4AA+z1Z\n8Tlb0R+edi/Yq29pPal50S33GI1Eqam1n4uK5KOi5OZtxOm0amWudzkXkjOKR64NqDXIatupJ3rM\natu2lqg3e+d4ZOAcXmMAiOouBCMieuihh+jYsWOqDIDY1SJVoGqVhyOx/FpQq3jF10kVvFgpRkRY\nuzqSkhyfFLUoNSWfudL1zihBi5KVpiENZRW7dtSEvzqjMCz3it1ktnrsTZrUHX3ZQi7cU63LSa2h\n0NN1p+TC0tNtpoQ3zNXUZ7zaAGzfvp2eeeYZIiK7BqBLlwU0e/YCWrBgAeXm5lr521u2VH7p7cXy\nu3uIKZefpZEnJRFlZNQelxqGNm1cF/midy9TTslaVqlKDbY4H6PRuTJqURjSkaQ4bzn3mqO9UC31\nqMaY66WMLW1T7n3yVE/c0yPZ+kZubi4tWLBA+PNaA3Dt2jXq3bs3Xb58mYjMBqC8vFxeKIVCKPWc\nla6Ri+XXs2HLKXu5/JQauVhByfX8teQrTs/S23ZHL1NOkbZubV0HYteOswpNi8IQjySNRqLMzLru\nI4t7DSBq1sz+KMCWgVdbj/YmkdVO8CulpYSt94l74u7B1R1SrzUARUVFFBYWRjExMRQTE0ONGzem\n6Oho+vnnn+sKpVAIcc85Olre1WAvll/Phi2n7LXkV1lJlJ5uPSpwJhLDohyVfOPS9G1dp4RUPstI\nLSTELE9oaO1ni1FT2+vV8mLIhYvaW1OgZJzT09WvBFdj4JUm9ZXSkLrI1CxKtCWPEpa22awZUViY\ntTGu7z3x+jKZ7OoOqdcaACn2XEByD9Deyyu9Rg6582oaixp/upyyd/ZFcjYSQ64M9kYoau6zJZ/4\nWGho7ef0dLWl1v5iSENk1dyrJkrF3hySmrpXmtSXpmGZPxG7ZCyjJLVt1pJW48bme23JXlkpX1fS\ntJ0xxnoqX1vvZH2ZTHZ1h9RrDIBlM7iAgACKioqiVatWWZ1v37693TBQWw9Qbcy5uDeo9NnWEFvO\nT6p0rR69Ji2RGPYmx7WMUNS6IOxFwNjar8aVC7fU5inG1vOSKkel8GM1z9yea09pktqWi8xWB0gs\ntyNGUJq2FmVqb4Lf3mhIC0pzXFOmmOtOqb7dhTMr4x3FawyAMwCwq5jS0qxdJeJzYmUtfhmUPtsa\nYksbmVp/uqvQ0kBsvahKL4V4cl2pB2WrfuTkEx+zJb8teZXuU3qplPJUul5LGKpUuWiJrLLIJnXt\nSRE/n8RE87VyBt2Sv3gRoNI5NQpQrp6l7569CC8x9ib4pe+T2hXscijNcYnz0DLqdDWeGIU0GAOg\npADk/KVyPVW53qDSZ1u+b2nEjslUV2F6i7/RVq/Z1kthb2Qgrh9XltWR4a8zriE1q4bFVFbWNX5a\nI6tsodR2Lc/HnnstKkp5JNumjW2DYwvpuyc3QlEaKVuMj9LoRToaUjvBbcslLH1/vWUC2xNyNBgD\noIS0UsUvhCV+3tKDkvYG1fZMxchd58wQWU9suYK0rspUa4BdIa+0B6umV652vkOup6wlHWmdWtJT\nOxJUO38iN8pSs8BM7UhN6haVumHs1b0tt4rU7WNZnS6Xt8lkPRpyZMGcvR/B0cMV6wiekKPBGwBp\npcqFHUp7uI72Wu1NtEmHyJ7ucVjQEnpqOSce1diaS9DiDtBa72p75WpeKmlPWY3rSkt6aiOmbJVJ\nbpQlrnu5PJTaf6tWRH36yK8VkCpouTkCe3WvdgTZuHFd374jrj4pcu+5N0/uegqvMQByewHNmzeP\nunXrRt27d6f77ruPSkpK5IVSWQjxAhnLVgH23B9aGo1Sr0NpiOxO5e/qnS/tRdFI517UDN21Rhi5\n8gdOXG2U5dJzdsSiZnRpDzXuGXGaAQG1Ybni3ry9+lIzghTv1ySWQW1ElRS5EGVn24je7lpPu4O9\nxgDI7QV05coV4fOyZcto8uTJ8kKpLIS0V2LPj6+10WjpdaiNQ3cVruhVKSlfuZdMmp+aOtUaImnr\nGWrF1UbZUWWtVQ5n26otBW00Et19d63M4pXm0lGgGmMl7RQoKefKSvWhuWKk7i1L56t9e6Lw8LqR\nRFrXzGidgFbjJlOzxYmeeI0BILK9DuD111+n2bNnywulshBa/bhafbWW+9T0OtTGobuqh+CKHq6S\n8hXXl5IvXU2dqrnG29xnWtBDdkcNlz0Xn+Wc2kABWx0dy/yBZU7Acr0tGRwZQclFYUnlVDqutKZB\nLIeWFdZq6sdeBJQ78HoD8NJLL1Hbtm0pLi6OKhVqCIDV/ha5ubmy17myl+dsj1ptHLqrJlFdUXat\nPXQ5X7qzeMuEnSM4Irun96LSqqSlyEVBqV3lLh1h2HsXKitrJ7bF7iOldRVq1jTIGUMl15Qt42Gr\n/qQRUHo+83qzF5CUxYsX04QJE+SF0lgIrbhi/xYp4obl7EvmLhztoXvaz+mtOPsDKnrIo8UloaU9\nANbRdmpwxI0o5z6qrJRfVyEnv1zQgsVFK90wUrrYz5bx0FJ/7nzm9cYAnD17lhISEuSFEhVCD2Wj\nNUrGldS3Hq+jvm9fRE29uLMDoIdLQkn5SlHTyZJzNcrNoTlTZ5Y8xO4e8e9wWEYYcs/NXr5qdZM7\nn7lXG4Di4mLh87Jly2js2LHyQokKoYey8aZeeH2E608etT1ad3UAlFwS7kBrJ0saqaSl560G6XyC\n5TmZTMrrJyz5KgV1qNVN9uR3ZSfXawyAZS8gf39/ioqKoqysLBo1ahR17dqVunfvTiNHjpTdCZTI\nuhDeNNHGmOH6k8fb6sWT8mh9b5UUtL171SpP8XyC9Hc47NWT0uSyM/sNObrdtz28xgA4g7gQ3vZS\nMQxjH63vrS0FbQsta03k9g8TXxMRYR59SHdRtTe57Mh+Q2pXcGtFqwHwg5cTEgJs3mz+zzBM/UDr\nexsSAvz3v8DDDwP79wOtWwMZGcCwYcClS8r3BQWZ//fqBaxcKX9NcTGQnw/s3Qv4+8vLVFwMlJUB\nt24BlZXma+PjzXlnZ5vl2rPHfO/UqUBRkfm+pCRgzRp1ZVSS+8svrdN3J4b/WQ2vwmAwwAvFYhif\nY+pUs3IMCjIrQncpqNRUs9IGzMpx82b56y5dMssYFASYTPJyDhsG5OSYla2SkrVcI0Wa99Sp5u+X\nL5u/p6cD27drryeL3CtXurZONetO5wYc+uClYjGMz+GpiC+tcwjOruOxRDf93/+ZVxmrWcdjNNZO\nENv6nXJ3olV38giAYRhF1PSe9UBrD9mVcsrlbenhnzgBlJcDRiNw9CgwfnztSAWom7/lvlOngOho\noHlzfUdSWnWnrgZg0qRJ2LlzJ8LCwnD8+HEAwAsvvIBPP/0UAQEB6NixI1avXo0WLVpYC8UGgGG8\nAr1cFa5GbznFLqmoKOD4cXM+FsOTlGRW8KtXW+cvvs9C+/ZAu3bW7iJXudq8ygUktyHcnj176Pbt\n20RENHv2bNn9gHQWi2EYH8CZ+Hq120DIuZfE+yVZfhNb/PsRcmGfrnK1adWdukYBpaSkwGg0Wh0b\nNGgQ/PzM2fbp0wc//fSTniIwDOOjWKJ/cnLMPWxn7pVGAlmQi3ayRBT98gtQUWEeMRw7Vnt/8+bm\n61q1As6fN48i/P3Nx2xFM+lBY/dlVZdVq1YhMzNT9tzChQuFz6mpqUhNTXWPUAzDNAjUhIiqvdei\n6LXcC5hdQ/v3194/dSpw5QoQEQHExACHDpmvS083GwitLqy8vDzk5eWpv0GC7pPAJpMJw4cPF+YA\nLLz22msoLCzE1q1b6wrFcwAMwziJM/MCzt47YQJgMNieE4iIMI8UXDnBrlV3emQEsGbNGuzatQv7\n9u3zRPYMw/gAWnrtrr53+3b5c+KRxZYtwAsveHaC3e0GYPfu3XjzzTeRn5+Ppk2bujt7hmEYj5Gd\nbT2ycNSGSFawAAAHc0lEQVTIuApdXUCZmZnIz89HeXk5wsPDsWjRIixevBi3bt1Cy5YtAQB9+/bF\nihUrrIViFxDDMIxmvGodgKOwAWAYhtGOVt3p9ZvBMQzDMPrABoBhGMZHYQPAMAzjo7AB8HKcWeTR\n0OC6qIXrohauC8fR1QBMmjQJ4eHhSExMFI5t2bIFCQkJaNSoEQoLC/XMvkHAjbsWrotauC5q4bpw\nHF0NwMSJE7F7926rY4mJidi2bRsGDBigZ9YMwzCMHXRdCJaSkgKTyWR17M4779QzS4ZhGEYtjm88\nqo4zZ85YbQdtITU1lb7++mvZewDwH//xH//xnwN/WvDobqBKEC8CYxiG0R2OAmIYhvFRPGoAuKfP\nMAzjOdy+GVzLli0xY8YMlJeXo0WLFkhKSkJOTo5eIjAMwzBKaJ7V1ZmcnByKi4uj2NhYWrJkiafF\n8SjR0dGUmJhIPXr0oF69enlaHLcyceJECgsLswogqKiooLS0NOrUqRMNGjSIKrX+0Gs9Ra4uFixY\nQHfccQf16NGDevToQTk5OR6U0D2UlJRQamoqdenShRISEmjp0qVE5JvtQqkutLYLrzIA1dXV1LFj\nRzpz5gzdunWLunfvTidPnvS0WB4jJiaGKioqPC2GRzhw4AAVFhZaKb0XXniB/vKXvxAR0ZIlS2j2\n7NmeEs+tyNXFwoUL6e233/agVO6ntLSUjh49SkREV69epc6dO9PJkyd9sl0o1YXWduFVk8AFBQWI\njY1FTEwM/P39MXr0aHzyySeeFsujkI/Ok6SkpMBoNFod27FjB8aPHw8AGD9+PLYr/exSA0OuLgDf\naxsRERHo0aMHAKBZs2aIj4/HuXPnfLJdKNUFoK1deJUBOHfuHNq2bSt8j4qKEgrlixgMBqSlpSE5\nORkfffSRp8XxOD///DPCw8MBAOHh4fj55589LJFnWb58Obp3747Jkyfj0qVLnhbHrZhMJhw9ehR9\n+vTx+XZhqYu7774bgLZ24VUGwGAweFoEr+LQoUM4evQocnJy8N577+HgwYOeFslrMBgMPt1epk+f\njjNnzuCbb75BZGQknnvuOU+L5DaqqqowatQoLF26FMHBwVbnfK1dVFVV4aGHHsLSpUvRrFkzze3C\nqwzAHXfcgR9//FH4/uOPPyIqKsqDEnmWyMhIAEDr1q0xYsQIFBQUeFgizxIeHo6ysjIAQGlpKcLC\nwjwskecICwsTlN0TTzzhM23jt99+w6hRozBu3DhkZGQA8N12YamLsWPHCnWhtV14lQFITk7GDz/8\nAJPJhFu3bmHTpk148MEHPS2WR7h+/TquXr0KALh27Rr27NljtauqL/Lggw9i7dq1AIC1a9cKjd4X\nKS0tFT5v27bNJ9oGEWHy5Mno0qULnnnmGeG4L7YLpbrQ3C50mKB2il27dlHnzp2pY8eO9Prrr3ta\nHI9x+vRp6t69O3Xv3p0SEhJ8ri5Gjx5NkZGR5O/vT1FRUbRq1SqqqKig3//+9z4V7kdUty6ysrJo\n3LhxlJiYSN26daP09HQqKyvztJi6c/DgQTIYDNS9e3erMEdfbBdydbFr1y7N7cIrfxSeYRiG0R+v\ncgExDMMw7oMNAMMwjI/CBoBhGMZHYQPAMAzjo7ABYBo0FRUVSEpKQlJSEiIjIxEVFYWkpCQEBwfj\nqaee0iXPd999F2vWrAEApKam4uuvv65zTVFRESZPnqxL/gyjFq/8RTCGcRWhoaE4evQoAGDRokUI\nDg7GrFmzdMuPiJCVlYUjR44AUF7d3q1bN5w6dQoXLlzwmYVLjPfBIwDGp7BEPefl5WH48OEAgIUL\nF2L8+PEYMGAAYmJi8M9//hPPP/88unXrhqFDh6K6uhoA8PXXXyM1NRXJyckYMmSIsPpUzKFDh3Dn\nnXeicePavtWWLVvQp08fxMXF4bPPPhOODx06FFu2bNGzuAxjEzYADAPgzJkzyM3NxY4dOzB27FgM\nGjQIRUVFCAwMxM6dO/Hbb79hxowZ2Lp1K7766itMnDgRc+fOrZPOZ599huTkZKtjt2/fxuHDh/HO\nO+9g0aJFwvHevXvjwIEDupeNYZRgFxDj8xgMBgwdOhSNGjVC165dUVNTg8GDBwMAEhMTYTKZUFxc\njBMnTiAtLQ2AWam3adOmTlolJSXo37+/1bGRI0cCAHr27AmTySQcj4yMtPrOMO6GDQDDAAgICAAA\n+Pn5wd/fXzju5+eH6upqEBESEhLw+eef201Luri+SZMmAIBGjRoJ7iTLdb60cyXjfbALiPF51OyG\nEhcXh4sXL+LLL78EYN6J8eTJk3Wui46Olp0bkKO0tBTR0dHahGUYF8IGgPEpLD1u8b7x0j3kpb1y\ng8EAf39/fPzxx5g9ezZ69OiBpKQkfPHFF3XS79+/P7766iu7+QPmX8AbMGCAU+VhGGfgzeAYxoUQ\nEXr27InDhw8LbiUlUlNTsXnzZg4DZTwGjwAYxoUYDAZMmTIFGzZssHldUVERYmNjWfkzHoVHAAzD\nMD4KjwAYhmF8FDYADMMwPgobAIZhGB+FDQDDMIyPwgaAYRjGR/l/GpOCVM/8oZQAAAAASUVORK5C\nYII=\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Estimation of GEV for yuramax" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "import wafo.stats as ws\n", + "phat = ws.genextreme.fit2(maxyura, method='ml')\n", + "phat.plotfitsummary()\n", + "show()\n", + "#disp('Block = 11, Last block')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "c:\\pab\\workspace\\pywafo_svn\\pywafo\\src\\wafo\\stats\\estimation.py:1080: UserWarning: P-value is on the conservative side (i.e. too large) due to ties in the data!\n", + " warnings.warn('P-value is on the conservative side (i.e. too large) due to ties in the data!')\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEfCAYAAABf1YHgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlcTekfxz+3DWknpdKikPZGiy2yE2GsZWzZmYydMZiy\nDgYz9jUxdmMZW7KkDZWlsktSIoyl0sK0fn9/HPf+urp17627lfN+ve5LnfOc7/M91/f0nOd5vguH\niAgsLCwsLCwVoCRvBVhYWFhYFBt2oGBhYWFhqRR2oGBhYWFhqRR2oGBhYWFhqRR2oGBhYWFhqRR2\noGBhYWFhqRR2oFBANDU1kZaWVuH5yZMnY9myZdXqIyIiAk2aNKmWjOqiCDqw1Dyio6NhbW0tk74C\nAwMxYsQImfSlyLADhYiYm5tDXV0dmpqavM9PP/0klb5yc3Nhbm5e4fmtW7di4cKFUumby6lTp+Dk\n5ARtbW3o6+ujS5cuvMErMDAQqqqqfN/FmjVrpKrP6NGjsWjRIqn2wSIe3GdCS0sLurq6aNeuHbZv\n3w5ph2Z5eHjg8ePHfHpcuXJFKn1xOByR20pTD3mjIm8FagocDgdnz55F586d5apHaWkplJSkO74/\nffoUo0aNwsmTJ9GpUyfk5eXh4sWLUFZWBsB8F76+vvjrr7+kqgeLYlP2mcjNzUVERASmTZuGuLg4\n7N69W6Z6SGtwEkeuNPWQN+yMQgLs2bMH7dq1w8yZM6GrqwsrKytcv34dwcHBMDU1hYGBAd8f1dGj\nR2PSpEno3r07tLS04OnpifT0dN55JSUlPHv2jNd28uTJ8PLygoaGBsLDw8u9XZd9+7eyssKFCxcA\nAMHBwbCxsYGWlhYsLS2xY8cOke4nMTERFhYW6NSpEwBAQ0MDAwYM4C0TEZHID4S5uTlWrlwJW1tb\n6OnpYcyYMSgoKBDY9tGjR/D09ISuri7s7Oxw5swZAMCOHTtw8OBBrF69GpqamujXr59IfbPIDk1N\nTXh7e+PIkSPYu3cvHjx4AAAoKCjA7NmzYWZmBkNDQ0yePBn//fcfAGbp0cTEBOvWrYOBgQGMjIyw\nZ88ensyQkBDY2tpCS0sLJiYmWLt2Le86ri2OGDEC6enp8Pb2hqamJn7//Xf06dMHmzZt4tPPwcEB\np06dKqd3WloalJSUsHPnThgbG8PIyIjXjyBOnz4NW1tb6OrqolOnTryZzdd6SHuGLXOIRSTMzc3p\n8uXLAs8FBweTiooK7dmzh0pLS2nhwoVkbGxM/v7+VFhYSBcvXiRNTU3Kz88nIqJRo0aRpqYmRUdH\nU0FBAU2bNo3at2/Pk8fhcCglJYXXVltbm65fv05ERP/99x+NHj2aFi1aREREcXFxpK2tzdMtIyOD\nHj9+TERE586do2fPnhERUWRkJKmrq1N8fDwREYWHh5OJiYnA+3n27BnVrVuXZsyYQeHh4ZSbm8t3\nPiAggIYPHy7S92ZmZkb29vb08uVLyszMpHbt2tHChQvL6VBYWEiWlpb022+/UVFREV25coU0NTUp\nKSmJiIjvnlkUA3NzcwoLCyt33NTUlLZt20ZERNOnT6d+/fpRVlYW5ebmkre3N82fP5+ImP9/FRUV\nCggIoOLiYgoJCSF1dXXKzs4mIiJDQ0O6evUqERFlZ2dXaLtf63H06FFyd3fn/Z6YmEgNGjSgoqKi\ncrqmpqYSh8OhYcOG0adPn+jevXukr6/Pe57K2npSUhLVr1+fLl++TMXFxbR69WqysrLiya3o+6gN\nsDMKESEi9O/fH7q6urxPUFAQ77yFhQVGjRoFDoeDIUOG4NWrV/j111+hqqqKbt26QU1NDU+fPuW1\n79OnD9q3bw81NTUsX74cMTExyMjIENh3//790aZNGwBAnTp1+M4FBQVh7Nix6NKlCwDAyMgILVq0\nAAB4eXnBwsICANChQwd0794d0dHRQu/VwsICERERyMjIwJAhQ6Cvrw8/Pz/k5+fz2hw9epT3Pejp\n6eHNmzcCZXE4HPj7+8PY2Bi6urpYsGABDh06VK5dbGws8vPz8fPPP0NFRQWdOnVCnz59eG1JjFkM\ni3wxMjJCZmYmiAg7d+7EunXroKOjAw0NDcyfPx+HDx/mtVVVVcWvv/4KZWVl9OrVCxoaGkhKSgIA\nqKmp4cGDB8jJyYG2tjacnZ1F6t/b2xtPnjxBSkoKAGDfvn3w8fGBikrFK+0BAQGoV68e7Ozs4Ofn\nJ9BGjxw5gj59+qBLly5QVlbG7Nmz8fnzZ1y/fl2cr6dGwg4UIsLhcHDq1ClkZWXxPmPHjuWdNzAw\n4P1cr149AIC+vj7fsby8PJ4sExMT3rn69etDT08Pr169EthvZZ5BL1++hKWlpcBz58+fR+vWrdGg\nQQPo6uoiJCQEHz58EOl+3d3dceTIEbx9+xbR0dGIiorC8uXLeeeHDh3K+x4yMzNhaGhYoayy+pua\nmgq8z1evXpW7TzMzM15bcTYVWeTLy5cvoaenh/fv3+PTp09o1aoV76WiV69eeP/+Pa9tgwYN+Pbc\n1NXVec/J8ePHERISAnNzc3h6eiI2Nlak/uvWrYshQ4Zg3759ICIcPnxYqOeSqDZqamrK+537bFb0\nglebYAcKOUBEePHiBe/3vLw8ZGZmwsjISGxZTZo04ZupcCkoKMDAgQMxd+5cvH37FllZWfDy8qrS\nW7mLiwu+//573roz9x5Epez+S3p6usD7NDIywosXL/jkPn/+HMbGxgDYgaKmcPPmTbx69Qrt27dH\ngwYNUK9ePTx8+JD3UpGdnY2cnByRZLm4uOCff/7Bu3fv0L9/fwwZMkRgO0G2MWrUKBw4cACXL1+G\nuro63N3dK+3raxvl2l1ZjI2N8fz5c97v3Of4W7BRdqAQA0kufYSEhODatWsoLCzEokWL0KZNG4HG\nKajPssswY8eORXBwMK5cuYLS0lJkZGQgKSkJhYWFKCwsRMOGDaGkpITz58/j4sWLIul27do17Nq1\nC+/evQMAPH78GGfOnEHr1q3Fvk8iwpYtW5CRkYHMzEwsX74cPj4+5dq5u7tDXV0dq1evRlFRESIi\nInD27FleWwMDA94GP4viwLXDnJwcnD17Fr6+vhgxYgRsbW2hpKSE8ePHY/r06TxbysjIEMkOi4qK\ncODAAXz8+BHKysrQ1NTked19jYGBAW+ZiUubNm3A4XAwe/ZsjBw5Umh/y5Ytw+fPn/HgwQPs2bMH\nQ4cOLddm8ODBOHfuHK5cuYKioiKsXbsWdevWRdu2bSvUo7bADhRiwPVo4H4GDhwIgHmT+PptorK3\nCw6Hg2HDhmHx4sVo0KABEhISsH//foHXViSbe8zV1RXBwcGYMWMGdHR0eB5Umpqa2LBhA4YMGQI9\nPT0cOnSonLdQRTrq6Ojg9OnTsLe3h6amJnr16oUBAwZg7ty5Feok7F67d+8OS0tLNGvWjC8GhCtH\nTU0NZ86cwfnz56Gvrw9/f3/s27cPzZs3B8AMiA8fPoSuri4GDBggUt8s0sfb2xtaWlowNTXFb7/9\nhlmzZiE4OJh3ftWqVbCyskLr1q2hra2Nbt264cmTJ7zzldnR/v37YWFhAW1tbezYsQMHDhwQeN38\n+fOxbNky6OrqYt26dbzjI0eOxL179zB8+HCh99GxY0dYWVmha9eumDNnDrp27crrh9tXixYtsH//\nfkydOhX6+vo4d+4czpw5w9v7qEiP2gCHFHSHMD8/H1OmTEGdOnXg6emJYcOGyVslieHn5wcTExMs\nXbpU3qpIHQsLCwQFBck9/oTl22Pfvn3YuXMnoqKiKmyTlpaGpk2bori4WOrxSTUZhf1mTpw4gSFD\nhmDHjh04ffq0vNWRKAo6NrNIgNDQUFhbW6NZs2ZYtWqVwDYRERFwdnaGnZ0dPD09ZavgN8KnT5+w\nefNmTJgwQd6q1ApkOlCMGTMGBgYGsLe35zsu6OHKyMjgeSJUtDZZUxFn6Yal5lBSUgJ/f3+Ehobi\n4cOHOHToEB49esTXJjs7Gz/++CPOnDmD+/fv49ixY3LStvZy4cIFNGrUCI0bNxZpJYJ9FoUj0xQe\nfn5+mDp1Kt/mEvfhunz5MoyNjeHq6oq+ffvCxMQEL168gIODA0pLS2WpptQpu4Zb20lNTZW3CjLj\nxo0bsLKy4uXp8vHxwalTp9CyZUtem4MHD2LgwIE89+iGDRvKQ9VaTY8ePXgutsIwNzdHSUmJlDWq\n+ch0oPDw8CiXFbWih+unn36Cv78/zp07h759+wqUx74JsMgCUZcKy86CAcDExARxcXF8bZKTk1FU\nVIROnTohNzcX06ZNE+jjz9o2i7QRZwlc7nsUgh6ujIwMqKurY/fu3diyZQt8fX0rvJ7rKlrVT6+e\npVBBIVTxC3TxAQZ4jSZ4Dis8gQMS0QlhGILD+BEbEYhfEQQ/XEVbvIcesqCNy+iMJViIHjgPLWQD\noC+fAFy9Wj3duJ+AgACJyGFlif8RB1H+uBcVFSE+Ph4hISG4cOECli5diuTkZKnYtqJ/t6ws+ckS\nF7lnj63um1NgYCA8PT2rvCl48BAHLVuq4s0bVWRBT6xrG+IdXHETbXEdc7EaLriFW3DBGXhjL7LQ\nvv3/2zo5AeHhgI5OldRkkTERERGIiIgQ6xpjY2O+QMoXL17wReADTIBkw4YNUa9ePdSrVw8dOnTA\nnTt30KxZM0morTDo6QFZWZW3qVsXCAyUiTos1UTuMwpRHi5poqMDPHoE2NgAV68CampAnTrA338D\n9eoxx7p1A1RVmXMuLsx1DRsCHzj6OA8vLMIydMEVGOIN/sR02OAhxiIIV9EOY7ELmshBYiKgqwtw\nOEBoqMxuj0WGuLi4IDk5GWlpaSgsLMSRI0fKLZv269cPV69eRUlJCT59+oS4uDjY2NjISWPpkZUF\nEFX++ZJElqUGIPcZRdmHy8jICEeOHBGYkEua6OgAmzd7ol07oGwG7EGDmH8rCiS9d48ZOEpKmM9n\nqOMM+uIM+kIZQ5GET/BDMNZgNv7GYKzDTDxGS/TqxVy/ZQswebJw/STpQsnKkh4qKirYtGkTevTo\ngZKSEowdOxYtW7bE9u3bAQATJ06EtbU1evbsCQcHB17ksrQHCsX9biUnS1HvUVFliQ3JEB8fH2rc\nuDGpqamRiYkJ7d69m4iIQkJCqHnz5mRpaUkrVqwQWZ6M1ReJrCwiFxf+dyd9/Eu/IpDeoBGdhRe1\nxVW+81u2yFtrloqQl40pom2Lgyjq1/BbrNGIa18KG5ktChwOBwEBAdXao5A2x44BgwczP9fBfxiB\nfViA5XgIGyzCUsSjFQBASQlITAS+CjFhkRPcPYrFixdXafOvutT0amkcDvMaVN02LNJBXPuq8QNF\nTVH/+XPA0RH4+BFQQwHGIggLsBxxcMc8rMJTMJuZoi5HscgGedlYTbJtQbADhWIjrn1Vupn99u1b\nbN68GUOHDoW7uztat26NoUOHYvPmzXj79m21lZUEgYGBYnunyAMzMyA7m3kwduypg62YAis8RRzc\nEYM2WIl50EAupkwBtLSYgYVFfkRERCCQdclhYQFQyYxi7NixSElJQa9eveDm5obGjRuDiPD69Wvc\nuHEDoaGhsLKywq5du2StM4+a/NZ17x7g4MD8bIjX+A3z0Q2X8DNWYj+GQ1mZg/fvWXdaWVNUVISL\nFy8iKioKaWlpOHr0KObOnYsOHTqgR48elVZJkyQ12bYBdkah6Ehs6enu3btw4P4lqwBR2kiTmv4w\nAYyrLNcLyg1x2IrJeAd9TMR2PIc5zp8HevaUr47fCkuXLsXx48fRpk0buLm5wcjICD179kRQUBBu\n3LiB2NhYDBo0iC9NurSo6bbNDhSKjcSWnsoOAJ8/f+bVsa2ojbyoKUtPFdGzJxOrAQA34A53xOEK\nOuMWXDANf6J3rxK4ujLLVizSxdHREQkJCdi6dSssLCwQExMDgElmuW3bNsTHxyuEzbOwyBqhm9mn\nT5/GnDlzUFBQgLS0NCQkJCAgIEAhUn/X9Leur1m2DFi0iPm5GZ5gJ8ZDDYUYib+g4dQMCQny1e9b\n49OnT6hfvz67mV0F2BmFYiPRzWyAeWOPi4uDrq4uAMDZ2ZktSSklFi4Ezp9nfk5Gc3RCOA7BFzFo\ng1aJu6CnS+wmtwy4fv06bGxs0KJFCwBAYmIipkyZImetWFjkh9CBQlVVFTpf7agqUiWomr709DU9\newJ37wIqKgBBCRvxEzoiEv7YhKDsAWhl/h7Xrslby9rN9OnTERAQgOLiYgCAk5MTIiMjRb5eWPGi\niIgIaGtrw9nZGc7Ozli2bJnEdGdhkQZC/+Lb2triwIEDKC4uRnJyMqZOncorJq4IcJMC1ibs7YGi\nIiYIDwAewhbuiEMymuEOHLG4/UU2X5SUGTp0KAwNDXm/i+rtJErxIoCp0ZyQkICEhASZbI6zsFQH\noQPFxo0b8eDBA9SpUwe+vr7Q0tLCn3/+KQvdvnkSE5lEhABQiDqYh9UYgX0Ihh9u9PoV2R/YgivS\nwNTUFNfKTNvWrFnDV3yoMsrWV1FVVeXVV/mamrz/UA4i4Pp14MQJ4PVreWvDIgWEvibVr18fK1as\nwIoVK2ShD0sZ7O2ZJIX37jFR3URAODrjO8TjIIbhjmF3OD04CO3mBvJWtVaxdetWTJs2DRkZGQCA\nhIQEbN68WaRrRSlexOFwcP36dTg6OsLY2Bhr1qwRmBiwbMCfwqapefsWGDAAyMwErKyAceOA6dMB\n/CpvzVjKUJW0+XwISwZ148YN6t+/Pzk5OZGdnR3Z2dmRvb29WAmlpAUACggIoPDwcHmrInWysvgT\nDSqhmBZjEf2rZkwUESFv9Wod4eHhFBAQIHbytGPHjtG4ceN4v+/bt4/8/f352uTk5FB+fj4RMQkx\nmzVrVk6OuP3KhdxcIhsbogULiEpKmGMZGUTu7kzCv9LSSi+vCbdYWxHXvoTOKH744QesWbMGdnZ2\nCrWJzeVbSbOgo8N4RHGD80qhjAAswfXCtjgzcChU584E5sxhfA5ZqsWzZ89w6tQpXtleb29vcDgc\nkVzCRamvoqmpyfu5V69emDJlCjIzM6GnJ17hLLkzbRrg7s74dXMxMmKiSHUB7NoFjB8vN/VYJIiw\nkaRt27ZVHrWkjQjq1zquXi1fAqYJ0qnIqRWRjw/RlzdVlqpjb29P69evp7CwMAJA4eHhFCHirK2o\nqIiaNm1KqampVFBQQI6OjvTw4UO+Nm/evKHSL2/bcXFxZGZmVk6Owtt2fDyRoSFRTo7A0wARNWxI\nlJJSoQhFv8XajLj2JTTg7uLFizhy5Ai6du0KtS87qxwOBwMGDJDqAJaamorly5fj48eP+PvvvwW2\nqelBSVXF1RW4dYv/mKbKZ5xoOAGejR5A5cw/gKmpfJSrBbi5ueHGjRsAqmZj58+fx/Tp03nFi+bP\nn89XvGjz5s3YunUrVFRUoK6ujnXr1qF169Z8MhTVtkUpccqFVvwGxMYCAjbzATbgTp5IPM34Dz/8\ngKSkJNja2vItPQUHB1ddSzEYPHgwO1B8RXY288CWv3XCr/XXIUBjDZSOHgE6dJCHejWeffv2ISUl\nBT169EDbtm1x+/ZtAMB3330nMx0U1bY5HIBu3Qa+/x5ISWFqBFfU7r8CwM4O2LhRYMIydqCQH2Lb\nl7ApR/PmzXnT5Krg5+dHjRo1Ijs7O77j58+fpxYtWpCVlRWtXLmywusHDRpU4TkR1K+13L1bcTXi\nXsoXqLhhI6Z0XjX+775V5s2bR0ZGRtShQwcCQJ6enuTp6SlTHRTVtgEiGjmSaNUq4e2IiE6cIPru\nO4F2qKC3+E0grn0JbT169Gi6f/9+lRWKioqi+Ph4voGiuLiYLC0tKTU1lQoLC3nruH/99RdNnz6d\nMjIyeG3ZgaJi0tKIjIyIVFXLDxaWSKbPljZEkycTFRXJW9UaRdOmTamgoICI2FKoXwMQkbY20bt3\nwtsRMd5QDg5EZ85U3IZF5ohrX0LdmGJiYuDk5ITmzZvD3t4e9vb2YmXQ9PDw4OWJ4lJRUNKIESPw\nxx9/wMjICJmZmZg0aRISExMFpkFgYYohZWQAyclAnTr851JgBYOU67i4LQW5nt5ATo58lKyB2Nvb\nI0vUhfhvEQ8PoGFD0doqKTGZLpcsYdeZajBC3WNDpZArQpSgJD09PWzbtk2orBoRlCRlzMyAN2+A\nH34AQkL+fzwH2vCic9ga44/x7dsDZ8+ym9xCiIiIQGJiIszNzWFkZARAPPfYb4Lhw8VrP2AAsGAB\nk0/fw0M6OrFIFaEDhbm5OaKjo/H06VP4+fnh3bt3yMvLq1anHAn7+n+rA0RZdHSAc+eYKG53d+Dz\nZ+Z4CVQwX2crxo9aB7Rpw3iguLjIV1kFxtPTE3v27EFiYiISExPx7NkzzJo1S+I2WyP5918ABoC3\nt3jXKSkBU6cCGzawA0UNRaQ046tXr8Zvv/0GACgsLMRwcd8ovkKUoCSWqmFvD3z6xB93l5nFwfNB\ns4DNm5mIvX/+kZ+CNQBPT08YGhqitLQUAOMu6+zsLGetFICzZ5l/1dXFv3bUKODKFSA9XbI6scgG\nYZsYDg4OVFJSQk5OTrxj4qbwSE1N5dvMFiUoSRREUP+bRU+Pf3ObwyHq2pUo58pNZgd83Tp5q6iw\nbN++nVxcXKhp06YEgJKSkqhz584y1UEhbfv770XegBbYbvp0onnzKm/DIhPEtS+hM4o6derwxU/k\n5+eLNRD5+vqibdu2ePLkCZo0aYLg4GCoqKhg06ZN6NGjB2xsbDB06FCRs3N+TW2rRyEp4uP5ZxVE\nwOXLQPNhLvgYGsOkV5gxA/jy1szyfzZv3ozly5fj06dPAIDmzZvj7du3ctZKzhQUAGFh1ZPh7w8E\nBf1/XZSlxiB0oBg8eDAmTpyI7Oxs7NixA126dMG4ceNE7uDQoUN49eoVCgoK8OLFC/j5+QFgctwk\nJSXh6dOnmD9/ftXvgEUgZmZAamp5b6g3bwCTtqYwe3kVMZtuI7//MKCwUD5KKih16tThZSEAgOLi\nYpH3KIQVLeJy8+ZNqKio4MSJE9XWVyZERQG2ttWTYWkJODsDJ09KRicWmVFpZDYR4cWLF3j8+DEu\nXrwIAOjRowe6desmMwUrQ1GjVxWJ7Gxg9Ggmk8K//zLpPxITmcJIdfAfTtb1Ra8On5haAvXry1td\nhWDOnDnQ0dHBX3/9hSdPnqB///6wsbHB8uXLK72upKQELVq0wOXLl2FsbAxXV1ccOnSo3Gy5pKQE\n3bp1g7q6Ovz8/DBw4MByshTOtqdPB/T1wVm4QCQv1wqjro8eBbZvB8LC2MhsOSLxmtleXl7o3r07\n1qxZgzVr1ijMIMGFXXqqHB0dZu/68WNg8GDgy3gPAChAXQwo/ht52sZA165MTQEWrFq1CpmZmVBW\nVgbAPAOilCsVtWjRxo0bMWjQIOjr60tcd6kRFgZ07159Of36MbV+nz2rviwWmVGpeyyHw0GrVq1w\n48YNuLm5yUonsfhW0oxXFx0d5mUOANq1A7hj63/FKmhxNQgZP8xlckNduAAYG8tNT3lTXFwMOzs7\nPH78GGvXrgWHw8F4EVNlixIflJGRgVOnTuHKlSu4efNmpUtaChMj9O4d8OIFs2xUXerUYQJ+goMB\nLK2+PBaRqG7hIqFxFLGxsdi/fz/MzMxQ/8vSBIfDwd27d6vcKYt8OXmSP6lgUTEH2Qt+h07DhkD7\n9sy0o1kz+SopJ1RUVNCiRQs8f/4cZmZmYl0ryj7G9OnTsXLlSt7Uv7Lpv8K8BEVGMnYhYt1woYwd\n+6WwCjtQyIqvXzQWL14s1vVC/+cvXrxYzpgVKfgoMDCQDbgTEx0doGPH/88q3r1j9jH++WceM4J0\n7MhE732jsQOZmZmwtraGoaEhANEjs0WJD7p9+zZ8fHwAAO/fv8f58+ehqqqKvn37SvguJEh4ONCp\nk+Tk2dszs9YMyYlkkTLC/GeHDx8u0jF5IIL6LBWQlUWkpvb/OIv+/cucPHaMSF+fKDJSbvrJk4iI\nCAoPD6fw8HCxCheJGx80evRoOn78uMBzCmXbNjZEt24RkeixD0LbbdvGxlHIEXHtS+hm9v379/l+\nLy4u5uXnZ6m56Oj8v1yFs/OXJWMuAwdineshZHUdhMWtTiM7Wy4qyo1z587xzVI9PT0RUjaJVgVU\nFB+0fft2XuGiGse//wKvXgFOTpKV+2VWhffvJSuXRTpUNIIsX76cNDQ0SFlZmTQ0NHgfXV1dmlcm\nulKeAKCAgAAKDw+Xtyo1kqwsosGDmX+/pmNHIhfcoNcwIH/tvQLb1FacnJwoPDycAgICeG9eX9dT\nkTaVPJqy5cgRIm9v3q8Sm1Fw26xfXzW9WKqFuPYltMLd/PnzeXmeFA2F8zWvRXh5AefPAy3wGBfQ\nAzvrz0B8h+k4eJCZjdRGtm7dii1btiAlJQWWlpYAmBm1mZkZ2rVrhwMHDshMF4Wx7enTASMjYO5c\nAKJXpROlHYcDkPN3TBoBFpki8TgK7gPDpbi4WOwdc5aax8GDgKEhkARr9KofjVH5m+FwfiUmTJC3\nZtJj2LBhOHPmDPr164ezZ8/izJkzAJgNaFkOEgpFbCyTjlhafPgA3LkjPfksEkHoQBEWFgYvLy+8\nevUK9+/fR5s2bZDDFsGp9ejoAI8eMUF6xm1M0RGRmFh3L4Y9CYRnR4KXF2rd3oW2tjbMzc0xZswY\nmJmZwdzcHADQoEED7N27V77KyYOCAiZvvTTT0o8a9dUGGYtCIsr61KFDh6hBgwZkampK0dHR4i6H\nSQ0R1WepJty9jOwn/9LT+va0Aj8TUEqDB8tbM+nQvn17mjRpEuXl5REA6tOnDw0YMECmOiiEbcfG\nEjk68h2S+B7F06eMh92X0rMsskFc+xI6o3jy5Ak2bNiAAQMGwNTUFPv37xc7g6w0YVN4SB9uVLd2\ns0b4pXU4uuMiNqnORFYm1bpZBQBERkaCiHhR1r6+vjh+/LictZIDcXFA69bS7cPSEmjZ8v+1LlgU\nEqEDRd++fbFkyRLs2LEDkZGRaNasGVxdXWWhm0hwA+5YZMP2Yw0wtEEYWhXF4PuwHzFxfO1LU56V\nlYXMzExWx2bIAAAgAElEQVSenaenpyvGxrKskfb+BBc/P2DPHun3w1JlhA4UcXFx6Nq1K9NYSQmz\nZs3CPzKqkHbq1ClMmDABPj4+uHTpkkz6ZKkcHR2guZsOuuESnFXuY3j0BPTuVVqrZhZt2rRBjx49\ncOHCBQBMfqZ27drJWSs5IIsZBQAMGgRERzM58FkUEqHusW/evMGCBQuQkZGB0NBQPHz4EDExMRg7\ndqysdER2djZmz56NXbt28R1XGBfCb4zsbGDCBCDzRT4CY3sgAc6IHrQBR/9WnNQu1aFsnieujUVF\nRaEDN0JRBsjdtt+9Y/J9ZWYyNa95eknWPVYUdHXZxMaSRuLusaNHj0b37t3x6tUrAECzZs3wxx9/\niKXUmDFjYGBgAHt7e77johZ5WbZsGfz9/cXqk0V6cPcs1HTrozfOoYt6LP4ymldrigs0bNgQS5cu\n5WWNTU5OFsvTT5hdnzp1Co6OjnB2dkarVq1w5coViekuMeLiADc3vkFCGvCSyERFg2xsQaVUpoAv\n88nKkqoKLKIgbLe7VatWRER8NbMdv/KEEEZUVBTFx8fzRbcWFxeTpaUlpaamUmFhIS8vzl9//UXT\np0+njIwMKi0tpblz59Lly5cFyhVBfRYpwvOGevaByN6eKDBQ3ipJhMGDB9PKlSvJxsaGAFBeXh45\nODiIdG1Fdl2WvLw83s93794lS0vLcnLkbtsLFhAtXFjusMS9nriUlhJZWhLFxVW5TxbREde+hL4u\naGho4MOHD7zfY2Njoa2tLdZg5OHhAV1dXb5jFRV5GTFiBP744w8YGRlh48aNCAsLw7Fjx2purpxa\nDM8bykIPuHQJOHQI+P33KsubMAHw9ITcYzRSUlIwb948XjnU+mJU/hOleFFZeXl5eWjYsKFkFJck\ncXGy2cjmwuEwKYzZTW2FRGia8bVr18Lb2xvPnj1D27Zt8e7dOxw7dqzaHYtS5OWnn37CTz/9VKkc\nhSnu8q1jYMBUQevQAVBXB378UWwRT54wpQ8AZtDgFlqSJREREXj79i0WLFiAN182V1NSUlDn6+Lj\nFSCKXQPAP//8g/nz5+P169e8MsNfIzfbLi0Fbt6U7UABMMF3Tk7AunVA3bqy7buWI/XCRa1atUJk\nZCSSkpIAAC1atICqqmqVO+QiyZoW7AChIBgbM4NFx45AvXrAmDFiXa6uzvzr6grs2CEF/UTA09MT\nQUFBmDt3Lm9fonPnztgj4puuqHbdv39/9O/fH9HR0RgxYgTv+SqL3AoXPX4MNGgAyLpUa5MmQKtW\nTO1ebnZZFokg9cJFADOdTktLQ3FxMeK/JPAaOXKkWB19jShFXkRBYaqAsTCYmzPLUJ06MYOFr6/I\nlx48yMwkduyQb+LB7t2747vvvkNsbCy8vb1x+/ZtkZeHxLVrDw8PFBcX48OHD2jQoEG1dZcIsnKL\nFYSfH5PSgx0oFAqhexTDhw/HnDlzcO3aNdy6dQs3b97EzZs3q92xi4sLkpOTkZaWhsLCQhw5cqRK\nVb7YyGwFpHlzpvb2jBlM3VUR4e55SGKQqO5+R3h4OE6cOAEAePjwIaKiokS6ThS7TklJ4bkmcl+8\nFGaQAGQXaCeI/v2BW7eYGt0sCoPQGcXt27fx8OHDai0V+fr6IjIyEh8+fECTJk2wZMkS+Pn58Yq8\nlJSUYOzYsWjZsmWV+2BRMOzsgJAQoGdPZmbRs6dMu6/Ofse8efOwd+9eaGpqAgB+/7JBL0ocRdni\nRWXtmuuMMXHiRBw/fhx//fUXVFVVoaGhgcOHD4t3c9ImLo6pay0P6tVjMlHu2wf88ot8dGAph9CA\nu8GDB2P9+vUwMjKSlU4iI/egJBbhxMQA/foxf6lluI/Erafh6gpcvCjeLKV58+a4d+8e6tSpIzcb\nk5tt5+UxjgmZmYCADXyJ16MQ1CYuDhg+nBntORyR+2QRHXHtS+iM4t27d7CxsYGbmxvP80OUQvOy\ngpvrid3MVlDatGEGiSFDgFOnmN9lQHX2OywtLREWFoYbN25IRzlF5vZtwN5e4CAhM9zcAFVV4No1\noH17+enBwkPojIK7/l92BOJwOOjYsaPUlRMGO6OoQYSGAiNHMv9+9528tamUAQMG4M6dO+jSpQt2\n7twJf39/cDgcbNiwQWY6yM22V60CXr8G/vxT4GmZzCgAJh7n0SNg9252RiEFJJ7Cw9PTE+bm5igq\nKoKnpyfc3Nzg7OxcLSUlCbuZXUPo2ZN5vffyAu7fl7c2ldK3b18MHjwYb9++BcC4iLdq1UrOWskI\nWQfaVcSoUYwjRJlgXxb5IXRGsWPHDuzcuROZmZlISUnBkydPMHnyZISFhclKxwphZxQ1kEOHgNmz\ngfBwxjtKQfn06RPS09PRsmXLb2ePgoiJhbl2DbCwqEAvGc0oAGawsLUFZ95cdkYhYSQ+o9i8eTOu\nXr0KLS0tAMxGH/dNSxFgZxQ1DF9fYOlSoGtXIC1N3toI5PTp07C2tkbrL7EECQkJVXLdrnG8fAkU\nFzOxMIrA1KnAli3y1oIFImxm16lThy99QXFxsUSjqqsLG3BXAxkzBvj8GejSBYiKYt5i5cCECYxj\njbo6s/nN3fQODAzE3bt30alTJyQmJsLZ2RnPnj2Ti44yJTaWCbRTlOfbxQVo3Bh4Lm9FWITOKDp2\n7Ijly5fj06dPuHTpEgYPHgxvb29Z6MZSm/nxR2DSJGaw+PdfuajAjbU4f54ZNLioqqpC5ytXKSUp\np9tWCBRlf6IsQnK9scgGoda/cuVK6Ovrw97eHtu3b4eXlxeWLVsmC91Egl16qsHMmcMsRXXrJpdN\ny4pyS9na2mLhwoW8GixTp05F27ZtZa6fzJFnRHZFDBzI/PvggXz1+NaRRG5zeVHD1WchYuoQzJlD\n5OJClJ0t06659TSysviP5+Xl0fz586lVq1YEgH755Rf6/PmzyHLPnz9PLVq0ICsrK1q5cmW58/v3\n7ycHBweyt7entm3b0p07d8q1kbltFxSQLj58VTJI8EcUxK5HIazd+PGiNWYRCXHtS6jXk729fbkd\ncm1tbbi6umLhwoVyzVHDej3VEoiYjcuEBCZHlIaGvDXiIa6NlZSUoEWLFrh8+TKMjY3h6uqKQ4cO\n8aWniYmJgY2NDbS1tREaGorAwEDExsZWq99qc/MmOG6u1fdUEqOdWLJ09ZhZRePGwi9gEYrEI7N7\n9uwJFRUVDBs2DESEw4cP49OnTzAwMMDo0aNx5syZainMwgIOB9iwARg3jongPn0aUBEpsbFU8Pb2\n5nuQ+vbtCy0tLbi6umLixImoW0mthLKFiwDwCheVHSjalIlOd3d3x8uXL6VzI+IQEwPAVd5aVMzw\n4UwQYCUlk1mkh9Cn8fLly0hISOD97uDgAGdnZyQkJJSrgc3CUmWUlIDt24HevYFp04BNm+TmfWNh\nYYH379/D19cXZ8+ehaamJjQ1NfHkyROMHz8e+/btq/BaUQsXcQkKCoKXl5fAczItXBQTA0CBN45n\nzWIi+ufPl28O+hqK1AsXlZSUIC4uDu5fNrlu3LiB0tJS5mI5vvVxYXM91SJUVYG//wbatQPWrwem\nT5eLGtevX8eaNWt4D9aBAwfg4uKCW7duwdbWttJrxXEdDw8Px+7du3Ht2jWB52Xq+v3V0pfCYWbG\nvERs2cJmla0CUi9cFBQUBD8/P+Tl5QEANDU1ERQUhPz8fPz888/iaSsF2DiKWoa2NnDuHNC2LRMd\n3K+fzFXIz8+HhYUFPD09sXjxYjx//hz5+fkAwKujXRGiFi66e/cuxo8fj9DQ0HL15GXOmzfAx4/y\n1UEUfvmFKbX744+MnbDIDlF3vbOysijra/cQOSOG+iw1jRs3iBo2JLp1S+Zdnzt3jpo0aUIdO3Yk\nANSkSRM6c+YM5eXl0bp16yq9tqioiJo2bUqpqalUUFBAjo6O9PDhQ742z58/J0tLS4qJialQjkxt\n++RJol69JO+pJA1Zo0cTLVok2oUsFSKufVXYOjg4mIqKiiq8sKCggHbv3i1WZ+Lw6NEjmjRpEg0e\nPJh27dolsA07UNRyTpwgMjYmev5c5l1//vyZEhISCAB9+vRJrGtDQkKoefPmZGlpSStWrCAiom3b\nttG2bduIiGjs2LGkp6dHTk5O5OTkRK6uruVkyNS2Z88mWrKkZgwUqalEenpEb9+KdjGLQMS1rwrd\nYzdt2oSgoCBYW1vDxcUFjRs3BhHhzZs3uHXrFh4/fozx48djypQpUp3xlJaWwsfHB0cFlChj3WO/\nAdauBfbuBa5eBb7kG5MWERER5fa6vrax8PBwdOrUSap6COpXqri7A6tXg+PZUXHdY8u28/dn6mWs\nXSv8YhaBiGtflcZREBGuXbuGq1evIj09HQBgZmaG9u3bo23btiJt3I0ZMwbnzp1Do0aNcO/ePd7x\n0NBQTJ8+HSUlJRg3bhzmzZtX7tozZ85gy5YtGD9+PAYMGFBeeXagqP0QAZMnA8+fA2fOSNVtdvbs\n2YiKikLXrl15L0dt27bFsWPHcOvWLVy+fBmdOnXC6tWrpaYDF5nZdl4eYGgIvH8PTr26NWOgeP2a\nKbV75w4gYP+HRTgSHSgkQXR0NDQ0NDBy5EjeQFFRUNKtW7cQHx+POXPm8JVe7devH06dOlVeeXag\n+DYoLgb69GE2t7dskarbbG5uLk6dOoVr167h+fPnOH/+PCZNmoT27dujX79+0JBRMKDMbPviRWDZ\nMiAqSrp/3CUta8ECID2dqa3NIjYKN1AAQFpaGry9vXkDRUxMDBYvXozQ0FAATD4pAHxeVJGRkThx\n4gT+++8/tGzZEtMFuEqyA8U3RE4O4zbr5wfMnCmzbmt9zeyFC5l/ly2rWQNFXh7QsiVw+DBjFyxi\nIfHIbGkgSlBSx44dRSq3KtOgJBb5oaXFuM22aQM0bQr07y+VbqobmFTjiIoCFi2StxZCKT+J1ADw\nAvhSUltXF8jMlLFS3xByGSgkXc+CHSC+EUxNgVOngF69mLVpFxeJd8G1pW9iwPjvPyA+nhl8FRyB\nL79EQMeOgI8POD9K16nmW0foQPHgwQNERUUhLS0NHA4H5ubm8PDwEBqhWhmiBiWxsJTDxQXYuZMJ\nxIuJYQYPlqoREwPY2ipUEkax4HCAbduYwQLsQCFNKqxHsW/fPri5uWH27Nl48+YNmjZtCnNzc7x+\n/RqzZ8+Gq6sr9u/fX6VOXVxckJycjLS0NBQWFuLIkSPfRqlJFsnQvz+T+6d3b2bvQsJkZ2cjLi4O\nN2/eBMB46H2sCZHL4nL+PDM7q8nY2AAzZjA/l5TIV5faTEUBFuvXr6ecnJwKAzA+fvxI69evFxqo\n4ePjQ40bNyY1NTUyMTHhBekJCkoSl0rUZ6ntlJYSTZ5M1KMHUSWBoeIQFRVF3t7eZG9vTyNHjqSf\nf/6ZANDIkSPJ3t6evL29KTo6WiJ9CUMmtm1rSxQXV6ZP4ZfIPeBOEMXFTJulS0UTyCK5yOzKKCgo\nqMplEgcABQQEUHh4uLxVYZEHRUVEPXsSTZzIDBzVZMaMGfTkyRMiIgoPD6eAgAC+ByopKYlmzJgh\nVI6wwkWPHj2i1q1bU506dWjNmjUCZUh9oEhLI9LXJyopKdOn8MsUcqDgtjEwILp2TTSh3zji2pdQ\n99iOHTtiz549sLCwAMBkjx03bhzu3r0r1ZmOKLDusSzIyQHatwdGjWKWoySMNAoXvXv3Ds+fP8c/\n//wDXV1dzBKgtyRtW08PyMoSrW2NcY8V1OafU0zG4YQENhW5EMS1L6E1s3/55Rf06tULmzdvxi+/\n/IKJEydiz5491dFRorA1s79xuG6zf/wBnDwpEZHDhw/H2bNnea7XaWlp6Ny5s0jXli1cpKqqyitc\nVBZ9fX24uLhAVVVVIvoKIytLQEFT776gQ4f5jtV4+vVj9q0mTKglN6Q4CPV66tGjB7Zu3Ypu3bpB\nX18fCQkJMDQ0lIVuIsGmGWdBkyaM22zPnozbrGv1KrV5eHhg1qxZWLduHQCge/fuWCtiXiFxCxdV\nhtRihP77D4iIABTohU9i/P47k4p8xQomepsFgAwKFy1duhRHjhxBdHQ07t69i44dO2Lt2rXo06dP\nlTtlYZE4rVoBu3YxHlHXrzOFbqrIxIkTYWNjw5tFREZGorGItZolGSMktZegqCjAwYFZk6pt1KvH\nlNJt3ZqpWeHvL2+NFILqFi4SuvT04cMH3Lx5E23atMHEiRNx8eJFrF+/XmxFpQW79MTCo18/YM4c\nZvmhGu6s+/btg6+vL89l28vLC4mJiSJdWyNihI4fB7y95a2F9GjcGIiMBDZuZGYV7DJU9anKjnmp\nBDxMJEEV1WepzZSWEk2ZQtStG1FhYZVE9OvXj/79918iYmwsLi6OHB0dRbpWlMJFXAICAmTi9cQn\nKj+fSFeX6OXLytuJIqua7aQu6907Ind3pthRFW2htiKufVXY2s/Pj27cuFHhhbGxsTR69GixOpM0\n7EDBIpCiIqJevYgmTKi22yzXxv777z+RrxFWuOj169dkYmJCWlpapKOjQ02aNKHc3FyB/UoCPlEH\nDjCxJ8LaiSKrmu1kIisvj8jLi7GHvDzROvwGENe+KnSPvXfvHn7//XfExsaiRYsWfIWLkpKS0LZt\nW8yePRt2dnaymvyUg8PhICAggM31xFKe3Fwmh5G/PzBpkkiXBAYGYvLkyTAwMOBt/i1evJjnRvj6\n9Wts27ZN7PXdqiBJ91g+99Ju3YBx44ChQytvJ4qsaraTmayiImDiROD+fcZDTl9feKe1HImnGS8o\nKEBCQgKeP38ODocDMzMzODo6om7dutVWtrqwcRQslZKczKSgPnVKpMR3Z8+exdq1a1FYWIjvvvsO\njRs3xoIFC+Dv74/4+HjUqVMHs2fPhpeXl9RVl8pAkZ4OODsDGRmAgOdXof64S1oWEZMl9+hRIDSU\nyUD8DSOxgSI9PR2mCp5wjR0oWIRy5gwwZQpw6xZgYCDSJS9evMC1a9eQnp6OefPm4fDhw2jXrp1M\nN6WlMlAsWcJUh9u6tfJ2osgStU8ZyhIFXfX/kKljyXhGtWol2kW1ELHtq6I1KScnJ97PAwYMEGs9\nS1ZUoj4Ly//59VeiDh2EbmgOHz6ciIj++OMP3jF52Zgk+wWIWZ83MCC6f7/ydqLIErVPRZV1/DiT\nvuTnn5nN/W8Qce1LqHssADx79qwqg5ZMYN1jWYQSEMCk0p47t9Jmt2/fxqtXr7B7926cPn2aV8c9\nMzMTmTW9Ks6ffwKdOjFpxb91BgwA7t4FUlMBe3tmOaq0VN5aKTQVLj05OzsjISGh3M+KBLv0xCIy\nWVlMxPaSJcCwYQKbbNiwAVu3bsWzZ894NdvT0tJgbm4ODocj0xcmiS89NWgIxMUBlpaVt6vBS09V\nknXpErN3kZsL/PorMGgQoKwsXFANR2J7FMrKylBXVwcAfP78GfXq1ePrJEcKdQDEhR0oWMTi7l2g\nSxcgLIyJTK6ASZMmYdu2bQBqR81sDgegmbMAIWlIaswf92rKEoau+n/IfPGpdkauf0HiXk/yJD8/\nH56enggMDETv3r3LnWcHChaxOXiQeXO8eZMptCyEGj9QBAWBM24s6NNnJr1FpX0q7h93mcgiAiIj\nwenkCdLWAezsAEdH5qXCwYFZpqqp1QC/QuLZY+XJ6tWrMVSAv7c0kPQ+hyTlsbIkKGvYMKBPH2D4\n8Nq/Ln3sGLBwIYAIoYOE6ERISI4CyuJwAE9PRlZaGrB0KdC8ObNkN3Uq0KgRYGXF7HEEBjLZilNS\nKrUjRX1GxEXqA8WYMWNgYGAAe3t7vuOhoaGwtrZGs2bNsGrVqnLXXbp0CTY2NtCXUXAMO1B8Q7J+\n/51Zk16yRGJ9chFm1wDw008/oVmzZnB0dJTe3t/798DMmUy5U0X7g1wTZOnoMJv/06YBu3cz7tU5\nOcDZs0ywYlERc7xzZyb5YNu2TGDnli3A1au8Er2K+oyIi9DssdXFz88PU6dOxciRI3nHSkpK4O/v\nz1fcpW/fvrh16xbi4+MxZ84cREZGIj8/Hw8fPkS9evXg5eUl0cycLN8wqqqMp4urK+DmBkgogK4i\nuy5btCgkJARPnz5FcnIy4uLiMHnyZMTGxla5z4qLEjUEkA44A8A/VZbPUgYVFcDamvmUXenIygLu\n3WP2wBITgb17gQcPmAjwOnWYGYetLTP41K3LfOrVE/yzjGqUiIvUBwoPDw+kpaXxHStb3AUAr7jL\nzz//jBEjRgAAli1bBgDYu3cv9PX12UGCRbIYGjJBVxKsrVKRXZcdKE6fPo1Ro0YBANzd3ZGdnY1/\n//0XBiIGA34NtyhRZbCPjviItOmtC2RmfvmhQwfmw6WkBHj2DKvs/sLipcJnrrrIRKbylz0zQQNI\n3bpYFd8VMsgeIxjJhG9UTmpqKtnZ2fF+//vvv2ncuHG83/ft20f+/v5iywXAftiP1D+iIopd9+nT\nh66VqevcpUsXunXrFmvb7EfmH3GQ+oxCEJKaHRDr8cSiQIhq11/braDrWNtmUSTk4vVUI4q7sLCI\niSh2/XWbly9fwtjYWGY6srBUBbkMFC4uLkhOTkZaWhoKCwtx5MgRXjUxFpaaiih23bdvX/z1118A\ngNjYWOjo6FR5f4KFRVZIfenJ19cXkZGR+PDhA5o0aYIlS5bAz88PmzZtQo8ePVBSUoKxY8fybfix\nsNREVFRUBNr19u3bATC1uL28vBASEgIrKyvUr18fwcHBctaahUUExNrRkCN+fn7UqFEjvk3xo0eP\nko2NDSkpKdHt27erJWv27NlkbW1NDg4O9P3331N2dnaVZS1cuJAcHBzI0dGROnfuTOnp6VWWxWXN\nmjXE4XDow4cPVZYVEBBAxsbG5OTkRE5OTnT+/Plq6bVhwwaytrYmW1tbmjt3bpVlDR06lKeTubk5\nX+ZicWXFxcWRq6srOTk5kYuLS6VVGoXJSkxMpNatW5O9vT15e3tTTk6OSLLEhbVt1rZFkSVP264x\nA0VUVBTFx8fz3eyjR48oKSmJPD09xXqYBMm6ePEilZSUEBHRvHnzaN68eSLJWrRoEbVp04ZPVtkv\n3crKitq3b19lvYiI0tPTydXVlZSVlUV+mATJCgwMpLVr14p0vTBZV65coa5du1Lhl9Tdb9++5bvm\n+fPnpKGhwauv3rFjR9q1a1eF98hl1qxZtHTpUpH14nA41Lx5c96xjh07UmhoKBExJUk9PT2rfI8u\nLi4UFRVFRES7d++mRYsWiSRLXORp2/v376fu3btXKKtVq1ZkZGTEO1bWtjds2EBjx44VSa/169eT\ngYGBQNvu0aMHmZubS8S2U1NTicPh8O5XXFkcDof2798v0La//q44HA6lpKQQEdGkSZNo3LhxErXt\nr2V17NiRZs2aRe3bt5e5bSt0Co+yeHh4QPer3DzW1tZo3ry5yDLMzc2hrq4OLy8vdO/eHS9evOAl\nN+zWrRuUlJivw93dHS9fvhRJ5pIlS3Dw4EG+Y5qamryfS0tL+X6vDEH3CAAzZ87ExIkTK72WiPD7\n77+jefPmUFdXx/Dhw7Fr1y6UfpVegKrgTSNIr61bt2L+/PlQ/RIg5OrqiitXrvDOm5qaIjc3l+fR\nw+FwwOFwKrxHrm5Hjx6Fr68v71haWhqUlJSgqakJTU1NWFhY8CKePTw8yslo3LgxPn78CADIzs7m\nbRTv2bNHYPvK7jE5OZl3TdeuXXH8+PEKr68Ooto21341NTVhaGiIESNGlEvOKUhWZbb9ww8/4MKF\nCxXqpaqqyueVVdaW8/Ly0LBhQ5Hu0cHBgadDWWbOnInVq1cjLS0Npqam0NTUhImJCWbNmlXOdiu7\nR0Bytn3gwAE+2+Zmh6jsu9q6dSt27twJXV1d5Ofno0mTJuV0+9q2KyIwMBCdO3eGh4cHHj58iHbt\n2iE2NhaNGzfGp0+fAPDbdkV4enoiKChIIrZdYwYKScDhcHD27Fnk5uYiJCQEBQUFvMC+suzevbva\n5S4XLFgAU1NTvH79ulqyTp06BRMTE1hWkh4aYNJC7Ny5E/v27UNeXh7Onz+Pa9eu8XnYAMDGjRvh\n6OiIsWPHIjs7u8p6JScnIyoqCq1bt4anpyeKioqq7dIZHR0NAwMDgff68eNH5Obm4tChQ1iyZAku\nXrwoUMbKlSsxa9YsmJqaYs6cOfjtt9+qrI+trS1OnToFAPj777/LfZeypqz93rlzB/fu3RNov5Uh\nSdveu3cvfv755yrL4dq2w5dMvlFRUcjNzUVYWBgOHjyInTt3lrumuLi4QnkbN25Er169QETVsu20\ntDQ+275161aVZXGpzLa/hsPhwNfXF/fv30fLli3Rvn17DBgwACtXrsThw4dx48YNkWy7MndtcW37\nmxooyqKvrw8NDQ08ePCAdyw2Nhampqa4cOECVq9ejcjISN65PXv2wNLSElpaWmjatClvFrFnzx4M\nGTKE1+7SpUuwtrbG5s2b0a9fPxgaGuLw4cMAmDcFbuQ58P+3Ze6bU3BwMLp164aHDx/C0tISmzZt\nwooVK7C4TDimoD/GycnJ2Lp1Kw4ePAh3d3coKSnBxsYGW7duRV5eHi9HzMWLF7Fw4UIkJiaicePG\n6Nu3L99b9rRp02BqagptbW24uLjg6tWrvHN//vkn0tPTMWrUKGhpaeHRo0dISkpCbGws1NXV8erV\nK3h7e0NTUxNr1qwpd29fk5WVBRsbG+jp6aFnz55IT0/HoUOHMKyCWhFcWrduDVtbW9y/f7/cuY8f\nP6J169bIycmBkpISPDw84Ofnh0ePHmHy5MmIiYmBpqYm9ERMH717925s2bIFLi4uyMvLg5qamkjX\nyQIDAwN07969nP22bdsWjo6OePr0aTn7bdCgAUJDQ7Fw4UI++y1rA1z71dHRwdSpU/nsjWu/y5cv\nR3p6Ovr16wddXV0++7WxsYGWlhYsLS2xY8eOCvX/9OlThbbdokULeHh44MGDB3j+/DmUlJSwe/du\nmACEKGAAACAASURBVJmZoWvXriAibNy4EUlJSTAwMMCoUaMwfPhwpKamIiQkBADjXWZsbAwjIyOs\nLZNe/caNG2jTpg10dXVhZGSEqVOnoqioiE+37Oxs/Pnnn0hJSYGpqSkGDx4s8Lsqy+jRo7Fo0SJ8\n/vwZaWlpePXqFTQ1NaGlpYXXr1+jS5cu6N+/P699fHw8GjVqhJKSknKyiNkSAMD8sR85ciTevHmD\nkSNH4ocffoCbmxv++OMPjBkzBtevX4erqyt0dHTg5uaGmJgYAMxgHh0dDX9/f2hqaiIwMJCvD3Ft\n+5sbKLj/Aa9fv0Zubi7c3d0BABkZGejWrRs0NDSQk5ODNWvWYODAgfjw4QPy8/Mxbdo0hIaGIicn\nBzExMXBycion+/379xg4cCBWrFiBDx8+wNLSEi9evEBqaioA4QFZBgYG2L17N2xsbBAcHIy5c+ci\nOTkZjo6O8PX1RUlJCVq1aoW3b9/yXRcWFoYmTZrAxcWF73jjxo2hrq6Oy5cvAwDU1NSgpKQEDoeD\ncePGlSvE4+bmhjt37iArKwvDhg3D4MGDUVhYyDufm5sLX19ffPz4EcbGxrh79y4AJn+RiooKDh48\niNzcXMyePbvS+7x06RLevXuHkydP4v379/Dw8ICPjw9OnjxZYbZg7sNz7do1PHjwAM7OzuXaTJ06\nFe/fv8erV68QGRmJ+Ph4XLt2DS1btsS2bdvQpk0b5ObmilytrkWLFrhw4QJu3boFHx8fkd4GpQ3X\nfl++fInQ0FA+++3Tpw9+/fVX3LlzB4aGhnz2O2XKFJiZmSE3N1cs+719+zbv/Nf2+7Xrr4GBAc6d\nO4ecnBwEBwdjxowZFSY9TElJQVpaGhwdHWFhYcGT9/btWzx8+BDR0dF8/8dRUVF4/PgxQkNDERwc\njBMnTsDCwgLPnj1DXl4eFi9ezFve5HA4uH//Pp4+fYqLFy9i1apVCAsLA8B4pq1fvx4fPnxATEwM\nwsLCsH//fj7dCgoKcODAAcTHxyMuLg75+fn48OFDpf8v3H7r1asHc3NzGBkZITc3Fzk5OdDX14eS\nkhKUyxRE2rdvH3x9ffmOCaK0tBR79uyBqakpEhIS0OpLne9BgwYhLi4OvXv3xvTp05GZmYmZM2ei\nd+/eyMrKwvLly+Hh4YHNmzcjNze33EAhrm3XmoFClGUPIkL//v2hpaWFdu3aQU1NDQsXLgQALFq0\nCMrKyoiKikLdunXRtWtXuLi44Ny5c+BwOFBSUsK9e/fw+fNnGBgYwMbGppz8kJAQ2NnZwd7eHsrK\nypg+fTo0NDRgamoqko5eXl68tc0OHTqgR48eCAwMRGpqKg4dOgRlZWXem0hZ3r9/D8MKchapqKjg\n/fv3AMD3R//kyZPlgsF++OEH6OrqQklJCTNnzkRBQQGSkpJ45+vXr4+ePXuCw+FgxIgRePLkCQDg\nyZMnICJoaWlVen9cDhw4AH19fbRo0QJKSkqYP38+4uPjYWFhwass9zUNGzZEgwYNMH78eKxatQqd\nOnXiO19SUoIjR46gWbNmuHXrFszMzNC7d2/eOnNVlsXevXsHgHlYly1bhsmTJ4stQxJwdS9rv6am\nprC0tOTZ7/79++Hl5YWePXsCADQ0NHj2e+nSJRQUFOCnn34CEQm13wEDBvDst2z2ZiJCbm4u7/dL\nly7xXe/l5cX7o9+hQwd0794d0dHRAu/J3t4e//77L1JTU3kvUrm5ubC2tkbfvn0xfvx4+Pn58e49\nMDAQ9erVQ926dXHgwAGMGzcOampqqF+/Pn777TccPnyYb/bavn171KtXD3Z2dvDz88OhQ4cAAN99\n9x3c3NygpKQEMzMzTJgwAXFxcXy6DR8+HDdu3ECTJk3g6+uLnJwcNGjQQNh/U4U2dvnyZVhZWeHs\n2bMAGFs9fPgw3+rC1xw9ehSOjo5ISkpCQkICTp48CSsrK97zeOXKFTRs2BAtWrTADz/8ACUlJfj4\n+MDa2hqnT58WqpPYti3StrkC4OPjQ40bNyZVVVUyMTGhoKAgOnnyJJmYmFDdunXJwMCAevbsWakM\nc3NzCgsLIx8fH9LT0yMA1KhRIwoKCiItLS3icDikrKxMysrKpKamRhoaGrRq1SoiIrpw4QJ169aN\ndHR0qHfv3vT48WMiInJ3dydVVVVSVVUlLS0tcnFxoYEDB5KdnR05OjqSnp4e/fHHH0TEuPANHz6c\np8/XHhodOnQgVVVVAkAcDodUVFTo119/JSKi8PDwCr2etm7dSmZmZgK/Lw6HQ5qamhQUFEQGBgZk\nbGxMDg4O1K9fP1q/fj2fR9bvv/9OLVu2JG1tbdLR0SElJSW6cuUK+fj4kIaGBikpKZGJiQnt3r2b\nnjx5QgDI1taWvvvuOzI0NKSwsLAK783T05OCgoLIx8eHVFRUePeorq5OOjo6pKKiItDTrDIvFh8f\nHwJAKioqvHuNjo4mNzc3cnR0JGtrazI1NSUiouDg4Eq9zwTZ1/r166l58+bUvHlzmj9/foXXVhdR\nbZtrv0REkZGRpKWlRXFxcURENHnyZKpbty6pqqoSh8Phfb+DBg0iKysr0tfXJ01NTVJWViYzMzOe\n/Zb9Xn777TcaPHgwn16qqqqkrKxMJiYm1LdvXzI1NeXZdo8ePfj+b0JCQsjd3Z309PRIR0eH1NTU\nePbbuXNnUlJSIjU1NZ4NlQWAQO8u7v9/cXEx75iWlhbp6uryvq9t27YRALK2tiZra2sCQKmpqbz2\nmzZtol69ehERUVJSEvXu3ZsMDQ1JS0uL96xz9eJwOHTnzh0aPnw42dn9r70zD2vq2tr4GyZFxQFR\ni6KCgEZmBERQBAdErRNqFXAeoFqnWmu19uuVtk69xVqlg7ZX1KJSxaG0Cta2gIoD4FBQrIgWFK0o\nIlZwaBjW9wfmmJAEEnIgCezf8/Bozjl77XVy3mRlT2s7kLW1NffZqq4hyVlPM2fOJDs7OzI3NycD\nAwPS19fn7nHmzJn05ZdfUrt27Sg3N5cSEhKoV69eCvWwevVqsrS0lNJEVFQUpaenk5WVFbVs2ZL6\n9etHixcvlnpe4me2bt06IpL+zKmrbZ0JFHwg+UEjIvrggw+4KWbr16+n0NDQWm28ePGCli1bRj4+\nPkQkLZ5du3ZRv379uGsrKyu5B0NU9UU8fvx47vzZs2e5D9qLFy/I2NiYDh48yH0oxo0bx01bS0pK\nIgsLC7k+ZWdnk56ensy86tu3b1OzZs0oJSWFiIhef/112rJlC3d+/fr1nO8nT56kjh070pUrV7jz\n7dq1496v2oKclZWVUoGCiCggIID27t2r8D2WpLbpjuIPa3l5ORkZGdHVq1e5c9u2baNBgwYREdHO\nnTuVnqasrTRW/RJJf+lKIu/5DxkyhL7++mvudXZ2NhkaGlJFRQV3vTgQEhG99957XLLGwYMH0/Ll\ny6m0tJSIiDZt2iTz5S+eXk1E9PXXX9PQoUNl3qvqPs+cOZO71+TkZLn3GhYWRp988glNmTKF1q5d\nq/C9CA8Pl/qsSSLpQ3R0NPXt21fqvJeXF+3atYuIiAYNGsQ9O3VpNF1PdeHtt99GWloaUlNTMXXq\nVPz88884fvw4Kioq8OLFCyQnJ+Pu3bt48OAB4uLi8PTpUxgaGqJly5Zy+xZHjhyJrKwsHD58GOXl\n5diyZQsKCgq48y4uLjh58iTy8/Pxzz//SM1aEIlEEIlEMDMzg56eHhISEhTO7KlOz549MW/ePEyZ\nMgWpqamoqKhAVlYWJkyYgFGjRqF///5c/YcOHcLz589x48YNbN++net3LikpgYGBAczMzCASifDx\nxx+rtC96p06dcPPmTaWunTdvHtatW4erV68CqBqEjo2NVboueejr62PSpEn44IMPUFpailu3bmHT\npk2YOnUq59+dO3dkBi51mcaiX1UJDg7Gpk2bkJeXh9LSUqxatQpBQUFS02/XrFmD58+fIysrCzt3\n7uTGvkpLS2FiYoIWLVrg2rVr+Oabb2TsR0RE4PHjx8jPz8eWLVuU2mWTJAagO3XqhKKiIpnPz/Tp\n07Fjxw789NNPNXY7kZLdpCNGjMD169cRExOD8vJy7Nu3D9euXcOoUaM4P5T9TNZGkw4UZmZmmDFj\nBj799FNYWFggLi4O69atQ8eOHdGtWzds3LgRRITKykps2rQJXbp0Qfv27XHq1ClOYOJBLLG92NhY\nrFy5EmZmZrhx4wYGDBjA1Td06FBMnjwZTk5O8PDwwOjRo7myJiYm2LJlCyZNmgRTU1PExMRg7Nix\nUv7WNBj+5ZdfYu7cuZg6dSpatmwJR0dHODk5Sa3xWLp0KYyMjNCpUyfMmjWL+xIFgOHDh2P48OHo\n2bMnLC0tYWxszI2tVL9Pef68//77WLNmDdq1a4fPP/+8Rn/HjRuHFStWICgoCG3atIGjo6PC+em1\n3bfkucjISLRs2RI9evSAj48PpkyZglmzZgEAhgwZAnt7e7z22msyYzy6SmPSryrnZs+ejWnTpmHg\nwIHo0aMHWrRogcjISKnrfX19YWNjg6FDh2L58uUYOnQogKogsHfvXrRu3RphYWEICgqSsT927Fi4\nubnB1dUVo0aNwpw5c2Teq+p+SZ4TCoUIDg5Gjx49YGpqygXb/v37Q09PD25ubjLrLKrfr6L3Q/Jc\n+/btceTIEWzcuBFmZmaIiIjAkSNHuFl9S5YswYEDB2Bqaoq3335bYX3KICBlwxdDpwgPD0dMTAzO\nnj2r9HRQBoNRvwwdOhQhISGYPXu2pl1RCa1oUcjbVzsjIwNeXl5wcnLCmDFjpGZbMGonPDwcixcv\nlpnRwahfFO0RL0mD7JnN0DrS09Nx8eJFpbqytA5eRjrURJN5dpoCaWlp5OTkRC9evKDS0lKyt7en\nrKwsTbvVKKktl9XRo0e5GTjnzp0jT0/PhnSv0aEr2p4+fTq1adOGG2jWNbSm6ykvLw+jR4/G5cuX\nAQBt27blluHn5+dj+PDhUqtQGarx4Ycf4sWLF3j+/Dm6du2KFStWaNqlRkt1LUsyb948DBo0iPtV\nKRQKceLECbYnhRowbdc/GtkKVRnEuUjGjh2rMBcJX1uqNkXUydHT1ODzt9Tdu3elBjItLCxw584d\nmUDBtF13mLaVQxVda8UYhTyUzUVCL6elKfu3evVqlcvU5a8h6mksdWjzvdQH1e0qCgr1/R7Vx3uu\n7T5q6z17trqCuzBHMPYAWA0nJ0Jxcf35pyq8tSgeP36Ms2fPIi8vDwKBAJaWlvDy8kKbNm3qZE+c\niwSoShFx9OhRvlxlMGpEUssAcOzYMbW0LAnbM5tRnX4mWThU6o93EYEYhEAgCMeJE0Dbtpr27BVq\ntyhOnTqFMWPGYODAgfjhhx9w+/Zt5OXlISYmBj4+PhgzZoxUFlJl0ZY8O4ymgzwtA1Bby5KwPbMZ\nUmRJBwkAmDdPu4IEAPVnPS1dupSuX7+u8Hx2djYtXbq0Rht1zUVSF/eTkpJULlMXGqKexlJHjfWI\nREQFBfVbx0vkaVlSY3XV8tatW2nr1q3cNQsWLCBra2tycnJSuHudPG3z/Szq49lqu49adc9XrhCZ\nm9NU/T0EEAFEsbENc8+qfndqzaynuiAQCOrU38bQEcrKgMmTgS5dAImVtw2JpjTGtN3IycoC/P2x\nDBH4tiQEpaVAQgLwMvlvvaOqvngbzC4oKMCcOXO4NMdXr17F9u3b+TLPaGqIg0R5ORAR0aBVMy0z\n6pWsLDxw9kfIvQh8fq8qSADAy0whWglvgWLmzJkYNmwY/v77bwCAra0tNm3axJd5RlNCMkjExgLN\nmjVo9UzLjHrjZUtildGrMQkxcvaS0hp4CxQPHz7E5MmTuayUhoaGMDDQ2mUaDG1Fw0ECYFpm1BMv\ngwQiIrCHpIOErS2wZ4+G/FIC3gJFq1atpLYLPHfuHC/TCRlNCC0IEgDTMqMekAgSYckheLnxIgCg\nY0cgLU0LZzpJovaQ+kvOnz9PXl5e1Lp1a/Ly8iIbGxv6448/lCo7a9Ys6tixo1R+nNTUVPLw8CAX\nFxdyd3eX2ZSHqG6znhhaikhEFBhINHo00YsXGnVFUssAVNIyXzBtNyJezm6iPXsoNJTIyIi4WU5t\n2xIVFze8S6rqi1c1ikQiunLlCl2+fJlEIpHS5eQlUvP19eV2moqPj+d28pKEfZgaCVoUJMSItQxA\nJS3zBdN2I+FlkPhu0B7S138VIMR/I0dqxi1V9cVbx2t5eTni4+ORl5eH8vJy/PLLLxAIBHjnnXdq\nLevj48OtghVjbm6Of/75B0DVSlm2erWRoiXdTZJIahkAtmzZorSWGQwOie6mxXNDUFEhfdrAQLvH\nJSThLVCMHj0axsbGcHR0lNqSsK5s2LABAwYMwLvvvovKykqcPXtW7nXh4eHc//38/ODn56d23YwG\nQguDRHJyMkJDQ2FgYMCtmC4Vz19kMJRFIkgIPw7B8+fSp/X0gIsXtXxcQhK+mjKOjo5qlc/NzZXq\nehoyZAgdOnSIiIj279/PbXAuCY/uMxoaLexuEiOpZU1pjGlbh5EYk+jVS7a7ycyMKC9Psy6qqi/e\nZj0NGzasxn2PVSUtLQ2BgYEAgIkTJyItLY032wwNo4UtCUn41jKjCVFtdtONG9Kn/fyAwkKge3eN\neFdneAsU3t7eCAwMRPPmzWFiYgITExO0bt26zvZsbGxw4sQJAEBiYiJ69uzJl6sMTaLlQQKQ1jIA\ntbXMaCJIBAmEhODIEUiNSwiFwOHDmnNPLfhqynTv3p0yMjKooqJC5bLVE6lFRUVReno69e3bl5yd\nnalfv3508eJFmXI8us9oCLS4u0kSSS2rqrGEhATq1asX2djY0IYNG2TOFxYWUkBAADk7O5O9vT3t\n2LFDrh2mbR1DoruJiGS6nDp00Mw0WEWoqi/e1Ojj40Pl5eV8mVMK9mHSIXQkSBBJa1kVjZWXl5O1\ntTXl5uaSSCQiZ2dnunr1qtQ1q1evppUrVxJRVdAwNTWlsrIyGVtM2zpEtSBBRNSmjXSgGDtWg/7J\nQVV98TbrycrKCoMGDcKIESO43ejYlEIGAJ3obpJEUssAsHHjRqW0nJaWBhsbG1haWgIAgoKCEBcX\nh969e3PXmJubIzMzEwDw5MkTtG/fnqUH0WWqdTcBQFgY8OTJq0uEQmDnTs24xxe8BgorKyuIRCKI\nRCK+zDJ0HR0LEoC0lgHlp8fK2w87NTVV6prQ0FAMHjwYnTt3RklJCfbv38+f44yGRU6QAIDdu6va\nEWJ69dKhabAK4C1QiNczPH36FC1btuTLLEOX4SFIhIUB168DLVoAe/c2zAdOUsvh4eFYvXq1UuUU\n7X0tybp16+Di4oLk5GTcvHkT/v7+yMjIgImJiUI/ALZGSOuQEySEQiA7W/oyQ0PtaE0kJycjOTm5\n7gb46vM6ffo09e7dmywsLIiI6I8//qD58+crVVZerqfJkyeTi4sLubi4kKWlJbm4uMiU49F9Bt/w\nNCbh6/uqn/eNN/hzryYktQxAaS2fPXuWAgICuNfr1q2TGdAeMWIEpaSkcK8HDx5M6enpMraYtrWY\narmb5KXmEP9lZmraWfmoqi/e1Ojh4UG3bt2S+kK3s7NTqqy8XE+SLFu2jD755BOZ4+zDpKXwOHA9\nYkTVB87Do+FmjUhqWawxZbRcVlZGPXr0oNzcXPr333/lDmYvXbqUwsPDiYiooKCAunTpQkVFRTK2\nmLa1lGoD18bGioNEQoKGfa0BVfXF2zoKAOjWrZvUa2UH6Xx8fNCuXTu554gI+/fvR3BwsNr+MRoA\nnsck9u4F3ngDOH68Yft566JlAwMDfPnllwgICICdnR0mT56M3r17Y9u2bdi2bRsAYNWqVTh//jyc\nnZ0xdOhQ/Pe//4WpqWm93AODZ6otpjMwgExqDgAQCICUlIbb1rQh4G2Molu3bjh9+jQAQCQSYcuW\nLVKzPerKqVOn0KlTJ1hbW6tti1HP1MPAddu2QEOP90pqGQAiIiKU1vKIESO42VJi3nzzTe7/ZmZm\n+Pnnn/lxlNFwVMvdVH0sAgBMTQEvr6rBbF0fvK4Ob4Fi69atWLx4Me7evYsuXbpg2LBh+Oqrr9S2\nGxMTg5CQEIXn2YCflqCDs5vkkZycjB49emDevHn466+/AACXLl3iRcsMHeVlkFiGCHw+Rf53UUJC\n42pBVEfwsr9KLcrLyzFjxgzsUSNnbl5eHkaPHo3Lly9L2bWwsMDFixfRuXNnmTICgQA8uM9Ql0YS\nJABZLWtKY0zbWoJkkLjXeIKEqvriZYzCwMAAt27dwr///suHOY7ffvsNvXv3lhskGFpCIwoSQP1p\nmaGD1BIkzMyAvDzdCxJ1gdcFdwMGDMCYMWPQokULAMqvzA4ODsaJEydQVFSErl274uOPP8asWbOw\nb98+NoitzfAYJDSxXkIRkloGlF+ZzWhEvAwS/xNGYFOybJBISQH699eAXxqCt0BhbW0Na2trVFZW\nqrzRS0xMjNzjO3bs4MM1Rn3Ac0vi+nXgZbJghIU1/AC2JJJaBtjGRU0OiSDx5okQqVXWBgbAjRu6\nlyZcXXgLFHZ2dpg0aZLUMZaeoJFSD91NLxuh8PAAvv1WbXNqIall8cpspuUmgkSQWHA6BC9/K3A0\nxSAB8DSYDQCurq64dOlSrcf4hA34aQAlgkRdupEeP64q9+23mp9aKKlbscbqW8vVYdrWABJTYDu/\nG4J796RPZ2YCjo6acY1vVNWX2i2KhIQExMfH4+7du1i8eDFXeUlJCQwNDdU1z9AmlGxJ1KUbSRPr\nJaqjSMszZ85kWm7sSLQk5k0PkdpwSCAAMjIaT5CoC2rPeurcuTPc3NzQvHlzuLm5wc3NDe7u7hgz\nZgzbTrIxoUJ3kzZ1I6mCPC0DYFpu5IyyysLfDv4IuReB0CTpIAEAI0Y07SABgL+EMrdv35Y5du3a\ntVrLyUsISES0ZcsWEgqFZG9vT++9957csjy6z1BAaCjRYB8RpXQKJNFw5XI3FRdXJfDTph29VEFS\ny2KNKaNlPmHabiCuXKG7MKdg7JGbr0ko1F0d14Sq+uJNjT179qQffviBiIgqKyspIiKChEJhreXk\nJQRMTEykoUOHkkgkIiKiBw8eyC3LPkz1z2AfER1EIMVhNAWP1+6d6fhCUssAlNYynzBtNwBXrtB9\nfcVBwsencQYJIg3ucJecnIywsDAcOHAA9+/fh1AoRHp6eq3lfHx8kJeXJ3Xsm2++wfvvv8/1C3fo\n0IEvNxkqMH9uGd4+NxmEcqx1jsUv23V7MZ2ySGoZALKzs5XSMkOHyMrCA2d/vF0RgRi8WidhaFiV\nsyk1tWnOblIEb9ljzc3NERAQgDNnziAvLw8zZ85Eq1at6mQrJycHJ0+eRL9+/eDn54fz588rvDY8\nPJz7U2tjDoYU8+eWYeSuyaCycryBWJhbNtP4bKSGIDk5Gdu2bUNFRQU3LqGKlo8dOwahUAhbW1t8\n+umnCutwdXWFg4MDy02mCbKycM9RNkj4+wMiEVBQwIKEDHw1ZYYMGUJTp06l4uJiyszMJA8PD1q2\nbJlSZXNzc6W6nhwcHGjx4sVERJSWlkZWVlZyy/HoPuMl4jGJnw2rupuM8ILatWu8TXB5SGoZgNJa\nLi8vJ2tra8rNzSWRSCR3P4ri4mKys7Oj/Px8IiIqLCyUa4tpu374z0T5YxImJk1L46rqi7cWxYIF\nCxAdHY22bdvC0dERZ86cQZs2bepky8LCAuPHjwcAeHh4QE9PD0VFRXy5ylBAWBhwaF8ZFpyajMqX\nLYmW7Zrh0iXNr21oSCS1DEBpLaelpcHGxgaWlpYwNDREUFAQ4uLipK7Zu3cvJkyYAAsLCwBVaccZ\nDURWFuYf8se7kG5JtGoFXL7ctDSuKryNUQQGBuLUqVO4ceMGZs2aheLiYkyZMqVOtsaNG4fExET4\n+vri+vXrEIlEaN++PV+uMuQgDhLfPpkMA5RjbutYjBzcDDt2NL0PkKSWASit5bt376Jr167cawsL\nC6Smpkpdk5OTg7KyMgwaNAglJSVYsmQJpk2bJtceS6HPIy/HJN6plA4SXl5AfHzj17jW7Jm9evVq\nGjVqFNna2hIR0Z07d8jb27vWckFBQWRubk5GRkZkYWFBUVFRJBKJaOrUqeTg4EB9+vShpKQkuWV5\ndL/JERpatR/1iBFVTW7J2U0tDV5QXp6mPdQckloGoLSWDxw4QHPnzuVeR0dH08KFC6WuWbBgAXl5\nedGzZ8/o4cOHZGtrS9evX5exxbTNIwpmN0lsXd7kUFVfvLUoDh8+jEuXLnGLlLp06YKSkpJayylK\nCBgdHc2Xa4xqiFdL//NP1ev5c8vw8fXJKEI5wtrGIuuPZk16MK+uWu7SpQvy8/O51/n5+VwXk5iu\nXbvCzMwMxsbGMDY2xsCBA5GRkQFbW1t+b4IBoRDQz87Cr5DtbvL3b1rZX9WFtzGKZs2aQU/vlbmn\nT5/yZZrBM0eOvAoSZm3KsOvfyejrWo4fxsfiWm7TDhJA3bXs7u6OnJwc5OXlQSQSYd++fVyqcjFj\nx45FSkoKKioq8OzZM6SmpsLOzo5X/xlVP4aMcuQHCRMTzaeL0TV4a1G88cYbePPNN/H48WN8++23\niIqKwty5c/kyz+CR+/er/jVAGQ4ZToaRoBz4MRZ7dXzTIb6Q1DIADBkyRCktGxgY4Msvv0RAQAAq\nKiowZ84c9O7dG9u2bQNQtXe2UCjE8OHD4eTkBD09PYSGhrJAwTM1tSTYwHXd4C17LAAcP34cx48f\nBwAEBATA39+fL9NyYRk2VUcoBLKzq4LEPkxGq2blGPaP7u9MxzdiLW/cuBHHjx+vdy1Xh2m7bigK\nEkZGgJ8fsG8fCxKA6vriNVA0NOzDpDzi1N8nTwL6VBUkDFAO5+xYdO/JgoQi2J7ZuoH4B5AdpIOE\nQADk5rIFdNXRyJ7ZAHDw4EHY2tqidevWMDExgYmJCVq3bq1U2dmzZ6NTp05wlEjRGB4eDgsLBS6t\nnwAAIABJREFUC7i6usLV1RXHjh3jy9UmR1gYsGtXVepvySDx5UAWJOQhqWUAKmmZ0bCEhVVlK1YU\nJDIyWJDgA95aFNbW1jhy5Ah69+6tctlTp06hVatWmD59Oi5fvgwA+Oijj2BiYlLjPsXsV1fttG37\nauBa3N1kgHJ8ZB+L31OaRloOVZHUMmtRaDctWgDPn8sGiVatgCtXWJBQhMZaFK+99lqdggRQlRiw\nXbt2MsfZB0V9qgeJdq3KET2aBYmaUEfLjIZBKKzaUEhekBg8GMjPZ0GCT3ib9eTu7o7Jkydj3Lhx\nMDIyAlAVtcSpOOpCZGQkvv/+e7i7u2Pjxo1cSgVJ2OpVxQiFVf9KtiRcb8QithPrblJEcnIyKioq\n4ODggF69egGo6opSV8sM/pBsJUsGifuDQ1B8kA1W1we8dT3NnDmzyqBAIHV8x44dSpXPy8vD6NGj\nua6nBw8ecOnFP/zwQ9y7dw/bt2+XKsOa54qpPrvJAOXYNiQWR39jQaI2JLW8c+dO7rWyWuYDpm1Z\nwsKA3burWhGAdJCYnhCC4cM1658uobOznqoHCmXOsQ+TfOQFiVktY3HzDutuUhU2RqEdhIUB27cD\nlZVVr8VBYjki8FZKCFtlrSIaG6PIzs7GkCFDYG9vDwDIzMzEmjVr6mzv3r173P8PHz4sNSOKIR9x\nv231IPEGYnExiwUJZeFbywz1EAqB776TDRL/6xWBr4pZkGgQ6p5WShofHx86d+4cubi4EFHVdqh2\ndnZKlRUnBjQ0NCQLCwvavn07TZs2jRwdHcnJyYnGjh1LBQUFMuV4dF/n6dXrVbIzA7xK8Ndc8IIy\nMzXtnW4hqWUAKmmZL5i2q5DUNUBkh6r9JK6t3qNp13QaVfXF22D2s2fP4Onpyb0WCATcVqa1IS8x\n4OzZs/lyrUmQnV31r2RLYn77WFy7wHI3qYo6WmbwQ1gYEBUFVFS8OiZuSZSsjkCv8BDFhRm8w1ug\n6NChA5e/HwAOHDgAc3NzvswzakDe7KZmcbG4O4YNXNcFpmXNIjmrSYw4SJRviECvFSxINDh8NWVu\n3LhBgwcPpubNm5O5uTl5e3tTbm4uX+blwqP7Ok317iYjvNC0SzqNpJYBqKTlhIQE6tWrF9nY2NCG\nDRsUXpeWlkb6+vp08OBBueebqrardzWJu5v+FpjTg82su4kvVNUX77Oenj59isrKSpiYmPBpVi5s\nZkjV4HX1gevElGZsgI8Hnj59ilatWimtsYqKCvTq1Qu//fYbunTpAg8PD8TExMgs3quoqIC/vz9a\ntGiBWbNmYcKECTK2mqK2w8KA//2vKjyIsUMWThj5w/jLCLQMZS0JvlBVX7x1PW3cuFFmDUWbNm3g\n5uYGFxcXheVmz56No0ePomPHjjLTXzdu3Ijly5fj4cOHMDU15cvVRoNQKBskPvyEBQl1qa7lzz//\nXCktS+6ZDYDbM7t6oIiMjMTEiRORnp5eL/7rKtevSweJ/m2zcLK5P/Q2RgAhLEhoEt4CxYULF3D+\n/HmMHj0aRISjR4/C0dERW7duxcSJE7FixQq55WbNmoVFixZh+vTpUsfz8/Px66+/ojsbiZWLUAjc\nzJYOEiI0w//9n6Y9030ktQwA27ZtU0rLyuyZfffuXcTFxSExMRHp6ekyP64kaUpZB6qPS4zoloUj\nIhYk+EJr9sweMGAAlZSUcK9LSkrIx8eHnj59SkKhsMayubm55ODgIHVs4sSJlJGRQZaWllRUVCS3\nHI/u6xRt2siOSQBECQma9qxxIKllAEprWZk9sydOnEjnzp0jIqIZM2bQgQMH5NpqStqWNwX2np45\n0R42JlFfqKov3loUhYWFXI4nADA0NMT9+/fRokULNG/eXCVbcXFxsLCwgJOTE1/uNSqe/iPbkvjk\nE7AUBjxRVy0rs2f2hQsXEBQUBAB4+PAhEhISYGhoKLNlalOgekoO4NXsJv1NrCWhTfAWKKZMmQJP\nT0+MGzcORISff/4ZISEhePr0qUpbPT579gzr1q3Dr7/+yh2jGgZdmlLzHAAMBbJBYtUqsC4nnkhO\nToa5uTm6d+/OJQX09vZWSsuSe2Z37twZ+/btk1kj9Ndff3H/nzVrFkaPHt1kg4RkSg7gVZAw3ByB\nDotZkNAq+GzOpKWl0aZNm+iLL76g9PR0pctJdj1lZmZSx44dydLSkiwtLcnAwIC6d+9O9+/flynH\ns/taj7zupm7dNO1V40SsZQAqaTk+Pp569uxJ1tbWtG7dOiIi2rp1K23dulXm2pkzZzbJ6bGhoUR6\nerLdTfcNzKn0W9bd1BCoqi+1p8eWlJTUOhW2tmtqSghoZWWFCxcuyJ311JSmEJq1KcO3T6RbEgBQ\nXMzSKvOFPJ1W15gyeueDxqxt8WZDYtgU2IanwZMCBgYGYsGCBTh+/DgePXrEHX/06BF++eUXzJ8/\nH4GBgQrLBwcHw9vbG9evX0fXrl1lUjnXNCukqTB/rvwgkZLCggSfqKtlRu20bSsbJC6194fZDhYk\ntBleFtwlJiZi7969OH36NP7++28AQOfOnTFgwABMmTKl3sYNGvOvLo6yMhwykg0Sq1YBa9dq2LdG\nSHUtP3nyBEKhsN61XJ3GqG1x+nsx4iBhtIUNXDc0OrsfRV1ojB8mKRQEiXHjgMOHNexbE4HtR6E+\nihL8XTD1R/NIFiQ0AQsUjQUFQQKQXr3KqF9YoFCP6q0IgAUJbUBjGxcxeKSGIJGSokG/GAwVYEGi\n8cAChbZRQ5D45BOwPE4MnSE3V/o1CxK6i9oL7iRnh8hDmWR+8hIDfvjhh/jpp58gEAjQvn177Ny5\nUyqPTqOkhiDxzjtsUV19o0jL4uMsMaXyhIUBItGr1/bIwqUO/jD8ggUJXUTtMQpLS8sap7DmVv9Z\nIYdTp06hVatWmD59OhcoJOerR0ZGIiMjA//73/+kyjWWflwAQFkZfm4xGVQuP0hs3KhB35oI8rSc\nl5fHZYNVRst8ocvart7l5KSfhQvt/WHA0nJoDQ2eZjwvL09dE/Dx8ZGxI7moqbS0FGZmZmrXo7WU\nleFws8nQJxYkNIk8LQsEggYNELpOWBggsTkg7JCFX4gFCV2Ht1xPlZWV2LNnD3Jzc/Gf//wHt2/f\nRkFBAfr27Vtnmx988AGio6PRokULnDt3Tu41Op/rqYYg8dZbLEg0NMnJyUhKSkJmZiYeP34MALxo\nuSlQPVU4S/DXeOBteuy8efOgp6eHxMREXLt2DY8ePcKwYcNw/vx5pcrXlMZjw4YNyM7OlrtqW1eb\n5wBqDRJffaVB35owklrOzs5GUVGRSlrmA13TdlgY8N13r16zBH/ajcamx6ampuLrr7+GsbExgKqB\nv7KyMl5sh4SENL7dwGrpbmJBQnOoq+Vjx45BKBTC1tYWn376qcz5PXv2wNnZGU5OTujfvz8yMzN5\n810TiDPBimFBovHBW6AwMjJChcTSy8LCQujp1d18Tk4O9/+4uDi4urqq5Z82MX9u1ewmeUHik09Y\nd5OmUUfLFRUVWLhwIY4dO4arV68iJiYGf/75p9Q1PXr0wMmTJ5GZmYkPP/wQYWFhvPrfkFRPF86C\nRCOlbklqZYmOjqbRo0dT586d6f333ydbW1vat2+fUmWDgoLI3NycDA0NycLCgrZv304TJkwgBwcH\ncnZ2pvHjxzeKNOOhoUTN9GRThYv/vv5a0x4yiKS1DEAlLZ85c4YCAgK41+vXr6f169crvP7Ro0fU\npUsXmeO6om1fX+lU4XdhTg82s1Th2o6q+uJtMHvq1Klwc3PD77//DgByN5VXRPXNXYCqtRWNibZt\n5e9MBwACAXDqFFtMpy1IannRokUqaVmZfbMl2b59O0aOHCn3nLZP1JAcvBa3JEpWR6AXa0loHeru\nma32YHb1RUpic+L56PW5SElXBvxqChI7dwIzZmjWP0YV8rRsZmaGoqIiAMpp+eDBgzh27Bi+ezmy\nu3v3bqSmpiIyMlLm2qSkJCxYsACnT59Gu3btpM5pu7blBYndzhF47w8WJHSBBl9H0adPH67S27dv\nc4IvLi5G9+7dm/QcdPGewGXPZYOEmRlw/jzQvbumvWSIUaRlMzMzpbWszL7ZAJCZmYnQ0FAcO3ZM\nJkhoO2FhskHiiy4RWJXMgkSjha8+r7lz59LRo0e51/Hx8RQaGsqXebnw6D7vtGlT1W9bfftSfX2i\nzExNe8eoCUktA1BJy2VlZdSjRw/Kzc2lf//9l5ydnenq1atS19y6dYusra3p7NmzCu1oq7YltzEV\nj0n8x2YPFRdr2jOGKqiqL97UaG9vr9QxPtHmD5O8IOHjQ+wDpQNI6lasMVW0XNu+2XPmzCFTU1Ny\ncXEhFxcX8vDwkLGhrdo2NpYOEmGt2MC1LqKqvnhbcDds2DAMHDgQU6dOBRFh7969OHnyJH755Zda\ny8pLCrh8+XIcOXIERkZGsLa2xo4dO9CmTRupctraj9u5M1B471V30xTDWFzJaca6mXQESS1bWVlh\nzZo1SmuZL7RR2+IcTuLupncRgfV5IUzXOojGFtzFxMTgwYMHCAwMxPjx4/HgwQO5s5nkMWvWLBw7\ndkzq2LBhw5CVlYWMjAz07NkT69ev58vVeuefh6+CxKyWsch/wIKELiGpZQAqabmxEhYGXL8uHSQW\npLAg0VTgfYe7kpISANJJ/ZShphQehw8fxsGDB7F7926p49r4q6t6FtihI5vh6FFNO8WoCyUlJWjd\nunWT3+EuLAzYtQuwEb0KEvf8QpCUpGnPGHWlwWc9ibl8+TKmT5/OTSXs0KEDdu3aBQcHB7VtR0VF\nITg4WO45bZprPn9uGYLjJsNAUI5xiIW9azPs2aMxdxh1IDk5Gfv27cOPP/6IZ8+eAQDc3Nx407Iu\ncuSIdJA42joEt9ie7U0LvgZH+vXrR4mJidzrpKQk8vLyUrp8bm4uOTg4yBxfs2YNjR8/Xm4ZHt3n\nhTHehbQJS8gIL8jCgg1c6yqSWgagspb5QFu0HRpKZP9y4DoYe8jAgCgvT9NeMdRFVX3x1qJ49uwZ\nBg0axL328/PD06dP1bK5c+dOxMfHc6u9tZ2yNmZYii/g4QEcP161KImhe9SHlnWV64ezcPxlSyIG\nIRg5jK39aYrwNphtZWWFTz75BHl5ecjNzcWaNWvQo0ePOts7duwYPvvsM8TFxaF58+Z8uVmv7N0L\nvPEGCxK6jqSWAaitZZ0lKwt7H74KEq1bg3WlNlF4CxRRUVF48OABxo8fjwkTJqCwsBBRUVFKlQ0O\nDoa3tzeys7PRtWtXREVFYdGiRSgtLYW/vz9cXV3x1ltv8eVqvdG2LbB/PwsSuo6klgGopOVGQ1YW\nHji/ChIAMGAA03ZThfdZTw2JNs0MYTRONKUxjWo7KwuP+/pjwbMI7H0ZJAwMgMJCFigaCw0+62n0\n6NEKKxUIBPjpp5/UrYLBaBAUaVl8vEloWRwknr8KEgAwaBALEk0ZtVsUHTp0gIWFBYKDg+Hp6QlA\nOoOsr6+v+l4qgLUoGHwiT8t+fn5ISkqqdy1XRyPafhkkFv8bgeiKV0FCXx94+JAFisaEqvpSO1CU\nl5fj119/RUxMDC5fvozXX38dwcHBsLe3V8esUrBAweATeVpeu3Zt0+h6ysoC/P0x82EEdpVJZ4HN\nzAQcHRvOFUb9o7K+eJiSy/HixQvasWMHtW/fniIjI5UuN2vWLOrYsaPUOor9+/eTnZ0d6enp0YUL\nF+SWq4v7SUlJKpepCw1RT2Opo6HqUaUOsZYBqKTlhIQE6tWrF9nY2NCGDRvkXrNo0SKysbEhJycn\nunjxotxr5Gmb7/eIs3flCpG5Oc0x3iO14yKgeqbjevNRS+3Vh82GsKfqdycvs55evHiBgwcPYurU\nqfjqq6+wZMkSLk+OMsjL9eTo6IjDhw9j4MCBfLjIoc4uT9pWT2Opo6HqUaaO6loGoLSWldkvOz4+\nHjdu3EBOTg6+/fZbzJ8/n1f/VSE5OZlrScx9HIHtz9VvSdSLj1psrz5saqM9tQezp02bhqysLIwc\nORL/+c9/4FiHNqqPjw83Z12MUChU1zUGQyXkaVkgEKBLly5KlU9LS4ONjQ0sLS0BAEFBQTLbqP70\n00+Y8XJLQ09PTzx+/Bj3799Hp06deL+f2ti7uRBhH0lPgRWTkMC6mxivULtFsWfPHuTk5GDz5s3w\n9vaGiYkJ99e6dWs+fGQwGgR5WgagtJbl7Zd99+7dWq+5c+cOT3egAo8eYczj7+UGidhYYPjwhneJ\nocXw1A2mNopyPfn5+dU4RsH+2F99/ynLgQMHaO7cudzr6OhoWrhwodQ1o0aNopSUFO71kCFD5Opb\n0/fM/hr/nyrwlutJExCb8cTQIpTZL7v6NXfu3JHbtcW0zdAmeEvhUZ+wDw1DF3B3d0dOTg7y8vIg\nEomwb98+jBkzRuqaMWPG4PvvvwcAnDt3Dm3bttXI+ASDoQpa0aIIDg7GiRMn8PDhQ3Tt2hUfffQR\nTE1NsWjRIjx8+BCvv/46XF1dkZCQoGlXGQyFGBgY4Msvv0RAQAAqKiowZ84c9O7dG9u2bQMAvPnm\nmxg5ciTi4+NhY2ODli1bYseOHRr2msFQApU6qnQMeeszioqKaOjQoWRra0v+/v5UrOamEfLqePfd\nd0koFJKTkxMFBgbS48ePea9DTEREBAkEAioqKlKrjprq2bJlCwmFQrK3t6f33nuP9zpSU1PJw8OD\nXFxcyN3dndLS0tSq4/bt2+Tn50d2dnZkb29PmzdvJiL+n319o4y/iu5VEr7Wdqhic/fu3eTk5ESO\njo7k7e1NGRkZatkTk5aWRvr6+nTw4EG17SUlJZGLiwvZ29uTr6+vWvYKCwspICCAnJ2dyd7ennbs\n2FGjvZo+02JUeSa12VP1eVSnUQeKkydP0sWLF6XevOXLl9Onn35KREQbNmygFStW8F7H8ePHqaKi\ngoiIVqxYUS91EFV9SQQEBJClpSUvgUJePYmJiTR06FASiURERPTgwQPe6/D19aVjx44REVF8fDz5\n+fmpVce9e/fo0qVLRERUUlJCPXv2pKtXr/L+7OsbZfxVdK9iysvLydramnJzc0kkEpGzs7PUeSKi\no0eP0ogRI4iI6Ny5c+Tp6VmjX8rYPHPmDPcDKSEhoUabytgTXzdo0CB6/fXX6cCBA2rZKy4uJjs7\nO8rPzyeiqi96deytXr2aVq5cydkyNTWlsrIyhTYVfabFqPpMarOnyvOQh06MUdQVHx8ftGvXTuqY\n5Dz2GTNm4Mcff+S9Dn9/f+jpVb21np6eak9/lFcHALzzzjv473//q5bt2ur55ptv8P7778PQ0BBA\nVT4kvuswNzfHP//8AwB4/Pix0usWFPHaa6/BxcUFANCqVSv07t0bd+/e5f3Z1zfK+CvvXv/++2/u\nvOTaDkNDQ25th6J6JNd2KEIZm15eXmjTpg1ns6bPgDL2ACAyMhITJ06sVYPK2Nu7dy8mTJjATTYw\nMzNTy565uTmePHkCAHjy5Anat28PAwPFPfuKPtNiVH0mtdlT5XnIo1EHCnlILm7q1KlTjW8+H0RF\nRWHkyJG8242Li4OFhQWcnJx4ty1JTk4OTp48iX79+sHPzw/nz5/nvY4NGzZg2bJl6NatG5YvX471\n69fzZjsvLw+XLl2Cp6dngz97dVHVX8l7FVMfazuUsSnJ9u3ba/wMKOtjXFwct5JdIBCoZS8nJweP\nHj3CoEGD4O7ujujoaLXshYaGIisrC507d4azszM2b96s0J4y1Od6m9qehzy0YjBbUwgEghoFpy5r\n166FkZERQkJCar9YBZ49e4Z169bh119/5Y5RPc0MKy8vR3FxMc6dO4f09HRMmjQJf/31F691zJkz\nB1u2bEFgYCBiY2Mxe/ZsqXurK6WlpZgwYQI2b97MLZ4TU9/PXln8/f1RUFAgc3zt2rVSr2vzt7S0\nFBMnTsTmzZvRqlUrqXLKUF0/NZVT5X1LSkpCVFQUTp8+rZa9t99+Gxs2bOCS2dWkd2XslZWV4eLF\ni/j999/x7NkzeHl5oV+/frC1ta2TvXXr1sHFxQXJycm4efMm/P39kZGRIaM7VVDlmSiLMs9DHk0u\nUHTq1AkFBQV47bXXcO/ePXTs2LFe6qnP/b5v3ryJvLw8ODs7A6iai+/m5oa0tDTe78fCwoLb6c3D\nwwN6enooKipC+/bteasjLS0Nv/32GwBg4sSJmDt3rto2y8rKMGHCBEybNg3jxo0D0HDPXhVqCojK\n+iu+16lTp3L3KobPtR2q2ASAzMxMhIaG4tixYzV2iyhj78KFCwgKCgIAPHz4EAkJCTA0NJSZfqys\nva5du8LMzAzGxsYwNjbGwIEDkZGRITdQKGPvzJkz+OCDDwAA1tbWsLKyQnZ2Ntzd3RXed02o+kyU\nQdnnIY8m1/U0ZswY7Nq1CwCwa9cumQ8WH9T3ft+Ojo64f/8+cnNzkZubCwsLC1y8eLFevvjGjRuH\nxMREAMD169chEol4DRIAYGNjgxMnTgAAEhMT0bNnT7XsERHmzJkDOzs7vP3229zxhnj2fKKMv4ru\nVUx9rO1Qxubt27cxfvx47N69GzY2NjXepzL2/vrrL07vEydOxDfffCM3SChrb+zYsUhJSUFFRQWe\nPXuG1NRU2NnZ1dmeUCjkfuzcv38f2dnZau2zzvd6G1Weh1xUGvrWMYKCgsjc3JwMDQ3JwsKCoqKi\nqKioiIYMGcLbFMnqdWzfvp1sbGyoW7du5OLiQi4uLjR//nxe6jAyMuLuQxIrKyteZj3Jq0ckEtHU\nqVPJwcGB+vTpo3YKZHnPJD09nfr27UvOzs7Ur18/paZn1sSpU6dIIBCQs7Mz9wwSEhJ4f/b1jSJ/\n7969SyNHjiQixfcqSXx8PPXs2ZOsra1p3bp1RES0detW2rp1K3fNggULyNrampycnBSmzFHF5pw5\nc8jU1JTzycPDQy17ksycObPW6bHK2Pvss8/Izs6OHBwc5E4rVsVeYWEhjRo1ipycnMjBwYH27NlT\noz153xvqPJPa7Kn6PKqj03tmMxgMBqP+aXJdTwwGg8FQDRYoGAwGg1EjLFAwGAwGo0ZYoGAwGAxG\njbBAoYXo6+vD1dWV++MrTcfrr7/OpRlQ5VxN7Ny5E4sWLVLXNUYTgWlbN2lyC+50gRYtWuDSpUu8\n2z169KjMMfGkN3nnlEEbVjczdAembd2EtSh0CEtLS6xatQqurq5wd3fHxYsXMWzYMNjY2HB7HiQn\nJ2PgwIEYNWoUhEIh5s+fz31gLC0t8ejRI+Tl5aFXr16YMWMGHB0dkZ+fz50DgO+//x7Ozs5wcXHh\nEpP9/PPP6NevH/r06QN/f388ePBAM28Co1HCtK3lqLTqgtEg6OvrcwtjXFxcaP/+/UREZGlpyS2g\nWbp0KTk6OlJpaSkVFhZSp06diKgqx37z5s0pNzeXKioqyN/fn0vJLE5HnpubS3p6epSamsrVKT53\n5coV6tmzJ7eA79GjR0REUovTvvvuO1q2bBkREe3YsUNmX2gGQxFM27oJ63rSQoyNjRU2z8WpAxwd\nHfH06VO0bNkSLVu2RLNmzbh+2L59+8LS0hJA1e6BKSkpmDBhgpSd7t27o2/fvlLHiAiJiYmYNGkS\nTE1NAYDLCZOfn49JkyahoKAAIpFIrfQEjKYL07ZuwrqedIxmzZoBAPT09GBkZMQd19PTQ3l5OQDp\nvlUi4vbGkKRly5Zy7Yuzc1Zn0aJFWLx4MTIzM7Ft2zY8f/5crftgMKrDtK29sECho8gTvJi0tDTk\n5eWhsrIS+/btw4ABA5SyKRAIMHjwYMTGxnJ9usXFxQCqNmPp3LkzgKrZIAxGfcG0rX2wQKGFPH/+\nXGoK4apVq2Suqb4/geT/PTw8sHDhQtjZ2cHa2hqBgYEy11Sf0SF+bWdnhw8++AC+vr5wcXHBsmXL\nAADh4eF444034O7ujg4dOnDXa8u+DgzdgGlbN2FJARsZycnJ2LhxI37++WdNu8Jg8ArTtuZQu0Uh\nuYCmT58+uHXrFvr37w8AuHXrFmJiYtR2Uh4nTpzA2bNnudczZ87EwYMH62xP3fKS+Pn54cKFC7XW\n16NHD+69i4yMxOrVq7mNjr744os69ZXW9VdQXl4eHB0dVS5XG9euXYOXlxeaN2+OjRs3KrwuNzcX\nnp6esLW1RVBQEMrKyrhzixcvhq2tLZydnetlDj5DN2C/8DWH2rOe5C2gEW+zl5ubi7179yI4OFjd\namRISkqCiYkJvLy8AKi/OIZPESpjSyAQICIigts9rjqbN2/GtGnTYGxsrFLdvr6+8PX1ValMfdK+\nfXtERkbixx9/rPG6FStWYNmyZZg0aRLmz5+P7du3Y968eYiPj8eNGzeQk5OD1NRUzJ8/H+fOnWsg\n7xnahLZpuylRL2MU4j17V65ciVOnTsHV1VVms/Hk5GT4+vpi3LhxsLa2xsqVKxEdHY2+ffvCycmJ\n25e5sLAQEydORN++fdG3b1+cOXMGt27dwrZt27Bp0yb06dMHKSkpAICTJ0+if//+sLa25loHRITl\ny5fD0dERTk5O2L9/P3d84cKFEAqF3CKb2nrhwsPDMWPGDAwcOBCWlpY4dOgQ3n33XTg5OWHEiBHc\nzAxlqV6fuFUTGRmJv//+G4MGDcKQIUNkyllaWmLFihVwcnKCp6cnbt68KXNNcHAw4uPjZWzfunUL\nAwcOhJubG9zc3KRaZWKqpy4YNWoUtwPd8ePH4e3tDTc3N0yaNAlPnz6t8R47dOgAd3d3GBoa1vg+\nJCUlYeLEiQCAGTNmcIElLi6OWxjl6emJx48f4/79+zXWyWAw+EXtQCE5OCWezyz+Nf3pp5/Cx8cH\nly5dwpIlS2TKiqej/fnnn4iOjsbNmzeRlpaGuXPnIjIyEgCwZMkSLF26FGlpaThw4ADmzp2L7t27\nY968eXjnnXdw8eJFDBgwAESEgoICnD59GkeOHMHKlSsBAIcOHUJGRgYyMzPx22+/Yfkbap4WAAAE\nxElEQVTy5SgoKMDhw4dx/fp1/Pnnn/j+++9x5swZzu/Vq1cr7AfNzc1FUlISfvrpJ0ydOhX+/v7I\nzMyEsbGxSqkCxAFM3GV35coVriWyaNEidO7cGcnJyXL33BYIBGjbti0yMzOxcOFCuVtgTp48mQuK\nIpEIiYmJGDVqFDp27Ihff/0VFy5cwA8//IDFixfX6qvYr4cPH2Lt2rX4/fffceHCBbi5ueHzzz+v\n9T2rjaKiIrRt25ab6tilSxfcvXsXAPD333+ja9eu3LUWFha4c+dOnephMBh1Q+2up5oW0NT2C93D\nw4PbB9bGxgYBAQEAAAcHByQlJQEAfvvtN/z5559cmZKSEu5XrKR9gUDA7Sncu3dv7ldnSkoKQkJC\nIBAI0LFjR/j6+iI9PR2nTp3ijpubm2Pw4MGcrY8++kiuvwKBACNGjIC+vj4cHBxQWVnJ+ezo6Ii8\nvLwa77e6rZq6nmpD3J0XFBSEpUuXypwfPnw4lixZApFIhISEBPj6+qJZs2b4559/sHDhQmRkZEBf\nXx/Xr19Xqj4iwrlz53D16lV4e3sDqApA4v8res/4oLqOWD81g9GwaHRltniBDVC1qEZywY24G4eI\nkJqaKrUARxGS14i/XBQtspG8RhXEdejp6Ul1p+jp6aGiokIlW3xNOBMIBKisrESfPn0gEAgwduxY\nhIeHw8/PD7/88gv279/PBZZNmzbB3Nwc0dHRqKioQPPmzWXsGRgYoLKyknv94sUL7v/+/v7Yu3cv\nL36Lad++PR4/fozKykro6enhzp076NKlC4Cq1kV+fj53reQ5BoPRMNTrOgoTExOUlJSoZWPYsGHY\nsmUL9/qPP/5QybaPjw/27duHyspKFBYW4uTJk/D09MTAgQO54/fu3eNaMOog74t/+vTpSE9PV9mW\niYlJjamR9+3bx/3r7e0NPT09/PHHH7h06RLCw8MBVHU/RUVF4dSpUxg+fDiAqsVFr732GoCqBGny\ngpulpSX++OMPEBHy8/ORlpYGgUCAfv364fTp09yYyNOnT5GTk6PU/dQUFAUCAQYNGoTY2FgAwK5d\nu7jW4ZgxY/D9998DAM6dO4e2bdtyrVAGg9EwqB0o5HUDiI85OztDX18fLi4uMoPZNc0Mkjy3ZcsW\nnD9/Hs7OzrC3t8e3334LABg9ejQOHz4sNZgtb9FNYGAgnJyc4OzsjCFDhuCzzz5Dx44dERgYCFtb\nW9jZ2WHGjBlcFwpQc3+7Mgt7JLl8+bLCX8A1daGEhYVh+PDhcgezgapVpc7OzoiMjMSmTZvkXjNs\n2DCcPHkS/v7+MDCoajy+9dZb2LVrF1xcXJCdnc1NPJD0Z8CAAbCysoKdnR2WLFkCNzc3AICZmRl2\n7tyJ4OBgODs7w9vbG9nZ2QAUv2cFBQXo2rUrNm3ahDVr1qBbt24oLS0FULVPQEFBAYCq8azPP/8c\ntra2KC4uxpw5cwAAI0eORI8ePWBjY4M333wTX3/9tcL3jMFg1A9swV098uTJE4SGhnK//vnCysoK\nFy5c4JKbMRgMRn3CUnjUI61bt+Y9SABsMJfBYDQsrEXBYDAYjBphLQoGg8Fg1AgLFAwGg8GoERYo\nGAwGg1EjLFAwGAwGo0ZYoGAwGAxGjfw/VL1XcDTSAWEAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] } \ No newline at end of file diff --git a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 2.ipynb b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 2.ipynb index 1710194..806de65 100644 --- a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 2.ipynb +++ b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 2.ipynb @@ -1,381 +1,706 @@ -{ - "metadata": { - "name": "WAFO Chapter 2" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": "CHAPTER2 Modelling random loads and stochastic waves\n====================================================\n\nChapter2 contains the commands used in Chapter 2 of the tutorial and present some tools for analysis of random functions with respect to their correlation, spectral and distributional properties. The presentation is divided into three examples: \n\nExample1 is devoted to estimation of different parameters in the model.\nExample2 deals with spectral densities and\nExample3 presents the use of WAFO to simulate samples of a Gaussian process.\n\nSome of the commands are edited for fast computation. \n\nSection 2.1 Introduction and preliminary analysis\n=================================================\n\nExample 1: Sea data\n-------------------\nObserved crossings compared to the expected for Gaussian signals\n" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "import wafo\nimport wafo.objects as wo\nxx = wafo.data.sea()\nme = xx[:, 1].mean()\nsa = xx[:, 1].std()\nxx[:, 1] -= me\nts = wo.mat2timeseries(xx)\ntp = ts.turning_points()\n\ncc = tp.cycle_pairs()\nlc = cc.level_crossings()\nlc.plot()\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEVCAYAAAD+TqKGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4jOf6B/DvSGIPYovIIkg0hASNqj20sbUUrSVOUaKt\nJa2l1EF7hFJbF7X9iqqlai0Va6glqC091qotnISIIPYsYpKZ5/fHczonkW0mmZl3lu/nuuY6zcz7\nvnPnPTH3PNv9qIQQAkRERPkooXQARERk2ZgoiIioQEwURERUICYKIiIqEBMFEREViImCiIgKxERB\nFu+9997D559/rnQYudy8eRPOzs7gDHOydUwUZDBvb2/s37/fbO+nUqmgUqnM9n768vLyQkpKikXG\nZqjg4GAsX75c6TDIQjFRkMGU+OAu7rf2rKwsI0Vimwr7/5P3z74xUZDRCCEwa9Ys+Pj4oGrVqujb\nty8ePXoEAOjSpQsWLVqU4/jAwEBs3boVAHD58mWEhISgSpUq8PPzw6ZNm/R+32XLlqFBgwaoUKEC\n/P39cfbsWQCy5TNnzhwEBATA2dkZGo0G27Ztg7+/P1xcXNC+fXtcvnxZd53Zs2fDw8MDFSpUgJ+f\nHw4cOAAAiImJQVBQECpWrIgaNWrgk08+AQDEx8ejRIkS0Gq1AOS38n/9619o3bo1KlSogE6dOuHB\ngwe6669evRq1atVC1apVMX369AJbZrt27YK/vz8qVKgADw8PfP311wCA6OhoeHh4YObMmahWrRpq\n166NtWvX6s57/vw5xo0bh1q1aqFGjRoYPnw4MjIydK9HRkaicePGqFixInx8fLBnzx5MnjwZR44c\nQXh4OJydnfHxxx8DAEqUKIHFixfD19cXL730Em7cuJHj9/37d/67JbJy5Uq0atUKY8eOhYuLC3x8\nfHDs2DGsWLECXl5ecHV1xerVq/X+/5UsiCAykLe3t9i/f3+u5+fNmydatGghEhMThVqtFh9++KEI\nDQ0VQgixevVq0apVK92xf/31l6hUqZJQq9UiNTVVeHh4iJUrVwqNRiPOnDkjqlatKi5evCiEEOK9\n994Tn332WZ6xbNy4Ubi7u4t///vfQgghrl27Jm7cuCGEEKJWrVqiSZMm4tatWyIjI0NcuXJFlCtX\nTuzbt09kZWWJOXPmCB8fH6FWq8Xly5eFp6enSEpKEkIIcePGDXH9+nUhhBCvvvqqWLNmjRBCiLS0\nNHHixAkhhBBxcXFCpVIJjUYjhBCiXbt2wsfHR8TGxopnz56J4OBg8c9//lP3+5YvX14cPXpUqNVq\nMW7cOOHk5JTnfRRCiBo1aojff/9dCCHE48ePxenTp4UQQhw8eFA4OjqKTz75RKjVanHo0CFRrlw5\nceXKFSGEEKNHjxZvvfWWePTokUhJSRHdunUTEydOFEIIcfLkSVGxYkWxb98+IYQQiYmJ4vLly0II\nIYKDg8Xy5ctzxKBSqUTHjh3Fo0ePREZGRq7f98XzVqxYIRwdHcXKlSuFVqsVn332mXB3dxfh4eFC\nrVaLvXv3CmdnZ5GWlpbn70yWi4mCDJZfoqhfv36O52/fvi2cnJyERqMRT58+FeXKlRM3b94UQggx\nadIkERYWJoQQYv369aJNmzY5rvXBBx+IqVOnCiEKThQdO3YU8+fPzzfOFStW6H6eNm2a6Nu3r+5n\nrVYr3N3dxaFDh0RsbKyoXr262Ldvn1Cr1Tmu07ZtWzFlyhSRnJyc4/kXPziDg4PFjBkzdK8vXrxY\ndO7cWQghxNSpU0X//v11r6Wnp4uSJUvmmyi8vLzEkiVLxJMnT3I8/3eiSE9P1z3Xp08f8cUXXwit\nVivKlSunS3BCCHHs2DFRu3ZtIYS8p2PHjs3z/YKDg8UPP/yQ4zmVSiUOHjyY7+/793nZE4Wvr6/u\ntfPnzwuVSiXu3bune65KlSri3LlzecZAlotdT2Q08fHx6NmzJ1xcXODi4oIGDRrA0dERd+/ehbOz\nM9544w2sW7cOALB+/Xr84x//AADcuHEDJ0+e1J3n4uKCtWvX4u7du4W+561bt1C3bt18X/f09NT9\nd1JSEry8vHQ/q1QqeHp6IjExET4+Ppg3bx4iIiLg6uqK0NBQJCUlAQCWL1+Oq1evon79+njllVew\nc+fOfN+vRo0auv8uU6YMUlNTAQC3b9+Gh4dHjteqVKmS73U2b96MXbt2wdvbG8HBwThx4oTuNRcX\nF5QpU0b3c61atZCUlIT79+8jPT0dL7/8su4+dunSBffv39frXuU1TpH9/unD1dU1x+8IANWqVcvx\n3N/3hKwHEwUZjZeXF6KiovDo0SPdIz09HW5ubgCA0NBQrFu3DsePH0dGRgbat2+vO69du3Y5zktJ\nSck1ppEXT09PXLt2Ld/Xs3/41axZEzdu3ND9LIRAQkIC3N3ddfEdOXIEN27cgEqlwoQJEwAAPj4+\nWLt2LZKTkzFhwgS88847ePbsmUH3pmbNmrh165bu52fPnuUYv3hRUFAQtm7diuTkZPTo0QN9+vTR\nvfb3ff3bjRs3ULNmTVStWhVlypTBxYsXdffx8ePHePr0KYCC71V+g9nZny9XrhwA5HjvO3fuFPRr\nk41goqAiUavVyMjI0D2ysrIwbNgwTJo0CTdv3gQAJCcnY9u2bbpzunbtihs3bmDKlCno16+f7vk3\n33wTV69exZo1a5CZmYnMzEz88ccfuoFmUcCMp6FDh+Krr77C6dOnIYTAtWvXdO//oj59+mDnzp04\ncOAAMjMz8fXXX6N06dJo2bIlrl69igMHDuD58+coVaoUSpcuDQcHBwDAmjVrkJycDACoWLEiVCoV\nSpTI+59OfrG+/fbb2L59O44fPw61Wo2IiIh8j83MzMTPP/+MJ0+ewMHBAc7OzrpY/jZlyhRkZmbi\nyJEj2LlzJ3r37g2VSoX3338fo0eP1sWbmJiIvXv3AgDCwsKwYsUKHDhwAFqtFomJibhy5QoA2RK4\nfv16vvcZkC0Dd3d3/PTTT9BoNPjxxx8LPYdsAxMFFUnXrl1RtmxZ3WPatGkYNWoUunfvjo4dO6JC\nhQpo0aIFYmJidOeULFkSvXr1wv79+9G/f3/d8+XLl8fevXuxfv16uLu7w83NDRMnToRarQZQ8HTc\nd955B5MnT0b//v1RoUIF9OrVSzfT6kX16tXDmjVr8NFHH6FatWrYuXMntm/fDkdHRzx//hwTJ05E\ntWrV4Obmhvv372PmzJkAgD179qBhw4ZwdnbGmDFjsH79epQqVUoXW3bZf84et7+/PxYsWIB+/fqh\nZs2acHZ2RvXq1XXXedGaNWtQu3ZtVKxYEUuXLsXPP/+se61GjRpwcXFBzZo1MWDAACxZsgT16tUD\nIGdu+fj44NVXX0XFihUREhKCq1evAgCaNWuGFStWYMyYMahUqRKCg4N1SXXUqFH45ZdfULlyZYwe\nPTrPmAA5w2zu3LmoWrUqLl68iFatWuX5++Z1P8h6qURBX9cUcPnyZXz33Xd48OABOnXqhLCwMKVD\nIjK61NRUuLi44Nq1a6hVq5be50VHR2PAgAFISEgwYXREOVlci8LPzw//93//h/Xr12PPnj1Kh0Nk\nNNu3b0d6ejrS0tIwbtw4BAQEGJQkiJRilkQxZMgQuLq6olGjRjmej4qKgp+fH3x9fTF79mzd89u3\nb8cbb7yRox+byNpt27YN7u7ucHd3x/Xr17F+/foiXYfdOWRuZul6OnLkCMqXL4+BAwfizz//BABo\nNBq89NJL2LdvH9zd3dGsWTOsW7cO9evX15331ltvITIy0tThERFRARzN8SZt2rRBfHx8judiYmLg\n4+MDb29vAEC/fv0QGRmJe/fuYcuWLTmmTxIRkXLMkijykpiYmGMxj4eHB06ePIl27dqhXbt2BZ7L\npjcRUdEUpRNJscHs4n7YC1l+xKIfU6ZMUTwGxsk4rTVGxmn8R1Eplijc3d1zTPFLSEjIUeKgMBER\nEYiOjjZBZEREtiU6OhoRERFFPl+xRBEUFITY2FjEx8dDrVZjw4YN6N69u97nR0REIDg42HQBEhHZ\niODgYMtPFKGhoboyCZ6enlixYgUcHR2xcOFCdOrUCQ0aNEDfvn1zzHiyBdaSyBincVlDnNYQI8A4\nLYXFrczWh0qlwpQpUxAcHGzz/wcRERVXdHQ0oqOjMXXq1CKNVVhtorDCsImIFFXUz06LK+FBRESW\nxWoTBWc9ERHpp7izntj1RERkJ9j1REREJsFEQUREBbLaRMExCiIi/XCMgoiI9FLUz07FqscSWYun\nT4GEBODRI+DGDeDxY+DCBaBkScDZKQP1/70a2kwttFlaHL77Erq6/htlKpfFSws/QlYWcP068PLL\ngKsrAI0GePAAqFYNYBVkshJsURC94HmGwG9r7mLzT+k4d6kkrj10gYfjHbi8XAfVq6vg4gJ4ewPl\nygEPk7Nwdd9NODqqIEqUQIB3Cvaed0VJRy2uPHKFoyNQqxZw6hRQpgzQsukzlN2/HUElzsC9liOc\nvN3hVMcTTg18UTqgHpo1k8cRmUJRPzutNlGwhAcZW1oaMP87Lb7+/DEaOF7F2y/9hZZtHVG/gxvK\nB9YF6tQpcitACNmyOH0aSE8Hjh14hoc3UpD5MBWZj9OQqSmBFC9/xMYCAwcC06fLRERkDCzhQVQU\nWi2g1eK5xhGHDgE//QT8+ivQpQswfexDvNSisiJhJSQAkyYBZ84AixYBLcuehVPcVaBTJ6BiRUVi\nItthdy0KKwyblCYEEBODm0ujsHdzCvY2HIv9l2qifn2ZIEaOBCpVUjpIGebKlcCCBcB/YrPQoVwM\n3nm6HN07qVF+SB+gc2fAyUnpMMkKMVEQ5efJE5ybtQszFrvgeHognpesgJAOWej4TkWEhAA1ayod\nYP7u3QOiooD1P2Xi6O8CHcoex9tZG1Bj2ki4ve4Pf3+lIyRrwkRBlE1yMrB/P3DlCrBl1VPcS9Jg\n4tBkvDHKF3XqqqxywtH9+8Du3cDGFWlI05RC7H8c4esL/OtfQLt2nERFhWOiIIKceTpxIrBpk/zw\nrFMH6NkTaNkScHBQOjrjyswE1qwBZsyQv9/iBRqULycAR856p7zZXa0nrsym7IQAvhp2DfV8tShX\nDoiNBbZuBb75BmjTxvaSBCCHKQYPBs6fl62J2rU0+GfVH3BxxhYIdabS4ZEF4cpssmsZGcDYgcnY\nHOkIL1UCNm5xQu2utrWlrr6uXwcWTbyFzduckJ7piG6tH+Gd8XXQrn0JTrUlAOx6IjuUeiEew7vd\nQkpSCuZNvo9an/aFqlRJpcOyCAmbT2Lj2BPY8bAV/nRqgtlzHdC5M+DurnRkpCQmCrIbW7YAc6ar\n8eeZTHRrGIdle73h7FZe6bAsjxDAtm04VvlNzJrrgJMn5XqRjh2VDoyUwkRBNu/ePeDzz+XMn2XL\ngNb+j1DOw0XpsKzGkSNAnz7Ae+8BU6fKWlVkX+xuMJvsy/ffA/7+sqzF+fNyoTKThGHatJErvs+f\nB7p2zMSpU0pHRNaCLQqybEJgzqhb+CHKE9u2AX5+Sgdk/bLUWnxbax4Wpg6CYzUXvB5SAl9+CVSp\nonRkZGp216Lg9Fg7kJiI7wMWY9lSgYN71EwSRuJYsgTGXw7D9bcnYEdmZ2hu30HfvkBWltKRkalw\neizZpk2b8PsHq/B25nocjSkJnwbsUDeJyEhkfTgSb5Y9gGot6mLx9w5wdlY6KDIVu2tRkI1KTwc+\n/BAHR29FH8ctWLmpPJOEKb31FhzPn8bmhlOgevIYjRoB164pHRRZGrYoyLLcvYuPQy4h8nFbLFxU\nAt26KR2QfVm6VJY5nzYN+PBD21zRbs/YoiCbsOmwK/Y8D8aFv5gklPDBB8CxY3L6cenSwOjRckMn\nsm9MFGQR0tKAb78FRoyQi8LYT66cevXkNNo7d4AHdzIRFATcvq10VKQkJgpSTnIyoNFg716gYUPg\n6FHgt9+AV15ROjACgCqPruGnw7UwsG08OnSQiYPsExMFKSMmBmjaFKsnXcbgwXJB3S+/AI0bKx0Y\n6fj4ACtWYOKvr6BfvdN4800514DsDwezyfw2bwaGD8em93Zi1Jpm2L8fqG+fBV+tw5UrEN26ox/W\nwatbY8z9mt8vrRVrPZHlEwL4+mtg3jzcXr4bge82wt69QJMmSgdGhXr8GHd7DkPD48swYIQzhg2T\nYxlkXexu1hNXZluh+fOB1auB48fx0dJGGDaMScJqVKoE170/4fedT1C2LNCqFXDokNJBkb64Mpus\nx8OHEA6OmLW4AlatAs6elVMwyfrs2wf07y+3nR0zRuloSF/seiKrsGIF8NVXQFQU4OmpdDRUHLdu\nAa1byz3Je/aU/13Cavso7IPddT2R9Zk3Dxg3Dli3jknCFnh4AMePA07PniA8XCaKZ8+UjopMgYmC\nTOPWLSAzU/fjjh3Ad9/JWbEBAQrGRUblpk3EnC2+OPflTnh5yZXcbOzbHiYKMr6rV4EWLYCDBwHI\nVdcjRgArVwJ16yobGhmZuzuwYwdUYUOwpPOvOH4cmDCBJcttDRMFGdeVK0CHDnKvzY4dIYT8ltmu\nnXyQDXrlFeC331Bx0kjsG7oe584BderIP4EnT5QOjoyBiYKM59IlmSSmTweGDAEgPyxOnwYWL1Y4\nNjKtgADg4EFUnzMOewavx7ZtQHy8fJp1oqwfZz2RccTGAsHBwMyZwMCBAICdO4GPPgJOnACqV1c2\nPDKTy5cBJyddH+OMGcCPP8ovCp06KRwbcXosKSw1FTh8GOjaFYCc/eLvL2s4deyocGykGCGAyEj5\nheHaNaBUKaUjsm9MFGRRPvtMDlds2qR0JGQJ3npLToRbsABo2VLpaOyXzSSKyMhI7Ny5E0+fPkVY\nWBhCQkJyHcNEYbm0WmDsWGDbNtnA8PBQOiKyBBkZsmURHi4XXA4cCKhUSkdlf2wmUfzt8ePHGDdu\nHH744YdcrzFRWCatFhg2TI5p79gBVKyodERkEebOldOlW7fGhQtA376Atzcwfrwc1iLzseiV2UOG\nDIGrqysaNWqU4/moqCj4+fnB19cXs2fPzvHa9OnTER4ebo7wyFApKcDkyYBarXvqwAE5pf4//wF2\n72aSoGwCA4G33wbOnUPDhsAff8iuqN695QJMsgLCDA4fPixOnz4tGjZsqHsuKytL1K1bV8TFxQm1\nWi0CAwPFxYsXhVarFZ9++qnYt29fvtczU9iUl4wMIdq3F+L994XQaoUQQsTFCVG1qhD79ysbGlmw\njRuFcHMTIjZW99TmzUK4ugqxcKGCcdmZon52OpojGbVp0wbx8fE5nouJiYGPjw+8vb0BAP369UNk\nZCT27duH/fv34+nTp7h27Ro+/PBDc4RI+tBqgUGDgCpVgP/7P0ClgloNDB8OjBoll1AQ5al3b+Dx\nYzkF7uhRwM0NvXrJMvOtWwN+fsBrrykdJOXHLIkiL4mJifDMVhnOw8MDJ0+exIIFC/DRRx8Ven72\n2urBwcEIZmen6U2cKKeu7NsHODhACCA0VE6bHz9e6eDI4r3/vtx4e+RIYMsWAEDt2rK0y8CBwN69\ncko1GU90dLRR9u1RLFGoijnloTibcFAR/PKLnLZy9ChQujS0Wjl75do12edcsqTSAZJV+Owz2bLI\nJiQEmDVLbobUpw+wZAlnRBnLi1+ip06dWqTrKFbCw93dHQkJCbqfExIS4MG5lJbrzTdlS6JKFfz1\nlywTvm2bzB9MEqQ3lQpwccn19IABQGIicOqUbFXMnSt7OskyKJYogoKCEBsbi/j4eKjVamzYsAHd\nu3fX+3xuhWpmpUsDHh4QQn4pHD0a+P13wNdX6cDIVpQrJ7dX/eEH4Ndf5XBYtu+SVAxWsRVqaGgo\nDh06hAcPHqB69eqYNm0aBg8ejN27d2P06NHQaDQICwvDxIkT9boe11EoIzUVaNtWftM7fhwoU0bp\niMhWpaYC//ynXNl/6hQXbhqLzS24KwgThflduSLr9bi7yyJv7EMmo4mIAN54A2jWLNdL06fLopI7\ndpg/LFtk0QvuTIFdTyak1crRxZQU3VPh4bJk9KJFTBJkZIGBQK9eQFJSrpfGjwcuXpR7rFPRWUXX\nk7GxRWFiU6bIgesDB4BSpZCQADRuLAcbS5dWOjiySVOnAnv2yF0RXygxu3+/nIa9eTPQpo1C8dkI\nu2tRkIls2iQntm/ZApQqhbNn5QZmI0YwSZAJff454OYm11i88EH22muygftClR8yI6tNFOx6MoEz\nZ2RG2LoVcHVFZqYs8jdtGvDFF0oHRzatRAlg1SpZ/GnFilwvh4bKl2JjFYjNBrDriYzj/n0gKEhO\nYO/dG+fOySmwFSrIqYolrPYrBVmVmzeB8uWBypVzvTRxotwQa948BeKyEZz1RMWjVssaCm++iaws\nWVph1CiZLBwVW79P9D8JCXLce+xY2UOVx7o9KgTHKKh4SpaUq68hWxDe3sC4cUwSZDk8PWUFmWvX\nZDHBuDilI7IfVpsoOEZhGhcvAh9/LMcWiSxN/fpyrkVYGDBhgtLRWA+OUZDRZGUBzZsDH3wAsLo7\nWQS1Gjh3LtdivMePZav32jWgalVlQrNG7Hoiw2RkAA8f5njq559lvZ0PPlAoJqIXXbsGdO0q99fN\nplIluWne118rFJedYYvCXn34oVzYNH8+ADl1PTBQTnrq1Enh2Iiy+/FHWdM+JkbOiPqvpCSgUSNZ\nwZjb0ejH7loUHKMohrVrgehoYMYM3VO//SaTRceOyoVFlKchQ4BXX5WLerJ9yLm5yfWhffoA69cr\nGJ8V4BgFGeb6dfmP7rffZF2O/3r9dbnL2MCBCsZGlJ/0dPl3O2qUHMnO5s8/ZWmPGzeAihUVis9K\n2F2LgopArZZLXD//PEeSOH1aVoft10/B2IgKUrasbDYcP57rpUaN5C55a9cqEJedYIvCnmzfDixb\nJrc0zVYCNjRULsr+5BMFYyMqhmPHgO7d5aZHPXooHY3l4sps0k9WVo5VdHFxcubhf/4jy3UQWavD\nh+WueFevAk5OSkdjmdj1RPp5Yan1t98CQ4cySZD1a9tWlp5ZvlzpSGyP1RZoiIiIQHBwMII5L67I\nHjwA1qwBLlxQOhIi45g/H2jfXraSX35Z6WgsR3R0dLFmibLryY5NnAjcu8dvYGSl7t0D5syRj2zl\njbdskcuEvvxStpa5I+P/cIyCcrt6VTYbWrTI9dKVK0CrVsD580DNmgrERlRcmZmyv6l/f7mhezYX\nLwIDBsg1pd9+K0vTEMco6EVZWcC778rNiF4ghPx3NXkykwRZMScnYPVquY3q1as5XmrQAPjjD1mO\nplcv+U8hIUGhOG0AE4WtmjlTFsQZPjzXSydOyNlOL3wJI7I+vr5ARIRcKZqVleOlEiWA996Trefa\nteXSIW6nWjTserJFp08DnTvL//XwyPXyiBGAu7tsURBZPa1WFihr3x6YNCnfw27eBFq3luv2WrY0\nY3wWhF1PJGVkyM7ZefPyTBKpqcDGjcA//qFAbESmUKKELByYx/ap2Xl5yf3fhw8HHj0yU2w2wmoT\nBYsC5uPyZVn4JjQ0z5cXLZLlDry9zRsWkUl5esqigYUYNEjWNXv9dblNvL1gUUDSW0aGTBD79wP+\n/kpHQ6QMIWS5s++/l2VrPv0UcHBQOirzYNcTFWrNGrkIiUmC7JlKBUyfLusL7twJjB+vdESWjy0K\nO6HVAg0bAgsXAh06KB0NkWV49EgObIeHAyNHKh2N6bFFQQXauRMoWVJODCGyeQcPyu0aC+HiIv9t\nTJ8O7NhhhrisFBOFtVOrZelwrTbfQ5KSZEmDOXNYzoDshJ+fTBTnzhV6aJ06wK+/AoMHA0eOmCE2\nK8REYe3mzMm1v8SLFi+Wq1O5zSnZDTc3ubpu8GBZ6qMQr74qF3n36SMHuNPTzRCjFWGisGaXLwPf\nfSczQT6JQqsFVq2SpQyI7Mp77wHVqgFffaXX4V26yNpnSUlAYKDcDIkkDmZbK60WaNcO6NtXjsTl\nY9482aw+dMiMsRFZivh4uX3j77/L7ig9bdoEjBkjV3OXsKGv03Y3mG33C+6WLgU0mjxrOf3t6VNZ\nBmfFCvOFRWRRvL1li1utNui03r2BqlVtZ8yCC+7sVZ8+wJQpBS6KWLtWPjibg8hwc+YAmzfLPGMr\nmyAV9bPTane4s3sbN+p1yDvvmCEWIhs0ZgxQvjzQvbvc0mXlSvmzPbLaricq2LFjsh7/228rHQmR\ndXJykpWWY2Nl2Y+ZM5WOSDmFJorff/8913NHjx41STBkPDNnAl98ATg7Kx0JkXUrWxZYsABYsgS4\nfl3paJRRaKL4KI/dbcILmGVDynv+XM5y6tFD6UiILExmJvDZZ/IfiQFq1pQ1oYYNM/hUm5DvGMXx\n48dx7NgxJCcn45tvvtENgKSkpEBbwCpgMpFLl2TzII89Jl509ChQv36h5fmJ7I+TE3DhglyM969/\nGXTqmDGyO7dbNznlvFw5E8VogfJtUajVaqSkpECj0SAlJQWpqalITU1FhQoV8Msvv5gzRtJo5FaP\nBw7odfi6dcCbb5o4JiJrtWABMH9+rn22C1OypNwdr2pVuXrbnhQ6PTY+Ph7eFrbLjd1Nj12yRNYI\nP3y40GJN168Dr7wi/w1UqWKm+IiszTffAHv2AFFRBhdAu38fqFdPThgxYA2fRSjqZ2ehieLKlSv4\n6quvEB8fj6z/bl6uUqlwQM9vt6ZgV4ni/n2gQQNg3z4gIKDAQx89knsCf/gh8PHHZoqPyBplZgKN\nGwMzZhRpMG/FCrnh0bffAu++a4L4TMRkiSIgIADDhw9H06ZN4fDfbaBUKhVeVnAFil0livffl52h\n8+YVeFhGhiz6FxQkvywRUSEOHJCzPqZOLdLpZ88C/fsDzZsDP/xgHbvkmSxRvPzyyzh16lSRAzMF\nu0kUiYlyV5Xz54GKFfM9TKORC7VLlgR+/tm2atMQWbL0dKBrV/kFTc/ag4oyWa2nbt26YdGiRUhK\nSsLDhw91D1OJi4vD0KFD0bt3b5O9h9Vwd5cVYgtIEoCcvPHokVw5yiRBZD5lywJbtsgyOT//rHQ0\nplNoi8Kx6mrUAAAYJUlEQVTb2xuqPAZ74uLiTBYUAPTu3RubNm3K8zW7aVHoIS0N8PSUjQ49Zs4S\nkQns3QtMnAhYWOdLLiZrUcTHxyMuLi7XwxBDhgyBq6srGjVqlOP5qKgo+Pn5wdfXF7NnzzYscgIg\nyyG3bs0kQaSk114D7t2TX9hsUaFFAVetWpVni2LgwIF6v8ngwYPx0Ucf5ThHo9EgPDwc+/btg7u7\nO5o1a4bu3bujfv36el+XZJn9Ll2UjoLIBvz730DDhkDp0gaf6uAADBoku39tcTJJoS2KP/74Q/c4\nfPgwIiIisG3bNoPepE2bNnBxccnxXExMDHx8fODt7Q0nJyf069cPkZGRePjwIYYNG4azZ8/aZyvj\n2TODDr9wAXihoUZERTFjhpzvWkTvvSfHKWyxxEehLYqFCxfm+Pnx48fo27dvsd84MTERnp6eup89\nPDxw8uRJVK5cGd9//32h52ffhCM4OBjBwcHFjklxQgBvvCGLyujRTNBqgb/+KnBLCiLS11dfybmu\n770n99w2kI8PEBICtG8PbNggxw6VFh0dbZQN3gzej6Js2bJGGcjOqzvLEMXZrcli/forkJws/9r0\ncOOGnBD1QmONiIqibl1gyBBZNHD58iJdYvVqYO5coFkzuVd9p05GjtFAL36JnlrENSOFJopu3brp\n/lur1eLixYvo06dPkd4sO3d3dyQkJOh+TkhIgIc9j8hmZADjxgHLlgGO+uXv48fZ7URkVJMnAy+9\nBJw+DTRtavDpJUoAEybIjY769wdmzbKuldv5KfQT6ZP/Vr9SqVRwdHSEl5dXji6jogoKCkJsbCzi\n4+NRs2ZNbNiwAevWrdP7/IiICNvpcgLkyuuAADl9Qg+PHsk/SO6HTWREFSsC06bJ1dqRkUW+TNu2\nclv72bMtI1EUtwtKrz2z79y5gz/++AMqlQqvvPIKqlevbtCbhIaG4tChQ3jw4AGqV6+OadOmYfDg\nwdi9ezdGjx4NjUaDsLAwTJw4Ub+gbW0dRVKSbBqcOCE7OvXwj3/Ion/z55s4NiJ7o9EAT54Uu07/\ns2eAq6vsIraU7mGTlfDYuHEjxo8fj3bt2gEADh8+jLlz5yq6ctrmEkVqKnDkiN7zXDduBD7/HDhz\nRq4MJSLL1L070KEDMHq00pFIJi0KuG/fPl0rIjk5Ga+99hrOK7iyRKVSYcqUKbbV9aSnpCRZ9HL7\ndllOnIgs19WrQKtWwK5dcoBbKX93PU2dOtU0iaJRo0Y4f/68bpaSVqtFYGAg/vzzz6JFbAQ216LQ\nkxByd60mTeR+2ERk+bZsAcaOlev5qlZVNpaifnYWOpjduXNndOrUCf3794cQAhs2bEAXLgVWxM8/\nA7dvyz88IrIOvXrJ4cewsGKNjysq30QRGxuLu3fvYu7cudi8eTOOHj0KAGjZsiX69+9vtgDzY3Oz\nnvSwebNci1eypNKRENkJIeRiiCVLgNq1i3yZadPk5JO0NGX22jbZrKc33ngDM2fORMALu6qdP38e\nkydPxvbt24v8psVlE11PO3fKqXitW+t1uBBysejJk0CtWiaOjYj+Z+pUOdhQzDrir74qp8v+d16Q\nIoxePfbu3bu5kgQgB7dNXWLc5mVkACNGGHRKXJxczOPlZaKYiChvn3wCHDwoF+EVQ4sWcpGsNco3\nUTx+/DjfkzIyMkwSjN1YsECu+tSzNQHIPs4WLQzeB56Iiqt8ebk72KefyqZ9EbVqBRih7JIi8k0U\nQUFBWLp0aa7nly1bpuh+2X+LiIgwSrErs3vwAJgzR67tN8CZM4AF3HYi+xQWBty6JXcoKqIuXWTX\ncVKSEePSU3R0dLHq4+U7RnHnzh307NkTJUuW1CWGU6dO4fnz5/j111/hVoTqisZi1WMUY8YAajWw\naJFBp4WEyCl2nHBGpJCoKNlt3KNHkS8RFiZLSX36qRHjMoBJFtwJIXDw4EFcuHABKpUK/v7+6NCh\nQ7ECNQarTRRqtew/2rVLru3XkxBAtWrAn38WqfoxEVmI338Hhg4FLl1SphvZZCuzLZHVJgpAfuob\n+BcSHy9nTNy5Y5qQiMg8hJAtiiVL5L4V5mayPbMtldWOURiYJLRaOUFq0CATxUNEZqNSySHKfv2A\nY8fM974mG6OwZFbdojDQtGnAb78BBw4ATk5KR0NExhAVBQwcKDc66tzZfO9rdy0Ke7Bnj2yibtzI\nJEFkUdRqOYWpiDp3luU8Bg0CDNiGRzFMFOZQhAx+48b//og4gE1kYe7elVMQizFw2KIFsH+/LMuz\neLERYzMBJgpTu3dPLoDIzNT7lOfPgd695c6obduaMDYiKhpPT2DAAIPXQ72oYUO5Fc0338huZkvt\nUbfaRGE1g9nffiunLBnQdzRtGlCzpqwcQEQWauJE4KefgISEYl2mdm05bXbzZuCzz4wU2ws4mG3J\nHj4EfH2BU6cAb2+9Trl6FWjZEjh/XiYLIrJg//yn3MB+yZJiXyo5GQgOBvr3ByZPLn5oeeE6Cks0\ndaocbPjxR70OF0IOcnXqJFdhE5GFe/gQqFdP7kqk55fBgiQlye7mkSNNs32qyTYuoiJ6+hRYuNCg\nydK//gokJgIffWTCuIjIeCpXBo4eNVrtfzc3OcDdti1Qpgzw4YdGuWyxMVGYyu3b8muBr69eh6el\nyTJQq1dzKiyRVXnpJaNezstLJovgYJksBg406uWLhF1PFmLSJNlLVcy9UYjIRly6BLz2GvDdd3IW\npDGw68mKXb0KLFsGnDundCREZCnq1wd27wY6dgRKlwa6dVMuFqtNFLa0Z/bcubLbibOciCi7wEBg\nxw65zcC9e0DJkkW7jsn2zLZkttb1VKeO/GNo0EDpSIioWL7/Xi6wbdbMqJdt2lRujNmqVfGuw1pP\nliAzU852MkB8PJCeLpuZRGTltFq5YtbIOnSQhUGVwkRhTGvXymX9Bjh4UNal517YRDZgyBDg9Gn5\nMKL27eVnhVKYKIxFowG+/BIYNcqg0w4cUGYDEyIygdKl5T6nX3xh1Mu2aQPExMidWJXARGEsv/wC\nVKli0Ke+EPJbggXsLktExvL++8CJE7IOj5FUqCALCB4/brRLGoSJwhi0WmD6dFnRy4A+pGvX5OF1\n65owNiIyr7JlZennyEijXrZ9e+XGKax2eqxF2b5dLqfu0sWg0/7uduL4BJGNGTMGKGHc7+EdOsjy\ncUpgi8IYPD2B+fMN/sRntxORjTJykgDk1NizZ2W5H3NjojCGpk2B1q31PvzSJbluggPZRKSvsmWB\nJk3k3hXmZrVdT9a8MnvIEMDREejZ02hFJ4nIDgQFAX/+KbciMARXZlshLy+5/SGTBBEZIiJCzpYs\n6lgFV2ZbCa1W7sdeo4bSkRCRWezaZbRNZsqXB1JSjHIpgzBRFNX163LPCQM9eAA4OwOlSpkgJiKy\nPK++Kqs23LhR7Es5OwOpqUaIyUBMFEU1erTcks5At2+zSiyRXalcGfjgA2DWrGJfytmZLQrrceYM\ncOoUEBZm8KlJSXK7QyKyI2PHAhs2ALduFesyTBTW5Msv5crL0qUNPpUtCiI7VK2a/GI5Z06xLsNE\nYS0uXQIOHy7yrudsURDZqU8+AZ4/l9OWiqh8eY5RWIeZM2WF2HLlinQ6WxREdqpGDWDJkmLV7FGq\nRWG1C+4UM2lSsZoESUlcjU1ERcNEYS38/Ip1OlsURFRUHKOwExyjIKKiKldObp2s1Zr3fS2uRZGW\nloYRI0agVKlSCA4ORv/+/ZUOyWiEkKuymSiICM+eAWXKGHRKiRKyOGBammxdmIvFtSi2bNmCPn36\nYOnSpdi2bZvS4RjVgwfyG0ERZtUSkS25cAF4+eUiNQ2U6H4yS6IYMmQIXF1d0ahRoxzPR0VFwc/P\nD76+vpg9ezYAIDExEZ6engAABwcHc4RXuPXrjbL8nuMTRAQA8PeX3xqL8GXYZhPF4MGDERUVleM5\njUaD8PBwREVF4eLFi1i3bh0uXboEDw8PJCQkAAC05u6Iy8uDB8DIkUbZiITjE0QEQE6RnTABmD3b\n4HUVShQGNEuiaNOmDVxcXHI8FxMTAx8fH3h7e8PJyQn9+vVDZGQkevXqhc2bN2PEiBHo3r27OcIr\n2HffAb16yV3sioktCiLS6dkTSE4Gjh416DQlCgMqNpidvYsJADw8PHDy5EmULVsWP/74Y6HnR0RE\n6P7bZBsYPXkCLF4MnDxplMs1aAC4uhrlUkRk7RwcZCmgOXMM2iFz6FDAw0O/Y4u7YdHfFEsUqmKs\nTgRyJgqTWbQI6NIFqFvXKJdr3twolyEiWzFokCwUqNXq3b09YID+l3/xS/TUIu54pFiicHd3141F\nAEBCQgI89E2T5qDRAEuXyk1HiIhMoUwZYPp0paMolGLTY4OCghAbG4v4+Hio1Wps2LDBoDGJiIgI\nozSp8uXgAJw/L/uLiIisWHR0dLF6YcyyZ3ZoaCgOHTqEBw8eoHr16pg2bRoGDx6M3bt3Y/To0dBo\nNAgLC8PEiRP1up6175lNRKSEon52miVRGJtKpcKUKVNMN4hNRGRD/h7Unjp1qn0lCisMm4ioYMnJ\ncpMjEynqZ6fFlfAgIrJLFy4AzZoBWVlKR5ILE0V2Gg0weLAydXyJyL41bAi4uxeprIepWW2iMMms\np40bgWvX5Bp5IiJzGz0amDfP6Je1illPxmaSMQqtFggIAL7+GujUybjXJiLSR1YWUKcO8Ouvsrqs\nkXGMori2bpWLXzp2VDoSIrJXjo5AeLisMWdBrDZRGLXrSQi5OvKzz4q18TkRUbG9/77RWxPsejKG\n//xHVtrat88o5cSJiCyR3S24M3rYQrA1QUQ2jWMUxcUkQUSUJyYKIiIqkNUmCpNXjyUiUppGI7dj\nLiYOZhMR2apVq+Saiq1bjXI5DmYTEdma9HSgVi25HXOdOsW+HAeziYhsTdmyQFgYsGCBomGwRUFE\nZMkSEoDGjYG4OKBChWJdyu5aFBzMJiK74OkJvP46sGJFkS/BwWwiIlt35gxw8ybw1lvFugwHs4mI\nqEB21/VERETmwURBREQFYqIgIqICMVEQEVmT9HQgJcWsb2m1iYLTY4nILk2YAMyfb9ApnB5LRGRP\nzpwBuneXC/AcHQ06lbOeiIjsQZMmchHejh1me0smCiIiazNyJLBokdnejl1PRETW5vlzwMsLOHwY\neOklvU9j1xMRkb0oVQr46itArTbL27FFQURkJ9iiICIik2CiICKiAjFREBFRgaw2UXBlNhGRfrgy\nm4iI9MLBbCIiMgkmCiIiKhATBRERFYiJgoiICsREQUREBWKiICKiAjFREBFRgZgoiIioQEwURERU\nICYKIiIqkMUliri4OAwdOhS9e/dWOhQiIoIFJoratWvjhx9+UDoMo7CWooWM07isIU5riBFgnJbC\nZIliyJAhcHV1RaNGjXI8HxUVBT8/P/j6+mL27NmmenuLYC1/PIzTuKwhTmuIEWCclsJkiWLw4MGI\niorK8ZxGo0F4eDiioqJw8eJFrFu3DpcuXcJPP/2EMWPG4Pbt26YKh4iIishkiaJNmzZwcXHJ8VxM\nTAx8fHzg7e0NJycn9OvXD5GRkRgwYAC+/fZb1KxZEw8fPsSwYcNw9uxZm29xEBFZBWFCcXFxomHD\nhrqfN23aJIYOHar7+aeffhLh4eEGXxcAH3zwwQcfRXgUhSPMSKVSGeU6gpsWERGZjVlnPbm7uyMh\nIUH3c0JCAjw8PMwZAhERGcisiSIoKAixsbGIj4+HWq3Ghg0b0L17d3OGQEREBjJZoggNDUXLli1x\n9epVeHp6YsWKFXB0dMTChQvRqVMnNGjQAH379kX9+vULvdb48eNRv359BAYGolevXnjy5Emexyk9\n9XbTpk3w9/eHg4MDTp8+ne9x3t7eCAgIQJMmTfDKK6+YMUJJ3ziVvp8PHz5ESEgI6tWrh44dO+Lx\n48d5HqfE/dTn3nz88cfw9fVFYGAgzpw5Y5a4XlRYnNHR0ahYsSKaNGmCJk2aYPr06WaPMb+p9NlZ\nwr0sLE5LuJeA7Klp3749/P390bBhQ8yfPz/P4wy6p0Ua2TCzvXv3Co1GI4QQYsKECWLChAm5jsnK\nyhJ169YVcXFxQq1Wi8DAQHHx4kWzxnnp0iVx5coVERwcLE6dOpXvcd7e3uLBgwdmjCwnfeK0hPs5\nfvx4MXv2bCGEELNmzcrz/3chzH8/9bk3O3fuFF26dBFCCHHixAnRvHlzs8VnSJwHDx4U3bp1M3ts\n2R0+fFicPn06x8SX7CzhXgpReJyWcC+FECIpKUmcOXNGCCFESkqKqFevXrH/Pi1uZXZeQkJCUKKE\nDLV58+a4detWrmPym3prTn5+fqhXr55exwoFB+T1idMS7ue2bdswaNAgAMCgQYOwdevWfI815/3U\n595kj7158+Z4/Pgx7t69a7YY9Y0TUH5ySF5T6bOzhHsJFB4noPy9BIAaNWqgcePGAIDy5cujfv36\nudaoGXpPrSJRZPfjjz+ia9euuZ5PTEyEp6en7mcPDw8kJiaaMzS9qVQqvP766wgKCsKyZcuUDidP\nlnA/7969C1dXVwCAq6trvn/I5r6f+tybvI7J6wuOKekTp0qlwrFjxxAYGIiuXbvi4sWLZo1RH5Zw\nL/VhifcyPj4eZ86cQfPmzXM8b+g9Nev02IKEhITgzp07uZ7/8ssv0a1bNwDAjBkzULJkSfTv3z/X\nccaaelsYfeIszNGjR+Hm5obk5GSEhITAz88Pbdq0sag4lb6fM2bMyBVPfjGZ436+GIs+Xvx2aa57\nasj7NW3aFAkJCShbtix2796NHj164OrVq2aIzjBK30t9WNq9TE1NxTvvvIPvvvsO5cuXz/W6IffU\nYhLFb7/9VuDrK1euxK5du7B///48XzfX1NvC4tSHm5sbAKBatWro2bMnYmJijP7BVtw4LeF+urq6\n4s6dO6hRowaSkpJQvXr1PI8zx/3MTp978+Ixt27dgru7u8liyos+cTo7O+v+u0uXLhgxYgQePnyI\nypUrmy3OwljCvdSHJd3LzMxMvP3223j33XfRo0ePXK8bek+touspKioKc+fORWRkJEqXLp3nMZY2\n9Ta/vsr09HSkpKQAANLS0rB3794CZ3uYWn5xWsL97N69O1atWgUAWLVqVZ5/8ErcT33uTffu3bF6\n9WoAwIkTJ1CpUiVdN5q56BPn3bt3dX8DMTExEEJYVJIALONe6sNS7qUQAmFhYWjQoAFGjx6d5zEG\n31NjjbSbko+Pj/Dy8hKNGzcWjRs3FsOHDxdCCJGYmCi6du2qO27Xrl2iXr16om7duuLLL780e5xb\ntmwRHh4eonTp0sLV1VV07tw5V5zXr18XgYGBIjAwUPj7+1tsnEIofz8fPHggXnvtNeHr6ytCQkLE\no0ePcsWp1P3M6958//334vvvv9cdM3LkSFG3bl0REBBQ4Cw4JeNcuHCh8Pf3F4GBgaJFixbi+PHj\nZo+xX79+ws3NTTg5OQkPDw+xfPlyi7yXhcVpCfdSCCGOHDkiVCqVCAwM1H1m7tq1q1j3VCWEBQzT\nExGRxbKKriciIlIOEwURERWIiYKIiArEREFERAVioiDKQ14LlIwlIiICX3/9tcmuT2RsTBREeTDl\nyl9LXFVMVBAmCiI9Xb9+HV26dEFQUBDatm2LK1eu4MmTJ/D29tYdk5aWBi8vL2g0mjyPf9H8+fPh\n7++PwMBAhIaGmvG3IdKfxZTwILJ0H3zwAZYsWQIfHx+cPHkSI0aMwP79+9G4cWNER0cjODgYO3bs\nQOfOneHg4JDv8cD/WhWzZ89GfHw8nJyc8PTpUyV/PaJ8MVEQ6SE1NRXHjx9H7969dc+p1WoAQN++\nfbFhwwYEBwdj/fr1CA8PR2pqKo4dO5bn8dkFBASgf//+6NGjR54lSogsARMFkR60Wi0qVaqU505g\n3bp1w6RJk/Do0SOcPn0aHTp0QEpKClxcXPLdOezvggg7d+7E4cOHsX37dsyYMQN//vknHBwcTPq7\nEBmKYxREeqhQoQJq166NX375BYD8oD937hwAOUOqWbNm+Pjjj9GtWzeoVKo8jz9//nyOawohcPPm\nTQQHB2PWrFl48uQJ0tLSzPuLEemBiYIoD+np6fD09NQ95s2bh59//hnLly9H48aN0bBhQ2zfvl13\nfN++fbF27Vr07dtX99yLx2/btk33mkqlgkajwYABAxAQEICmTZti1KhRqFChgll/TyJ9sCggEREV\niC0KIiIqEBMFEREViImCiIgKxERBREQFYqIgIqICMVEQEVGB/h/cV8ENGKkrWAAAAABJRU5ErkJg\ngg==\n" - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Average number of upcrossings per time unit\n----------------------------------------------\nNext we compute the mean frequency as the average number of upcrossings per time unit of the mean level (= 0); this may require interpolation in the crossing intensity curve, as follows. \n" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "T = xx[:, 0].max() - xx[:, 0].min()\nf0 = np.interp(0, lc.args, lc.data, 0) / T #! zero up-crossing frequency \nprint('f0 = %g' % f0)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "f0 = 0.224071\n" - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Turningpoints and irregularity factor\n----------------------------------------" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "fm = len(tp.data) / (2 * T) # frequency of maxima\nalfa = f0 / fm # approx Tm24/Tm02\n\nprint('fm = %g, alpha = %g, ' % (fm, alfa))", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "fm = 0.456159, alpha = 0.491212, \n" - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Visually examine data\n------------------------\nWe finish this section with some remarks about the quality of the measured data. Especially sea surface measurements can be of poor quality. We shall now check the quality of the dataset {\\tt xx}. It is always good practice to visually examine the data before the analysis to get an impression of the quality, \nnon-linearities and narrow-bandedness of the data.First we shall plot the data and zoom in on a specific region. A part of sea data is visualized with the following commands" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nts.plot_wave('k-', tp, '*', nfig=1, nsub=1)\n\naxis([0, 2, -2, 2])\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEXCAYAAACqIS9uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXl4E9X+/jvpnjRt06bpvlC6syPKTuuCLAIiqOwoYlkU\nwf2CegWvit7rFfSKV6kLisiioiIKyJWfRZYLXJW1rKV037ekaZO2Sc7vj35nyDIzmSRtU+i8z9Pn\naWZO5pzMzHnP57yfz/kcihBCIEKECBEiegwk7m6ACBEiRIjoWojEL0KECBE9DCLxixAhQkQPg0j8\nIkSIENHDIBK/CBEiRPQwiMQvQoQIET0MIvE7gcrKSowZMwYBAQF47rnn3N0cAEB8fDwOHDjQ5fVO\nnDgRX3zxRYdfV6fTYfLkyQgKCsKMGTM6/PoiOhY5OTmIiYnp9HokEgny8/M5z2/cuBFPPfVUp7eD\nC7t378bMmTPdVr9Q9AjiP3z4MEaMGIGgoCCEhIRg1KhR+P33352+XnZ2NlQqFTQaDd56660ObKnz\noCgKFEV1ah1r1qzBvHnzLI7t2bPH5lhH4JtvvkFVVRXq6uqwY8eODr9+T0ZXkXRXo7W1Fa+//jqe\nf/55AEBBQQEkEgkGDx5sUa6mpgbe3t7o1asXAOCNN97AxIkTLcokJSWxHvvqq68AcA9AkydPRm5u\nLs6ePdthv6szcNMTv0ajwaRJk7BixQrU19ejtLQUq1evho+Pj8PXIoTAZDKhsLAQaWlpndBaETQK\nCwuRnJwMiYT9FTUajV3cIhE0DAaDu5vAil27diEtLQ0REREWx3U6HXJzc5nPW7duRUJCAmMojRkz\nBkePHgW9lrW8vBwGgwGnTp2CyWRijl29ehVjxoyx245Zs2YhOzu7o35W54Dc5Pjf//5HgoKCOM+v\nXr2azJ07l/l87do1QlEUMRqNhBBCMjIyyIsvvkhGjhxJ/Pz8yNy5c4mXlxfx9vYm/v7+5MCBA+T4\n8eNk2LBhJCgoiERERJBly5aR1tZW5prnzp0jd911FwkODiZhYWFk7dq1hBBCjEYjeeONN0jv3r1J\nSEgIefDBB0ldXR1nW3fv3k0GDBhAgoKCyIgRI8iZM2eYc/Hx8eTAgQOEEEJMJhPndcePH082bNhg\ncd3+/fuT7777jhBCyPLly0lMTAwJCAggt9xyCzl06BAhhJC9e/cSb29v4uXlRfz9/cnAgQOZ+/Px\nxx8z9b766qskLi6OqFQqMn/+fKJWqy3u6+eff05iY2OJUqkkr7/+OuvvfPnlly3q+uSTT8imTZvI\niBEjyFNPPUVCQkLIX//6V6JWq8m8efNIaGgoiYuLI6+99hoxmUyEEGJRPigoiPTu3ZscOXKEfPrp\npyQmJoaoVCry+eefc97rjIwM8tJLL5ERI0YQf39/MnnyZFJdXU1mz55NAgICyK233koKCgqY8hcu\nXGCecUpKCvnqq6+Ycz/++CMZOHAgCQgIIDExMWTNmjXMOUfuS35+vsW7/OijjxKVSsV8njt3Lnnn\nnXcIIYR8+umnJC0tjcjlcpKQkEA2btxICCFEq9USX19fIpFIiL+/P5HL5aS8vJz3naHb+Mknn5DY\n2FiSkZFh07Zff/2VREdHM59LS0vJtGnTSGhoKOnVqxf517/+xRz38/OzeM///PNPolQqicFgIIQQ\n8sknn5C0tDSiUCjIuHHjSGFhIVOWoihy9epV1vuzYMECi3tHt/v1118nzz33HHN8yJAh5PXXXyfx\n8fGEEEJaWlqIVColf/75JyGEkB07dpAFCxaQjIwM8scffzDHEhMTBbXjyJEjpFevXqznugtueuLX\naDQkJCSEPPTQQ2Tv3r02xLpmzRq7xB8XF0fOnz9PjEYjaWtrIw8//DD561//ynznjz/+IMePHydG\no5EUFBSQtLQ0pgNqNBoSHh5O1q1bR1paWkhjYyM5fvw4IYSQd955hwwfPpyUlpaS1tZWsnjxYjJr\n1izW3/Hnn38SlUpFTpw4QUwmE/n8889JfHw8M8CYEz/fdTdv3kxGjhzJXDc3N5cEBQUx19myZQup\nq6sjRqORvP322yQ8PJy0tLQw92revHkW7crMzCSffPIJIaS9wyYmJpJr164RrVZLpk2bxpSn7+ui\nRYuIXq8np0+fJj4+PuTChQusv9e6rk2bNhFPT0+yYcMGYjQaiU6nI/PmzSNTp04lWq2WFBQUkOTk\nZKYtdPnPPvuMmEwm8tJLL5GoqChmUN6/fz+Ry+WkqamJtf6MjAySlJRE8vPziVqtJunp6SQxMZEc\nOHCAGAwGMn/+fLJgwQJCSDuZRkdHk88++4wYjUZy8uRJolQqyfnz5wkhhOTk5JBz584RQgg5c+YM\nCQsLI99//71T9yU2NpYhqOTkZNK7d2+mbGxsLDl16hQhhJCffvqJ5OfnE0IIOXjwoAWx5eTkWJA0\nIfzvDN3Ghx56iDQ3NxO9Xm/TLnPiNxqNZPDgweTVV18lbW1tJD8/nyQkJJCff/6ZEELIHXfcQT76\n6CPmu88++yxZunQpIYSQ77//niQmJpKLFy8So9FIXnvtNTJixAimLB/h3nrrreSbb75hPtPtLigo\nIDExMcRkMpHc3FySmppKfvnlF4b4CSHk9ttvJ+vXryeEEPL444+TTz/9lLz44osWxxYuXCioHbW1\ntYSiKNLY2Mh6vjvgpid+QtqtsYcffphER0cTT09PMmXKFFJZWUkIsW/xZ2ZmktWrV1tc7+GHHyYv\nvfQSZ33r168n9913HyGEkK1bt5LBgwezlktLS2PImhBCysrKiJeXF1O3OZYsWWIx2BBCSEpKCvnt\nt98IIZbEz3ddjUZDZDIZKSoqIoQQ8sILL1i80NZQKBTMzML6XhFiSfx33HEH+eCDD5hzly5dYuql\n72tpaSlz/rbbbiPbt29nrde6rk2bNpHY2Fjms8FgIN7e3hYEuXHjRpKZmcmUT0pKYs6dOXOGUBRF\nqqqqmGMhISHk9OnTrPVnZmYyMzNCCHnmmWfIxIkTmc+7d+9mZj3bt28no0ePtvj+okWLyCuvvMJ6\n7RUrVpCnnnqKEEIcvi/z5s0j69atI+Xl5SQlJYX85S9/IR9++KHNbMAaU6dOJe+++y4hxNY6J4T/\nnaHbeO3aNc7rm1/z2LFjFs+KEELWrl3LDJQff/wxueOOOwgh7bPEmJgYZmY5fvx45n0ipH0QkUql\nzPvKR7hJSUnM4ELI9XtrMBjIXXfdRX7++Wfyl7/8haxdu9aG+NesWcP02QEDBpC8vDyyb98+5lj/\n/v3J5s2bmfJ87WhtbSUURZHi4mLO++Vu3PQaPwCkpqZi06ZNKC4uxrlz51BWVoYnn3xS8PftOcIu\nX76MSZMmISIiAoGBgXjxxRdRW1sLACguLkZCQgLr9woKCnDfffdBoVBAoVAgPT0dnp6eqKystClb\nWFiIt99+mymrUChQUlKCsrIyh64rl8txzz33YNu2bQCA7du3Y86cOcx3//nPfyI9PR1BQUFQKBRQ\nq9WoqakRdJ/Ky8sRFxfHfI6NjYXBYLD4PeHh4cz/UqkUTU1Ngq4NWD6HmpoatLW12dRXWlrKfA4L\nC2P+9/PzAwCEhoZaHNNqtZz1mX/f19cXKpXK4jP93cLCQhw/ftzi2WzdupX53cePH8ftt98OlUqF\noKAgbNy4kXk/aAi9LxkZGcjJycGhQ4cwZswYZGRk4ODBg/jtt98wevRoptzevXsxbNgwhISEQKFQ\nYM+ePTZ1mkPIuyjUIVxYWIiysjKL+/HGG2+gqqoKADBt2jT897//RUVFBX777TdIJBKMGjWK+e6K\nFSuY74WEhACAxXPlgkKhgEajsTlOURTmz5+PTZs2Yfv27Zg3bx6j59MYM2YMDh8+jPr6elRXV6N3\n794YPnw4jh49ivr6euTm5grS9wGgsbERABAUFCSovDvQI4jfHCkpKXjooYdw7tw5AIBMJkNzczNz\nvqKiwuY79qJlli5divT0dOTl5UGtVuP1119nnEKxsbGc4WexsbHYt28f6uvrmb/m5mYb5xRd9sUX\nX7Qoq9VqWUMd7V131qxZ2LZtG/773/9Cr9fj9ttvBwAcOnQIb731Fr7++ms0NDSgvr4egYGBTCex\ndx8iIyNRUFDAfC4qKoKnp6cFgQoFW13mx5RKJby8vGzqi46OdrguZ9tDIzY2FhkZGRb3u7GxEe+/\n/z4AYPbs2Zg6dSpKSkrQ0NCAJUuWMO+Ho8jIyMChQ4eQk5ODzMxMjBo1CkeOHMHBgweRmZkJAGhp\nacH06dPx/PPPo6qqCvX19Zg4cSLvcxTyLgqNGouJiUGvXr0srqXRaPDjjz8CaCfou+++Gzt27MDW\nrVsxa9Ysi3ZkZ2dbfLepqQnDhg2zW2///v1x+fJl1nPTpk3Dnj170Lt3b9Z3ZNiwYVCr1fjoo48w\ncuRIAEBAQAAiIyORnZ2NyMhICyODDxcuXEB8fDz8/f0FlXcHbnriv3TpEtatW8dYDMXFxdi2bRuG\nDx8OABg4cCB+++03FBcXQ61W44033rC5hrV1YP1Zq9VCLpdDKpXi4sWL+OCDD5hz99xzD8rLy/Hu\nu++ipaUFjY2NOHHiBABgyZIleOGFF1BUVAQAqK6uxg8//MD6O7KysvDhhx/ixIkTIISgqakJP/30\nE6vFau+6EydORGFhIVavXm0Rc9zY2AhPT08olUq0trbib3/7m4UFFR4ejoKCApvfT2PWrFlYv349\nCgoKoNVq8cILL2DmzJmckTls99LecRoeHh548MEH8eKLL0Kr1aKwsBDr16/H3Llzeb/nCMzbwNee\ne+65B5cvX8aWLVvQ1taGtrY2/O9//8PFixcBtL8fCoUC3t7eOHHiBLZu3WqXRLnqS0xMhK+vL7Zs\n2YKMjAzI5XKoVCrs3LkTGRkZANrDGltbW6FUKiGRSLB3717s37+fuUZYWBhqa2stnq0j76I93Hbb\nbZDL5fjHP/4BnU4Ho9GIc+fOWYRQz549G59//jl27tyJ2bNnW7Rj7dq1OH/+PABArVbj66+/FlTv\nxIkTcfDgQdZzMpkMv/76Kz7++GPW835+fhgyZAjWrVtnYdmPGjUK69atY+6tOVpaWqDX65k/ejA/\nePCgTShod8NNT/xyuRzHjx/H0KFD4e/vj+HDh6N///54++23AQBjx47FjBkz0L9/f9x6662YPHmy\nTadk+2x+7J///Ce2bt2KgIAALFq0CDNnzmTOy+Vy/Oc//8Hu3bsRERGB5ORk5OTkAABWrFiBKVOm\n4O6770ZAQACGDx/ODArWuOWWW/DRRx9h2bJlCA4ORlJSEjZv3sxKIPau6+3tjWnTpuHAgQMWnW78\n+PEYP348kpOTER8fDz8/P8TGxjLnH3jgAQBASEgIhgwZYlPvI488gnnz5mHMmDFISEiAVCrFe++9\nx3kfuY6x3WO2dQrvvfceZDIZEhISMHr0aMyZMwcLFizgLO/oOgd79Zs/4/3792P79u2IiopCREQE\nVq1ahdbWVgDAv//9b7z88ssICAjAq6++ajNLc+S+AEBmZiaUSiWioqKYzwCYeHW5XI5//etfePDB\nBxEcHIxt27bh3nvvZb6fmpqKWbNmISEhAcHBwaioqLD7zgi5d3QZDw8P/Pjjjzh16hQSEhIQGhqK\nRYsWWQw0U6ZMQV5eHiIiItCvXz/m+NSpU/GXv/wFM2fORGBgIPr164eff/5ZUDsmTZqEixcvory8\nnLX84MGDmdh9tmtlZGSgurqakZ0AYPTo0aipqWGVefr06QOpVMr8ffbZZwDa5dPFixcz5ZYuXYql\nS5dyttsdoIg900qECBEibhB89NFHOH/+PNavX++W+nfv3o0vv/wS27dvd0v9QuES8RcXF2P+/Pmo\nqqoCRVFYtGgRli9fblNu+fLl2Lt3LzMqDho0yKVGixAhQoQI5+Hpype9vLywfv16DBw4EFqtFrfc\ncgvGjh1rsap1z549yMvLw5UrV3D8+HEsXboUx44dc7nhIkSIECHCObik8YeHh2PgwIEAAH9/f6Sl\npdmEF/7www946KGHAABDhw5FQ0MDa7iiCBEiRIjoGnSYc7egoAAnT57E0KFDLY6XlpZaxP9GR0ej\npKSko6oVIUKECBEOwiWph4ZWq8X999+Pd999lzV21dqN4GgUgwgRIkSI4IajrlqXLf62tjZMnz4d\nc+fOxdSpU23OR0VFobi4mPlcUlLChKFZg7SnkBD/XPxbvXq129twM/2J91O8n935zxm4RPyEECxc\nuBDp6emcKRCmTJmCzZs3AwCOHTuGoKAgp1ZyihAhQoSIjoFLUs+RI0ewZcsW9O/fnwnRXLt2LbP6\nb/HixZg4cSL27NmDxMREyGQybNq0yfVWixAhQoQIp+ES8Y8aNUpQzpENGza4Uo0IB0Gv5BTRMRDv\nZ8dCvJ/uR7dZuUtRlNN6lQgRIkT0VDjDnTd9rh4RIkSIEGEJkfhFiBAhoodBJH4RIkSI6GEQiV+E\nCBEiehhE4hchQoSIHgaR+EWIECGih0EkfhEiRIjoYRCJX4QIESJ6GETiFyFChIgeBpH4RYgQIaKH\nQSR+ESJEiOhhEIlfhAgRInoYROIXIUKEiB4GkfhFiBAhoodBJH4RLoEQglWr/iGm1BYh4gaCSPwi\nXMLOnT/j/ffL8e23+93dFBEiRAiESPwinEJ29hb06TMJTz+9H42N67Bq1W/o02cSsrO3uLtpIkSI\nsAOXtl4U0XORlTUHCkUIHnxwCwAKer0Ja9cuw/Tp49zdNBEiRNiByxb/I488grCwMPTr14/1fE5O\nDgIDAzFo0CAMGjQIr732mqtViugGoCgKFEUB8AMwDvX1TWbHRIgQ0Z3hssW/YMECPPHEE5g/fz5n\nmYyMDPzwww+uViWim+Hcucvw8fkOQ4akYezYOFy5UuzuJokQIUIAXLb4R48eDYVCwVtGjPi4OTFt\nWiYSEyOQnp4OlUqKlSsfdXeTRIgQIQCd7tylKApHjx7FgAEDMHHiRJw/f76zqxTRRSgoKEB8fDxS\nUlJw8eJFdzdHhAgRAtHpzt3BgwejuLgYUqkUe/fuxdSpU3H58mXWsmvWrGH+z8zMRGZmZmc3T4QL\nKCoqQmxsLBITE/Hrr7+6uzkiRPQI5OTkICcnx6VrUKQDdJiCggJMnjwZZ8+etVu2V69e+OOPPxAc\nHGzZEIoSJaEbDG+++Sbq6+sxY8YMLFiwAKdPn3Z3k0SI6HFwhjs7XeqprKxkGnXixAkQQmxIX8SN\niZaWFvj4+CAmJgbFxaJjV4SIGwUuSz2zZs3CwYMHUVNTg5iYGLzyyitoa2sDACxevBjffPMNPvjg\nA3h6ekIqlWL79u0uN1pE94Ber4dcLodSqYROp0NTUxNkMpm7myVChAg76BCppyMgSj03Hp5++mlE\nRUXhmWeeQVJSEnbv3o3U1FR3N0uEiB6Fbin1iLh5QUs9AES5R4SIGwgi8YtwGnq9niH+tLQ0nDx5\n0s0tEiFChBCIxC/CabS0tMDX1xcAMGXKFOzatcvNLRIhQoQQiMQvwmmYSz233347Tp8+jcbGRje3\nSoQIEfYgEr8Ip2FO/N7e3oiMjERJSYmbWyVChAh7EIlfhNPQ6/WM1AMAUVFRKC0tdWOLRIgQIQQi\n8YtwGuYWP9BO/GVlZW5skQgRIoRAJH4RTsOa+CMjI0WLX4SIGwAi8YtwGmwWv0j8IkR0f4jEL8Jp\nsGn8otQjQkT3h0j8IpyGtcWvVCpRW1vrxhaJECFCCETiF+E0rInf29sbra2tbmyRCBEihEAkfhFO\nwzxlAwD4+PiIxC9CxA0AkfhFOA3zlA2AaPHfKCCEYNWqf4jZcHswROK/ydCVnVqUem5M7Nz5M95/\nvxzffrvf3U0R4SaIxH+Toas6tdFohNFohJeXF3NMJP7ujezsLejTZxLmzt2CxsZ1WLXqN/TpMwnZ\n2Vvc3TQRXQyR+G8S0J16+fI9XdKpaWufoijmmEj83RtZWXOwZMk0tLQQABT0ehNeeWUZsrLmuLtp\nIroYIvHfJMjKmoM1ax5HfX0TuqJTW8s8QNcSv6hTOw6KonD+/HkAvujd+3E0NOhAUZTF4C2iZ8Dl\nPXdFdA/QHbi11QMhIXPQ0BDaqZ2ai/hbWlo6pT5r0JLWkCH7MX36uC6p82bAiRNnARzGF1/8grIy\nDa5cEXdN64lw2eJ/5JFHEBYWhn79+nGWWb58OZKSkjBgwABxl6ZORF5eMeTyPRg71oRNmyZ0aqd2\nl8VPS1pZWTtFnVoArGdGwcEmAM3QarWYPn0cVq581L0NFOEWuEz8CxYswL59+zjP79mzB3l5ebhy\n5Qqys7OxdOlSV6sUwYHnnnsEjY3lKC0t7fRObZ2uAbhO/J0pv9CSVmNjC0Sd2j6snf0VFRVITEyE\nRqNxc8tEuBMuE//o0aOhUCg4z//www946KGHAABDhw5FQ0MDKisrXa1WBAuqqqpgMpm6JFEam8Xv\n4eEBiqJgNBo7rV6KomAwGGA0eiEy8hFRp+YAPTNateo3i5lRfn4lkpOTReLv4eh0jb+0tBQxMTHM\n5+joaJSUlCAsLMym7Jo1a5j/MzMzkZmZ2dnNu6lQUVGBpKQkFBUVgRDSqWTIRvzA9dW7np6d92r9\n739nAWzHX/7yBqKiUkSdmgVZWXOgUIRgxYoDACg0Nuqxfv1izJv3MxISEkTiv4GRk5ODnJwcl67R\nJc5d66k/FyGZE78Ix1FeXo6EhATU1taipqYGoaGhnVYXF/HTco9UKu20uu+8cwDWr2+GRqPB8uWi\nY5cN9CxIo2kFMA51db2gVmugUqkQFBQkEn83ASEEL7zwFtaufU6woWZtFL/yyisO19vp4ZxRUVEo\nLr5ukZWUlCAqKqqzq+2RqKurQ3BwMDOr6kywafxA1zh48/PzAQANDQ2dWs+Njry8YqxenQpgP267\nrRBnz15GREQEAgICROLvJnDXKupOJ/4pU6Zg8+bNAIBjx44hKCiIVeYBAJhb/GvWiJ8d/Jy2Ywdk\nMhmio6MhfeutTq0vdtMmPFJUZHOeIf5O/L21tbX4p78/xvy//9dpv+9m+LxSX4oRIwYAABZX5OGJ\n2ssIDw9HQEAAxvz6q9vb15M//zF5Gt5XJeOFFw6hsXEdyha9jvdVydej0xy9voOgiIshGLNmzcLB\ngwdRU1ODsLAwvPLKK2hrawMALF68GACwbNky7Nu3DzKZDJs2bcLgwYNtG0JR4mIcF/Huu+/i6tWr\naGlpwaBBg7BkyZJOq+vbb7/FF198ge+++87ieEJCAn755RckJCR0Wt1PPvkkjh07hpiYGHz99ded\nVs/NgAMHDmDy5Mno168fFi9ejEOHDmHs2LHYvXs3tm3b5u7m9VgQQvDNN/uwfPkvqKh4GzExq7Bu\nXQamTx/nsG/OGe70dKg0C4S8PBs2bHC1mm4PZ7S6jkZzczOkUimUSuVNLfWo1WrEx8eLm74IgF6v\nR2RkJOrq6lBbW4uQkBBR6ukGMPfBUNQENDSkOBWd5qyxfEOkbLgRlud3h4yHOp0OUqm0SzR+Pudu\nZ6/eVavViIuLEzV+AWhpaUFERATq6+sZ4pfL5SLxdwPk5RXjiSdUIGQfNmwY41R02s6d3Guo+HBD\nEH93IFUuZGdvQWrqBDz11M9uX0lKW/xRUVFuJf6usPhjY2OhVqs7tZ6bAXq9HhEREWhoaEBNTQ1C\nQkIglUqh1+vd3bQej5Urs9C3by8AwKBBSQ4tuMzO3oLk5HGYN2+rU3V3a+K/vgjloNtJlQtZWXPQ\np08oSkqq4O6VpM3NzfDz84NSqURdXV2n1uVO4m9oaBAtfoHQ6/Xw9/eHTCZDfn4+goOD4ePjIxJ/\nNwE98zKPfBSCrKw5SE4OhKenc2HTLmv8nYmsrDkIClJgxoytoEl17dpl3SopV3titFb4+ASjrW0i\n6uuT3LaSlJZ6goKCOp0U3a3xx8XFQa1Wd/pCtRsd9PaYwcHByMvLQ0hICHx9fUXi7yZobGwE4Djx\nUxSF+no1DAaVU/V2a4ufoijodDoAvggPX9Btl+fX1GgxZ44nxo41YenSELetJKWlHoVCgfr6+k6t\ny91ST1hYGCiKEgnMDugBOigoCMXFjQgODoavr2+XZVEVwQ+NRgMvLy+UlZU5/N3KygY891ysU/V2\na+IHgLNnrwDYjltvre30jJPOom/fCAwd2hdjx47Fhx/+E2PHDnJLO2ipJzAwEBqNBiaTqdPqspey\nobNACIFarUZgYGCXzGxudND7IhMiBTANx4/n3vQW/40QDEJDo9EgLCwMTU1NDn9XJtNj2rS7naq3\n2xP/9OmZAJpRWVnZbdPI0iT41FNPYezYsbh48aJb2kFLPR4eHvD392emkZ0Bd1n8Op0OEokEPj4+\nCAwMFB28dnDkyEl88sn/Q0XFIAAf4623ziEj42FoNAZ3N63T0J2DQazR2NiIsLCw/1M2HENVVRVU\nqptQ6gGAmpoaJCYmdrp04QraNX4fSCQSxMTEuC37KC31AEBQUFCn3jN3afy0tQ9AtPgFID09HmPH\nDoSXlz8ACi0tBC+/vBRGY+cZBe4CHQzy9NP7u20wiDVoi7+5udmh7xFCUFtbC6VS6VS9IvF3AFpa\nWuDt7Q0ACAsL6zbE35mk6C6LX6PRWBB/d7D4u7O00P5uekGtbkF6+tNoaNDBy8sLBoOhU6VAd4De\nq0Gt1sHdEXZCQVv8jhJ/Q0MDZDIZwzuO4oYg/qSkJDQ0NHTLjgVYkqA7iV+n08HPzw8AOt3B6y7i\nb2xshFwuBwAEBga63eInhOC++5Zg3boC7Nz5s1vbwga9Xo/6ej02bRqPc+fexqZNE5CXV3JTOnjp\nwI/mZgKJZGK3DQYxh0ajQXh4uMNST1VVlUvZd28I4o+MjIS3t7dTDpCugDXxV1VVuaUdXWnxu0vq\n0Wq18Pf3B+B+qSc7ewtiY2/Hrl1taG19H8uX7+t20kJLSwumTh3F5ICh/WQ3q4M3L68YycknYTLt\nxZtvDu6WwSDmcFbqqampcVrmAW4Q4lcqlV0SougsaI0f6D5Sj0KhcJvU05mWpDXxu0vqyc7egpdf\nfg+lpbX8HGzeAAAgAElEQVQAfABQKC9vRllZRbeamXIN0Dcr8a9cmQW9vgZxcXHo1Su0WwaDmMNZ\n565er3dpz4tuT/zl5eVQqVTdmvi7i8ZPR/UAne/c7elST1bWHKxatQiEBAKgADwNQIKFC6dj0aK5\nbmkTG7iI/2ZdvUtvPdq3b99u4f+xB2ct/tbWVqf1faCbr9wFgKtXryIxMbHTicwVmJNgaGgoqqur\nu7wNJpPJopPfrM5da4vfmYUvHQGKovDHH7+j3XaqAOAFLy8jKioCupWmTK/ctcbNavFXV1fD398f\nkZGR3Z74TSYTmpqaoFKpHLb4XSX+bm3xG41GFBYWolevXt3e4qc7V/tiGdLljjOdTgdfX1+GdDr7\nfnUXjb+zcxLx4cSJMxg1KgJff50FitqD6dPj0LdvstvawwY+qedmc+4C7bvQKZXKG2KNR1NTE6RS\nKfz9/bvc4u/WxF9cXIzQ0FD4+flBoVC4tZPzwVzjB4CAgIBOXTzFBvMwR8A5i9+RsER3rdzVarWM\n1BMeHo6KiopOq4sPBoMBFRW52LnzPdx//wQoFN54771V3U5TplfuWuNmtfhpP1d3In6ufqXRaCCX\ny+Hn5yda/DTKy8vxn//8B7179wYA3HnnnVi9enW3eZjmMNf4Abgl33lDQ4MF8Tvj3HVkxaM7NX7a\n4o+MjHSb1HPq1ClER0czKyeFDrRdHfPf05y75sTv7lBfGlz9qrGxEQEBAZBKpaLFT+OBBx7A22+/\njUmTJgEA5s+fj9jYWJw+fdrNLbOFNQnK5fIut/jNV7QCjjl3nUl/7U6ph7b4IyMjUV5e3ml18SEn\nJweZmZnMZ6EWZlenE+hpzt2mpibIZLJusbiP7lf0vrrW/Uqj0SAgIICx+B0xBm5a4q+ursauXbvw\n7LPPMsdSU1PdlgeHD91B6rEmfkcs/qysOVi9einy8oogdMWjXq9nFouZoys1/oCAABgMBmi12k6r\njws5OTnIyMhgPtsjfpoEnnjiJ5fSCTg6Y+hpzt3uJPXQK4m12haw9Sta6vHw8ICXl5dDPhe3E/++\nffuQmpqKpKQk/P3vf7c5n5OTg8DAQAwaNAiDBg3Ca6+9Jui6dXV1UCgUFse6K/GzWfxdLfW4YvHT\newoAvvDxuVfQisfu4NylKMotVr/BYMDhw4dtiJ9voM3KmoPbb++L6moN2knA6FQ6AUdnDD3NudsZ\nUo+z8hzdh9TqFtaVxLTUAwB+fn4OyT1uJX6j0Yhly5Zh3759OH/+PLZt24YLFy7YlMvIyMDJkydx\n8uRJvPTSS3avazKZUF9ff0MQPyEEra2t8PLyYo65Q+ppaGhAUFAQ89lR5+6FC9cAbIdMdlhQ+mt3\nEb95HD8AREREdLnOf+rUKURFRVlkRrRnYVIUhfz8q/D0lMHXdypqa5scSidAzxgWLfrOoRlDT9P4\n6UiZjrT4XZHn8vKKsWCBDCbTXnz44R0W/YqWegBAKpU65OC19is6CpeI/8SJE0hMTER8fDy8vLww\nc+ZM7Nq1y6acoyNlY2MjpFKpBZkCQEJCAq5du+ZKkzscNOlLJNdvZXfQ+GUyGVpbWwWT8MKFUxEb\nq4RWq8WkSZm80SmEEOh0OrfH8QMd5+B1xKo7e/YsBg8ebHFMiKZ85UoxnnkmBo8/nogpU3QOpRPI\nypqDJ5+cjYaGJjiSgMzdUT1d7cxubm7uMI2/I7Z+XbkyC1FR7f1y2LC+Fv3K3Ihx1MHrVou/tLQU\nMTExzOfo6GiUlpZalKEoCkePHsWAAQMwceJEnD9/nvN6a9aswZo1a7B69WrW5cghISGora11pckd\nDmt9H2jXnt0t9VAU5ZDV39TUBH9/f4SHh9sl0ra2Nnh4eMDT03b9X1embADaLf6OkHocseq0Wi1j\nqdEQIi20tJTh0UdnYuTIkWhsrHAo9LN9wdif8PDwh4fHRNTXN9udMRBCODX+rnLu8t1XVwYFru92\npNRDa/R8vi8hv4HuT9bvqbnF70hIZ05ODg4cOIBDhw5hzZo1jv2o/4NLxC9kmjp48GAUFxfj9OnT\neOKJJzB16lTOsjTxz58/HxERETbng4ODUV9f361yobCFNbpL6jEnfqD9fgld+0BHQ0RFRdkM3tbg\ncuwCzln8jhCAtQToqsVPW3XPPvuLYKvOevAB2mdYfBabVqtFTU0NYmNj0bt3bxQUFDjc1gsX8vHA\nAyb07n0Vr73W3+6MgR6gPTw8bM51tsVP39fly/dw3ldXJBSu79JSj1wuh1ardYkrKIr6v+/7wtf3\nPlbfl5DfUF5eDg8PD5s1J7RzF3DM4s/MzMTQoUMxYcIE9xB/VFSUxSbBxcXFiI6Otigjl8sZ633C\nhAloa2uzS0Z1dXUIDg62Oe7t7Q0/Pz+3e+vNwaa1dQfnLgCoVCrBeYMcJX42+QBwjviFEgAhBDU1\nNQgJCWGO0c5dZ61H2qorLCyHUAmFnh2Zw57FVlRUhNjYWHh4eCAuLg4FBQUOt1Wl8sCUKXcgNDQU\ngwcn250x8D2nznbuLlgwA6GhQHl5Lazv68aNX0CpHIaFC3c6LKFkZ29BauoEzJjxGet3aanH09MT\nPj4+NmTq6HtCb/0aHX3OwvflyKYv5eXlSEtL6zCLH3Cz1DNkyBBcuXIFBQUFaG1txY4dOzBlyhSL\nMpWVlcxNPnHiBAghrKRuDi7iB7qf3MNm8XeHcE6gfWWro8QvJMlcRxH/dQ31N0EE0NTUBE9PT4vZ\nRkREBEpLSzFt2lKnrMfrFpwvpNJpgiKatFotZDKZxTF7FnRFRQUziw0MDIS3t7fD73F+fj569+4N\npVKJmpoau+XtEX9nWvy7du1CUVER/PwU8POztJaDg5XQaOTQaCRwdMOUrKw5yMqaCpPJg/W75hlq\n2Wbejs4y5s2bAH9/CTQajcXWr7TBUFxcafc3lJeXY9CgQTbEX1tbyxgxN5TG7+npiQ0bNmDcuHFI\nT0/HjBkzkJaWho0bN2Ljxo0AgG+++Qb9+vXDwIED8eSTT2L79u12r8tH/I7IF10BNo2/o6QeRyUQ\n86gewLGUBjTx03IaH/gIxZGUDXTnqa8X5rBky0F++PCfOHKkHLt2GZ12wF26VABgO+6/Xy4ooolN\n6vHz8+Ml0vLycoSHhzOf4+PjHZJ7CCG4evUqEhISBBM/l2MX6FziJ4TgnXfewdChY/DJJ+PQ1vYj\nPvlkHLZs+Q4REcMwZ87LaGuLACAF8CBKSmrwyy+/CZKO2zdaaQLgC5lsus1ATUs9gGU/dNTIoFFb\nW4uEhASbGXx7nQDgi8jIRzgNBkIIysvL0b9/f5tnZk78N5TFD7TLN5cuXUJeXh5WrVoFAFi8eDEW\nL14MAHj88cdx7tw5nDp1CkePHsWwYcPsXpMtlJPGjWDxy2SyDtk0xhHrpLa21mZHHkeJ39/fX9DA\nSieEY4MjFj/dUbRaA7y9p9i1tq2JPzt7C7Zu/X8wGGJAiBIAhWvXKjFqVD+H4uOnT88E0AyJRGJh\n1XGBTerx9fXl7bjmFj/QTvxvvPEG2traBLWR9m0FBwd3iMXfmc7d7du3o6mpCV988Q5mzZoMhUKB\nMWMG49tvP0BW1n0wGsMANAEYD8ALK1bEIT6+l+DrX7lSDLl8D9LTi20GalrqASwlV9rIqK5ugCOz\njJqaGkRHR8NgMNi81+fP5wPYjqlT/TgNBrVaDU9PT8TFxdnwlvn7fENZ/J2F7iT12LO62TR+e44+\ne3DGOmGzhsPCwpyy+O0Rf0dq/Hl5xbjnnkZ4ePyCTz8dz2ttV1dXW/zGrKw5eO21J9CeXVwPYAa8\nvHwxdmyGQ6mR6XskdLB2RuqxtvhffvllHD16FPn5+YLqzM/PR0JCAiiKcoj42SJ6hLTXWRBC8Pe/\n/x1vvvkmE/UVHh6O8vJyUBSFI0eOAvCCRKICRX0OwBf9+6dg5coswXXceedApKXFoqGhwWag5pJ6\nrhsZRvj6ThW8LSO9oXlgYKCN1b9kyQMAmnH69GlOg6G8vBwRERGsvHVDW/ydge5E/PasbjaLXyqV\nCiIRrkHFUQnEZDKx3jNnNH4h6Zw7Mqpn5cosBAV5QafT4Y47buO1tq0Ht/aOK4G3tw+iosoA+CMs\n7Djy8koE1w+ASfkglPidce7SBEBj4MCB6Nu3L65duyZIzqP1fQDdWuM/e/YsNBoNxo4dyxyLiIhg\nBtfS0hqMGuWDHTvuxVdfzYdUehAXLggb/GjU19ejV69erOGaXFIPAFy5UgQ/v10wmfYiO/suQeso\n6GCCgIAAm6AS+n3hCyemnzvbM7thNf7OAh/xK5XKLtnTlra6s7L4Iw/YNH6hD5FrULm+abQJwDi7\nMdsNDQ2Qy+U2C96c1fi70uIHrlvc5hFibGCb1eTlFWPr1sdQXLwdX355L2pqqjF9egbHFdih1WoR\nGhoquOOxafyOOHdpxMXFYeXK9YLkPFrfB9qNHyGb/bgjqqeoqAhpaWkWCxppix8AZDI9/vnPZ3D/\n/eNx//3jkZwsx4wZdzlUhznxs8Xxm0s95sQ/e/Y4yOUSpKSkIDExXNA6Cj6LX6vVIiYmhte4Ki8v\nR2RkpI3B2tzcDEIIM0iJxA9+jf+WW27B8ePHO70NWVlz8MILj6KhoRl8VjeXxs/3EIVIOXl5xVi6\nNBjAfjz3XCyvdcK18fKNQvyVlZVQKpVOEf/KlVnMRuKzZ0/B7NnjWFeP80Gr1UKlUrkk9diz+Kur\nqy18MNnZW/D113/i9OkYQXIeLfUAwvcadodzt6qqysbXZL7IznoAdCa1Qn19PcLCwuDl5QWtVmsx\nY+KL6ikrK0NMTAxSUlJw9epVQXXRVjmXxR8eHg6j0cj57lhLPXQ76evSxpwo9YDf4h89ejSOHTvW\nqWkBgHar+8KFiwB8ERQ0k1MTZNP47Uk9tJRTUWEb40xj5cos9OkTBwAIDPR0SAKhoVKpUF1dDZPJ\nZPf3OkL8HeXcpVFRUcEa7mYNrt9pjqlTp+L77793qP6mpiaEhYW5JPXYI1LzjXKys7fgnXe2gaIS\nAIRCiFPanPjZrE82uMO5W11dbZHDCLhugLS1taGsjFg8Q2eIv6GhAQqFAkFBQXjggWUWMyY+4qfJ\n1pGIKvqdY7vn9HugUqk4VQia+H19fZmBir6u+XoU0eIHP/EHBQUhISEBZ86c4b1GR+QIyc8vgbf3\n9xg2TM3ptefS+PkeormUExw8m3NQoV80e9YJFyF6e3tDLpcLCn+11vj57ps9i98RCcFkMqGqqgq9\ne/e2S7xCiP+OO+7AuXPnHNrwnrb4XZF67IVzmi/Wycqag1deWQbaKU1RM+06pc01fqEpQTrCueto\nP7Ke2QDXF3ouX/43AFPw17++w5xzJqdOfX09jh8/i6oqOfbv97aYMdXW6jilnrq6OoeJnx4s2AYo\n+j3gW/ti7tsxl3toCYmGaPGDn/iB9hfJns7fERte3HHHQPTpE4fy8nJOrz2bxi8kquf8+asgZAcy\nMvScg4pGo0FaWppTEggNoXIPTfze3t7w8fHhzXEvROoRShT19fXw9/eHQqHoEOL38fHBoEGDcPbs\nWUH1A+0d2BGLnyuqh6vjEkIslufTg7xOp0NoaAEoyh+PPx7N6ZRubW1FWVkZYmNjAQi3kjvCueto\nP2KTejZv/gHff38BH35YCuADvPvuNfj49Mfcucucyqlz4UIh9uz5AxSVYBbGW4FRo/rBaGzktfiD\ng4MdtvhpqYfN4re36LGsrMyC+GkHr2jxW0Gv18NgMLAmaaPBF9Vwfdebdv18xYq9SEu7x+ENL4D2\nDp6amsqbwoDN4vfy8oLJZOKN0R46NBG+vgYUFxdzDiqNjY1IT0+3S/xnzpxBUlIS6zmhxG++paE9\nYuGL6vHw8ABFUTAajXbrBNplnvDwcEGDpRDiB65LXELhCPG3tbXBYDDYECqfxa/T6eDt7W3hfKed\n0n/++R7k8r0ICVFyynlFRUWIjIxkvk8Tmr3B1RXnrr3do7jAZvHv3PkJAA0ALwAUTCYJnnhiFjZv\n/pdTUo+fH8Hjjz8ILy8Z6BkTRXnhrrvGoLW1lfnNHSH1mDt3XbX4lUqlaPFzob6+HsHBwbzxtXzE\nf33XmzYAFMrL65CRkebwhhdAOxn26tULarWas5OwafwURdkdwZ9//nmsXbuWl9Q1Gg369OnDW4YQ\ngu+//94mVQYNISkYAMsUsfZeQj5CARxbvVtZWYmwsDBBIbBCiT80NNRh4lepVIK2v6N1Xev3k8/i\nN5d5aNBO6cjISLS21uPxx2dw1mmu7wPtK+Z9fX3t7jzminOX7kcajQ4ABZ3OIGjBU1VVlYXGn529\nBYMGTYNEkoB2unkQRqMJZ85cgEQicYr46ZTgBkMroqPL4ekZiOHDq3DhQj78/PyYiCIu4o+NjUVh\nYaHdZ00IYeQhtkWZtMUfGhpqV+MHbKUe0eI3A1vqAWvwEf/1XW/0kMmmwctLhpqaaocW9NCg0+9G\nRkaipIR7Gs6mo/JZsDU1NSgoKMATTzyB+vp6zkFFo9EgKSmJt0xBQQEMBgP69OnDel6oxW++l609\n4udz7gKOOXiFWvz0WgXzzsIFPmcbG+jf7uPjY9fqYpN5gHYi5ZK42IifhkQiQVxcHAoLCznrNNf3\naQhx8Lri3KX7UV1dM4DxqK3VClrwZG3x0wMIRZkAxCEqqhcmTwYkkvZ2ObphEND+/pWV1WHr1sdQ\nVLQN999PQFESLFnygIVSwEX8crkcEonEbloVjUYDHx8feHt7sxIz/S6EhISwrn1pampCa2srw2fm\nvGUt9fR4i58tYsIa9haw5OUVY9YsD8yZE4qFC+XIz3cuXzttBffu3ZtzhSWb1APwj+CXLl1CWloa\nPDw8EBYWxhnN0tjYiKCgIN6Bp7q6GhEREZwdkk5iZg/mFr+99AOdQfz2LH61Wg2ZTGazVoENzlj8\n/v7+glJtcL2fFEXB29ublUz5iB9ozz/FR34FBQWIi4uzOCbEweuqczcvrxhhYQeRlRWLYcOKBC14\nUqvVFqHY9GAhlQ5FenoVNJoWPPTQNOzblw3AudxbOp0Ozz23gAnjHTVqINLTVRYRPYBtskRzw0HI\nPg7mcgxbf6bfBYVCwfob6Bh+um/yOXd7vMVvvvKOC/aIf+XKLAQESJCYmIipU8ciKMjgVFto3bt3\n797Iy8tjLcNF/HwkcvHiRaSmpgJot0q4ytEOwbCwME4is+cIT05OxuXLlznP03BE6rE3ODtC/LTU\nY8/iFyrzAK4RP1cb6OiWxsZGVosf4CZTc8cuG+xZvYWFhazEb08icdW5u3JlFpqbqzBx4kQ0N1fb\nXfBECGGdEeXlFWPTpvE4d+5tm0AGPpmECzqdzsLHRN8/WnqhwWXxA5aLyrhgbpVzET9fYkPr1drm\nxM/m3O1Ki992CyU3w3zlHReELFm/evUqRo0ahZiYGLvOUS7QEkBiYiJnSGVLSwtrp+Ybwc2Jn8/S\npTdj9vf35yxD+0S4kJqaikuXLnGeB653WJrM7RG/uSzEBkdCOisqKpCWlmbX4j9y5IhNfDgXHJV6\n6IGMrw10dItU+hvnoEffN+vFh/YsfoVCwUv8RUVFNsQvROppampCVFQU6zkhK3dbWlrQ2NiIkSNH\n4uLFiyCE8Eo9er0eXl5eNjuzmefhmT59nMU5Rx3xJpPJZkCjid/a4ucjfvM0Elywl1KB7jNcsxZr\n4lcqlThy5AhzbWvnriMWv1v33O0MWI/abBBC/HS2ypiYGJSUlDgVzy/E4ufS+PmI/+rVq0hMTATA\n7wugCcPf35/TkVdXV8e5yhlo36e4pKSEt5M3NzfD29ub6bD2YtLNI4DY4MiqUDp5Gd8MSafTYfny\n5Vi/fr2ga3ak1JOdvQVpaROxeHH7JucffliIkyfVrNEtfBY/H/ELsfjpUE4aQqQevr7k6ekJk8kE\ng4F7NkzPxkJDQ+Hl5WU3SIBtfYM9OPqsaNI3TwnhCPHTRpIQi7+0tJQZOO1Z/EKI357F7wjxW896\nHEW3JH57Uk9oaKjdl5CWLmQyGXx9fZ3K4U9btikpKZx7BTsj9dC6NsD/wGmJwB7x81n8Xl5eiI+P\n5xy4AEuZBxBm8fN1cEccVcXFxYiJieEdAI8dO4Y+ffpg6NChgq6pVCodJn6ZTMbahqysOYiPl6Gu\nTguAQksL0LdvKGt0C9eA6Qrxt7W1oaqqysZyFxINw/ecKIqCj48Pr0FgnlE0NTUVFy5ccLo+LgQF\nBaGpqUnwDJGN8IRIPXq9Hm1tbUz7hFj8RUVFzJ7ifM5dRyx+Om2DdVSPI7v20YO1EH8XF7od8QuV\nenQ6Ha80YE5mQjYX4bqGv78/0tPTUVNTw2ohOOPcpS0pupw9qUcmkzlN/EB7p7148SLneWvpxh5x\nWw8U1rDnHKZBCGE6F999yMnJQWZmpt3r0aBlEKGzPNpSZGsDRVE4e/YMAF/Exy9BU1Mb/Pz8WCUP\nrt/tCvGXlJQgPDzcRj5x1eKn2ys0sVxMTIzdvY2dIX6JRCI42yjAT/zWFr9UKkVLSwsMBoNNbhwh\n0W60UUJfi8u564jGT0f0+fv7W7wTAQEBaG5u5p2Bmd8DvuAKIeh2xC9E6qEoCjExMSgqKuIsY05O\nQlINs4EmRIlEgoyMDBw8eNCmDJfWFhAQwNmZq6qqGOLnsnRbWlpgNBrh4+PDa/HzJbSjYY/4O8Pi\nFyL11NfXw9PTkxnc+KKg+vXrZ/d6NOjFUnQGRHspB2hHGdssrbKyErW1Tejf/wLef38KZs/2hF7P\nrnNzWdD2pDE+4mfT9wFhzl17z8mRPQSE9CFniB9wTO5pbm4WTPwURTF9xzoU2J5fBbBP/LTF7+fn\nB0KITZ+xJv6IiAjU1NRg8eKVyMiwTM8hkUh4OcMcfAsohaJbEr89qQdoT2nLR/zmVlZQUJDTFj9N\niCNHjsTRo0dtynBp/FxOK3pUp6/LNTOgrX365eWyhjvC4rcmpq6Seqw7FtdvFBLiaw3a6heScoCe\ntbENPvv378e4cUOQkhKNxsZGJCZGYMyYdNbreHp6sq5Yttd+PuJn0/fNfx8fhFj8fBJLSUkJoqOj\nAQgjfmeeE+BYZI9Op7PhBz8/PxgMBtTX19v8XlrusZZWhKSKKC4uZu49n8UPsIelWhO/t7c3IiKS\n8MsvAQgIiLSpT6iBam8BpRB0O+IXIvUAYFbfsaG1tRUmk4khZFcsfvrBDhgwgDX/C5fUw2XFVFZW\nQqVSMaO9PeIH4JLGD3S8xW9P6nGG+PksfiGzQGuYTH4YPXq+3ZQD9NTa09OTdfD5/vvvMXXqVCYm\nnI/cPD09Wafq9gZKZy1+IcRvz+Lne055eXnMwjEhxpOzFn9ERIRdGYkGm9TTvoF7MIqKimwGBS7i\nt5ccjhAiSOqh30s2jjEnfjoFRm3trSAkGwcOeNu8j0JmIfQ9cDvx79u3D6mpqUhKSsLf//531jLL\nly9HUlISBgwYgJMnT/JeT2gn57P4aWKiyVXoDTVHS0sLsygHAPr374+zZ8/aSAZCiZ+WHCoqKhiZ\nB+B2ApvHfvMRf3V1td3VrElJSbyx/NZEbo8QOsriN7covb29YTAYWInTGeKPjQ3BggWTcPVqMYTu\np2D9LAgh+M9//oN77rmHIRC+3+7p6cman8le++0RP5vFL1Tq4auXz7lrMpmwe/fvTKoIIX3IWeJP\nSUmxG3JMgyuaJTo6GpcuXeIlfnMDyZ7FT7+/9O/hC+ekr2f+PIxGIxoaGpi+Sa9g9vb2B0ChrY2y\neR8dsfjdKvUYjUYsW7YM+/btw/nz57Ft2zYbz/+ePXuQl5eHK1euIDs7G0uXLuW9plCpxzzfhrWG\na+1Mc8bit36Jw8LCIJFIbBy8XBq/9fSVlhx27frFgviFWPxczl2j0YjCwkL06sW/UbVCoYBOp+NN\nDSHU4udKUmYOocRfWVnJaMgURXFa/c4Qf2BgIKqrq2AyeSE5eTnvfgrmxG9ef1lZGaRSKUJDQ5mo\nCz4y5bL4hRA/V9QZ2+It+vd1hMXP9U48//ybaG6+C1u27AMgXON39DkB9mek5rDW8WnExMTg3Llz\nNjNR+rlt3brXgvjtWfwNDQ0WqWPoOHtznjF/rtaDt1qthlwuh4eHB4DrK5j1egrp6U+zvo9Cecrt\nFv+JEyeQmJiI+Ph4eHl5YebMmTa7H/3www946KGHAABDhw5FQ0MDbyimI1JPUVGRhYZLDwLWROYM\n8bPJGSkpKbhy5YrFMXsaPz3FW7p0Fxob1+Gzzypx+HApM8XjIn4hFn9JSQmUSqXd0Z+iKF4HmnVi\nLT7ipgdEvoU8jhC/9SDINvtxlvhzc68C2I7du5dxpr42XwFpXf/ly5eRnJwM4LrlyEemXl5eTkk9\nXAvOCCG4fPmy01KPEIvf2rk7d+4y+Pj0x9tvXwXwAT76qAI+Pv3x739v6zSpJy0tTTDx81n8hYVq\npKSkWByXy+XYs+cgDh9Wobr6ej+j7x/XJkXWxO/p6QlPT09mRTotJ9PvjrXFzybB8q1gBoT7IjvC\n4gdxAV9//TV59NFHmc9ffPEFWbZsmUWZSZMmkSNHjjCf77zzTvL777/bXAuA+Cf+iX/in/jnxJ+j\ncMniF5rxkljp4lzfI4QgMzMTBw4cACGE90+v10MiCYBSuRzAF/D0vBXh4csBmBAVtQIyWV9s3PgF\nCCHYsWMH7r//frvXNP87evQohg0bZnHs6aefxj/+8Q+LY/3798epU6dY20evjoyISIKn5yLI5ffD\n23sJZs3KYspt3boVM2fOtPl+dnY2Hn30URBCcPjwYQwfPtymzMaNG/HII48I+j133XUX9u3bx3ru\ngQcewLZt25jP27dvxwMPPMBa9vz580hJSeGt629/+xtefPFFu20aOXIkDh48yHzu27cvTp8+bVNO\nKpUy+eeF/i1fvhwjR44E0B6Zw1Xu0qVLSExMBCEEn376KR5++GHm3DPPPIM333wThBB8+eWXmDlz\nJh1tROcAACAASURBVG6//Xb88ssvnPdxx44dNsdTU1ORm5vL297Y2Fjk5+dbHHvsscds3jf6r6io\nCFFRUZzX02q1kEqlvHXee++9+O6772yOP/zwMwAWw9t7FoDFePbZN1BQUICYmBje6z377LOc7bX3\nt3DhQjz99NN2y3344YdMvyCEYOPGL5Cefg/Cw58AYEJS0gtIT78HGzd+AZPJhM8++wa+vgsBEMTE\nrMTXX++FyWQCIQRRUVGMXGz999NPP2HChAkWx+hkiYS0O34jIyOZc3Sadfrz3r17cffddzt0D954\n4w0899xzdst99913uPfee5nPzsAl4qe3VKNRXFzMOOu4ypSUlHDmDwGET+t9fHwQGBiAhoYWAF+C\nkChUVNSh3ZFH0K9fGOM4USgUFjvc0yDkun/A/H+APfY6MjLSJvqAK1kSHR7Y0NCA2tomPPNMNAYM\nqEBGRgV0uuvTS1ekHus87Xzgy4liLbnwSTX2Inro7wuJ47eul83RbTKZWEP47CEwMJBZrcznxONz\n7rJJPZWVlTYbjdBwVuMH2PdNOH/+PAYOHMha3p5zV4jezpWa+dSpK0hIOAmdbguefTYeZ8/md2pU\nDwA8+uijOHTokN1y1u/C9bTP3rB24tN+Iy8vOauuzqfzW0s9gGVftf6tbFKPvfU11jBP6cAHt4dz\nDhkyBFeuXEFBQQFaW1uxY8cOmw1BpkyZgs2bNwNoX3ofFBRk0dmt4Yie6++vhESyGxQVDaPxdwAy\nSKX326yuHDRoEM6dO2ezT6+5f8A63pstEVlUVJRNimOuqB6g3cFbXFwMQqoxZ85U1NXVISjICzNn\njmXKcEX1WIdzspXhCvXjagtXrLQjxC+EUISu3DVfyAawD4K0I8s8N4sQBAQE/B+R8hOWuY+GT+On\nNWHzZfzWcDacE2AnfvNkftaQy+Vobm7m3OlMSEw9l3N3+vRbMX16BiQSCd56ayX27cuGXC5n0h5w\nwRXiF5JCAbDV+Gki12qNrOTOp6vzpb1gI36ZTAa1Wo1Vq/5h0w+sBxF7yRPZEBUVxZl+3Rwd4dx1\nKTunp6cnNmzYgHHjxsFoNGLhwoVIS0vDxo0bAQCLFy/GxIkTsWfPHiQmJkImk2HTpk281+Ty2lsj\nO3sLmps90dqaAKAcQBqAqWht/QJ+fv9FScl10lYqlVi0aBG2b9+O/v37Izt7C959dzuqqmLR2Dgc\ns2b9FQZDMgj5AqtWvYSXX34Pt90Wy2rxO0r858+fR2hoKJOnw9rpw2fx0zMjrhV95nHG9sDn3HWE\n+IUQihDnrl6vh16vR2BgIHOMb5cjR9F+j6UApuHw4ZNYtIi9HFdUj8FgQEFBARPHLpfLmWk+10ZB\nHWnxNzQ0oLGx0WYGTUMikTDRXub3kIbQAdra4s/NzcW7775rE6QhkUiYHFlcbXKF+OnfTwh/BlA2\n5y5N7tOm3Y1vv91vQe58mUH5wmjZiD8uLg47dvyIjRvVkEoP2lj85tcSsr7GGkIzCXeEc9fltMwT\nJkzAhAkTLI4tXrzY4vOGDRsEX09oR8/KmgNfXz8sWbIXOt10UNT3IGQ8CNmGIUOiMWPGJIvyaWlp\n+OGHH5jvKhQhmDv3KwBzIZfvQ3s0XftUce3aZaioyLMJTWWz+PmmXSqVCrm5uQgNDWVW9gkl/pqa\nGiZNgUKhgFqthtFoZMLDAMeIX6VS4dq1azbH9Xo9mpqaLKalQqJ6+CCE+K0XsgHsi7icIf7s7C1Y\nt+5rABMBfIyfflqCPn0mYcWKmVi0aK5FWfNwXPOBp7CwEOHh4cyzjYiIwLVr1xAcnMhZLxvxt7W1\nMak3+KBSqSyI/9KlS0hJSeElQVruYSN+tVrNmx8IYJd6cnJycN9992HEiBE25WmrvDOI39fXF1Kp\n1K6l3NzcbKMY8JE7H+xZ/ObrY7Kzt+Dw4VIcORKBxsYP8OGHT0KtbkB29hYsWjSXVerhuk9coInf\n3uDndqmnMyC0o7fv6iODp6cc0dGfgRAJoqOzYDRKcPp0HpP2mIZ5Tv32qSDQ2iqBUjkXWm0rKMoP\nFDUBDQ3N/zd1tJV6lEqlTbw138seGhqK3NxcqFQq+Pj4wMvLCxcuVFiQLJfUc+3aNUa/9/T0RGBg\noIVkYTQaUVZWxusvsW4Lm9RDh3KaSyl8Uk1HWfzWswyAPZzTGeLPypqDV19djsjIeAAUWluBV15Z\nhkcfnW2z5sPc4jev//jx4xYb2EdERCAsLAFq9e2c6R/YiJ9uv71AiLCwMIvnU1JSwrpwyxx8sfzm\nayS4wCb1nD17ljMvkr1Uxs7G8Ztf357c42o6YnM4YvFnZc3B1KkjUVvbBDpLa79+KsaP2BEaPz2A\n21uY1xH3oFsRPyHEoR9FT/Eee+xOPPtsHB577DbIZL+irm4krlyxfEHpnPp0p//zz/MAtmPSJG/0\n79+KhIQL6NOnBC+/nIYrV4pZCZ3eLYvu3PQeq0KkHgCQSkOh10/A4cOnmDJcFr+149Y6g2FFRQWC\ng4PtWpLmbeFKIWFNwK5q/M4Sf0dZ/LTG29hoQFTUI9Dr2499++1+m7w95sRPO3B1Oh2WLl2K559/\nHsD15fY6XSaMxo2c6R+4iF+IFWzt2BNC3Hyx/Oapv7nAJvWcOXMG/fv3Zy1vT4d3xeIHup74HdH4\n6X28ARko6h40NbVBJru+nsVa6rHee1gIKIpCbGysXbnnprP4dTodfHx8LOQMPqxcmYXp08dh1apF\nSEqKxpYtuyCR3AHgI6xbd8Gic9LTNtpiv+uuQZBI9KioqMDAgSo8/fRspKWlISoqECtXPsoavUJn\n0KM7m70XPTQ0FJcuVaK8XIM+fSahsXEUgI/x2mt/MG3jcmjW1tYiMvJ6Iidr4udays8FrqgeZ4i/\nu1v8wHWj4IMP7kN4+DE89tjfsGzZTzZ5e8ydu3Qe/8rKSgQGBmLs2HYnPB05IpUGgS/9A1vKBqFW\nsDXxCyFuPuIS8n3rlA2EEOTm5qJv376s5e1Z/M4maTO/fnex+M2lMnrgP3CgGsBUeHkFwdv7vygq\nuj77p2Vg2rBke7+FQIjOf9NZ/M52cuB65wwIUIKtc1IUhfj4eBQUFABol1L69OmDsrIy7N59GAMH\nDkRKSgqzgpCL4MxfFnskeO1aNYBpCA8P5yQONqmHzshoPgBaE795xIkQcEk9XMTPFY4p5BkJCee0\njugBOs7iB64bBQqFAjExMmzY8BKamtpgff+tnbseHh7Iz8+3WMlMzyCamkycy+0BfqnHHoKDg20s\nfnvEwWfxC/m+tcWv0WhgNBo5NXZ7G5R3hcUvNPhDCPgGTnOpl+YWuTwFwHgYjZ64/fZ0PPzweKZ8\nSEiIxS5lzhK/kHtw01n8rjxUuiNqNG2cnTM8PNziwQwcOBB5eRWorByBa9eqERkZyZznyqFuTvxc\nZWgLYefOJgAf49ixYDz99BvQ6WDTNi8vL5hMJgtLkS0+35r4+UL92BAYGAi9Xm+j6VonjQM6xuK3\nt41cZ1v8NOgwu/Y8KYCf330W9986KissLAxnz561mabbW24PsKdsEEqGISEhFv4jIRY7Xyy/UIvf\nnPhpnxGXP6I7EH9XWfzmv4V+Vxoa9EhNXQGj0RNabZPNAEnnHCKEsBo2QiBkv+huEdXTkXC1k/OF\ndQGWL9Yvv/wXubk1aG4eA+BjvPLKS9DpDiE0tH1xFVe0hLXFz7aYiY4aeuaZ3wBQMBgkGDNmKO67\n705Mnz7Oom3tTmopdDods5Vafn6+TeI1NuKfM8d2+z8uUBTFSBnm0QaVlZU2ddGZMq2jiOjfbK9z\nC9kas7Ky0mYrxY4M56RBP6+8vGKkp59BRcVV/PvfS5j7b51kLywsDOfOnbMhfiGRI65Y/M5KPa5q\n/OaGgPkes2xISEhgAiSsYTQa0dLS4hIhhYeHIzc3l7dMV2n81lIvzS333TcWvr4hKC5Os3He0sQ/\nYMAA+Pn5OWWVh4WF2Y3lp1dlu4KbivjtdU7zWGmVSoa+ffviyy+bUFfXPv1fuHAKfv11NwDhxM9G\nguYWQnr60yguNmHatAlMm6zbRhMerSmaR/TQUCqVFmTqqMXf/pvbrQlr4h8+fLhN+2mr3/r3CXlG\nKpWKcZJydVIui7+jpB4a9PNauTILX331AaqqqnD33SMwfXp7p2az+M+dO8eke3AE5km8zNsvxAoO\nDAxEU1MT2traGMmgq6We0tJSC7+SNZKTk5GXl8dqEAiNXuKDUKmnqy1+wJJbIiMDYTBU2hB/Wloa\ncnNznZZ5gPb3748//uAt44zj2Bo3jdQjBOYvVlVVFYKCFGhr82Dkl4CAAMbqEkL8fFvqCZEGaFgT\nHpvU05598PrGM46s2qXBFtnD9ZJyyT1CLH6JRGJ3FWJNTY3Ny9sZFr9MJkNLSwtaW1tRU1OD4OBg\nnDhxgjlvnV1VpVLhzJkz+OOPqw7nQWGz+IU6dyUSCRQKBerq6kAIYZXgrMEl9RBCBJGPtXPXXniw\nVCpFWFgY4yczh6syDyBc6ukqjZ/r94SFhSE/P9+G+AcPHozff//dZeK3N1u2zqbrDLoV8bvaye3B\n/MWqrKyEWt1iQc61tVpGTnFF6gGuOxcpisL06eOwcuWjnO0SQvypqanMZhX0Un1HOxpbLpDOIH7A\nfnQC217BnWHxUxTF6Pw1NTV46623sHLlSuY8m8Xf3AwcOxbJu10jG1wJ5wSuPx+1Wg1vb2+7BMcl\n9dTX10MqldqVGtgsfnvrQrhy57sa0QN0H43fYDCgpaWF8/63S6NBNit7b7nlFpw+fRpvvfWx08Rs\nvZ6DDSLxOwjz0bSyshIvvrjYgpxXr16G2tpaEEJYl2wDwi1+R2Du1DSZTLh27ZqN7p6cnIwrV67A\naDSitrYWSqXS4Wk1HaduDi7i51rEJfQZOUP8nWHxA+3PrLy8HIQQzJ8/H7m5ucx9MCf+7Owt+Oyz\ngwAmQq/fwBmvzwVXLH6gnfhramoExfAD3Ba/UIvTmvhPnDhhVz6k30NruLp4C2iXM+vr63nzAXWF\nxm9PtgoIiAAwDUeOnLY4LpfLERISi717/RAYyC2Z8cF6Bbc1TCYT0/9dQbci/q6SegwGA9Rqtc2W\nhbSVVVNTg7a2Nta2mGcp7IjpLWAZxnjixAnExMSwJohSqVQoLCxETU2NUw+e3jeWRktLCxobG1nD\n9zrC4ufaGrP1/7d39lFR1fkff8/wjCDPAgI/KBUGeRxWdDe1cBMLCUtrq13d06/j8mO3NDe3tvbs\n1moPlttx+1n9auVY2WY/s8ync3xIbYVWjFCBTNHEBxQZBOKZERiYub8/+N1xGO4d7r1z7zDDfF7n\neI7DfOfeL5fvvO/nfr6fB4MBBoNhhFAoYfEDQ3+zixcvIjw8HJ6enmZfLDBc+AsLl2LDhucRFfUf\nsBWvz4e9Fj+bZChkYxbgt/iFft7S1VNZWYnm5mbcfffdNj8THx/P2etaju+Ch4eHOQCBDzk1wt/f\nHwMDAyP2Zfh+FzZa79AhTwCbsW5dpdkwYN/r7/85TKZNKCnxE2U0sERERKCtrY23+F5bWxuCgoLM\ngSBScSrhd5Srp76+HtHR0ZyJYuHh4bh06RImTpzIece3DLuTS/gtBY9t7s0F+5gtVfjZNnQsXOUa\nWPhi8YX+jTQaDc6cOcP5Xnt7O4KDg0dcXyUt/u+++w6Dg4FgmKEeCmylVsuoHqHx+nzYa/GnpaXh\n9OnTgvz7AP/mrlDht7T4q6urMW/evFGTJ9nOd9bI9V1gk8SsS2uwyGnxq1QqTqufr/Q4G89vMnmC\nLf/OGgbse76+QRiK5PMQZTSweHh4YMKECSOezFnkcPMAbib8bO/Zs2fPjqjlwxIREYHa2lpO/z77\nPmuRCKlNLwRLV8+pU6cwd+5cznG33XYb6urq7BJ+ywVlyyVgr8WfnZ2NEydOcL7H5eYBuBO45HAh\nBAcHY9OmT9DWloOdOw8hLS3NfFOy3twVsylvjb0WP3tDstfVI/TGYRnO2dXVxbvmLeGz+IUUhRNC\nVFQUvvji4IjSGsCQ791kMtlt7VrCVZNfaLSepWFg6z0pc+KLNpJL+J0qnFNpV49KpcKkSZNQVlZm\nLrdrTUJCAqqrq3m/BJYJFt3d3bLcqCwFr7GxkTekjs08NhqNsrh6xAo/29lJyO+clJSE1tZWzpsU\nn/ArkcBVXLwVX311GR0dWgD/gz/9aShfIzzcaD6+5ZqTWukR4C7ZIGb+bDe33l5f5OePrI5pDZ+r\nR+iNw8fHx/w37urqEiTcfBa/lPrz1hQXb0V5+Q0cO3YRPT0fmEuks1VVWWvfnpBRa6xr7AC2jRtb\nuUKj5REJxe2EX6/Xj/C7y01UVBTKysqQn5/P+f6UKVNw/Phx3prrlha/VMvbGktXj63H9ISEBFRW\nVsLPz08WV49Y4TcYDFCr1Zwdx6xRq9VmyzonJ2fYex0dHbwWv9zCP9SJSY0XXjiFpqYhv/1//ddi\n7N//GQB5BIuFz9Uj1OKPjo6Gv38EKipikJlpu0IjwO/qaW5uHlZZlA/LBj9dXV2CbhaTJk1CV1fX\nCCNNSv15awoLl+LAgYPYvdsAQAW9fgD//d9P4tSp02AYRhHDkMvit/Ukb8swsMdosJ6T0sLvVK4e\nOf13fERGRuLf/z7D27JwypQpKCs7x2v9sMJvT1q2NazwGwwGdHV18Yo6a/FzxcALwV5Xj1g/bnR0\nNGdoGp/Fz7oeTKZbrSnlCOcMCQnFzZu3/PahoaHmsEE5BIuFq2SD0Pmzm4M3b+bAZCrGoUPqUTcH\nJ0yYwNkViy8izRrL9SDU4ler1ZwRW1LKEFvDht4CfvD0zEdrazfeeKMY7757Azt3HlJEH8Ra/I7A\n7YS/v7/f7uJDozFk4CxGayt3EbGGhg4MDORDr+d+nPTx8YGfnx86OzvtStSwhLV02eYkfG0GWeGv\nq6sT3eQBGOnqsfV0IYfw89Ud4RN+tVo9os6PHPs+1n771la9ObxTDsFisWdzl90c9PMb2hwcGFCP\nujmoUqlG/E2BIX+7EOFnLX6TySRY+AFuP79cN9Da2iYAzcjIMIBhvsaJE6Hmiqrz5xeiv19Y5V6h\nsBY/23PbaDRi9+7dsnyvpRISEuJewt/X1ye4vrxYWIvq229DAWzG3/9+fphFxb6/ZUsTgM24dGka\nr8XFWv1yCX9wcDDa2trQ2Nho83E7MjIS/f39+Ne/qpCUlCT6PPZa/GJFmE/4dTodr0vPOqRTDuG3\nTqZ78cUn4O3tjc7OTlktfns2d2/1EOAvMsgF1wZvR0eHoI1atVpt3lfp6uoSHKjA5ee312XGfv+u\nXo0F8At89107DIZYAJMAqHDlShPS0+MRFWX/BrIlrMXP9tx+881ifPnlt3jllVdkPY8Y3M7il6Pc\nKB+sRRUQEAquGG32/YEBNQAVjEZPXosrIiICV69excDAgCyRDJMnT4ZOp0NjYyOio6N5x6lUKsTF\nJaOvLw+nT3MXy7KFGB8/VwKXHBa/0WjEJ598gvvvv5/zM9Z+fqUivaKjo6HT6XifPqRgbzinlIgi\nrg1eoa4e4NaakMPit+c6st8/hvEGsAxBQRr4+08E0Ae1+pfw8vKFVpssSxSdJRcv6vDaa9vx3HNH\n0d39d7zyylfo7FyAZ599TdbziMGphb+trQ25ublITEzEggULeCeakJCA9PR0aLVazJw50+YxlXT1\nsNZTX5+K06ISE44VExODEydOIDIyUpYIA7aJg06n443oYS0inS4dwGb85S/HRSeIiInq4UqmkkP4\nP/roI8TExGDGjBmjnpfd0FNK+C9cuAA/Pz/ZwgPtDecUU+aDhWuDV6irB7j1FNjd3S1Y+Lksfnuf\nnG6VVTdg+vQ/QK8fgMHQh6CgWqjVgXjyyVhcvtwou/D//Oc/RXZ2PJqaagAUoLMzCMAm/OtfKkkJ\nWHJgS/hZd7C9SBb+119/Hbm5ubhw4QLuvvtuvP7665zjVCoVSkpKUFVVNaw4FhdKunqA0S0qoRaX\nVqvFu+9uk+UPAAwJv06nw9WrV5GQkMA5hrWIvLwmQEpWKSDO1WMZ8cEih6vnpZdewptvvsn7GUuL\nv6+vD56envD0lD/4bOrUqSgvL5fNzQNwC78YF4oUrF09bLkRIa4e4NaacAYfv+X3b8mS/8Ajj2jw\n4YfLkZlZi7CwcNx7b7bsm64hISG4efMmBgbiALQB8IDU75dcOHU45969e1FaWgoAeOyxx5CTk8Mr\n/kKrHCq9uTtauJXQcKz+fi9cv56NyZOvyDIvtpfp5cuXsXjxYs4xrEXENnOprzeJThDx8fGByWRC\nf3///1tXXby+9sDAwBG11+21+PV6PZqbm3mtfWC4xS80qUgKqamp+NvfNmPSJHncPMBI4R8cHMTA\nwICikWrWrh69Xg8fHx/BTzHsE4MY4ecqxyGHy8zy+/fJJ28AGGp6r1Lp8fzzv8H7778vu/AHBQWh\nubkLMTHVmDMnAzt2eCIw8HF0dARJTsCyF3bPzxq2lIwc3wnJwm9pLdoqJapSqTB//nx4eHigqKgI\nhYWFnOMA4OLFi9i6dStKSkqQk5MzIv57rCku3oqNGz9Ff38agM1obHwGKSn3mRNMpOLj44PAwEAc\nOlSBVatW8Y6zN0HEMgqkr68PERERvBFEAQEBI6JFxFr81pUG2QYzfOcEhlv8fBVS5aCjYxCNjbMQ\nFma78YcYrIWfjQdXUjysXT1ir5mlxS/0ySQ2NhYNDQ0wmUxQq9Xo7OyEh4eHIjc4yz6/tqrhSmXK\nlCn48cfraGvLxdWr7fj448ftTsCyFz49/eCDD/Dwww+jtLQUJSUldp3DpvDn5uZylkl99dVXh722\ndWcsKytDdHQ0WlpakJubC41Gw1uSIDw8HE8++SS0Wq3Q+TsU685agDfWrl1hV7IGS2BgFOrqZqGm\n5hpvExA5EkTYL3pbW5vNiKSAgAD09PQM+5lYiz8oKAi9vb3mQmiXLl3izZhmsczeFWOFCuXWzTsV\nwGbodL+V5eYNjBR+pd08wMgKk2I2doGh9dDU1AQPDw9BiXnAUMTXxIkT0dzcjKioKNTV1eG2225T\n5AbHtks1mUyyVcNlYddCe/ssGI3/wNWrz+LFF99Ga2uL3WvBHlgPgDU7d+7Ea6+9NsIoXrt2rehz\n2PTxHz58GN9///2If4sWLUJkZKR5co2Njbx+JzZKJSIiAosXL7bp53dEHL89yFmPg4XdtO3pmQtg\nM95444yim0psFMdooaiBgYF2C79KpRqW6Xzx4kXeGkksluUrlLD42b0Sg0EFQIUJE0Jl8+Val2yQ\nq5aTLax9/GKFf+LEiTh79izi4uJEndcyiauuro53b8pefHx84O/vj66uLtkTq6wj/UwmrzHz61vC\nFpO0dJGbTCacOXMGWVlZspxD8ubuokWL8NFHHwEYitTgqih58+ZNs7tAr9fj0KGhAll8KL25Kwf2\nFPHi4lbiTjAcsanEunpGE345XD3AcD8/V58BayxdPUpY/ErcvFm4LH65529NSEiIuUw4IM3VU1VV\nNeqTmDWOEn7gVr9puV097N/daPSWfS3Yg6+vL/z9/Yf9XS9fvozw8HDZDCHJPv7nn38eDz/8MN5/\n/30kJCTgs8+Gap/odDoUFhZi3759uHHjBpYsWQJgaKNr6dKlWLBgAe8xlYzjlwu56nGwcPXnVXLx\nsa4eIcLPZfHbyjPgwrKxhJBSE5abu0r5+OUqpmUNn49fSayzPKW4eiorK6HR/AwMwwhed5YbvI4S\nfrldPYBya8FeoqOj0djYaI6UOn36tE2jWSyShT80NBRHjhwZ8fPJkydj3759AIDbb78d1dXVgo/p\n7K4epXDk4rN09dh6vOdz9dhj8be2to5ahE9K/RixyH3zZrGu1eMo4be0DMWEcgJDfRNu3gTOnk3C\nzp2HBF8PjUZj/m7/8MMPmDNnjriJi8DS4pdb+JVaC/bCbmqnpKQAAM6dO4fp06fLdnyny9x1dleP\nEkhJ3JEK6+oZrWY7l8UvJWRPrPBbVktUMqpHCcbC1WPZEQ4Ql7xVXLwVL774IYCF6O8X12ryrrvu\nQmlpKXQ6Hb755hvMnz9f6q8wKkq5epwZ6w3eixcvCqq4KhQSfjdDjKunu7t72AaTEOG2Rorws64L\nJeP4lWCsXD3WFr9Q4S8sXIq1a1cgOjoeYveXUlJS0N7ejvvvfxxLlixR9O+kpMXvrFiGsQIQFBEn\nBqcSfg8PD0WyNIlbCI3q8fb2hlqtHtaPVIrwWy5gscIvV1cnR+Eswi9UhNm9pJ4eo+jNTbVaDY1m\nBk6ejEVwsPhKsWJQ0sfvrHBZ/KNFxInBqYSfrH3lYeOvr169OmqEjbW7R4rwT5s2DRcuXDDXjR9t\nj8DVLX7LcE5HRfV0dHSYn8zEuHoAaVFqbAjypUuJADZj9+5+RUOQ3dXVwxpMer0e7e3tiImJke34\nTmVeu+PGrqMJCAjAtm0HkZqaOqr1xAp/WFiYuXa9WOFPSkrC+fPnzTeN0axJV7b4fXx8zD1sgSGL\nX8loF2Doyczb29tcDE7s5q6UzU02kXH16lIM9Q5QYf16eRIZuQgPD0dzczNaWloU79DnLFg+KV+7\ndg1xcXE2M97FQha/m3HuXD3a23MQHT36RpFlhE13dzd8fX0FZ3eyhIaGws/PD99//72gL62l8Ntq\nFOOMWDYvB5TvIc1i6e4Ra/FLgXUHdXb2OyT+/fbbb0d5eTl8fHxc6gnQHixdPXL1/bDEqYSfLH7l\nYB/PP/+8B8BmVFdHjfp4btmWrrW1VXL1xaSkJJSVlYkW/oaGBt4y1c6It7c3+vv7zW4XR7QSBYYL\nv9g4fqnInchoi2nTpqGlpQXe3lGCCz66OpauHrlavFpCrh43wfrxnG00Y+vx3FKEpfj3WdLT07F9\n+3b4+kaNmiQUGBgIvV6P3t5edHR0yFb62hGwjegNBgN8fHwcJvyxsbG4du0a0tPTRbt6pOLIE5rJ\nvgAAEb1JREFU+Hc/Pz9ERNyGlpY5onINXJng4GD09fWht7d3/Fv85OpRDimP55aWpD3Cn52djdra\nBly4kIadOw/ZHKtWqxEYGIjz588jKipKVr+mI/D19UVf31A/597eXocYMxqNBufPnwfgGFePI2Gf\nVPX6OzE4+J6oXANXRqVSmWv2jHvhJ4tfWcQ+nlsKf0tLy6jlFrgoLt6Kl1/eCjFJQsHBwaipqXEp\nNw+Lj4+PWfj7+vocYvGzwt/b2wuj0eiQfQVHYd2EfiwbpDgadoNXrq5blpCrx40Q+3huKfwNDQ2S\nwskKC5ciODgE//mfu9HbO/TFXbfOtospLCwM1dXVsoavOQrLDV5HuXo0Gg0+/vhjNDY2IioqasyL\njMkJ+1RqMKgdUsvKmWA3eMe9xa9Eb1VCOpbCr9PpJAmxSqWCWu0BT88AwS6m+Ph4HDt2DLGxyiYG\nKYGlxe8o4U9JScGZM2dw6dIl0UX0XAFHbiQ7E+wGb2Nj4/je3B1Pj6jjgZCQEFRXV4NhGBw8WIGX\nXrpD0nHEFqFLSEjA7t278etf/1rS+cYSax+/I4Q/PDwcd911FzZs2DAuhd9ZC6kpTWRkJNavL4bR\n+CPS09NlPbZTCT9Z/M4Fa/Hv2HEQtbW+qK3VSTqO2C9ufHw8TKaJSEpKknS+sWQsXD0AsGzZMjz8\n8MPQaueJKq9MOC+Njd2or5+BoqJg2UtVkKuH4OXf/z6FI0cuY+XK/wXDZOKtt046JKJCp+sEsASX\nLzePOtbZGAtXDwDMmjULgD9qajSjRk4Rzg0bybR3rwHAZhw54iX7986phJ9cPc6Fn58fBgYG0dTk\nDeDvaG+fgK6uHsWSaNgF/+mnnXBEG0olGAtXT3HxVuTlPQG1ugD9/f/jNiGP4xU2kgnwBqCCwaCS\nPZLJqYSfLH7noqjo1/D2vokhj6AKRqMajzxyr2KNqNkFbzJ5wVVD91hXj9FoxODgoOgSF1Jw55DH\n8Yg9VVOFQsJP8BIZGYmbNwcBGJGY+BR8fT1x40arYv5jJfvhOgrW1cPG8Dti7uw1Uqv9Xfa6EcNR\nOpLJqTZ3ydXjXHh5eSEgwBs9Pdtx9mw79uz5SvFQOmftgSoU1tXjSP8+4PrXjRiO0pFMki3+zz//\nHCkpKfDw8EBlZSXvuIMHD0Kj0WDatGlYv369zWMeMtzalFpTsgZrStbQ6zF+nZgYhkmT/PHKsVfw\nfdg35raQSp2PbUO5tnStQ84n92u2NPO64+tguMNg9/GEvu77aQO+D/vG3L6z76fXneJ60GvHvBaL\nipG4U3f+/Hmo1WoUFRVhw4YNyMrKGjHGaDQiKSkJR44cQUxMDLKzs7Ft2zYkJyePnIhKhR07duDB\nBx+UMh1CIQoKClBe/gOam38g14EAnnjiCaSkpCA3Nxf5+fmora0d6ykR4xyVSiU64EKyxa/RaJCY\nmGhzTEVFBaZOnYqEhAR4eXnh0UcfxZ49e3jHk6vH+ejv90R7ew6FCAqE3dx1tKuHIMTgqeTBGxoa\nEBcXZ34dGxuLb7/9lnf8Z599Zn4/JycHOTk5Sk6PsEFx8VZs3PgpmppiYTS+hz/96S948cW3sWrV\no4pF9YwH2M1dEn5CKUpKSlBSUmLXMWwKf25u7rCGvyzr1q1DQUHBqAcX6xpYsWIFfvKTn4j6DKEM\nbP3+p546AjZEcLTiasStzV1HVeYk3A9ro3jt2rWij2FT+A8fPiz6gJbExMSgvv5WdEF9fb3NwlsU\nzuk8sOGAer3J7aoi2oOvry/a2trI4iecGlni+Pk2FmbMmIHa2lrU1dXBYDBg+/btWLRoEe9xyMfv\nXLhrVUR7YF09XV1dLtUonnAvJPv4d+3ahaeeego//vgj8vPzodVqceDAAeh0OhQWFmLfvn3w9PTE\nO++8g3vuuQdGoxHLly/njOhhIYvfuXDXqoj2wLp6HNX7liCkIDmcU26Gmi0Y4OXlNdZTIQjJbN26\nFfv370dGRgba2tpGzV0hCHtxaDinEpDoE65OWFgYWltbyeInnBqnEn6CcHXCwsLQ1tZGwk84NU4l\n/E7idSIIyZDFT7gCTiX8lB1KuDok/IQr4FTCTw0kCFdn4sSJ0Ov1aGlpIeEnnBZFSzaIhbJDCVdH\nrVYjJCQEly9fRlBQ0FhPhyA4cSqLnxpIEOOB0NBQtLczJPyE0+JUwk/ZocR4oL/fC8ASlJaeGuup\nEAQnTpXA5SRTIQhJsBVNr1wJRW/vR5g27S/w8vqOKpoSiiJFO53Kx08Qrgxb0fQPf/ga9fVU0ZRw\nXpzK1UMQrsx4aBZPuAdk8ROEjFDTc8IVIB8/QRCEC+PyRdoIgiAI5SHhJwiCcDNI+AmCINwMEn6C\nIAg3g4SfIAjCzSDhJwiCcDMkC//nn3+OlJQUeHh4oLKykndcQkIC0tPTodVqMXPmTKmnIwiCIGRC\ncgJXWloadu3ahaKiIpvjVCoVSkpKEBoaKvVUBEEQhIxIFn6NRiN4LCVmEQRBOA+Kl2xQqVSYP38+\nPDw8UFRUhMLCQt6xa9asMf8/JycHOTk5Sk+PIAjCpSgpKUFJSYldx7BZsiE3Nxc3btwY8fN169ah\noKAAADBv3jxs2LABWVlZnMdobGxEdHQ0WlpakJubi7fffhtz584dOREq2UAQBCEa2csyHz582K4J\nAUB0dDQAICIiAosXL0ZFRQWn8BMEQRCOQZZwTr67zc2bN9Hd3Q0A0Ov1OHToENLS0uQ4JUEQBCER\nycK/a9cuxMXFoby8HPn5+cjLywMA6HQ65OfnAwBu3LiBuXPnIjMzE7NmzcJ9992HBQsWyDNzgiAI\nQhJUlpkgCMKFobLMBEEQxKiQ8BMEQbgZJPwEQRBuBgk/QRCEm0HCTxAE4WaQ8BMEQbgZJPwEQRBu\nBgk/QRCEm0HCTxAE4WaQ8BMEQbgZJPwEQRBuBgk/QRCEm0HCTxAE4WaQ8BMEQbgZJPwEQRBuBgk/\nQRCEm0HCTxAE4WaQ8BMEQbgZkoX/2WefRXJyMjIyMrBkyRJ0dnZyjjt48CA0Gg2mTZuG9evXS54o\nIZySkpKxnsK4gq6nvND1HHskC/+CBQtw9uxZfPfdd0hMTMRrr702YozRaMSKFStw8OBB1NTUYNu2\nbTh37pxdEyZGh75Y8kLXU17oeo49koU/NzcXavXQx2fNmoXr16+PGFNRUYGpU6ciISEBXl5eePTR\nR7Fnzx7psyUIgiDsRhYf/wcffICFCxeO+HlDQwPi4uLMr2NjY9HQ0CDHKQmCIAiJeNp6Mzc3Fzdu\n3Bjx83Xr1qGgoAAA8Oqrr8Lb2xu/+tWvRoxTqVSiJiN2PMHP2rVrx3oK4wq6nvJC13NssSn8hw8f\ntvnhLVu2YP/+/fjqq68434+JiUF9fb35dX19PWJjYznHMgwz2lwJgiAIGZDs6jl48CDeeOMN7Nmz\nB76+vpxjZsyYgdraWtTV1cFgMGD79u1YtGiR5MkSBEEQ9iNZ+FeuXImenh7k5uZCq9XiiSeeAADo\ndDrk5+cDADw9PfHOO+/gnnvuwfTp0/HII48gOTlZnpkTBEEQ0mAcyIEDB5ikpCRm6tSpzOuvv845\nZuXKlczUqVOZ9PR0prKy0pHTczlGu55Hjx5lJk6cyGRmZjKZmZnMyy+/PAazdA0ef/xxZtKkSUxq\nairvGFqbwhntetLaFM61a9eYnJwcZvr06UxKSgqzceNGznFi1qfDhH9wcJCZMmUKc+XKFcZgMDAZ\nGRlMTU3NsDH79u1j8vLyGIZhmPLycmbWrFmOmp7LIeR6Hj16lCkoKBijGboWX3/9NVNZWckrVLQ2\nxTHa9aS1KZzGxkamqqqKYRiG6e7uZhITE+3WToeVbBAS079371489thjAIZyAzo6OtDU1OSoKboU\nQnMkGNo0F8TcuXMREhLC+z6tTXGMdj0BWptCiYqKQmZmJgAgICAAycnJ0Ol0w8aIXZ8OE34hMf1c\nY7gSwwhh11OlUuH48ePIyMjAwoULUVNT4+hpjhtobcoLrU1p1NXVoaqqCrNmzRr2c7Hr02Y4p5wI\njdG3tgIotp8bIdclKysL9fX18Pf3x4EDB/DAAw/gwoULDpjd+ITWpnzQ2hRPT08PHnroIWzcuBEB\nAQEj3hezPh1m8QuJ6bcec/36dcTExDhqii6FkOsZGBgIf39/AEBeXh4GBgbQ1tbm0HmOF2htygut\nTXEMDAzgwQcfxLJly/DAAw+MeF/s+nSY8AuJ6V+0aBH++c9/AgDKy8sRHByMyMhIR03RpRByPZua\nmsxWQEVFBRiGQWho6FhM1+WhtSkvtDaFwzAMli9fjunTp+P3v/895xix69Nhrh7LmH6j0Yjly5cj\nOTkZmzZtAgAUFRVh4cKF2L9/P6ZOnYoJEybgww8/dNT0XA4h13PHjh1477334OnpCX9/f3z66adj\nPGvn5Ze//CVKS0vx448/Ii4uDmvXrsXAwAAAWptSGO160toUTllZGbZu3Yr09HRotVoAQ2Vzrl27\nBkDa+lQxtLVOEAThVlAHLoIgCDeDhJ8gCMLNIOEnCIJwM0j4CYIg3AwSfsKpaG1thVarhVarRXR0\nNGJjY6HVahEYGIgVK1Yocs533nkHW7ZsEfWZ2bNnSz5faWkpvvnmG0mfbWpq4ux2RxBicFg4J0EI\nISwsDFVVVQCGujQFBgZi9erVip2PYRi8//77OHHihKjPlZWVST7n0aNHERgYiJ/97GeiPxsZGYmQ\nkBBUVlYiKytL8hwI94YsfsKpYaONS0pKzO0+16xZg8ceewx33nknEhISsHPnTjzzzDNIT09HXl4e\nBgcHAQCnTp1CTk4OZsyYgXvvvZezjWhZWRk0Gg08PYdsoJycHKxevRrZ2dlITk7GiRMnsHjxYiQm\nJuKFF14wf45NmS8pKUFOTg5+8YtfIDk5GcuWLTOPSUhIMGejnjx5EvPmzcPVq1exadMmvPnmm9Bq\ntSgrK0NLSwseeughzJw5EzNnzsTx48cBDD0ZsE8/WVlZ0Ov1AIaSdbZt2ybrdSbcCxJ+wiW5cuUK\njh49ir1792LZsmXIzc3F6dOn4efnh3379mFgYAArV67EF198gZMnT+Lxxx/Hn//85xHHOXbsGGbM\nmGF+rVKp4OPjgxMnTuB3v/sd7r//fvzjH//AmTNnsGXLFrS3t5vHsVRXV2Pjxo2oqanB5cuXzcLN\nVSslPj4ev/3tb7F69WpUVVVh9uzZWLVqFZ5++mlUVFRgx44d+M1vfgMA2LBhA959911UVVXh2LFj\n5k53M2fOxNdffy3fxSTcDnL1EC6HSqVCXl4ePDw8kJqaCpPJhHvuuQcAkJaWhrq6Oly4cAFnz57F\n/PnzAQBGoxGTJ08ecaxr165hzpw5w37Glr5ITU1FamqqOfX99ttvR319/YhywzNnzjQfOzMzE3V1\ndbjjjjts/g6WeZNHjhzBuXPnzK+7u7uh1+sxe/ZsPP3001i6dCmWLFlirr0SHR2Nurq6Ua8TQfBB\nwk+4JN7e3gAAtVoNLy8v88/VajUGBwfBMAxSUlLM1rctrJPXfXx8zMdi/295bGssx3h4eJjHeHp6\nwmQyAQD6+vpsnv/bb781/04szz33HO677z7s27cPs2fPxpdffomkpCQwDEOVQQm7IFcP4XIIqTKS\nlJSElpYWlJeXAxiqbshV8z0+Pp7T9y8HCQkJOHnyJADgiy++MP88MDAQ3d3d5tcLFizAW2+9ZX5d\nXV0NALh06RJSUlLwxz/+EdnZ2fjhhx8AAI2NjYiPj1dkzoR7QMJPODWsZatSqTj/bznG8rWXlxd2\n7NiB5557DpmZmdBqtZwhlHPmzDGLM9e5+SxrW+dn+etf/4pVq1YhOzsbnp6e5nEFBQXYtWuXeXP3\nrbfewsmTJ5GRkYGUlBQUFxcDADZu3Ii0tDRkZGTA29sbeXl5AIaqWd55552c5yQIIVCRNsKtYRgG\nWVlZnK4WZ2Xp0qV45plnzJUaCUIsZPETbo1KpUJhYSE++eSTsZ6KIJqbm9HR0UGiT9gFWfwEQRBu\nBln8BEEQbgYJP0EQhJtBwk8QBOFmkPATBEG4GST8BEEQbgYJP0EQhJvxf8XmMgVncOswAAAAAElF\nTkSuQmCC\n" - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Finding possible spurious points\n------------------------------------\nHowever, if the amount of data is too large for visual examinations one could use the following criteria to find possible spurious points. One must be careful using the criteria for extremevalue analysis, because\nit might remove extreme waves that are OK and not spurious." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "import wafo.misc as wm\ndt = ts.sampling_period()\n# dt = np.diff(xx[:2,0])\ndcrit = 5 * dt\nddcrit = 9.81 / 2 * dt * dt\nzcrit = 0\ninds, indg = wm.findoutliers(ts.data, zcrit, dcrit, ddcrit, verbose=True)", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "Found 0 spurious positive jumps of Dx\nFound 0 spurious negative jumps of Dx\nFound 37 spurious positive jumps of D^2x\nFound 200 spurious negative jumps of D^2x\nFound 244 consecutive equal values\nFound the total of 1152 spurious points\n" - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Section 2.2 Frequency Modeling of Load Histories\n---------------------------------------------------\nPeriodogram: Raw spectrum" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nLmax = 9500\nS = ts.tospecdata(L=Lmax)\nS.plot()\naxis([0, 5, 0, 0.7])\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEXCAYAAAC3c9OwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl8TOf+xz+TpUiIWCsSBNGIPSRiCWKNKKEoSouWNu0P\nt67qbV1d6HJbpdqqezVtkWspaVVxLWmqpFVKLClto8QSRohIrZF98vz+OD0z58ycmTlnlpyZyff9\neuU1Z3nO83zPmcn3c77PqmGMMRAEQRCEEV5qG0AQBEG4JiQQBEEQhCQkEARBEIQkJBAEQRCEJCQQ\nBEEQhCQkEARBEIQkJBAE4QSmT5+OV199VVba3NxceHl5oaqqymn2bNy4EfHx8U7Ln/BMSCAIl+an\nn35Cnz59EBgYiEaNGiE2NhbHjh1zapmhoaHYt2+fXXloNBpoNBoHWWQ/U6ZMwbfffqvf9/LywoUL\nF1S0iHAHfNQ2gCDMcffuXYwcORLJycmYMGECysrKcODAAdSqVcup5Wo0GlgaP1pZWQkfH+v/Oq4+\nBtXV7SPUhyIIwmU5e/YsNBoNJk6cCI1Gg9q1a2Po0KHo3LkzACAlJQV9+/bFnDlzEBgYiIiICNGb\n/507dzBjxgw0b94cISEhePXVV0XVOJ999hk6dOiAgIAAdOzYEVlZWXjiiSdw+fJljBo1CvXq1cOy\nZcv0VUBr1qxBq1atMGTIEADAo48+iqCgIAQGBmLAgAHIzs6WdV9VVVWYP38+mjRpgrZt22LXrl2i\n85bsTklJQWxsLF588UU0bNgQbdq0QVpamv7alJQUtG3bFgEBAWjTpg2++OIL/fF+/foBAPr37w8A\n6Nq1KwICAvDll1+ic+fO2Llzpz6fiooKNG7cGCdPnpT3ZRGeCSMIF+Xu3busUaNGbNq0aWzPnj3s\n5s2bovNr165lPj4+7MMPP2SVlZUsNTWV1a9fn926dYsxxtiYMWPYs88+y4qLi1lBQQHr2bMnS05O\nZowx9uWXX7Lg4GB27Ngxxhhj586dY5cuXWKMMRYaGsq+//57fTkXL15kGo2GTZs2jRUXF7PS0lJ9\n+UVFRay8vJzNnTuXdevWTX/N9OnT2SuvvCJ5X6tWrWLt27dnV65cYTdv3mRxcXHMy8uL6XQ6q3av\nXbuW+fr6ss8//5xVVVWxVatWsebNmzPGGCsqKmIBAQHs7NmzjDHG8vPz2e+//66/LjY2Vm+DRqNh\n58+f1++/9957bOLEifr9bdu2sS5dusj4lghPhgSCcGlOnz7Npk+fzkJCQpiPjw9LTExk169fZ4xx\nTo93jjw9e/Zk69evZ/n5+axWrVqspKREf+6LL75gAwcOZIwxNmzYMLZixQrJMs0JxMWLF83aeevW\nLabRaNjdu3cZY5YFYuDAgXqHzxhj6enpTKPRMJ1OZ9XutWvXsrCwMP25+/fvM41Gw65fv86KiopY\nYGAg+/rrr1lxcbGoTGsCkZeXx+rWrcvu3bvHGGNs3LhxbOnSpWbvl6gZUBUT4dK0b98ea9euhVar\nxW+//YarV69i7ty5+vPBwcGi9K1atcLVq1dx+fJlVFRUICgoCA0aNECDBg3w7LPP4saNGwCAK1eu\noG3btopsadGihX67qqoKL7/8MsLCwlC/fn20bt0aAFBYWGg1n2vXronyatmypX770qVLFu0GgGbN\nmum3/fz8AABFRUXw9/dHamoqPvnkEzRv3hwjR47EmTNnZN1b8+bN0bdvX2zZsgW3b99GWloapkyZ\nIutawnOhRmrCbQgPD8e0adPw6aef6o/l5eWJ0ly6dAmjR49GixYtUKtWLfz555/w8jJ9D2rRogXO\nnTsnWY653kfC4xs3bsSOHTvw/fffo1WrVrh9+zYaNmwoq+E3KCgIly9f1u8Lt63ZbY1hw4Zh2LBh\nKCsrw8KFC/H000/jxx9/lHXttGnTsHr1alRUVKBPnz4ICgpSXD7hWVAEQbgsZ86cwfLly/UioNVq\nsWnTJvTu3VufpqCgACtWrEBFRQW++uor/PHHHxgxYgSaNWuGYcOGYd68ebh37x6qqqpw/vx5vbOc\nOXMmli1bhhMnToAxhnPnzukd9YMPPojz589btK2oqAi1atVCw4YNcf/+ffzzn/8UnbckFBMmTMCK\nFSuQl5eHW7du4d1339WfCwoKsmi3JQoKCrB9+3bcv38fvr6+8Pf3h7e3t2RaqXt85JFHcOLECaxY\nsQJTp061Wh7h+ZBAEC5LvXr1cOTIEcTExKBu3bro3bs3unTpgvfff1+fJiYmBjk5OWjSpAleffVV\nfP3112jQoAEAYN26dSgvL0eHDh3QsGFDPProo8jPzwcAjB8/HgsXLsTkyZMREBCAsWPH4tatWwCA\nBQsW4K233kKDBg2wfPlyAKZRxdSpU9GqVSsEBwejU6dO6N27tyiNpXEQTz/9NOLj49G1a1dERUVh\n3LhxorSW7JbKl9+vqqrCBx98gODgYDRq1AgHDhzAqlWrJK9btGgRpk2bhgYNGmDLli0AgNq1a2Ps\n2LHIzc3F2LFjZX1HhGejYXJiYoJwQVJSUrB69WocOHBAbVM8hjfffBM5OTlYt26d2qYQLgC1QRAE\nAQC4efMm1qxZg/Xr16ttCuEiUBUT4ba42nQW7sxnn32Gli1bIiEhAbGxsWqbQ7gIVMVEEARBSEIR\nBEEQBCGJ27dBUBUDQRCEbVirQPKICIJxU4bU+L/XX39ddRtc5Y+eBT0LehaW/+TgEQJBEARBOB4S\nCIIgCEISEggPIi4uTm0TXAZ6FgboWRigZ6EMt+/mam31L4IgCMIUOb6TIgiCIAhCEhIIgiAIQhIS\nCIIgCEISEgiCIAhCEhIIgiAIQhISCIIgCEISEgiCIAhCEhIIgiAIQhISCIIgCEISEggHsXYtcOGC\n2lYQBEE4DhIIB/HUU8C776pthTKKi4EePdS2giAIV4UEogZz7Rpw4oTt1//nP0D37o6zhyAI14IE\nwoG425yB9i7Gt2sXkJXlGFsIgnA9SCAcSE0TCFrtlSA8GxIIB1JVpbYFBEEQjoMEwkPJzLTevkAR\nAEEQlvBR2wDCOcTEALVrAyUl5tNQFRNBEJagCMKBuFobhKvZQxCEe0ECQRAEQUhCAuHBUARBEIQ9\nkEAQNkNtEATh2ZBAOBBXe2O3Zg85eIIgLKGaQKSlpaF9+/Zo164dlixZIpkmIyMDkZGR6NSpE+Li\n4qrXQBenqgrYt09tKwiC8GRU6eaq0+kwe/Zs7N27F8HBwYiOjkZiYiIiIiL0aW7fvo1Zs2bh22+/\nRUhICAoLC9UwVRHVGUH8/DMweLDrRS0EQXgOqkQQmZmZCAsLQ2hoKHx9fTFp0iRs375dlOaLL77A\nuHHjEBISAgBo3LixGqa6LDRqmyAIZ6NKBJGXl4cWLVro90NCQnDkyBFRmpycHFRUVGDgwIG4d+8e\nnn/+eTzxxBOS+S1atEi/HRcXVyOqo+S0Hzg7uqA2DIJwHzIyMpCRkaHoGlUEQiPDs1RUVODEiRP4\n/vvvUVxcjN69e6NXr15o166dSVqhQBDyIQdPEDUH45fnxYsXW71GFYEIDg6GVqvV72u1Wn1VEk+L\nFi3QuHFj1KlTB3Xq1EH//v1x8uRJSYFwFaqzPcAVIgiCIDwbVdogoqKikJOTg9zcXJSXlyM1NRWJ\niYmiNKNHj8ZPP/0EnU6H4uJiHDlyBB06dFDDXMIMJEAE4dmoEkH4+Phg5cqViI+Ph06nw4wZMxAR\nEYHk5GQAQFJSEtq3b4/hw4ejS5cu8PLywtNPP00CQRAEUY1oGHPv90CNRgNXuAWNBnjiCWDduuop\n79AhoG9f82/xGg3g7Q1UVprPQ6sFWra0PRIYPRrYsYMiCYJwR+T4ThpJ7UBczVHSSGqCIOyBBIIg\nCIKQhASiGmHMcVEGvf0TBOFsSCCqkaVLAS964gRBuAnkrhyIteggK8txZVEEQRCEsyGBqEZczanz\n9rha4zpBEK4BCYQDcTdH6272EgRRvZBAuClyohG5EQsJBUEQUpBAEARBEJKQQLgpjmjP4CMHiiAI\ngpCCBMKBVKejJadOEISzIYGoRlytFxNFEARBWIIEgiCBIAhCEhIID8bVIhaCINwLEggHUp2zp7pC\nIzUJEEF4NiQQBEEQhCQkEB6M3MiA2iAIgpCCBMIN0ekckw/1YiIIwhIkEA6kuhytjw9w7pz1dNRG\nQBCEPZBAuCmFhY7LiyIIgiCkIIFwUxzh1EkYCIKwBAmEm+JI505CQRCEFCQQDuDxx7lPV3a0n34K\nrFghPkaN1ARBWEI1gUhLS0P79u3Rrl07LFmyxOR8RkYG6tevj8jISERGRuKtt95SwUp5bNwoL52a\nb/1z5gDPP++48gmC8Hx81ChUp9Nh9uzZ2Lt3L4KDgxEdHY3ExERERESI0g0YMAA7duxQw0SbcLXZ\nXIW9mCz1aKIIgiAIKVSJIDIzMxEWFobQ0FD4+vpi0qRJ2L59u0k6Rp7LYUgJBD1egiAsoUoEkZeX\nhxYtWuj3Q0JCcOTIEVEajUaDQ4cOoWvXrggODsayZcvQoUMHyfwWLVqk346Li0NcXJwzzHZrKIIg\niJpNRkYGMjIyFF2jikBoZIzg6t69O7RaLfz8/LBnzx6MGTMGZ8+elUwrFIiagiMHwZFAEITnY/zy\nvHjxYqvXqFLFFBwcDK1Wq9/XarUICQkRpalXrx78/PwAAAkJCaioqMDNmzer1U6luFobhBCqYiII\nQimqCERUVBRycnKQm5uL8vJypKamIjExUZTm+vXr+jaIzMxMMMbQsGFDNcz1eEgoCIKQQpUqJh8f\nH6xcuRLx8fHQ6XSYMWMGIiIikJycDABISkrCli1bsGrVKvj4+MDPzw+bN29Ww1S3pqLCsE0RBEEQ\nSlFFIACu2ighIUF0LCkpSb89a9YszJo1q7rNcipqOeQ7d4D7982fJ6EgCEIKGkntQNRytGVlwMmT\n5s8vW2b5ehIIgiCkIIFwU4RVRh9/DHTrpjwPEgaCICxBAlGNOMshl5TYdz0JBUEQUpBAuCmWnPqN\nG+J9WjiIIAhbIIFwIFJO+/ZtICbGueUaC0DTpvKus3c2VxIegvBsSCCczPnzQGam4/OlkdQEQTgb\nEggnUx1v2a++avm8OQEgYSAIwhIkEE7GHaphSCgIgpCCBMKBSDladxAIgiAIKUggnIwrCwQtOUoQ\nhCWsTrWRkpIia3pugFvgZ/r06fba5LZYc7RqOWISAIIgbMGqQDRo0ACxsbFo1KiR1cykVoWr6bhy\nBMFDAkIQhBRWBWL06NHo3LkzwsLCEBAQgOjoaMTExCAyMhI///wzCgoKMG7cOH1aQoyzBMIRTp2q\nmAiCsISs2Vy3bt2Kdu3aobi4GO+88w727duHDz/8EEVFRWjTpo1eIAhTnCUQSvIlASAIwhZkCUS7\ndu0AAH5+fggLC8O0adMAAOXl5VStJEDKEbuyc6YIgiAISyheD8LX1xfTp09HYmIiwsPDceXKFWfY\nRRAEQaiMYoGYPHkyevTogQ0bNmD//v2YOnWqM+zyGFyhkdpVe1cRBOHa2LSiXHh4ON58801H2+KR\nOMv5OqJ6iKqYCIKwhOKBcp9//jkOHz6M8vJyHDx4EFu2bHGGXW4JvakTBOFJKI4gCgoK8MMPP2DF\nihW4d+8e2rZti/HjxzvDNsICjnz7p+m+CYKQQrFAhISE6NsdqBeTe+Cs2VwpIiIIz0ZxFRPfi2nr\n1q3IycmhXkwqYatz/vlnIC/PMXkRBOHZKBaIkJAQLFiwAFlZWfjkk08QGxvrDLvcEjUcrdIy+/QB\nnnxSfC0JBEEQUigWiH//+98IDQ3Fm2++iY8//hjR0dE2FZyWlob27dujXbt2WLJkidl0R48ehY+P\nD7Zu3WpTOa6EWgJCAkAQhC0oFojAwED88MMPqKiosLlQnU6H2bNnIy0tDdnZ2di0aRNOnz4tme6l\nl17C8OHDwdzAy1XnSGp73v6Nr6FGaoIgpLBJII4ePYoJEyZgxIgReNXaepcSZGZmIiwsDKGhofD1\n9cWkSZMkG7s//vhjjB8/Hk2aNFFchhrs3Al88onaVoix5PzdQHMJglARxb2YRo4ciSZNmmDhwoVg\njOHy5cuKC83Ly0OLFi30+yEhIThy5IhJmu3bt2Pfvn04evSoxTUpFi1apN+Oi4tDXFycYpscxXPP\ncWtE/+1v1teKtgclEYS1iIGEgiA8n4yMDGRkZCi6xqpAnDlzBl5eXvoJ+4SN0hqNBq1atVJm5V/X\nWWPu3Ll49913odFowBizWMUkFAhXoLAQOHhQbSs45LRBkEAQhOdj/PK8ePFiq9dYFYi2bdsiIyMD\n6enp8PLyQnR0NKKiouwyNDg4GFqtVr+v1WoREhIiSnP8+HFMmjQJAFBYWIg9e/bA19cXiYmJdpXt\nKTiiDYKEgSAIS1gVCB8fHwwZMgRDhgwBwLUfrFq1ClVVVQgPD0dcXBx8fJTVVEVFRSEnJwe5ublo\n3rw5UlNTsWnTJlGaCxcu6LeffPJJjBo1yq3EwVWm/paKIKiKiSAIOShug+jZsyd69uwJgKt+Wr16\nNcrLyxEcHIz4+Hj4+/tbL9THBytXrkR8fDx0Oh1mzJiBiIgIJCcnAwCSkpKUmuVyONvpys3fUhUT\nCQNBEJawaTZXnvDwcISHhwMArl69ip07d2LixImyrk1ISEBCQoLomDlhWLt2rT1mqkJ1dQFVs5sr\nz7PPAu+8AzRoYF8+BEG4Foq7ud6/fx/Xr183Od68eXPZ4uDJ8MLgKmMEzEUQu3cDpaWGNPaQnAwY\ndUIjCMIDUBxBbNiwAbVq1cLWrVvRuHFjTJgwAcOHD3eGbW6JRiN2uK4wUE4qzcMPc11xHYUd4yYJ\ngnBRFEcQderUQYcOHXDz5k2sWbMGd+/edYZdbourVS1ZSldVpSwvS1RW2p8HQRCuhWKB6N69OzZv\n3owVK1YgJSUFleQZRFR3FZOtEYTcawmCqLkormLq1KkTli9fDgD4888/0bRpU4cb5UmoPebAUjdX\nR0YQN25w+bhK2wtBEPZjVy+moUOHOsoOj8Hrr5js0CGgvFwsEI4UCUdMteFIgUhKAgICgL/GNhIE\n4QEormIixNy5I97n36Dv3gXWrat+e4ypzsn6Cgocmx9BEOoiSyCKiooAABUVFdDpdE41yN1o08b8\nucpK9auYLJXtTNvKyoDcXMfnSxBE9WFVIN577z288cYbmDdvHu7cuYNnn322OuxyG27eFO8b18Gr\n3c3VUtUWX8XkaJsA4K23gNatHZs/QRDVi9U2iJiYGMTExMDX1xepqamocrRX8WCqYzyEEhuMj9nb\nBmGpQdpYOAmCcD+sRhD+/v5ISUmBt7c3Jk+ejP79+1eHXW6LIyKIGzeAq1ctp+Hz/egj5fnz2Kv1\n1E2WIDwbqxFEVFSUaHrvadOm6bdPnTqFzp07y1rfoaYgfBTC6h0lvZhiY4ELFyyPTubzWrjQcl5y\nJutzlKMnwSAIz0JxL6Z169Zh7ty5SElJgb+/v8k03TUdc1qpxHneuOHYkcnmurk6s5Ga3hkIwv2x\nqZvra6+9hqZNm2Lp0qXIyclxtE1ujbkIQglednY+HjRIng2OFgaKIAjCs1A8UK5x48Z44IEHMGLE\nCIwYMcIZNnkUtryly3n7tpRfYKD8tHLOm8OSnRRBEIT7o/hdNS0tDSNHjsS4ceOwZMkSZGZmOsMu\nt8URjdSOdK6WejFZsq2gAHj7bUDJsBeKIAjCs1AcQcTFxWHFihUoLi7GsWPHcOzYMf0Kc4RpFZNw\nW64DtTeCkJvWklA8+CD3OWMG0KyZvHKEdlMEQRDuj2KB0Gg0OHr0KKKjo9G/f3/q9moFR0cQSvOz\ntxcTRQUEUXNRLBA//PADAOCNN95A7dq1MWDAAMyePdvhhrkr5qqYqrMNQm5aWyb602iA7GwgIsI0\nLUUNBOFZKBaIcePGQaPRIDY2FiUlJfj999+dYZfb4ohuro4UCDltEEojiGvXpAWCIAjPwmoj9fHj\nx0X7/fr1Q2xsLABudTnhIDrjtDUROY3U9oxxUBqR2NpILed6S8cpmiAI98dqBLFnzx789ttvsjLT\narXo0aOH3Ua5M3KqmJKTgVmz7CtHyVu/Pd1cqX2CIGouVgXilVdeqQ47PBJzYmG8hoS166TykOu4\n5fSeUioC5tJT1EAQnoVqCwalpaWhffv2aNeuHZYsWWJyfvv27ejatSsiIyPRo0cP7Nu3TwUrlSMn\ngrDmSKurkVrOZH2WyiFBIAjPRhWB0Ol0mD17NtLS0pCdnY1Nmzbh9OnTojRDhgzByZMnkZWVhZSU\nFDzzzDNqmKoYOVNtWHPu1RVBCPMqKgLy8kzTHD5s2VZzkHgQhPujikBkZmYiLCwMoaGh8PX1xaRJ\nk7B9+3ZRGn9/f/12UVERGjduXN1m2oQjurmqwcyZQEiI6fEPPjA95ur3QhCEY1DczRUASktLodFo\nUKtWLZsKzcvLQ4sWLfT7ISEhOHLkiEm6bdu2YcGCBbh27RrS09PN5rdo0SL9dlxcHOLi4myyyxGY\nG01cnRPjWYsgpLq5FhZK5yU11Qa1QRCE+5GRkYGMjAxF18gSiKqqKmzbtg2bNm3CoUOHUFVVBcYY\nvL290bt3b0yZMgVjxoyRvS6E3HRjxozBmDFjcODAATzxxBM4c+aMZDqhQLgaalQxWStPSiDMlSl1\nnCIIgnA/jF+eFy9ebPUaWVVMcXFxOH78OObPn48LFy7g2rVryM/Px4ULFzB//nwcPXoUAwYMkG1o\ncHAwtFqtfl+r1SJEqn7jL/r164fKykr8+eefsstQi+qqYnJkGwRg/xTjxlA0QRDuj6wI4rvvvtNX\nJ+l0OjDG9FVMvXr1Qq9evVBWVia70KioKOTk5CA3NxfNmzdHamqqycJD58+fR5s2baDRaHDixAkA\nQKNGjWSX4cpUZwQhR0icEUFQlEEQ7o8sgRC2NQwZMgSDBw9G69atERAQgFGjRpmksVqojw9WrlyJ\n+Ph46HQ6zJgxAxEREUhOTgYAJCUl4euvv8a6devg6+uLunXrYvPmzUruSzUsRRBSTrOgANiwAZg3\nT1k5jhjAZuvIZ2qDIIiageJG6v379+u3f/zxR8ydOxcffvih4oITEhKQkJAgOpaUlKTf/sc//oF/\n/OMfivNVG6XrQWzaBLzwgnyBcEQ311On5NvI38/du0Dt2vJsJAjCM7Cp5vnChQv46aef0LFjR3z9\n9deOtsmtcbXJ+qTSlpSIj8sRm/r1AYF+Wy2HogmCcH9sEohmzZqhsLAQzz//PBYuXOhom9waZzdS\n2xJB2IPwfvixjOby9Pa2ryyCIFwLxQJx7Ngx+Pn5YcyYMVi/fj1WrlzpDLs8Ao3G8QsG8Thyqg1L\njdTCa/mhKnLaIKiRmiDcH8VtEMHBwdi2bRvKy8vxxx9/YPjw4c6wy22x5Gira1S1Ld1cHQFVKxGE\nZyFLIPhurQAQFBSEMWPGWExTk5EzF5OSPIzh87t8WX5+9szm6iP4hfTpAxw6ZD69cCwF/RQIwv2R\nPVBu6dKlOHv2rMm5M2fOYMmSJYoGynkKpaWmx4SOsaQE2LWL21bSNVSOc/3mG/PnbJmsz1yaKVMM\n2927m+YvxNGD7QiCUBdZEUR6ejo2btyIWbNm4bfffkO9evXAGENRURE6deqEKVOmYO/evc621eW4\nds30mNC5v/ii9TyURhiOrBaSk5cwguC3qQ2CIGoGsgfKPfXUU3jqqaeg0+lQWFgIjUaDxo0bw6sG\nvzYqufXqcJjr1wMdO9q2YJCcRurdu7lPJaOuCYJwX2S5uMzMTFz763XZ29sbaWlpmDlzJubOnYub\nN2861UBXRkn1kNQYgevXgT175OdhnI8xU6dyA+4c2UgtTCNRwyiC2iAIwrOQJRBJSUn6qTR+/PFH\nvPzyy5g2bRoCAgLcZiEfZ6C0/cDYIS9aBHz7rfhYSQmgYForq2WYOwaIu7kqyc8cNTiYJAiPRPZ0\n3w0bNgQApKamIikpCePGjcO4cePQtWtXpxroyihxiFIN2lJERQFXrpg/r/St396J9RgDvv9eXnpq\ngyAIz0KWi9PpdKioqAAA7N27FwMHDtSfq6ysdI5lboCSCGL+fHl5Zmfbbg9g+wC6q1e5z59/Nk3z\nwgvy8qNqJYLwLGQJxGOPPYYBAwYgMTERfn5+6NevHwAgJycHgYGBTjXQlVEiENZ6PElx8KD0MqDW\nsKWRml85bu1a03O+vvLKpTYIgvAsZFUxLVy4EIMGDUJ+fj6GDRum77nEGMPHH3/sVAPdjfPnpY/b\nUuVy6BCQl2d/PtbaIADDPErGS4wqEQiNhpuOIzpauY0EQbgesqfa6N27t8mxhx56yKHGuBtKnLXQ\nGfNv19besm1p9DWe/0nuQDneFimB8PGRvk4qv169gBo4JIYgPBLqd2IHzm6ItWU1NyW9mOSkkTp+\n/rxhTIRU2vJyaqQmCE+ABMIObHWCciMIW5Hbi0nOVBtS5154AXj4Ycv5EQTh/pBA2IHSHkOOcJy2\nRANK5mKyNQIRotGYit+JE8C5c8ryIQhCXRRP900YcORiPM5CrjDxbSTCthL+eiVlmaNHD6B1a+DC\nBfn5EQShLhRB2IEaVSmOHCgnJ4JQEvlYK5eqngjCvaAIopqwJVqw5ZqCAqBBA/ExOQ3Q5qbdEI6R\nsAZ/7YgRgL+/vGsIgnBdSCDswBWrmM6cEe/LjSAsVTG1bWtYbtQSwrLu37d8niAI14eqmOzAVauY\n5F4jJRCMAffuGdLk5wPBwcrLtGZHVRVw6pRj8iUIwjmoJhBpaWlo37492rVrhyVLlpic37hxI7p2\n7YouXbqgb9++OOWC3sQVIwhj5LYh8FNqVVWJq5Tefx9YulT6GmP7lTyPHTuAGjzPI0G4BapUMel0\nOsyePRt79+5FcHAwoqOjkZiYiIiICH2aNm3a4Mcff0T9+vWRlpaGZ555BocPH1bDXLMocYjCSfDs\nEQZnrCjHmEEg7LFFySC+khLl5REEUb2oEkFkZmYiLCwMoaGh8PX1xaRJk7B9+3ZRmt69e6N+/foA\ngJiYGFw+CkK8AAAgAElEQVSxNAe2SrhDnbqlCELY3tC4seGYrQImVc6NG9Ln3eHZEURNR5UIIi8v\nDy1atNDvh4SE4IiFVtDVq1djxIgRZs8vWrRIvx0XF4e4uDhHmGkVV5xqQwrjhmepPBMSgF9+sU8g\npLhyBWjSRLlNBEE4loyMDGRkZCi6RhWB0CjwQPv378eaNWtw8OBBs2mEAlGduMNbsNzJ+hzxdi91\nnVAIKIIgCPUwfnlevHix1WtUEYjg4GBotVr9vlarRYjEwgenTp3C008/jbS0NDQw7tzvArhDL6bS\nUvNv61IO254pQawJRF4et+/lRREEQbgDqrRBREVFIScnB7m5uSgvL0dqaioSExNFaS5fvoyxY8di\nw4YNCAsLU8NMq1RnFdOECebXmrDEokXyqpj4e6mqst15WxMIwLAGNwkEQbg+qgiEj48PVq5cifj4\neHTo0AETJ05EREQEkpOTkZycDAB44403cOvWLTz33HOIjIxEz5491TDVIjIiNLsQOtyvvgLS0pSL\n0o0b5kdCS42krqqSX4YtbRXl5eLyHEFWFjBunOPyIwiCQ7WR1AkJCUhISBAdS0pK0m9//vnn+Pzz\nz6vbLEVs3ly95Slx3jzCQXDGHD1qSOOsKqbqYPt2YOtWdcomCE+GRlKrwCuvyEtn/IZuy1u3l5f1\nuZSMR1Lb6uil7DM3VsKRYmLLynsEQViH5mJSAVurV3Q6sWPt1An47TfL13h5Gap1LGFLG4Tx4Lqb\nN61fU1UFTJoEnDwprww5VMeIdIKoidC7l4rY69jatpVXhpJGaiURhNHYRrz2mrzrUlOBP/6Ql1YO\nJBAE4RwognBhvvlGvG/svOVUrZw9C1y9aj2dI6qY5OCMvEkgCMI5UAThwvzwg+kxpQIhRxwc1Ugt\nBxIIgnAfSCDcCGPn+vXXyvOQ6i28ciWwc6ehDGdMCGhu3xGQQBCEc6AqJjdDuFaDLfj6mh7jB68B\n8toslJCeDvz3v47LTwoSCIJwDiQQbgRjQHi4fXlICYQQLy/HvuV/9hk3xYYzIYEgCOdAVUweTpcu\n4n1rAtGpk2MFgqbUIAj3hQTCjbDFcXt7i/cfeMB82iZNAH9/xwqEtUF6joAiCIJwDiQQKrFnj/Jr\nbHHcxg7aUgRx4wbwxhvVG0GcPg2UldlXBgkEQTgHEgiVsLD+kVmUOm6pBmdrVUwA0KaN6bH33lNW\nNo81gejQAVi2zLa8eUggCMI5kEB4MBoN4OcnPiZHIKQIDLRcPWUOOW0Q9vbMIoEgCOdAAuFCWIsQ\njKe2ePddy+k1GqBpU2DYMMMxWwXC29s5y50SBOG6kECoiNLZWg8fVp5/VZX4zd8egbDF2VMjNUG4\nLyQQKrJxo3hfqQO25hg1Gs5BC6fksFUgfHxsEwil19y8aX2GWmNIIAjCOZBAqMiNG+J9pc7UWpWP\nlEDY0o4A2F7FpDSCmDUL6NxZ2TW8QDz1lLLrCIKwDAmEC2HOAR86ZFt+Xl7cmg3CN2x7qphsQY7o\nCe2Ts3aFuevXrlV+LUEQ5iGBcCHMOVPBSqw25SlVxWQ8lbg1nCkQQmxZHY6qmAjCOZBAOIH/+z9g\nwgTl15lzpuaO29IGwW8rdcTVJRC2OHu512Rnq7duNkG4IyQQTsIWR2fOmWZn226DsUB89BH3qVQg\nnLnuc3U47StXgI4dgaNHnV8WQXgKJBAuhKPHDHh5cQIhFKuiIsM5JdgaQSjFGRHExYtAixbcdmmp\n8vwJoqZCAuEENBrb3oqd8SZtHEHUqsV9upJAKF0lzxhrAmFLw7eQBx8Etm2zLw+CcEdUE4i0tDS0\nb98e7dq1w5IlS0zO//HHH+jduzdq166N999/XwUL5VOnDveZmWl7Hrt2OT6CkKpiWr/ecE4J7iwQ\nQtttEeGCAuDHH5VfRxDujioCodPpMHv2bKSlpSE7OxubNm3C6dOnRWkaNWqEjz/+GPPnz1fDREWM\nGsV9Rkdzn7t2Kc9j5EjHRxBSVUxNmxrOKaE6BIIx5zZS2wNNGULURFQRiMzMTISFhSE0NBS+vr6Y\nNGkSthtNNNSkSRNERUXB19aO+05GOCgrMVF8LjfXtjxtma3V2nlXq2K6csX0GH/fISGmo8sdja0i\nTAJB1ERUWXI0Ly8PLfhWQwAhISE4cuSIzfktWrRIvx0XF4e4uDg7rJOHcFCWlPOU44jatgXOn1d2\njdIyzI2klhKIZcsA44AtJIRz6uYEwstLmfOcN8/0GH8fV6/Kz0eIHKG0F+oeS7g7GRkZyMjIUHSN\nKgKhcXCdgFAg1MDW2zF2iM7oxVRVJT2SWkog6tY1PcYLgzmB4PN+6SVAoilJFvY6X2vPTZi/rWWR\nQBDujvHL8+LFi61eo0oVU3BwMLRarX5fq9UiJCREDVOcQlCQvHQlJeL9VascawffBiE1klpKICw5\nWmsiWFmp3D4lVFSYP2fNeQvviwSCIOSjikBERUUhJycHubm5KC8vR2pqKhKNK/L/grnhf2bDhobt\njh2lV2iT4o03HGsHPxeTlEBIOXwpgZD7+C05cGtIlXH9uniA4AMPAAcOyL9eiPC+bI32qA2CqImo\nUsXk4+ODlStXIj4+HjqdDjNmzEBERASSk5MBAElJScjPz0d0dDTu3r0LLy8vfPTRR8jOzkZdqXqQ\nakaOQ+LTNGtme926vUhVMVlqbJa6rw8/BMaONX/PfN72CISU833sMWD/frFdgqBThBKBsBU3fE8h\nCLtRRSAAICEhAQkJCaJjSYJZ6Zo1ayaqhnIlrFWnGDtkZzkXa/lKVTFZ6r0k5UgfecRyGfy9Sj0T\nb2/bFwySGtxmznZrAuCIRYtIIIiaCI2ktoGyMsvnhY7MWCA2bXKOTebsMK5iUiIQwi6ptkQQPjJf\nPxgDjh+XzleIOduVtkHodIDRu4kkV68CK1aY5kEQNQUSCBswFghjZ2ZJIHr3dpwd1urTpaqYeNsY\nA86eFac3drTBwYZtYwfZtq3YBqkIQu4Qlqoq4IUXrKczvl/GuEWXlFYxFRcDaWnWy1uzBnj+eUNZ\nBFHTIIGwAePqD6EDat4c6NVL3AZh71QS5rCniokxoF07+fkZt10YTxtuTwSxYYO08zfG+Nlt2MCN\nDLf2dm/u/PXrlq+zd4oOgnB3SCBswDiCEDqPy5fF3VX56bV5HDkEhHfAAQHS55W2QViyTTCuUZSP\nI6qY7tyR103W2D6+8d+WKiYA+PRTw3GtlrNDiPBZURUTURMhgbABSxGEt7fYsfj5iR2YI2cOad6c\n+/zXv6TPS7VB8BMLSmFOIBgTVzfxeQs/pRy8EjE0bkgWPmP++Wk04me9d6/4vDmMBYLfFwpCy5bA\n5Mni64T2UwRB1ERIIGzAOIJQMpLXUQJRUABMmmQ5jXEbxLZtQL165tObi0QsIaeba5Mm1vMxXqdB\nuLAPLxaVlZwAnzjB7fMCIfX8//wTiIoyPV9VZRAjfpJgviG6oECch7UR2ImJjh/cSBCuBAmEDRhH\nEFLOw5xzkVvtYo0mTcRvuI8+aprGy4uzlU/n52c+v5wcYNo0+eXLqWLiz8mZCeX+ffPn+OfNl3H5\nsvi81PM/e9bQM0oYncTHA99/L07788/S+Qj3pUTof/8DvvjCvN0E4e6QQNiApTYIKeLjgR49uG1n\nTE7LGLB5s+lx3on/+ad4n79GSFiYshlb+bTGAiGspuGjAjkN88bTjggRRhDCTx7hvfDTm/Nl9ujB\nzRMlxPitn78XSwJBVUxETYQEwgYstUFI8Z//AMeOcduOiiCEGK+jcPs298k7yfJy4J13xF1s7W0s\n5683boN46CFDGmvjRYRYiiD4fHgRKiwUnxc+f/674Y+dOAEcOiROb7z4Dy8QVVXcmh6rV3M90Rwx\nhxNBuDMkEDagtA2C5+BB5RFEmzamPYikEDr8+vW5T96R+vgAL78srmKyVahmzOA+jauYeIEQLs3J\nV+3ImYbDkkDcvSvO57nnDGtrA2LnzadRMnkgfw9lZZyQb98OHDkC3LsnXYaQ6lqrmyDUgATCBuQI\nhJRD6dNHeVn79wP+/pbTmKvCyc+XPt6sGVelBIgnFuRp3x746Sfpa195RVym8TgIYX0/76SlprrY\nulW8byna4BuPhaJgTiD+ms7LpnWo+UUNebuFNlkbSU4QnggJhA3IaaS2B34JUx5rb+BSAmHOgQLA\ntWuGpUe1WtMeRI0bA337SpdlHHkYt0FI2SL1Nm9tjichvNC9+KLhWEWFoSzhLK9Ll3KfxcXm82vZ\n0nJ5vL1SXW2NXwbMifOKFaZtHwThbpBA2ICcRmp7RGPHDuDZZ7ltf3+xQERFAbNmidNLOSlrUQeP\nn59hGVI5dvHjIfj7M26DkBqUx58zJzrWkIqEWrY0OGvheT5a4SMdKYyfzblz4n3+eUtFEN7ewMWL\nhuPmBOK997g/Z3D3LrB7t3PyJgghJBBmOHHC8JZtjPDNsmVL6XS3btlX/qpVwM2bQKNGYoFo3x5Y\nuVKc1lovIUdFOKNGGSIGY4GQiiD4MReVlVx6fryBUqxNifHrr4btmze5z1OnzKcvLeVEkV+n4+BB\n8XmpCOLAAYOQCO0x9+wdOaWKkHPnuPEbDz/snPwJQggJhBmOHuUmgpOirAxo0IDbvnQJGDPG0HOI\n54cf7LeBL0NYRSPl7M3Vg/PdOZUKhJIGbH6Na14ghLbwjeJy14oYPFj6uLmR4rZSUsLZZq7dg3/e\nJ08ajl27BkyZwm2PHs2NGwHMC4Gz2ibateN6pBFEdUACYQZLTrW8XOwYNBpDzyEe43176NwZCA83\nf95cnTpfTeUMgeDz3L8f+P13ru5/xQqxY2zcmPvkHa41p8mLjbMpLeWqmYzbXngOH+Y+jaMQvgda\nQQGQns5tOytS4Nm3z/T7s2dxJoJQAgmEDZSVWXcM48YBgvXBrfLoo4C5Zbl37wZ++YXbNnaiJSXA\nsGGW81YqEHK6bvJ5tm4NdOjA2T9njkEMLlzg9qUw9+zktoXYS0mJZYEwh1DgjMeB6HTA3//OzTAL\niJ95Zqa404AxwkiFr47j8xg82P7qSsbE1XAEIRcSCDNYetstLwf69+fe7M2xerVhyUw5jB8PTJgg\nfa5WLaB2bcO2EP44YNp1lMcZAmFu7MeAAUC3bpxw8GMmjO0wNxbEuNw33uDycjRlZVwVU2kpMHWq\n/OuEvwnj+8/P55ZnfeIJbp9fDHHtWiAmhmuPuXDBMH8Uz9Wr3D3y03/4+nKiU1pqqAIrL+fstLR0\nbViY6RQkPIcPA126yLtHghBCAmEGqbfc0lKuaqGsjPuHs9QQakt5CQncCF5LtG9v/py5yfaUDuaS\nU8VkLs0HHwBZWdy28TM0FojISGDgQMN5466pr75qvqOAMZbmmZKiVi3urX/9evnXCLvT8tEH35At\njP6Egrxnj2F7+nRg6FBxnnyvsOHDxasN3rtneB4lJZyd334rbdf+/cD589xzf+0185HRjRumK/dZ\n4s4dy92FCc+HBMIMUk510yZuXqWffrI8bbZcHnrI0F3RywsYMsQwcZwUd+4Af/ub+fODBgG5uabH\nlY6atiYoL78snlLDEgkJwMiR3DY/qytfx3/ihPjNlu8dFBgo31aeZs2Upbd3BDS/Ip3UgDx+tT1A\n/Oz5CECq+2tlpXgeq/v3DY6er54y16g+aBD3WVoKvPkm8Mcf4vN8m8WMGYYZbqXIyRFXhbVpw81Y\nS9RcSCDMwFchCHsQ8dNB7N/PdT+1l1q1DGsjy5mCIyDActWXRgO0aiU+lpwMLFigzC5r4vfOO/IF\nYvduwxxQLVtyb9cdOxrOC0dy8+0rAwaY5jNvnuVy5NbT82MgrE2PYk1A+CqhjAzTvITjJIRRwfnz\n3OdLL3EN+8YLFAm5dcvQU4oXUanIQNhgzfe6Mx4nw0cBv/8uXZZGw0VHDz1kWGIV4LoMZ2dz20eO\ncONgli8HHnzQvN0AF5lRQ7pnQAJhhqef5j6F/5TCGUcdIRDCxmVnzPIKAM88I9+Z8wQFWU+zcCHX\n9dNeXn4ZuHKFmzdq+3Zg8WKuOiUvjzvP9wbj124wpnt37nPQIGD2bG578WLz5fFVUcJ5lnjGjjVs\nK/k+jMXE2khtAOjUyfIcW927m3Zy4KvueD7/HJg717DPdwo4dIgTrdu3uSqn337jjl+4YL68/v25\nT+Ou3fx3PGUK17338GHD1CeMSVdBPf00EBFhvizCjWAqsWfPHhYeHs7CwsLYu+++K5lmzpw5LCws\njHXp0oWdOHFCMo2zboH7+TNWWMjtl5cbjgGMHThge96DBzO2YIG4rO++s89exhjbv3+/3XmcO8dY\nSYn9tjiKP/9kLDub2/79d8Z69xZ/D4xxn2PGMLZuHbc9ezZjwH6Wnc3Ys89yx+LiuM8HH+Q+a9Uy\n5PHFF4y99x5j9+4ZjrVpIy5H6m/gQMaCgsTHoqMZGzvW+rXO/rt+nbF//5vf329ynufECfHxhATu\n+x8+3HBszhzD9oQJ3GdWFmOffcZtl5WJv7POncVlMMbY8eOM6XSMFRUxlpJi+TuvqmKsooKx4mLG\nRo5kbN48+35DQhzxP+IIKitNn1t1I8d3qiIQlZWVrG3btuzixYusvLycde3alWXzXuAvdu3axRIS\nEhhjjB0+fJjFxMRI5gVA78Rt5dIlxrp3536UjDF25IjpP9Px4+JjRuYqorKS+2fhGTGCsYIC2/Pj\nef311+3PxA345RdODBo35vYBxiZPZmz3bm67f3/GgNcZY4wdPcody89nLDiYscREU2fKU1ZmONa2\nrThNVBT3KfxtPPmkOE1FBWP//a99jp13ro79e93kWGiodNrERE74zOX1wAPSx8eP5z7XreNEEuBE\nV6fjHD7A2K5djH3zDbf9xRfc/8GePYxptYbv4PRp7uXpwQcZ+/pr8bMVEhfHfadlZVz+a9cydvUq\nd+7WLcb+7/8Yy8w0/e3w/yPXr5vmaczVq5ygWaKqyvRYSYn4eFmZ+P+dMU70+N+vNYqLpcuxF5cV\niEOHDrH4+Hj9/jvvvMPeeecdUZqkpCS2efNm/X54eDjLz883yQsAe+ABxk6eZOytt7gv9cYNxgID\nGdu4kbFt2xjbsoWx3FzGSksN1xUVcU45PV38Qw8JMf3xv/SSYfuTT7jPmzcd/1zspaYIhDHZ2Yzd\nvs39E547x9ihQ4yNHv06Y4z7x7pxg0tXXMz9s86bx1j9+lxUeP++OK+iIu77bdiQ2z97lrHffuOu\nzc3ljv38M5dm61YunVBoCgoM+2++yX0+9xz3Rv7II4x9+y1jTZuKf1/z53OfjRpxeWzYwFizZowN\nG8bY3r2MxcdzkawcMZB24K+zU6ecITzy/sLCrKd54gnGdu4UH3vjDdN0wshv0CDGvLwYa93acCw2\nVpw+IIDLG2Ds8GHGOnZ8nU2caDjfrBn3/Qwdytjq1Yx17MjYrFncM+fTrF7N2PLlnMB99x0noIcP\nM3bsmOF7/vJL7jd46xZ3bMgQxj76iLG//53b79aNi7r27uVecJo3547PnMnlO3QoY5Mmcb+BV17h\norP33+dEDmDs8ce5+0hOZmzfPi5vrZa79vRpxs6c4SLGjz5i7O5d7mVp3jxOkE+dYiw1lfut37vH\n/cZeftmFBeKrr75iM2fO1O+vX7+ezZ49W5Rm5MiR7ODBg/r9wYMHs2PHjpnkBcDkR2T8Dyj8Cwpi\nrF496z/Ypk0Zy8kRH9u8mXMqr73mvGdjDzVVIKSw9Cx0OvHLgjHTpnERiVwuXWJM8FNlFRVcdRhj\npgLEGCdgjRsztnAhY5cvc8fS0jjhsUZZGWN37nCRxrJljE2fztiLL3Ll/PEH5zD++U/OEb34Iud0\n+/d/nTHGOYszZxh7/nnGPviAczr/+Adnx6+/GsTt8GFOaEeO5Mrp359z8j//zFiDBlyaVq24qqdx\n4xjr0MHwP6LRcM4vJoZzdLw4PP64OM2jj3LO2dr/YePGtomStzcXmUuJpRoi6eVVveX5+MhJ56IC\nsWXLFlkC8dNPP+n3Bw8ezI4fP26SFycQ9Ed/9Ed/9Kf0zxpOWADTOsHBwdDyQ00BaLVahBjNM2Gc\n5sqVKwjmRxUJ4DSCIAiCcDSqdHONiopCTk4OcnNzUV5ejtTUVCQajchJTEzEunXrAACHDx9GYGAg\nHrTWAZsgCIJwGKpEED4+Pli5ciXi4+Oh0+kwY8YMREREIPmv9SKTkpIwYsQI7N69G2FhYfD398fa\ntWvVMJUgCKLGomFuWkeTlpaGuXPnQqfTYebMmXipBq/v+NRTT2HXrl1o2rQpfq3B03ZqtVpMnToV\nBQUF0Gg0eOaZZ/A3S3OTeDClpaUYMGAAysrKUF5ejtGjR+OdGr6QhE6nQ1RUFEJCQvC///1PbXNU\nIzQ0FAEBAfD29oavry8yMzPNpnVLgdDpdAgPD8fevXsRHByM6OhobNq0CRE1dPjmgQMHULduXUyd\nOrVGC0R+fj7y8/PRrVs3FBUVoUePHti2bVuN/V0UFxfDz88PlZWViI2NxbJlyxAbG6u2WaqxfPly\nHD9+HPfu3cOOHTvUNkc1WrdujePHj6OhcJ4bM7jlVBuZmZkICwtDaGgofH19MWnSJGzfvl1ts1Sj\nX79+aMAvP1eDadasGbr9NT943bp1ERERgauW5sj2cPz+mlekvLwcOp1OlkPwVK5cuYLdu3dj5syZ\n1LEF8jv3uKVA5OXloYVgIpuQkBDk8ZP3EASA3NxcZGVlISYmRm1TVKOqqgrdunXDgw8+iIEDB6JD\nhw5qm6Qaf//737F06VJ4OXsJQDdAo9FgyJAhiIqKwmeffWYxrVs+LY2zFvwlPIKioiKMHz8eH330\nEerWrau2Oarh5eWFX375BVeuXMGPP/6IjIwMtU1ShZ07d6Jp06aIjIyk6AHAwYMHkZWVhT179uDf\n//43DggXOjHCLQVCzjgKomZSUVGBcePG4fHHH8eYMWPUNsclqF+/Ph5++GEcO3ZMbVNU4dChQ9ix\nYwdat26Nxx57DPv27cNUJUsJehhBf03X3KRJEzzyyCMWG6ndUiDkjKMgah6MMcyYMQMdOnTAXOE8\n2DWQwsJC3L59GwBQUlKC7777DpGRkSpbpQ7/+te/oNVqcfHiRWzevBmDBg3Sj7GqaRQXF+PeX3Pd\n379/H+np6ehsYe1ktxQI4TiKDh06YOLEiTW2pwoAPPbYY+jTpw/Onj2LFi1a1NgxIwcPHsSGDRuw\nf/9+REZGIjIyEmn80m81jGvXrmHQoEHo1q0bYmJiMGrUKAwePFhts1yCmlxFff36dfTr10//uxg5\nciSGCRemMcItu7kSBEEQzsctIwiCIAjC+ZBAEARBEJKQQBAEQRCSkEAQBEEQkpBAEG6Ht7e3vpdS\nZGQkLl++rLZJDiElJQVNmjTBM888Y1c+ixYtwvvvv6/fP3z4sNk8S0tL0a1bN9SqVQs3b960q1zC\n81Blum+CsAc/Pz9kZWVJnuM75bljV0aNRoPHHnsMK1asMDlXWVkJHx95/67G975nzx4kJCRIpq1d\nuzZ++eUXtG7dWrnBhMdDEQTh9uTm5iI8PBzTpk1D586dodVqsXTpUvTs2RNdu3bFokWL9Gnffvtt\nhIeHo1+/fpg8ebL+TTsuLg7Hjx8HwA0y4x2mTqfDiy++qM/r008/BQBkZGQgLi4Ojz76KCIiIvD4\n44/ryzh69Cj69u2Lbt26oVevXigqKsKAAQNw8uRJfZrY2FjJmXeFvc5TUlKQmJiIwYMHY+jQobh/\n/z6GDBmCHj16oEuXLqIZSYX3debMGVGe+/btw5AhQ/D7778jJiYGkZGR6Nq1K86dO2frIydqCBRB\nEG5HSUmJflRwmzZtsHz5cpw7dw7r169Hz549kZ6ejnPnziEzMxNVVVUYPXo0Dhw4AD8/P6SmpuLk\nyZOoqKhA9+7dERUVBYB765aKOlavXo3AwEBkZmairKwMsbGx+oFFv/zyC7KzsxEUFIS+ffvi0KFD\niIqKwqRJk/Dll1+iR48eKCoqQp06dTBjxgykpKTggw8+wNmzZ1FWVmZxBCtPVlYWfv31VwQGBkKn\n0+Gbb75BvXr1UFhYiN69eyMxMRHHjx83e1+FhYXw9fVFvXr18Mknn+D555/H5MmTUVlZicrKSkd9\nJYSHQgJBuB116tQRVTHl5uaiVatW6NmzJwAgPT0d6enpehG5f/8+cnJycO/ePYwdOxa1a9dG7dq1\nZU3Pkp6ejl9//RVbtmwBANy9exfnzp2Dr68vevbsiebNmwMAunXrhosXL6JevXoICgpCjx49AEA/\nWeD48ePx5ptvYunSpVizZg2efPJJq2VrNBoMGzYMgYGBALjZWRcsWIADBw7Ay8sLV69exfXr13Hg\nwAGT++IjkfT0dMTHxwMA+vTpg7fffhtXrlzB2LFjERYWZv1hEzUaqmIiPAJ/f3/R/oIFC5CVlYWs\nrCycPXsWTz31FABxFY5w28fHB1VVVQC4hlshK1eu1Od1/vx5DBkyBIwx1KpVS5/G29sblZWVZts+\n/Pz8MHToUGzbtg1fffUVpkyZIuu++DUdAGDjxo0oLCzEiRMnkJWVhaZNm6K0tBQajcbkvng70tLS\nMHz4cADclCz/+9//UKdOHYwYMQL79++XZQNRcyGBIDyO+Ph4rFmzBvfv3wfArR9y48YN9O/fH9u2\nbUNpaSnu3buHnTt36q8JDQ3Vz3bKRwt8Xv/5z3/01TFnz55FcXGxZLkajQbh4eG4du2aPq979+5B\np9MBAGbOnIm//e1v6NmzJ+rXr2/1Poxnwbl79y6aNm0Kb29v7N+/H5cuXYJGozF7X4wxnDp1Cl27\ndgUAXLx4Ea1bt8acOXMwevToGr36ICEPqmIi3A6pt3ThsaFDh+L06dPo3bs3AKBevXrYsGEDIiMj\nMXHiRHTt2hVNmzZFdHS03gnPnz8fEyZMwKeffoqHH35Yn9/MmTORm5uL7t27gzGGpk2b4ptvvjHb\nZs4TFPIAAAEHSURBVOHr64vU1FTMmTMHJSUl8PPzw3fffQd/f390794d9evXl1W9xN+TsIwpU6Zg\n1KhR6NKlC6KiovQTVBrfF1/Vdvz4cdEMrl9++SXWr18PX19fBAUFYeHChbLsIGouNFkfUWNZvHgx\n6tatixdeeKFayrt69SoGDhxo0suI57///S+OHTuGjz/+2CHlvf3222jXrh0mTJhgNa2SdYqJmgNV\nMRE1muoaL7Fu3Tr06tUL//rXv8ymqVOnDvbs2WP3QDmehQsXWhUHfqBcZWUlLcdJmEARBEEQBCEJ\nvTIQBEEQkpBAEARBEJKQQBAEQRCSkEAQBEEQkpBAEARBEJKQQBAEQRCS/D/5ezxaVcA+sAAAAABJ\nRU5ErkJggg==\n" - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Calculate moments \n-------------------" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "mom, text = S.moment(nr=4)\nprint('sigma = %g, m0 = %g' % (sa, sqrt(mom[0])))", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "sigma = 0.472955, m0 = 0.472955\n" - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Section 2.2.1 Random functions in Spectral Domain - Gaussian processes\n--------------------------------------------------------------------------\nSmoothing of spectral estimate \n----------------------------------\nBy decreasing Lmax the spectrum estimate becomes smoother." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nLmax0 = 200; Lmax1 = 50\nS1 = ts.tospecdata(L=Lmax0)\nS2 = ts.tospecdata(L=Lmax1)\nS1.plot('-.')\nS2.plot()\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEXCAYAAABsyHmSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VHXa8PHvSS8kpEBCCmkEkiCElhBASlTKwmoQUJo+\nggIiu6isy76rD8s+oKuLYkHEgq6AWHEtgAoRUaJY6FVKCJBACiEEEtLLTM77x5CBkDaTdjLJ/bmu\nXM7p9wQz9/y6oqqqihBCCNEAVloHIIQQwnJJEhFCCNFgkkSEEEI0mCQRIYQQDSZJRAghRINJEhFC\nCNFgkkSEaEEzZ85k8eLFJp2bkpKClZUVFRUVzRbPhx9+yJgxY5rt/qLtkyQiLNLPP//MkCFDcHNz\nw9PTk6FDh7Jv375mfWZQUBA//PBDo+6hKAqKojRRRI1333338e233xq3raysOHv2rIYRCUtjo3UA\nQpgrLy+PO++8k9WrVzN58mRKS0vZuXMn9vb2zfpcRVGoa2yuTqfDxqb+P6nWPr63tccnWhcpiQiL\nc+rUKRRFYcqUKSiKgoODA6NGjaJ3794ArFu3jltvvZVHH30UNzc3IiIiqpQgrl69yqxZs/D19cXf\n35/FixdXqTJ655136NmzJ66urtxyyy0cPHiQ//mf/+H8+fPcdddduLi48OKLLxqrm9asWUNgYCAj\nR44E4N5778XHxwc3NzdGjBjB8ePHTXpfFRUVLFy4kM6dO9OtWze++eabKsfrinvdunUMHTqUv/3t\nb3h4eBASEkJ8fLzx2nXr1tGtWzdcXV0JCQnho48+Mu4fNmwYAMOHDwegT58+uLq68umnn9K7d2++\n/vpr433Ky8vp1KkThw8fNu0fS7R9qhAWJi8vT/X09FRnzJihbt26Vb1y5UqV42vXrlVtbGzUFStW\nqDqdTt2wYYPasWNHNScnR1VVVb377rvVRx55RC0qKlKzsrLUgQMHqqtXr1ZVVVU//fRT1c/PT923\nb5+qqqp6+vRp9dy5c6qqqmpQUJD6/fffG5+TnJysKoqizpgxQy0qKlJLSkqMzy8oKFDLysrUBQsW\nqH379jVeM3PmTPUf//hHje/rzTffVMPDw9W0tDT1ypUramxsrGplZaXq9fp64167dq1qa2ur/uc/\n/1ErKirUN998U/X19VVVVVULCgpUV1dX9dSpU6qqqmpmZqZ67Ngx43VDhw41xqAoinrmzBnj9gsv\nvKBOmTLFuL1x40Y1MjLShH8l0V5IEhEW6cSJE+rMmTNVf39/1cbGRo2Li1MvXryoqqrhg7HyA7TS\nwIED1ffff1/NzMxU7e3t1eLiYuOxjz76SL3ttttUVVXV0aNHqytXrqzxmbUlkeTk5FrjzMnJURVF\nUfPy8lRVrTuJ3HbbbcakoKqqum3bNlVRFFWv19cb99q1a9XQ0FDjscLCQlVRFPXixYtqQUGB6ubm\npn7++edqUVFRlWfWl0TS09PVDh06qPn5+aqqquqkSZPU5cuX1/p+Rfsj1VnCIoWHh7N27VpSU1P5\n/fffycjIYMGCBcbjfn5+Vc4PDAwkIyOD8+fPU15ejo+PD+7u7ri7u/PII49w6dIlANLS0ujWrZtZ\nsXTt2tX4uqKigieffJLQ0FA6duxIcHAwANnZ2fXe58KFC1XuFRAQYHx97ty5OuMG6NKli/G1k5MT\nAAUFBTg7O7NhwwbeeustfH19ufPOO0lMTDTpvfn6+nLrrbfy2WefkZubS3x8PPfdd59J14r2QRrW\nhcULCwtjxowZvP3228Z96enpVc45d+4c48ePp2vXrtjb23P58mWsrKp/h+ratSunT5+u8Tm19aq6\ncf+HH37I5s2b+f777wkMDCQ3NxcPDw+TGqt9fHw4f/68cfvG1/XFXZ/Ro0czevRoSktLWbRoEXPm\nzOGnn34y6doZM2bw7rvvUl5ezpAhQ/Dx8TH7+aLtkpKIsDiJiYm8/PLLxkSRmprKxx9/zODBg43n\nZGVlsXLlSsrLy/nvf//LyZMnGTduHF26dGH06NE88cQT5OfnU1FRwZkzZ4wfqLNnz+bFF1/kwIED\nqKrK6dOnjR/m3t7enDlzps7YCgoKsLe3x8PDg8LCQv73f/+3yvG6ksnkyZNZuXIl6enp5OTksGzZ\nMuMxHx+fOuOuS1ZWFps2baKwsBBbW1ucnZ2xtrau8dya3uOECRM4cOAAK1eu5IEHHqj3eaJ9kSQi\nLI6Liwu7d+8mJiaGDh06MHjwYCIjI3nppZeM58TExJCUlETnzp1ZvHgxn3/+Oe7u7gCsX7+esrIy\nevbsiYeHB/feey+ZmZkA3HPPPSxatIjp06fj6urKxIkTycnJAeCpp57iX//6F+7u7rz88stA9dLJ\nAw88QGBgIH5+fvTq1YvBgwdXOaeucSJz5sxhzJgx9OnTh6ioKCZNmlTl3Lrirum+ldsVFRW88sor\n+Pn54enpyc6dO3nzzTdrvG7JkiXMmDEDd3d3PvvsMwAcHByYOHEiKSkpTJw40aR/I9F+KKop5Wwh\nLMi6det499132blzp9ahtBnPPPMMSUlJrF+/XutQRCujWUkkPj6e8PBwunfvzvPPP1/t+Icffkif\nPn2IjIzk1ltv5ciRIyZfK4RoOleuXGHNmjU8/PDDWociWiFNkoher2f+/PnEx8dz/PhxPv74Y06c\nOFHlnJCQEH766SeOHDnC4sWLjf8Dm3KtaN9a29Qiluydd94hICCAsWPHMnToUK3DEa2QJtVZv/32\nG0uXLjWOqK1sQHzyySdrPD8nJ4fevXuTlpZm9rVCCCGajyYlkfT09Cr94f39/at1ybzRu+++y7hx\n4xp0rRBCiOajyTgRc6oaduzYwZo1a/jll1/MulaqM4QQomHMqaDSpCTi5+dHamqqcTs1NRV/f/9q\n5x05coQ5c+awefNmY/dMU68Fwy/CUn/+7//+T/MYJH7t42hvsUv82v+YS5MkEhUVRVJSEikpKZSV\nlbFhwwbi4uKqnHP+/HkmTpzIBx98QGhoqFnXCiGEaBmaVGfZ2NiwatUqxowZg16vZ9asWURERLB6\n9WoA5s6dy9NPP01OTg7z5s0DwNbWlj179tR6rRBCiJbXZgcb1reAUGuXkJBAbGys1mE0mMSvHUuO\nHSR+rZn72SlJpBF++w3s7aF//2Z9jBBCtBhzPztl7qxG+OwzGDAAiou1jkQIIbQhSaQRXnoJBg6E\n33/XOhIhhNCGVGc1UlkZ2Nk1+2OEEKJFSHVWC5MEIoRozySJCCGEaDBJIg2Qnw/PPqt1FEIIoT1J\nIg2g14OHx/XtK1egbbYsCSFE3aRhvQkEBcHhw9CxY4s8Tgghmo0MNrzG0kesCyGEFqR3lhBCiBYj\nSUQIIUSDSRJpgFWrIClJ6yiEEEJ7kkQaYM0auHr1+nZxMeTmahePEEJoRZJIA1y8CF26XN9+5x1Y\nvFi7eIQQQiuSRBpg8WLw8rq+3akTXLqkXTxCCKEVTVY2tHSPPFJ1u0sXUBRtYhFCCC3JOBEhhBBG\nMk5ECCFEi5Ekco1eDytWaB2FEEJYFkki15SVmdY4fvQovPlm88cjhBCWQNpEzJScDCdOwLhxVfdn\nZoK7O9jbN/kjhRCixUibSCOVl9d9PDi4egIBmD0bEhObJyYhhGitpCRyg6QkGDsWTp9upqCEEKKV\nk5JII3h4GBaYEkIIYRoZbHjNTz8ZBgwWF0NFBVhJehVCiHrJR+U1X30Fv/0GRUV1J5B16wznCSGE\nkCRiVFwMTk71T18SHw/nzlXfX1gIGRnNE5sQQrRWkkSuueMOiI6u/7zCQkOyudn27TB3btPHJYQQ\nrZm0iVwzYYJp582bB716Vd/fubPM5CuEaH8kidykvNxQpWVTy2+mpjEiAN7e4OrafHEJIURrJONE\nbnL//XD33XDPPc0QlBBCtHLmfnZKEhFCCGEkgw0baO1auHBB6yiEEMKySBK5pqDAMMiwPvPnQ2lp\n88cjhBCWQBrWr3n0UdPO69u39kb3tDRwcYGOHZsuLiGEaM2kTeQmej3odA2b0v2xx+DOO2H0aPOv\nFUKI1kAa1q9paBJZvRr274e3326GoIQQopWThvVGcnY2jEoXQghRP0kigKrCc88Z/uviYqjSEkII\nUT+pzsIwSt3R0dAWUpeUFPjwQ1i0qPHxCSFEayTVWQ1QXGxIIvVJTTXM4luXffukC7AQov2QJAJY\nW8Pf/17/eTfP4Lvs52WsP7y+yjkLF8KWLU0coBBCtFJSnWWG8+fhxAkYMwY+P/45C79biJVixbRe\n03jmtmdQFIW1a2HlSvj+e8Nyu0IIYUnM/eyUwYY3UVXD6obOztWPBQQYfk5fOc28b+ax5b4tBHYM\nJO6TOArLC3llzCvMnAn5+TWvOSKEEG2NlERucvUqhIfXPo+WqqpEvRPFQ30f4s8D/wzAxYKLhK0K\n4+LCi9jbNGCUohBCtBLSsN5IHTvWPRHj/gv7yS/N50/RfzLu8+7gTc/OPUlISWj+AIUQohXRLInE\nx8cTHh5O9+7def7556sdP3nyJIMHD8bBwYGXXnqpyrGgoCAiIyPp168fAwcObHQs6emGWXxNsSlx\nExMiJqDctBj7+LDxbD61udGxCCGEJdEkiej1eubPn098fDzHjx/n448/5sSJE1XO8fT05LXXXmPh\nwoXVrlcUhYSEBA4ePMiePXsaHU9FBZSU1H/ep5/CB3s3cnfY3dWOjQ8fz+bEzVWKgadPw+XLjQ5P\nCCFaLU2SyJ49ewgNDSUoKAhbW1umTp3Kpk2bqpzTuXNnoqKisLW1rfEeTdmU07WrYe30+lh3Pk1B\nRTYx/jHVjoV5huFo48jBzIPGfe+8A4cPN1mYQgjR6mjSOys9PZ2uXbsat/39/dm9e7fJ1yuKwsiR\nI7G2tmbu3LnMmTOnxvOWLFlifB0bG0tsbKxJ9y8qAju76lO+p9hvYsItd2GlVM+9iqIwPnw8mxI3\n0d+nPwA11NIJIUSrkpCQQEJCQoOv1ySJ3NyeYK5ffvkFHx8fLl26xKhRowgPD2fYsGHVzrsxiZhj\n2DDDLL4DBlTdvzFxI08NfarW6+J6xPFY/GMsjV3aoOcKIURLu/kL9tKl5n1+aVKd5efnR2pqqnE7\nNTUVf39/k6/38fEBDFVeEyZMaJJ2kRs5OVWfyTerMIujF49ye/DttV43pOsQzuWeI7Mgs0njEUKI\n1kqTJBIVFUVSUhIpKSmUlZWxYcMG4uLiajz35raPoqIi8vPzASgsLGTbtm307t27UfEcPw5ffHF9\nu1MnKCures53Z77j9uDbcbBxqPU+1lbW9OnShyMXjzQqHiGEsBSaVGfZ2NiwatUqxowZg16vZ9as\nWURERLB69WoA5s6dS2ZmJtHR0eTl5WFlZcWrr77K8ePHycrKYuLEiQDodDruu+8+RjdyKcFDh+Cr\nr+Dabfnyy+rn7M3YS2HiIM6ehZCQ2u8V6R3JkYtHGN3NENOOHRAbC42swRNCiFZJs2lPxo4dy9ix\nY6vsmzt3rvF1ly5dqlR5VerQoQOHDh1q0ljKyw0N6XXZm7GXzB//RV7NBSajSK9Ifjz3o3H7nnvg\n5Eno3LkJAhVCiFZGRqwDvXpBLbVpAOgqdBzOPIx6oX+9c2JVlkQq+fpCRkYTBSqEEK2MTMCIoRfW\nzT2xbnT80nH8Xf15eklHrrXp1+oWr1tIvJxIub4cW2tbRo4EK0nVQog2SpJIDcrKDKscVpY69mXs\nI8o3iskT67/WydaJgI4BJF5OpJdXL155pXljFUIILcl35Bq8/nrVgYJ7M/YS7Rtt8vWR3pEcvXi0\nGSITQojWRZJIDf7yF7hxvE1lScRUkV6RHMmSbr5CiLZPkgjw44/w0081HyvVlXIs6xj9fPqZfL+b\nG9eFEKKtkiSCof1Dp6v52NGso4R6hFJa4MSCBabd78YkkpUF+/Y1UaBCCNHKSMM6cMcdtR/bl7GP\naL9o7OxgyBDT7hfoFsjVkqtcKb5CcrIHW7dClOm1YUIIYTEkidRArzfMneXqeq09xCcKZ2eYPNm0\n660UK3p79+boxaOMiBlBTPWZ44UQok2Q6qwa7N9/vXTye9bv9PY2f26u3l69OZolPbSEEG2bJJEa\nODsbSiKqqpJ4OZEwzzCz7xHqEcqZnDPNEJ0QQrQekkSAzZurrkDYoYNhQapLRZewUqzo5NTJ7Ht2\nc+/GmSuSRIQQbZskEeC//62aRAID4cgROJl9kjDPMBRFYfdueOMN0+/ZzaObsSSydathkkchhGhr\nJIlQ+yy+idmJhHcKBwwz8Zqxgi/BbsEk5ySjqiozZ8Lly00TqxBCtCaSRIDx4w0z+d7sxvaQoiLq\nncH3Ri72LrjYu3Ch4AIdO8LVq00UrBBCtCLSxReYNq3m/SezTzKsv2Ht9thY6N/fvPtWtouMG+eL\njfymhRBtkHy01SI311CdFdbJUBKJiDD/HiHuIZzNOcuKFcOaODohhGgdpDqrFsNuKyU1L5UQ9zrW\nwq3HjY3rQgjRFtVbElm3bh2KiQuEGxqRZzY2plZhw7YzTNgQiJ11Pevm1qGbeze+PfNtE0YlhBCt\nS71JxN3dnaFDh+Lp6VnvzTZt2tQkQbW0NWvgD38wLGVbKTG7YYMMbyRjRYQQbV29SWT8+PH07t2b\n0NBQXF1diY6OJiYmhn79+vHbb7+RlZXFpEmTjOdaotJSqKiouu9k9klj916AVasgOhqz5sGqbBM5\nfRqKi6G3+bOnCCFEq2ZSw/oXX3xB9+7dKSoq4t///jc//PADK1asoKCggJCQEGMSsVTz5lXfl3g5\nkWEB1xvEIyPB29u8+3bp0IXC8kL2Hcmn+KqLJBEhRJtjUhLp3r07AE5OToSGhjJjxgwAysrKLLYK\nqz7Hs07ywC1zjNvDh5t/D0VRCHEPIXzIGfp26duE0QkhROtgdu8sW1tbZs6cyRdffEFSUhJpaWnN\nEZemVFXlcFoiR3Y0rk0ErldpCSFEW2T2OJHp06czYMAAPvjgA3bs2MEDDzzQHHFpKqckBxQVqxLz\nJ168mTSuCyHasgYNNgwLC+OZZ55p6lg08/LL8PDDhtl7AVJyU/BQgpvk3t3cu8m6IkKINsvs6qz/\n/Oc/7Nq1i7KyMn755Rc+++yz5oirRT37LJSUXN9OyU1hUEQQjz12fd+jj8KVK+bfO8Q9hKTsM3zz\nTePjFEKI1sbsJJKVlcWPP/7IzJkzWbZsGT///HNzxNWibp7FNyU3hSC3oCrnfPABqKr59w52D+bc\n1XPcf3/jYhRCiNbI7Oosf39/YztIW+mdtXAhODhc307JTaGbezfjtqpCfr5hzXVzdXXtSnpBKmX5\nKqqqYOLgfyGEsAjSOwv45z/rLomoKqxfD7a25t/b2c6ZDnYdGD8ti7KyxscqhBCtidlJxN/fn6ee\neoqDBw/y1ltvMXTo0OaIS1MpuSn4dQg0toFYWcH06Q2/X0DHAJ5adh57+6aJTwghWguzk8jrr79O\nUFAQzzzzDK+99hrR0dHNEZdmVFUlJTeFnOQgmqr3ckDHAM5dPdc0NxNCiFbE7CTi5ubGjz/+SHkb\nXTQ8pyQHK8WKUcPc+PrrprlnYMdAzl893zQ3E0KIVqRBSWTv3r1MnjyZcePGsXjx4uaIq8UUFcGL\nL17frqlnVmNJSUQI0VaZ3TvrzjvvpHPnzixatAhVVTl/3rK/YauqoYtvpZqSyO7d8Ouv8Je/NOwZ\ngR0D2Xx4J2fPQkjD17gSQohWp94kkpiYiJWVlXESxhsb0hVFITAwsPmiawHOzvDUU9e3a0oivr6G\naeAbKqBjAGcvnyMlRZKIEKJtqTeJdOvWjYSEBLZt24aVlRXR0dFERUW1RGyaSMlNMS6Jm5UFnp7Q\ntavhp6EC3QIpsj3P7bc3UZBCCNFK1JtEbGxsGDlyJCNHjgRgz549vPnmm1RUVBAWFkZsbCw2Ng2a\ngqtVSslN4fZgw6f9gAHwyy8QENC4e3Z26kxheSGFZYU42zk3QZRCCNE6mP3pP3DgQAYOHAgYqrre\nffddysrK8PPzY8yYMTg7W/aH5I3VWe7uhvmyGptEFEUhoGMA56+eJ6JzROODFEKIVqJRRYiwsDDC\nwgxrbmRkZPD1118zZcqUJgmspWRkwJYtMHv29TEilUmkRw8oKGia50gSEUK0RWZ38S0sLOTixYvV\n9vv6+lpcAgFITYW33za8rhwj4ubgBsBnn8HQobB0KRxt5GzuXnaBfLtbuvkKIdoWs5PIBx98wNat\nW4mLi+Ohhx4iPj6+OeJqMTfO4FvbGJHNm6G0tHHPcSgN4LPvLLs7tBBC3MzsJOLo6EjPnj25cuUK\na9asIS8vrzniajH+/vDgg4bXKbkpBLpV77KclQVeXo17TpB7AHlWUhIRQrQtZieR/v3788knn7By\n5UrWrVuHTqdrjrhaTFAQzJpleH3+6nkCOlZvRX/9dejSpXHPucUvkA6+UhIRQrQtZjes9+rVi5df\nfhmAy5cv49XYr+itSHp+Ov4u/sbtigo4fx7i4hp/7z5BAdh0kpKIEKJtMbskcqNRo0bRp0+fpopF\nc2l5afi7Xk8i2dkwZUrDVjS8mb+rPxn5Gegr9I2/mRBCtBKNSiJtzc1JxMvLMG9WU6xGaG9jTyen\nTlwouND4mwkhRCthUhIpuDZYory8HL2+ab5Jx8fHEx4eTvfu3Xn++eerHT958iSDBw/GwcGBl156\nyaxrzXHkCHz5peF1Wl4afq5+jbpfXQLdAjmXK1VaQoi2o94k8sILL/D000/zxBNPcPXqVR555JFG\nP1Sv1zN//nzi4+M5fvw4H3/8MSdOnKhyjqenJ6+99hoLFy40+1pzVFRc+1EryMjPwM+l+ZKIXVEA\nR1OlcV0I0XbU27AeExNDTEwMtra2bNiwgYqKikY/dM+ePYSGhhIUFATA1KlT2bRpExER10dzd+7c\nmc6dO/PNN9+Yfa05+vY1/GQVZuNi54KjrWOD7mOKipxAkrKkJCKEaDvqTSLOzs6sW7eORx55hOnT\npzfJiobp6el0vWFaXH9/f3bv3t3k1y5ZssT4OjY2ltjY2Frve3N7SHOY8ocAjl863qzPEEIIcyQk\nJJCQkNDg6+tNIlFRUVWmfp8xY4bx9ZEjR+jduzeKmS3P5p7f0GtvTCL1aYkkEtAxgK2ntzbrM4QQ\nwhw3f8FeunSpWdeb3Ttr/fr1LFiwgHXr1uHs7MzHH39s7i3w8/MjNTXVuJ2amoq/v2kf4I25ti7N\n3agOsta6EKLtaVAX33/+8594eXmxfPlykpKSzL4+KiqKpKQkUlJSKCsrY8OGDcTVMqJPvWmQhjnX\nmmLnTvjhh2slEZfmL4mcyz1X7T0JIYSlMnvEeqdOnbCzs2PcuHGMGzeuYQ+1sWHVqlWMGTMGvV7P\nrFmziIiIYPXq1QDMnTuXzMxMoqOjycvLw8rKildffZXjx4/ToUOHGq9tqB07DJMwpg9IJzYwtsH3\nMUVupht6PVwtvWqcKVgIISyZopr5tfixxx7jyJEjeHp6MnDgQG677TbjIlWtiaIoJn3jX7wYbG3h\nx6A7ePLWJxnVbVSzxfTVVzD951788sRHRHpHNttzhBCioUz97KxkdnVWbGwsCQkJvP/++wwePJh9\n+/aZe4tWZcQIw09LNKx7eoJNgQw4FEK0HWZXZymKwt69e4mOjmb48OEMHz68OeJqMSNHGtpd0n5p\ngd5ZAdCtU4A0rgsh2gyzk8iPP/4IwNNPP42DgwMjRoxg/vz5TR5YS8otycVascbF3qVZn+PvD/eM\nCuTcVSmJCCHaBrOTyKRJk1AUhaFDh1JcXMyxY8eaI64WlZ6f3uylkEoBHQM4lHmoRZ4lhBDNrd42\nkf3791fZHjZsGEOHDgUMqxzeOBDx5nMtRUu0h1QK6BggJREhRJtRb0lk69at/P777ybdLDU1lQED\nBjQ6qJa0cSMcVFouiciAQyFEW1JvEvnHP/7REnFopqICLpal4e/dMklkX4IP2YXZlOnLsLO2a5Fn\nCiFEc2n3i1JNnAg6p7RmnQL+RslnbOjk4ENaXlqLPE8IIZpTu08iYGhYb+55syo98YR08xVCtB2S\nRID0vJbrnQWywqEQou1oUBIpKSmhtLS0qWPRTEZ+Br4uvi32vMCOMlZECNE2mJREKioq+OKLL7j3\n3nvx8/MjODiYwMBA/Pz8uOeee/jyyy8tdmba/6wrJa80j05OnVrsmUFuQSTnJrfY84QQormYlERi\nY2PZv38/Cxcu5OzZs1y4cIHMzEzOnj3LwoUL2bt3LyNGjGjuWJvF6g8z8LD1wUppmZq9s2fh0qkQ\nzuacbZHnCSFEczJpxPp3332Hvb09AHq9HlVVURQFe3t7Bg0axKBBgyy2eqvIOoPODi1XlXXqFGz5\nKJhzt0lJRAhh+UxKIpUJBGDkyJHccccdBAcH4+rqyl133VXtHEsydGwGqW4tl0Q8PKA4sysXCy/K\nWBEhhMUze+6sHTt2GF//9NNPLFiwgBUrVjRpUC0pIiYdu5yWSyIBATD+Lhsuu/hy/up5Qj1CW+zZ\nQgjR1BrUEHD27Fl+/vlnbrnlFj7//POmjqlFZeRntNhAQ4AuXQwLYQW7BUu7iBDC4jUoiXTp0oXs\n7Gwef/xxFi1a1NQxtaiW7t5bKcQ9hOQcaRcRQlg2s5PIvn37cHJy4u677+b9999n1apVzRFXi0nP\nT9ckiQS7BUs3XyGExTO7TcTPz4+NGzdSVlbGyZMn+cMf/tAccbWYY+cycBvRctVZlYLdg9mUuKnF\nnyuEEE3JpCRS2aUXwMfHh7vvvrvOcyzJVTUDnxYuiWzcCHY+wVKdJYSweCYPNly+fDmnTp2qdiwx\nMZHnn3/eIgcb5pXmYWNbga+Ha4s+NzsbOllLw7oQwvKZlES2bduGp6cnf/7zn/Hx8aFHjx50794d\nHx8f5s+fj7e3N9u3b2/uWJtcZc+sli5BzZ4NIwZ4U6wrJr80v0WfLYQQTcnkwYYPPfQQDz30EHq9\nnuzsbBRFoVOnTlhZWe5EwFr1zAJQFMU4h1akd6QmMQghRGOZlAH27NnDhQsXALC2tiY+Pp7Zs2ez\nYMECrlxTVQ6JAAAcaklEQVS50qwBNqf0PG16ZlUKdpN2ESGEZTMpicydO9c4rclPP/3Ek08+yYwZ\nM3B1deXhhx9u1gCbU1peBud+b/meWZWC3aVdRAhh2UyeCt7DwwOADRs2MHfuXCZNmsS//vUvkpKS\nmjXA5pR2NYPd21u+JJKWBh99JGNFhBCWz6QkotfrKS8vB2D79u3cdtttxmM6na55ImsB6Xnp2BS3\nfBLJzIQXX7w2al2SiBDCgpnUsD5t2jRGjBhBp06dcHJyYtiwYQAkJSXh5ubWrAE2p8zCDGZObPnq\nrE6dDN18Q9xDOHPlTIs/XwghmopJSWTRokXcfvvtZGZmMnr0aGOPLFVVee2115o1wOaUWZjB/5vX\n8iURLy948EEI9QjlbM5ZdBU6bKzMnjxACCE0p6iWuq5tPRRFqXPJ3gq1AsdnHcn9ey6Oto4tGFlV\nQSuC2P7AdpkSXgjRKtT32Xkzyx3k0UiXiy7jbOusaQIBCO8UTmJ2oqYxCCFEQ7XbJJKWl0bXjl21\nDoOwTmGczD6pdRhCCNEg7TqJdLb34403tI0j3DOcxMtSEhFCWKZ2m0TS89PxcfbX7PlffQWHDklJ\nRAhh2dptl6C0vDS6e/vzp8naPF+nM/yEd5KSiBDCcrXrJDI8cLhmz58wwfBfVfWhuLyYnOIc3B3d\nNYtHCCEaol1XZ/m5aDdvViVFUQjrFCalESGERWq3SSQtLw1/V+3aRG4U5intIkIIy9Quk4iqqqRe\nTaUky58PP9Q6GmkXEUJYrnaZRPJK81AUhbQzrnzyiTYxZGdD5YwxUhIRQliqdplEKttDdDoFW1tt\nYigpgWXLDK9l1LoQwlK1yyRS2R4SHg5Tp2oTg6enoTSiqoaJGJNzk9FVWO60+kKI9qldJ5FbboHJ\nGo0TcXSEf/4T9HpwtHXEp4OPrHIohLA47TKJpOelt4qeWYsWgc21kTp9u/TlUOYhbQMSQggztcsk\nkpaf1irGiNyov09/Dlw4oHUYQghhlvaZRFrRGJFKkkSEEJZIsyQSHx9PeHg43bt35/nnn6/xnMce\ne4zu3bvTp08fDh48aNwfFBREZGQk/fr1Y+DAgWY/u7I669df4dtvG/wWmlRlEmmja4QJIdooTebO\n0uv1zJ8/n+3bt+Pn50d0dDRxcXFEREQYz9myZQunT58mKSmJ3bt3M2/ePHbt2gUYpgpJSEjAw8Oj\nQc9Py0vDz9WP003ybhpu5064ehXuvBO6dOiCnbUdqXmpBHQM0DgyIYQwjSYlkT179hAaGkpQUBC2\ntrZMnTqVTZs2VTln8+bNzJgxA4CYmBhyc3O5ePGi8XhDv7EXlxeTX5ZPJ6dODBkCY8Y0/H00lr29\noZdWJanSEkJYGk1KIunp6XTten1VQX9/f3bv3l3vOenp6Xh7e6MoCiNHjsTa2pq5c+cyZ86cGp+z\nZMkS4+vY2FhiY2ONAw2tFO2bg26uievv05/9F/Zzd/jd2gQkhGh3EhISSEhIaPD1miQRRVFMOq+2\n0sbPP/+Mr68vly5dYtSoUYSHhzNs2LBq592YRCq1lu69Nenv0593DryjdRhCiHak8gt2paVLl5p1\nvSZfx/38/EhNTTVup6am4u/vX+c5aWlp+PkZuuX6+voC0LlzZyZMmMCePXtMfnZle0hrJNVZQghL\no0kSiYqKIikpiZSUFMrKytiwYQNxcXFVzomLi2P9+vUA7Nq1Czc3N7y9vSkqKiI/Px+AwsJCtm3b\nRu/evU1+9rmr54wN15s3w759TfSmmkBX166U68u5kH9B61CEEMIkmiQRGxsbVq1axZgxY+jZsydT\npkwhIiKC1atXs3r1agDGjRtHSEgIoaGhzJ07lzfeeAOAzMxMhg0bRt++fYmJieHOO+9k9OjRJj87\nOTeZELcQADZuhMOHm/79mePVV+HUKcNrRVGkNCKEsCiaLY87duxYxo4dW2Xf3Llzq2yvWrWq2nUh\nISEcOtTw6UHO5pzl3p73AlBWBnZ2Db5Vk/jpJ+jSBXr0MGz39+nPvox9/LHHH7UNTAghTKB9F6UW\nlpyTTIi7oSQyYQL07attPD16QOINs8APDxzOj+d+1C4gIYQwg6K20SHSiqJU692lq9Dh/Jwz+U/l\nY2etcRHkmiNHoLAQBg82bOeX5uPzkg+X/nYJR1vHui8WQogmVtNnZ13aVUkk9WqqcWR4axEZeT2B\nALjYuxDpHclvab9pF5QQQpioXSWRszlnCXYL1jqMet0WfBs/JP+gdRhCCFGvdpVEknOvt4e0ZrcH\n3S5JRAhhEdpVErm5JPLGG3ChFQ7JGNJ1CEcuHiG/NF/rUIQQok7tLoncWBKxtgYTZ2BpVmVlMHw4\nlJQYth1tHYn2i2bn+Z3aBiaEEPVoV0kkOTeZYPfrJZG5cw1jNLRmZwcrVoCDw/V9UqUlhLAE7SqJ\n3FwSaU3696+6fXvw7Ww/u12bYIQQwkTtJonkl+ZTWFaIt7O31qGYJMY/hgsFFzh9Reuls4QQonbt\nJolUVmWZOg29lnQ6eO1VGyaG3cOG3zdoHY4QQtSq/SSRnORqY0SefhrKyzUKqA5WVrBjB1xKmMqG\nY5JEhBCtV7tJIjW1hyxd2jp6Z93Mygreew8ObLyVzKtXOH7puNYhCSFEjdpNEknOrVoS0esN/7XR\nbB7jurm7wy8/W3F/v8lSGhFCtFrtJoncXBJRVXjmGQ0DMoGPD0ztNZUNv28wa0I0IYRoKe0mifye\n9TsRnSOM2zY28L//q2FAJor2jaZMX8b+C/u1DkUIIappF0nkctFlckpyCPUI1ToUsymKwiNRj7By\n90qtQxFCiGraRRLZf2E//br0w0qxzLc7PXwO/z38NRl5rXCiLyFEu2aZn6pm2p+xnwG+A7QOo8H8\nPNyJcZrOa7tf1zoUIYSoon0kkQv7GeBTNYmkpMB//qNNPOZSFHh71mO8e+htisuLtQ5HCCGM2m0S\nURTDxIeWoodnD2L8Y1h/eL3WoQghhFGbX2P9ctFlgl8NJvfJXIttE6n0a+qvTP1sKqcePYWDjUP9\nFwghhJlkjfWbHMw8SD8fy21Uv9GQrkPo5z2A575/TetQhBACaAdJZH/Gfvr79K//RAvRO+vfvPDz\nC+QU52gdihBCtIMkUkN7iCX764xwKo5PZMn3/9Y6FCGEaL9JJCEBvvuu5eNpLHd3mBm4hPVH13Li\n0gmtwxFCtHNtOolcyL/ApcJL9PDsUe3Yjh3w668aBNUE3n7Zh2dHLmX2V7OpUCu0DkcI0Y616STy\nfwn/x5wBc7C2sq52rLAQnJw0CKqJPBL1CFaKFW/sfUPrUIQQ7Vib7uLrtdyLxPmJuDm4VTu+bRu4\nucHAgRoE10ROZp9k6Jqh7J2zl2D34PovEEKIepjbxbdNJ5E39rzBvOh5WofSrF757RU++v0jfn7w\nZ+xt7LUORwhh4SSJXKMoCuX6cmysWumqU03g+efhzjtVFv8+CR8XH14fJ3NrCSEaRwYb3qAtJxCA\nfv3AzU1h7fi1fHv6Wz448oHWIQkh2pk2XRJpo2+tRkcvHmXk+yP5YMIHjOo2SutwhBAWSkoiJnr2\nWcjL0zqKptPbuzefT/6c+764j91pu7UORwjRTrTbJNKhg2GJ3LZkaMBQ1o5fS9wncfxy/hetwxFC\ntAPtNok8/rhljxO52Y8/wr33wiDPP7L+7vXcveFuvjjxhdZhCSHauHabRNqaQYMgIAC6dYPLe8bw\n7f3f8ujWR3n6x6fRV+i1Dk8I0UZJw3obk51tWHDL0xMy8jO4/4v7qVAr+M+4Dwj18tc6PCFEKycN\n6+1cp06GBALg6+LLd//zHcN8RxH+Sj9W/PK6lEqEEE2qXZZEdu82rLE+ZUrLxqSlvSnH+euORyjR\nlfDi6BcZHjhc65CEEK2QlERMkJAAe/dqHUXLig7qScLMBB6LeYwZG2cw7sNxHMo8pHVYQggL1y6T\nyNmzEBKidRQtz0qx4v7I+0mcn8jtXccx4p2xTPtsOkmXk7QOTQhhodp0EqmtRDZhAtxxR8vG0prY\nWdsxrdt8+v6URMJnEUS9NYR7/3sve9L3aB2aEMLCtOk2kbfeUpk7V+tIWi9VhU2bQG9dQFrnd1mx\newUejh483P9hpvSaUuMU+kKItk1m8b1GURS8vFSSksDVVetoLEOFWsF3Z77j7QNvszXxO4Z1jWVa\n34mM6TYGHxcfrcMTQrQASSLXKIpCfLxKbCzYyzIbZntyyVWCRn/F9rSNfJ/8Pf6u/gzyH0SUTxRR\nvlH09u6NnbWd1mEKIZqYxSSR+Ph4FixYgF6vZ/bs2fz973+vds5jjz3G1q1bcXJyYt26dfTr18/k\na2v6RWRnG8ZQKErzvKemlJCQQGxsrNZhAKCr0LE/Yz87z+5l2Xv7KffaR5H9GW7p0oNuHt0Idgsm\nxD2EwI7BdHH0x9/di2N7jnH77bdrHXqDtabfv7ksOXaQ+LVmbhLRZApCvV7P/Pnz2b59O35+fkRH\nRxMXF0dERITxnC1btnD69GmSkpLYvXs38+bNY9euXSZdW5uZM2HxYoiJacY310Ra0/+INlY2xPjH\n0N87hqF2hjE2OQWFRI09TnJuMsk5yRy+eJgNhzfy2+/pdPTL4srWK3ju98TL2Qtnm45cSnPBydoF\nNycXBvR2wcXO8ONk64S+1IHD+x354xgHHG0ccbBxwNHWETsrRyh3wK2DIx0crh+zs7ZDaeZvAq3p\n928uS44dJH5Lo0kS2bNnD6GhoQQFBQEwdepUNm3aVCURbN68mRkzZgAQExNDbm4umZmZJCcn13tt\nbTZtAmvrJn877YatrWGOrkGDAJyBaKL9oquco6qGkt4/C/7Jn+f9mazCLNKz89iwKY+rxfmoJfkE\nu+WTX5pPdnE2xXnFXC0s4VhhMXm/l1BcXkyJroRiXTFXC0o4eaYY1boEa4dinDsajusqdDjYOGBv\n5UhpoQO+XtcTj4ONA4rOkTOJDthZOdLR2YFBA244bu0AOkcupDoyINIBBxsHbKxssLGyobTEmsMH\nrXGws2FP4mm2n92OtWKNtZU1NlY2lJdak3nBmrDuNlgrhn3WVtboy625mGmDva01Tg7W+HYx7K88\nx0qxxlqxwdbautmTnxAtTZMkkp6eTteuXY3b/v7+7N69u95z0tPTycjIqPfa2kgCaX6Vn5FWihXe\nHbzx7uBNb2/4wy0Nv6eqgk5nSGIA+go9JboSLucVcyKphJAe1xNPia6Ey1eL+YUSCkqLUWxLiPSu\nejzr6iX2nClB52nY1lXo0Kt68gt0HD2pR1ehpyQtkWU/ZxqP6Sv0FBbrSE3TExCkr7K/uFRH5kU9\nqqLD2laPq9u14xV69Kqecr2Ocp0erPQoKFgphp71Cgo6nWJ8bWd37bWioKCgqlBWquDoqBiTj4KC\nWqFQWASoCtZWCh1cDPsrzyn6uZjn/vE6HTtW3V+hV8i5YnhtY6Pg6Wl4TuUz9TqF3Fzo3Lnqfl25\nQlaW4Xm2tgpdulyPEUBXrpCdreDre32/oiiUlUF6mgKqgp09BHSt+j7KyhQyL0BQUNX9qXsyWP6X\nrwFwcICQkKqJt7QE0jOg2837S+HMGcM97B0Mk5FWvU4hPb2G/aUKp09jfF5oKMZYAEpKIC3NsP/G\nLwElxZB07TpHB4Xu3Q2vzx88z/Y12ykpgdRUhR49qj6vpBhOnTLcx9ER4/Fvpn+Di70LlkaTJGLq\nt7HGNtdY+re+pUuXah1Co7T2+A/Wc/z7n8/UuD+njmv0QHYdx1VU9FSfv0wFSmu5prCO++mA3JoO\nfF9cZxx6IKOWY+fruK4MqPm3Aol1XFcMHK3lWI2/z60XACgCrtRyXW37AQqAy7Ucq+v3UlDH8Ut1\nXJcPZN2wnbo51fg6q9rZ1+UBF6+9dn3IMruRapJE/Pz8SE29/ktOTU3F39+/znPS0tLw9/envLy8\n3muh8QlICCFE/TQZsR4VFUVSUhIpKSmUlZWxYcMG4uLiqpwTFxfH+vXrAdi1axdubm54e3ubdK0Q\nQoiWoUlJxMbGhlWrVjFmzBj0ej2zZs0iIiKC1atXAzB37lzGjRvHli1bCA0NxdnZmbVr19Z5rRBC\nCA2obdDWrVvVsLAwNTQ0VF22bJnW4Zjl/PnzamxsrNqzZ0/1lltuUV999VWtQzKbTqdT+/btq955\n551ah2K2nJwcddKkSWp4eLgaERGh/vbbb1qHZJbnnntO7dmzp9qrVy912rRpaklJidYh1enBBx9U\nvby81F69ehn3Xb58WR05cqTavXt3ddSoUWpOTo6GEdatpvgXLlyohoeHq5GRkeqECRPU3NxcDSOs\nXU2xV3rxxRdVRVHUy5cv13ufNjcBY+U4kvj4eI4fP87HH3/MiRMntA7LZLa2trzyyiscO3aMXbt2\n8frrr1tU/ACvvvoqPXv2tMiODY8//jjjxo3jxIkTHDlyxKJKuSkpKbzzzjscOHCAo0ePotfr+eST\nT7QOq04PPvgg8fHxVfYtW7aMUaNGcerUKe644w6WLVumUXT1qyn+0aNHc+zYMQ4fPkyPHj3497//\nrVF0daspdjC0M3/33XcEBgaadJ82l0RuHINia2trHEdiKbp06ULfvn0B6NChAxEREWRk1NaPpvVJ\nS0tjy5YtzJ492+I6N1y9epWdO3fy0EMPAYaq044dO2oclelcXV2xtbWlqKgInU5HUVERfn5+WodV\np2HDhuHu7l5l341jxGbMmMHGjRu1CM0kNcU/atQorKwMH60xMTGkpaVpEVq9aood4IknnuCFF14w\n+T5tLonUNr7EEqWkpHDw4EFiLGGI/TV/+ctfWL58ufGPyJIkJyfTuXNnHnzwQfr378+cOXMoKirS\nOiyTeXh48Ne//pWAgAB8fX1xc3Nj5MiRWodltosXL+Lt7Q2At7c3Fy9erOeK1mvNmjWMGzdO6zBM\ntmnTJvz9/YmMjDT5Gsv7S6+HJVah1KSgoIB77rmHV199lQ4dOmgdjkm+/vprvLy86Nevn8WVQgB0\nOh0HDhzgT3/6EwcOHMDZ2blVV6Xc7MyZM6xYsYKUlBQyMjIoKCjgww8/1DqsRlEUxWL/pp999lns\n7OyYPn261qGYpKioiOeee67K+C5T/o7bXBIxZQxKa1deXs6kSZO4//77ufvuu7UOx2S//vormzdv\nJjg4mGnTpvHDDz/wwAMPaB2Wyfz9/fH39yc62jCVyz333MOBAwc0jsp0+/btY8iQIXh6emJjY8PE\niRP59ddftQ7LbN7e3mRmZgJw4cIFvLy8NI7IfOvWrWPLli0WlcTPnDlDSkoKffr0ITg4mLS0NAYM\nGEBWVl3DJdtgErH0cSSqqjJr1ix69uzJggULtA7HLM899xypqakkJyfzySefcPvttxvH+liCLl26\n0LVrV06dOgXA9u3bueWWRszX0sLCw8PZtWsXxcXFqKrK9u3b6dmzp9ZhmS0uLo733nsPgPfee8+i\nvkiBYZbx5cuXs2nTJhwcHLQOx2S9e/fm4sWLJCcnk5ycjL+/PwcOHKg/iTdxr7FWYcuWLWqPHj3U\nbt26qc8995zW4Zhl586dqqIoap8+fdS+ffuqffv2Vbdu3ap1WGZLSEhQ77rrLq3DMNuhQ4fUqKio\nVt89szbPP/+8sYvvAw88oJaVlWkdUp2mTp2q+vj4qLa2tqq/v7+6Zs0a9fLly+odd9xhEV18b47/\n3XffVUNDQ9WAgADj3++8efO0DrNGlbHb2dkZf/c3Cg4ONqmLb5tdlEoIIUTza3PVWUIIIVqOJBEh\nhBANJklECCFEg0kSEUII0WCSRESbYW1tTb9+/Yw/58/XtbyS5Vi3bh2dO3fm4YcfbtR9lixZwksv\nvWTc3rVrV633LCkpoW/fvtjb23PlSl3LP4n2TpOp4IVoDk5OThw8WPN6hZWdEC1x9LOiKEybNo2V\nK1dWO6bT6bCxMe3P+Ob3vnXrVsaOHVvjuQ4ODhw6dIjg4GDzAxbtipRERJuVkpJCWFgYM2bMoHfv\n3qSmprJ8+XIGDhxInz59WLJkifHcZ599lrCwMIYNG8b06dON39hjY2PZv38/ANnZ2cYPVb1ez9/+\n9jfjvd5++20AEhISiI2N5d577yUiIoL777/f+Iy9e/dy66230rdvXwYNGkRBQQEjRozg8OHDxnOG\nDh3K0aPVF5K9sSf+unXriIuL44477mDUqFEUFhYycuRIBgwYQGRkJJs3b67xfSUmVl3A9ocffmDk\nyJEcO3aMmJgY+vXrR58+fThdueC4ECaQkohoM4qLi+nXrx8AISEhvPzyy5w+fZr333+fgQMHsm3b\nNk6fPs2ePXuoqKhg/Pjx7Ny5EycnJzZs2MDhw4cpLy+nf//+REVFAbXP3fTuu+/i5ubGnj17KC0t\nZejQoYwePRqAQ4cOcfz4cXx8fLj11lv59ddfiYqKYurUqXz66acMGDCAgoICHB0dmTVrFuvWreOV\nV17h1KlTlJaW0rt373rf68GDBzl69Chubm7o9Xq+/PJLXFxcyM7OZvDgwcTFxbF///5a31d2dja2\ntra4uLjw1ltv8fjjjzN9+nR0Oh06na6p/klEOyBJRLQZjo6OVaqzUlJSCAwMZODAgQBs27aNbdu2\nGRNNYWEhSUlJ5OfnM3HiRBwcHHBwcDBpmpxt27Zx9OhRPvvsMwDy8vI4ffo0tra2DBw4EF9fXwD6\n9u1LcnIyLi4u+Pj4MGDAAADjpJr33HMPzzzzDMuXL2fNmjU8+OCD9T5bURRGjx6Nm5sbABUVFTz1\n1FPs3LkTKysrMjIyuHjxIjt37qz2vipLNNu2bWPMmDEADBkyhGeffZa0tDQmTpxIaGho/b9sIa6R\n6izRpjk7O1fZfuqppzh48CAHDx7k1KlTxrVDbqwuuvG1jY0NFRUVgKGx+UarVq0y3uvMmTOMHDkS\nVVWxt7c3nmNtbY1Op6u1LcbJyYlRo0axceNG/vvf/3LfffeZ9L6cnJyMrz/88EOys7M5cOAABw8e\nxMvLi5KSEhRFqfa+KuOIj4/nD3/4AwDTpk3jq6++wtHRkXHjxrFjxw6TYhACJImIdmTMmDGsWbOG\nwsJCwLD2zKVLlxg+fDgbN26kpKSE/Px8vv76a+M1QUFB7Nu3D8BY6qi81xtvvGGs+jl16lSta48o\nikJYWBgXLlww3is/Px+9Xg/A7Nmzeeyxxxg4cKBJi2DdPFNRXl4eXl5eWFtbs2PHDs6dO4eiKLW+\nL1VVOXLkCH369AEM66gEBwfz6KOPMn78+BrbZISojVRniTajpm/7N+4bNWoUJ06cYPDgwQC4uLjw\nwQcf0K9fP6ZMmUKfPn3w8vIiOjra+EG9cOFCJk+ezNtvv80f//hH4/1mz55NSkoK/fv3R1VVvLy8\n+PLLL2ttQ7G1tWXDhg08+uijFBcX4+TkxHfffYezszP9+/enY8eOJlVlVb6nG59x3333cddddxEZ\nGUlUVJRxSd+b31dltd7+/fuNVXoAn376Ke+//z62trb4+PiwaNEik+IQAkAmYBTiJkuXLqVDhw78\n9a9/bZHnZWRkcNttt1XrPVXpvffeY9++fbz22mtN8rxnn32W7t27M3ny5HrPDQ4OZv/+/Xh4eDTJ\ns0XbI9VZQtSgpcaTrF+/nkGDBvHcc8/Veo6joyNbt25t9GDDSosWLao3gVQONtTpdBa51LFoOVIS\nEUII0WDyFUMIIUSDSRIRQgjRYJJEhBBCNJgkESGEEA0mSUQIIUSDSRIRQgjRYP8fk3L47sAbKMwA\nAAAASUVORK5CYII=\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": " Estimated autocovariance\n----------------------------\nObviously knowing the spectrum one can compute the covariance\nfunction. The following code will compute the covariance for the \nunimodal spectral density S1 and compare it with estimated \ncovariance of the signal xx." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nLmax = 85\nR1 = S1.tocovdata(nr=1) \nRest = ts.tocovdata(lag=Lmax)\nR1.plot('.')\nRest.plot()\naxis([0, 25, -0.1, 0.25])\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcU9f7B/BPGA42yE5QZAhYZShoHVgc4MaJ4h4I1tbR\n2lbbWlu0v7rtUL+to9YtBbUVaxURFbfgtlQREBGMgCgbkRHO74+UhDCUhJAAed6vly9zkjue3IT7\n5Jxzz7kcxhgDIYQQIiU1ZQdACCGkeaIEQgghRCaUQAghhMiEEgghhBCZUAIhhBAiE0oghBBCZEIJ\nhBA56tKlCy5cuKDsMJoUXV1dpKSkKDsM0ggogRC58fLygpGREUpLS6VaT01NDcnJyTLvt7S0FMHB\nwejUqRN0dHTQsWNHBAQE4MmTJzJvU1ZxcXHo16+fwvdbl5kzZ6J169bQ1dUV/Tt06FCj7c/Lyws7\nd+6UeK6goADW1taNtk+iPJRAiFykpKQgNjYWpqamOHbsmNTrN2Q86/jx43H8+HGEhIQgPz8fd+/e\nhbu7O86cOSPzNqVVXl6usH1Jg8PhYOnSpSgoKBD98/Pza9T9EdVBCYTIxd69ezFo0CBMmzYNe/bs\nkXit+q/S3bt3w9PTEwBEv9ZdXFwkfh3v2LED9vb2aNeuHUaNGoX09PRa9xsVFYWoqCiEh4eje/fu\nUFNTg56eHubNm4fZs2cDAJ49ewZfX1+0a9cO9vb2+PXXX0XPa2lpIScnR7S927dvw8TEBAKBAI8e\nPcKAAQNgbGwMExMTTJ06FXl5eaJlra2tsW7dOjg7O0NXVxcCgQDW1tY4e/YsACA2Nha9evWCoaEh\nLC0tsWDBApSVlYnWV1NTw7Zt29CpUycYGhpi/vz5Eu9tx44d6Ny5M/T09PDOO+/g9u3borjHjRsH\nU1NT2NjYYPPmzfX9mERmzpyJ5cuXi8rR0dGwsrKSeG8bN26Ei4sLDAwM4O/vj5KSEtHr4eHhcHV1\nhb6+Puzs7HDq1CksW7YMFy9exPz586Grq4uFCxeK3mdlDTMvLw/Tp0+HqakprK2t8d1334l+POze\nvRt9+/bFZ599BiMjI9jY2CAiIkLq90YUiBEiB7a2tmz//v0sISGBaWpqsszMTNFrXl5ebOfOnaLy\nrl27WN++fUVlDofDHj16JCqfOXOGGRsbs9u3b7OSkhK2YMEC1q9fv1r3u3TpUubl5fXG2Dw9PdmH\nH37ISkpK2J07d5iJiQk7e/YsY4yxAQMGsB07doiW/fTTT9m8efMYY4wlJSWxqKgoVlpayrKysli/\nfv3YRx99JFq2Q4cOzM3NjT19+pS9fv2aMcaYtbU1O3PmDGOMsZs3b7KYmBgmEAhYSkoKc3JyYj/+\n+KPE+x45ciTLy8tjqampzMTEhEVERDDGGAsLC2NcLpfduHFDFMuTJ0+YQCBg3bp1Y99++y0rKytj\nycnJzMbGhp06darW9z5z5kz21Vdf1fr88uXLReVz584xHo8nKltbW7OePXuy9PR0lp2dzZycnNjW\nrVsZY4zFxMQwfX19FhUVxRhjjM/ns/j4eMZYzc+68n1Wfr7Tpk1jo0ePZoWFhSwlJYV16tRJtPyu\nXbuYpqYm+/XXX1lFRQX75ZdfmKWlZa3vizQNVAMhDXbp0iXw+Xz4+vrC3t4enTt3xsGDB2Xe3oED\nBxAQEABXV1e0atUKq1evxtWrV5Gamlpj2ZcvX8Lc3LzObaWlpeHKlStYu3YtWrVqBRcXF8yZMwd7\n9+4FAEyePBkhISEAhM1ooaGhmDx5MgDA1tYWAwcOhKamJoyNjfHxxx/j/Pnzom1zOBwsXLgQXC4X\nrVu3rrHvbt26oUePHlBTU0OHDh0QFBQksT4AfP7559DT04OVlRX69++Pu3fvAgB+/fVXLF26FN27\ndxfF0r59e1y/fh0vXrzAV199BQ0NDXTs2BFz5szB77//Xuv7Z4xhw4YNMDQ0hKGhIUxNTUXPs7c0\nGy5cuBDm5uYwNDTEyJEjcefOHQDAzp07ERAQgIEDBwIALC0t4eDgILHP2ggEAoSGhmL16tXQ1tZG\nhw4d8Mknn2Dfvn2iZTp06ICAgABwOBxMnz4d6enpeP78+RvjJMpDCYQ02J49e+Dj4wNdXV0AgJ+f\nX41mLGmkp6ejQ4cOorK2tjbatWsHPp9fY1ljY+M6m7cAYXOPkZERtLW1Rc+1b99etK2xY8fi6tWr\nyMjIwIULF6Cmpoa+ffsCADIzM+Hv7w8ejwd9fX1MmzYNL1++lNh+1Waf6hISEjBixAhYWFhAX18f\ny5Ytq7F+1eSnpaWFwsJCAMDTp09ha2tbY5tPnjzBs2fPRAnB0NAQq1evrvMky+Fw8NlnnyEnJwc5\nOTmi5erTV1E1trZt26KoqOiNsVXdZ21evHiBsrIyic+26mdRfZ9aWloAIDompOmhBEIapLi4GGFh\nYTh79iwsLCxgYWGBjRs34u7du7h37x4AYQKoPPkAQEZGxhu3aWlpKXHZZ1FREV6+fAkul1tj2UGD\nBiE2NrbW5FK5rezsbImTUGpqKng8HgDA0NAQPj4+CA0NxcGDBzFp0iTRcl9++SXU1dURFxeHvLw8\n7Nu3DxUVFRLbf9OJeN68eejcuTOSkpKQl5eH7777rsb6dbGyskJSUlKN59u3b4+OHTuKEkJOTg7y\n8/Nx/PjxOrdVW41AW1sbr169EpXf9pnUJzbgzcfD2NgYmpqaEp9t1c+CND+UQEiDHD16FBoaGnjw\n4AHu3r2Lu3fv4sGDB/D09BQ1E7m6uuKPP/5AcXExkpKSalzmaWZmhkePHonKkyZNwq5du3D37l2U\nlJTgyy+/xLvvvov27dvX2P/AgQPh7e2NMWPG4NatWygvL0dBQQG2bt2KXbt2wcrKCr1798YXX3yB\nkpIS3Lt3D7/99humTp0q2sbkyZOxZ88eHDlyRNR8BQh/+Wpra0NPTw98Ph/r16+X6tgUFhZCV1cX\nWlpaiI+Pxy+//PLG5as2K82ZMwcbNmzArVu3wBhDUlISUlNT0aNHD+jq6mLdunUoLi6GQCBAXFwc\nbty4Uec2a+Pq6ooTJ04gJycHGRkZ+PHHH9/6fiq3FRAQgF27duHs2bOoqKgAn8/Hw4cPAdT8LKtS\nV1fHhAkTsGzZMhQWFuLJkyf44YcfJD4L0rxQAiENsnfvXsyePRs8Hg+mpqYwNTWFmZkZ5s+fj4MH\nD6KiogIff/wxWrVqBTMzM8yaNQtTp06V+KUaHByMGTNmwNDQEIcPH8bAgQPx7bffYty4cbC0tMTj\nx4/rbOMHgMOHD2PYsGGYOHEiDAwM0LVrV9y6dQve3t4AgJCQEKSkpMDS0hJjx47FypUrMWDAANH6\nvr6+SEpKgoWFBbp27Sp6/ptvvsGtW7egr6+PkSNHYty4cVJdprphwwYcPHgQenp6CAoKgr+/v8T6\n1bfF4XBEz40fPx7Lli3D5MmToaenh7FjxyInJwdqamo4fvw47ty5AxsbG5iYmCAoKAj5+fm1xlB1\nm1VNmzYNLi4usLa2xpAhQ2rE9qbteHh4YNeuXfj4449hYGAALy8vUf/UokWLcPjwYRgZGeGjjz6q\nsZ3NmzdDW1sbNjY28PT0xJQpUzBr1qw6Y6XLgps2DntbTxohhBBSC6XUQCIiIuDo6Ah7e3usXbu2\nxusHDhyAi4sLnJ2d0adPH1FbOiC8Pt3Z2Rlubm7o0aOHIsMmhBBShcJrIAKBAA4ODoiKigKXy4WH\nhwdCQkLg5OQkWubq1avo3Lkz9PX1ERERgeDgYFy7dg0A0LFjR9y8eRNGRkaKDJsQQkg1Cq+BxMbG\nws7ODtbW1tDU1IS/vz/Cw8MllunVqxf09fUBAD179sTTp08lXqdWN0IIUT6FJxA+ny9x7TyPx6vz\nEkxAOGhp2LBhojKHw8GgQYPg7u6OHTt2NGqshBBC6qah6B1Kc1XFuXPn8Ntvv+Hy5cui5y5fvgwL\nCwtkZWXB29sbjo6OonmVZNkHIYQQMWlaeBReA+FyuUhLSxOV09LSah1IdO/ePQQGBuLYsWMwNDQU\nPW9hYQEAMDExwZgxYxAbG1vrfiqvqVf1f998843SY2gq/+hY0LGgY/Hmf9JSeAJxd3dHYmIiUlJS\nUFpaitDQUPj6+kosk5qairFjx2L//v2ws7MTPf/q1SsUFBQAEI5OjoyMlLhunxBCiOIovAlLQ0MD\nW7ZsweDBgyEQCBAQEAAnJyds27YNADB37lysXLkSOTk5mDdvHgBAU1MTsbGxyMjIwNixYwEI778w\nZcoU+Pj4KPotEEIIQQsdSMjhcGSqjrVE0dHR8PLyUnYYTQIdCzE6FmJ0LMSkPXdSAiGEEAJA+nMn\nzYVFCCFEJpRACCGEyIQSCCGEEJlQAiGEECITSiCEEEJkQgmEEEKITCiBEEIIkQklEEIIITKhBEII\nIUQmLTaBDBsG5OYqOwpCCGm5WmwCOXkSCApSdhSEENJytdi5sLq9W4AzJ3VgYKDsaAghpHmgubD+\n88GPxyl5EEJII2qxCeSvx78rOwRCCGnRWmwCOZdyDrmvqRedEEIaS4tNIAM6DsDR+KPKDoMQQlqs\nFptA/N/xR+i/ocoOgxBCWqwWm0BGdBqBq2lX8eLVC2WHQgghLVKLTSDarbQxxG4Ijtw/ouxQCCGk\nRWqxCQQAsi/4Y+n+EBqVTgghjaBFJ5DiuMHI072Kk6fKaVQ6IYTIWYtOILpt2gKF5ujaNxXbtys7\nGkIIaVmUkkAiIiLg6OgIe3t7rF27tsbrBw4cgIuLC5ydndGnTx/cu3ev3utWdfAgYKphh+BNSTQq\nnRBC5EzhCUQgEGD+/PmIiIjA/fv3ERISggcPHkgsY2NjgwsXLuDevXtYvnw5gv5rf6rPulUZGACj\n37NDRmlSo74nQghRRQpPILGxsbCzs4O1tTU0NTXh7++P8PBwiWV69eoFfX19AEDPnj3x9OnTeq9b\nnb2RPZKyKYEQQoi8aSh6h3w+H1ZWVqIyj8dDTExMncvv3LkTw4YNk3rd4OBgAED8i3ikGqYCg+UQ\nPCGEtCDR0dGIjo6WeX2FJxAOh1PvZc+dO4fffvsNly9flnrdygQS9zwOEw5NkCpGQghRBV5eXvDy\n8hKVV6xYIdX6Ck8gXC4XaWlponJaWhp4PF6N5e7du4fAwEBERETA0NBQqnWrsjG0wePcxxBUCKCu\npi6nd0EIIUThfSDu7u5ITExESkoKSktLERoaCl9fX4llUlNTMXbsWOzfvx92dnZSrVudlqYW2rVt\nB34Bv1HeDyGEqCqF10A0NDSwZcsWDB48GAKBAAEBAXBycsK2bdsAAHPnzsXKlSuRk5ODefPmAQA0\nNTURGxtb57pvY2dkh6TsJLTXb9+o740QQlRJi72lbdW3NefYHPTg9kBQdxqOTgghdaFb2taisgZC\nCCFEflQmgSRmJyo7DEIIaVFUJoFQDYQQQuRLJRKIraEtHmU/QgWrUHYohBDSYqhEAtFtrQu91npI\nL0hXdiiEENJiqEQCAagZixBC5I0SCCGEEJmoVgLJoQRCCCHyoloJhGoghBAiN5RACCGEyERlEoit\noS2SspOkGqZPCCGkbiqTQAzbGqK1ems8L3qu7FAIIaRFUJkEAgDqeXYYMiURw4YBubnKjoYQQpo3\nlUogLMcadx6n4uRJIIgm5iWEkAZRqQSiXcEFdPnw8AC2b1d2NIQQ0rypVAIJnMiDXfeniIwEDAyU\nHQ0hhDRvKpVA7E15cO77lJIHIYTIgUolEK4eF/x8ujc6IYTIg0olEJ4eD0/znyo7DEIIaRFUKoFY\n6FjgedFzlFeUKzsUQghp9lQqgWiqa6KdVjtkFmYqOxRCCGn2VCqBANSMRQgh8qJyCYSrywW/gDrS\nCSGkoZSSQCIiIuDo6Ah7e3usXbu2xuvx8fHo1asX2rRpg40bN0q8Zm1tDWdnZ7i5uaFHjx5S75tq\nIIQQIh8ait6hQCDA/PnzERUVBS6XCw8PD/j6+sLJyUm0TLt27bB582YcPXq0xvocDgfR0dEwMjKS\naf9UAyGEEPlQeA0kNjYWdnZ2sLa2hqamJvz9/REeHi6xjImJCdzd3aGpqVnrNhoyJTvVQAghRD4U\nXgPh8/mwsrISlXk8HmJiYuq9PofDwaBBg6Curo65c+ciMDCw1uWCg4NFj728vODl5QVAOJiQEggh\nhADR0dGIjo6WeX2FJxAOh9Og9S9fvgwLCwtkZWXB29sbjo6O8PT0rLFc1QRSFU+PR6PRCSEEkj+u\nAWDFihVSra/wJiwul4u0tDRROS0tDTwer97rW1hYABA2c40ZMwaxsbHS7f+/PhC6MyEhhDSMwhOI\nu7s7EhMTkZKSgtLSUoSGhsLX17fWZauf5F+9eoWCggIAQFFRESIjI9G1a1ep9q/dShttNNoguzhb\ntjdACCEEgBKasDQ0NLBlyxYMHjwYAoEAAQEBcHJywrZt2wAAc+fORUZGBjw8PJCfnw81NTX89NNP\nuH//Pp4/f46xY8cCAMrLyzFlyhT4+PhIHUNlR3o7rXZyfW+EEKJKOKwFtuVwOJw3NlEN2T8EC3os\nwPBOwxUYFSGENG1vO3dWp3Ij0YH/OtJpLAghhDSIyiYQupSXEEIaRiUTCI1GJ4SQhlPJBEI1EEII\naTiVTCA0Gp0QQhpOJRMIjUYnhJCGU8kEYtjGECWCEhSWFio7FEIIabZUMoFwOByqhRBCSAOpZAIB\nqCOdEEIaSmUTCFeXOtIJIaQhVDaB0Gh0QghpGJVNIBf+5uJ/+55i2DAgN1fZ0RBCSPOjsgkkL42L\nZwXPcPIkEBSk7GgIIaT5UdkEoq9mCeg+g4cHsH27sqMhhJDmR2UTyLYNlmhr+gyRkYCBgbKjIYSQ\n5kdlE4gD1xzlrZ9DV0+g7FAIIaRZUtkE0kq9FfTb6OPFqxfKDoUQQpollU0gAGCpa4lnBc+UHQYh\nhDRLlEAogRBCiEwogVACIYQQmah0ArHQsUB6YbqywyCEkGZJpRMI1UAIIUR2lEAogRBCiEyUkkAi\nIiLg6OgIe3t7rF27tsbr8fHx6NWrF9q0aYONGzdKta40KIEQQojsFJ5ABAIB5s+fj4iICNy/fx8h\nISF48OCBxDLt2rXD5s2b8emnn0q9rjQogRBCiOwUnkBiY2NhZ2cHa2traGpqwt/fH+Hh4RLLmJiY\nwN3dHZqamlKvKw0zbTNkvcqCoIJGoxNCiLQ0FL1DPp8PKysrUZnH4yEmJkbu6wYHB4see3l5wcvL\nq8YymuqaMGprhOdFz2Gha1G/N0AIIS1EdHQ0oqOjZV5f4QmEw+EoZN2qCeRNKpuxKIEQQlRN9R/X\nK1askGp9hTdhcblcpKWlicppaWng8XiNvm5dqB+EEEJko/AE4u7ujsTERKSkpKC0tBShoaHw9fWt\ndVnGmMzr1hcNJiSEENkovAlLQ0MDW7ZsweDBgyEQCBAQEAAnJyds27YNADB37lxkZGTAw8MD+fn5\nUFNTw08//YT79+9DR0en1nUbgmoghBAiGw6r/jO/BeBwODVqL3XZemMrbqXfwvaRdFtCQohqk+bc\nCaj4SHSAaiCEECIrSiC6ltQHQgghMlD5BGKhY0E1EEIIkUGdCWTmzJmix3v27FFELEphpmOGF69e\noLyiXNmhEEJIs1JnArl7967o8Y8//qiQYJRBQ00DxlrGyCzMVHYohBDSrKh8ExZAHemEECKLOseB\nPH36FAsXLgRjDHw+X/QYEF7qtWnTJoUF2dhoMCEhhEivzgSyfv160dxT3bt3b9AcVk0d1UAIIUR6\ndSaQiRMnoqCgAKamphLPP3/+HLq6uo0emCJRAiGEEOnV2QeycOFCXLx4scbzly9fxuLFixs1KEWj\nBEIIIdKrM4HcvHkT48aNq/H8mDFjcP78+UYNStFoMCEhhEivzgTy6tWrOleqqKholGCUhQYTEkKI\n9OpMIKamprXe7S82NrZGv0hz98NKS/yb+gzDhgG5ucqOhhBCmoc6O9E3bNiACRMmYObMmejevTsY\nY7h58yb27NmD0NBQRcbY6NLiTVHWLwcnI0sRFNQKYWHKjogQQpq+OmsgPXr0QExMDCoqKrB7927s\n2bMHjDHs3bu3xU1toq2lDhSZwrlPOrbTrO6EEFIv9bofyK1bt3Dw4EEcOnQIHTt2xLhx47BgwQJF\nxCcTaee0z80FbFf3xMEZP2Bw596NGBkhhDRd0p4762zCevjwIUJCQhAaGgoTExP4+fmBMYbo6Gh5\nxNmkGBgA73XjIp/xlR0KIYQ0G3UmECcnJ4wYMQKnTp1C+/btAQDff/+9wgJTNK4eF/wCSiCEEFJf\ndfaB/PHHH2jbti369euH999/H2fOnJGqatPccHUpgRBCiDTqTCCjR49GaGgo4uLi4OnpiR9++AFZ\nWVmYN28eIiMjFRmjQnB1ueDnUwIhhJD6eut07jo6OpgyZQqOHz+OtLQ0uLm5Yc2aNYqITaF4ejyq\ngRBCiBTqdRVWcyPtlQQAkPAyAcMODEPSwqRGiooQQpo2ac+ddEOp/1T2gbTAfEoIIY1CKQkkIiIC\njo6OsLe3x9q1a2tdZuHChbC3t4eLiwtu374tet7a2hrOzs5wc3NDjx495BaTditttFZvjezibLlt\nkxBCWrI6L+NtLAKBAPPnz0dUVBS4XC48PDzg6+sLJycn0TInTpxAUlISEhMTERMTg3nz5uHatWsA\nhFWs6OhoGBkZyT22ykt522m1k/u2CSGkpVF4DSQ2NhZ2dnawtraGpqYm/P39ER4eLrHMsWPHMGPG\nDABAz549kZubi8zMTNHrjdXMRFdiEUJI/Sm8BsLn82FlZSUq83i8GrP+1rYMn8+HmZkZOBwOBg0a\nBHV1dcydOxeBgYG17ic4OFj02MvLC15eXm+NjQYTEkJUSXR0dINmF1F4AqnvvdXrqmVcunQJlpaW\nyMrKgre3NxwdHeHp6VljuaoJpL6oBkIIUSXVf1yvWLFCqvUV3oTF5XKRlpYmKqelpYHH471xmadP\nn4LL5QIALC0tAQAmJiYYM2YMYmNj5RcbjUYnhJB6U3gCcXd3R2JiIlJSUlBaWorQ0FD4+vpKLOPr\n64u9e/cCAK5duwYDAwOYmZnh1atXKCgoAAAUFRUhMjISXbt2lVts1IRFCCH1p/AmLA0NDWzZsgWD\nBw+GQCBAQEAAnJycsG3bNgDA3LlzMWzYMJw4cQJ2dnbQ1tbGrl27AAAZGRkYO3YsAKC8vBxTpkyB\nj4+P3GKjJixCCKk/GoleRWZhJrr80gVZn2U1QlSEENK00Uj0BjDRNkF+ST5el79WdiiEENLkUQKp\nQo2jBnMdczwreKbsUAghpMmjBFIN9YMQQkj9UAKphq7EIoSQ+qEEUg3VQAghpH4UfhlvU0eDCUl9\nPC96jrOPz+Je5j3czbyLR9mPoN9GHyZaJjDVNkUvXi/4OvjCTMdM2aES0mgogVTD1ePiRvoNZYdB\nmqAKVoHTj05jx60diEqOgpe1F9zM3RDYLRB2RnYoKClA1qssZBRm4GzKWSyJWoLOJp0xpesUzHab\njTYabZT9FgiRK0og1VATFqmuglXg0L+HsPzccui00kFgt0Ds9N0J/Tb6da4T1D0IJeUlOJdyDv+7\n/j+svrQaX/T9AgFuAWit0VqB0RPSeGggYTVJ2Unw3ueNx4seyzkq0hxFJUfh86jPAQBrB63FQJuB\nMm3nOv86gs8H49/n/2Kn706Zt0NIY5L23EkJpJrismIYrDXA62Wv6z1zMGl50gvSsShiEW6m38Tq\ngasxvvN4qHEafs1J5KNIzA6fjQnvTMCqgauoWYs0KTQSvYHaaraFTisdvHj1QtmhECWoYBXYcXMH\nXLa6wM7IDnHz4jDhnQk1kkdQEODlBQwbBsycKX6cmyv5Wm6u5PZ9bH1w9/27SM1LhccOD8S/iFfQ\nOyNE/qgPpBZcXS6e5j+FibaJskMhCpTwMgFBfwWhuLwYUdOj4GzmLPF6UBCQkABoaQH5+cDly8Ln\nTUyArCzxMs+fA+fPC8vdugHt2wvXOXgQMDAA2mm1wyG/Q/j11q/w2u2FPyb+gd5WvRX4TgmRD6qB\n1CInlYvp8/m1/oIkLU+ZoAyrLq5C7529MdZpLK7MvgJnM+caNYmEBGFiOHkSePRIuK6HB+DiIn68\nfbswWVSWLS3F6wQFiffJ4XAQ2D0Qu0fvxqjfR+Fo/FGFvmdC5IESSC0E2VaIS0ut8UdPWhbGGI7G\nH4XbNjdcTL2Im0E3sbDnQqirqQOQTBhBQZKJ4do1wM8PiIwEDh0SPzYwENY0Kst6euJ1tLRqNm0N\nsRuCk1NO4oO/P8D2m9sVfxAIaQDqRK+Fw5xVSHiSB4+8taKTAmk5GGM49egUlp9bjjJBGb7t/y1G\ndBoBDocj0UxVVgZERQlP/pGRwnWDgoS1jPp+Jyr7RLZvB0aPFjdt+fkJt1G5r+9+foRRf/bHN+99\ng4BuAY3zxgl5C7oKCw1PIDuuHcC3YX/h3te/U/JoQeJfxOPAPwdw4N4BaLfSxtf9vsa4zuPw/ly1\nWvs2Ro0CWrWSLmG8ybBhwtpMZUKqnlD+75cE9N/TH+sGrcMU5ykN3yEhUpL23Emd6LXobGkNy84p\nlDyauczCTJx/ch7RKdE4l3IOea/zMKnrJByZcASu5q6iy7Qrm6oAwNxc+L+HB7B7t3xrnwcPStZg\nqjaJCZ/rhMipkRi0bxDaaLTBuM7j5LdzQhoB9YHUooNBBzzJe6L4HQsEwn+VXrwAiovFZT4fKCoS\nl1NTgf/uEQ8AePKkccspKZLlx4+FP9krJScDeXniclKSZDkhQfKqhIcPpS/n5NRaLhWU4sqlEKyL\nWoHxYePR4ccOcNzUCftv7oKdkR2c7h/AwN9PIW39V/jpCzf078/B+57/Iu9xtuhEPvGdOMSefCnu\nz3hyV/gZVLp1S3y5FQDExgovuap0+TKQkSEunz8PPBPfW8bgRhTCvn8qSkphAafw/vA0REYCS5YA\nS7uewPqJOgjzPYkPTnyAyIPfCj+DSn//LfwM6ls+flyy/NdfkuXwcOFnWOnPPyXLR44IP9NKYWHi\nqwcA4Pcx57FoAAAgAElEQVTfhZ9xpZAQIDFRXD54UPiZVzpwQLK8f3/N8sOH4vK+fc2rrIIogdTC\nQscC2cXZ0t+Z8MULyRN8VJTkCWDjRuD2bXE5MBA4e1ZcHj1a3NgOAIsXA1euiMvBwcD16+LyqlXC\nk1qlNWsat7xunWR5wwbgzh1x+fvvgXv3xOVNmyTLP/8MxMWJy1u3Sl++f19UfLZtAzaeXA7vfd5o\nt64dZhz+CAf2xiHpr7H4Y1QUfv89AO1/+ApR3y7G87vd4HJjD/hR93HihPDcbntpN9YHxIs6vXcP\n3Aur4gSEhf1X8wgJkTxBVj+hnjgh+fmeOydM8pWuXQMyM8Xle/eAly9FRZ2n8fhlVY6oL6QoLhk3\no/OxeZkrDvsdxpSkdbj55Jp4/ZQUoLCw/uXUVMny06eS5YwM4NUrcTkrS/IHS24uUFIiLhcVCTuG\nKpWUSP7gKS8HKirE5aqPa6OmVrNc9TkNjeZVVkGq3Qdy9arwOssOHYTllSuFl8n06wfbTbY4mdoP\nnQZPBry9ha8vWgQMHw74+AjLs2cDY8YAI0cKy3PmAOPHA0OGCMubNgF9+woHAwDCE4y9PcDjCct8\nvvBMpa0tl/etCsorynHo30PYdWcXrj+7DtOXY9Dq0RiYl3qiOMdA1H/h5yc5HsPcXHi+9PAA9PUl\nO8ebQlNl9f6RJUuAK9l/IsnhQ1wNvAg3a1tlh0hUgNT9x6wFqvNt3brF2D//iMs//sjYxYvi8p07\njGVkMMYY67+7P4u8vJexnBzx66mpjOXlicu5uYyVlMgxclIXQYWA/f7P78xhswMz/8KTOfmFMJ/h\nRaxPH8YA4T9zc+H/Hh7Cj23oUHE5JYUxPz/h8zk54sdNRfWY3nvvv/fl/gvT/sKWZRRkKDU+Urv0\ngnT2c+zPLP91vrJDkQtpU4JqdaInJgJt2gBdugjLixZJvl45IgyAtYE1Ulq/lvx5amUlubx+3bOx\nEvmJeRqDucfnQlNdE5uGbsJ3Ad64cJ6DB5Ds9D50CPjsM3EndfVO67Aw8TarPm4Kqscn6mDnvA8v\nz2cYETIC52acg04rHeUESESe5j/FHw/+wOH7h/HP838wzH4YRjqMhG5rXWWHpnAtuwmrrEzYMTdz\nJiDlxIgrolegrKIM/zfg/xonSPJWggoB1lxag++iNsE6fhM6FE5AyEEOJk8WN/dUTxotRdXxI58t\nYTiuFgBBm0zc/zocxkaq9buvKUjLS8ORB0dw6P4hxL+Ix8hOI+HX2Q+DbAbVe3r+qmOMTE2FXVZV\np7hpCprFZbwRERH46KOPIBAIMGfOHCxdurTGMgsXLsTJkyehpaWF3bt3w83Nrd7ripSXAw8eAK9f\nA23bShVjB4MOOPP4jFTrNDWzg4px99l9qOvkQMsoB1lZALd4KML26zSZL2xdUvNSMfWPqdBQ04BL\nzE1ci+ThAYR/hG+qWbQUVd9XYgIHGRe3AZN80WPlPDz6YTvNFK0AyTnJoppGYnYifB188ZXnVxho\nMxCt1FuJlqsrMVRPElUvF686f1r1+dKWLKnf9prC37DCayACgQAODg6IiooCl8uFh4cHQkJC4OTk\nJFrmxIkT2LJlC06cOIGYmBgsWrQI165dq9e6QMMHEgJAdEo0lp9bjouzLjZoO8rAGEP4w3D471mE\nklwD4JUxWjEDlFa8AnjXYP16LLqWz0ZeXG9oa3GazJex0u302+j7ywiYpcyHw4slKC9Tb3Kd3opU\n2cHe7d1CpPR/D7r8Ueic9XWT+9yau+dFz3El7QpOJ59G5KNI8LMKYJDpC17+eDi27o/UFM1aT+RV\nB4RWTQxVH/v5CS+Aq6w5V72Qo1Ur1Hnxx5u2V3UmgzclmqoJ6W3fmSbfiX7lyhU2ePBgUXn16tVs\n9erVEsvMnTuX/f7776Kyg4MDS09Pr9e6jP3XEVRc3KA4k7OTmdX3Vg3ahjJMfD+ZGc0fwbSXOrBu\n486IOpEHDRJ2yrr2TWfBp9eyNktsGfxHMWhnMD8/ZUctdib5DDNZZ8I6jz8k6hwfNarpdXorUtUO\n9l7e6QwLbRi6bW9Sn1tTFhgovChh6FDhMZwV+Ip1H3aXuU4JY66LVjLjD8axNl+0Z62WGzDDBYOZ\nw6z17GLCHdbvPYHoO2hiwmp97OcnebFG5d9Z9cfVL96o+rjq+tXLb9qe6EKLt8RXdbmOHSWPRdVj\nM2NGM+hE5/P5sKrSGc3j8RATE/PWZfh8Pp49e/bWdSsF/9//Ca/TBuDl5QUvLy+p4uTp8ZBRmIEy\nQRk01TWlWldZHmU/wh+GfVB2aSFw5QisRrSCrZ+wqQeobPYxh4HBElz9YRFOlayAxgIXDB+7BcB4\npcYOAIMWheGCzny4JYVBL9cL99E4I8Kbm6rNWQYa5sD+CGgG9cPo8aYARik1NkV7Uz/CkiXAwwQG\nTb2XaG2RhMc5T1Chk4Z8PEW6WRqgnwrzjakoNc8D07QFXjqgbbIDilPGAvzVMFa3w4ssDnIAbCoE\ntKvMFFC1xlD1seTfVt2PRYNHa7mQo3qTbNXym7anVc/4Jk8WL9eqlbh2IzyW0bh7NxqAeHtSkXu6\nf4vDhw+zOXPmiMr79u1j8+fPl1hmxIgR7NKlS6LywIED2Y0bN+q1LmPSZ9G6WH1vxZKzk+WyrcaW\nU5zDHLc4sndm/CzxK6XO5f/7BRR5/yrTX9aJmc2dyQYPe620X/n77u5jrb6wYDC7Q7WON6j83M7G\nX2cm60zYyA8vSfyibAmq/yqu+v6q/po26vCMwe4EQ+91rMNH05nuYneGz/UZPtdnGh90Z/AbzzD4\nY6brs5GhcxhzGhTD4p+msyFDBQ2qMTSVy8DrG590tR3pzp0KTyBXr16VaIZatWoVW7NmjcQyc+fO\nZSEhIaKyg4MDy8jIqNe6jFU5CCUljH37rczNWX1/68vOPT4n07qKVCYoYz77fNiCEwtk+nL37V/I\nMHE0w8z32Cj/l40XaB32393PLDZYMM+x/9Yr+RGhU0mnmOaXpqKk25ybtKomjapje0TNMZpFzGtG\nNLMP+D8G/1FMcymXaS4zYpg+kJlN/4j9dHEHe9fvCkPbF8zdo0IiGVQdA8RY008MjelNySUnpxkk\nkLKyMmZjY8MeP37MSkpKmIuLC7t//77EMn///TcbOnQoY0yYcHr27FnvdRmrchCKi4WDBSsqZIp1\n6h9T2a7bu2RaV1ECAxmznPMhM/5oMMt6WSbTNoYOZQyccmY+/ROm96UD6zE4SSG/aAMDGXP0O8Ba\nf2nBriTFqcQfsLy5Tglj+MScden/b41f601NfWsW5uaMQa2UOfpcYB1nf8UwpydT+0qLuW/tyT4M\nX8zeDQhjd1KSWXZ2Rb0SA6m/Jp9AGGPsxIkTrFOnTszW1patWrWKMcbY1q1b2datW0XLfPjhh8zW\n1pY5OzuzmzdvvnHd6uo8CMeOMXbyZL3jXHZmGQs+F1zv5ZWhy9i/GBbYM7TOlfkXaNU/NvtJPzN8\nYs7AjWn0X7ROfgcZPrFgMIlr1r+elSknh7Eec/Yxyw1c5jEkQaLztCl4a82iakd0q3xm4/s7G77b\nj2ku12cuP3djHx3/nL038wzjPy9S9ltRCc0igTS2Og/C5cuM3bghLm/fzti1a+Lyw4eMvRQ34ew4\nt5HNPDRV/HpWFmNFVb7IJSWMCQRyilp6peWlTHupA4P9cbk1+wwdyhg6HWMaXxizQ7frn2yltf/u\nftb6SwsG03+oyUoOdtzcwdp80Z7B8BHz8Kj5C78xSVWzqNbf0O3dfLb96gE2bO8oprFclw3aNYTt\nuLmDZRZmNm7QpFaUQJgUByEqirHERHF56VLhc/+JXDic9d/oLH49MJCxv/8WlydOZOzIEXF54ULG\nTp8Wl3fsYOzuXXH52jXG0tPF5ezsBs2ltSVmC3tv50A23q9CbieJytpIxL+Xmdl6M+a1cK9cT0SB\ngYw5TtjHWn9pwSJvx1EzgxxtPP8La7PMkp2LvyFx4vbzq3kpa0NJVbOo1heR+aKEHbhxlPE+Hs/0\nVumxofuHst23d7OcYvoiKBslECa/q7AevnjIbH6yqf8KT54IJ1isFB7OWFKSuLxyJWMxMeLy5MmM\nRUSIyxMmMBYZKS4HBTEWHS0uL1womvwxtziXmX6txe6c3C1+ffFixqpcvdbQ8v1PZzDdJeYMXl8z\ncAQsvNMnkst/+qmwVlfps88Yu3JFXF66lLGrV8XlL75g/X2XMSy2ZDD5lx1x/FKyBvillOVly95c\n/uoryfLy5ZLH/+uvJcvffMNYbKy4vGIFY9evi8vffSdZg127VjhBZ6WNG4UTclbatImxe/fE5V9+\nYSwuTlzevp2xf/8Vl3fuZKxqn95vvzH24IG4vGvXW8t/nN7EjNcZs+7+f7Pp2M3Gd3kgqglMx27W\nCfGisQDrnfeyJaMfihJB4fb9bNkEcflnz4NsskeCqGYR7PQ7m90vUbS98QhjNkgS1SyW2B5m03on\niRJG4d4jLO/2I+bnx1h2dgW7tn8t+zBkGjNeZ8w8f/Nk236dx148EDdPs6NHGUtOrn85PLxplVsA\nac+dNKnOG7TXb4+n+U8hqBBAXU29Hiu0lyz7+kqWly+XLB84IFn+9VegdZV5dZYtAwwNxeX584XD\nUQGsurQKw22HwKVnlX3MmSOeXVAOZafZS+H1yef4y3ou9DvfwLmMr7B9iSMq9P8b0TpzJmBhIV5/\n+nTJ8uTJwunyIZzX6st30hFbEQ3sPAOPjo7w3jAesOGJlx8/XjzVfX3KY8dKTnBZvTx6tORn4usr\nWR4xQjyVPyAc8l31dW9vye316yd6PwCAHj2EgxEqde0KtGsnLtvZSU64aWkpOXV/u3bCyT0r6ekJ\nL9SvpKMjGssEQHih/lvKY6z7wsLRA6MxBtaCYdi5tDf0/xsz8Bpt0KWrGjL1hGMBLKCB5DQOYv+7\nR9fOl0AKA87/d8uZjrpluFFQgQQIv3bDsopx9YEAQUHC7emiAN26lGHDceF8ZN945qK8RylebxSO\nP9A+nI3Ekofo/MFe9Nh/AGp5BZjq6IfYObHoaNhRuJCgyvc9I0N4zOpbfvYMsLVtOmVV1EiJTKnk\n+bbMN5iztLw0uW1PHvzff8w0lhmx/r78Rm/+yclhbJxfKZt39CPWZqkNg8VNqTtpZwTlMaP5w5nR\nYi92Kz6Lmq0UIOFFAnPb6sYG7xvMUnJS6hwLUH3sgyyjqqtLzU1l6y+vZ922dWNm683YopOL2HX+\ndVYh49WQRHGkPXdSAnmLd399l118cvHtCyqQRVAgQ/+vFH61jcvUgwyfmTCT2YFswuz0OtvUK9vH\nhwytYAdvhrO2nzkwDH+fQa20yVwdpApKy0vZqgurWLu17diWmC2stLyUMVb/QWfSXBb7JPcJ+/7K\n96zXr72Y0VojFhAewE4/Os3KBLJdWk6UQ9pzZ8uezl0O/A/7Y2SnkZjiPEUu22uo7OJsmK2yRfkP\n8fDobKbQyQVzc4GZ7+fAasp32BqzC+WXFwAPxmB8vy4wNFAXTTGRly/AlecRgFcw9NuVwjZ1BW4d\nHK2ykyEq24OsB5h/cj4SXibgA/cPENg9EMZaxg3apqBCgOvPruNE4gmcSDyBlNwUjHIcBb/OfhjQ\ncYDEbLWk+ZD23EkJ5C2WRi2Ffmt9fOn5pVy211AbrmzA9bS7YEf2KfUeGF5jHuF82Qa0cTqH1u0y\noc7vjexsDmCUBBikAC8cYctfjtg9Y6DGUasxJxBRvNvpt7EpdhOOxh/FIJtB8LHxgY+tDzoYdHjr\nukWlRYh7HoeLqRdxMfUiLqVegoWOBYZ3Go7h9sPRi9er2cwZR+pGCQTyTSB9P/4Fya9uwzVtu9Kn\nzxZUCGC/2R4h40LQk9dTeYFA8oZHJRqZGDr3Em7f1MA7lrY4vMMGX3+hRQmjicoqysLfiX/jdPJp\nnH50Gm0128LG0AZWelbg6fFQwSrwquwVisqKwM/nI/5FPDKLMuFo7Ig+Vn3g2d4Tnh08Yalr+fad\nkWaFEgjkm0Ccx57CP7rrgL1n4Oen3JsX/fXwL3x74VvEBsYqL4g6VE0olDSajwpWgeScZKTmpSI1\nLxX8fD7UOGrQ0tSCdittmGmbwcnECR0NOtbvSkTSrFECgXwTSP/RTxBt2xseF/lKb7/32eeDac7T\nMM1lmvKCIIS0WNKeO9UaMZYW4cguK6jr5OLwX/lKTR7xL+JxN/MuJrwzQXlBEEJIFZRA3sLIUA1d\nLTshs/yhUuMYt3YL2vwbiDG+rZGbq9RQCCEEACWQenE0dkT8i3il7f91+WsktD6I1D/m4uRJYV8D\nIYQoGyWQenAydkL8S+UlkL8e/gX9V92AfCuJ22gSQogyUQKpB0djRzzIeqC0/e//Zz9Wjp8KPz8a\niEcIaToogdSDMpuwXrx6geiUaEztPhZhYZQ8CCFNByWQerA3skdyTjLKBGUK3/ehfw9hqN1Q6LXW\nU/i+CSHkTSiB1ENbzbbg6nHxOPexwve9/5/9mOZM4z4IIU0PJZB6UkY/SHJOMhJfJsLH1keh+yWE\nkPqgBFJPyugHOXDvACZ2mUiT1BFCmiS6I2E9ObZzxJWnVxS2v8AghgOG++GavBe5vajznBDS9FAN\npJ4UXQO5lX4TxcUVuHq4Bw0cJIQ0SZRA6snJxAnxL+LlNknj2+RYhgJx/vDw4NDAQUJIk6TQBJKd\nnQ1vb2906tQJPj4+yK1jUqeIiAg4OjrC3t4ea9euFT0fHBwMHo8HNzc3uLm5ISIiQlGhw1jLGOoc\ndWQWZTb6vhhjKHMIgw93Ag0cJIQ0WQpNIGvWrIG3tzcSEhIwcOBArFmzpsYyAoEA8+fPR0REBO7f\nv4+QkBA8eCC8+onD4WDx4sW4ffs2bt++jSFDhigyfIU1Y117eg26rbURsbcLJQ9CSJOl0ARy7Ngx\nzJgxAwAwY8YMHD16tMYysbGxsLOzg7W1NTQ1NeHv74/w8HDR68q8fYmiEkjov6GY+M5EcDicRt8X\nIYTISqFXYWVmZsLMzAwAYGZmhszMms1BfD4fVlZWojKPx0NMTIyovHnzZuzduxfu7u7YuHEjDOr4\niR4cHCx67OXlBS8vrwbH72Ts1OgJpIJV4ND9Qzgz/Uyj7ocQQqKjoxEdHS3z+nJPIN7e3sjIyKjx\n/HfffSdR5nA4tf7CftOv7nnz5uHrr78GACxfvhyffPIJdu7cWeuyVROIvDgaOyIyOVLu263qcupl\nGGsZw9HYsVH3Qwgh1X9cr1ixQqr15Z5ATp8+XedrZmZmyMjIgLm5OdLT02FqalpjGS6Xi7S0NFE5\nLS0NPB4PACSWnzNnDkaOHCnHyN/O0dgRVx7Gw8sL0NICDh6Ufwd3ZfMVIYQ0dQrtA/H19cWePXsA\nAHv27MHo0aNrLOPu7o7ExESkpKSgtLQUoaGh8PX1BQCkp6eLlvvzzz/RtWtXxQT+H2sDa7zivMD5\na3mNcmOnOUECbL90GKe+n0B3HSSENHkKTSCff/45Tp8+jU6dOuHs2bP4/PPPAQDPnj3D8OHDAQAa\nGhrYsmULBg8ejM6dO2PixIlwcnICACxduhTOzs5wcXHB+fPn8cMPPygyfKirqUO/qDvAjW2UGzvd\neH4BZS+5uHDUjgYPEkKaPA5T5mVNjYTD4TTa1Vof//0FIk+0xuXvguXefNX+g7lIu2cLj9IlNP6D\nEKJw0p47aSS6lAbY9Qb33StyP7mXlJegsMNhDG8/iZIHIaRZoAQipV5WvRDDj4GgQiDX7Z5IPAEX\nc2ccP2hFyYMQ0ixQApGSsZYxLHQsEPc8Tq7b3f/PfkztOlWu2ySEkMZECUQGva1640qa/KZ2zynO\nQVRyFMZ1Hie3bRJCSGOjBCKDPlZ9cDntsty2d+TBEXjbeMOgDbVdEUKaD0ogMpB3DWT/vf2Y6kzN\nV4SQ5oUSiAwcjB2QV5KH9IL0ty/8Fql5qYh7HoehdkPlEBkhhCgOJRAZqHHU0IvXSy61kPErDqJV\n0niM8W1No88JIc0KJRAZ9bbq3eB7pDPG8K/GPqSfmtIoU6MQQkhjogQioz5WfXA5tWEd6eefnAeH\nw4DUvo0yNQohhDQmSiAy8uB64J/n/6C4rFjmbWyK2YQVwxfAz49Do88JIc0OJRAZaWlqQbvoHfQe\nfxPDhkHq/ouU3BScf3Iec9+dhrAwSh6EkOaHEkgDtH3mjTuv/5Sp/+Ln6z9jputM6LTSaZzgCCGk\nkVECaYCOubMBl73o3vO1VP0XRaVF+O32b/jQ48PGC44QQhoZJZAGOLrLFmbMDXN/PFLvJqigIMBt\nxgGoP+sDI45N4wZICCGNiBJIAxgYAP+bNRf7Hmyr9zoPExgSDTfj+bGFdNkuIaRZowTSQL4OvkjM\nTsT9rPv1Wr7Q8i+Aw+BuPIAu2yWENGuUQBpIU10Ts91mY/vNt2eD/JJ8PHefj/eKNuN0JIeuvCKE\nNGt0S1s5SMlNgft2d6R9nIa2mm3rXG7e3/NQXlGOHSN3KCw2QgipL7qlrRJYG1ijbY4H3KYeqnNM\nyPmU8/jr4V9Y771e8QESQkgjoAQiJwYJ8/HQ4hucvB5fo3N8dlAxhv4yB2Y3/ge8pnYrQkjLoKHs\nAFoKq+LhiDv/HBqB72HqpBAEBQ1AQgJQYfQAcRZLUfzYDbcOjUJQORAWpuxoCSGk4RRaA8nOzoa3\ntzc6deoEHx8f5NYx/8fs2bNhZmaGrl27yrS+Mhw8CPjZz8Ifk35H4KlJiHq9FudN/XDR1gtlj3sC\n4b8pZcLE6Ohoxe6wCaNjIUbHQoyOhewUmkDWrFkDb29vJCQkYODAgVizZk2ty82aNQsREREyr68M\nBgbCmsXIrv1xYeYFFLSLBtJ6o9ulZMT9sgx+o3SUMmEi/XGI0bEQo2MhRsdCdgpNIMeOHcOMGTMA\nADNmzMDRo0drXc7T0xOGhoYyr69sDsYOSPzmJPysPsaZk9ro0AE0YSIhpMVRaB9IZmYmzMzMAABm\nZmbIzMxU6PqKVFkjIYSQlkru40C8vb2RkZFR4/nvvvsOM2bMQE5Ojug5IyMjZGdn17qdlJQUjBw5\nEv/884/oOUNDw3qtz+FwGvIWCCFEZUmTEuReAzl9+nSdr5mZmSEjIwPm5uZIT0+HqampVNuu7/ot\ncGwkIYQ0OQrtA/H19cWePXsAAHv27MHo0aMVuj4hhBD5UehUJtnZ2ZgwYQJSU1NhbW2NsLAwGBgY\n4NmzZwgMDMTff/8NAJg0aRLOnz+Ply9fwtTUFCtXrsSsWbPqXJ8QQogSsBbm5MmTzMHBgdnZ2bE1\na9YoOxyl6tChA+vatStzdXVlHh4eyg5HoWbNmsVMTU1Zly5dRM+9fPmSDRo0iNnb2zNvb2+Wk5Oj\nxAgVp7Zj8c033zAul8tcXV2Zq6srO3nypBIjVIzU1FTm5eXFOnfuzN555x32008/McZU83tR17GQ\n9nvRoiZTFAgEcHBwQFRUFLhcLjw8PBASEgInJydlh6YUHTt2xM2bN2FkZKTsUBTu4sWL0NHRwfTp\n00UXYixZsgTGxsZYsmQJ1q5di5ycnCY1lqix1HYsVqxYAV1dXSxevFjJ0SlORkYGMjIy4OrqisLC\nQnTv3h1Hjx7Frl27VO57UdexCAsLk+p70aLmwoqNjYWdnR2sra2hqakJf39/hIeHKzsspWpBvw+k\nUttYouYyjkje6hpXpWrfDXNzc7i6ugIAdHR04OTkBD6fr5Lfi7qOBSDd96JFJRA+nw8rKytRmcfj\niQ6KKuJwOBg0aBDc3d2xYwdNId+cxhEpwubNm+Hi4oKAgIAmNS2QIqSkpOD27dvo2bOnyn8vKo/F\nu+++C0C670WLSiA0/kPS5cuXcfv2bZw8eRL/+9//cPHiRWWH1GRwOByV/r7MmzcPjx8/xp07d2Bh\nYYFPPvlE2SEpTGFhIcaNG4effvoJurq6Eq+p2veisLAQ48ePx08//QQdHR2pvxctKoFwuVykpaWJ\nymlpaeDxeEqMSLksLCwAACYmJhgzZgxiY2OVHJFyVY4jAiDTOKSWxNTUVHSynDNnjsp8N8rKyjBu\n3DhMmzZNNAxAVb8Xlcdi6tSpomMh7feiRSUQd3d3JCYmIiUlBaWlpQgNDYWvr6+yw1KKV69eoaCg\nAABQVFSEyMjIGrMbqxoaRySWnp4uevznn3+qxHeDMYaAgAB07twZH330keh5Vfxe1HUspP5eNOq1\nYkpw4sQJ1qlTJ2Zra8tWrVql7HCUJjk5mbm4uDAXFxf2zjvvqNyx8Pf3ZxYWFkxTU5PxeDz222+/\nsZcvX7KBAweq1OWajNU8Fjt37mTTpk1jXbt2Zc7OzmzUqFEsIyND2WE2uosXLzIOh8NcXFwkLlNV\nxe9FbcfixIkTUn8vWtRlvIQQQhSnRTVhEUIIURxKIIQQQmRCCYQQQohMKIEQQgiRCSUQQqSko6Mj\n922qq6ujW7duEpdRVvfZZ5/BwsICGzdulPv+CZGFQm9pS0hL0BgjlbW0tHDr1q03LrN+/fpGSV6E\nyIpqIITIwV9//YV3330X3bp1g7e3N54/fw4AyMrKgre3N7p06YLAwEBYW1vXeRvnSgKBADNnzkTX\nrl3h7OyMH3/8URFvgRCpUQIhRA48PT1x7do13Lp1CxMnTsS6desACKdNHzRoEOLi4jB+/Hikpqa+\ndVt37tzBs2fP8M8//+DevXuYNWtWY4dPiEyoCYsQOUhLS8OECROQkZGB0tJS2NjYABBOaFk5Pfjg\nwYNrnVa9OltbWyQnJ2PhwoUYPnw4fHx8GjV2QmRFNRBC5GDBggVYuHAh7t27h23btqG4uFj0mrST\nPRgYGODevXvw8vLC1q1bMWfOHHmHS4hcUAIhRA7y8/NhaWkJANi9e7fo+T59+iAsLAwAEBkZiZyc\nnLdu6+XLlygvL8fYsWPx7bffvrVznRBloSYsQqT06tUriRuXLV68GMHBwfDz84OhoSEGDBiAJ0+e\nANmL9cQAAAC4SURBVAC++eYbTJo0Cfv27UOvXr1gbm5e4x4U1fH5fMyaNQsVFRUA0OJvr0qaL0og\nhEhJIBDU+nxttw7Q19fHqVOnoK6ujqtXr+LGjRvQ1NR84/adnZ1x8+bNWl+juU9JU0JNWIQ0otTU\nVHh4eMDV1RWLFi2q89bCenp69RpIeODAARoLQpoMms6dEEKITKgGQgghRCaUQAghhMiEEgghhBCZ\nUAIhhBAiE0oghBBCZEIJhBBCiEz+H72XH4/yYkS0AAAAAElFTkSuQmCC\n" - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "We can see in Figure below that the covariance function corresponding to the spectral density S2 significantly differs from the one estimated directly from data. It can be seen in Figure above that the covariance corresponding to S1 agrees much better with the estimated covariance function." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nR2 = S2.tocovdata(nr=1)\nR2.plot('.')\nRest.plot()\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX/P/DXsLiA7JtsggoKKCAKmilFClqW5B5q5oLK\nx1LLyq99sgXtZ6nlx0z7pLmFmoT1SbFSxA0xUzFFUdEUFYERXFgUhViG8/uDGHZlhmEGmNfz8eAR\n5845577vjM2be+6550qEEAJEREQK0tF0AERE1DIxgRARkVKYQIiISClMIEREpBQmECIiUgoTCBER\nKYUJhEiFevbsifj4eE2H0awYGRkhNTVV02FQE2ACIZUJCAiAubk5iouLFWqno6OD69evK73f4uJi\nhIeHo1u3bujQoQM6d+6M0NBQ3Lx5U+k+lXXhwgU888wzat9vfaZMmYK2bdvCyMhI/vPjjz822f4C\nAgKwcePGatvy8/Ph7OzcZPskzWECIZVITU1FQkICrK2tsXv3boXbN+Z+1jFjxuDXX39FZGQkHjx4\ngHPnzsHX1xcHDx5Uuk9FlZaWqm1fipBIJFiwYAHy8/PlP2PHjm3S/ZH2YAIhldiyZQsCAwMxadIk\nREREVHut5l+l3333Hfz9/QFA/te6t7d3tb+O169fD1dXV1hYWODll19GZmZmnfs9cOAADhw4gOjo\naPTp0wc6OjowNjbGrFmzMG3aNADArVu3EBwcDAsLC7i6umLDhg3y7QYGBsjNzZX3l5iYCCsrK8hk\nMly7dg2DBg2CpaUlrKys8Oqrr+L+/fvyus7Ozli+fDm8vLxgZGQEmUwGZ2dnHDp0CACQkJCA/v37\nw8zMDHZ2dpgzZw5KSkrk7XV0dLBu3Tp069YNZmZmmD17drVjW79+PTw8PGBsbIwePXogMTFRHvfo\n0aNhbW2NLl26YPXq1Q39mOSmTJmCDz/8UF6Oi4uDo6NjtWNbsWIFvL29YWpqipCQEBQVFclfj46O\nRq9evWBiYgIXFxfs27cPCxcuxNGjRzF79mwYGRlh7ty58uOsOMO8f/8+XnvtNVhbW8PZ2RlLliyR\n//Hw3XffYeDAgZg/fz7Mzc3RpUsXxMTEKHxspEaCSAW6du0qtm3bJq5cuSL09fXF7du35a8FBASI\njRs3ysubN28WAwcOlJclEom4du2avHzw4EFhaWkpEhMTRVFRkZgzZ4545pln6tzvggULREBAwGNj\n8/f3F2+88YYoKioSZ8+eFVZWVuLQoUNCCCEGDRok1q9fL6/77rvvilmzZgkhhEhJSREHDhwQxcXF\n4u7du+KZZ54Rb731lryuk5OT8PHxERkZGeLvv/8WQgjh7OwsDh48KIQQ4vTp0+LkyZNCJpOJ1NRU\n4e7uLr788stqxz18+HBx//59kZaWJqysrERMTIwQQogdO3YIe3t78eeff8pjuXnzppDJZKJ3797i\nk08+ESUlJeL69euiS5cuYt++fXUe+5QpU8QHH3xQ5/YPP/xQXj58+LBwcHCQl52dnUW/fv1EZmam\nyMnJEe7u7mLt2rVCCCFOnjwpTExMxIEDB4QQQkilUnH58mUhRO3PuuI4Kz7fSZMmiREjRoiHDx+K\n1NRU0a1bN3n9zZs3C319fbFhwwZRVlYmvvnmG2FnZ1fncVHzwDMQarTff/8dUqkUwcHBcHV1hYeH\nB7Zv3650f99//z1CQ0PRq1cvtGnTBp999hmOHz+OtLS0WnWzs7PRsWPHevtKT0/HH3/8gWXLlqFN\nmzbw9vbG9OnTsWXLFgDAhAkTEBkZCaB8GC0qKgoTJkwAAHTt2hWDBw+Gvr4+LC0tMW/ePBw5ckTe\nt0Qiwdy5c2Fvb4+2bdvW2nfv3r3Rt29f6OjowMnJCTNnzqzWHgDee+89GBsbw9HREc899xzOnTsH\nANiwYQMWLFiAPn36yGPp1KkTTp06hXv37uGDDz6Anp4eOnfujOnTp+OHH36o8/iFEPjiiy9gZmYG\nMzMzWFtby7eLJwwbzp07Fx07doSZmRmGDx+Os2fPAgA2btyI0NBQDB48GABgZ2eH7t27V9tnXWQy\nGaKiovDZZ5/B0NAQTk5OeOedd7B161Z5HScnJ4SGhkIikeC1115DZmYm7ty589g4SXOYQKjRIiIi\nMGTIEBgZGQEAxo4dW2sYSxGZmZlwcnKSlw0NDWFhYQGpVFqrrqWlZb3DW0D5cI+5uTkMDQ3l2zp1\n6iTva9SoUTh+/DiysrIQHx8PHR0dDBw4EABw+/ZthISEwMHBASYmJpg0aRKys7Or9V912KemK1eu\n4KWXXoKtrS1MTEywcOHCWu2rJj8DAwM8fPgQAJCRkYGuXbvW6vPmzZu4deuWPCGYmZnhs88+q/dL\nViKRYP78+cjNzUVubq68XkOuVVSNrX379nj06NFjY6u6z7rcu3cPJSUl1T7bqp9FzX0aGBgAgPw9\noeaHCYQapbCwEDt27MChQ4dga2sLW1tbrFixAufOnUNSUhKA8gRQ8eUDAFlZWY/t087Ortq0z0eP\nHiE7Oxv29va16gYGBiIhIaHO5FLRV05OTrUvobS0NDg4OAAAzMzMMGTIEERFRWH79u0YP368vN77\n778PXV1dXLhwAffv38fWrVtRVlZWrf/HfRHPmjULHh4eSElJwf3797FkyZJa7evj6OiIlJSUWts7\ndeqEzp07yxNCbm4uHjx4gF9//bXevuo6IzA0NERBQYG8/KTPpCGxAY9/PywtLaGvr1/ts636WVDL\nwwRCjbJr1y7o6enh0qVLOHfuHM6dO4dLly7B399fPkzUq1cv/PzzzygsLERKSkqtaZ42Nja4du2a\nvDx+/Hhs3rwZ586dQ1FREd5//3089dRT6NSpU639Dx48GEFBQRg5ciTOnDmD0tJS5OfnY+3atdi8\neTMcHR3x9NNP49///jeKioqQlJSETZs24dVXX5X3MWHCBEREROB///uffPgKKP/L19DQEMbGxpBK\npfj8888Vem8ePnwIIyMjGBgY4PLly/jmm28eW7/qsNL06dPxxRdf4MyZMxBCICUlBWlpaejbty+M\njIywfPlyFBYWQiaT4cKFC/jzzz/r7bMuvXr1wp49e5Cbm4usrCx8+eWXTzyeir5CQ0OxefNmHDp0\nCGVlZZBKpfjrr78A1P4sq9LV1cW4ceOwcOFCPHz4EDdv3sTKlSurfRbUsjCBUKNs2bIF06ZNg4OD\nA6ytrWFtbQ0bGxvMnj0b27dvR1lZGebNm4c2bdrAxsYGU6dOxauvvlrtL9Xw8HBMnjwZZmZm+Omn\nnzB48GB88sknGD16NOzs7HDjxo16x/gB4KeffsKwYcPwyiuvwNTUFJ6enjhz5gyCgoIAAJGRkUhN\nTYWdnR1GjRqFxYsXY9CgQfL2wcHBSElJga2tLTw9PeXbP/74Y5w5cwYmJiYYPnw4Ro8erdA01S++\n+ALbt2+HsbExZs6ciZCQkGrta/YlkUjk28aMGYOFCxdiwoQJMDY2xqhRo5CbmwsdHR38+uuvOHv2\nLLp06QIrKyvMnDkTDx48qDOGqn1WNWnSJHh7e8PZ2RnPP/98rdge14+fnx82b96MefPmwdTUFAEB\nAfLrU2+++SZ++uknmJub46233qrVz+rVq2FoaIguXbrA398fEydOxNSpU+uNldOCmzeJeNKVNCIi\nojpo5AwkJiYGbm5ucHV1xbJly2q9/v3338Pb2xteXl4YMGCAfCwdKJ+f7uXlBR8fH/Tt21edYRMR\nURVqPwORyWTo3r07Dhw4AHt7e/j5+SEyMhLu7u7yOsePH4eHhwdMTEwQExOD8PBwnDhxAgDQuXNn\nnD59Gubm5uoMm4iIalD7GUhCQgJcXFzg7OwMfX19hISEIDo6ulqd/v37w8TEBADQr18/ZGRkVHud\no25ERJqn9gQilUqrzZ13cHCodwomUH7T0rBhw+RliUSCwMBA+Pr6Yv369U0aKxER1U9P3TtUZFbF\n4cOHsWnTJhw7dky+7dixY7C1tcXdu3cRFBQENzc3+bpKyuyDiIgqKTLCo/YzEHt7e6Snp8vL6enp\ndd5IlJSUhBkzZmD37t0wMzOTb7e1tQUAWFlZYeTIkUhISKhzPxVz6lviz8cff6zxGBi/5uPQttgZ\nv+Z/FKX2BOLr64urV68iNTUVxcXFiIqKQnBwcLU6aWlpGDVqFLZt2wYXFxf59oKCAuTn5wMovzs5\nNja22rx9IiJSH7UPYenp6WHNmjUYOnQoZDIZQkND4e7ujnXr1gEAwsLCsHjxYuTm5mLWrFkAAH19\nfSQkJCArKwujRo0CUP78hYkTJ2LIkCHqPgQiIkIrvZFQIpEodTrWXMTFxSEgIEDTYSiN8WtOS44d\nYPyapuh3JxMIEREBUPy7k2thERGRUphAiIhIKUwgRESkFCYQIiJSChMIEREphQmEiIiUwgRCRERK\nYQIhIiKlMIEQEZFSWm0CGTYMyMvTdBRERK1Xq00ge/cCM2dqOgoiotar1a6F5ecnEBsLmJpqOhoi\nopaBiymi/E04d/MGvDo5azoUIqIWg4sp/iMx54imQyAiatVabQKJT4vXdAhERK1aq00gR1J5BkJE\n1JRabQLJ+zsP0gdSTYdBRNRqtdoE4u/kjyM3eRZCRNRUWm0CedbpWcTf5HUQIqKm0moTSPzWZ7E1\n/gjvSCciaiKtNoFkX/RCQbtr2BtbxDvSiYiaQKtNIIYGusBDG3gNyMK332o6GiKi1kcjCSQmJgZu\nbm5wdXXFsmXLar3+/fffw9vbG15eXhgwYACSkpIa3LbC9u2Aub4dPl97i8uZEBE1AbUnEJlMhtmz\nZyMmJgbJycmIjIzEpUuXqtXp0qUL4uPjkZSUhA8//BAz/xmDakjbCqamwDO97fAQmU1+TERE2kjt\nCSQhIQEuLi5wdnaGvr4+QkJCEB0dXa1O//79YWJiAgDo168fMjIyGty2KtsOtriVf6vpDoaISIvp\nqXuHUqkUjo6O8rKDgwNOnjxZb/2NGzdi2LBhCrcNDw/H5ZuXcb7sPHoW9ERAQIBqDoCIqJWIi4tD\nXFyc0u3VnkAkEkmD6x4+fBibNm3CsWPHFG4bHh6OTYmbEH8znsmDiKgOAQEB1b4fFy1apFB7tScQ\ne3t7pKeny8vp6elwcHCoVS8pKQkzZsxATEwMzMzMFGpbwc7IDpkPeQ2EiKgpqP0aiK+vL65evYrU\n1FQUFxcjKioKwcHB1eqkpaVh1KhR2LZtG1xcXBRqWxWvgRARNR21n4Ho6elhzZo1GDp0KGQyGUJD\nQ+Hu7o5169YBAMLCwrB48WLk5uZi1qxZAAB9fX0kJCTU27Y+dkZ2TCBERE2k1T6RUAiBMlGGdv+v\nHR78+wHa6bXTdFhERM0an0hYhY5EB7ZGtsh6mKXpUIiIWp1WnUAAXgchImoqrT6B8DoIEVHTYAIh\nIiKlaEUC4b0gRESq1+oTCK+BEBE1jVafQDiERUTUNLQigWTmcwiLiEjVtCKB8AyEiEj1Wn0CMW9v\njkclj1BYUqjpUIiIWpVWn0AkEglsO9hyJhYRkYq1+gQC8DoIEVFT0JoEIs2XajoMIqJWRSsSSPIp\nayz89C6GDQPy8jQdDRFR66AVCaTgniVSpPewdy8wc6amoyEiah20IoEYwAIwyIafH/Dtt5qOhoio\nddCKBDIvzBKO3e8hNhYwNdV0NERErYNWJJBOlpZw632PyYOISIW0IoFYGljiXsE9TYdBRNSqaEUC\nsTCwQHZhtqbDICJqVbQigfAMhIhI9bQigRjqG0JWJuN6WEREKqQVCUQikXAYi4hIxTSSQGJiYuDm\n5gZXV1csW7as1uuXL19G//790a5dO6xYsaLaa87OzvDy8oKPjw/69u3b4H1yGIuISLX01L1DmUyG\n2bNn48CBA7C3t4efnx+Cg4Ph7u4ur2NhYYHVq1dj165dtdpLJBLExcXB3Nxcof0ygRARqZbaz0AS\nEhLg4uICZ2dn6OvrIyQkBNHR0dXqWFlZwdfXF/r6+nX2IYRQeL8W7S2QXcAhLCIiVVH7GYhUKoWj\no6O87ODggJMnTza4vUQiQWBgIHR1dREWFoYZM2bUWS88PFz+e0BAAM9AiIhqiIuLQ1xcnNLt1Z5A\nJBJJo9ofO3YMtra2uHv3LoKCguDm5gZ/f/9a9aomEAA4dPgQEwgRURUBAQEICAiQlxctWqRQe7UP\nYdnb2yM9PV1eTk9Ph4ODQ4Pb29raAigf5ho5ciQSEhIa1M7SwJKzsIiIVEjtCcTX1xdXr15Famoq\niouLERUVheDg4Drr1rzWUVBQgPz8fADAo0ePEBsbC09Pzwbt16K9Bc9AiIhUSO1DWHp6elizZg2G\nDh0KmUyG0NBQuLu7Y926dQCAsLAwZGVlwc/PDw8ePICOjg5WrVqF5ORk3LlzB6NGjQIAlJaWYuLE\niRgyZEiD9strIEREqiURykxpauYkEkmts5fTt05jxi8zcCbsjIaiIiJq3ur67nwcrbgTHeCCikRE\nqqY1CYRDWEREqqU1CYQLKhIRqZbWJBAuqEhEpFpak0AADmMREakSEwgRESlF6xIIF1QkIlINrUog\nvBudiEh1tCqBcAiLiEh1tC6BcBYWEZFqaFUC4RAWEZHqaFUC4RAWEZHqaFUC4Y2ERESqo1UJ5ItP\nzJF8PQfDhgF5eZqOhoioZdOqBJJxxQJ/62Rj715g5kxNR0NE1LJpVQIxamsM6BWiT98SfPutpqMh\nImrZtCqBRG6XoK0ww/adOTA11XQ0REQtm1YlEFNTwNnGHDL9HE2HQkTU4mlVAgHKZ2LlFDKBEBE1\nltYlEPP25pzKS0SkAlqZQHgGQkTUeFqXQCzaW3BJdyIiFdC6BGLe3hw5f/MMhIiosTSSQGJiYuDm\n5gZXV1csW7as1uuXL19G//790a5dO6xYsUKhtk/CMxAiItVQewKRyWSYPXs2YmJikJycjMjISFy6\ndKlaHQsLC6xevRrvvvuuwm2fhNdAiIhUQ+0JJCEhAS4uLnB2doa+vj5CQkIQHR1drY6VlRV8fX2h\nr6+vcNsn4SwsIiLV0FP3DqVSKRwdHeVlBwcHnDx5UuVtw8PD5b8HBAQgICAAAO8DISKqEBcXh7i4\nOKXbqz2BSCQStbStmkCq4hAWEVG5qn9cA8CiRYsUaq/2ISx7e3ukp6fLy+np6XBwcGjythV4EZ2I\nSDXUnkB8fX1x9epVpKamori4GFFRUQgODq6zrhBC6bb16dCmA4pkRSgqLVL6GIiISANDWHp6eliz\nZg2GDh0KmUyG0NBQuLu7Y926dQCAsLAwZGVlwc/PDw8ePICOjg5WrVqF5ORkdOjQoc62ipBIJPJh\nLFsj26Y4RCIirSARNf/MbwUkEkmts5eqPL72wI9jf0QP6x5qjIqIqHl70ndnTVp3JzrAqbxERKqg\nlQmEU3mJiBpPKxMIp/ISETVevQlkypQp8t8jIiLUEYvamLc351ReIqJGqjeBnDt3Tv77l19+qZZg\n1MWivQVX5CUiaiStHcLiGQgRUePUex9IRkYG5s6dCyEEpFKp/HegfKrXV199pbYgVc2iPS+iExE1\nVr0J5PPPP5evPdWnT59GrWHV3HAaLxFR49WbQF555RXk5+fD2tq62vY7d+7AyMioyQNrSpyFRUTU\nePVeA5k7dy6OHj1aa/uxY8fw9ttvN2lQTc3CgAsqEhE1Vr1LmfTu3Rtnzpyps5GHhweSk5ObNLDG\neNLt+A+LH8L6c2sULCxQY1RERM2bypYyKSio/8u1rKxMsaiaGUN9Q8iEDIUlhZoOhYioxao3gVhb\nW9f5tL+EhIRa10Vamqor8hIRkXLqvYj+xRdfYNy4cZgyZQr69OkDIQROnz6NiIgIREVFqTPGJmHR\n3gLZhdmwN7bXdChERC1SvWcgffv2xcmTJ1FWVobvvvsOEREREEJgy5YtrWJpk+wMC7wWlo1hw4C8\nPE1HQ0TU8jz2TnQbGxssXrwYCxcuROfOnREREYGPPvpI4Yc4NUelDyxw7mo29u4FZs7UdDRERC1P\nvUNYf/31FyIjIxEVFQUrKyuMHTsWQgjExcWpMbym015YAgb34OcHfPutpqMhImp56j0DcXd3x5kz\nZ7Bv3z7Ex8djzpw50NXVVWdsTWr0MAv09MtGbCxgaqrpaIiIWp56E8jPP/+M9u3b45lnnsG//vUv\nHDx4UKH5wc2dvZkFgl7OZvIgIlJSvQlkxIgRiIqKwoULF+Dv74+VK1fi7t27mDVrFmJjY9UZY5Ow\nNLDEvYJ7mg6DiKjFeuJy7h06dMDEiRPx66+/Ij09HT4+Pli6dKk6YmtSFdN4iYhIOQo9D8Tc3Bwz\nZ87EoUOHmioetbE0sOR6WEREjaCVD5QCyhdU5BAWEZHyNJJAYmJi4ObmBldXVyxbtqzOOnPnzoWr\nqyu8vb2RmJgo3+7s7AwvLy/4+Pigb9++SsfAISwiosap9z6QpiKTyTB79mwcOHAA9vb28PPzQ3Bw\ncLWbE/fs2YOUlBRcvXoVJ0+exKxZs3DixAkA5etYxcXFwdzcvFFxmLYzRX5RPkrLSqGno/a3gYio\nxVP7GUhCQgJcXFzg7OwMfX19hISEIDo6ulqd3bt3Y/LkyQCAfv36IS8vD7dv35a/rorpxLo6ujBt\nZ8oFFYmIlKT2P72lUikcHR3lZQcHh1qr/tZVRyqVwsbGBhKJBIGBgdDV1UVYWBhmzJhR537Cw8Pl\nvwcEBCAgIKBWnYoL6daGLXt1YSIiZcTFxTVqdRG1J5CGPlu9vrOM33//HXZ2drh79y6CgoLg5uYG\nf3//WvWqJpD68EI6EWmzmn9cL1q0SKH2ah/Csre3R3p6urycnp4OBweHx9bJyMiAvX35sut2dnYA\nACsrK4wcORIJCQlKx8IL6UREylN7AvH19cXVq1eRmpqK4uJiREVFITg4uFqd4OBgbNmyBQBw4sQJ\nmJqawsbGBgUFBcjPzwcAPHr0CLGxsfD09FQ6Ft4LQkSkPLUPYenp6WHNmjUYOnQoZDIZQkND4e7u\njnXr1gEAwsLCMGzYMOzZswcuLi4wNDTE5s2bAQBZWVkYNWoUAKC0tBQTJ07EkCFDlI6FQ1hERMqT\niNa0QuI/Gvpg+KW/L0VOYQ6WBy1XQ1RERM1bQ787K2jtnejAP0NYvAZCRKQUrU4gFu05hEVEpCyt\nTiC8iE5EpDytTiAWBpzGS0SkLO1OIBzCIiJSmlavImje3hx5f+ehTJRBR6LVuVTjcgpzEH05GodS\nD+FM5hlYGliik0knDOkyBON6jENbvbaaDpGIatDqb019XX0Y6hvi/t/3NR2K1vq79G988ccX6L6m\nO/ak7MFAx4HYNnIbwp8NxyDnQdiatBWdV3XG58c+R2lZqabDJaIqtPoMBKi8mdCsvZmmQ9E6iZmJ\neOWnV+Bu5Y6jU4/CzdKtVp2pPlNx4c4FzNs3Dzsv78S2UdvQxayLBqIlopq0+gwE4L0gmiCEwDen\nvsHQbUPxyXOfIDokus7kUaGndU/se3UfxvUYh34b+uHA9QNqjJaI6sMzEF5IVytZmQyz987GsbRj\nODbtGFwtXBvUTkeig7eeegt9bPtg9I7R2DpyK4a6DG3iaInocXgGwntB1KagpACjd4xGSk4Kfp/2\ne4OTR1X+Tv7YFbILk3ZOwr6UfU0QJRE1lNYnEN4Loh7ZBdkI3BIIo7ZG+G3CbzBua6x0X087Pi1P\nIpfvXVZhlESkCCYQDmE1udS8VAzYNADPOD2DLSO2oI1um0b3+bTj0/hs8GcY8cMIzqIj0hCtTyD7\nfrbG5h13MWwYkJen6Whan0M3DmHApgF43e91LA1c2uAnUjZEaO9QPNf5Oby26zWFVhAlItXQ+gSS\nm2GNrAd3sHcvMHOmpqNpPUpkJXj/4Pt49edXsSl4E+b2m9sk+1n1/Crcyr+FdafXNUn/RFQ/rU8g\nRjrWQIfb8PMDvv1W09G0fCWyEmxK3ITua7rj/J3zOPuvs006W6qNbhtsGbEFHxz6ACk5KU22HyKq\nTasfKAUAianX4L8+CBnzr8PUtIkDa6WEEDibdRaRFyIReSES3S264+NnP4a/k7/aYlh1YhWiLkYh\nfmo89HS0fnY6kVL4QCkFudhaQxjeVn3ykMmAgoLKcmEhkJFRWS4oAG7cqCw/etT48vXr1cspVf4i\nf/gQuFxlxlJ+PnDpUvVycnL18sWL9ZZLcrMRc3AdZv02C86rnDEmahT0s/Owd+JeHHjtAPzNvIGk\npMr29+8DiYmV5bw84M8/K8s5OcAff1SW790DDh+uLN++DcTEVJazsoBffpEX53Qag/Z5D/Gf4/8p\n35CZCfz8c2X9muVbt2qXf/qpsiyVAlFRleWMDGD79spyejqwdWtlOS0N+O676uVNmyrLN28CGzdW\nL2/YUL28fr3mykRK0PoE0qFNBwgh8Kj40eMrFhWVfylUSE8H1lUZd09MBMaPryyfPAm8/HJl+eJF\n4J13KsuXLwMffFBZ/usv4MMPG1f++OPK8pUrwCefVJZTUoDlVR7de+0asGJF9fLKldXLq1bVKqfm\npWL2ntmwX+uKRQc/QhfTLoiZGIOUgJ1YcliCntY9y+unpgLffFPZPi2t+hdmzS/gzExg587K8t27\nwMGDleW8PODUqcpyjYSmU1CI9bIXsfzY8vKhrCcl3MLC2uX09MpyUVF50qpQUgLk5laWZbLyPisI\nUV6narnqX3ISSflP1bKubvWyvr7mykTKEK1QvYclk1X+fu2aELNmCSGEcFrpJK6f2i/EmDGVr1+4\nIMSQIZXl8+eFCA6uLEulQqxfX1l+9EiI69dVEH3zlJWfJcJ+CRPmy8zF+wffF9dzmuexrvhjhXju\nu+dEWVmZpkMhanEUTQnacwZy9y7g6QmUlZWXrayACRMAANaG1rhtpg8sWVJZ39UViIioLPfsCURH\nV5bt7IDp0yvLBgZA585NeACaE3stFj7rfGCgb4C/Zv+FJYOWoLNZ8zzWuf3mIr84H5sSNz25spZL\nv5+Oree2PrkiUT1afwKpGEawsgLi4gCdfw7ZyAgYOBAAYNPBBndK7wPdulW2a9MG6NhRvbE2M0II\nfHT4I0wFOFq9AAAcFklEQVSLnoZto7bhP0P/A0sDS02H9Vh6OnrYMHwD/n3w37j98PaTG2ihc1nn\n8OrPr8J7rTcu3L3Ae2hIaa07gWzaVP06gJVVndWsDa35ZVODEALz98/Hb1d/Q2JYIgZ1HqTpkBrM\nu6M3pvlMw1v73tJ0KM2GEAJxqXF4ftvzeOH7F+Bp7Ynrb17HssBlKr25k7SLRhJITEwM3Nzc4Orq\nimXLltVZZ+7cuXB1dYW3tzcSq8zeaUhbuVGjgNmznxiPjaEN7jy6o9AxNJUHRQ9wPP04dl7aid+u\n/IYyUab2GCqSx+HUw9g/aT+sDOtOvM3ZR89+hARpAvZc3aPpUDSqtKwUOy7uQN8NfRH2axjGeIzB\njTdvYMHABTBtx3nr1EiqvwzzeKWlpaJr167ixo0bori4WHh7e4vk5ORqdX777TfxwgsvCCGEOHHi\nhOjXr1+D2wqh+IWglcdXirl75yp5RKpz/vZ50eEDJ2H0tp9oN+VlYTivjzCa30v87+w+tcax6sQq\n4flfT5FdkK3W/apabEqscFrpJPKL8jUdilqVlZWJpKwkMT92vuj4RUcxYOMAsfPSTiErkz25MWk1\nRb871X7HVUJCAlxcXODs7AwACAkJQXR0NNzd3eV1du/ejcmTJwMA+vXrh7y8PGRlZeHGjRtPbCtX\nWgroNezwrA2tcSLjRKOOq7FemLMPB40noc2hL/HwxIR/tgrA/We8UjYLtqvGoUfWp4jcLlH5PSsz\nZ5bP+r12DTD1jkdyzyXw+fMEXv3FHNbW5TNyr10DnJwAY2PU2nbzZv2vKVpflX0ZGwdBz+NZuL3+\nIST7VjZB/5o8tsptKdfKYOOeghslJ9Gm6zHct94LXR0JzG+9AnHqEGDijm9/Ana1wGNrDvU1Hev2\n7Wi2NzmrPYFIpVI4OjrKyw4ODjh58uQT60ilUty6deuJbSuEL14sv2AeEBCAgICAemPS9BDW5XuX\nccB4Ikq37UJJWvmFfRMT4P59Cfw6jIbk9LNI6DYU6XgI126r0K6tjtL/uKomi4o+HjwAjh0DYCRF\nRvfxwE9bcPpa+SwrK6vyCWxA5X2QdW173GuK1ldlXxbn/4PsV3oCIgQZx/qpvH/1HpsAzG4gI/sc\nILmMtiaXUdQtGRhwCdICSyCjH3DxKSD6TVhK3JB+t/zaRsXVveZ9bM27vib3PXMmsGMHmkRcXBzi\n4uKUbq/2ayANvWAnGjkzJHzxYoSHhyM8PPyxyQP45yL6I/VfRJ85E3g2QGDgp7PRJeNDIG0gfHyA\nESOAc+eAsWOB2FjAor0lEHEIOg5ncM9vDjIyBI4dA/buBXr3BgICAEfH8kllw4YBU6ZU31b1teRk\n4MiR8n+cFX1cuwZAIoPuuInAqddhcq987So/P8DbuzxWExPUu+1xrylaX5V9+fkBPm4WwL6V0Bk5\nHdAtVnn/TXlsxuZFgHMc7MYvhmxCELDAHJJpzwK9N6Jj5xx00X0G2PsVjNdLgS9TYbI/CjgxD36d\n3dHLW9Ksj60l1dd0rE25Rl9AQID8ezI8PFzxDppmJK1+x48fF0OHDpWXP/30U7F06dJqdcLCwkRk\nZKS83L17d5GVldWgtkJUGcfLzxfiwYMnxnT74W1hudxS0UNptGefFQIeOwRmeYrhL5eIsWOFyM2t\nXS83V4ixY4UIGHpf4PUeot2zXwlACD8/IQYMqLjlufLHyqr2toqfjh3L/2tiIuR9pKYK4TnrM/HU\n2gAxZmypSE0V8lgq9v24baqs3xT7HjO2TAze8JLweP3jZn9swSF3xdLY9cLu7WBhtMRYmP2fn5j7\ny3wReXq3GB5yW+3vnSY/t+ZSX9OxqpOiKUHtCaSkpER06dJF3LhxQxQVFT3xIvrx48flF9Eb0laI\nKm/CunVCfPTRE2MqlZUK3UW6okRW0sijU0zQi/kC8xyE25D4Bv1Dyc0VYtiE68JqWUfhP2WfyM0V\n4oUXaieEwMDq22omi5r/QE9JTwnrz61FWl5a0x+0hkgfSIX159YiISNB06HUUlBcILad2yYCtwQK\nk89MxNgdY8W2c9vE3Ud3NR0aaZlmn0CEEGLPnj2iW7duomvXruLTTz8VQgixdu1asXbtWnmdN954\nQ3Tt2lV4eXmJ06dPP7ZtTfI3oaxMiNLSyhfy65+NY7XcSmTmZzbiqBQXvn+ZcJwXovBfGfGp8cJq\nuZW4cu+Kwn/h1JRflC+6re4moi5EqeagmrEfzv8guq/uLh4VP9J0KEIIIdLy0sQ7+94R5svMxfPb\nnhdRF6KaTWyknRRNINqznPu9e8CAAeUr0OrolC+Ed+UK4OMDAPD8b0987/8lvDwDy+uXlgJ//w10\n6KDy+GbOBP66UoY/+3fHrte2Isj9KYX7WPvnWqxJWIMT00+gQxvlY5y+ezpkQobNL29Wuo+WZPz/\nxsPKwApfvfCVxmK4eOcilh5bit+u/IapPlMxt+9cOJk6aSweogpczr0+lpbA+fOVS5ncugV8+aX8\nZWtJB9xe8u/K+pcuAUOHVi9PmFBZvn0biIysLBcVVU6feIIrV4D4tDgU3G+Pbz/up8zRIKxPGPra\n90Xo7lClJxz8ePFHHLl5BF89r7kvU3X7etjX+OXKL4g8H/nkyip2NussRkaNxKAtg+Bh6YHrb17H\niiErmDyoxdKeBAKUr29VocZiiTbWXXDn/SpLX3h6/jO39R9OTtWXTy8sLF+CvMKFC0BoaGU5IaH6\ncu6JicC0aQDK11006bMc0/8ywvpv/5mVdu4cEBZWWf8JZUlSEv67R4Lrudex5OiS8tf/9a/K+klJ\nwOuvV5bPnwfmzJEXU0/uwxs7JmP7qO0wamtUHv9bVY6/rvK8efWXL14E3n67evnddyvLycnA//1f\nZfnSJeD99yvLly8DVWeBXLkCfPZZZfnaNeA//6ksX78OrF5dWa65fHxqKrB2ba2yeXtz7HplF+b+\nNhtn1iysfP3mzerTXWo+r6Pm8z5qLkdf83khUinwww/lb8Wdixi75SW8sOE5POv0LG68eQP/7vIa\nTH/ZX73+jz9Wlm/dUm+ZSAnalUAe44lTeQ0MgKo3LDo7V//C7NMH2L27styrV/UHCLm6AgsWAAC+\n2nAXBe4n8OFHn1few9G5c7Uv+IaU282Zh90hu7H57GZseBgPvPFG5etOTtUf8t6pEzB1KgAg7+88\nvHRqHj7o+Tr87P3KX7e3ByZOrKxfV7nq805qlu3sgHHjKsu2tsDo0ZXljh2rJ1Rr6+pneBYW5UOM\nFYyNy5N4hfbty4+pQps25WeVFfT0yhfIrKCrCxga1ln27uiNb55egpF565CZ/88fATo6QNu2lfVr\nPq+j5vM+aj4PpObzQoqKcDEzCSE/hWDQlkHoa9YTKUbv462n3oKBvkH5GatUWq1+tXJhoXrLRErQ\nnmsgT/Dp0U/xoOgBlgYubaKoKn3xxxe4cOcCvhvxnUr6u5p9Fc9+9yy+HvY1RrqPfGzdYlkxXvj+\nBfSw6qHR6wDNwfJjy7Hu9DrEvhqLruZdVdZvYmYilhxdgqNpR/FO/3fwut/rjbpORaQuin538uHR\n/7AxtCl/kl0TqbgD3MAAuDksAmuH/1dlfbtauOKX8b/gpciXkJKTgneffrfOGzbv/30f03ZPg6G+\nIVYOXVlHT9rl/wb8H4zbGsN/sz9+nfAretv2Vrov8c9qt8v/WI6k20mY//R8RIyIgGEbwyc3Jmqh\nmED+0dR3o1+5Un4HOExvoG2fO3ja8WmV9t/Hrg9OTj+JMTvG4KT0JD557hO4W1UOuf2e9jsm7ZyE\n512ex4ohK6Cro/uY3rTHv3z/BUsDSwzdNhTTe0/HB/4fKPSln1+Uj8gLkfjmz29QWFKI+U/Px65X\ndqGtXtsnNyZq4ZhA/rHxKxscbXcHw7Y1zeJlBgbl/+0U9Av8vV5ski/wTiadcHTqUSw6sgiBWwNh\n0d4CnUw6ITErEUIIrHtpHYZ3H67y/bZ0YzzGYIDjALy7/124f+2OWb6z8Jr3a7A3tq+z/sPihzhw\n/QB2XNyBvSl78Zzzc1gWuAyBXQKhI+FlRdIevAbyj6eeT8VJj2eAlWkYO1b1i5fl5ZUPY915PhBv\nPT0bI9xGqHYHNZSJMvyR/gfuProLH1sfOJk48cFBDXBKegobEjfgx4s/orNZZ7hbusPJ1AkFJQXI\nLczF2ayzuJpzFf3s+2Fcj3EY5T4K1obWmg6bSCUU/e5kAvnH0BcLEdvbFL77CrE/VqdJlk++//d9\nOK50ROY7mRwbb+YKSwpx/s55JN9NRtr9NHRo0wEmbU3Q07onfGx90Ea3zZM7IWphmECgXALJywNs\nVljh/KwL6GZn0yRxRV2IwpakLfhtwm9N0j8RUWNwFpaSTE0BDwcHPEA6ANUlkKqzrwxf243gbsEq\n65uISJN4xa8KR2NHpN9PV2mfFbOv9u4rQfTFvXip20sq7Z+ISFN4BlKFo4kjMh5kqLTPitlXboEn\n0cbWud6ZPURELQ0TSBWOxo5If6DaM5Dt28uHsVxCD6FEZ7BK+yYi0iQOYVXhYOyg8gRialo+Jfh4\n1mEMch6k0r6JiDSJCaQKR2PVD2EB5VNCT0lPYWCngSrvm4hIU5hAqnA0Uf1FdAD4I/0PeNl4lS+b\nTkTUSjCBVGFvZI/Mh5mQlclU2u+h1EMY1JnDV0TUujCBVNFWry1M25mqZFHFmTOBgABg2DDgQMph\nJhAianU4C6uGiusgdkZ2jepHvvpum3zo+iahv0N/1QRIRNRM8AykBlVdB6m4/8M18CieduqL9vrt\nG90nEVFzwjOQGlR1L0jF/R8dJx2GlfFzKoiMiKh54RlIDQ7GDiqZyltx/8fJ2/F41vlZFURGRNS8\nqDWB5OTkICgoCN26dcOQIUOQl5dXZ72YmBi4ubnB1dUVy5Ytk28PDw+Hg4MDfHx84OPjg5iYGJXH\nqMq70R8WP8TFOxfR176vSvojImpO1JpAli5diqCgIFy5cgWDBw/G0qVLa9WRyWSYPXs2YmJikJyc\njMjISFy6dAlA+VLDb7/9NhITE5GYmIjnn39e5TGq8l6Q4+nH0du2N9rptVNJf0REzYlaE8ju3bsx\nefJkAMDkyZOxa9euWnUSEhLg4uICZ2dn6OvrIyQkBNHR0fLXm/rxJY7GjkhKzZBPwa3nJKlOVafu\n5uUB8WnxeMbpmaYKlYhIo9R6Ef327duwsSl/1oaNjQ1u3659v4VUKoWjo6O87ODggJMnT8rLq1ev\nxpYtW+Dr64sVK1bAtJ5HB4aHh8t/DwgIQEBAQINitDOyQ4FOFo7EywChi5kzG/54W/nUXZQnk9vD\n4rHQf2HDGhMRqVlcXBzi4uKUbq/yBBIUFISsrKxa25csWVKtLJFI6nxG9+Oe2z1r1ix89NFHAIAP\nP/wQ77zzDjZu3Fhn3aoJRBH6uvpoU2qJIqNM+HV3wLffNrxtxdRdPz/gq//+DZdvT/P+DyJqtmr+\ncb1o0SKF2qs8gezfv7/e12xsbJCVlYWOHTsiMzMT1tbWterY29sjPb3yGkR6ejocHBwAoFr96dOn\nY/jw4SqMvFJPR0eYjEjH/1Y5KPRs9Iqpu99+C5y/fwoeVh5c/4qIWi21XgMJDg5GREQEACAiIgIj\nRoyoVcfX1xdXr15FamoqiouLERUVheDg8sfAZmZmyuvt3LkTnp6eTRJnZ4tOmDH/pkLJA6icumtq\nCsTf5PUPImrd1JpA3nvvPezfvx/dunXDoUOH8N577wEAbt26hRdffBEAoKenhzVr1mDo0KHw8PDA\nK6+8And3dwDAggUL4OXlBW9vbxw5cgQrV65skjjdLN1w+d7lRvXBC+hE1NpJRFNPa9IAiUTSqNla\nkecjsfPyTuwY28Cr5zWUyEpgsdwCqW+lwry9udJxEBGpk6LfnbwTvQ7uVu64dO+S0u1P3TqFruZd\nmTyIqFXjWlh16G7RHSk5KSgtK4WezpPfopkzy6fwGhiUX0g/fIPLtxNR68czkDq0128PeyN7XMu5\n1qD6Ffd/7N1bnkwOpR7Cc85cQJGIWjcmkHp4WHkg+W5yg+rWvP8jQZrAC+hE1OoxgdRDkesg27cD\nY8cCsbHA5Ycn4GHlAeO2xk0cIRGRZjGB1MPD0gObf01u0JpYVe//OJzK6x9EpB2YQOrhYeWBLFly\ntWsbDXHoxiEMcmYCIaLWjwmkHm6Wbig0+AuQyODnh1prYtVceRcAHhU/QmJmIgZ0GqD2eImI1I0J\npB5GbY1ga2qJF8bfRGwsai1rUnPmFQD8nvY7fGx9YKBvoP6AiYjUjAnkMXpYu+ONjy/VuSZW1ZlX\nFWcnv179FcNchqkvQCIiDWICeYyqU3krhqwcHYGBA4GSEmDECMjPToQQ2P3Xbrzs9rJmgyYiUhPe\nif4YHlYeOJZ+DED1h0VlZJT/d+zYyqGtc7fPQV9HH+6W7hqIlIhI/XgG8hi9bXvjePpxAJVDViYm\n5f+teWF991+7Edw9+LEPxCIiak2YQB6jV8deyP07Fzdyb8hvFjx3rvKmwarXRqL/isbL3Tl8RUTa\ng8u5P8GUXVPQ174vXvd7vd466ffT4bPOB1nvZjVo8UUiouaIy7mr2AsuL2DP1T2PrfPLlV8wzHUY\nkwcRaRUmkCcY0nUI4m/G4+/Sv+uts+PiDg5fEZHWYQJ5ArP2ZvCy8cKR1CN1vn5KegrXc68juHuw\nmiMjItIsJpAGeMHlBexJqXsY6/M/Psfb/d+Gvq6+mqMiItIsJpAGGOY6DHuv7q21PSUnBYdTD2N6\n7+kaiIqISLOYQBqgV8deKJIV4Ze/fqm2fcXxFQjrE4YObTpoKDIiIs1hAmkAiUSCH0b/gNDdobhw\n5wIAYF/KPvxw4QfM6TtHw9EREWmGWhNITk4OgoKC0K1bNwwZMgR59Tyladq0abCxsYGnp6dS7ZtC\nf8f+WDl0JYZHDsf03dMR9msY/jfuf7DpYKPyfcXFxam8T3Vi/JrTkmMHGH9Lo9YEsnTpUgQFBeHK\nlSsYPHgwli5dWme9qVOnIiYmRun2TWWi10SE9QmDvq4+kmYlNdmTB1v6P0LGrzktOXaA8bc0ak0g\nu3fvxuTJkwEAkydPxq5du+qs5+/vDzMzM6XbN6X3Br6Hb178hs88JyKtp9YEcvv2bdjYlA/52NjY\n4Pbt22ptT0REqqPytbCCgoKQlZVVa/uSJUswefJk5ObmyreZm5sjJyenzn5SU1MxfPhwnD9/Xr7N\nzMysQe25Ii4RkXIUSQkqX7xp//799b5mY2ODrKwsdOzYEZmZmbC2tlao74a2b4XrQxIRNTtqHcIK\nDg5GREQEACAiIgIjRoxQa3siIlIdtS7nnpOTg3HjxiEtLQ3Ozs7YsWMHTE1NcevWLcyYMQO//fYb\nAGD8+PE4cuQIsrOzYW1tjcWLF2Pq1Kn1ticiIg0QrczevXtF9+7dhYuLi1i6dKmmw1GYk5OT8PT0\nFL169RJ+fn6aDuexpk6dKqytrUXPnj3l27Kzs0VgYKBwdXUVQUFBIjc3V4MRPl5d8X/88cfC3t5e\n9OrVS/Tq1Uvs3btXgxE+XlpamggICBAeHh6iR48eYtWqVUKIlvMZ1Bd/S/gMCgsLRd++fYW3t7dw\nd3cX7733nhCi5bz39cWv6HvfqhJIaWmp6Nq1q7hx44YoLi4W3t7eIjk5WdNhKcTZ2VlkZ2drOowG\niY+PF2fOnKn2BTx//nyxbNkyIYQQS5cuFQsWLNBUeE9UV/zh4eFixYoVGoyq4TIzM0ViYqIQQoj8\n/HzRrVs3kZyc3GI+g/ribymfwaNHj4QQQpSUlIh+/fqJo0ePtpj3Xoi641f0vW9VS5kkJCTAxcUF\nzs7O0NfXR0hICKKjozUdlsJEC5kEUNf9Os3hXp2Gqu9+o5by/nfs2BG9evUCAHTo0AHu7u6QSqUt\n5jOoL36gZXwGBgYGAIDi4mLIZDKYmZm1mPceqDt+QLH3vlUlEKlUCkdHR3nZwcFB/g+ypZBIJAgM\nDISvry/Wr1+v6XAU1hru1Vm9ejW8vb0RGhqq1uVyGiM1NRWJiYno169fi/wMKuJ/6qmnALSMz6Cs\nrAy9evWCjY0NnnvuOfTo0aNFvfd1xQ8o9t63qgTSGu7/OHbsGBITE7F37158/fXXOHr0qKZDUppE\nImlxn8msWbNw48YNnD17Fra2tnjnnXc0HdITPXz4EKNHj8aqVatgZGRU7bWW8Bk8fPgQY8aMwapV\nq9ChQ4cW8xno6Ojg7NmzyMjIQHx8PA4fPlzt9eb+3teMPy4uTuH3vlUlEHt7e6Snp8vL6enpcHBw\n0GBEirO1tQUAWFlZYeTIkUhISNBwRIqpuFcHgFL3+miatbW1/H/86dOnN/v3v6SkBKNHj8akSZPk\n09pb0mdQEf+rr74qj7+lfQYmJiZ48cUXcfr06Rb13leoiP/PP/9U+L1vVQnE19cXV69eRWpqKoqL\nixEVFYXg4JbzqNmCggLk5+cDAB49eoTY2NhaKxI3dy39Xp3MzEz57zt37mzW778QAqGhofDw8MBb\nb70l395SPoP64m8Jn8G9e/fkwzuFhYXYv38/fHx8Wsx7X1/8VVcRadB7r/pr+5q1Z88e0a1bN9G1\na1fx6aefajochVy/fl14e3sLb29v0aNHj2Yff0hIiLC1tRX6+vrCwcFBbNq0SWRnZ4vBgwc3+2mM\nQtSOf+PGjWLSpEnC09NTeHl5iZdffllkZWVpOsx6HT16VEgkEuHt7V1t2mVL+Qzqin/Pnj0t4jNI\nSkoSPj4+wtvbW3h6eorly5cLIUSLee/ri1/R916tNxISEVHr0aqGsIiISH2YQIiISClMIEREpBQm\nECIiUgoTCJGCOnTooPI+dXV10bt372pTWGuaP38+bG1tsWLFCpXvn0gZKn+gFFFr1xR3FxsYGODM\nmTOPrfP55583SfIiUhbPQIhU4JdffsFTTz2F3r17IygoCHfu3AEA3L17F0FBQejZsydmzJgBZ2fn\neh/jXEEmk2HKlCnw9PSEl5cXvvzyS3UcApHCmECIVMDf3x8nTpzAmTNn8Morr2D58uUAgEWLFiEw\nMBAXLlzAmDFjkJaW9sS+zp49i1u3buH8+fNISkrC1KlTmzp8IqVwCItIBdLT0zFu3DhkZWWhuLgY\nXbp0AVC+OGbFkt5Dhw6tc/n4mrp27Yrr169j7ty5ePHFFzFkyJAmjZ1IWTwDIVKBOXPmYO7cuUhK\nSsK6detQWFgof03RxR5MTU2RlJSEgIAArF27FtOnT1d1uEQqwQRCpAIPHjyAnZ0dAOC7776Tbx8w\nYAB27NgBAIiNjUVubu4T+8rOzkZpaSlGjRqFTz755IkX14k0hUNYRAoqKCio9uCyt99+G+Hh4Rg7\ndizMzMwwaNAg3Lx5EwDw8ccfY/z48di6dSv69++Pjh071npmR01SqRRTp05FWVkZAGDp0qVNdzBE\njcAEQqQgmUxW5/a6Hh1gYmKCffv2QVdXF8ePH8eff/4JfX39x/bv5eWF06dP1/ka1z6l5oRDWERN\nKC0tDX5+fujVqxfefPPNeh9TbGxs3KAbCb///nveC0LNBpdzJyIipfAMhIiIlMIEQkRESmECISIi\npTCBEBGRUphAiIhIKUwgRESklP8PMsK4ELXZVjoAAAAASUVORK5CYII=\n" - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Section 2.2.2 Transformed Gaussian models\n-------------------------------------------\nWe begin with computing skewness and kurtosis for the data set xx and compare it with the second order wave approximation proposed by Winterstein:" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "import wafo.stats as ws\nrho3 = ws.skew(xx[:, 1])\nrho4 = ws.kurtosis(xx[:, 1])\n\nsk, ku = S1.stats_nl(moments='sk')", - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 13 - }, - { - "cell_type": "raw", - "metadata": {}, - "source": "Comparisons of 3 transformations" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nimport wafo.transform.models as wtm\ngh = wtm.TrHermite(mean=me, sigma=sa, skew=sk, kurt=ku).trdata()\ng = wtm.TrLinear(mean=me, sigma=sa).trdata() # Linear transformation \nglc, gemp = lc.trdata(mean=me, sigma=sa)\n\nglc.plot('b-') #! Transf. estimated from level-crossings\ngh.plot('b-.') #! Hermite Transf. estimated from moments\ng.plot('r')\ngrid('on')\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAETCAYAAADecgZGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdUFPcWwPEvIAoGxYIdFbtgARQ0GguaEBVj19h7S7Em\nsUaN3WjUWGM0FiyxxF6e8mygxl7AFhNNFEUJ9gJYaPP+mCfGUFx1l9mdvZ9zch7DzrL3vkkuw51f\nsVEURUEIIYRVsdU6ACGEEBlPir8QQlghKf5CCGGFpPgLIYQVkuIvhBBWSIq/EEJYISn+QhjBzZs3\nqVWrFtmzZ2fQoEFahyPEK2XSOgAh3paTkxM2NjYAxMbG4uDggJ2dHQALFiygbdu2Jo9hwYIF5M2b\nl0ePHpn8s4QwBin+wuLFxMQkf12sWDEWLVpE3bp1U5yXkJBApkym+Vf+6tWruLu7v9F7TRmXEGmR\nto/QrZCQEFxdXZkyZQoFChSge/fuPHjwgI8++oi8efOSK1cuGjVqxI0bN5Lf4+fnx6hRo6hRowbZ\ns2enXr163L17F4CnT5/SoUMHXFxcyJkzJ1WqVOHWrVt06dKFZcuWMWXKFLJly8bevXuJi4tjwIAB\nFCpUiEKFCjFw4EDi4uJSjatbt26MGTOGVq1a0bFjR7Jnz07FihW5dOkSkyZNIl++fBQtWpRdu3Zp\n8v+j0Ccp/kLXbt68yf3797l27Rrz588nKSmJ7t27c+3aNa5du4ajoyN9+vR56T2rVq0iMDCQW7du\nERcXx9SpUwFYunQpjx494vr169y7d4/58+fj6OhIYGAg7du3Z8iQIURHR1O3bl3Gjx/PsWPHOH36\nNKdPn+bYsWOMHz8+1bgWLFiAoihs27aNTp06cf/+fby9vfH39wcgMjKSkSNH0rt374z7P07onhR/\noWu2traMGTMGe3t7HBwcyJUrF82aNcPBwQEnJyeGDx/Ovn37ks+3sbGha9eulCxZEgcHBz7++GPC\nwsIAyJw5M3fv3uXSpUvY2Njg7e1NtmzZkt/7z2WyVq5cyahRo3BxccHFxYVvvvmG5cuXpxkXQK1a\ntfD398fOzo6WLVty9+5dhg4dip2dHa1btyY8PFyeKQijkeIvdC1Pnjxkzpw5+fjx48f07t0bNzc3\nnJ2dqV27Ng8fPnypcOfPnz/5a0dHx+RnCh07dqRevXq0adOGQoUKMWTIEBISElL93MjISIoWLZp8\nXKRIESIjI9OMCyBv3rwvfa6Li0vyg2xHR0fg5ecbQrwNKf5C154Xz+emTZvGxYsXOXbsGA8fPmTf\nvn0oioIhi9tmypSJUaNGcf78eQ4dOsS2bdtYtmxZqucWLFiQ8PDw5ONr165RsGDBNOP697EQpibF\nX1iVmJgYHB0dcXZ25t69e4wZMybFOWn9IggODubs2bMkJiaSLVs27O3tk4eU/vs9bdu2Zfz48dy5\nc4c7d+4wduxYOnbsmGZcsrK6yGhS/IWu/fuOesCAATx58gQXFxeqV69OgwYN0r0Lt7GxST6+efMm\nrVq1wtnZGQ8PD/z8/JIL+j/PAxgxYgQ+Pj5UrFiRihUr4uPjw4gRI9KM69/vT+scIYzFRjZzEUII\n66Ppnf+DBw9o2bIl7u7ueHh4cOTIES3DEUIIq6HptML+/fsTEBDAunXrSEhIIDY2VstwhBDCamjW\n9nn48CHe3t5cvnxZi48XQgirplnb58qVK+TJk4euXbtSqVIlevbsyePHj7UKRwghrIpmd/4nTpyg\nWrVqHDp0CF9fXwYMGED27NkZO3bsi+BkdIMQQryRV5V2ze78XV1dcXV1xdfXF4CWLVty6tSpFOc9\nn4Cjx3+++eYbzWOQ/CQ/a8vNGvIzhGbFP3/+/BQuXJiLFy8CsHv3bsqVK6dVOJr45wxQPZL8LJee\ncwP952cITUf7zJ49m/bt2xMXF0eJEiVYsmSJluEIIYTV0LT4e3p6cvz4cS1D0FSXLl20DsGkJD/L\npefcQP/5GcKsZ/ja2NgY3L8SQgihMqR2yto+GgoJCdE6BJOS/CyXnnMD/ednCCn+QghhhaTtI4QQ\nOiNtHyGEEKmS4q8hvfcdJT/LpefcQP/5GUKKvxBCWCHp+QshhM5Iz18IIUSqpPhrSO99R8nPcuk5\nN9B/foaQ4i+EEFZIev5CCKEz0vMXQghTUxTYs0f9XwsixV9Deu87Sn6WS8+5gRHzu3cP2rSB/v3V\nry2IFH8hhHgTe/eClxcUKADHj0Pu3FpH9Fqk5y+EEK/h9t3rRA3oToXg87B4MXz4odYhpSA9fyGE\nMKIVPw8lslxhroYGQ1iYWRZ+Q0nx15D0VS2bnvPTc27w+vnFxT9lcquC1Os1me0NStIg7DG4uJgm\nuAwixV8IIdIRcnAlIR5ZqXXkbw7+MpVhSy5hl0nTHXCNQnr+QgiRlo0bedCtHUvezULP9eE4Zc2h\ndUQGMaR2SvEXQoh/i46GAQNg3z5YsQLefVfriF6LPPA1c9JXtWx6zk/PucEr8jtyBLy9wcYGQkMt\nrvAbSoq/EEIAMY8fsL19VWjaFKZMgYULIVu2dN/z8CGMGqX+oWBppO0jhLB6G7d8R4HPB/PIwQa/\nvZfJXNjtle9ZuRK++AIaNYLJkyFXLtPHaShDaqflP7IWQog3lJiQwOSeZen5y18s+qggX6z4i8z2\nDga9N08eCApSJ/laImn7aMiq+6o6oOf89JwbqPmdOrOTLZ5ZaLjjL3YuHMbQNTcMLvwA/v6WW/hB\nir8QwhodP477h+24mTcrBc9H0L7txHRPHzsWbt3KoNgyiPT8hRDW48kTGDoUNm6EwECoW9egt61a\nBe+/D3nzpnzt/n2YMweGDIHMmY0b7puyiKGeiYmJeHt706hRI61DEULo2enT4OsLUVHq1wYWfoC2\nbVMW/oQE+OEHKFsWbtyAp0+NHK+JaV78Z86ciYeHBzY2NlqHkuGsoa+qZ3rOT0+5xcU/ZUG7sigf\nfKDenq9eTcjp06mee+MGDB8OiYnp/8xdu9R+/7p16tc//gjZs5sgeBPStPhfv36d7du306NHD2nv\nCCGMbmfwIg6WyYr7wT+48J+l0LGjOnkrFdOnQ8WK6svx8an/vEuXoHFj+OQTGDdO3cCrYkUTJmBC\nmvb8W7VqxfDhw3n06BFTp05l69atL70uPX8hxJua1LcS3ZaEssIvF5+tvYqjo1O6569fr07sLV48\n5WsPHqjFfulSGDxY3bgrSxYTBW4EZj3Of9u2beTNmxdvb+90/8Ts0qULbm5uAOTIkQMvLy/8/PyA\nF3+ayrEcy7EcPz8uUSIPBxp74Xo5ge96NWTq9G0GvT937hCuXYPixV+8npQEly758c03ULlyCAsW\nQPPm5pWvn58fISEhBAYGAiTXy1dSNDJs2DDF1dVVcXNzU/Lnz69kzZpV6dix40vnaBhehggODtY6\nBJOS/CyXxeZ24ICS6FZUWVnDWbkScS7VU+LjFaV9+2DlyZP0f9SePYpSsaKi1KqlKKdOmSBWEzKk\ndmrW8584cSIRERFcuXKF1atXU7duXZYtW6ZVOEIISxYfD19/Da1aYTtrNm0PPMDNtVyqp2bKpG67\nm1Zf/6+/oFkz6N4dRo6EkBC1HaQ3ZjHOf9++fUybNo0tW7a89H3p+QshXumPP6BDB3Us5uLFkC/f\nG/2YR49gwgR1Pbcvv1TX7XEwfMKvWbGIcf4AtWvXTlH4hRAiPYkJCUzpVIK46lWhWzfYti1F4Y+M\nVEfxpPtzEtWCX6aMOov33Dl1uKelFn5DmUXxt1bPH9joleRnucw9t8MnN7OjfGbe332ZnUtGwKef\nphjC+Xzo5p07KcftP89v/3513ldgIGzdCkuWqC0hayCregohLMqUYbXpMHc/x6s4UX39JSo750/1\nvCxZ4NAhKF065Wt//w2tWsGxY+rS/R9/nObwf90yi55/WqTnL4R4LjE6mqUf5qHu78/YMqwF/Qav\ne+2fER0NkybB/PnqLo1ffQWOjiYIVmMW0/MXQoh0nTqFXZUquNnmJvbory8V/vh4WLQI0qt1SUlq\na6dsWbh+Hc6cUUfy6LHwG0qKv4bMva/6tiQ/y2U2uSUmwrffQv36MGoUdQ/eoFzp9146xdZWHfAT\nE5P6j/j1V6hSRb3b37ABli2DS5dCTB+7mZOevxDCPF29Cp06qdX9xAkoUiTV0+zs1L79v127pi7F\ncPCg+vujXTvr6+unR3r+QgizkpiYyOTPK9J39RWyDR+tDrq3swMgNhaCg+Gjj9J+f2ysuqfu3LnQ\nty8MGgTvvJMxsZsL6fkLISzK2d8PsK5SFppu+I1103uot+52diiKuv+Khwf88kvq/f2kJFi+XB2v\n/+efEBYGo0dbX+E3lBR/DZlNX9VEJD/LpUVuM79tRvZ3a/HIyZ5sZ/6ga7dZL72+a5f60HbZspTt\nmyNHoHp1mD1b/eWwciUULpz2Z+n52hlKev5CCG09e8aChgVoeew+K/vVYdD4vSlOsbFRd836t+vX\n1V0Zg4PVIZwdOqiPCMSrSc9fCKGd336D9u258M5jHs2eRlVvtZl/7hyUL5/22x4/hu++g1mz1Mm9\nQ4eCU/rL9VsV6fkLIcyToqi7nteuDZ99hvuB35ML/7Nn6oPahw9Tf9uqVep4/fPn4eRJGD9eCv+b\nkOKvIb33HSU/y2XS3KKiICBAfTp76BD07PlSEz9LFrWN4+z88tuOH4caNdQ7/hUr1N6+ofuW/Jue\nr52hpPgLITLM5EHVuVO6sLqa2q+/QqlS3L6d/nsiI6FLF3Xv3G7d1F8CtWplSLi6Jj1/IYTJXb52\nhgMtfaj5Zzw7RrXj8wE/c/s2DBmijtQ5ezZ5KH+yp0/VlTmnTYMePdS9WrJn1yZ+SyM9fyGE5n78\noRsJlTyxS4T4E8f4fMDPgLqqZo4cavH/Z+FXFFi3Dtzd1bv8Y8fUSVtS+I1Lir+G9N53lPwsl1Fy\nS0hgactSNBu8hPUdKtPhZBxlivsmv7xzp3pn/8+iHhYGderA2LHqYm0bN0KJEm8fyr/p+doZSoq/\nEML4Ll+G2rX5KCo754KWMnjaiRSnZM784uubN9XnvvXqQZs2cOoU1K2bgfFaIen5CyGMR1Fg6VJ1\nQZ3hw6F/fxIVW3x9YceOlNvrPnumjtWfPFldw23UKLUVJN6OIbVTZvgKIYzj7l345BP4/XfYuxcq\nVADADti+/eXCryiwZYu6ZlvZsurKm2XKaBO2tZK2j4b03neU/CzX6+Y2dWx9rpfIQ5Krq/qU9v+F\n/7n8/9hp8exZ8PeHYcPUlTe3bcv4wq/na2coKf5CiDcWdSecebWy0nraf/nli/qEdvieZm0diI1N\nee6dO/DZZ/D++9CkCZw+rfb4hTak+GvIz89P6xBMSvKzXIbktmzFYG6VL0a+e8+4/etOYthOQAA0\nbQpZs744Lz4eZsxQh27a2cGFC+ryDfb2pov/VfR87QwlPX8hxOtJSmJ7n/o0WLqLn9qUZsj889hl\nykTsA/XO3sXlxanbt8MXX0DRohASAuXKaRa1+Be589eQ3vuOkp/lSjO3GzegXj3qhT7i5Ia5DF/0\nB3aZ1HvImjVfFP4LF6BBAxgwAKZOhaAg8yr8er52hpLiL4QwzPr1UKkS1KrFwg6/4uvzWYpT7t2D\n/v3VtXf8/dWlmT/6SPbONUcyzl8Ika7E+/ex++ILdSG2FSugalXmzYOGDV/sqZ6QAPPnw5gx0Lw5\njBsHefJoG7c1k7V9hBBvZe6M9oSXyMX9xFgIDYWqVQF1A5XnhX/XLvDyUv8w2L0bfvxRCr8lkOKv\nIb33HSU/y/Wf/2xm5ofOtBi5kiWNP8Q58JcUO6ZcvgzNmkHv3uqd/p49ULGiRgG/Jj1fO0NpWvwj\nIiKoU6cO5cqVo3z58syaNevVbxJCmNT6zZO51qUpZa7EMMA/hOXB/+XatRevx8bCiBHqkvy+vupO\njM2aSV/f0mja84+KiiIqKgovLy9iYmKoXLkymzZtwt3dXQ1Oev5CZBxF4crUETiNnsiiRoVQKoYT\ndTMT48dDtmzqkgxr1qjL9tSsCVOmgKur1kGL1Jj92j758+cn///nfTs5OeHu7k5kZGRy8RdCZJDb\nt6FnT4pdvcqZrasZWrc1ivLibj4sDPr1g+hoWLlSLf7CspnNJK/w8HBCQ0Op+v8HSs916dIFt/9v\n1JkjRw68vLySZ+c979tZ6vGMGTN0lY/kZ17xGXz89ClK9+4E16yF7ZQp+NX1T37t0SMICvJj/Xro\n0CGEhg2hZk0zi/8Njv/Z8zeHeIyRT2BgIEByvXwlxQxER0crlStXVjZu3PjS980kPJMJDg7WOgST\nkvzM2+MHdxWlTx9FKVxYmd9mr7Jw4YvXdu8OVubMUZQ8eRSlb19FuXtXuzhNwdKv3asYUjs1H+cf\nHx/PRx99RIMGDRgwYMBLr0nPXwjTWLS4L9WGzsHW04uyv+zlgU1OsmcHW1t1GYZ+/dTZujNnplig\nU1gAQ2qnpsVfURQ6d+5M7ty5+f7771O8LsVfCON68iSG2W2L02X3bRZ2KMeQOWHJyzNcu6Y+zD16\nVF2SoUULGcFjqcx+ktfBgwdZsWIFwcHBeHt74+3tTVBQkJYhZah/9h31SPIzL0F7FnDUIzvvHo9m\n6ailDP/xHHaZMvH0qTpOv1Il8PBQh266uITouvBb2rUzBU0f+NaoUYOkpCQtQxDCKiSsXEGlnr2Z\nUciPa+9tZ2Z3R0DdWrFvX3Vy1smT6uqbwjpo3vNPj7R9hHhLDx/C55/DiRNc/HYGlx3qU78+XL2q\nrrh57hzMng3162sdqDAms2/7CCFMaP9+8PQEZ2c4dYrSTetTpw5MnAiVK6ttnrNnpfBbKyn+GtJ7\n31Hy08a9h1E86PsFcS3aqJvkzp0LWbOye7fa3jlyRN1md+RIcHBI/WeYa27Govf8DGE2k7yEEG9v\nzboxlOw3mljnAhzpHMbghnm5fl3dTevECXXoZqNGWkcpzIH0/IXQgcSEBKZ0Lk6PTREsbF6UwUv+\nJEnJxIwZMHmyur3isGHg6Kh1pCIjmP3aPkKIt3fo+Ebud2iJf0wSIcvGMazFCEJC1Oe8RYqobZ6S\nJbWOUpgb6flrSO99R8nP9O4v20qx2m04l6UspS7cxq/WCDp1gs6dYfx4dQP1Nyn85pCbKek9P0NI\n8RfCEsXGEt/jE6K79WNjsx30O3qe9etcKF8e8uaF8+dljX2RPun5C2FpTpyA9u2halVuj5rN3QRn\neveGx49hwQLw9tY6QKE1GecvhI48eRLDjaGfQ0AAjB3L0wXLmLPcmRo1oGVLtbcvhV8YSoq/hvTe\nd5T8jGfDpjmcLOnClXUL4eRJgvO2xtNTnaQVFqYu0WBnZ7zPk2unf1L8hTBjiQkJTOrlQc32fdlT\nsgSuex7SZWRhOndWt1HcsEG2UhRvRnr+Qpipsxf288fHdXG/mcixKf2xYQZDhqjt/jFj1H11hUiN\njPMXwkJdmr8Xl2H1Oexhz6OFf7BieAkePFCHblaurHV0Qg+k7aMhvfcdJb/Xdz/qGf8pN4hsn3fi\nnQVbiWn+hEYNSxAQoG6yklGFX66d/smdvxDm4vx5HtduRyHnEkRuD+PTkS44OsoMXWEa0vMXQmNx\n8U85PbInvouCiBv7LZNudmPOXBsmTIAePdR9dYV4HdLzF8LM7Tu8mqed2pHjKZz+8SIdRpekaFEI\nDZVRPMK05J5CQ3rvO0p+6esf0Ioy/m35rbgzP7e4Q73PSzJ8OGzdqn3hl2unf3LnL0QGu3ztDL+2\n8KHvX/HM7NGLtdvmUyW3OmErTx6toxPWQnr+QmSkI0e42yKA/xSIJbjiKXbvKscPP8gGK8K4ZG0f\nIczEhbMJ3Ok3Bpo04e/eCxl97xko5Th7Vgq/0IYUfw3pve8o+UFSEgSO/IuYSjWJDznIiIah1Jvf\nnFmzYMkSyJHD9HG+Cbl2+mdQzz82NpaIiAhsbGxwdXXlnXfeMXVcQli8xIQEVn7WmqaB+7ncfgS1\nf+2L7zNbzp6FXLm0jk5YuzR7/tHR0fz000+sXr2aO3fukC9fPhRF4ebNm+TOnZv27dvTs2dPnJyc\nTBec9PyFhTpx5r9EtA2g+N0kNtcLYd7O2sydC82bax2ZsAZv1fNv2rQp2bJlY+vWrVy+fJnDhw9z\n5MgRrly5wrZt23jnnXdo0qSJ0YMWwtJNG12P/DXrcyNnVtrmjuTs49qcOSOFX5gZxYyZeXhvLTg4\nWOsQTMra8jt15i9lZpmSyrXsKL1atlHy5lWU1au1ie1tWdu10xtDaucrH/guXLjwpeOEhARGjx5t\nmt9EQliq06cp2+pDXG2iaFbyCDfjV3H6NLRurXVgQqTulcV/z549BAQEEBkZyblz56hWrRrR0dFG\n+fCgoCDKli1LqVKlmDx5slF+piXx8/PTOgSTsor8kpJg2jSUDz5gr+coet9+RL/+Vdm4EfLn1zrC\nN2cV187KGTTJa/Xq1fTp04d33nmHn3/+mRo1arz1BycmJlKmTBl2795NoUKF8PX1ZdWqVbi7u78I\nTh74CjOVmAi7A69Tb2Vnnj56Rmfb5UQ5FGPZMihaVOvohLUzyiSvixcvMmvWLJo3b06RIkVYsWIF\nsbGxbx3csWPHKFmyJG5ubtjb29OmTRs2b9781j/Xkuh9rLFe87t6FXp5f86z3hU44VyXYuEhVG5R\njL179VP49XrtntN7foZ45Tj/xo0bM2fOHD744AOSkpL4/vvv8fX15bfffnurD75x4waFCxdOPnZ1\ndeXo0aMpzuvSpQtubm4A5MiRAy8vr+Q/2Z5fQEs9DgsLM6t4JL9XH0dE/g5jRjHk9l06lmzKrdD3\n2LErE15e5hGfHFvncUhICIGBgQDJ9fJVXtn2efjwIc7Ozi99748//qBMmTIGfUBa1q9fT1BQED/9\n9BMAK1as4OjRo8yePftFcNL2EWZkzrQ2BExYw94Sjky4d46mjYszaRI4OGgdmRAve6u2z/PfKv8u\n/EBy4Q8ODn7j4AoVKkRERETycUREBK5ar2MrRCqexD5iln92Woxew+QaDRgT9Zif5hfn+++l8AvL\nlWbx37ZtG1WqVGH48OFs2LCBw4cPc/DgQdavX8+wYcPw9fVlx44db/zBPj4+XLp0ifDwcOLi4liz\nZg2NGzd+459niZ7/gtUrPeS3ZvxFYiu8T7mIJBqVCuKB43ZOn4YPPtBHfmnRc26g//wMkWbPf+rU\nqURHR7NlyxZ27drF1atXAShatCg1atTg66+/fqulHTJlysScOXOoV68eiYmJdO/e/aWRPkJoSlHg\np59oMf1rtlcdQ/fjn/L9DBvatwcbG62DE+LtvbLnP23atBTfc3Z2xsfHBy8vL5MFBtLzFxq5dQt6\n9CA+/Aa9nVZw0dadn3/Wz0geoX9GGep58uRJ5s+fT2RkJJGRkSxYsICgoCB69uxplROzhH49fAhj\n+zXgSfmy/JmlHCVuHaZoPXdCQqTwCx161foPNWrUUKKjo5OPo6OjlZo1ayqxsbFK2bJlX3/Riddg\nQHgWTe/ri1hSfhs3/anMLV5GCc9uo/Rq1lcpUkRR9u9P/z2WlN/r0nNuiqL//Aypna8c53/79m0y\nZ86cfGxvb8/NmzfJmjUrDjLUQejA3Nn9qPvNjzzJ50DzkqcobudFWBjkzKl1ZEKYzit7/uPGjWPD\nhg00bdoURVHYunUrjRs35quvvqJXr178/PPPpgtOev7ClBIT+b5FQdrvvsUU/yos/fUokyZB9+7y\nUFdYNkNqp0Fr+xw/fpyDBw9iY2PDe++9h4+Pj9GCTI8Uf2EyV69Cp06cvnmeb0rPIvxaO1atAhlw\nJvTAaBu4+/r6MmDAAPr3759hhd8a6H2ssTnml5gIG1qtRPH15bJHQ5rE3sSteDuOHHn9wm+O+RmL\nnnMD/ednCIP28BVCFx48wO6zz/A7EMrsgCAmbarEokUQEKB1YEJkPIPaPlqRto8wlpnfNqf9tJ04\nNOxC04tTsHXKytKlUKCA1pEJYXxGa/sIYamu/x3F3LpOtJq4kelN/SgZNIe6H2UlKEgKv7BuUvw1\npPe+o9b5TZ0ymdsVi1H4ejyj2+9kedA21q6F4cPB1gj/5mudnynpOTfQf36GkJ6/0B9F4dtG1ei+\n9xjTavgQEn2IXFczERoKLi5aByeEeZCev9CXqCjo1o3rl88y66NBLF3ej6++gi+/NM7dvhCWwJDa\nKXf+Qj82b4bevUns1pMZpTazdq09mzZBtWpaByaE+ZF7IQ3pve+YUfklPorlToteMHAgkbPXU233\nOC6F2xMaatrCr+frp+fcQP/5GUKKv7BoP/7QjavFc3P+VBybx4Th9fl7tG0LmzZBrlxaRyeE+ZKe\nv7BIMY8fML9VcTrsu8/CLpWIsjnJtm2wZg1UqaJ1dEJoS8b5C13avGMGp8vmxOv3B+xZvJQNh08S\nGQmhoVL4hTCUFH8N6b3vaPT8FIVFnzWgeouBHKhckJvjHzOgTye6doV16yBHDuN+3Kvo+frpOTfQ\nf36GkNE+wjLcu8etZr2pdvgqw5tPJ2u+gSz4GrZvB1lrUIjXJz1/Yf5274auXfm9QktOt57ErAUO\n5MwJy5bJQ10hUiPj/IVle/oUvv5afYq7ZAnXbfwZ0BH69YMhQ2TSlhBvQ/7z0ZDe+45vk9+yFYM5\n55aV+L8ukRR6mvFH/enUCX7+GYYNM4/Cr+frp+fcQP/5GULu/IVZiYt/yvdti9Ntx99M8q7HsAUb\n6NIlEw8fwvHjUKiQ1hEKoQ/S8xdmI+TgSuI7d+CdOIWI6dPJ/s5APvsMmjeHb78Fe3utIxTCMsg4\nf2ExDk7/Avd67TlX2pkKF+5z7/ZAOneGadPUf6TwC2FcUvw1pPe+o0H5RUejdO2K74wt/DprEL3W\n3ufT3jmYNw8OHlTv+s2Vnq+fnnMD/ednCCn+QjuHDpHk6UXw/kwEFAzDo9oUqlaFTJngyBEoVUrr\nAIXQL+n5i4wXHw/jx8P8+Uwu9iMXPZpSpw4MHAgTJ0KPHmBjo3WQQlgus+75Dxo0CHd3dzw9PWne\nvDkPHz5kgBv8AAATKElEQVTUKhSRgTZumcLR4pm5FbwNQkPpurkpTk4wahT897/Qs6cUfiEygmbF\n/8MPP+T8+fOcPn2a0qVLM2nSJK1C0Yze+47/zC8xIYFJXUpQo+0QgqsXJMeeg1xPLEDTpnD5Mpw8\nCZUqaRfrm9Dz9dNzbqD//AyhWfH39/fH9v8zdapWrcr169e1CkWY2InTQWyrmIUGQVdYNWE0Q9fc\nYF+IA76+0KiRugFXzpxaRymEdTGLSV6LFy+mbdu2qb7WpUsX3NzcAMiRIwdeXl74+fkBL357W+rx\n8++ZSzymyG/buG/w/m4sRyu/w74Gy7G7kZNx42DePBg8OARvb7C1NY945fq9OPbz8zOreCS/9I9D\nQkIIDAwESK6Xr2LSB77+/v5ERUWl+P7EiRNp1KgRABMmTODUqVOsX78+ZXDywNdyPXmiLsCzaRPH\nJ/bBt8Ng7t6FDh0gJkZdrqdgQa2DFEKfDKqdioaWLFmiVK9eXXny5Emqr2scnskFBwdrHYJphIYq\niru7ElynjqLcu6coiqIcPaooRYsqypdfKkpcnLbhGYtur5+i79wURf/5GVI7Nev5BwUF8d1337F5\n82YcHBy0CkMYUWJ8PHz3Hfj7E9FxOIsLjUTJkZMffoCGDWH6dJg6VWbrCmEONBvnX6pUKeLi4sj1\n/wXZq1Wrxg8//PBycNL2sRg7gxeRuXtPCjjm5eKnR+g2xo1vv4W9e+HcOXWnLZm0JUTGMKR2yiQv\n8dYmfe5J96VnWFYnF5//cpXx453w8YERI9Q9defOhaxZtY5SCOth1pO8hOWPNf7tz8Os8s5E8zVn\n2DStF19tvYujoxOentCrFwQEhLB4sX4Lv6Vfv/ToOTfQf36GMIuhnsIC7d9P1ia1eVImM1nCTtPL\ntRxxcTBoEGzbps7WffRIZusKYa6k7SNeT1wcjB4NS5YQMXUUxxw+5fFj8PODjz+GvHkhMFAmbQmh\nJWn7COP6/XeoXh3OnIGwMAq3/xQPD3j2DHx9oWlT2LhRCr8QlkCKv4Yspe+YmJBA7KypULOmuuTm\n1q2QLx9JSbB2rboo2+rVKTdVt5T83pSe89NzbqD//AwhPX+RrkPHN/KgQwuKPM5M+QNhJJQsSyYb\nuHNHna37+LG6KFuBAlpHKoR4HdLzF2maPKwWneYcYF1VJ9qtu8Salfn55ReYPFnt77dura6/n0lu\nIYQwK4bUTvnPVqQQ8fcf7GpWkdZ/xLH2m5b0+2otfftCSAi0aKGuxLlggdrjF0JYJun5a8gs+44n\nTvDUsxyOz5J4fPwQ/b5aC6jLM5QtC5s2waFDhhV+s8zPiPScn55zA/3nZwgp/kKVmKj2cAICKDR1\nAW1D4/EoWQ2ACxfgiy8gWzY4fBhKltQ4ViHEW5Oev4DwcOjYUW3eL1sGhQuTlKSO3Fm9Gvr2Vfv8\n3bppHagQwhDS8xfpSkxIIHLBVAqPng6DB6u397a2rF4NR46ofwzs2AG7doGXl9bRCiGMSdo+GtKy\n73j2wn42VHIgesxw2LkTvvoqeZB+pUpw4ABERMCJE29e+PXeV9VzfnrODfSfnyGk+FuhGZOa4Fyt\nNvez2eN8+uJL1f2//4VatdRhnBs3Qo4cGgYqhDAZ6flbkdt3r7O2RRmanHrMqgHv89XY3QBERUGe\nPDBuHPz0E6xcCbVraxysEOKNSc9fvHD+PNEB1XDN+pS/92/nK68GKApMmgQLF0KJEuqabSdOyGxd\nIayBtH00lCF9R0WB2bPBzw+3EdNoePYZPl4NABg+HH7+WV2YrVIl2LPHuIVf731VPeen59xA//kZ\nQu789ezvv6FrV7h/Hw4dwvYf+ygqirrJyq1b6p1/kyYaximEyHDS89epE3O/xmfcIujdW91P8R+7\npsfEQM+e6uSt9evVlo8QQj+k52+FLl87w68tfHjvr3iebQomSy2/5Neio9Xhmy1aqMvyHz4Mjo7a\nxSqE0I70/DVk7L7jj3O6kujtiY0CSadOvlT4T52CGjXUUTyDBsGiRaYv/Hrvq+o5Pz3nBvrPzxBy\n568DMY8f8FPLYrTb/4DFPSsz7PsTL73+7Jla7KOjZbauEEIlPX9L99df3Gz2IWcfX8EmMJD3a3R6\n6eVr16BVKyhYEJYskUlbQlgD2cNXzxRFrebvvku+bn354GLCS4X/zz8hKAiqVIGWLWHDBin8QogX\npPhr6I37jnfvqhX9++9h714YMOClzXNXrABPT+jcGX75Re3x29gYJ+bXofe+qp7z03NuoP/8DCHF\n38Ksn/GJWtnd3ODYMahQ4aXXly6FXr3A3R1On1bX6RFCiH+Tnr+FiLoTzuZmHgScecL9edOp2G5g\ninOOHFH7+82awfTpsreuENZKev46sXTZl9wpVwyX+8+4e2hPisL/fAWHxo1h7lyYNUsKvxAifZoW\n/2nTpmFra8u9e/e0DEMzr+o7xsU/ZUqL/AR8Op0tjUrTNOwZXuXqvnTO9evQti0sXqxO2mrc2IQB\nvya991X1nJ+ecwP952cIzYp/REQEu3btomjRolqFYN6uXyfJ/wNqnrjNoXXfM3zhH9j963b+1Cl1\naYYsWdRN1WWZBiGEoTTr+bdq1YqRI0fSpEkTTp48Sa5cuVKcY7U9/7VroU8fdfPcoUNT7eGsXAn9\n+6t7rvfsqUGMQgizZbZr+2zevBlXV1cqVqyoxcebr0eP1IJ/+DBs3aoO0v+XZ8/UrXZ37oTdu9WB\nP0II8bpMVvz9/f2JiopK8f0JEyYwadIkdu7cmfy99H5DdenSBTc3NwBy5MiBl5cXfn5+wIu+naUe\nz5gxIzmfH2d2ouSkIDL5VMHv1Clwckpx/pIlIUycCBUq+HHiBISGhhASYj75pJefOcQj+Rl+/M+e\nuDnEI/m9Op/AwECA5Hr5SkoGO3v2rJI3b17Fzc1NcXNzUzJlyqQULVpUuXnzZopzNQgvQwUHBysP\nHt5WZvhnV/52QlkzoV2a5y5dqih2dorSrJmiJCVlYJBvITg4WOsQTErP+ek5N0XRf36G1E7Nx/kX\nK1bManv+azdOoGjfEdzLaoPTil+oUaVlinMSE2HYMHXc/iefqEM6tZitK4SwHGbb8/8nGyusZIkJ\nCUzpVpqe66+wsElhBi27nGIkD8Dt29C+PcTHQ0iIuiSzEEIYg+aTvC5fvpzqXb9u3b6NXYsWNN57\ng1lfdWToymupFv7Dh6FyZfDxUZdhtsTC/8++qh7pOT895wb6z88Qmhd/q7J9uzo8p2xZyl2Opm6d\nbilOURR1vbYmTdTZuhMnymxdIYTxad7zT49uev6PH8PgwerwzaVL4f9P6/8tOhp69IB9+9SVOL/8\nMmPDFELog6ztYwYWL+rDvXLF4d49dZnNNAr/+fPg6wvOznDyJPTrl7FxCiGsixR/E3nyJIbvmuTh\no/5zWdm4uDol91+7qTzvO65Yof5OGDYMFiyAQoXA3j7jYzY2vfdV9ZyfnnMD/ednCOkmm0DQngU4\n9uhNFQVObppHnw8+SfW8+Hj49FP1ge6ePSATnoUQGUV6/kb23efedF4axtL3Xeiz+gqOjk6pnhce\nrq69D+qSDaGhYGeXcXEKIfRLev4Z6cEDaN+eNpv+ZMuMTxm0+XaahX/7dqhaVW3v3LoFq1ZJ4RdC\nZCwp/sawb586hDNHDgpfukmPHj+kelpiIowYoW6zuH49fPhhCIcPQ7lyGRtuRtF7X1XP+ek5N9B/\nfoaQnv/biIuDUaNg2TJYuBACAtI89dYtaNcOkpLU0Tz58kFCAhQsmIHxCiHE/0nP/w2t+mUUVYbM\nokSFWmrhz5s3zXMPHYLWraFjRxg7ViZtCSFMS3r+JpCYkMC3bYvwQddxrK/lAps3p1n4FQVmzFA3\nVJ84EaKiZFE2IYR5kOL/Gg4d28guj8y8vz+C4OXjGLz0zzSr+aNH6t3+8uVw5Ija8mnd+uUHu3rv\nO0p+lkvPuYH+8zOEFH8DzRsVQPH3m3OxqBOlL9zm4+Yj0jz33Dl1tm7OnHDwIBQrphb9evUyMGAh\nhEiH9PwNoSj81uQ99tYuQp8vV6d76ooVMHAgTJsGnTplUHxCCPEPhtROKf5G8vQpDBgAe/fCunWw\nZg3UrAn162sdmRDC2sgD3wwSHq6ut3/njtrfnzFDXa7Bxyf99+m97yj5WS495wb6z88QUvzf0n/+\no87Wbd8e1q5VR/hkzqwWfxcXraMTQojUSdvnDSUmwjffqMvzr14N772ndURCCKGyiD18LdGtW9C2\nrfr1yZPpzu8SQgizJG2f13TwoLq3brVqsHOn2ue/cuXNfpbe+46Sn+XSc26g//wMIXf+Bno+W/fb\nb2HxYmjYUP3+wYOQO7c6ll8IISyF9PwNoCjqDN1Ll9RhnG5uWkckhBBpk3H+RrRzJ9SqBQ4OWkci\nhBDpk3H+RvThh5AlC+zerf4lYAx67ztKfpZLz7mB/vMzhBR/AyUlqTN4v/gCYmK0jkYIId6OtH0M\nNHu2OolryxbIkUPraIQQIm3S8zeip0/Vdo+jo9aRCCFE+qTnb0QODsYv/HrvO0p+lkvPuYH+8zOE\nZsV/9uzZuLu7U758eYYMGaJVGJoKCwvTOgSTkvwsl55zA/3nZwhNJnkFBwezZcsWzpw5g729Pbdv\n39YiDM09ePBA6xBMSvKzXHrODfSfnyE0ufOfN28ew4YNw97eHoA8efJoEYYQQlgtTYr/pUuX2L9/\nP++++y5+fn6cOHFCizA0Fx4ernUIJiX5WS495wb6z88QJhvt4+/vT1RUVIrvT5gwga+//pq6desy\nc+ZMjh8/TuvWrbl8+XLK4NLYHF0IIUT6NFvSedeuXWm+Nm/ePJo3bw6Ar68vtra23L17l9y5c790\nnrkM8xRCCL3RpO3TtGlT9u7dC8DFixeJi4tLUfiFEEKYjiaTvOLj4+nWrRthYWFkzpyZadOm4efn\nl9FhCCGE1dLkzt/e3p7ly5dz9uxZTp48mW7hHzlyJJ6ennh5efH+++8TERGRcYFmgEGDBuHu7o6n\npyfNmzfn4cOHWodkNGvXrqVcuXLY2dlx6tQprcMxmqCgIMqWLUupUqWYPHmy1uEYVbdu3ciXLx8V\nKlTQOhSTiIiIoE6dOpQrV47y5csza9YsrUMyqqdPn1K1alW8vLzw8PBg2LBhaZ+smLlHjx4lfz1r\n1iyle/fuGkZjfDt37lQSExMVRVGUIUOGKEOGDNE4IuO5cOGC8scffyh+fn7KyZMntQ7HKBISEpQS\nJUooV65cUeLi4hRPT0/lt99+0zoso9m/f79y6tQppXz58lqHYhJ///23EhoaqiiKokRHRyulS5fW\n1fVTFEWJjY1VFEVR4uPjlapVqyoHDhxI9TyzX94hW7ZsyV/HxMTg4uKiYTTG5+/vj62tehmqVq3K\n9evXNY7IeMqWLUvp0qW1DsOojh07RsmSJXFzc8Pe3p42bdqwefNmrcMympo1a5IzZ06twzCZ/Pnz\n4+XlBYCTkxPu7u5ERkZqHJVxZc2aFYC4uDgSExPJlStXqueZffEH+PrrrylSpAhLly5l6NChWodj\nMosXLyYgIEDrMEQ6bty4QeHChZOPXV1duXHjhoYRiTcVHh5OaGgoVatW1ToUo0pKSsLLy4t8+fJR\np04dPDw8Uj3PLIq/v78/FSpUSPHP1q1bAXVuwLVr1+jSpQsDBw7UONrX96r8QM0xc+bMtGvXTsNI\nX58huemJzD3Rh5iYGFq2bMnMmTNxcnLSOhyjsrW1JSwsjOvXr7N///40F7Eziw3c05sT8E/t2rWz\nyDvjV+UXGBjI9u3b2bNnTwZFZDyGXju9KFSo0EuDDiIiInB1ddUwIvG64uPjadGiBR06dKBp06Za\nh2Myzs7ONGzYkBMnTqQ6qMYs7vzTc+nSpeSvN2/ejLe3t4bRGF9QUBDfffcdmzdvxkHHGwQrOpmw\n5+Pjw6VLlwgPDycuLo41a9bQuHFjrcMSBlIUhe7du+Ph4cGAAQO0Dsfo7ty5k7xo3ZMnT9i1a1fa\nNTPjnkG/mRYtWijly5dXPD09lebNmys3b97UOiSjKlmypFKkSBHFy8tL8fLyUj799FOtQzKaDRs2\nKK6uroqDg4OSL18+pX79+lqHZBTbt29XSpcurZQoUUKZOHGi1uEYVZs2bZQCBQoomTNnVlxdXZXF\nixdrHZJRHThwQLGxsVE8PT2T/5vbsWOH1mEZzZkzZxRvb2/F09NTqVChgjJlypQ0zzXrnbyEEEKY\nhtm3fYQQQhifFH8hhLBCUvyFEMIKSfEXQggrJMVfiNdw/PhxPD09efbsGbGxsZQvX57ffvtN67CE\neG0y2keI1zRy5EiePn3KkydPKFy4MEOGDNE6JCFemxR/IV5TfHw8Pj4+ODo6cvjwYVnyQVgkafsI\n8Zru3LlDbGwsMTExPHnyROtwhHgjcucvxGtq3Lgx7dq14/Lly/z999/Mnj1b65CEeG1msbCbEJZi\n2bJlZMmShTZt2pCUlET16tUJCQmRbUiFxZE7fyGEsELS8xdCCCskxV8IIayQFH8hhLBCUvyFEMIK\nSfEXQggrJMVfCCGs0P8A797ScbJhOE8AAAAASUVORK5CYII=\n" - } - ], - "prompt_number": 14 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Test Gaussianity of a stochastic process\n------------------------------------------\nTESTGAUSSIAN simulates e(g(u)-u) = int (g(u)-u)^2 du for Gaussian processes given the spectral density, S. The result is plotted if test0 is given. This is useful for testing if the process X(t) is Gaussian.\nIf 95% of TEST1 is less than TEST0 then X(t) is not Gaussian at a 5% level.\n\nAs we see from the figure below: none of the simulated values of test1 is above 1.00. Thus the data significantly departs from a Gaussian distribution. " - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\ntest0 = glc.dist2gauss()\n# the following test takes time\nN = len(xx)\ntest1 = S1.testgaussian(ns=N, cases=50, test0=test0)\nis_gaussian = sum(test1 > test0) > 5 \nprint(is_gaussian)\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": "False\n" - }, - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlGXiB/DvKBiVZpbJCkOhQFwEGRJhPWqMFxwvQZnu\nhpbHQ6aspWR77PJTO0KZlzx79pDunrWt7GK5tl0WE528MZIWFwmjTbfIxAZWPOJl0zTD4fn9IY6O\nzAzMMO+87zvv93OO58zlmZmHx3fe7/s+l3d0QggBIiLSvG5yV4CIiJSBgUBERAAYCERE1IaBQERE\nABgIRETUhoFAREQAJA6ERx99FKGhoUhKSnJbrqqqCkFBQfjoo4+krA4REbkhaSDk5ubCbDa7LWOz\n2fDss89i/Pjx4JIIIiL5SBoII0eORJ8+fdyWWbNmDaZOnYo77rhDyqoQEVEHZB1DaGxsRHFxMebO\nnQsA0Ol0claHiEjTguT88AULFmDlypXQ6XQQQrjsMmJQEBF5x5OueFnPEKqrq5GTk4MBAwbgww8/\nxOOPP47Nmzc7LXslMLT+b+nSpbLXQSn/2BZsC7aF+3+ekvUM4YcffrDfzs3NRVZWFrKzs2WsERGR\ndkkaCNOmTcOePXvQ3NyMiIgIFBYWoqWlBQCQl5cn5UcTEZGHJA2EjRs3drrs+vXrJaxJ4DAajXJX\nQTHYFlexLa5iW3hPJ7zpaPKzK4PORETUeZ7uO3npCiIiAsBAICKiNgwEIiICwEAgIqI2DAQiIgLA\nQCAiojYMBCIiAsBAICKiNgwEIiICwEAgIqI2DAQiIgLAQCAiojYMBCIiAiDzD+T4QoGlAIV7Cts9\nvjRjKQqMBSzP8izP8pov31m8/DURUYDi5a+JiMgrDAQiIgLAQCAiojYMBCIiAsBAICKiNgwEIiIC\nwEAgIqI2kgbCo48+itDQUCQlJTl9/t1330VycjIGDx6M4cOHo7a2VsrqEBGRG5IGQm5uLsxms8vn\nBw4ciLKyMtTW1uL555/HnDlzpKwOERG5IWkgjBw5En369HH5/LBhw9C7d28AQHp6OhoaGqSsDhER\nuaGYaxm9/vrrmDhxosvnCwoK7LeNRiOMRqP0lSIiUhGLxQKLxeL16yW/llF9fT2ysrLw9ddfuyxT\nWlqKJ554Avv27XN6RsFrGRERec7TfafsZwi1tbWYPXs2zGaz2+4lIiKSlqzTTn/88Uc8+OCD2LBh\nA6Kjo+WsChGR5knaZTRt2jTs2bMHzc3NCA0NRWFhIVpaWgAAeXl5eOyxx/Dxxx/jzjvvBAAEBwej\nsrKyfSXZZURE5DFP9538PQQiogDF30MgIiKvMBCIiAgAA4GIiNowEIiICAADgYiI2jAQiIgIAAOB\niIjaMBCIiAgAA4GIiNowEIiICAADgYiI2jAQiIgIAAOBiIjaMBCIiAgAA4GIiNowEIiICAADgYiI\n2jAQiIgIAAOBiIjaMBCIiAgAA4GIiNowEIiICAADgYiI2kgaCI8++ihCQ0ORlJTkskx+fj5iYmKQ\nnJyMmpoaKatDRERuSBoIubm5MJvNLp/funUrvv/+e9TV1eHVV1/F3LlzpawOERG5IWkgjBw5En36\n9HH5/ObNmzFz5kwAQHp6Os6cOYPjx49LWSUiInIhSM4Pb2xsREREhP2+Xq9HQ0MDQkND25UtKCiw\n3zYajTAajX6oIRGRelgsFlgsFq9fL2sgAIAQwuG+TqdzWu7aQCAiovauP1guLCz06PWyzjIKDw+H\n1Wq1329oaEB4eLiMNSIi0i5ZAyE7Oxtvv/02AKC8vBy33nqr0+4iIiKSnqRdRtOmTcOePXvQ3NyM\niIgIFBYWoqWlBQCQl5eHiRMnYuvWrYiOjsbNN9+M9evXS1kdIiJyQyeu78RXIJ1O126sgYiI3PN0\n38mVykREBICBQEREbRgIREQEgIFARERtGAhERASAgUBERG0YCEREBICBQEREbRgIREQEgIFARERt\nGAhERASAgUBERG0YCEREBICBQEREbRgIREQEgIFARERtGAhERASAgUBERG0YCEREBICBQEREbRgI\nREQEgIFARERtgjoq8M0336CsrAz19fXQ6XSIjIzEyJEjMWjQIH/Uj4iI/MTlGcI777yDtLQ0LFy4\nEE1NTRg4cCAiIyNx7NgxLFy4EEOHDsWGDRvcvrnZbEZcXBxiYmKwatWqds83Nzdj/PjxMBgMSExM\nxJtvvtnlP4iIiLzj8gzh9OnT2LVrF3r16uX0+Z9++sntDtxms2HevHnYuXMnwsPDMXToUGRnZyM+\nPt5eZu3atUhJScGKFSvQ3NyM2NhYPPLIIwgK6vDEhYiIfMzlGUJ+fr7LMACAW265Bfn5+S6fr6ys\nRHR0NCIjIxEcHIycnBwUFxc7lOnfvz9++uknAJcD5vbbb2cYEBHJpMO9b25ubrvHdDod3njjDbev\na2xsREREhP2+Xq9HRUWFQ5nZs2dj9OjRCAsLw9mzZ/H++++7fL+CggL7baPRCKPR2FHViYg0xWKx\nwGKxeP36DgNh0qRJ0Ol0AIALFy7g448/RlhYWIdvfOU17ixfvhwGgwEWiwWHDx9GZmYmvvrqK6dn\nJtcGAnVdSUkZXnllOy5eDMINN1xCfv44TJp0r9zVIqIuuP5gubCw0KPXdxgIU6dOdbg/ffp0DB8+\nvMM3Dg8Ph9Vqtd+3Wq3Q6/UOZT7//HMsXrwYABAVFYUBAwbg22+/RWpqaqcqT94pKSnDk09+isOH\nX7I/dvjw5f8HhgKRdnm8DuG7777DiRMnOiyXmpqKuro61NfX49dff8WmTZuQnZ3tUCYuLg47d+4E\nABw/fhzffvstBg4c6GmVyEOvvLLdIQwA4PDhl7BmzQ6ZakREStDhGULPnj3t3T86nQ6hoaFOp5C2\ne+OgIKxduxYmkwk2mw2zZs1CfHw81q1bBwDIy8vDokWLkJubi+TkZLS2tuLll1/Gbbfd1sU/iTpy\n8aLz//Zffunu55oQkZLohBBC7kp0RKfTQQXVVA2TaQm2b1/m5PHnYTa/KEONiEgKnu47Peoy4sBu\nYMjPH4eoqMUOj0VFLcL8+Zky1YiIlMCjM4SUlBTU1NRIWR+neIbgeyUlZVizZgd++aU7QkJsmD8/\nkwPKRAHG032nR4FgMBhw4MABryrWFQwEIiLPSRoIra2t6NbN/xdIZSAQEXnO032n21lGLS0t2L59\nu8PVTu+66y7ce++9MJlMvMwEEVEAcXmG8OKLL+LDDz/EsGHDkJaWhrCwMLS2tuLYsWOorKxEeXk5\npk6diiVLlkhfSZ4hEBF5zGddRps3b0ZWVpbLS1C0trZiy5Yt7RabSYGBQETkOUnHEOTCQCAi8pxP\nxxAAYNSoUU4/ZPfu3Z7VjIiIFK3DQFi9erX99i+//IIPP/yQg8lERAHIqy6joUOHoqqqSor6OMUu\nIyIiz/m8y+jUqVP2262trdi/f7/9V860jr8pQESBpMNAuOeee+wzjYKCghAZGYnXX39d8oopHX9T\ngIgCDWcZeYlXDCUipfPZ1U4787ucpaWlnf6gQMPfFCCiQOOyy2jLli145plnMHbsWKSmpqJ///5o\nbW1FU1MT9u/fj507d2LUqFFOp6VqwQ03XHL6eEiIzc81ISLyDbddRmfPnkVxcTH27duHo0ePAgDu\nuusujBgxAvfffz969uzpn0oqsMvI2RhCVNQiFBWN5xgCESkCVyr7EX9TgIiUzOeB8Kc//and9Yx6\n9+6NIUOGwGAweFdLDyk1EIiIlMzngTB9+nTs378fWVlZEEKgpKQESUlJOHr0KKZOnYpnn322y5Xu\nsJIMBCIij/k8EEaOHIlt27bZxwvOnTuHiRMnwmw2Y8iQITh06FDXatyZSjIQiIg85rNpp1ecOHEC\nPXr0sN8PDg7G8ePHcdNNNyEkJMS7WhIRkeJ0uFL54YcfRnp6Oh544AEIIfDJJ59g+vTp+Pnnn5GQ\nkOCPOhKRSvHyLurSqVlGVVVV2LdvH3Q6HYYPH47U1NROvbnZbMaCBQtgs9nw2GOPOR1vsFgseOqp\np9DS0oK+ffs6XRDHLiMi9XE+NXsxiopMDAU/8dkYwtmzZ9GrVy+3L3ZXxmazITY2Fjt37kR4eDiG\nDh2KjRs3Ij4+3l7mzJkzGD58OD799FPo9Xo0Nzejb9++Xf6jiEh+vLyL/Hw2hjB58mQ88cQT2L59\nu8MVT0+ePIlPP/0Uc+fOxeTJk12+cWVlJaKjoxEZGYng4GDk5OSguLjYocx7772HKVOmQK/XA4DT\nMCAideLlXdTH5RjCzp07sXv3brz33nt48skn8d///hcAEBYWhhEjRuDhhx+G0Wh0+caNjY2IiIiw\n39fr9aioqHAoU1dXh5aWFowaNQpnz57Fk08+iRkzZjh9v4KCAvtto9Ho9rOJSH68vIv/WSyWTl2H\nzhW3g8qjR4+G0WjEhg0bcOTIESxduhRHjx5FU1MT0tPT3b7x9YvZnGlpacGXX36JXbt24fz58xg2\nbBh++9vfIiYmpl3ZawOBiJQvP38cDh9e3O7yLvPnj5exVoHt+oPlwsJCj17f4Syjxx9/HN27d8fu\n3buxdOlS9OrVC1OnTu3wF9PCw8NhtVrt961Wq71r6IqIiAj07dsXN954I2688Ubce++9+Oqrr5wG\nAhGpy5WB4zVrnr/m8i681peSdRgIFRUVqKmpQUpKCgDgtttuw6+//trhG6empqKurg719fUICwvD\npk2bsHHjRocy999/P+bNmwebzYaLFy+ioqICf/zjH738U4hIaSZNupcBoCIdBkKPHj1gs13t8ztx\n4gS6detwPRuCgoKwdu1amEwm2Gw2zJo1C/Hx8Vi3bh0AIC8vD3FxcRg/fjwGDx6Mbt26Yfbs2Vzb\nQEQkkw7XIWzYsAHvv/8+qqurMXPmTHzwwQdYtmwZfv/73/urjqqcdsoFOUQkN0kuf33o0CHs2rUL\nADBmzBiHtQT+oLZA4IIcIlIC/h6CAnBBDhEpgc8vbkee44IcIlIjBoIEuCCHiNSIgSCB/PxxiIpa\n7PDY5QU5mTLViJSupKQMJtMSGI0FMJmWoKSkTO4qkQZ1OO2UPMcFOeQJZ5MQDh++fEDBbUY+Wpwp\nyEFlIplxEoLyBMpMQQ4qE6kMJyEozyuvbHcIAwA4fPglrFmzQ6Ya+QcDgUhmnISgPFoNaQYCkcw4\nCUF5tBrSHFQmkhknISiPVi/dzUFlIiInSkrKsGbNjmtCOlN1Ia2ZS1docUoYEZEnPA0EVXYZcd42\nEZHvqfIMgfO2iaiztNyboIkzBK1OCSMiz7A3wTOqmXZ67fVdtDoljIg8o9UFZt5SzRnC9u3L7Mmu\n1SlhROQZ9iZ4RjWBAFxJ9qvjBJy3TUTusDfBM6oKBOBqsk+adC8DgIjcYm+CZ1QXCEx28jUtz0IJ\ndFwF7hlVBQKT3Tnu0LzHWSiBj70JnaeaQDCZnmeyO8EdWte4noXyPNuPNEfSaadmsxlxcXGIiYnB\nqlWrXJarqqpCUFAQPvroIzfv9SK/oE5wWl3XcBYK0VWSBYLNZsO8efNgNptx8OBBbNy4EYcOHXJa\n7tlnn8X48eN5ATsvcIfWNZyFQnSVZIFQWVmJ6OhoREZGIjg4GDk5OSguLm5Xbs2aNZg6dSruuOMO\nqaoS0LhD6xr+FgHRVZKNITQ2NiIiIsJ+X6/Xo6Kiol2Z4uJi7N69G1VVVdDpdC7fr6CgwH7baDTC\naDT6usqqxGl1XcNZKBRILBYLLBaL16+XLBDc7dyvWLBgAVauXGm/AJO7LqNrA4Gu4g6t6zgLhQLF\n9QfLhYWFHr1eskAIDw+H1Wq137dardDr9Q5lqqurkZOTAwBobm7Gtm3bEBwcjOzsbKmqFZC4QyNS\nPjVMD5csEFJTU1FXV4f6+nqEhYVh06ZN2Lhxo0OZH374wX47NzcXWVlZDAMiCjhqmR4u2aByUFAQ\n1q5dC5PJhISEBDz00EOIj4/HunXrsG7dOqk+lohUrqSkDCbTEhiNBQ5XOVYztUwPl3Rh2oQJEzBh\nwgSHx/Ly8pyWXb9+vZRVISIVUMuRtKfUMj1cNb+HQESBTy1H0p5Sy/RwBgIRKYZajqQ9pZb1Lqq5\nlhERBT61HEl7Si3Tw3VCBdeL8PSHoolInZyNIURFLUJRkfJ2nmrg6b6TgUBEilJSUoY1a3ZccySd\nyTDwEgOB7NSwEIbUg9uT+ni67+QYQoAK1Ol7JA9uT9rAWUYBKlCn75E8uD1pAwMhQAXq9D2SB7cn\nbWCXUYAK1Ol7/sZ+88u4PWkDAyFA8XcSuo795ldxe9IGzjIKYJy+1zUm0xJs377MyePPw2x+UYYa\nyYvbk/pwlhHZ8XcSuob95o64PQU+BgKRC972m3PcoXPYTsrDQCBywZt+c447dA7bSZk4hkDt8Mjt\nKk/7zTnu0DlsJ//gGAJ1CY/cHHnab85xh85hOykTF6aRA65I7RrO1+8ctpMyMRDIAY/cukaKH0IJ\nxN8YVssPxmgNu4zIAY/cusbXP4TSlS48JY8FqeUHY7SGg8rkQA0/UKLkHZ2veTv46vz/cTGKikxu\n20pLbasFHFSmLlH6kZvWBr297cJzPRb0vMt20lrbUnsMBGpHyStSvdnRqZm3XXjeBInW2pbak3xQ\n2Ww2Iy4uDjExMVi1alW75999910kJydj8ODBGD58OGpra6WuEqmY1ga9vR189SZItNa21J6kZwg2\nmw3z5s3Dzp07ER4ejqFDhyI7Oxvx8fH2MgMHDkRZWRl69+4Ns9mMOXPmoLy8XMpqkYopZdDbX33t\n3nbhebPKWiltS/KRNBAqKysRHR2NyMhIAEBOTg6Ki4sdAmHYsGH22+np6WhoaJCySqRySrgMs7/7\n2r3pwvMmSJTQtiQvSQOhsbERERER9vt6vR4VFRUuy7/++uuYOHGi0+cKCgrst41GI4xGo6+qSSrS\n0Y7OH0fuaulr9zRIlD6hgDpmsVhgsVi8fr2kgaDT6TpdtrS0FG+88Qb27dvn9PlrA0EKnG6nHq52\ndP46cldSX7uvt1slTyjoCL/D7Q+WCwsLPXq9pIEQHh4Oq9Vqv2+1WqHX69uVq62txezZs2E2m9Gn\nTx8pq+QUp9vJw9dfYH8duSulr53b7VVsCx8REmppaREDBw4UR44cERcvXhTJycni4MGDDmWOHj0q\noqKixBdffOHyfSSuphg3brEARLt/JtMSST9Xy7Zs2SOiohY5tHdU1CKxZcser98zI2Op0//HjIyl\nvqu4cFX3/+tS3b3B7fYqtoVznu47JT1DCAoKwtq1a2EymWCz2TBr1izEx8dj3bp1AIC8vDy88MIL\nOH36NObOnQsACA4ORmVlpZTVakdJXQBaIcXRvL+O3JXS187t9iq2hW9IvjBtwoQJmDBhgsNjeXl5\n9tuvvfYaXnvtNamr4ZZSugC0RIovsD9nySihr53b7VX+botAHa/gSmVwup0cOvoCe/OFU8qRu79o\ncbt1tV34sy0Cebwi4AKBOxJ1cPcF7soXTglH7v6ite22M9uFP9rCXXfnledVe+Yg0ViGT3W2mlIM\nVJJ0tmzZI0ymJSIjY6kwmZbY/584QEjOKGW7cDV5YdCgOYrb/3i6iw+oMwQpBioDta9QCVwdzXOA\nkJxRynbhqruzqekMTp5c5/CYEhcsuhNQgeDrDSaQ+wqVLJAHS3mA4T2lbBeuujtvuikMJ0+2L6+m\nA5mACgRfbzBquURBoAnUwVKlHGCoNZSUsl24Gq945ZXt+Prr9uXVdCATUIHg6w1GqlNUtX4h/SVQ\nB0uVcIChlFDyhpK2C1fdnb4OLH/vKwIqEHy9wUhxiqrmL6Q/BeJsISX0gSshlLpCyduFkn5P21sB\nFQiAbzcYKU5R1f6FJO8poQ9cCaEUyLzd/zg7E5BjXxFwgeCOp6dfUpyi8gupXUroA1dCKJEjV2cC\nN9103mn5K/sKKbqTNBMI3p5++foU1dsvJMcd1E8JfeBKCCVy5OpM4PbbH3JaPiTEJl13kkTrIXzK\nF9VUyqIWb66UqYYFd1u27BHjxi0WGRlLxbhxixVVNyGUXz9/crUgkOTh2UK3/7Nvy53Zn3m679TM\nGYJSumrcHSW6OgtQyriDq/opfaBc6fXzNyUPzGqRq14Dvb4f5s/PdLqvWL16t9PXdHV/pplAUFLf\nqbMvpLudlhLCzF39lBJYrii9fqRt7rrxXIW3VPszzQSC0vtO3e20brhBOH2NP8PMXf2UEFjuKL1+\nJB8ljM15M7Yk1f5MM4GghAE9d9zttJ5+erTsYeaufko6+3JG6fUjeSipK9HTbjyp9meaCQRA2X2n\n7nZaSggzd/WbP1/ZZ19KPzskeai9K1GK/ZmmAkHJOtppyR1mHfVzAso9+1J6/Uge7Epsj4GgEErf\naXVUP3eBpZR+WqW0JSkDuxLb07XNVVU0nU4HFVSTnHDWTxsVtRhFRSbuoAOEEgLfG863zUUoKlLO\ngVhXebrv5BkCSUrt/bTknpIGZj2l9LNyOTAQSFLspw1sag98diU66iblm5vNZsTFxSEmJgarVq1y\nWiY/Px8xMTFITk5GTU2NlNUJCBaLRe4qeETKflq1tYWU5GoLJQY+twvvSRYINpsN8+bNg9lsxsGD\nB7Fx40YcOnTIoczWrVvx/fffo66uDq+++irmzp0rVXUChto29vz8cYiKWuzw2OXZSZldfm+1tYWU\n5GoLJQ7McrvwnmRdRpWVlYiOjkZkZCQAICcnB8XFxYiPj7eX2bx5M2bOnAkASE9Px5kzZ3D8+HGE\nhoZKVS3yM/bTBjau8QgskgVCY2MjIiIi7Pf1ej0qKio6LNPQ0MBACDDspw1cDPzAIlkg6HS6TpW7\nfkqUq9d19v20oLCwUO4qKAbb4iqltMWnny6TuwqKaQu1kSwQwsPDYbVa7fetViv0er3bMg0NDQgP\nD2/3XlyDQEQkPckGlVNTU1FXV4f6+nr8+uuv2LRpE7Kzsx3KZGdn4+233wYAlJeX49Zbb2V3ERGR\nTCQ7QwgKCsLatWthMplgs9kwa9YsxMfHY926dQCAvLw8TJw4EVu3bkV0dDRuvvlmrF+/XqrqEBFR\nR3zzI3DS2LZtm4iNjRXR0dFi5cqVclfHr3Jzc0W/fv1EYmKi/bGTJ0+KsWPHipiYGJGZmSlOnz4t\nYw3958cffxRGo1EkJCSIQYMGiaKiIiGENtvjwoULIi0tTSQnJ4v4+Hjx3HPPCSG02RZXXLp0SRgM\nBnHfffcJIbTbFnfddZdISkoSBoNBDB06VAjheVtIujCtKzqzjiGQ5ebmwmw2Ozy2cuVKZGZm4rvv\nvsOYMWOwcuVKmWrnX8HBwfjzn/+Mb775BuXl5fjLX/6CQ4cOabI9QkJCUFpaigMHDqC2thalpaXY\nu3evJtviiqKiIiQkJNgnnmi1LXQ6HSwWC2pqalBZWQnAi7bwR3J54/PPPxcmk8l+f8WKFWLFihUy\n1sj/jhw54nCGEBsbK5qamoQQQhw7dkzExsbKVTVZ3X///WLHjh2ab4+ff/5ZpKamin//+9+abQur\n1SrGjBkjdu/ebT9D0GpbREZGiubmZofHPG0LxZ4hOFuj0NjYKGON5Hftor3Q0FAcP35c5hr5X319\nPWpqapCenq7Z9mhtbYXBYEBoaChGjRqFQYMGabYtnnrqKaxevRrdul3dlWm1LXQ6HcaOHYvU1FT8\n/e9/B+B5Wyj24nZcd+CeTqfTXBudO3cOU6ZMQVFREXr16uXwnJbao1u3bjhw4AD+97//wWQyobS0\n1OF5rbTFli1b0K9fP6SkpLi8XIVW2gIA9u3bh/79++PEiRPIzMxEXFycw/OdaQvFniF0Zh2D1oSG\nhqKpqQkAcOzYMfTr10/mGvlPS0sLpkyZghkzZuCBBx4AoO32AIDevXtj0qRJqK6u1mRbfP7559i8\neTMGDBiAadOmYffu3ZgxY4Ym2wIA+vfvDwC44447MHnyZFRWVnrcFooNhM6sY9Ca7OxsvPXWWwCA\nt956y75jDHRCCMyaNQsJCQlYsGCB/XEttkdzczPOnDkDALhw4QJ27NiBlJQUTbbF8uXLYbVaceTI\nEfzjH//A6NGj8c4772iyLc6fP4+zZ88CAH7++Wds374dSUlJnreFVAMcvrB161Zx9913i6ioKLF8\n+XK5q+NXOTk5on///iI4OFjo9XrxxhtviJMnT4oxY8ZobjrdZ599JnQ6nUhOThYGg0EYDAaxbds2\nTbZHbW2tSElJEcnJySIpKUm8/PLLQgihyba4lsViEVlZWUIIbbbFDz/8IJKTk0VycrIYNGiQfX/p\naVuo4ic0iYhIeortMiIiIv9iIBAREQAGAhERtWEgEBERAAYCKcRLL72ExMREJCcnIyUlBVVVVQCA\n2bNn++waVpGRkTh16pTbMsuXL3e4P3z4cJ98tlTefPNNzJ8/X+5qUIBQ7Epl0o4vvvgCJSUlqKmp\nQXBwME6dOoWLFy8CgH0Jvi90ZsXqihUrsGjRIvv9ffv2+ezzpdDVVbitra0Ol30gbeOWQLJrampC\n3759ERwcDAC47bbb7KsujUYjvvzySwBAz5498cwzzyAxMRGZmZkoLy9HRkYGoqKi8MknnwBof8R8\n3333oaysrN1nTp48GampqUhMTLSHznPPPYcLFy4gJSUFM2bMsH8mcHlx3NNPP42kpCQMHjwY77//\nPgDAYrHAaDTid7/7HeLj4/HII484/RuNRiOee+45pKenIzY2Fnv37u2wvp35e4HLq/hHjRqFu+++\nGy+88IL98Q0bNiA9PR0pKSn4wx/+gNbWVvv7Lly4EAaDAeXl5Z34HyLNkHzFBFEHzp07JwwGg7j7\n7rvF448/Lvbs2WN/zmg0iurqaiGEEDqdTpjNZiGEEJMnTxaZmZni0qVL4quvvhIGg0EIIcT69evF\nvHnz7K+/77777O8XGRkpTp48KYQQ4tSpU0IIIc6fPy8SExPt93v27OlQtyv3P/jgA5GZmSlaW1vF\n8ePHxZ133imOHTsmSktLRe/evUVjY6NobW0Vw4YNE3v37m33NxqNRrFw4UIhxOUFl2PHju2wvp39\ne/v37y/YP3OtAAAC1ElEQVROnTolLly4IBITE8X+/fvFwYMHRVZWlrh06ZIQQoi5c+eKt99+2/6+\n//znPzv3n0Oawi4jkt3NN9+M6upqfPbZZygtLcVDDz2ElStXYubMmQ7levToAZPJBABISkpCSEgI\nunfvjsTERNTX13v0mUVFRfjXv/4F4PIRdl1dHdLS0lyW37t3L6ZPnw6dTod+/fohIyMDVVVVuOWW\nW5CWloawsDAAgMFgQH19vdOxhwcffBAAcM8993Sqvp39e8eNG4c+ffrYP2Pv3r3o3r07qqurkZqa\nCuDyZS5+85vfAAC6d++OKVOmdPj5pD0MBFKEbt26ISMjAxkZGUhKSsJbb73VLhCudCldKd+jRw/7\n7UuXLgG4/NOtV7pGAOCXX35p91kWiwW7du1CeXk5QkJCMGrUKKflrqXT6SCuW9R/pf/+hhtusD/W\nvXt3e12ud6XctWXc1bczf+/1hBD2es2cObPdIDlw+Ud2tHIFUPIMxxBIdt999x3q6urs92tqahAZ\nGenVe0VGRuLAgQMQQsBqtdp/OepaP/30E/r06YOQkBD85z//cehHDw4OdrqzHTlyJDZt2oTW1lac\nOHECZWVlSEtLaxcSUtS3Izt27MDp06dx4cIFFBcXY8SIERgzZgw++OADnDhxAgBw6tQp/Pjjj12q\nKwU+niGQ7M6dO4f58+fjzJkzCAoKQkxMDF599dV25a4/qr32/pXbI0aMwIABA5CQkID4+HgMGTKk\n3fuMHz8ef/vb35CQkIDY2FgMGzbM/tycOXMwePBgDBkyBO+88479fSdPnowvvvgCycnJ0Ol0WL16\nNfr164dDhw65rZcrnalvZ/5enU6HtLQ0TJkyBQ0NDZgxYwbuueceAMCyZcswbtw4tLa2Ijg4GH/9\n619x55138uyAXOLF7YiICAC7jIiIqA0DgYiIADAQiIioDQOBiIgAMBCIiKgNA4GIiAAA/w8sSZOh\nY0it2QAAAABJRU5ErkJggg==\n" - } - ], - "prompt_number": 15 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Normalplot of data xx\n------------------------\nindicates that the underlying distribution has a \"heavy\" upper tail and a \"light\" lower tail." - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nimport pylab\nws.probplot(ts.data.ravel(), dist='norm', plot=pylab)\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtcz/f///Hbu5OOSCo6EAqlkMOyA3JIThl2IGxmZnbA\nZ4fvZzbsK9vYxw6ffdnwM59tjDnsZA5htpF8ZtakzRBCUQk5pKN0eP3+eNW73t7vlNT73eFxvVxc\n1vv1fr3fPbLtfe951iiKoiCEEEKUY2bqAoQQQtQ9Eg5CCCH0SDgIIYTQI+EghBBCj4SDEEIIPRIO\nQggh9Eg4iEbHzMyMs2fPVuu1Xl5e/PLLLwaf279/P507d9a5d8+ePQAsWrSIadOmVet73o2oqCg8\nPT1r/fuIhk/CQdQLXl5e2Nra4uDgQKtWrZgyZQo5OTlGr0Oj0aDRaAw+17dvX06cOKFzb6k5c+aw\natUqAJKSkjAzM6O4uLhaNaxevRpzc3McHBxo1qwZgYGBREZG3vX7PPXUU7z55pvVqkE0fBIOol7Q\naDRs376drKwsDh8+zKFDh3jnnXf07issLDRBddVzL+tPH3zwQbKyssjIyGDq1Kk8/vjjZGRk1GB1\norGTcBD1jpubG0OHDuXYsWOA2k20fPlyfHx86NSpEwCrVq3Cx8cHJycnHn74YdLS0nTeIzIykg4d\nOuDs7Mxrr72m/aA+c+YMAwcOpGXLljg7OzNp0iRu3Lih89qYmBi6dOlCixYtePrpp8nPzwfu3KUT\nERHBE088AUC/fv0AaN68OU2bNiU6OhonJyeOHj2qvf/y5cvY2dlx9epVg+9XWq9Go2HKlCnk5eUZ\n7CqLj48nODgYR0dH/P392bZtGwCffvop69ev57333sPBwYGHH364or9u0UhJOIh6o/QDMTk5mZ07\ndxIYGKh9bsuWLfzxxx8cP36cPXv2MGfOHL755hvS0tJo27Yt48eP13mvH374gdjYWA4fPsyWLVv4\n/PPPtc/NnTuXtLQ04uPjSU5OJiIiQqeG9evXs3v3bs6cOcOpU6cMtmBuV76Laf/+/QDcuHGDzMxM\n+vXrx/jx41m3bp32ng0bNjB48GCcnJzu+L6FhYX85z//wcHBAR8fH53nCgoKCAsLY+jQoaSnp/Px\nxx8zceJETp06xbPPPsvEiROZPXs2WVlZbNmypdKfQTQuEg6iXlAUhdGjR+Po6Ejfvn0JDg5mzpw5\n2uffeOMNmjdvTpMmTfjqq6+YOnUq3bt3x8rKinfffZfffvuN8+fPa++fPXs2zZs3x9PTk5deeokN\nGzYA0KFDBwYNGoSlpSUtW7bk5ZdfZt++fdrXaTQaZsyYgbu7O46OjsydO1f72srqN/R1qSeffFLn\nfdauXattaRhy8OBBHB0dad26NZs2bWLz5s04ODjo3ZOTk8Prr7+OhYUFAwYMYOTIkdrvoyjKPXVt\niYbNwtQFCFEVGo2GLVu2MHDgQIPPl+/OSUtLo1evXtrHdnZ2ODk5kZqaSps2bfTub9OmDRcuXADg\n0qVL/OMf/+C///0vWVlZFBcX06JFiwq/V/nX3ougoCBsbGyIioqiVatWnDlzhlGjRlV4f58+fbQt\nkIpcuHBBr5urbdu22norGlgXAqTlIBqI8h90bm5uJCUlaR/n5ORw9epV3N3dtdfKtyLOnz+vfW7O\nnDmYm5tz9OhRbty4wdq1a/VmFd3+Wjc3t2rXWt7kyZNZt24da9eu5bHHHsPKyuqu3vd2bm5uJCcn\n67QOzp07p/1ZJRzEnUg4iAYnPDycL774gr/++ov8/HzmzJlDnz59tK0GgA8++ICMjAySk5NZunQp\n48aNAyA7Oxs7OzuaNm1Kamoq77//vs57K4rCsmXLSE1N5dq1ayxcuFBvPKMyzs7OmJmZcebMGZ3r\nkyZN4vvvv+err77iySefrOZPXyYoKAhbW1vee+89CgoKiIqKYvv27dp6XV1dq73eQzR8Eg6i3rv9\nN+BBgwbx9ttv88gjj+Dm5kZiYiIbN27Uuefhhx+mZ8+eBAYGMnLkSJ5++mkA5s+fz+HDh2nWrBlh\nYWE88sgjOu+v0WiYOHEiQ4YMoUOHDvj4+DBv3rwKayl/vfQ5W1tb5s6dy4MPPoijoyMxMTGA2l3V\no0cPzMzMeOihh+74897pt/7S56ysrNi2bRs7d+7E2dmZGTNmsHbtWjp27AjA1KlTOX78OI6Ojowd\nO7bC9xONk0YO+xGi7pg6dSru7u689dZbpi5FNHJGbzkkJyczYMAAunTpgr+/P0uXLjV436xZs/Dx\n8aFbt27ExcUZuUohjC8pKYnvv/+eqVOnmroUIYwfDpaWlnz00UccO3aMgwcPsmzZMuLj43Xu2bFj\nB6dPnyYhIYFPP/2U559/3thlCmFUb775JgEBAbz22mu0bdvW1OUIYfpupdGjRzNz5kwGDRqkvfbc\nc88xYMAA7SBh586d2bdvH66urqYqUwghGhWTDkgnJSURFxdHUFCQzvXU1FSd+dkeHh6kpKQYuzwh\nhGi0TLYILjs7m0cffZQlS5Zgb2+v9/ztDRpDszNknrYQQlRPZZ1GJmk5FBQU8MgjjzBp0iRGjx6t\n97y7uzvJycnaxykpKToLmMor3QKgLv+ZP3++yWtoCDVKnVJnXf9TX+qsCqOHg6IoTJ06FT8/P156\n6SWD94waNYovv/wSUPeHad68uYw3CCGEERm9W+nXX39l3bp1dO3aVbur5qJFi7RbEkyfPp3hw4ez\nY8cOvL29sbOz44svvjB2mUIIUa9ERkazdOlu8vMtaNKkkFmzhjBiRL9qv5/Rw+Ghhx6q0glYn3zy\niRGqMY7g4GBTl1Cp+lAjSJ01TeqsWaaqMzIymn/840fOnFmovXbmzFyAageEyaey3guNRlPl/jMh\nhGioQkPnsXu3/rkioaFvsmvX23rXq/LZKVt2CyFEHVFR11BlXUb5+YY/ym/eNK92LRIOQghhQqUf\n/Kmp6Zw9qyEv7/9pnztzZi5//HGUdetS79hl1KSJ4bPTra2Lql2XdCsJIYSRGQ6EeYB+15CT0ziu\nXt2kd718l5GhMYcOHeawZMlQg2MO0q0khBB1jO4HeflAMPxxXFhoY/B6+S6j0gD4+OM3uXnTHGvr\nImbONBwMVSXhIIQQRhIZGc3kycvKtQTKfwQb7hqysMgzeP32LqMRI/rhHeRKem46D7Wp+DyQqpLD\nfoQQopZFRkbTo8czPProBq5e9S33TPlAGALM1Xldhw5zmDGjPx066F+fOTNE+zi/MJ+39r3Fg58/\nyJlruicMVpe0HIQQohaVdSO1Qu1Cmlfu2dJAWAioXUA2NuPw9nbDzc1e2zXUu3d0hV1G+8/t59nt\nz9LRqSNx0+PwbOZJTZABaSGEqAWRkdG8+eaX/P33JQoLtwERJX+igR9RAwEgGhubZeUCIaRKYwXX\n867z2s+vsTNhJ0uHLWVM5zFV3oxUBqSFEMIEIiOjeeaZNVy82ArwKLla2oVU+sH/JmBOy5YnWL36\nxSoPHiuKwqZjm3jlx1cY4zuGYy8co5l1s5r9AZCWgxBC1Dh1xTKUdSO9g36L4c7TTQ1JvJ7ICzte\nICUzhU9Hfsr9nvdXq76qfHbKgLQQQtQwdcVyacdM6bhCPyAUeBNr68n06PFilYOhsLiQ9399n96r\netO/bX8OP3u42sFQVdKtJIQQNaB0jOHUqTRycgACS565vRspgdWrX6hya+GP1D+Ytm0aLnYu/P7M\n73Ro0aHmizdAupWEEOIeREZGM2vWEs6eVQBHoBVqC2FNyddl3UitWr3Mf/4zpkrBkJWfxby989h0\ndBMfDPmAiQETa+z0SxmQFkKIWqIbCpaAT8kz5bfAWAuEY2lZRECAM2+9Na5KwbDlxBZm7pzJ4PaD\nOfbCMZxsnWr+B6iEhIMQQtyFyMhopk5dyKVLdpSFgqGP0n6Udik98EAEUVERlb53amYqM3fO5Ojl\no6wZvYYB7QbUXOF3SQakhRCiCiIjo+nQ4RFGjnyHS5dsAT/AFzUYCsv90VfZ7qhFxUUsi1lG95Xd\n8Xfx58jzR0waDCAtByGEqFTZugUL1HGF0i0wSsNgCOoYA5SteFa1avUyM2eOqfC9j1w6wrPbnsXS\n3JJ9T+3Dz9mvxuuvDhmQFkKISvTo8SJxcY6ov08nUbawrTQUSgeh1wJpgAZrazv8/JwqHGfILcjl\nrX1v8Xnc5ywcuJCpPaZipjFOZ06dXefw9NNP4+rqSkBAgMHno6KiaNasGYGBgQQGBvLOO/p7nAsh\nhDFERkbz999XKOs+ykMNhTTURW2TgcvACjSaDDp0cGL79n+Sl7eR2NhlBoNh95ndBKwIICkjiSPP\nH2Faz2lGC4aqMknLYf/+/djb2/Pkk0/y999/6z0fFRXFv//9b7Zu3XrH95GWgxCitrVu/TgXL2pQ\nB56HAP8HuAATUFsK2UABrVqZ8Z//zLjjbKTLOZd55cdX+DX5V5YPX84wn2FG+An01dmWQ9++fXF0\ndLzjPfKhL4QwpYiI5VhY3MfFi8VAc8paCi8BV4APgAxsbHKZP38gaWlfVxgMiqLwedznBKwIoLVD\na44+f9RkwVBVdXJAWqPRcODAAbp164a7uzsffPABfn51Y5BGCNGwRUQs5513VlNU5Ag4o35MOqO2\nGtYCKwA7wJUePW4RG7vqju938spJpm+fTk5BDrsm7iKwdeAd768r6mQ49OjRg+TkZGxtbdm5cyej\nR4/m1KlTBu+NiIjQfh0cHExwcLBxihRCNDj+/mM4diwXNQzsARvUj8nSVkNZEFhZPcNbbz1Z4Xvl\nF+az+NfFLP19KW/2e5MZ983A3My8wvtrU1RUFFFRUXf1GpPNVkpKSiIsLMzgmMPt2rVrR2xsLC1a\ntNC5LmMOQoia0r//FKKjL1MWCqAOPr+IOiPJDHV8wQq4yvz5w4mIeMHge5U/gOeTYZ/U2AE8NaXe\nbp9x6dIlXFxc0Gg0xMTEoCiKXjAIIURNiYhYTnT0JdSBZlBDAaA/sB51RtJPgDnwF+HhXQwGw70c\nwFPXmCQcwsPD2bdvH1euXMHT05MFCxZQUFAAwPTp0/n2229ZsWIFFhYW2NrasnHjRlOUKYRoBCZM\nmM2GDX+hDjqXD4VtwBGgK7AcsAbS6dfPhfXrF+u8h7EO4DEmWQQnhGi0IiKWs2DBDsAWNRiGoYZC\nW9RQ+Ba1i8kWC4tc5s4doddiqKkDeIypzk5lFUIIU1ODYQvgBOSj7pUUB4QBp4BIwAkzM4X58wdQ\nUBCpEwymOIDHmOrkmIMQQtQmtSvpIOoYQz5QgPpx2ALYWXI9E3PzcxQWxui9vvQAHmc7Z6MewGNM\nEg5CiEYjMjKaxx+fTW6uI9AUyAVaA7eABKAT0BMoAo4zb95TOq+vzQN46hoJByFEo6C2FqKAZqjB\nAHAJyETdafUG8Bfq+EMm4eEBOt1IdeEAHmOSAWkhRIOnrmFIRf192Aa1pQBlA9BmqAf3WAFZhId3\n1c5IKn8Az8qRK01+zkJNkAFpIUSjNmHCbDQaf6Kj0wAH1AVutygNgbIBaAfUqaw5dOlizfr1i+vk\nATzGJN1KQogGSe1G2gN4oobCTdSxhJuoA84KcBxILXn+Ev36tWLfvi/q7AE8xiTdSkKIBkmjKd31\n1AF124ubqOcxaFD3TnKk/HYY/fo5s/PnZby17y0+i/uMRQMXGfUAHmOqt9tnCCHEvWjWLAhogxoE\nOaiDzZaoLYZ04HzJdXsgg/Dwrjz19iACVgTQ2603fz//N63sW5mo+rqh4UWiEKLRKh1jyMxsgfrh\nn4U6XdUSdfuLNNTttr0AaNMmg0vZazB7NJXp26fzybBP2PjoxkYfDCDhIIRoINQxhp9QxxgcgAzU\nQ3maoM5QykKdxmoPZOHXpQnzfwivVwfwGJOMOQghGgSNZihqN5IDahCEAV+jhoQN6hiDHZDFi/OD\nONYumuxb2Xw68tN6cwBPTZGprEKIRsHMzB81FEqD4SrqNNXHgc6oK581YH6SBVEPsNF2GaM7jebg\n1IONLhiqSgakhRD1ltqVFInalZRdcvUq6h5JRymbpnoZ2iTRcso1YtNiiZseV+cO4KlrJByEEPWO\nepxnAmo3UukYQxLqVFUX1NlJJXseWedDyN9YdbnGynFr6/UBPMYk4SCEqFfUYDgNeKA7xtAFOAtc\nQB1baAb+1yD0T3rbB/HT60fr/QE8xiQD0kKIeqNJk+7cutW65JE9ajhkAZeBHqgth0vQXAMjYqBp\nFgfe2NugzlmoCbIITgjRIKihUFjyqHwogDrW4Az8CWYtoM9FeCgeDrgwb9D/SjBUk7QchBB1lq1t\nT/Ly8kse3T6AfAV1S4w+wAlwy4Cwc5BrA9s7Mn9WuN6RnkJVlc9Ok4TD008/TWRkJC4uLvz9998G\n75k1axY7d+7E1taW1atXExioP91MwkGIhkuj8S/5qjQUHEr+eRIoRl3xbAtWl2FgHvhfhN2d4Egh\ninLM2OXWK3V2ncOUKVPYtWtXhc/v2LGD06dPk5CQwKeffsrzzz9vxOqEEKamBoMnZTORSgeds1C3\n1rYG8qDTOXgxCZpoYNmDdClqL8FQQ0wy5tC3b1+SkpIqfH7r1q1MnjwZgKCgIDIyMrh06RKurq5G\nqlAIYQpl3Uil22yXH1tIQx1w7gwOyTDsCrjmwOaukATbt89nxIh+pim8AaqTA9Kpqal4epb1L3p4\neJCSkmIwHCIiIrRfBwcHExwcbIQKhRA1TbcbqbSlAJBc8s/7QRMDvQ5A8BU45AXfB2FWnM1WCYY7\nioqKIioq6q5eUyfDAdDrD6to0Ur5cBBC1D+6q5yhdGO8slDoDJwA170QdgWKLGF1EJor1yku3mKK\nkuud239xXrBgQaWvqZPh4O7uTnJysvZxSkoK7u7uJqxICFEbmjULIjMzB/1upGTACbgKlsehfzYE\nXoJfukBcU7Zve0taCrWsTm68N2rUKL788ksADh48SPPmzWW8QYgGxt9/DJmZjpR1I2WjBsMF1NbC\nVWh/C55PguYKrHiQfvbdUIqjJBiMwCQth/DwcPbt28eVK1fw9PRkwYIFFBQUADB9+nSGDx/Ojh07\n8Pb2xs7Oji+++MIUZQohaklExHKOHbuJGgrlWwsl7E5DaDp4ZkFkdzhtg5XVVfbt22OaghshWQQn\nhDCqsoFnX8p2Uk1GPXMhFwIzYNAlOOIJe7tDwU1sbC6Tmxtrknobojq7CK6mSDgIUX+Ymfmj/u/q\nTlmP9hUgD7gfnKJgZBo0MYetveGiJV26WHP06GYTVdxwSTgIIUyuLBRAd+D5JFAE5o7w0EkIyoB9\nfhDTCpQUFOWoqUpu8CQchBAmVRYM5bfAyAYUIBnaFEJYIlxtDjt6QWYxkCzBUMtkV1YhhMnY2vZE\nUcqvXSgdeM4A6wwIyQefZNjpD/HeqKGRzPbty01VsihHwkEIUePKBp1v3wLjPPhnqjOR4m1hWRDk\nOwJFwE22b18u01TrCOlWEkLUGP2dVEslQ/NbMCIPmqbDNjdI6YQaHmqLQbqSjEfGHIQQRqMbDKUt\nhuNgpkCfq/DQFTjgBAe6Q3FTJBRMR8YchBBGUbbFNuhsmueWB2EXINccVrWH6x0obS1YWaWRny/B\nUFdJOAghqs3FpS/p6dfR2xvJKgkGXgb/PNjtBEf8gabqc8RLa6EekG4lIcRd8/cfw7FjCSWPbtti\nu9MxGH4RztrBblfIa4eMLdQt0q0khKhx+oPOJVtsO5yFYWngqsBmd0iyo6xFIcFQ39TJXVmFEHWT\n7vGd9oADaLKg91/w3BlIt4YVnpDUFmiHul/SFbZvf0OCoZ6RbiUhRKV0VzqXG1twzYKww1BsC9ua\nq+EgrYU6r8a7lYqKisjJyaFp06b3VJgQov4weHynZRH0j4PA67DHFQ43B8W55HlL4Ao2Npnk5kow\n1FeVdiuFh4eTmZlJTk4OAQEB+Pr68t577xmjNiGECWk0/ga6kbKg/Ul4Pkpd1LaiI8Q6gqJB7UKy\nBvJo2jRXttiu5yoNh+PHj9O0aVN++OEHhg0bRlJSEmvXrjVGbUIIE7Cw6GpgQZsD2F2Fsb9BWArs\n8IJvPSHbrOQe35L741GUndy48bsJKhc1qdJupcLCQgoKCvjhhx948cUXsbS0RKPRGKM2IYSRVTgT\nqXsqDI6HI+1huQUUlIZC6diCrF1oaCptOUyfPh0vLy+ys7Pp168fSUlJNGvWzBi1CSGMyOBMJKdL\nMHk/3Hca1nWD3VZQ4EL5mUj9+rWSYGiA7nq2kqIoFBUVYWFh+iUSMltJiJpRFgwlM5HMb8BDZyEo\nEfY5Q0yLcuMKLSltMYSHd2X9+sUmrFxUR1U+OyttOVy8eJGpU6cydOhQAOLj41mzZs09FbZr1y46\nd+6Mj48Pixfr/4cVFRVFs2bNCAwMJDAwkHfeeeeevp8QwjDdQeeSLqI25+C5feB2CVb2hN+dSoLB\nE/AqeaU6tiDB0HBVGg5PPfUUQ4YM4cKFCwD4+Pjw0UcfVfsbFhUVMWPGDHbt2sXx48fZsGED8fHx\nevf179+fuLg44uLimDdvXrW/nxBCX1kogDYYrK9D2O/w6GHY4wIbPOFGDmproSw8wsO7SjdSI1Bp\nOFy5coVx48Zhbm4OgKWl5T11KcXExODt7Y2XlxeWlpaMHz+eLVu26N0n3UVC1A7dUPAE7MA/AV7c\np565s8wb4puiLnST1kJjVemnvL29PVevXtU+Pnjw4D0NSKempuLpWXYQiIeHB7//rjvtTaPRcODA\nAbp164a7uzsffPABfn5+Bt8vIiJC+3VwcDDBwcHVrk2Ihk53a217aJ4LI/ZB0yzY5AkpdqjnO8tM\npIYkKiqKqKiou3pNpeHw4YcfEhYWxtmzZ3nggQdIT0/n22+/rW6NVZoG26NHD5KTk7G1tWXnzp2M\nHj2aU6dOGby3fDgIIQzT60IyU6DP3+qg8wFHONABijXoB4Nsf9EQ3P6L84IFCyp9TaXh0LNnT/bt\n28fJkycB6NSpE5aWltUu0t3dneTkZO3j5ORkPDw8dO5xcHDQfj1s2DBeeOEFrl27RosWLar9fYVo\njCZMmM2GDZElj0o+9N1SIewo5BbDKi+43hq4qnuPBEOjV2k4rFmzRmfa0+HDhwF48sknq/UNe/Xq\nRUJCAklJSbi5ubFp0yY2bNigc8+lS5dwcXFBo9EQExODoigSDELcJb0FbVZNYOAf4J+qnrNwpBnq\nuMJVDE9R3WmCqkVdUWk4/PHHH9quoJs3b/LLL7/Qo0ePaoeDhYUFn3zyCaGhoRQVFTF16lR8fX1Z\nuXIloC66+/bbb1mxYgUWFhbY2tqycePGan0vIRorNRg8UD/87aFTGgyPgrM2sKwD5JX/X1/GF4S+\nu14El5GRwbhx4/jxxx9rq6Yqk0VwQuiyte1JXl4+2g98h5sw7A91a+1tLiUH8NgAeUgXUuNVKyfB\n2drakpiYWO2ihBC1Q6cbSWMHvY5B8Gk41By+bwuFpTPXJRhE5SoNh7CwMO3XxcXFHD9+nMcff7xW\nixJCVF3Zec4lYwuuhRD2MxQXweo2JQfwlCfBICpXabdS+bmxFhYWtG3bVmedgilJt5Jo7HRaCxY2\n0D8eepyBPS3hsCMoLZGZSOJ2VfnslGNChaindBa0tc+BkYfgQjPY1RSyy083l1AQuu5pzMHe3r7C\nBWsajYbMzMx7q04IUS06rQU7Cwg9Am3SIdIZEhxuu1uCQVSPtByEqEfKgsEDul+FkCPwlxvstSk5\ngKc8CQZhWI12K12+fJmbN29qH7dp0+beqqsBEg6isdBpLTjlwMgT0CQftrrCRavb7pZQEHdWI+c5\nbN26FR8fH9q1a0f//v3x8vJi2LBhNVakEOLOtMFg7g79z8PU3+GEE6zyKAkGm3J3SzCImlFpOMyb\nN4/ffvuNjh07kpiYyC+//EJQUJAxahOiUYuMjC4bdG5jB8/9Bm7psPJ++N285AAeKFu34FvyWN1a\nW4JB3ItK1zlYWlrSsmVLiouLKSoqYsCAAfzjH/8wRm1CNFra1oJ1Kwg5CT4XYWcniL8FXLntbmkt\niJpXaTg4OjqSlZVF3759mThxIi4uLtjb2xujNiEanbKxhZbgnwGhv0K8Cyx7APIvou6VVJ4Eg6gd\nFQ5If/PNN4SFhVFUVIS1tTXFxcV89dVXZGZmMnHiRJycnIxdqx4ZkBYNRVkoAM2dYMRJaJoH23wh\nJbvkCQcgq+RrCQVRffc0W2n06NH8+uuvDB06lPDwcEJDQ7VHhdYVEg6iIdAGg5k79DkHDyXCgfZw\noA0Up952txXgSmkw9OvXin37vjBuwaLeu+eprDdu3GDz5s1s3LiRP//8k9GjRxMeHk7//v1rvNjq\nkHAQ9ZnO9FS3GxAWD7lWsL0zXNcgYwuittToOocrV67w3XffsWzZMq5du0ZKSkqNFHkvJBxEfaTT\nhWTVGgYmgX8y7O4ER1oDpf9vdQZOlHwtwSBqTo1t2X39+nW+//57Nm3axLVr13jsscdqpEAhGpOy\nsxYAPKHTZRj+K5xtAcsehLxLlAUDqMEgB/EI06iw5ZCVlaXtUjp8+DCjRo0iPDyc4ODgCvdcMjZp\nOYj6QqcLyeEmDEsA1xvqgHNSbgWvKgsGG5vL5ObGGqdY0eDdU7dSy5YtCQ0NJTw8nCFDhmBldfsS\nfdOTcBD1gXYhm0aBXpcg+Dgc8oT97aHwgoFXSBeSqF33FA65ubnY2trWSmE1RcJB1GU6rQXXQgg7\nDMXFsM0f0q8beIWEgjCOe9pbqTaDYdeuXXTu3BkfHx8WL15s8J5Zs2bh4+NDt27diIuLq7VahKgN\n2mCwcINBifDkPohrDV+4STCIeuGuz5C+V0VFRcyYMYOff/4Zd3d3evfuzahRo/D19dXes2PHDk6f\nPk1CQgK///47zz//PAcPHjR2qULcNZ3WQvsrMPIAXHCAFe3Uz/07rnCWAWdRdxg9HGJiYvD29sbL\nywuA8ePHs2XLFp1w2Lp1K5MnTwYgKCiIjIwMLl26hKurq7HLFaJKdKan2rpC6HFoewUifSHhpoFX\nSCiIuq33235tAAAgAElEQVTCcAgLC9N+fXv/lEajYevWrdX6hqmpqTpnUHt4ePD7779Xek9KSorB\ncIiIiNB+HRwcTHBwcLXqEqK6dA/gSYXBv6rrFZY9AAVpt90toSCMLyoqiqioqLt6TYXh8OqrrwKw\nefNmLl68yKRJk1AUhQ0bNtzTb/BVnQZ7+2BJRa8rHw5CGFPZuoXSA3gOQ5NCWNcTLt4A7hQMMq4g\njOf2X5wXLFhQ6WsqDIfSN3r11VeJjS2bXz1q1Ch69uxZ7SLd3d1JTk7WPk5OTsbDw+OO96SkpODu\n7l7t7ylETWrbNoTz50s++M3d4aHzEHQa9rWHmLagGNo9QIJB1C+VHvaTm5vLmTNntI/Pnj1Lbm5F\ni3Yq16tXLxISEkhKSuLWrVts2rSJUaNG6dwzatQovvzySwAOHjxI8+bNZbxBmFz//lPQaPxLgqGi\nA3huDwY5hEfUT5UOSH/00UcMGDCAdu3aAZCUlMSnn35a/W9oYcEnn3xCaGgoRUVFTJ06FV9fX1au\nXAnA9OnTGT58ODt27MDb2xs7Ozu++EJ2nRSmpTMLybqgCgfwlNxb0lowN0+lsFBCQdQfVdp47+bN\nm5w8eRKAzp0706RJk1ovrCpkEZwwBu0KZ5SSA3j+Ug/g+cWn5ACe20kXkqjbamRX1pycHP79739z\n/vx5Vq1aRUJCAidPnmTkyJE1Wmx1SDiI2qTTWmiugRFx0DQbtnUpdwBPeRIKon64pxXSpaZMmYKV\nlRUHDhwAwM3Njblz59ZMhULUQRqNv+4BPA+kwrM/wzkHWNlWgkE0CpWOOZw5c4avv/6ajRs3AmBn\nZ1frRQlhCjoL2bQH8MRArjn8xweulU6ntgJuld0n6xZEA1RpODRp0oS8vDzt4zNnztSZMQchaopO\nF5JVIQw8Xe4AnkLUbS9Kz3C+hYSCaOgqDYeIiAiGDh1KSkoKEyZM4Ndff2X16tVGKE2I2qcTCgCd\nMmF4nHoAz/IHIfcSZfshZSGhIBqLOw5IFxcX88033zBo0CDtxndBQUE4OzsbrcA7kQFpUV16XUgO\n5jDsT3C9rg44GzyAR8YVRMNQI7OVevbsqbNCui6RcBDVodNa0B7AcwwOtYH9VlBoaJ7G7WsWjhiv\nYCFqWI2Ew+uvv07Lli0ZN26czmB0ixYtaqbKeyDhIO6GXheSSxGExYJSDNucIN3awKuktSAanhoJ\nBy8vL4Ob3iUmJt5bdTVAwkFUlU4wWNhA/3jocRb2+MBhBZQ7nbMgoSAalhoJh7pMwkFURq+10D4H\nRh6CC81gV1PItrztFRIKouGrymdnpbOV6vIKaSEqojfgbGupbnvRNh0inSHBwcCrJBiEKCUrpEWD\no9ta8IDuV+CFHyHHDJZ5GQgG2TlViNvJCmnRYOh1ITkpJQfw5MM6D7hoc9srZM2CEBWRFdKiQdAJ\nBnMbeOgUBJ2CfR0gxuyOA86ynbYQ+mSFtKjX9FoLbW5C2H64ZgsrveCG+W2vkNaCEFVRpdlKV65c\n0a6Q7tOnDy1btqz1wqpCZis1ThMmzGbDhshyVzzBugmEHAGfC7DTBeIdKNv2otx9MuAsxL1NZY2N\njdVb36AoivZajx49aqjM6pNwaHz0ZiFpD+D5E064wM92kH+n1oKEghD3FA7BwcFoNBry8vKIjY2l\na9euABw5coRevXrx22+/1XzFd0nCofEoCwUPtC0CnQN4nCHFloq305ZQEKLUPR32ExUVxd69e3Fz\nc+Pw4cPExsYSGxtLXFwcbm5uNV6sEIb4+4+5bVzBAczs4IEL5Q7gaQMpg0ruuYUaHmXB0KZNoQSD\nEHep0jEHPz8/jh8/Xum1qrh27Rrjxo3j3LlzeHl58fXXX9O8eXO9+7y8vGjatCnm5uZYWloSExNj\nuHhpOTRoeoPN2INbKoQdhVwriHSEa+VnzpWEB1lAMlZWFuTn/2nMkoWoF2pk+4zx48djb2/PpEmT\nUBSF9evXk52dzYYNG+66oNdee42WLVvy2muvsXjxYq5fv86//vUvvfvatWtHbGxspZv7STg0TPqh\n4ABWBTAwDvxTYbcrHGmGOtmuqNwry1oLVlZpEgxCVKBGwuHmzZssX76c/fv3A9CvXz+ef/55rK0N\n7WB5Z507d2bfvn24urpy8eJFgoODOXHihN597dq149ChQzg5Od25eAmHBsPgDCTsAQ10OgPDj8NZ\na/jJFXJdgasG7s3G2Tmby5f3G7FyIeqfew6HwsJCQkJC2Lt3b40U5OjoyPXr1wF15lOLFi20j8tr\n3749zZo1w9zcnOnTpzNt2jTDxWs0zJ8/X/s4ODiY4ODgGqlVGI/+DCQAe3C4AsPi1QN4treGxBbI\nYLMQdy8qKoqoqCjt4wULFtx7y2HQoEF89913BscGDAkJCeHixYt61xcuXMjkyZN1wqBFixZcu3ZN\n7960tDRat25Neno6ISEhfPzxx/Tt21e/eGk51GsuLn1JT7+Ozgwk7NUvex2D4FNwyBH2PwSFCSXP\na0ruLxtsPnfuJ+MXL0Q9ViO7strZ2REQEEBISIh2XyWNRsPSpUsN3v/TTxX/j1randSqVSvS0tJw\ncXExeF/r1q0BcHZ2ZsyYMcTExBgMB1E/2dr2JC8vv+RRue4jAJcLEHYMlFuw2gvSHYEEoCXqYLMl\ncJ3t299gxIh+Rq9diMai0nAYO3YsY8eO1UkaQ4f/VMWoUaNYs2YNs2fPZs2aNYwePVrvntzcXIqK\ninBwcCAnJ4fdu3frdB2J+stw91HJ7CKLIuh/Bnqcgz0ucNgLlAIgD90upETpQhLCCCrtVsrLy+P0\n6dNoNBq8vb2rNRBd6tq1azz++OOcP39eZyrrhQsXmDZtGpGRkZw9e5axY8cC6pjHxIkTeeONNwwX\nL91K9YK//xiOHSvtFio3poAGyIL2Z2BkElywgV2+kJ1dco90IQlRG+5pQLqgoIC5c+fy+eef06ZN\nGwDOnz/PlClTWLRoEZaWt5+gZXwSDnVbhQPNpaFgewtCY6FtLkR2goTSf5c2qN1IaiiEh3dl/frF\nxitciAbunsLhpZdeIjs7m48++ggHB/VwlMzMTF599VVsbW1ZsmRJzVd8lyQc6i6DC9hKQwEFuv8N\ngy/BET/YWwgFZsgMJCGM457Cwdvbm1OnTmFmprvDRlFREZ06deL06dM1V2k1STjUPU2adOfWrUIM\nhwLgdBpGXoAmxbDNE9KskFAQwrjuaW8lMzMzvWAAMDc3N3hdNG4TJsxGo/EvFwz2qIPN2UAWmJ+D\n/rEwNRFONoX/tJdgEKIOq3C2kq+vL2vWrGHy5Mk619euXUvnzp1rvTBRfxjuQiodVL4AbTIhLA2u\nWcHK9nDj9lCQQ3eEqGsq7FZKSUlh7Nix2NjY0LNnT0A94yE3N5fNmzfj4eFh1EINkW4l04qIWM6C\nBcspW8RWvgspGayLIOQS+GTDzlYlB/C0QVoKQpjWPW+foSgKe/bs4dixY2g0Gvz8/Bg0aFBFtxud\nhIPp6LYWbhtX4Dx0yYShF+GEA/zsCvleSCgIUTfUyMZ7dZmEg/GVhYI76pBV+S6kZGh+C0akQdMC\n2OYGKZ2QUBCibqmR7TOEAENrFsq3Fq6AWS70uQoPXYEDTvCbExS1RYJBiPpJWg7ijszM/Cn7Ky6/\n5UU2oADJ4JYHYZfUnS62t4Zr3kgoCFF3SctB3BODh+4AamshA6wyYOBl8M8sOYDHn7LgkBlIQtRn\n0nIQetq2DeH8+TQMhwJAMnTKhOHp5Q7gaUdpa8HG5jK5ubHGLlsIUUXSchB3pWxqKhiehZQMDgUw\n7Ba4XoIfWkOiL7JeQYiGR1oO4g67ppabhaRRoJdS7gCeQChshowrCFH/3NP2GaLh8/cfg0bjXxIM\n7uhve5Gs/nFpBk8nQsA5WN0F9vYuCYZM5s8Pk2AQogGSbqVGquw0tgo2yCMZLJpA//PQ4wTsaQOH\nO4FijxoKA4iIeMEUpQshjEC6lRohdRbS7aFQOjU1Rf1n+1slB/DYwq5AyG4JZGNllUZ+/p8mqVsI\nUTNkQFro0N1O+/aWQob6tW0hhF6GttkQ6Q4JnSkdf+jSxZqjRyUYhGgMpOXQwPXvP4Xo6D/KXSm/\nGyrABaAI9QAeMxgcD0eaw95AKGiOTE0VouGRvZUasbK1ChrU7qLyaxayKAsFc3AqhpFnSw7gCYQ0\ndyAbjSaZ4mIZbBaioalzs5W++eYbunTpgrm5OYcPH67wvl27dtG5c2d8fHxYvFjODr5bGo0/589f\nRA0Ej5J/OlAWDJcAczBvAv0uwtR4ONkG/jMc0prh7HwRRdkpwSBEI2bUcAgICGDz5s3069evwnuK\nioqYMWMGu3bt4vjx42zYsIH4+HgjVlk/qSexdS032OxB2bTU0lDIAtKAImiTD88dA3cFVobCQS8o\nPomi7OTy5f2m+jGEEHWEUQekq3KCXExMDN7e3nh5eQEwfvx4tmzZgq+vby1XV/9MmDCbDRt+BAoB\nK9R/na7ob3cBaigUgnUPCIkEn0zY5Q/HOwA5ODtnc/mytBSEEKo6N1spNTUVT09P7WMPDw9+//33\nCu+PiIjQfh0cHExwcHAtVlc3lG1zYYPa+PMs92xpKwHgMnALdcyhD3T5GYZugBOtYVlfyM/Hyuq0\nTE0VooGLiooiKirqrl5T4+EQEhLCxYsX9a4vWrSIsLCwSl+v0Wju6vuVD4eGLjIymrFjX+XWLdAN\nhNJpqaA9X4GbJdetoPlVGLEJmgKb+kJKE2xskslVZAaSEI3B7b84L1iwoNLX1Hg4/PTTT/f0end3\nd5KTk7WPk5OT68R51aYUEbGct976DEWxAFqWXHUod0f57qNsoC2QBGaZ0CcDHkqHA53gNzf6PejG\nvuQvjFS5EKK+Mlm3UkXTqHr16kVCQgJJSUm4ubmxadMmNmzYYOTq6obIyGgef3w2ubkATqj/uuxL\nni1d0QxwFXXcAaAncALcFAhLgbwm8J8ebP/yPUaMqHgigBBClGfUcNi8eTOzZs3iypUrjBgxgsDA\nQHbu3MmFCxeYNm0akZGRWFhY8MknnxAaGkpRURFTp05tlIPR6uK1BMCx5IoNYA7kAMXADaAAda1C\naSviOlj9CgNzwf8i7O6IZ4YL56/+bOzyhRD1nCyCq4PUBWwWqNlthxoGeahBkIfaanBCHVfIKLlu\nDZ2KYXg8nG3BWIcxfLf2Y9P8AEKIOk32VqpnysYWXFG7j8xQWwpFqEFQCNgC1qgzkawAN3Awg2GH\naOGr8M3k7QxsN9BEP4EQoqGQlkMdoa5Z+As1EJqithCKUQPgQsk/nYF01O6k5qCxhV7HsR2ezCv9\nX2Ju37lYW1ib6CcQQtQXsrdSPRAZGc3UqQu5dMkcdexAQ1lroRA1KIrRbqVNS8AeXNJwmpJI547t\n+DTsU/yc/Uz0Ewgh6hvpVqrDykKhGLWbyK7kn1cBP+AvoDmQibqQzRWwxLZZLiMWN2Fv5kneGfAO\n03pOw0wjB/oJIWqWhIMJREZGM2nS/5GRYUXZGMI11JaBX8nX3YD/As0AJzSabCb9bzsOtNiBxqkZ\nRyYcobVDa1P9CEKIBk66lYwsMjKaxx57j7y80paCBnWwuQDIRV3A1gw4jtqayKRTIPR+04n95/az\nfMRyhvsMN1X5QogGQLqV6hh10DkOddzACjUUFNSxBqXkzynUNQ12QAZB081I9I7F1e4Jjr1wDDsr\nOxNVL4RoTCQcjEQNhpOoi9raAwmooXANdVzBAXXtQhPACk3L87R9MZVCt6bsDNtJj9Y9TFW6EKIR\nknCoZZGR0cyatYSzZ28CvYEkYAhqt1EmaljcKLluC+YW2If+jdkDKfxjUAQz7puBhZn8axJCGJd8\n6tSwyMho3nzzS06dSiMn5wbgAliirlEoRF2/ULrH0VK0oUAz3PrkYj76b7q1CWDZ8B20adbGBD+B\nEELIgHSNiohYzrvvRnHrVuleR9mAD2oGxwMvAv+HGhj/T/s6M7vJBP7PGdKaJrJk6BIe8X3krrcu\nF0KIqpJFcEakzkJaRl6eT7mrpQ2zQsANOAJMQG0x3AKsMO+WiM3oMzzRewLvDnqXZtbNjFu4EKLR\nkXAwoh49XiQuzvm2q6XbaA8BfgTcgWjAGpqfp/Uz53Bqb8unIz/lfs/7jVmuEKIRk3CoRZGR0Sxd\nupvU1HTOnUsmJ6c5itL+truGAGuAVkAo8BOYaTB/8AesBp7lzUFzefWBV7EytzJ6/UKIxkvCoZZE\nRCznvfeOkJc3AbVFUDo+UBoGpUpDYS2QDW6XsXrkT3y92vHtUxvxbuFt3MKFEAIJh1pRNrawCZgH\nvANEAANRg6I0DNKAXDQaO2yb22A78iQFnVJYOvL/mNR1kgw4CyFMRlZI16DSbqQ//jhNXl7pyXTl\nB5xLp6f+hDq20IoePS4yf30YM3bMYFD7Qbwf8gstbVve/tZCCFHnSDhUQWRkNP/4x4+cObMQtZVQ\nOtBcfsB5LrCQ0pBo6z8Tm8kJ/M/u/2H16NVyAI8Qol6RcKiCpUt3lwQDqIFQGgahlIUCwJs0sT6H\ny/BzXO/xF08EzJQDeIQQ9ZJRw+Gbb74hIiKCEydO8Mcff9Cjh+H9gry8vGjatCnm5uZYWloSExNj\nzDL15OeX/2sqnZZaMvuIK5iZheHp2Rr3HhquPRCLUwtHVo78lS4uXUxSrxBC3CujhkNAQACbN29m\n+vTpd7xPo9EQFRVFixYtjFTZnTVpUljuUdnYgqPjee67rw3Pvvgoh2z3surwKt4JlgN4hBD1n1HD\noXPnzlW+ty5Moiq/lsHG5jny8kq3vOhHhw67WLJkKk18b/Hc9ufo6daTI8/JATxCiIahTo45aDQa\nBg8ejLm5OdOnT2fatGkV3hsREaH9Ojg4mODg4BqpQXcQGiAaG5txeHu74eZmz5PP9WHjrVXs3yoH\n8Agh6raoqCiioqLu6jU1vs4hJCSEixcv6l1ftGgRYWFhAAwYMIAPP/ywwjGHtLQ0WrduTXp6OiEh\nIXz88cf07dtXv/haXOcQGjqP3bvf0bs+JHQe49/twOu/vM4TXZ9gQfACOYBHCFGvmGSdw08//XTP\n79G6tdo14+zszJgxY4iJiTEYDrVJdxC6hNMpYjp/xdU/nNg5UQ7gEUI0XCYbNa0otXJzc8nKygIg\nJyeH3bt3ExAQYLS6IiOjCQ2dx5EjJ8oumt+Cfm/D1AdwzfDh4DMHJRiEEA2aUcNh8+bNeHp6cvDg\nQUaMGMGwYcMAuHDhAiNGjADg4sWL9O3bl+7duxMUFMTIkSMZMmSIUeorHWfYvfsdrl9/AZgLbf4L\nz3UH9xja7BzHh4/Nk5PZhKim6dOnY29vz969e3Wu//vf/6ZLly5069aNwYMHc/78+Sq/Z2JiIkFB\nQfj4+DB+/HgKCgoM3jd79mwCAgIICAjg66+/1l7fs2cPPXv2JCAggKeeeoqioiIArly5wtChQ+ne\nvTv+/v6sXr1a+5qnn34aV1dXo/7ianRKPVbT5Q8ZMlcBRf1jfU1hZJjCKw6KXe/+ypDQucr27ftq\n9PsJ0RgUFxcrRUVFyttvv62MHz9eOXr0qOLr66scOXJEe8/evXuVvLw8RVEUZcWKFcq4ceOq/P6P\nPfaYsmnTJkVRFOW5555TVqxYoXfP9u3blZCQEKWoqEjJyclRevfurWRlZSlFRUWKp6enkpCQoCiK\novzv//6v8tlnnymKoijz589XXn/9dUVRFCU9PV1p0aKFUlBQoCiKokRHRyuHDx9W/P39q/E3YnpV\n+eyUyfjlqOMMCnTZBC92AcUDliXTyzaYH3e9w4gR/Sp9DyEEJCUl0alTJyZPnkxAQADr1q0jPj6e\n9evX06VLF7Zu3cq0adNITU0F1JmG1tbqTgJBQUGkpKRU6fsoisLevXt59NFHAZg8eTI//PCD3n3x\n8fH069cPMzMzbG1t6dq1Kzt37uTq1atYWVnh7a3ukDx48GC+++47QB37zMzMBCAzMxMnJycsLNRe\ng759++Lo6HgPf0N1n/SPlFPc9ApMHAFNk2HTd5CiHsBjbV1k4sqEqH9Onz7N2rVrue+++wB48skn\ntc95e3tz8OBBg6/77LPPGD5cnRqelZVFv376v5RpNBrWr19Py5Ytad68OWZm6u+57u7u2sApr1u3\nbixYsIBXX32VnJwc9u7dS5cuXXB2dqawsJDY2Fh69uzJt99+S3JyMgDPPPMMgwYNws3NjaysLJ2u\nqMagUYdD6SK3m7fMuOh1gOQeB2kR15trG2OhSD2Ap0OHOcycOdTElQpR/7Rt21YbDFW1bt06Dh8+\nzEcffQSAg4MDcXFxFd5/5cqVKr1vSEgIf/zxBw888ADOzs7cf//92kDZuHEjL7/8Mvn5+QwZMgRz\nc3MA3n33Xbp3705UVBRnzpwhJCSEv/76CwcHhzt9qwaj0YaDdpFb3hgIexbyWtBmyxNMeTiAg/lv\nc/OmOdbWRcycOVS6k4SoBju7u1v/8/PPP7No0SKio6OxtLQE1JZD3759DZ5/smHDBjp16kRGRgbF\nxcWYmZmRkpKCu7u7wfefM2cOc+bMAWDixIl06tQJgD59+hAdHQ3A7t27SUhIAODAgQPMnTsXgA4d\nOtCuXTtOnjxJr1697urnqq8abTj8+5NtnPEpAP+RsPt9ODKJ82g46Pomu3a9beryhGhU4uLieO65\n5/jxxx9p2bLszBMHBwf+/PPPO752wIABfPPNN4wbN441a9YwevRovXuKi4u5fv06Tk5OHDlyhCNH\njmhnQaanp+Ps7Ex+fj7vvfce8+bNA9Ttfn7++WcefPBBLl26xMmTJ2nf/vajgBuw2h8Xrz0Vlb99\n+z5lyJC5Sv/+85UhQ/RnGW05sUVp8npThdGTFWzTy2YooSj9+883QuVCNGyJiYlKQEBAle8fPHiw\n0qpVK6V79+5K9+7dlYcffrjKrz179qxy3333Kd7e3srjjz+u3Lp1S1EURTl06JDyzDPPKIqiKHl5\neYqfn5/i5+en3H///cpff/2lff0///lPxdfXV+nUqZOyZMkS7fX09HRl5MiRSteuXRV/f3/lq6++\n0j43fvx4pXXr1oqVlZXi4eGhfP7551Wuty6oykd/gzsmVH9PJOjQYS5LloQS2M+bWTtnceTSEZpG\n30fst+v03jM0VFoOQoiGrSrbZzS4qay6B/Oozpx9m39+/S7d/l83fJ19OfL8ERY89SwdOszVuU8d\nfA4xZrlCCFEnNbgxB709kVz+hrBnSXVI5cDkKO0BPKWDzB9//KYMPgshxG0aXDhoD+axyIP+b0OP\nVbDnHfq0TNY7mW3EiH4SBkIIYUCD61aaNWuI2l3U/hdwPAMrjtAh4xyzZhpnfyYhhGgIGtyANKiD\n0h9//FO57qIQaSEIIUSJqgxIN8hwEEIIUbFGOVtJCCHEvZNwEEIIoUfCQQghhB4JByGEEHokHIQQ\nQugxajj885//xNfXl27dujF27Fhu3Lhh8L5du3bRuXNnfHx8WLx4sTFLrBVRUVGmLqFS9aFGkDpr\nmtRZs+pLnVVh1HAYMmQIx44d46+//qJjx468++67evcUFRUxY8YMdu3axfHjx9mwYQPx8fHGLLPG\n1Yf/YOpDjSB11jSps2bVlzqrwqjhEBISoj19qaJzYmNiYvD29sbLywtLS0vGjx/Pli1bjFmmEEI0\neiYbc/j888+158SWl5qaiqenp/axh4eHwTNhhRBC1J4aXyEdEhLCxYsX9a4vWrSIsLAwABYuXMjh\nw4f57rvv9O777rvv2LVrF6tWrQLUM2V///13Pv74Y/3iDRwdKIQQonKVffTX+K6sP/300x2fX716\nNTt27OCXX34x+Ly7uzvJycnax8nJyXh4eBi8V7bOEEKI2mHUbqVdu3bx/vvvs2XLFqytrQ3e06tX\nLxISEkhKSuLWrVts2rSJUaNGGbNMIYRo9IwaDjNnziQ7O5uQkBACAwN54YUXALhw4QIjRowAwMLC\ngk8++YTQ0FD8/PwYN24cvr6+xixTCCFELZxdbXQffPCBotFolKtXr5q6FIPmzZundO3aVenWrZsy\ncOBA5fz586YuyaD/+Z//UTp37qx07dpVGTNmjJKRkWHqkgz6+uuvFT8/P8XMzEyJjY01dTl6du7c\nqXTq1Enx9vZW/vWvf5m6HIOmTJmiuLi4KP7+/qYu5Y7Onz+vBAcHK35+fkqXLl2UJUuWmLokPXl5\necp9992ndOvWTfH19VVef/11U5d0R4WFhUr37t2VkSNH3vG+eh8O58+fV0JDQxUvL686Gw6ZmZna\nr5cuXapMnTrVhNVUbPfu3UpRUZGiKIoye/ZsZfbs2SauyLD4+Hjl5MmTSnBwcJ0Lh8LCQqVDhw5K\nYmKicuvWLaVbt27K8ePHTV2WnujoaOXw4cN1PhzS0tKUuLg4RVEUJSsrS+nYsWOd/PvMyclRFEVR\nCgoKlKCgIGX//v0mrqhiH374oTJhwgQlLCzsjvfV++0zXnnlFd577z1Tl3FHDg4O2q+zs7Np2bKl\nCaupWFXWodQFnTt3pmPHjqYuw6D6sk6nb9++ODo6mrqMSrVq1Yru3bsDYG9vj6+vLxcuXDBxVfps\nbW0BuHXrFkVFRbRo0cLEFRmWkpLCjh07eOaZZxr2eQ5btmzBw8ODrl27mrqUSs2dO5c2bdqwZs0a\nXn/9dVOXU6mK1qGIO5N1OrUnKSmJuLg4goKCTF2KnuLiYrp3746rqysDBgzAz8/P1CUZ9PLLL/P+\n++9rfwm8kxqfylrTKlo3sXDhQt599112796tvVZZEtamytZ3LFy4kIULF/Kvf/2Ll19+mS+++MIE\nVVZ9HYqVlRUTJkwwdnlaVamzLpK1N7UjOzubRx99lCVLlmBvb2/qcvSYmZnx559/cuPGDUJDQ4mK\niiI4ONjUZenYvn07Li4uBAYGVmmbjzofDhWtmzh69CiJiYl069YNUJtLPXv2JCYmBhcXF2OWCFS+\nvsaQ+t8AAAUeSURBVKPUhAkTTPob+b2uQzGWqv591jV3s05HVE1BQQGPPPIIkyZNYvTo0aYu546a\nNWvGiBEjOHToUJ0LhwMHDrB161Z27NjBzZs3yczM5Mknn+TLL780/AKjjIAYQV0ekD516pT266VL\nlyqTJk0yYTUV27lzp+Ln56ekp6ebupQqCQ4OVg4dOmTqMnQUFBQo7du3VxITE5X8/Pw6OyCtKIqS\nmJhY5weki4uLlSeeeEJ56aWXTF1KhdLT05Xr168riqIoubm5St++fZWff/7ZxFXdWVRUVKWzler1\nmEN5dbk5/8YbbxAQEED37t2Jioriww8/NHVJBlW0DqWu2bx5M56enhw8eJARI0YwbNgwU5ekVV/W\n6YSHh/PAAw9w6tQpPD09TdbNWZlff/2VdevWsXfvXgIDAwkMDGTXrl2mLktHWloaAwcOpHv37gQF\nBREWFsagQYNMXValKvvMrPG9lYQQQtR/DablIIQQouZIOAghhNAj4SCEEEKPhIMQQgg9Eg6iUUtJ\nSeHhhx+mY8eOeHt789JLL1FQUFCj32Pfvn389ttv2scrV65k3bp1ADz11FMGD70SwtQkHESjpSgK\nY8eOZezYsZw6dYpTp06RnZ3N3Llza/T77N27lwMHDmgfT58+nUmTJgHqdMK6PA1bNF4SDqLR2rNn\nDzY2NkyePBlQt0D46KOP+Pzzz1mxYgUzZ87U3jty5Ej27dsHwAsvvEDv3r3x9/cnIiJCe4+XlxcR\nERH07NmTrl27cvLkSZKSkli5ciUfffQRgYGB/Pe//yUiIkJnrUvpbPLY2FiCg4Pp1asXQ4cO1W4f\nsnTpUrp06UK3bt0IDw+v7b8WIYB6sH2GELXl2LFj9OzZU+eag4MDbdq0oaioSOd6+d/wFy5ciKOj\nI0VFRQwePJijR4/i7++PRqPB2dmZ2NhYVqxYwQcffMCqVat47rnncHBw4JVXXgHgl19+0WktaDQa\nCgoKmDlzJtu2bcPJyYlNmzYxd+5cPvvsMxYvXkxSUhKWlpZkZmbW8t+KECoJB9Fo3ak7507jDps2\nbWLVqlUUFhaSlpbG8ePH8ff3B2Ds2LEA9OjRg++//177mtvXmpZ/rCgKJ0+e5NixYwwePBiAoqIi\n3NzcAOjatSsTJkxg9OjRdX5vIdFwSDiIRsvPz49vv/1W51pmZibJyck4Oztz+vRp7fWbN28CkJiY\nyIcffsihQ4do9v/buX8VxaE4iuNfCcFCzDyBRRr/gmBvIQh2dlaChYWVoIiPIIK1hS9gqSAoYm+j\nWAmCD6CVpApBKyFbuCsOmWEZ2F0W5nzKXMgltzn5ceC+vVGv159rAOFwGADDMLjf75/u/VEwZTKZ\nd93EL8vlkvV6zWKxoN/vczgcMAzjax8r8kXqHOTbKhaL3G43xuMx8Phb73a7VKtVbNtmv9/j+z7n\n85ndbgeA53lEIhEsy+JyubBarX67TzQaxfO8d89eJ4dQKEQikcBxHLbbLfCYXI7HI77vczqdKBQK\nDAYDXNfler3+qSMQ+ZQmB/nWZrMZzWaTXq+H4ziUSiVGoxGmaWLbNul0mlQq9ewmstksuVyOZDJJ\nLBYjn89/+N7XjqJcLlOpVJjP5wyHw+f6K9M0mU6ntFotXNflfr/T6XSIx+PUajVc18X3fdrtNpZl\n/cUTEXnQxXsiP202GxqNBpPJ5L+8SVXkX1I4iIhIgDoHEREJUDiIiEiAwkFERAIUDiIiEqBwEBGR\nAIWDiIgE/ABEguqfnObDqQAAAABJRU5ErkJggg==\n" - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Section 2.2.3 Spectral densities of sea data\n-----------------------------------------------\nExample 2: Different forms of spectra" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "import wafo.spectrum.models as wsm\nclf()\nHm0 = 7; Tp = 11;\nspec = wsm.Jonswap(Hm0=Hm0, Tp=Tp).tospecdata()\nspec.plot()\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEXCAYAAABYsbiOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPsCSLLAqICibmioqIKLgzpriV6FVL0RKX\nsq65tS/aVbPFtNXsdssFLH6lNyv1dpXriporKJlLghsqgiQuIDsMz++PExMgywBz5pxhPu/Xixcz\nc84853s4Ot95lvM8GiGEABERUSWslA6AiIjUi0mCiIiqxCRBRERVYpIgIqIqMUkQEVGVmCSIiKhK\nTBJEZsbHxwe7d+82aN+oqCgMGDBA1nj+/ve/4+2335b1GKQcJgkyiFarxdq1a5UOw6jWrl0LX19f\nODs7o3nz5njkkUeQnZ0t2/GSk5NhZWWFkpKSepWj0Wig0WiMFFX9ffHFF1i4cCEAIDY2Fq1atVI4\nIjImG6UDIPOgtg+m+tq3bx8WLFiA//3vf/D398edO3fw888/m+TY1d2/qtPpYG1tbZI4iAzBmgTV\n2urVq9G+fXu4ublh9OjRSEtL02+zsrLCl19+iQ4dOqBJkyaYPXu2ftuFCxcQEhICV1dXeHh4YOLE\niQCARYsWYe7cuQCAoqIiODo64pVXXgEA5OXlwc7ODnfv3gUAPPbYY2jRogVcXV0REhKCs2fP6suf\nOnUqnn32WQwdOhTOzs7QarW4evVqpecQFxeHPn36wN/fHwDQpEkTPPnkk2jcuLFBZZ07dw6hoaFw\nc3NDp06d8P333+u35eXl4cUXX4SPjw9cXV0xcOBA5OfnY+DAgQAAV1dXODs748iRI4iKikK/fv3w\nwgsvwN3dHUuWLMGlS5fw8MMPw93dHR4eHnjiiSeQmZlp0LW5desWwsLC4OLiguDgYFy8eLHc9uri\nnjp1Kp577jk8+uijcHZ2Ru/evXHp0iX99ueffx6enp5wcXFBt27d9H/7qVOn4s0330Rubi5GjBiB\n1NRUODk5wdnZGWlpaXBwcMDt27f15Zw4cQLNmjWDTqcz6JxIYYLIAFqtVqxdu1bs3r1buLu7i4SE\nBFFQUCDmzJkjBg4cqN9Po9GIUaNGiczMTHH16lXh4eEh/ve//wkhhJg4caJ49913hRBCFBQUiIMH\nDwohhNizZ4/w8/MTQghx8OBB0bZtWxEcHCyEEGL37t2ie/fu+vIjIyNFdna2KCwsFPPnzy+3LSIi\nQjg5OYkDBw6IgoICMW/ePNG/f/9Kz+fAgQPC3t5eLFq0SPzyyy8iPz+/3PbqysrOzhbe3t4iKipK\n6HQ6kZCQINzd3cXZs2eFEELMmjVLDBo0SKSmpgqdTicOHz4sCgoKRHJystBoNEKn05U7HxsbG7Fq\n1Sqh0+lEXl6euHDhgti1a5coLCwUN2/eFAMHDhTz58/Xv8fHx0fs3r270vOaMGGCmDBhgsjNzRWn\nT58WXl5eYsCAAQbFHRERIdzc3ERcXJwoLi4WkydPFhMnThRCCBETEyMCAwNFZmamEEKIc+fOibS0\nNCGEEFOnThVvvvmmEEKI2NhY4e3tXS6mkSNHii+++EL/fP78+WLu3LmVxk/qwyRBBtFqtWLNmjVi\nxowZ4tVXX9W/np2dLWxtbcWVK1eEEFKSKP3wF0KIxx9/XLz//vtCCCGmTJkiZs6cKVJSUsqVnZub\nK+zs7MStW7fEsmXLxLvvviu8vb1Fdna2+Mc//iHmzZtXaUx37twRGo1GZGVlCSGkD7nw8PBysVlb\nW993vFLbt28Xo0aNEq6urqJx48bihRde0H+AV1XWtWvXxIYNG/QfvKVmzpwplixZInQ6nbC3txe/\n/fbbfce7fPlypUniwQcfrDS+Uj/99JMICAjQP68qSRQXFwtbW1uRmJiof+2NN97QJ7fq4i4956ef\nflq/bdu2baJTp05CCClZd+jQQRw5cqRc/EJISWLhwoVCCCH27t17X5LYsGGD6Nevnz7G5s2bi7i4\nuGrPmdSDzU1UK6mpqWjdurX+uaOjI9zc3HD9+nX9a82bN9c/dnBwwL179wAAy5cvhxACQUFB6Nq1\nKyIjIwEA9vb26NmzJ/bt24f9+/cjJCQEffv2xcGDB/XPAam9/rXXXkO7du3g4uKCNm3aAAAyMjIA\nSP0m3t7e5WJr2rQpUlNTKz2X4cOHY+vWrbhz5w62bNmCqKgorFmzpsayrly5gqNHj6JJkyb6n2+/\n/Rbp6em4desW8vPz0bZtW4P/phU7etPT0zFx4kR4e3vDxcUFTz75JG7dulVjOTdv3kRxcXG58h58\n8EH94+riLj1nT09P/f729vb6jvyHH34Ys2fPxnPPPQdPT08888wz+utak9GjR+Ps2bNITk7Gzp07\n4eLigp49exr0XlIekwTVSsuWLZGcnKx/npOTg1u3bsHLy6vG93p6euKrr77C9evX8eWXX2LWrFn6\nNu+QkBDs3r0bCQkJ6NWrF0JCQhATE4Njx47p2/K//fZbbN26Fbt370ZmZiYuX74M4K+OYCEErl27\npj9ednY2bt++jZYtW9YY28MPP4yHH34YZ86cqbYsLy8vPPjggwgJCcGdO3f0P/fu3cPnn38ONzc3\n2NnZ4cKFC/cdo6qO/4qvv/HGG7C2tsbp06eRmZmJb775xqARUR4eHrCxsSnXd1L2cXVxG2LOnDmI\nj4/H2bNnkZSUhBUrVtx3DpWdo52dHR577DFER0cjOjoaU6ZMMeh4pA5MEmQwjUaD8PBwREZG4uTJ\nkygoKMAbb7yB3r17l/vGWpYoM5Ln+++/R0pKCgCp81aj0cDKSvonGBISgq+//hpdunSBra0ttFot\n1qxZg4ceeghubm4ApA/qRo0aoWnTpsjJycEbb7xx3/G2bduGgwcPorCwEG+++Sb69OlTaQLbunUr\nNm7ciDt37kAIgWPHjmHfvn3o3bt3jWU98sgjSEpKQnR0NIqKilBUVIS4uDicO3cOVlZWmD59Ol54\n4QWkpaVBp9Ph8OHDKCwshIeHB6ysrO7rTK4oOzsbjo6OcHZ2xvXr18t9GFfH2toaY8eOxeLFi5GX\nl4ezZ89i/fr1+g/u6uKueK0qio+Px9GjR1FUVAQHBwfY2dnpR2EJqdkagPRF4NatW8jKyir3/ilT\npiAyMhJbt27Fk08+adD5kDowSZDBNBoNBg8ejKVLl2LcuHFo2bIlLl++jA0bNpTbp+J7Sl+Lj49H\n79694eTkhNGjR2PlypXw8fEBAPTp06fcCCBfX1/Y29vrnwPSB03r1q3h5eWFrl27ok+fPuWOp9Fo\nMGnSJCxZsgRubm5ISEhAdHR0pefSpEkTrF69Gh06dNA36bzyyisIDw+vsSwnJyfs2LEDGzZsgJeX\nF1q0aIHXX38dhYWFAIAPPvgAfn5+6NWrF9zc3PD6669DCAEHBwcsWLAA/fr1Q9OmTXH06NFKhxYv\nWrQIJ06cgIuLC0aNGoVx48YZPPx41apVyM7ORvPmzTF9+nRMnz5dv62muCuLpfR5VlYWZs6ciaZN\nm8LHxwfu7u54+eWX73tfp06dEB4ejoceeghNmzbFjRs3AAD9+vWDlZUVAgMDeR+FmdGI6r4+EP0p\nMDAQixYtQlhYmNKhVGnatGnw9vbG0qVLVVUWSYYMGYJJkyaVS1ykforUJKZPnw5PT0/4+fndt+3D\nDz+ElZVVuXHVpKwzZ87g999/R0BAgNKhVMuY33f43cm44uLicOLECUyYMEHpUKiWFEkS06ZNQ0xM\nzH2vX7t2DTt37iw3eoaU9eqrr2LYsGFYvny56psJjHlXeEO7w1xJERERCA0NxSeffAJHR0elw6Fa\nUqy5KTk5GaNGjcKpU6f0rz322GN48803MXr0aBw/fhxNmzZVIjQiIvqTajqut2zZAm9vb3Tr1k3p\nUIiI6E+qmOAvNzcX7777Lnbu3Kl/raoKDpsAiIjqpi4NR6qoSVy8eBHJycnw9/dHmzZtkJKSgsDA\nQPzxxx+V7l86Lrsh/ixatEjxGHh+PDeeX8P7qStV1CT8/Pz0UwMAQJs2bdgnQUSkAorUJMLDw9G3\nb18kJSWhVatW+jl8SrFJqXK7dwOffaZ0FERkSRSpSXz33XfVbi87h72l0Wq1VW6LigKuXQPmzDFZ\nOEZX3fmZu4Z8bgDPz1KZ3R3XGo2mXu1r5qqkBPD0BGxsgDJr/BARGaSun52q6LimmsXHAx4ewL17\ngIGLlBER1RuThJnYtg145BGgY0cgMVHpaIjIUjBJmIm4OGDAACYJIjItJgkzcfs24O7OJEFEpsUk\nYSbu3gWaNAE6dQL+XCOGiEh2TBJm4s4dwNWVNQkiMi0OgTUDQgB2dtKopsJCwMtLGuVERGQoDoFt\nwPLyACsrKVE4OQEFBdIPEZHcmCTMwJ07Un8EAGg0gJsbcOuWsjERkWVgkjADpf0RpZgkiMhUmCTM\nQOnIplJubkBGhnLxEJHlYJIwA2WbmwDpfgnWJIjIFJgkzEDFJMHmJiIyFSYJM1BZnwSbm4jIFJgk\nzACbm4hIKUwSZqCyjmsmCSIyBSYJM1BZnwSbm4jIFJgkzAA7rolIKUwSZqBixzX7JIjIVJgkzACb\nm4hIKUwSZqBix7WrqzQLbHGxcjERkWVgkjADFWsS1tZSorhzR7mYiMgyKJIkpk+fDk9PT/j5+elf\ne/nll+Hr6wt/f3+MHTsWmZmZSoSmOsXFQH4+4OhY/nU2ORGRKSiSJKZNm4aYmJhyrw0dOhRnzpzB\nyZMn0aFDB7z33ntKhKY62dlA48bSFOFlcYQTEZmCIkliwIABaFK2/QRAaGgorKykcIKDg5GSkqJE\naKpTmiQqcnWV+iqIiORko3QAlVm3bh3Cw8Or3L548WL9Y61WC61WK39QCsnJqTxJuLhIy5kSEVUm\nNjYWsbGx9S5HdUninXfewQMPPIBJkyZVuU/ZJNHQZWff3x8BSDUJJgkiqkrFL9BLliypUzmqShJR\nUVHYtm0bdu/erXQoqlFVc5OLC5ubiEh+qkkSMTExWLFiBfbt2wc7Ozulw1GN6vokOASWiOSmSMd1\neHg4+vbti8TERLRq1Qrr1q3DnDlzkJ2djdDQUAQEBGDWrFlKhKY6rEkQkZIUqUl899139702ffp0\nBSJRv+pqEuyTICK58Y5rlatudBNrEkQkNyYJlePoJiJSEpOEylXXJ8EkQURyY5JQOXZcE5GSmCRU\njh3XRKQkJgmVqypJODoCBQVAUZHpYyIiy8EkoXJVjW7SaNgvQUTyY5JQuapGNwHslyAi+TFJqFxV\nzU0A+yWISH5MEipXXZJgTYKI5MYkoXKsSRCRkpgkVK6qjmuAHddEJD8mCRUTovqOay5hSkRyY5JQ\nsYICwNoasLWtfDtrEkQkNyYJFauuPwJgxzURyY9JQsVqShLsuCYiuTFJqBhrEkSkNCYJFatuZBPA\nmgQRyY9JQsWqG9kEsOOaiOTHJKFihvRJsLmJiOTEJKFihvRJsCZBRHJiklAxQ5OEEKaLiYgsC5OE\nitWUJB54QLrRLjfXdDERkWVRJElMnz4dnp6e8PPz0792+/ZthIaGokOHDhg6dCjusrG9xtFNAIfB\nEpG8FEkS06ZNQ0xMTLnXli1bhtDQUCQlJWHw4MFYtmyZEqGpSk2jmwAOgyUieSmSJAYMGIAmTZqU\ne23r1q2IiIgAAERERGDz5s1KhKYqNTU3AaxJEJG8bJQOoFR6ejo8PT0BAJ6enkhPT69y38WLF+sf\na7VaaLVamaNThiFJgjUJIqpMbGwsYmNj612OapJEWRqNBhqNpsrtZZNEQ2ZoTYJJgogqqvgFesmS\nJXUqRzWjmzw9PXHjxg0AQFpaGpo1a6ZwRMoztCbB5iYikotqkkRYWBjWr18PAFi/fj3GjBmjcETK\nM3R0E2sSRCQXRZJEeHg4+vbti8TERLRq1QqRkZF47bXXsHPnTnTo0AF79uzBa6+9pkRoqmLo6CbW\nJIhILor0SXz33XeVvr5r1y4TR6JuhvZJpKSYJh4isjyqaW6i+7FPgoiUxiShYhzdRERKY5JQqZIS\nID8fcHCofj8mCSKSE5OESuXmAvb2gFUNV4jNTUQkJyYJlTJkZBPAmgQRyYtJQqUM6Y8AWJMgInkx\nSaiUoUmicWOpaaq4WP6YiMjyMEmolKFJwsoKcHYGsrLkj4mILA+ThEoZMiVHKfZLEJFcmCRUytCa\nBMDpwolIPjVOyxEVFVXttN1lCSEwderU+sZEMHx0E8CFh4hIPjUmiSZNmqB///5wc3OrsbAtW7YY\nJShiTYKI1KHGJDF69Gj4+fmhXbt2cHZ2Rq9evRAcHIyAgAAcPnwYf/zxB8aNG6ffl4yjNkmCNQki\nkotBs8D++OOPaN++PXJzc/Hee+9hz549+OSTT5CdnY2HHnpInyTIeGqbJFiTICI5GJQk2rdvDwBw\ncHBAu3btEBERAQAoLCxkE5NMcnIAb2/D9uUNdUQkl1qPbrK1tcXUqVPx448/4vz580jhYgayqG3H\nNWsSRCSHWi86NGnSJAQGBiI6Ohp79+7FlClT5IjL4t27J90kZwhXV+D33+WNh4gsU51WpuvYsSOW\nLl1q7FiojKwswMnJsH1ZkyAiudS6uWnNmjU4cuQICgsLcfDgQWzatEmOuCxeVlbtahJMEkQkh1rX\nJP744w/s27cPK1euxL1799C2bVuMHz9ejtgsWm2amzgElojkUusk4e3tre+H4Ogm+dSmuYk1CSKS\nS62TROnoprCwMHTs2JGjm2RSm+Ym1iSISC4aIYSozRsOHDiAZs2aITo6Gnfv3sWUKVPQq1cvueK7\nj0ajQS1DNkuNGkmJolGjmvfNz5cSRX4+YOA0W0RkYer62VnrJDFx4kSsX78ejQz59KqD9957D9HR\n0bCysoKfnx8iIyPLHcsSkkRBgdTUVFho+Hvs7IA7d6R1sYmIKqrrZ2etRze5urpi3759KCoqqvXB\napKcnIzVq1fjxIkTOHXqFHQ6HTZs2GD046hdbZqaSnEYLBHJoU5JIi4uDo8//jhGjhyJN99802jB\nODs7w9bWFrm5uSguLkZubi68vLyMVr65qM3IplKcmoOI5FDrjutHH30UHh4eWLBgAYQQuHr1qtGC\nadq0KV588UU8+OCDsLe3x7BhwzBkyJD79lu8eLH+sVarhVarNVoMalCXmoSbG3DrljzxEJH5iY2N\nRWxsbL3LqbFPIjExEVZWVvpJ/uR08eJFjBo1CgcOHICLiwsee+wxjB8/HpMnT/4rYAvok9i/H1iw\nADhwwPD3hIUBM2YAnK2diCojW59E27ZtceXKFXz++ef44osvEB8fX6cADREfH4++ffvCzc0NNjY2\nGDt2LA4dOiTb8dSqLs1NrEkQkRxqbG6ysbHBkCFD9M0+x44dwxdffIGSkhJ07NgRWq0WNjZ1mgLq\nPp06dcLSpUuRl5cHOzs77Nq1C0FBQUYp25zUpbnJ3R3IyJAnHiKyXLX+dA8KCtJ/cCcmJmLt2rUo\nLCyEl5cXhg0bBkdD57euhL+/P6ZMmYKePXvCysoKPXr0wMyZM+tcnrmqzd3WpZgkiEgOtb5Poiqp\nqak4cOAAJkyYYIziqmQJfRIffADcuCH9NtSaNcDhw8DatfLFRUTmy2T3SeTk5CA9Pf2+11u2bCl7\ngrAUbG4iIrWodXNTdHQ0GjVqhB9//BHu7u54/PHHMXz4cDlis1hZWUDr1rV7D5MEEcmh1jUJe3t7\ndO7cGbdv38a6deuQlZUlR1wWjaObiEgtap0kevTogQ0bNmDlypWIiopCcXGxHHFZNDY3EZFa1Lq5\nqWvXrvjoo48AALdu3UKzZs2MHpSlq0uSaNJEmpZDpwOsreWJi4gsT71ucAgNDTVWHFRGXYbA2thI\nieXuXanpiYjIGGrd3ETyq0ufBMAmJyIyPoOSRHZ2NgCgqKgIOp1O1oCobs1NAJMEERlfjUli+fLl\neOutt/DCCy8gMzMTzz77rCnismiZmXVLEhzhRETGVmOfRHBwMIKDg2Fra4uNGzeipKTEFHFZLJ0O\nyMlhTYKI1KHGmoSjoyOioqJgbW2NSZMmYeDAgaaIy2LdvSutMmdVh94id3fg5k3jx0RElqvGmkTP\nnj3Rs2dP/fOIiAj9499++w1+fn7QaDTyRGeBbt+WhrPWhacnkJpq3HiIyLLV+vvq119/jfnz5yMq\nKgqOjo747rvv5IjLYt25U/ck0aIFkJZm3HiIyLLVaQjsP/7xDzRr1gwrVqzA+fPnjR2TRbt9G2ja\ntG7vZZIgImOr9c107u7ueOCBBzBy5EiMHDlSjpgsWn1rEjduGDceIrJstU4SMTExWL58Odzc3BAU\nFIRBgwZZ5OpxcqlPkmjenDUJIjKuWjc3abVaxMbG4ptvvkGfPn1kXfPaEtWnucnVFSgsBHJzjRsT\nEVmuWicJjUaDuLg4ODg4YODAgZg1a5YccVms+tQkNBrWJojIuGrd3LRv3z4AwFtvvQU7OzuEhIRg\n9uzZRg/MUt25A3TuXPf3l/ZLtG1rvJiIyHLVOkmMGzcOGo0G/fv3R15eHs6cOSNHXBarPs1NAGsS\nRGRcNTY3HT9+vNzzAQMGoH///gCkVerK3mhXcV+qvfo0NwEcBktExlVjTWL79u04ffq0QYVdu3YN\ngYGB9Q7KkjFJEJGa1JgkFi5caIo46E/1bW5q0QI4eNB48RCRZVPdokN3797F+PHj4evri86dO+PI\nkSNKh2RSrEkQkZrUa/lSOcybNw8jR47Epk2bUFxcjJycHKVDMpmCAqCoCHB0rHsZXl7AtWvGi4mI\nLJtGCCGUDqJUZmYmAgICcOnSpSr30Wg0UFHIRnXjBuDvD6Sn172Mu3eBVq2k1e04OS8RlarrZ2ed\nahL5+fnQaDRo1KhRXd5epcuXL8PDwwPTpk3DyZMnERgYiE8//RQODg7l9lu8eLH+sVarhVarNWoc\nSqlvUxMg3XVtYyP1bbi5GScuIjI/sbGxiI2NrXc5BtUkSkpKsHnzZnz33Xc4dOgQSkpKIISAtbU1\n+vTpg8mTJ2PMmDH1XlciPj4effr0waFDh9CrVy/Mnz8fzs7OeOutt/4KuAHXJA4eBF5+GTh0qH7l\nBAQAa9YAHGhGRKXq+tlpUMe1VqvF8ePH8dJLL+HSpUtIS0vDjRs3cOnSJbz00kuIi4tDSEhIrQ9e\nkbe3N7y9vdGrVy8AwPjx43HixIl6l2su/vgDaNas/uX4+ACXL9e/HCIig5qbdu7cqW9a0ul0EELo\nm5t69+6N3r17o6CgoN7BNG/eHK1atUJSUhI6dOiAXbt2oUuXLvUu11wYK0m0aQMkJ9e/HCIig5JE\n2b6HIUOGYPDgwWjTpg2cnZ0xatSo+/apj88++wyTJ09GYWEh2rZti8jISKOUaw6MWZNISqp/OURE\nte643rt3r/7x/v37MX/+fHzyySdGC8jf3x9xcXFGK8+cpKcDHTrUvxwfH2DHjvqXQ0RUp5vpLl26\nhF9++QVdunTBDz/8YOyYLNYffwCenvUvx8eHzU1EZBx1ShLNmzdHRkYG5s2bhwULFhg7JotlrOam\n1q2lJNFAB4ERkQnV+ma6+Ph4/cyvQgj4+fkZPAGgMTTkIbC+vsCmTYAx+urd3ICzZ41TMyEi82ey\nm+m8vLywefNmFBYW4ty5cxg+fHitD0qVM1ZzEwB06gScO8ckQUT1Y1BNonTIa333MYaGWpMoKgIc\nHKT5m6yMMO3i009LN9M9+2z9yyIi8yf7zXQrVqxAUiXjKhMTE/H+++8b5WY6S3bzptREZIwEAUhL\noJ49a5yyiMhyGfSRtGPHDri5ueG5555DixYt0KFDB7Rv3x4tWrTA7Nmz4enpiV27dskda4NmrE7r\nUkwSRGQMte641ul0yMjIgEajgbu7O6yM9dXXQA21uWnHDmDFCmDnTuOUd/Uq0Ls3kJpqnPKIyLzJ\n2tx07NgxpP25ko21tTViYmLw1FNPYf78+bh9+3atD0r3M3ZNolUr4N49aepwIqK6MihJPPPMM/pp\nN/bv34/XXnsNERERcHZ2xsyZM2UN0FKkpxs3SWg00pDa3383XplEZHkMShIlJSVo+ufCyxs3bsQz\nzzyDcePG4e2338b58+dlDdBSpKcbf7hqly7AqVPGLZOILItBSUKn06GoqAgAsGvXLgwaNEi/rbi4\nWJ7ILMz169LSo8bUsycQH2/cMonIshh0M114eDhCQkLg7u4OBwcHDBgwAABw/vx5uLq6yhqgpZAj\nSQQFAatXG7dMIrIsBo9uOnz4MG7cuIGhQ4fC0dERAJCUlITs7Gz06NFD1iDLaqijm9q1A7ZtM84s\nsKUKCoCmTaVO8T8vGRFZqLp+dtZ6CKzSGmKSEEK62zojw/gf5kFBwEcfAf37G7dcIjIvsg6BJXnd\nvg3Y2cnzbT8oCDh2zPjlEpFlYJJQgevXAW9vecoOCgKOHJGnbCJq+JgkVCAlxfid1qVCQoB9+7i2\nBBHVDZOECqSkyFeTaN0acHICTLjkBxE1IEwSKiDH8NeyBg8GOP8iEdUFk4QKyFmTAIAhQ4Ddu+Ur\nn4gaLiYJFZCz4xoABg0CDhwACgvlOwYRNUxMEiogZ8c1ALi7S/M47dkj3zGIqGFSZZLQ6XQICAjA\nqFGjlA5FdkIAV64ADz4o73H+9jfgp5/kPQYRNTyqTBKffvopOnfubJI1s5V2+zZgYwPIPQXW3/4G\nbNkC6HTyHoeIGhbVJYmUlBRs27YNTz31VIObfqMyycmAj4/8x2nXTlqv4vBh+Y9FRA2HQbPAmtLz\nzz+PFStWICsrq8p9Fi9erH+s1Wqh1WrlD0wmpkoSADBhAvDtt5zHicgSxMbGIjY2tt7lqGqCv59/\n/hnbt2/H559/jtjYWHz44Yf4z3/+U26fhjbB34cfSh3XH38s/7GuXAECA6XRVH8uNEhEFqJBTPB3\n6NAhbN26FW3atEF4eDj27NmDKVOmKB2WrJKTgTZtTHOs1q2Brl2lKcmJiAyhqppEWfv27cMHH3zQ\n4GsSjz4KzJwJhIWZ5niRkdIop61bTXM8IlKHBlGTqMgSRjeZsk8CkPolDh2SjktEVBPV1iSq0pBq\nEkJIk+82rzR9AAATM0lEQVRdvw64uJjuuC++KA27ff990x2TiJTFlenMUEaGtFzp7dumPe6FC0Df\nvlJHtr29aY9NRMpokM1NDd3ly6ZtairVrh3QsyewcaPpj01E5oVJQkEXLwJt2ypz7NmzgVWruBgR\nEVWPSUJBSiaJ4cOBu3d5BzYRVY9JQkFKJgkrK6kDe9kyZY5PROaBSUJBSiYJAJg2DYiPB377TbkY\niEjdmCQUpHSSsLMDnn+etQkiqhqHwCokLw9o0gTIyQGsrZWL49494KGHpL6Jdu2Ui4OI5MUhsGbm\n8mVpLiUlEwQg3cw3axawfLmycRCROjFJKETppqay5s4FfvwRuHRJ6UiISG2YJBSipiTh5gbMmQOU\nWaaDiAgAk4Rizp+XpuRQixdeAHbsAE6fVjoSIlITJgmFJCaqK0k4OQGvvgosXKh0JESkJkwSCklK\nUleSAIC//x04fhw4ckTpSIhILTgEVgG5uVI/QHa28qObKoqMBFavBg4eBCxgOQ8ii8EhsGbk/Hmp\n01ptCQIAIiKAwkLg22+VjoSI1IBJQgFqbGoqZWUFrFwp9U9kZysdDREpjUlCAWpOEoC0IJFWy+k6\niIhJQhGJiUDHjkpHUb1ly4B//UtqGiMiy8UkoQC11yQAwNsbWLAAmDmTCxMRWTImCRMTQn33SFRl\n7lxpAsI1a5SOhIiUwiGwJnbzptTUdOuWeQwx/e03YPBg4ORJoGVLpaMhorriEFgzUdrUZA4JAgC6\ndQOefVb6MePcTER1pKokce3aNQwaNAhdunRB165dsXLlSqVDMjpz6I+oaOFCICUF+OorpSMhIlOz\nUTqAsmxtbfHxxx+je/fuyM7ORmBgIEJDQ+Hr66t0aEZjDiObKmrUSLq5bsAAYOBAoAFdDiKqgapq\nEs2bN0f37t0BAI0bN4avry9SU1MVjsq4zLEmAQCdOgHvvAOEhwMFBUpHQ0SmoqqaRFnJyclISEhA\ncHDwfdsWl1n4QKvVQqvVmi6wejKXkU2VefppaTrxefOkeyiISL1iY2MRGxtb73JUObopOzsbWq0W\nCxcuxJgxY8ptM+fRTTod0LixNLLJwUHpaOomKwsIDpbWn3j6aaWjISJD1fWzU3U1iaKiIowbNw5P\nPPHEfQnC3CUnA82amW+CAABnZ2DzZql/omtXoE8fpSMiIjmpqk9CCIEZM2agc+fOmD9/vtLhGN3p\n00CXLkpHUX8dOwJr1wLjx0uJj4gaLlUliYMHDyI6Ohp79+5FQEAAAgICEBMTo3RYRnPmjPTtuyEY\nNQp45RVg+HCp+YyIGiZVNTf1798fJSUlSochm9OnpQ/VhmLePCA1FXj0UWD3bvNuRiOiyqmqJtHQ\nnTnTMJqbylq2TBqtNXYskJ+vdDREZGyqHN1UHXMd3VRcDDg5mffIpqoUFwNPPimd25YtgL290hER\nUUWcu0nlLlwAvLwaXoIAABsb4JtvAA8PICxMmjmWiBoGJgkTaSgjm6piYwN8/TXQqhUwaBDwxx9K\nR0RExsAkYSK//gr8OeNIg2VtLQ2NHTFCWgKVq9oRmT8mCRM5fhzo0UPpKOSn0QBLlgCvvgr07w80\noBHMRBaJHdcmIATg6QmcOCEtC2op9u8HJk4EZs0C3ngDsOJXEiLFsONaxa5fl357eSkbh6kNHAjE\nxwPbt0tNUA1sQl8ii8AkYQInTgCBgeazGp0xtWwJ7Nsn9VEEBACbNikdERHVBpOECVhKf0RVbGyA\nRYuArVulVe7GjAGuXVM6KiIyBJOECcTHSzUJSxccDJw8KdUoAgKA5ct5lzaR2jFJyEynAw4dkkb6\nkLQU6qJF0t/k8GFpSo/ISOnvRETqwyQhs99+A5o3l9aRoL906AD89BOwYQOwbh3QrZvUX8FkQaQu\nTBIy279fGuVDlevbV/obLVsGfPCBtFbF559zag8itWCSkBmTRM00Gml9isOHgfXrgV27AB8f6Ya8\nc+eUjo7IsjFJyKikhEmiNjQaoF8/qRnq0CHptUGDpNfWrgUyM5WNj8gS8Y5rGR06BDz9tLSOBNVN\nUZE0tUdkpFTD6N8fGDcOGD0acHdXOjoi81HXz04mCRm9+CLQuLE0lxHV3717wH//C/zwA7BjhzSr\nbmgoMGQI0Ls3YGurdIRE6sUkoTJCAG3aSDeQdeumdDQNT14ecPCgVLvYuVNar2PAAECrle7HCAxs\nmGt3ENUVk4TKxMUBkycDiYmWOR2HqWVkAHv2AL/8Ahw5Iq3f0bGjlDB69ZISdefOgKOj0pESKYNJ\nQmUmTwb8/IDXXlM6EsuUny+t4XH0qHTH+6lTUsL28pKuS9eu0r0a7doBbdtKq+oxmVNDxiShIhcv\nSt9gL10CnJ2VjoZKFRVJzVKnTkk1jQsXpGt14YK0rV076cfHR0om3t7Sby8voEULaQ4qInPVYJJE\nTEwM5s+fD51Oh6eeegqvvvpque1qTxJCAOHhQPv2wNKltX9/bGwstFqt0eNSC7We3+3bfyWMK1ek\n6d1TUqTf168DN29Ko6m8vKQ76N3d//rx8JB+X70ai6FDtfDwAFxcGt76GWq9dsbS0M+vrp+dqvpu\npNPpMHv2bOzatQteXl7o1asXwsLC4Ovrq3RoBvv8c+D336WpJuqiof9DVev5NW0q/fTqVfn24mLg\nxg0pYaSnS30gpT+JiVIS+fXXWHz6qRYZGUBWljSyzdlZShhlf1d87OgodbKX/tjbl39e9nVra9P+\nXcpS67UzloZ+fnWlqiRx7NgxtGvXDj4+PgCAiRMnYsuWLWaRJNLSgPffB77/XrqBjiNrGhYbG6n5\nqbqVBRcvln4AaQ6q7GwpWWRmVv47Kwu4fBnIzZVGa+Xm1vxjayv922rUCHjggb9+l/6UfV7V49If\nW1sp6djY/PW77OOKr509K93oWHG/yt5jbS3VpKyspL6e0sd1eV7dPuxHkp+qksT169fRqlUr/XNv\nb28cPXr0vv0efVRq1ilV+riy12raXpf3lH2s0/31zXL8eGlCPze3qs6QLIW1tVRbcHEByvyTrhch\ngIICKVkUFkqPCwvvf1zdttLHBQXSv93CQul3cfFfv8s+Lvva6dPStClVba/4mhDSrAMlJeUfV3xe\n3baangM1J5HSH6D6x7m5wD//afj+an1cylgJVFV9Ej/88ANiYmKwevVqAEB0dDSOHj2Kzz77TL+P\nhl8diIjqxOz7JLy8vHCtzJJl165dg3eF+r2KchoRUYOnqvEXPXv2xPnz55GcnIzCwkJs3LgRYWFh\nSodFRGSxVFWTsLGxwapVqzBs2DDodDrMmDHDLDqtiYgaKlXVJABgxIgRSExMxKpVq7B+/Xq0b98e\n77//fqX7zp07F+3bt4e/vz8SEhJMHGn9xMTEoFOnTlWeX2xsLFxcXBAQEICAgAC8/fbbCkRZN9On\nT4enpyf8/Pyq3Mdcr11N52bO1w2QmngHDRqELl26oGvXrli5cmWl+5nr9TPk/Mz5Gubn5yM4OBjd\nu3dH586d8frrr1e6X62un1Ch4uJi0bZtW3H58mVRWFgo/P39xdmzZ8vt89///leMGDFCCCHEkSNH\nRHBwsBKh1okh57d3714xatQohSKsn/3794sTJ06Irl27VrrdnK9dTedmztdNCCHS0tJEQkKCEEKI\ne/fuiQ4dOjSo/3uGnJ+5X8OcnBwhhBBFRUUiODhYHDhwoNz22l4/1dUkgPL3S9ja2urvlyhr69at\niIiIAAAEBwfj7t27SE9PVyLcWjPk/ADz7aQfMGAAmjRpUuV2c752NZ0bYL7XDQCaN2+O7t27AwAa\nN24MX19fpKamltvHnK+fIecHmPc1dPjzJq3CwkLodDo0bdq03PbaXj9VJonK7pe4fv16jfukpKSY\nLMb6MOT8NBoNDh06BH9/f4wcORJnz541dZiyMedrV5OGdN2Sk5ORkJCA4ODgcq83lOtX1fmZ+zUs\nKSlB9+7d4enpiUGDBqFz587lttf2+qmq47qUofdCVMz25nIPhSFx9ujRA9euXYODgwO2b9+OMWPG\nICkpyQTRmYa5XruaNJTrlp2djfHjx+PTTz9F48aN79tu7tevuvMz92toZWWFX3/9FZmZmRg2bFil\n043U5vqpsiZhyP0SFfdJSUmBl5eXyWKsD0POz8nJSV9tHDFiBIqKinD79m2TxikXc752NWkI162o\nqAjjxo3DE088gTFjxty33dyvX03n1xCuIQC4uLjgkUceQXx8fLnXa3v9VJkkDLlfIiwsDF9//TUA\n4MiRI3B1dYWnp6cS4daaIeeXnp6uz/bHjh2DEOK+tkVzZc7Xribmft2EEJgxYwY6d+6M+fPnV7qP\nOV8/Q87PnK9hRkYG7t69CwDIy8vDzp07ERAQUG6f2l4/VTY3VXW/xJdffgkAeOaZZzBy5Ehs27YN\n7dq1g6OjIyIjIxWO2nCGnN+mTZvwxRdfwMbGBg4ODtiwYYPCURsuPDwc+/btQ0ZGBlq1aoUlS5ag\nqKgIgPlfu5rOzZyvGwAcPHgQ0dHR6Natm/7D5d1338XVq1cBmP/1M+T8zPkapqWlISIiAiUlJSgp\nKcGTTz6JwYMH1+uzU1VzNxERkbqosrmJiIjUgUmCiIiqxCRBRERVYpIgIqIqMUmQ6llbW+snWwsI\nCNCPRDF3UVFR8PDwwMyZM+tVzuLFi/Hhhx/qnx85cqTKMvPz89G9e3c0atTILMf+k+mpcggsUVkO\nDg5VzlRZOjjP3O74BaSYw8PDK52JtLi4GDY2hv33rHju27dvx4gRIyrd187ODr/++ivatGlT+4DJ\nIrEmQWYnOTkZHTt2REREBPz8/HDt2jWsWLECQUFB8Pf3x+LFi/X7vvPOO+jYsSMGDBiASZMm6b9x\na7VaHD9+HIB0A1Lph6ZOp8PLL7+sL+urr74CAP3UBo899hh8fX3xxBNP6I8RFxeHfv36oXv37ujd\nuzeys7MREhKCkydP6vfp378/Tp06dd+5lB2BHhUVhbCwMAwePBihoaHIycnBkCFDEBgYiG7dumHr\n1q2VnldiYmK5Mvfs2YMhQ4bgzJkzCA4ORkBAAPz9/XHhwoW6/snJgrEmQaqXl5env/HpoYcewkcf\nfYQLFy7gm2++QVBQEHbs2IELFy7g2LFjKCkpwejRo3HgwAE4ODhg48aNOHnyJIqKitCjRw/07NkT\ngPTtu7Lax9q1a+Hq6opjx46hoKAA/fv3x9ChQwEAv/76K86ePYsWLVqgX79+OHToEHr27ImJEyfi\n3//+NwIDA5GdnQ17e3vMmDEDUVFR+Pjjj5GUlISCgoJq19colZCQgFOnTsHV1RU6nQ4//fQTnJyc\nkJGRgT59+iAsLAzHjx+v8rwyMjJga2sLJycn/Otf/8K8efMwadIkFBcXo7i42FiXhCwIkwSpnr29\nfbnmpuTkZLRu3RpBQUEAgB07dmDHjh36RJKTk4Pz58/j3r17GDt2LOzs7GBnZ2fQUrg7duzAqVOn\nsGnTJgBAVlYWLly4AFtbWwQFBaFly5YAgO7du+Py5ctwcnJCixYtEBgYCAD6yeLGjx+PpUuXYsWK\nFVi3bh2mTZtW47E1Gg2GDh0KV1dXANJsnq+//joOHDgAKysrpKamIj09HQcOHLjvvEprJDt27MCw\nYcMAAH379sU777yDlJQUjB07Fu3atav5j01UAZubyCw5OjqWe/76668jISEBCQkJSEpKwvTp0wGU\nb84p+9jGxgYlJSUApM7cslatWqUv6+LFixgyZAiEEGjUqJF+H2traxQXF1fZF+Lg4IDQ0FBs3rwZ\n33//PSZPnmzQeZVOLAcA//d//4eMjAycOHECCQkJaNasGfLz86HRaO47r9I4YmJiMHz4cADSFCL/\n+c9/YG9vj5EjR2Lv3r0GxUBUFpMEmb1hw4Zh3bp1yMnJASDNl3/z5k0MHDgQmzdvRn5+Pu7du4ef\nf/5Z/x4fHx/97JiltYbSsv75z3/qm2aSkpKQm5tb6XE1Gg06duyItLQ0fVn37t2DTqcDADz11FOY\nO3cugoKC4OLiUuN5VJwhJysrC82aNYO1tTX27t2LK1euQKPRVHleQgj89ttv8Pf3BwBcvnwZbdq0\nwZw5czB69OhK+0SIasLmJlK9yr6tl30tNDQUv//+O/r06QNAmuo5OjoaAQEBmDBhAvz9/dGsWTP0\n6tVL/0H80ksv4fHHH8dXX32FRx55RF/eU089heTkZPTo0QNCCDRr1gw//fRTlX0Ytra22LhxI+bM\nmYO8vDw4ODhg586dcHR0RI8ePeDi4mJQU1PpOZU9xuTJkzFq1Ch069YNPXv2hK+vLwDcd16lzW7H\njx8vN+Pnv//9b3zzzTewtbVFixYtsGDBAoPiICqLE/yRxViyZAkaN26MF1980STHS01NxaBBg+4b\nfVRq/fr1iI+Px2effWaU473zzjto3749Hn/88Rr3bdOmDY4fP242U2CTctjcRBbFVPdTfP311+jd\nuzfefffdKvext7fH9u3b630zXakFCxbUmCBKb6YrLi6GlRX/+1PNWJMgIqIq8asEERFViUmCiIiq\nxCRBRERVYpIgIqIqMUkQEVGVmCSIiKhK/w99Jxb5rtOQTgAAAABJRU5ErkJggg==\n" - } - ], - "prompt_number": 17 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Directional spectrum and Encountered directional spectrum\n=========================================================\nDirectional spectrum\n---------------------" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nD = wsm.Spreading('cos2s')\nSd = D.tospecdata2d(spec)\nSd.plot()\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEXCAYAAACtTzM+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX+x/HXZZF9EwMFRdxXENTEtTBzTa0hM00Nt8Zm\nWrSafk2TpZba4thiTU22aJmVWpM5lmSapI6aqbjvJaEiKC5sgnAv5/cHeJNAvaCXzffz8fDx4N57\n7vl+vpyH5835nnO+x2QYhoGIiNzwHCq7ABERqRoUCCIiAigQRESkiAJBREQABYKIiBRRIIiICKBA\nkArwl7/8henTp1dIW23btmXt2rV2bSMxMREHBwcKCgrs2o5IRVMgyDUJDQ3F3d0db29v/Pz86Nat\nG++++y6X3t7yzjvvMHny5Ove9ujRo3n22WeLvbd7925uueWW695WWaxfv56uXbvi6+uLv78/3bt3\nZ8uWLXZtMzQ0lB9++MGubUjNp0CQa2IymVi+fDkZGRkkJSXx97//nZdffplx48bZ9H2z2WznCitW\nRkYGAwcOZOLEiZw9e5bjx48zZcoUXFxc7NquyWTiSveY1rTfs9iJIXINQkNDjdWrVxd7b/PmzYaD\ng4OxZ88ewzAMIzY21pg8ebJhGIaxZs0aIzg42Hj55ZeNunXrGvfff79RUFBgvPjii0aTJk0Mf39/\nY+jQocaZM2es61u3bp3RpUsXw9fX12jQoIExf/58Y+7cuYazs7NRq1Ytw9PT0xg8eLBhGIbRsGFD\nY9WqVYZhGEZubq4xceJEIygoyAgKCjImTZpkXLhwoVgds2fPNgICAox69eoZ8+bNs7a5fPlyIyIi\nwvD29jYaNGhgTJ061frZkSNHDJPJZFgslhK/j59//tnw9fW97O9r3rx5RteuXY2HH37Y8PHxMVq2\nbFns93fu3Dlj7NixRr169Yzg4GBj8uTJxdqZO3eu0apVK8PLy8to3bq1sW3bNmPkyJGGg4OD4ebm\nZnh6ehqzZs2y1vjBBx8YISEhxq233mrEx8cb9evXL1ZPw4YNre1PmTLFGDJkiDFy5EjDy8vLCAsL\nMw4ePGjMnDnTCAgIMEJCQoyVK1detm9S/ekIQa67m2++mfr167Nu3Tqg8K9Xk8lk/Tw1NZWzZ8+S\nlJTEu+++y5w5c1i2bBlr167lxIkT+Pn58dBDDwHw22+/MWDAACZOnEhaWhrbt28nIiKCBx54gBEj\nRvDUU0+RmZnJ119/XaKtGTNmsHnzZnbs2MGOHTvYvHlzsXMZqampZGRkkJyczAcffMBDDz1Eeno6\nAJ6ennzyySekp6fzzTff8M4771jbuJIWLVrg6OjI6NGjiYuL4+zZsyWW2bx5M02bNuX06dNMmzaN\nmJgYzp07BxQOg9WqVYtffvmFhIQEVq5cyfvvvw/AkiVLmDZtGgsWLCAjI4Nly5bh7+/PggULCAkJ\nYfny5WRmZvK3v/3N2tbatWvZv38/cXFxpR5BXLpdAJYvX87999/P2bNniYyMpHfv3gAkJyfz7LPP\nMmHChKv+DqQaq+xEkuqttCMEwzCMzp07GzNnzjQMwzBGjx5d7AihVq1a1r/UDcMwWrVqVWwdycnJ\nhrOzs2E2m42ZM2caMTExpbZ96XpLq6dJkybGihUrrJ999913RmhoqLUONze3Yn99BwQEGD/99FOp\nbU2cONF47LHHDMO48hGCYRjGvn37jNGjRxv169c3nJycjMGDBxupqamGYRQeIQQFBRVbvlOnTsaC\nBQuMlJQUw8XFxcjJybF+9umnnxo9e/Y0DMMw+vTpY8yZM6fUNv+4HS7WeOTIEet7a9asKXGEcOn3\npkyZYvTp08f62bJlywxPT0+joKDAMAzDyMjIMEwmk5Genl5qDVL9OVV2IEnNdOzYMWrXrl3qZzfd\ndBO1atWyvk5MTORPf/oTDg6/H7A6OTmRmprKsWPHaNy4cblqSE5OpmHDhtbXISEhJCcnW1/7+/sX\na9Pd3Z2srCwAfvrpJ/7+97+zZ88e8vLyuHDhAkOHDrWp3ZYtWzJv3jwADhw4wMiRI5k0aRKffvop\nAMHBwcWWb9iwIcnJySQlJZGfn0+9evWsnxUUFBASEgIU/k6bNGlSll8BDRo0KNPyAQEB1p/d3Nyo\nU6eO9SjCzc0NgKysLLy9vcu0XqkeNGQk193PP/9McnIy3bt3t7536dDEH4cpQkJCrMMrF/+dP3+e\noKAgGjRowC+//FJqO39czx8FBQWRmJhofZ2UlERQUJBNfbjvvvu46667OHbsGOfOnePBBx8s12Wm\nLVq0IDY2lt27d1vfO378eLFlfvvtN4KDg2nQoAEuLi6cPn3a+ntIT09n165dQOHO/fDhw6W2c7nf\nxaXve3h4cP78eetri8XCqVOnytwnqbkUCHLNjKKx6YyMDJYvX87w4cMZNWoUbdq0sX5uXOEKmAcf\nfJB//OMfJCUlAXDq1CmWLVsGwIgRI1i1ahVLlizBbDZz+vRpduzYAUBgYCC//vrrZdc7fPhwpk+f\nTlpaGmlpaTz//POMGjXKpj5lZWXh5+dHrVq12Lx5M59++ulVAwgKjwheffVV607/6NGjfPbZZ3Tp\n0sW6zMmTJ5kzZw75+fksWbKE/fv3M2DAAOrWrUufPn14/PHHyczMpKCggF9++cV6X8X48eP55z//\nybZt2zAMg8OHD1t/Z4GBgZcNzouaN29Obm4u3377Lfn5+UyfPp0LFy7Y9PuQG4MCQa7ZoEGD8Pb2\nJiQkhBdffJEnnnjCOmQCJU8q/3HHOnHiRAYPHkyfPn3w9vamS5cubN68GSj8q/jbb79l9uzZ+Pv7\nExkZyc6dOwEYN24ce/fuxc/Pj5iYmBJ1TZ48mY4dOxIeHk54eDgdO3Ysdj/ElXbwb7/9Ns899xze\n3t688MIL3HvvvcU+v9x3vby8+Omnn4iKisLT05MuXboQHh7O7NmzrctERUVx6NAhbrrpJp599lm+\n/PJL/Pz8APj444/Jy8ujdevW1K5dm3vuuYeUlBQAhgwZwjPPPMN9992Ht7c3MTEx1pPWTz/9NNOn\nT8fPz49XX3211Bp9fHx4++23GT9+PPXr18fT07PYkNIft1Np67AlFKX6MhlX+tNNRK6r+fPn88EH\nH1ivwBKpSnSEICIigAJBpEKVNiwjUlVoyEhERAAdIYiISJEqfWOaDq1FRMqnPIM/lXaEkJubS1RU\nFBEREbRu3Zqnn3661OUuXsNeE/9NmTKl0mtQ39Q/9a/m/SuvSjtCcHV1Zc2aNbi7u2M2m+nevTvr\n168vdneriIhUnEo9h+Du7g5AXl4eFovlsnPfiIiI/VVqIBQUFBAREUFgYCA9e/akdevWlVlOhYuO\njq7sEuymJvcN1L/qrqb3r7yqxGWn6enp9O3bl5deeqnYhjKZTEyZMsX6Ojo6WhtSROQP4uPjiY+P\nt76eNm1auc4lVIlAAHjhhRdwc3Mr9nCPqz0WUERESirvvrPShozS0tKsT4nKycnh+++/JzIysrLK\nERG54VXaVUYnTpwgNjaWgoICCgoKGDVqFL169aqsckREbnhVZsioNBoyEhEpu2o3ZCQiIlWLAkFE\nRAAFgoiIFFEgiIgIoEAQEZEiCgQREQEUCCIiUkSBICIigAJBRESKKBBERARQIIiISBEFgoiIAAoE\nEREpokAQERFAgSAiIkUUCCIiAigQRESkiAJBREQABYKIiBRRIIiICKBAEBGRIgoEEREBFAgiIlJE\ngSAiIoACQUREiigQREQEUCCIiEiRSguEo0eP0rNnT9q0aUPbtm2ZM2dOZZUiIiKAyTAMozIaTklJ\nISUlhYiICLKysujQoQNLly6lVatWvxdnMlFJ5YmIVFvl3XdW2hFC3bp1iYiIAMDT05NWrVqRnJxc\nWeWIiNzwnCq7AIDExEQSEhKIiooq8dnUqVOtP0dHRxMdHV1xhYmIVAPx8fHEx8df83oqbcjooqys\nLKKjo5k8eTJ33XVXsc80ZCQiUnbVbsgIID8/n7vvvpuRI0eWCAMREalYlXaEYBgGsbGx+Pv789pr\nr5W6jI4QRETKrrz7zkoLhPXr13PLLbcQHh6OyWQC4MUXX6Rfv36/F6dAEBEps2oXCLZQIIiIlF21\nPIcgIiJVhwJBREQABYKIiBRRIIiICKBAEBGRIgoEEREBFAgiIlJEgSAiIoACQUREiigQREQEUCCI\niEgRBYKIiAAKBBERKXLFR2jOnj37qivw9PRkwoQJ160gERGpHFec/rpevXo8+OCDl/2yYRgsXLiQ\nQ4cO2ac4TX8tIlJm5d13XvEIYeTIkUyZMuWKK8jOzi5zoyIiUvXoATkiIjWMXY4QLj2HcGkDFx95\n+fjjj5e5QRERqZquGAiZmZmYTCYOHDjAzz//zODBgzEMg+XLl9OpU6eKqlFERCqATUNGPXr04Ntv\nv8XLywsoDIoBAwawbt06+xanISMRkTKz6zOVT548ibOzs/W1s7MzJ0+eLHNjIiJSdV1xyOii+++/\nn06dOhETE4NhGCxdupTY2Fh71yYiIhXI5quMtm7dyrp16zCZTNxyyy1ERkbauzYNGYmIlEN5951l\nuuw0NTWV3Nxc61VGISEhZW6wLBQIIiJlZ9dzCMuWLaNZs2Y0btyY6OhoQkND6d+/f5kbExGRqsum\nQJg8eTIbN26kefPmHDlyhNWrVxMVFWXv2kREpALZFAjOzs7UqVOHgoICLBYLPXv2ZMuWLdfc+Nix\nYwkMDCQsLOya1yUiItfGpkDw8/MjMzOTHj16MGLECB599FE8PT2vufExY8YQFxd3zesREZFrZ9NJ\n5ezsbFxdXSkoKGDhwoVkZGQwYsQI/P39r7mAxMREBg0axK5du0oWp5PKIiJlZpe5jADMZjMDBw5k\nzZo1ODo6Mnr06PLUJyIiVdxVA8HJyQkHBwfOnTuHr69vRdRUzNSpU60/R0dHEx0dXeE1iIhUZfHx\n8cTHx1/zemwaMho8eDAJCQn06dMHd3f3wi+aTMyZM+eaC9CQkYjI9WW3ISOAmJgYYmJirDekGYZh\n/VlERGqGSn1AzvDhw/nxxx85ffo0AQEBPP/884wZM+b34nSEICJSZnaZuuLPf/4zc+fOveIKbFmm\nvBQIIiJlZ5cho6+++gpXV9crrviHH34oc6MiIlL1XDEQZs2addVzBT169LiuBQmkpGQxZUo83357\niFOnsmne3J/Y2HZMmNART89alV2eiNRQlXoO4WpuxCGjfftOcdttHzNqVDgPPtiRgAAPduxI4bXX\nNrFzZyqffz6E9u3rVXaZIlKFVcj01xXtRguEHTtS6NdvIa+8cjujRrUr8fnnn+/mkUdWMH16TyZM\n6FgJFYpIdaBAqOZ+/fUsPXrM4/XX+3LPPW0uu9yBA2nExCymT58mzJ7dBwcHXf4rIsVVWCBYLBay\ns7Px9vYuc2NldaMEQn6+ha5dP2TEiDAmTep81eXPncvlzjs/p2FDH+bNuxNHR5vmKBSRG4RdH5Az\nfPhwMjIyyM7OJiwsjFatWvHKK6+UuTEp3cyZ6/D3d2PiRNueMeHr68qKFSNIScli1KivMJsL7Fyh\niNwIbAqEvXv34u3tzdKlS+nfvz+JiYksWLDA3rXdEJYtO8C7727lgw8GF6U6zF8NYY+A693Q8i/w\n1nIwW4p/z93dma+/HkZa2nliY5cqFETkmtkUCGazmfz8fJYuXcqgQYNwdnbW1BXXKD/fwksvrWf8\n+GV8/fUwgoO9yTfD2Dkw57/w6jg4+ym8/wj8ZyP0eQ7SMoqvw82tMBTOnMnh7rsXk5OTXzmdEZEa\nwaZAmDBhAqGhoWRlZXHLLbeQmJiIj4+PvWursbKy8hg48DNWrfqVzZsf4OabgwH4xwI4lgbrXoLe\nEeDmAt1bw/fPQ3go3DkDLvxhn38xFDw8nOnffyHp6bkV3yERqRHKdZWRYRhYLBacnGyaG6/cauJJ\nZbO5gN69F9C4sR/vvjsQJ6fCTP7mZ/jrv2Hba+Bfyvn6ggIY+grU9oS5D5f2ucEjj6xg06ZjxMWN\n4KabPOzcExGpqux6lVFubi5ffvkliYmJmM1ma4PPPfdc2SstS3E1MBD+8Y/VbNt2gm+/HWG9ZDQr\nB1o/BB9Ngp7h8A1n+A9nsGBwOz4M5yYcMZF5HsIehbkPQZ/Ikus2DIPJk9fw1Vf7+P77UQQH2/9K\nMBGpeuw6/fWdd96Jr68vHTp0wNXVtcyNSKFdu1L58MMEdu36S7H7B6Z9Dre2hehwgzmcII5zPEYQ\nLjjwPqmsJYM5NMbL3YF3/wp/eQf2/QtqORdfv8lkYsaM2/DxcaFnz49Yv34sAQE6UhAR29h0hNC2\nbVt2795dEfUUU9OOEO65ZwmdOwfzxBNdre9t+wX6T4Vdb8J639PM5yTzaIo/hXt7MwZPkogXjjxP\nCFC4/MCb4aE7Lt/WlCnxfPPNQdasicXLy8WOvRKRqsau9yF07dqVnTt3lnnl8rs9e06ybt1vPPjg\n71NOmC0w/k2YNQbMvnnMJpl/Eoo/zuRzBgvnccLEdELYQhYrOQfAzFEwfTFkX+H88dSpt9K+fT2G\nD/8Si0WXpIrI1dkUCOvWraNDhw40b96csLAwwsLCCA8Pt3dtNcqHH27ngQc64OHx+2ylc78DHw8Y\n1RNmcZwR1KERORxgGPvoz156k8o8PHDkWerzKsnkYxDZBHq0hre+uXx7JpOJf/1rAFlZeTz3XLz9\nOygi1Z5NQ0aJiYmFC1/yCE2A0NBQuxV2sb2aMGRkGAYhIa8TFzeCNm0CAMg8D00nwMrnwdQom0kc\n4b804iixeNONejxKHsf4lYfxZygBjGIshxhIbWLwZ/dv0GsyJL5feHnq5Zw6lU2HDnN5771B9O3b\ntIJ6LCKVya5DRqGhoZw7d45ly5bx3//+l/T0dLuHQU1y5Mg5CgoMaxgAfLau8B6Ddo1gLqmMJ5BM\nPqEWQdRjEiYccaEhjfk3KbzDBY4xmkAWkwZA24aF9yb89+crt33TTR78+98DmTgxjvx8y5UXFpEb\nmk2B8MYbbzBy5EhOnTpFamoqI0eOZM6cOfaurcbYvPk4UVHBxd5bGA/33wbHuMA2shiEiZN8RDBP\nYEo5CD99Ain7cSEYf4Zwio/oghdHyeM4F4DCoaaPbXhgXf/+TQkO9ubjj3fYoXciUlPYNGQUFhbG\npk2b8PAovIQxOzubzp07s2vXLvsWV0OGjB577Dvq1vXgqae6A3D0FERMguT58JbzcSzACD6ngPM0\nONIH/nUHNI+GQz/Cfe+SH9mdfQymNXG8QAYhuDCOQLJyoMFY2P8OBPpeuYaNG48ybNiXHDz4MC4u\n9r2hUEQql12HjAAcHBxK/Vmubtu2E3ToEGR9vWg9/Kkz4FzAfzjDUNw5zZcEZN0Jc++GUR/Cn7+A\nh+Ng4Z9xPpOLD704zZf0w48VnAXA0w3u6lx4tHE1Xbo0oE2bm/jggwT7dFJEqj2b9uxjxowhKiqK\nqVOnMmXKFDp37szYsWPtXVuNsX9/Gm3a3GR9/c0WiOkCP5NFI1zwZj0etMPlf99C677QbnDhgg07\nQPc/w8pX8GMg6fxAJzw5Th5pFE5qNKwHfLXJtjqeeqobc+duvd7dE5EawqZAePzxx5k3bx5+fn74\n+/szf/58HnvsMXvXViPk5Vk4ezaHwEBPAAwDtv8KHZrCLs4TiQcZrMWH22DL5xB1f/EVdBsPWxfh\nYWlJDgdwwEwr3NnLeQC6tISEXyHPholOu3ULISkpneTkzOvdTRGpAa4YCBkZhfMtnzlzhkaNGjFy\n5EhGjBhBw4YNOXPmTIUUWN2dOJFJYKCndaqKpFOFl4kG+sJOsgnHjUw24p0SCJknsTSMYkGfPsyu\nV4+Nr74KNzWG2iE4HtlDLeqRw2Ha4MYecgDwdofmQfDzoavX4uTkQO/eTfjuu8P27LKIVFNXDITh\nw4cD0L59ezp06EDHjh3p2LEjHTp0oEOHDhVSYHWXnJxJUJCX9fX2IxDZGAwMdnGelpzAAU9qbVsL\nkUPY9sGHGBYLI7/7jvUvvsipffugxW1wYDXuhHGeXbTBnT1FRwhQOA/S2j221dOvXxPi4n653t0U\nkRrgioHwzTeFt8ImJiZy5MiREv/k6pKTM6lXz9P6escRaBcKJ8jHAXAhAS86wd44LC378ePzz9Nn\n9mwCw8O55bnn+P7JJ6H5bXAwHnfacp49tMadfZcEQo/WsH6fbfX06dOEVat+rRFXb4nI9WXTOYRe\nvXrZ9J6UlJWVh7f377cSn0qHerXhNPkE4kw+ybgQAqcOk5btipufH3UjIgBoeeedpGzfDgFN4UwS\ntahLPqcIxJk0zNZ1NgosfLCOLYKDvblwwUxmZt517aeIVH9XDIScnBxOnz7NqVOnOHPmjPVfYmIi\nx48fv+bG4+LiaNmyJc2aNePll1++5vVVRbm5Zlxdf7/uPyMHvNwgCwteOGLmLE4Wb8g+w7lTmfg2\namRd1isoiPOnTmGp5QNZp3DEBwsZuBRttgsUTlrn7w2ny3CeODDQk9TUrOvTQRGpMa54h9K7777L\nG2+8QXJycrFzBl5eXjz8cCmP7SoDi8XCww8/zKpVqwgODubmm29m8ODBtGrV6prWW9VcuGApFgiZ\nRYGQSQGeRYHgnAF41iH96FF8Gza0Luvg5IRnvXpknM7ELz8Xx3w3LM7pAHjhSCYWXHCgTpkDwYPU\n1GyaNfO/Xt0UkRrgioEwadIkJk2axJtvvskjjzxyXRvevHkzTZs2tc6JNGzYML7++usaFwgljhDO\nF14ZlInl90BIzwefINKTkvC5JBAAfBs25FxSEn6edXDKNmP2LQwEz6JAqIMz7kUjUucvYP35SnSE\nICKlsWkOA5PJxNmzZ/Hz8wPg7NmzfPbZZ/z1r38td8PHjx+nQYMG1tf169fnp59+KrHc1KlTrT9H\nR0cTHR1d7jYrg8VSUOzpaGYLODlAPgbOmCjgAqY8Czi7kZ+djXf9+sW+7+zhQV5WFji5YMq3YFA4\n9u+MiXx+PzHs4gwX8m0LBFdXJ3JzzVdfUESqhfj4eOLj4695PTYFwnvvvVdsiMjPz4+5c+deUyBc\nnEr7ai4NhOrI1dWJkyd/vyLI0xWycsETB7Kw4IQfZh8XyEjBu8EdZBw9Wuz76UlJ+ISEwOo0LJ5O\nOOIDFJ6D8MQRKAyZrBzwcbetppMns/VoTZEa5I9/LE+bNq1c67HpKqOCggIKCn5/6pbFYiE/34Zb\nY68gODiYo5fs/I4ePUr9P/x1XBO4uBT/a9zbvXDYyAtHayDk+ThAejI+ISGkJyVZlzUMg/TffsM3\nKBDMFzC7GjgVBUImFryLAuFMJvh6gK1TTKWmZlnvnBYRucimXUjfvn0ZNmwYq1evZtWqVQwbNox+\n/fpdU8MdO3bk0KFDJCYmkpeXx6JFixg8ePA1rbMq+uPwjJdb4YnlwnMABThRG7PrBXBwxLdeHc79\n9pt12dyzZzE5OODqZAbPOlhMGUVXGhnkUoB70eY7nVl4pZGtUlOzCQzUEYKIFGfTkNHLL7/M3Llz\neeeddwDo3bs348ePv7aGnZx466236Nu3LxaLhXHjxtW4E8oAbm5OnD//+9GUjweczQJvHEnHjDP+\nmDkFvsH413Elbd8+LmRm4uLlxcndu/ENDYX0E+AVgJmzOOJNRtFwkQOFw26p56COjYGQm2smPT2X\nOnVsHF8SkRuGTYHg6OhIbGwsPXv2pGXLltet8f79+9O/f//rtr6qKCDAg1Onsq2vWwTDj7shBBdS\nyMeR1mTyATTpjvvJrbQYPJgNr7zCrVOnsvKJJ4iaOBF++R+ERpHDAdxozkFyaIKrdZ0/HYQOTWyr\nZ/36JDp2DMLRUVOYi0hxNu0Vli1bRmRkpHWYKCEhoUYO79hDUJAXx4//fpNARKPC2U5r4UBTXEmi\nNefZS0HEANj2BbfNnMna6dP5sFs3anl5ETFmDBxYDS1u4zy7cCeMvZynNb//hb92D9zSxrZ64uIO\n06+fnq0sIiXZFAhTp07lp59+sl52GhkZya+//mrXwmqKoCCvYtNNtwmBwycgNw/CcWcnBbjRiqyW\nPpB6AB8Pg8ePH+eWyZMZ+sUXmPJz4fA6jBa3cp69uNOGPeTQtigQLBb43z7bA2HFisP0769AEJGS\nbAoEZ2dnfH2LP6NRT02zjbe3C4ZhkJlZ+Bxk11rQtB7sSYIwPNjJebzpQYbTRoj4E2xdjFdQEM0H\nDsStdm3YsRRCo8j1ysKZOjjhwx7O0wY3APYehQAfCLjKIzQBkpLSOXkyu9jT20RELrJpr96mTRsW\nLlyI2Wzm0KFDPPLII3Tt2tXetdUIJpOJRo38OHTo9+dHdGsN32+Hm/HkJzJxpRdn+Y6CbvfD6lch\nI7VwQXMefPsC3PoQGfyIJ504xgUysNCo6BzC8p/htnDbann//W3ExLQqdqOciMhFNgXCW2+9xZ49\ne3BxcWH48OF4e3vz+uuv27u2GqNdu0C2b0+xvh7eAz5bC/WoRTs8+AFf3GjF2UYnC5+Q9m4M7F0J\nb/aDoLYY4f1J4zP8uZs4ztEbHxwxYRjw0Q8Qe9vVazh9+jxvv/0zTz3VzY49FZHq7KpXGZnNZu64\n4w7WrFnDzJkzK6KmGufmm4PYvPk4Y8dGAtC9NZzJKhw2Gh5yE2+QTG8eIIm/43fHf3EwCmDFdGge\nDXdM4awpjloE4UE4K9jPkwQDhVcXGUDnFlevYdasDQwZ0prGjf3s11ERqdauGghOTk44ODhw7ty5\nEucRxDZRUfWZP3+H9bWDAwzrAQvjYfr9XsykgIO0xJfmpDksImDwdOuyBmZO8gH1eJTfyOUU+dxM\n4V3GH/8A9/eEq80Ccvx4Bu+9t43t2yfYo3siUkPYdB+Ch4cHYWFh9O7dGw+PwjtcTSYTc+bMsWtx\nNUVkZF0OHTrNuXO5+PoWjv2P6QW3TYZ/3GNijFsAc0nhdR7nMKPxpCPutAUgmddwxBdvbuE9TtAf\nPxwxkZUDi9fDllev3LZhGEycGMeECR1o0MDH3l0VkWrMpkCIiYkhJiam2Hu2Tk4nhfMZ3X57Y77+\nej+xsYXbt9tjAAAVDUlEQVRPQ2sdAre3g5e/hGdH1uZDUtlBCC2ZxkHu5yaGkcMB8jlFMz4mDQtf\ncpqvKLwx8O1voVc7CA28ctuvv76JX389yyefxFx5QRG54ZmMKvxwXZPJVGOe/btkyR7efHMza9eO\nsb53LA0iJsKGVyAp+ByvkcyXtASSOMdKnAnAjwE4UItn+A1vHHmK+mSch2YT4IcZhfc1XM7Klb8Q\nG7uUTZvG0bChhvtEbhTl3XdeMRDuuecelixZQlhYWKkN7ty5s8wNlqm4GhQIZnMBrVr9i/feG0R0\ndKj1/deXwdJN8MN0+D+HRPxw4hmKz/r6DWd4kxS+oAWeODLlU0g8CR9Nunx7W7cm07//Qv7zn3vp\n3v0KqSEiNY5dAiE5OZmgoCASExNL/fzi087spSYFAsDHH+/g/fe38eOPo61DbhYLdPk/+HNfGNLH\nzCgO0QNvHicIR2AZZ3mF47xPE1rhTspZaPNw4bmDRpcZLjpwII2ePT/i7bfv4K67rt/cUyJSPdgl\nECpbTQsEs7mAqKj3GT26HY88EmV9f/uv0GcK7P0XOHqb+T8S2U8OTpjwwpHZhNKs6M7koS9Dk3rw\n4v2lt7F9ewoDBizkxRd7Wc9XiMiNxS6B4OnpedmTxyaTiYyMjDI3WBY1LRAAfvnlDF26fMCiRUPo\n2bOR9f3H3ocTZ+GzvxVeRnqUCxRgEIILpqJprhfGw/OLYPvr4FbKozI3bDjKXXd9zttv38GQIa0r\nqEciUtXY9Qhh8uTJBAUFMXLkSAAWLlxIcnIyL7zwQtkrLUtxNTAQANasOcK9937BG2/0Y/jwwvMz\nORcKh44e6AMP3VHyOz8dgIEvwOrpEB5a8vPvvjvMqFFfsWDBn+jbV5PXidzI7BoI4eHhJU4gl/be\n9VZTAwEgIeEE9933H9q2DeDjj+/Czc2ZQ8kQ/Q94/C54bHDhDWyGUTjNxcT3YP5EuOPmkuv6/PPd\nTJwYx1df3UvXrg0qvjMiUqWUd99p01xGHh4efPLJJ1gsFiwWCwsXLsTTU8/kvRaRkfVISJiAk5MD\n9933HwoKDJoFwcZZ8MX/oOF4GPIStH248F6FldNKD4OPPtrOE0+sZNWqUQoDEbkmNh0hHDlyhIkT\nJ7JhwwYAunXrxhtvvKGrjK6DvDwLPXt+RExMS5544vcZZPckwdbDEBoAPdqUPj3FRx9t5x//+IHV\nq++nZcs6FVi1iFRlusqoGvv117NERb1PfHwsbdoE2PSd997byrRpP7JqlcJARIqz65CR2Ffjxn78\n85+9ufPOz0lJybrisgUFBtOmxfPii+tZsyZWYSAi141NcxmJ/cXGRpCUlM7tt39MXNxI6tf3LrHM\n2bM53H//UtLSzrNhwzjq1tV5HBG5fnSEUIVMnnwLI0aE0a3bh+zde8r6vmEYrFz5CxER79K0aW1+\n/HG0wkBErjubziGkpKTwzDPPcPz4ceLi4ti7dy8bN25k3Lhx9i3uBjmH8Efz5iXwf/+3inbtAgkM\n9GT79hQKCgxmzerNwIHNK7s8Eani7HpSuV+/fowZM4YZM2awc+dO8vPziYyMZPfu3eUq1ubibtBA\nADh3LpeNG49y6tR5WrTw5+abg/UsZBGxiV0DoWPHjmzZsoXIyEgSEhIAiIiIYPv27WWvtCzF3cCB\nICJSXna9ysjT05PTp09bX2/atAkfHz19S0SkJrEpEGbPns2gQYP49ddf6dq1K6NGjbqmx2cuWbKE\nNm3a4OjoyLZt28q9HhERuX5svjHNbDazf/9+DMOgRYsW1KpVq9yN7t+/HwcHByZMmMDs2bNp3759\n6cVpyEhEpMzKu++06T6E8PBwhg0bxr333kuTJk3K3MgftWyph7aIiFQ1Ng0ZLVu2DEdHR4YOHUrH\njh355z//SVJSkr1rExGRCmTTEUJoaChPPfUUTz31FIcOHeKFF17gqaeewmKxXPY7vXv3JiUlpcT7\nM2fOZNCgQTYXOHXqVOvP0dHRREdH2/xdEZEbQXx8PPHx8de8HpvPISQmJrJo0SIWL16Mo6Mj9957\nL0888cQ1Nd6zZ0+dQxARuc7seg4hKiqKvLw8hg4dypIlS2jcuHGZG7oc7fBFRKoGm44Q9u/ff11P\nBH/11Vc8+uijpKWl4ePjQ2RkJCtWrChZnI4QRETKzO7PQ1i+fDl79+4lJycHU9HTWp577rkyN1im\n4hQIIiJlZtc7lSdMmMDixYutN6MtXryY3377rcyNiYhI1WXTEUJYWBi7du0iPDycnTt3kpWVRb9+\n/Vi/fr19i9MRgohImdn1CMHNzQ0Ad3d3jh8/jpOTU6mXlIqISPVl01VGAwcO5OzZszz55JN06NAB\ngAceeMCuhYmISMW64pDRa6+9Rrdu3Wjfvj1OToXZkZubS25uLr6+vvYvTkNGIiJlZpf7EI4dO8ak\nSZPYt28fYWFhdO/ena5du9K1a9dyFyoiIlWTTSeVL1y4wJYtW9i4cSMbNmxg48aN+Pr6sm/fPvsW\npyMEEZEys+udyjk5OWRkZJCenk56ejpBQUGEh4eXuTEREam6rniE8MADD7B37168vLzo1KkTXbp0\noXPnzvj5+VVMcTpCEBEpM7tcdpqUlMSFCxeoW7cuwcHBBAcHV8jJZBERqXhXPYdQUFDAnj17rOcP\ndu3ahb+/P507d+b555+3b3E6QhARKTO7z2V09OhRNmzYwP/+9z+WL1/O6dOnSU9PL3ODZSpOgSAi\nUmZ2CYQ33njDelWRk5MTXbt2pVu3bnTt2pW2bdvi6Oh4TUVftTgFgohImdnlKqPExESGDh3Ka6+9\nRlBQULmLExGRqs/mIaPKoCMEEZGys+vkdiIiUvMpEEREBFAgiIhIEQWCiIgACgQRESmiQBAREUCB\nICIiRRQIIiICKBBERKSIAkFERAAFgoiIFFEgiIgIUEmB8OSTT9KqVSvatWtHTEyM3Z+rICIiV1cp\ngdCnTx/27NnDjh07aN68OS+++GJllCEiIpeolEDo3bs3Dg6FTUdFRXHs2LHKKENERC5xxQfkVIQP\nP/yQ4cOHX/bzqVOnWn+Ojo4mOjra/kWJiFQj8fHxxMfHX/N67PaAnN69e5OSklLi/ZkzZzJo0CAA\nZsyYwbZt2/jyyy9LL04PyBERKTO7PFPZnubPn897773H6tWrcXV1LXUZBYKISNnZ5ZnK9hIXF8es\nWbP48ccfLxsGIiJSsSrlCKFZs2bk5eVRu3ZtALp06cLbb79dsjgdIYiIlFm1GzKyhQJBRKTsyrvv\n1J3KIiICKBBERKSIAkFERAAFgoiIFFEgiIgIoEAQEZEiCgQREQEUCCIiUkSBICIigAJBRESKKBBE\nRARQIIiISBEFgoiIAAoEEREpokAQERFAgSAiIkUUCCIiAigQRESkiAJBREQABYKIiBRRIIiICKBA\nEBGRIgoEEREBFAgiIlJEgSAiIoACQUREilRKIDz77LO0a9eOiIgIevXqxdGjRyujDBERuYTJMAyj\nohvNzMzEy8sLgDfffJMdO3bw/vvvlyzOZKISyhMRqdbKu++slCOEi2EAkJWVRZ06dSqjDBERuYRT\nZTX8zDPPsGDBAtzd3dm0aVNllSEiIkXsNmTUu3dvUlJSSrw/c+ZMBg0aZH390ksvceDAAebNm1ey\nOJOJKVOmWF9HR0cTHR1tj3JFRKqt+Ph44uPjra+nTZtWriGjSjmHcKmkpCQGDBjA7t27S3xW088h\nxMfH19iAq8l9A/Wvuqvp/atW5xAOHTpk/fnrr78mMjKyMsqodJcmek1Tk/sG6l91V9P7V16Vcg7h\n6aef5sCBAzg6OtKkSRPeeeedyihDREQuUSmB8MUXX1RGsyIicgWVfg7hSkwmU2WXICJSLZVn115p\nl53aogpnlYhIjaO5jEREBFAgiIhIkSoRCHFxcbRs2ZJmzZrx8ssvl7rMo48+SrNmzWjXrh0JCQkV\nXGH5Xa1v8fHx+Pj4EBkZSWRkJNOnT6+EKstn7NixBAYGEhYWdtllqut2g6v3rzpvO4CjR4/Ss2dP\n2rRpQ9u2bZkzZ06py1XXbWhL/6rrNszNzSUqKoqIiAhat27N008/XepyZd52RiUzm81GkyZNjCNH\njhh5eXlGu3btjL179xZb5ptvvjH69+9vGIZhbNq0yYiKiqqMUsvMlr6tWbPGGDRoUCVVeG3Wrl1r\nbNu2zWjbtm2pn1fX7XbR1fpXnbedYRjGiRMnjISEBMMwDCMzM9No3rx5jfm/Zxi29a86b8Ps7GzD\nMAwjPz/fiIqKMtatW1fs8/Jsu0o/Qti8eTNNmzYlNDQUZ2dnhg0bxtdff11smWXLlhEbGwtAVFQU\n586dIzU1tTLKLRNb+gbV9+R5jx498PPzu+zn1XW7XXS1/kH13XYAdevWJSIiAgBPT09atWpFcnJy\nsWWq8za0pX9Qfbehu7s7AHl5eVgsFmrXrl3s8/Jsu0oPhOPHj9OgQQPr6/r163P8+PGrLnPs2LEK\nq7G8bOmbyWRiw4YNtGvXjgEDBrB3796KLtNuqut2s1VN2naJiYkkJCQQFRVV7P2asg0v17/qvA0L\nCgqIiIggMDCQnj170rp162Kfl2fbVfplp7bea/DHFK8O9yjYUmP79u05evQo7u7urFixgrvuuouD\nBw9WQHUVozpuN1vVlG2XlZXFkCFDeOONN/D09CzxeXXfhlfqX3Xehg4ODmzfvp309HT69u1b6vxM\nZd12lX6EEBwcXOyJaUePHqV+/fpXXObYsWMEBwdXWI3lZUvfvLy8rId+/fv3Jz8/nzNnzlRonfZS\nXbebrWrCtsvPz+fuu+9m5MiR3HXXXSU+r+7b8Gr9qwnb0MfHhzvuuIMtW7YUe788267SA6Fjx44c\nOnSIxMRE8vLyWLRoEYMHDy62zODBg/n4448B2LRpE76+vgQGBlZGuWViS99SU1OtKb5582YMwygx\nFlhdVdftZqvqvu0Mw2DcuHG0bt2aSZMmlbpMdd6GtvSvum7DtLQ0zp07B0BOTg7ff/99iUlCy7Pt\nKn3IyMnJibfeeou+fftisVgYN24crVq14t133wVgwoQJDBgwgG+//ZamTZvi4eFR6rMTqiJb+vbF\nF1/wzjvv4OTkhLu7O59//nklV2274cOH8+OPP5KWlkaDBg2YNm0a+fn5QPXebhddrX/VedsB/O9/\n/+OTTz4hPDzcujOZOXMmSUlJQPXfhrb0r7puwxMnThAbG0tBQQEFBQWMGjWKXr16XfN+s0rPZSQi\nIhWn0oeMRESkalAgiIgIoEAQEZEiCgQREQEUCFLFODo6Wicai4yMtF4RUt3Nnz+fm266iT//+c/X\ntJ6pU6cye/Zs6+tNmzZddp25ublERETg4uJS7a6tl8pR6ZedilzK3d39srMyXrwgrrrdKQuFNQ8f\nPrzUGTfNZjNOTrb9V/xj31esWEH//v1LXdbV1ZXt27fTqFGjshcsNyQdIUiVlpiYSIsWLYiNjSUs\nLIyjR48ya9YsOnXqRLt27Zg6dap12RkzZtCiRQt69OjBfffdZ/1LOjo6mq1btwKFN/Rc3EFaLBae\nfPJJ67rmzp0LYJ0C4J577qFVq1aMHDnS2sbPP/9Mt27diIiIoHPnzmRlZXHrrbeyY8cO6zLdu3dn\n165dJfpy6RXe8+fPZ/DgwfTq1YvevXuTnZ3N7bffTocOHQgPD2fZsmWl9uvAgQPF1vnDDz9w++23\ns2fPHqKiooiMjKRdu3YcPny4vL9yuYHpCEGqlJycHOtNRI0bN+bVV1/l8OHDLFiwgE6dOrFy5UoO\nHz7M5s2bKSgo4M4772TdunW4u7uzaNEiduzYQX5+Pu3bt6djx45A4V/VpR1VfPDBB/j6+rJ582Yu\nXLhA9+7d6dOnDwDbt29n79691KtXj27durFhwwY6duzIsGHDWLx4MR06dCArKws3NzfGjRvH/Pnz\nee211zh48CAXLly44jMiLkpISGDXrl34+vpisVj46quv8PLyIi0tjS5dujB48GC2bt162X6lpaXh\n7OyMl5cX//73v5k4cSL33XcfZrMZs9l8vTaJ3EAUCFKluLm5FRsySkxMpGHDhnTq1AmAlStXsnLl\nSmtoZGdnc+jQITIzM4mJicHV1RVXV9cSU4SUZuXKlezatYsvvvgCgIyMDA4fPoyzszOdOnUiKCgI\ngIiICI4cOYKXlxf16tWjQ4cOANaJ0oYMGcILL7zArFmz+PDDDxkzZsxV2zaZTPTp0wdfX1+gcObK\np59+mnXr1uHg4EBycjKpqamsW7euRL8uHmmsXLmSvn37AtC1a1dmzJjBsWPHiImJoWnTplf/ZYv8\ngYaMpMrz8PAo9vrpp58mISGBhIQEDh48yNixY4HiQzKX/uzk5ERBQQFQeKL1Um+99ZZ1Xb/88gu3\n3347hmHg4uJiXcbR0RGz2XzZcxfu7u707t2bpUuXsmTJEkaMGGFTvy5OqgawcOFC0tLS2LZtGwkJ\nCQQEBJCbm4vJZCrRr4t1xMXF0a9fP6Bwmo3//ve/uLm5MWDAANasWWNTDSKXUiBItdK3b18+/PBD\nsrOzgcI530+dOsUtt9zC0qVLyc3NJTMzk+XLl1u/Exoaap0J8uLRwMV1vf3229bhlYMHD3L+/PlS\n2zWZTLRo0YITJ05Y15WZmYnFYgFg/PjxPProo3Tq1AkfH5+r9uOPM8ZkZGQQEBCAo6Mja9as4bff\nfsNkMl22X4ZhsHPnTtq1awfAkSNHaNSoEY888gh33nlnqecwRK5GQ0ZSpZT2V/il7/Xu3Zt9+/bR\npUsXoHD64k8++YTIyEjuvfde2rVrR0BAADfffLN1p/u3v/2NoUOHMnfuXO644w7r+saPH09iYiLt\n27fHMAwCAgL46quvLnvOwdnZmUWLFvHII4+Qk5ODu7s733//PR4eHrRv3x4fHx+bhosu9unSNkaM\nGMGgQYMIDw+nY8eOtGrVCqBEvy4OnW3durXY7JaLFy9mwYIFODs7U69ePZ555hmb6hC5lCa3kxpp\n2rRpeHp68sQTT1RIe8nJyfTs2bPEVUAXffTRR2zZsoU333zzurQ3Y8YMmjVrxtChQ6+6bKNGjdi6\ndWu1mNZZKpeGjKTGqqj7FT7++GM6d+7MzJkzL7uMm5sbK1asuOYb0y565plnrhoGF29MM5vNODjo\nv7pcnY4QREQE0BGCiIgUUSCIiAigQBARkSIKBBERARQIIiJSRIEgIiIA/D/vK76bjLbnAwAAAABJ\nRU5ErkJggg==\n" - } - ], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Encountered directional spectrum\n--------------------------------- " - }, - { - "cell_type": "code", - "collapsed": false, - "input": "#clf()\n#Se = spec2spec(Sd,'encdir',0,10);\n#plotspec(Se), hold on\n#plotspec(Sd,1,'--'), hold off\n##!wafostamp('','(ER)')\n#disp('Block = 17'),pause(pstate)\n#\n##!#! Frequency spectra\n#clf\n#Sd1 =spec2spec(Sd,'freq');\n#Sd2 = spec2spec(Se,'enc');\n#plotspec(spec), hold on\n#plotspec(Sd1,1,'.'),\n#plotspec(Sd2),\n##!wafostamp('','(ER)')\n#hold off\n#disp('Block = 18'),pause(pstate)\n#\n##!#! Wave number spectrum\n#clf\n#Sk = spec2spec(spec,'k1d')\n#Skd = spec2spec(Sd,'k1d')\n#plotspec(Sk), hold on\n#plotspec(Skd,1,'--'), hold off\n##!wafostamp('','(ER)')\n#disp('Block = 19'),pause(pstate)\n#\n##!#! Effect of waterdepth on spectrum\n#clf\n#plotspec(spec,1,'--'), hold on\n#S20 = spec;\n#S20.S = S20.S.*phi1(S20.w,20);\n#S20.h = 20;\n#plotspec(S20), hold off\n##!wafostamp('','(ER)')\n#disp('Block = 20'),pause(pstate)\n#\n##!#! Section 2.3 Simulation of transformed Gaussian process\n##!#! Example 3: Simulation of random sea \n##! The reconstruct function replaces the spurious points of seasurface by\n##! simulated data on the basis of the remaining data and a transformed Gaussian\n##! process. As noted previously one must be careful using the criteria \n##! for finding spurious points when reconstructing a dataset, because\n##! these criteria might remove the highest and steepest waves as we can see\n##! in this plot where the spurious points is indicated with a '+' sign:\n##!\n#clf\n#[y, grec] = reconstruct(xx,inds);\n#waveplot(y,'-',xx(inds,:),'+',1,1)\n#axis([0 inf -inf inf])\n##!wafostamp('','(ER)')\n#disp('Block = 21'),pause(pstate)\n#\n##! Compare transformation (grec) from reconstructed (y) \n##! with original (glc) from (xx)\n#clf\n#trplot(g), hold on\n#plot(gemp(:,1),gemp(:,2))\n#plot(glc(:,1),glc(:,2),'-.')\n#plot(grec(:,1),grec(:,2)), hold off \n#disp('Block = 22'),pause(pstate)\n#\n##!#!\n#clf\n#L = 200;\n#x = dat2gaus(y,grec);\n#Sx = dat2spec(x,L);\n#disp('Block = 23'),pause(pstate)\n# \n##!#!\n#clf\n#dt = spec2dt(Sx)\n#Ny = fix(2*60/dt) #! = 2 minutes\n#Sx.tr = grec;\n#ysim = spec2sdat(Sx,Ny);\n#waveplot(ysim,'-')\n##!wafostamp('','(CR)')\n#disp('Block = 24'),pause(pstate)\n\n", - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Estimated spectrum compared to Torsethaugen spectrum\n-------------------------------------------------------" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "clf()\nfp = 1.1;dw = 0.01\nH0 = S1.characteristic('Hm0')[0]\nSt = wsm.Torsethaugen(Hm0=H0,Tp=2*pi/fp).tospecdata(np.arange(0,5+dw/2,dw)) \nS1.plot()\nSt.plot('-.')\naxis([0, 6, 0, 0.4])\nshow()\n", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEXCAYAAAC6baP3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+wPHPsAiyCSIqMiQohmguKG6liaViVrhmqKW5\nlC1W9mv1Vje1xavd6rrUvVqa2WLcriVWSmSKmam45q6gooiiYKKAyMBwfn+cGEG2GRg4MHzfrxev\nmHOe55zvGWy+c57nPM+jUxRFQQghhDCTndYBCCGEqF8kcQghhLCIJA4hhBAWkcQhhBDCIpI4hBBC\nWEQShxBCCItI4hB1Vnh4OMuWLdM6jAYpPj4ef39/s8vXxt/K3d2d5OTkGj2HMI8kDgGAm5sb7u7u\nuLu7Y2dnh4uLi+n1qlWravz8s2bN4uGHHy6xTafTodPpavzcNSkzM5PJkyfj6+uLh4cHwcHBzJs3\nr0bPWdZ7WdNq42+VlZVFQEAAAI888givv/56jZ5PlM9B6wBE3ZCdnW36PTAwkGXLlnHXXXdZdIyC\nggIcHOSfVHHPPfccubm5HD16lCZNmnDs2DEOHjyoaUxFY37re1IW2pE7DlGhvLw8ZsyYgZ+fH35+\nfjz33HMYDAZAbc7Q6/XMnz8fX19fpkyZwqVLl7jvvvvw8vLC29ubO++80/RBde7cOUaNGkXz5s1p\n06YNixYtAiA2Npa5c+cSHR2Nu7s7oaGhpvMnJyfTt29fPDw8iIiI4NKlS6Z9DzzwAL6+vnh6etK/\nf38OHz5s2ndz08mKFSvo16+f6XVcXBzBwcF4enry1FNP0b9//xLlly9fTocOHWjatClDhgzhzJkz\npn12dnYsWbKEW2+9FS8vL6ZPn17u+7dr1y7Gjh1LkyZNAAgODmbUqFEljrVo0SLatm2Lj48PL730\nEsUnc6gojkOHDjFo0CC8vb1p2bIlc+fO5aeffirzvQwPD+e1117jjjvuwNXVlZMnT/Lpp5/SoUMH\nPDw8aNu2LUuXLi33Om72888/0759ezw9PXn66adRFMXsuCt6/5KSkujfvz+enp74+PgQFRVVot6J\nEydYunQpX331FfPnz8fd3Z3IyEj++c9/Mnr06BIxPvPMM8yYMcPsaxIWUIS4SUBAgPLLL78oiqIo\nr7/+utKnTx8lPT1dSU9PV26//Xbl9ddfVxRFUTZt2qQ4ODgor7zyimIwGJTc3FzllVdeUR5//HGl\noKBAKSgoUH777TdFURTFaDQq3bp1U958800lPz9fOXnypNKmTRvlp59+UhRFUWbNmqU8/PDDJeLo\n37+/0rZtWyUxMVHJzc1VwsPDlVdeecW0/9NPP1Wys7MVg8GgzJgxQ+natatpX3h4uLJs2bISZfv2\n7asoiqKkp6crHh4eynfffacYjUZlwYIFiqOjo6n8mjVrlKCgIOXo0aOK0WhU3nrrLeX22283HUun\n0yn333+/cuXKFeXMmTOKj4+PEhsbW+Z7OXXqVKVjx47Kp59+qhw/frzUfp1Op9x1113K5cuXlTNn\nzii33nqr8sknn1Qax9WrV5WWLVsq77//vpKXl6dkZWUpO3bsqPC9bN26tXL48GHFaDQq+fn5yo8/\n/qicPHlSURRF2bx5s+Li4qLs2bPH9LfV6/VlXlN6erri7u6urF69WikoKFA++OADxcHBoVrvX9G/\ng6ioKOWdd95RFEVR8vLylK1bt5aod+LECUVRFOWRRx4x/TtUFEU5f/684urqqmRmZiqKoij5+flK\n8+bNTdcjrEsShyileOJo27atsn79etO+n376SQkICFAURf1wadSokZKXl2fa//e//10ZNmyYkpSU\nVOKY27dvV2655ZYS29555x1l0qRJiqIoyhtvvKE89NBDJfaHh4crb7/9tun1Rx99pAwZMqTMmC9f\nvqzodDrl6tWrprrlJY7PPvusxAeZoiiKv7+/qfyQIUNK1DUajYqLi4ty5swZRVHUD7DiH2hjxoxR\n/vGPf5QZV25urvLOO+8o3bt3VxwdHZWgoKAS76dOpzN9aBZd4913311hHKdPn1a++uorpVu3bmWe\ns7z38o033iizfJHhw4crCxYsUBSl4sTx2WefKX369CmxTa/XV+v9mzdvnqIoijJhwgTlscceU86e\nPVvqvDcnjtdee63E/iFDhigff/yxoiiK8v333ysdO3as8HpF1UlTlajQuXPnaN26ten1Lbfcwrlz\n50yvfXx8aNSoken1iy++SFBQEIMHD6Zt27amjuDTp09z7tw5vLy8TD9z587l4sWLFZ6/ZcuWpt8b\nN25s6osxGo288sorBAUF0aRJEwIDAwHIyMgw65r0en2JbcVfnz59mmeffdYUp7e3NwCpqallxuXi\n4lKij6g4Z2dnZs6cya5du7h06RJjxozhgQceIDMz01Sm+NNLxd/fiuI4e/Ysbdq0qfRai7v5Kan1\n69fTu3dvvL298fLyYt26dSWaAstT1vtX/NhVef+ysrIAmD9/Poqi0LNnT2677TY+/fRTs69v4sSJ\nfPHFFwB88cUXtf6AQEMiiUNUqFWrViUegTxz5gytWrUyvb65g9XNzY1//vOfnDhxgrVr1/L++++z\nceNGbrnlFgIDA7l8+bLp5+rVq/zwww+A2n5tia+++oq1a9fyyy+/cOXKFU6dOgXc6Ph1dXUlJyfH\nVD4tLa3ENZ09e9b0WlGUEq9vueUWli5dWiLWnJwcevfubVGMN3N3d2fmzJnk5OSY4gVKtP+fOXMG\nPz+/CuPo06cP/v7+nDx5sszzlPdeFv9b5eXlMWrUKF566SUuXrzI5cuXGTp0aIl+ivK0atWKlJQU\n02tFUUq8rs7716JFC5YuXUpqaipLlizhySefLPM6y+rYHzZsGPv37+fgwYP8+OOPjB8/vtLziaqR\nxCEqNHbsWN566y0yMjLIyMhgzpw5FX6T+/HHH0lKSkJRFDw8PLC3t8fe3p6ePXvi7u7O/Pnzyc3N\nxWg0cvDgQXbt2gWoHxjJycmlPrjK+yDLzs7GycmJpk2bkpOTw9/+9rcS+7t27cq3335Lbm4uSUlJ\nJTq+hw4dyoEDB4iJiaGgoIAPP/ywRGJ5/PHHeeedd0yd7VeuXOGbb74p95or+rB988032bVrFwaD\ngevXr7NgwQK8vLwIDg42lfnnP/9JZmYmKSkpLFy4kAcffLDSOO677z7Onz/PggULyMvLIysri4SE\nBLPfS4PBgMFgoFmzZtjZ2bF+/Xri4uLKvY7i7r33Xg4dOsR3331HQUEBCxcutNr7980335iSuKen\nJzqdrsxE2KJFi1IJpXHjxowaNYpx48bRq1evUndFwnokcYgKvfbaa4SFhdG5c2c6d+5MWFgYr732\nmmn/zd/8EhMTGTRoEO7u7tx+++2mJ5bs7Oz44Ycf2LdvH23atMHHx4fHHnuMq1evAuoTUgDe3t6E\nhYWVefziYwUmTJhA69at8fPz47bbbqNPnz4lyj733HM0atSIFi1aMGnSJB566CHT/mbNmvHNN9/w\n0ksv0axZM44cOUJYWBhOTk4ADB8+nJdffpmoqCiaNGlCp06d+Omnn8q95orGMNjZ2TFp0iR8fHzw\n8/Pjl19+4ccff8TFxcVUZtiwYXTv3p3Q0FDuu+8+Jk+eXGkcbm5u/Pzzz3z//ff4+vpy6623Eh8f\nb/Z76e7uzsKFCxkzZgxNmzZl1apVDBs2rNR1lcXb25tvvvmGV155hWbNmpGUlETfvn1N+6vz/u3a\ntYvevXvj7u7OsGHDWLhwoWnsRvF6U6ZM4fDhw3h5eTFy5EjT9okTJ3Lw4EFppqphOsWce1MhbFhh\nYSH+/v589dVX9O/fv1bPbWdnR1JSksX9FaJsKSkptG/fngsXLuDm5qZ1ODZLszuO2NhY2rdvT7t2\n7SocSbtz504cHBxYvXq1xXWFKE9cXByZmZnk5eXxzjvvAFS7D0Noq7CwkPfee4+xY8dK0qhhmgzz\nNRqNTJ8+nQ0bNuDn50ePHj2IjIwkJCSkVLmXX36ZIUOGWFxXiIps27aNcePGYTAY6NixI2vWrDE1\nVdUmGb1tHTk5ObRo0YLAwEBiY2O1DsfmaZI4EhISCAoKMrVdRkVFERMTU+rDf9GiRYwePZqdO3da\nXFeIirzxxhu88cYbWoeB0WjUOgSb4OrqWu4j0cL6NGmqSk1NLfHct16vL/GMd1GZmJgYnnjiCeDG\nNzNz6gohhKg5mtxxmHN7PmPGDP7xj3+g0+lKzINj7q29NAEIIUTVVPbMlCZ3HH5+fiUGDKWkpJR6\n5nr37t1ERUURGBjI6tWrefLJJ1m7dq1ZdYsUJRxb/HnjjTc0j0GuT65Nrs/2fsyhyR1HWFgYiYmJ\nJCcn06pVK6Kjo0ut+VB8cM+kSZO4//77iYyMpKCgoNK6Qgghao4micPBwYHFixcTERGB0WhkypQp\nhISEsGTJEgCmTZtmcV0hhBC1w2YHABb1jdiq+Ph4wsPDtQ6jxtjy9dnytYFcX31nzmenJA4hhBAm\n5nx2ylxVQgghLCKJQwghhEUkcQghhLCIJA4hhBAWkcQhhBDCIpI4hBBCWEQShxBCCItI4hBCCGER\nSRxCCCEsIolDCCGERSRx2IhjGcfIvJ6pdRhCiAZAEoeN+GTvJ/yR9ofWYQghGgCZ5FAIIYSJTHLY\nwJzPOs+zsc9qHYYQwsZJ4rAh7k7ufLz7YwqVQq1DEULYMEkcNsStkRtujdy4mHNR61CEEDZMEocN\nSMtO43D6YQA+H/E5bo3cNI5ICGHLJHHYgPWJ65m/dT4AEUERkjiEEDVKs8QRGxtL+/btadeuHfPm\nzSu1PyYmhi5duhAaGkr37t3ZuHGjaV9AQACdO3cmNDSUnj171mbYdVLGtQyauTTTOgwhRAOhyeO4\nRqOR4OBgNmzYgJ+fHz169GDVqlWEhISYyuTk5ODq6grAgQMHGDFiBElJSQAEBgaye/dumjZtWu45\nGtLjuMv3LsfBzoEJXSZoHYoQop4z57PToZZiKSEhIYGgoCACAgIAiIqKIiYmpkTiKEoaANnZ2TRr\nVvIbdUNJCuaYHDpZ6xCEEA2IJk1Vqamp+Pv7m17r9XpSU1NLlVuzZg0hISHcc889LFy40LRdp9Mx\ncOBAwsLC+Pjjj2sl5vpiW8o25myeo3UYQggbpskdh06nM6vc8OHDGT58OFu2bOHhhx/m2LFjAGzd\nuhVfX1/S09MZNGgQ7du3p1+/fqXqz5o1y/R7eHg44eHh1gi/Tgv0CmRou6FahyGEqCfi4+OJj4+3\nqI4mfRzbt29n1qxZxMbGAjB37lzs7Ox4+eWXy63Ttm1bEhIS8Pb2LrF99uzZuLm58fzzz5fY3pD6\nOIQQwlrq7JQjYWFhJCYmkpycjMFgIDo6msjIyBJlTpw4YQp+z549AHh7e3Pt2jWysrIAtQM9Li6O\nTp061e4F1DGbkzdzveC61mEIIRoITZqqHBwcWLx4MRERERiNRqZMmUJISAhLliwBYNq0aaxevZqV\nK1fi6OiIm5sbX3/9NQBpaWmMHDkSgIKCAsaPH8/gwYO1uIw6Y/HOxXRu0RlnB2etQxFCNAAyO64Q\nQgiTOttUJWrWQ98+JPNVCSFqjCQOG7QvbR8Xsi9oHYYQwkZJ4rBB3i7e/Jn7p9ZhCCFslPRx1HOX\ncy9z7NIxeut7m7btPrebAM8AvF28K6gphBClSR9HA7D/wn5e+vmlEtu6t+ouSUMIUWMkcdRzWYYs\n3J3ctQ5DCNGASOKo5zycPOij76N1GEKIBkT6OIQQQphIH0cD9XvK7/ztl79pHYYQwkbJHYcNyriW\nwbmsc3Ru0VnrUIQQ9Yw5n52SOIQQQphIU1UDsPf8Xs5lndM6DCFEAyKJo56LOxHH8UvHtQ5DCNGA\nSFOVEEIIE2mqasCGfjmUrLwsrcMQQtggSRw26sDFA1y+flnrMIQQNkgSh41q4tSEzOuZWochhLBB\nkjjquXWJ6ygoLCi1feWIlbTxaqNBREIIWyed4/WYoig4vOlA3mt5ONhpsny8EMLG1OnO8djYWNq3\nb0+7du2YN29eqf0xMTF06dKF0NBQunfvzsaNG82u21Dk5Ofg7OAsSUMIUas0ueMwGo0EBwezYcMG\n/Pz86NGjB6tWrSIkJMRUJicnB1dXVwAOHDjAiBEjSEpKMqsuNIw7jszrmUxfN50vRn6hdShCCBtR\nZ+84EhISCAoKIiAgAEdHR6KiooiJiSlRpihpAGRnZ9OsWTOz6zYUns6ekjSEELVOkzaO1NRU/P39\nTa/1ej07duwoVW7NmjXMnDmT8+fPExcXZ1FdgFmzZpl+Dw8PJzw83DoXUA9EH4wmLTuNZ3s/q3Uo\nQog6LD4+nvj4eIvqaJI4dDqdWeWGDx/O8OHD2bJlCw8//DBHjx616DzFE0dD0/eWvhiMBq3DEELU\ncTd/qZ49e3aldTRJHH5+fqSkpJhep6SkoNfryy3fr18/CgoK+PPPP9Hr9RbVbaj8PPy0DkEIYaM0\n6eMICwsjMTGR5ORkDAYD0dHRREZGlihz4sQJUwfNnj17APD29jarbkORnJnMvrR9WochhGhgNLnj\ncHBwYPHixURERGA0GpkyZQohISEsWbIEgGnTprF69WpWrlyJo6Mjbm5ufP311xXWbYiOZRwj6c8k\nurbsqnUoQogGRAYACiGEMKmzj+OKmpd5PZOILyK0DkMIYYMkcdgoZwdn4pPj5a5LCGF1kjhslLOD\nM3Y6O64XXNc6FCGEjZHEUY9tPbOVtOy0cvdvmbQFR3vHWoxICNEQSOKox/4e/3cOXjxY7v6wVmEy\nAaIQwuokcdRjV/Ou4uHkoXUYQogGRhJHPXa7/+20dGupdRhCiAZGxnEIIYQwkXEcDdy83+bx30P/\n1ToMIYSNkTsOG5acmYyroys+rj5ahyKEqCfM+eyUxCGEEMJEmqpsWLYhm/WJ67UOQwjRAEniqKeu\n5l1lfZIkDiFE7ZOmKiGEECbSVNXAHbhwgIe/e1jrMIQQNkYShw3T6XTsPrdb6zCEEDZGEocN83T2\n5EreFa3DEELYGOnjqKeOpB/BYDTQpWWXcssUFBZwJP0InVp0qsXIhBD1mTmfnZVOnbpixQp0Op1Z\nJ1QUhUceecSssqJ6/nf4f+QZ8ypMHA52DpI0hBBWV2ni8PLyom/fvnh7e1d6sJiYGLNPHBsby4wZ\nMzAajUydOpWXX365xP4vv/yS+fPnoygK7u7u/Pvf/6Zz584ABAQE4OHhgb29PY6OjiQkJJh9Xltx\n1XAVHxcZES6EqH1mNVV16tSJoKAgPDw86NGjB7169SI0NJRt27Zx8eJFRo0aZdFJjUYjwcHBbNiw\nAT8/P3r06MGqVasICQkxldm2bRsdOnSgSZMmxMbGMmvWLLZv3w5AYGAgu3fvpmnTpuVfmI03VS3f\nuxw/dz8igmRdcSGE9VilqQrg22+/pV27dly7do25c+eyceNG/vWvf5GdnU2bNm0sThwJCQkEBQUR\nEBAAQFRUFDExMSUSR58+fUy/9+rVi7Nnz5Y4hi0nBXNMDp2sdQhCiAbKrMTRrl07AFxcXAgKCmLi\nxIkAGAwGi5qniqSmpuLv7296rdfr2bFjR7nlly1bxtChQ02vdTodAwcOxN7enmnTpvHoo4+WWW/W\nrFmm38PDwwkPD7c41vruse8f45Guj3C7/+1ahyKEqIPi4+OJj4+3qI7F64o6OjryyCOPEBkZSXBw\ncKk7AXOY29kOsGnTJpYvX87WrVtN27Zu3Yqvry/p6ekMGjSI9u3b069fv1J1iyeOhuqVvq/Q3LW5\n1mEIIeqom79Uz549u9I6Fo/jGDduHDNnzmTv3r385z//oW/fvpYeAj8/P1JSUkyvU1JS0Ov1pcrt\n37+fRx99lLVr1+Ll5WXa7uvrC4CPjw8jRoxokJ3j5mrj1Qa3Rm5ahyGEsCGajOMoKCggODiYX375\nhVatWtGzZ89SneNnzpzhrrvu4osvvqB3796m7deuXcNoNOLu7k5OTg6DBw/mjTfeYPDgwSXOYeud\n498c+obI4EicHJy0DkUIYUOs1jle3CeffMJtt91Gt27d2LlzJ+fPn2f06NEWHcPBwYHFixcTERGB\n0WhkypQphISEsGTJEgCmTZvGnDlzuHz5Mk888QSA6bHbtLQ0Ro4cCagJaPz48aWSRkOwLmkd9wff\nr3UYQogGyOI7jnfeeQd7e3v++OMPsrKyaNu2Lf/6179qKr4qs/U7DiGEqAk1cseh1+uZMGECUPWn\nqkTt+f7Y92w5s4X5g+ZrHYoQwkZo8lSVqD1GxcixS8e0DkMIYUMsfqpKr9dX+6kqUXuaODUh83qm\n1mEIIWyIxX0cUVFRfPbZZzg51e2neWy5j+PMlTOc+PMEAwIHVFo2x5BDxrUMWnu2roXIhBD1XY2s\nAOjp6cnmzZvJz8+vcmCieralbOOjXR+ZVda1kaskDSGEVVUpcezcuZMxY8YwdOhQXn/99ZqIS1Tg\nSt4VPJ09tQ5DCNFAWdw5ft999+Hj48Orr76KoiicOXOmJuISFWjdpDUuji5ahyGEaKAq7eM4duwY\ndnZ2pokO6wtb7uMQQoiaYs5nZ6WJo6CggPj4eFMC6dGjB2FhYVYNtCZI4rjhrs/u4rPhn+HfxL/y\nwkKIBs0qieNmCQkJ7N69m8LCQoKDgwkPD8fBweIWrxonieOGk5dPovfQ08i+kdahCCHquBpJHMUd\nO3aM+Ph4DAYDfn5+RERE4OrqWtXDWZUkDiGEsFyNJ47izp07x5YtW3jwwQetcbhqs+XEsfrwau5u\nc7c8WSWEsLoaGceRk5PDhQsXSm1v1apVnUkatm7nuZ1cL7iudRhCiAbK4juOJUuW4OTkxLfffkuz\nZs0YM2YMQ4YMqan4qsyW7ziEEKKm1MgdR+PGjenQoQN//vkny5cv5+rVq1UOUNSOBdsXsGD7Aq3D\nEELYCIsTR7du3fj6669ZuHAhK1asoKCgoCbiElaUX5hPytWUygsKIYQZLH6O9rbbbuP9998H4NKl\nSzRv3tzqQQnr8nT25EjGEa3DEELYCE3WHK8NttrHcfLySRIvJRIRFGF2nSvXr5BfmE8zl2Y1GJkQ\nwhbUSB+H0NbvKb+zcv9Ki+o0cW4iSUMIYTVmJY7s7GwA8vPzMRqNVjlxbGws7du3p127dsybN6/U\n/i+//JIuXbrQuXNn7rjjDvbv3292XVuWcS1DkoAQQlOVNlXNnz+fjIwMCgoK+Nvf/sbMmTP5+OOP\nq3VSo9FIcHAwGzZswM/Pjx49erBq1SpCQkJMZbZt20aHDh1o0qQJsbGxzJo1i+3bt5tVF2y3qWp9\n4noMRgPD2g/TOhQhhA0y57Oz0s7xXr160atXLxwdHYmOjqawsLDagSUkJBAUFERAQACgrioYExNT\n4sO/T58+JWIoWtvcnLq27J5292gdghCigas0cbi6urJixQoef/xxxo0bZ5WV/1JTU/H3vzFTq16v\nZ8eOHeWWX7ZsGUOHDrW47qxZs0y/h4eHEx4eXr3A67HuS7uzbtw6Wri10DoUIUQdEh8fT3x8vEV1\nKk0cYWFhJaZRnzhxoun3/fv306lTJ3Q6nUUntaT8pk2bWL58OVu3brW4bvHE0dCtjVorfSNCiFJu\n/lI9e/bsSutY/FTVypUrmTFjBitWrMDV1ZVVq1ZZegj8/PxISbkxIC0lJQW9Xl+q3P79+3n00UdZ\nu3YtXl5eFtVtaLKzoaJmST8PP+zt7GsvICGEzarS47h///vfad68Oe+++y6JiYkW1w8LCyMxMZHk\n5GQMBgPR0dFERkaWKHPmzBlGjhzJF198QVBQkEV1bVWhUsjCHQtLdFz9+ivccQc0bQpeXlCFPC6E\nEBaxeOR4s2bNaNSoEUOHDjX1O1h8UgcHFi9eTEREBEajkSlTphASEsKSJUsAmDZtGnPmzOHy5cs8\n8cQTADg6OpKQkFBu3YbAYDRw9upZU3Pd11/Ds8/CggUwejQcOgRDh6p3HuPGaRysEMJmWTxy/Jln\nnmH//v14e3vTs2dPBgwYQM+ePWsqviqz1cdxi+zapSaJX36BTp1ubN+zB+69FxITwc1Nu/iEEPVT\njYwcDw8PJz4+ns8//5w+ffqwa9euKgcoqiYvDx55BP71r5JJA6BbNxgwQN1X3Ip9K3hlwyu1FqMQ\nwnZZnDh0Oh07d+7ExcWFO++8kyeffLIm4hIV+OQTaN0axo4te/+cOfDBB5Cbe2NbI/tGJGcm10p8\nQgjbZnEfx+bNmwGYM2cOzs7O9O/fn+nTp1s9MFE2RYEPP4SPPoLynkwOCoKwMIiJgagodZuPiw/p\n19JrL1AhhM2yOHGMGjUKnU5H3759yc3N5dChQzURlyjD6sOryTnVCTu7W+nfv+KyjzwCK1bcSBx3\ntr6THn49ajpEIUQDUGnn+O7du+nevbtZB7OkbE2zxc7xuz67C7a8yqjQu3nqqYrL5uaCnx/s3w8y\nzEUIYS6rzFW1fv16Dh48aNYJU1JS6kzi0NLFi+DjU35TUlWlXEkhPd6PL+ZUXrZxYxg5EqKj4fnn\nrRuHEKJhk4WcrCwjQ/2m37cvLFsGf83FaBWPfTmH3999mYP7nMwqv2EDzJwJO3daLwYhhG2ThZw0\nEB0Nw4ZBhw4wf751j90q8e8MHWxe0gAID4czZ+DECevGIYRo2CRxWNnKlTB5sjqi+9tvwUrrXgEQ\nGwsR5q8Yi4ODOqI8Olp9PTlmMv87/D/rBSSEaJCkqcqKjh1Tv+WnpKgf2qGh6nQgd95Z/WNfuaJ2\ncmdkgJP5Nx1s2QJPPaV2kmflZeHi6CKTHQohylVjTVXXr18nLy+vSkHZss2bYcgQNWkAjBoF/7PS\nF/xdu6BrV8uSBqgTIP75Jxw+DO5O7pI0hBDVZlbiKCws5Ntvv+WBBx7Az8+PwMBAWrdujZ+fH6NH\nj+a7776zuUdfq+LIEbVvo0hkJKxfb51jv7ftn3Todc7ienZ2MGbMjeYqIYSoLrMSR3h4OLt37+aF\nF17g5MmTnD9/nrS0NE6ePMkLL7zAzp076V/ZiLQG4OhRaN/+xuuOHeHCBbh0qfrHTjvVlB6hjatU\nNypKnUlgGTHqAAAgAElEQVRXcrsQwhrM6uPIy8vD6a82EqPRiJ2dXamV+IqXqQu06OMICFAfgS22\nfAh33w0vvAD3VHOpcD8/tb+iTRvL6yqKeif04YcwYIBi8YqNQoiGw2p9HMUTwsCBA3n77bf58ssv\n+f7778ss0xDl5Kh3F4GBJbf36gUVLKdultRUdUbcm49tLp0OXnwR3p6fg/d8b2lWFEJUi8Wd45s2\nbeK1115j/PjxNGnShBkzZtREXPXO8ePqnYb9TX3P1kgcO3dCz57VG4k+fjwcO+hKoVEnkx0KIaql\nSk9VnTx5kt9++42OHTuyevVqa8dULx05AmUtRNirFyQkVK9/Ye9edZ2N6nBygjffhLwLgRy/cKZ6\nBxNCNGhVShwtW7YkIyODZ599lldffdXaMdVLN3eMF2nZUl2JLympasctVApZfmUcHToZqhcg6oy5\nozJ/573nw6zSYS+EaJgsThy7du3CxcWF4cOH8/nnn7N48eKaiKveKS9xgDoQcN++qh330MVDpDns\nILRzo6oH9xedDpb+uxF+furdUVQUvP8+/PYbXLtW7cMLIRoIixOHn58fa9as4b///S9vvvkmQ4YM\nqdKJY2Njad++Pe3atWPevHml9h89epQ+ffrg7OzMe++9V2JfQEAAnTt3JjQ0tM6sd37mjLoqX1m6\ndq164vjhyM8oSYNo167qsRXn4gKLF6v9LkOHwsmT8H//p87mO3Mm5Odb5zxCCNtl1kJOinLjEU5f\nX1+GDx9eYZnKGI1Gpk+fzoYNG/Dz86NHjx5ERkYSUqyTwNvbm0WLFrFmzZpS9XU6HfHx8TRt2tSs\n89WG1FT1kdmydOmizpRbFSGMJPhSgWk0urUEBqo/Eyaory9ehIkT1bmtvvtOHTgohBBlMXsA4Lvv\nvsvx48dL7Tt27Bjz5s2zaABgQkICQUFBBAQE4OjoSFRUFDExMSXK+Pj4EBYWhqOjY5nHqEuPlBqN\n6qO4rVqVvb86dxzpiQH0aBtUeUELXMsv3S7VvDmsXQvp6fDuu1Y9nRDCxpj1PTYuLo4vv/ySp556\nioMHD+Lu7o6iKGRnZ3Pbbbcxfvx4NmzYYPZJU1NT8ff3N73W6/XssOCZVZ1Ox8CBA7G3t2fatGk8\n+uijZZabNWuW6ffw8HDCw8PNPoclLl4ELy9oVE43REAAZGerExQ2a2bZsQ8cgE6dqh2iSW5+Lrd8\ncAsXX7yIna7k9wZHR3VqktBQeOCBqg02FELUL/Hx8cTHx1tUx6zE4eTkxOTJk5k8eTJGo5GMjAx0\nOh3NmjXDrgptGtUdubx161Z8fX1JT09n0KBBtG/fnn79+pUqVzxx1KSKmqlA7ZTu3Bn++EMdSW6J\n/fvh/vurF19xjR0bl5k0ivj7w5NPwty58PHH1juvEKJuuvlL9ezZsyutY9anfkJCAufPnwfA3t6e\n2NhYpk6dyowZM/jzzz8tDtTPz4+UlBTT65SUFPQWLIzt6+sLqM1ZI0aMICEhweIYrKmyxAGWN1cV\nKoUYCvKtfscBlJs0isyYoa4lkpxs3fMKIWyDWYlj2rRppilFfv31V1555RUmTpyIh4cHjz32mMUn\nDQsLIzExkeTkZAwGA9HR0URGRpZZ9ua+jGvXrpGVlQVATk4OcXFxdLL2J6uFaiJx7EvbR/jyQdjZ\nQYsW1YvPUk2bqh3ln3xSu+cVQtQPZjVVFRYWmp5gio6OZtq0aYwaNYpRo0bRpUsXy0/q4MDixYuJ\niIjAaDQyZcoUQkJCWLJkCaAmqrS0NHr06MHVq1exs7NjwYIFHD58mIsXLzJy5EgACgoKGD9+PIMH\nD7Y4BmsyJ3F06QIffGD+Mbv5duMlvx9Z1Ll6U41U1YQJMGIEzJkjT1gJIUoyK3EYjUby8/NxdHRk\nw4YNLF261LSvoKCgSie+5557uOemKWOnTZtm+r1ly5YlmrOKuLm5sa+qjyjVkNTUylf569hRHT1+\n/To4O5t33MTDrlZvpgK1Gex81nn8PMrPdl26qCPef/8d+va1fgxCiPrLrO+SY8eOpX///kRGRuLi\n4mLqiE5MTMTT07NGA6wPzp6t/I7D2VmdBPHwYfOPu3+/2qlubdmGbIIXB1OoFJZbRqeDhx6Czz+3\n/vmFEPWbWYnj1Vdf5b333mPSpEn89ttvpiepFEVh0aJFNRpgfWBOUxWo3+ItuVmqiY5xAA8nD5o2\nbsqpy6cqLPfAAxATA4Xl5xchRANk9njkPn36lNp26623WjWY+srcxNG1q/pIbkXOXDnDiT9P0Fc/\ngGPH1CaumjCo7SBSrqbQtmnbcsu0aaOOT9mzB8LCaiYOIUT9Y+WJLBqe7GwoKABzWuy6doVia1+V\n6YPtH+Bo54hPzgBuuUWdW6omLIs0bw6Ue++FH3+UxCGEuEGel6mmCxfUqdPNefKp6JHc8pp+ruZd\n5bN9n/F0z6fZs6f6a3BYQ1HiEEKIIpI4quniRXWep5uVNZdWs2bqGIkypvwCwGA08H7E+/g38a8z\niaNvX0hMVBOkEEKAJI5qKy9xTF47mf0X9ptebzm9hed+eo6ePdWlYMvSzKUZj3R9BKDOJA5HRxgw\nACyYikwIYeMkcVRTeYnj+T7PE9T0xqy2nVt05qekn8jv+m8qmyGlsFBt0goNtXKwNzl79WyJ5Fae\nwYMhLq5mYxFC1B+SOKrpwoWyE8dtzW/DxfFGz3YT5yasHbuWk42/ZseuildLSkoCb2+1Wasm7b+w\nn/jk+ErLFSWOOjSTvRBCQ5I4quniRfPnkgpqGsSWKfEc2u+I4a8lxNOy0/jqwFcl+kRqq5lqaLuh\nPNPrmUrLtWkDrq5w8GDNxySEqPskcVRTeU1V5XF319GmjTq4D6CgsIDUq6klpprfubNu9G8UJ81V\nQogikjiq6ebEkWPIwVhorLBOv35QtG6K3kPPi3e8WGL/5s1gwYKKtUIShxCiiCSOaro5ccz9bS5v\n/vpmhXUGDiz/KaXMTDh2DHr2tGKQVjBggDrhYW6u1pEIIbQmiaOabk4cv535jdv9b6+wzoABsHUr\n5OWV3rdlC/TuXf4ytDVh6e6lJF5KrLBMkybqXFu//VZLQQkh6ixJHNVQUACXL6tPQBW5mHOR0JYV\nP0fr5QXt28O2baX3xcdDDS2NXq5D6Yf48sCXlZaT5iohBEjiqJZLl9Qk4FBsxq/DTx3Gx9Wn0rqD\nBsHPP5fevnGjekdSmyZ1ncSn+z6ttG9GEocQAiRxVIulT1QVN2IEfPklGIt9Vh84AOnptd+/0bVl\nVxYMWVDh+hygTnSYkgJ/LT8vhGigJHFUQ3USR1iYWnfduhvbliyBqVNL3sHUluHth+No71hhGQcH\nuOsumX5EiIZOEkc1VCdxAEyfDosXq7/n5MBXX6mJoy6T5iohhGaJIzY2lvbt29OuXTvmzZtXav/R\no0fp06cPzs7OvPfeexbVrS03J47D6YcpKDR/DfYxYyA5GZ57Du6/H4YNA73e+nFaU1HfjKwKKETD\npUniMBqNTJ8+ndjYWA4fPsyqVas4cuRIiTLe3t4sWrSIF154weK6teXmeaqmrJ3C9YLrZtd3dlaf\nrEpKgh494JNPaiBIC6XnpJNtyC53f2AgeHhYtgSuEMK2aJI4EhISCAoKIiAgAEdHR6KiooiJiSlR\nxsfHh7CwMBwdHS2uW1tunqdq25RtuDVys+gYTZuqqwLOmwf29lYOsApe2/QaW89srbDM8OGwenUt\nBSSEqHM0WTo2NTUVf39/02u9Xs+OHTusXnfWrFmm38PDwwm38gCJ6vZx1EX/ufc/JebNKssDD8D4\n8fDWW+atfCiEqLvi4+OJL5oDyUyaJI7KPpisVbd44qgJtpg4zHl/w8IgPx/271dHkwsh6q+bv1TP\nnj270jqaNFX5+fmRkpJiep2SkoLezF7h6tS1NltMHObQ6dS7jm++0ToSIYQWNEkcYWFhJCYmkpyc\njMFgIDo6msjIyDLL3rx2tyV1a1rxxPFH2h9cuX5Fkzi0UJQ4ZHEnIRoeTRKHg4MDixcvJiIigg4d\nOvDggw8SEhLCkiVLWLJkCQBpaWn4+/vzwQcf8NZbb3HLLbeQnZ1dbt3alpOjjvp2+6svfMraKRzN\nOFrrcdSUQqWQ/iv6czrzdJn7w8LAYFCbq4QQDYtOufkrvY3Q6XSl7las6dQpdTLC06fVuyKveV6c\neOYE3i7eldatL2bHz+Zg+kG+eaDsNqkXXwQnJ7WTXAhhG8z57JSR41VU/FHcPGMevfW9adq4hhcJ\nr2Uv3fESxzKOkXo1tcz9Y8ZIc5UQDZEkjioq3r/h7OBM7EOx1XparC5q7NiYvdP24ufhV+b+sDB1\navm9e2s5MCGEpiRxVFFDeaLK3q78UYk6HYwbp87yK4RoOCRxVFFDSRyVGTcOvv665PTwQgjbJomj\nihpi4sjNzy3VaRYSovb1bN6sUVBCiFoniaOKik9wmJCawMWci9oGVAvG/G8M286WXu923Dh1Sngh\nRMMgiaOKij9V9WPijyRnJmsaT21YNWoVt/vfXmp7VBR8+y1cN39iYCFEPSaJo4qK33HMDp9NT79a\nXu9VA+XN/KvXq3NWrV9fywEJITQhiaOKzp8HX1+to6g7xo+Xp6uEaChk5HgVGAzg6gp5eWDXQFOv\noihcybuCp7MnAJcvQ0AAnDkDTZpoG5sQoupk5HgNKWqmaqhJA2DtsbUM+WII+cZ8ALy84K674Lvv\nNA5MCFHjGvBHX9WlpUHLlurvJy+fZGfqTm0D0kBkcCRejb14bdNrpm3SXCVEwyCJowqK9298f+x7\nVu5fqW1AGtDpdHw+4nOcHZxNt7X33gu7d6vvjxDCdkniqILiiSPlagr+Hv4VV7BRzVyaMTt8tmmO\nrsaNYdgwiI7WODAhRI2SxFEFxZuqgpoG0aNVD20DqkNkMKAQtk+TNcfru/PnoXNn9ffHwx7XNpg6\n5q67ICUFEhOhXTutoxFC1AS546gCGcNRtvWJ63n5lxeIioLPPtM6GiFETZE7jioo3lQlbriz9Z0E\nNwvmuh4GDoQ33gBHR62jEkJYm9xxVIHccZTNtZErbbza0KEDtG0LP/ygdURCiJqgWeKIjY2lffv2\ntGvXjnnz5pVZ5plnnqFdu3Z06dKFvcWWmQsICKBz586EhobSs2ftzhGlKDfuOFKupBB3Iq5Wz19f\nTJsG//631lEIIWqCJonDaDQyffp0YmNjOXz4MKtWreLIkSMlyqxbt46kpCQSExNZunQpTzzxhGmf\nTqcjPj6evXv3kpCQUKux//mnOt2IszNcyr3E0YyjtXr++uKBB+DAiQze+3GN1qEIIaxMk8SRkJBA\nUFAQAQEBODo6EhUVRUxMTIkya9euZeLEiQD06tWLzMxMLly4YNqv1RRb587daKbq2rIrz/R6RpM4\n6jonJ3jkiUu8vm06/94ptx5C2BJNOsdTU1Px978xaE6v17Njx45Ky6SmptKiRQt0Oh0DBw7E3t6e\nadOm8eijj5Z5nlmzZpl+Dw8PJzw8vNqxnz4NrVtX+zANwmtPBPNxly3M84qgf0B/Ovh00DokIcRN\n4uPjiY+Pt6iOJomjaKRxZcq7q/jtt99o1aoV6enpDBo0iPbt29OvX79S5YonDmtJTlZngRWVc3WF\nt14I5POvDhDyf05ahyOEKMPNX6pnz55daR1Nmqr8/PxISUkxvU5JSUGv11dY5uzZs/j5+QHQqlUr\nAHx8fBgxYkSt9nNI4rDMo4+CIdeJ5cu1jkQIYS2aJI6wsDASExNJTk7GYDAQHR1NZGRkiTKRkZGs\nXKlOHrh9+3Y8PT1p0aIF165dIysrC4CcnBzi4uLo1KlTrcV++vSNxPHvnf+moLCg1s5dH9nbw/Ll\n8Mor6gSIAMZCI6czT2sbmBCiyjRJHA4ODixevJiIiAg6dOjAgw8+SEhICEuWLGHJkiUADB06lDZt\n2hAUFMS0adP46KOPAEhLS6Nfv3507dqVXr16cd999zF48OBai73ojuNq3lVe+PkF7HX2tXbu+qpT\nJ1iyBCIjYc8e2Je2j+fjntc6LCFEFckKgBby8YGDB+EiB3jwfw9y+KnDVj+HrVq9Gh5/HJ57Dp58\nUsHT07y+LiFE7THns1OmHLFAdjbk5Kir/2VfduGJsCcqryRMRo1S7z7mzAG9XkenTurr9u0hJET9\nad0azHx2QgihEbnjsMChQzB6NNw0VlFUwbVrkJAAhw/D0aOw7dxmDhfG0HTfWwwd5EJEBNx9t6xf\nLkRtkzsOK0tOljEc1uLiAuHh6g9AxrWOPLt+KVtu74QLX7N0aQ8mToSuXSEiAoYMgW7dGvY670LU\nFXLHYYGPPoL9++E//7HqYUUxPyX9RMfmHdF76MnNhV9/hZ9+Un8uXoSHHlL7SG65RetIhbBN5nx2\nyvc3C5w4AYGBWkdh2yKCItB7qGN6GjdW7zbef19tJty5ExwcIDQUHn5YmgyF0IokDgscOAC33ab+\nPu+3eeQV5GkbUAOx5uga3vv9PQIC4N131QQeEgL9+6t3IMeOaR2hEA2LJA4zKQrs26e2uRsLjVwr\nuEYj+0Zah9Ug9L2lL/e0u8f02tMT/vY3SEpSE0jfvjB8uNqsZZsNr0LULdLHYabz59VHR9PT5XHR\numJn6k5CfUMxXHdg5Ur44ANwd4f/+z91WndZfVAIy0kfhxX98Qd06SJJo64oKCzg+bjnaf2v1ry5\nbSaPTSvkyBGYNQs++QTatFHXPbfNr0VCaEsSh5mKEoeoGxzsHPh10q/8/PDP6N312OnssLOD++6D\njRvVUeoLF6prnyclaR2tELZFEoeZJHHUTR18OvBUz6dKbc9vuZXnP43m3nuhd294+20wGDQIUAgb\nJInDTEUd4wBvbn6TS9cuaRuQqJCHkwct3Jrxf/8Hu3bBtm3q32/TJmm7EqK6pHPcDCkp6odOWhrY\n2Rtxm+tGxosZuDZytcrxRc1TFPj2W3jk26noWhzkDv87eHvE43QLaKd1aELUKdI5biUxMWrbuaMj\nHM04ir+HvySNekanUydZPPfJImbcNpfko17cOaCAoUPhH/9QH+XNzVX/vjI+R4iKyR2HGe6+G55+\nWh0rkHo1lZ3ndjK8/XCrHFto58oV+Pln+P132LpVnS6/0cMjGJD/T7q3aUtAgLr8rYsLXDam4NPY\nF0d7B3Q6dXvLlupMyfayJIuwIeZ8dkriqMSlS+qjnefPqx8gwnbl5sLevepsvUePqk2UubnqVPrb\nunYmt3Eizrlt6bRjG7lX3ElLgz//BG9v8NMXcms7O4KCoF07uPVWdXCizO4r6htJHFa4tNmz4fhx\n+PJLKwQl6rVr+ddIvJRI5xad0f01oKegAFLT8umwwpt/t77MiSR7EhPVaVCOHiukccdfaOfbks6B\nvnQPaUaHDmpC8fbW+GKEKEeDTxyFhUq1BuwlJamPcu7dC/7+1otN2B6D0VBqCpqr17O5Z+UwUi6f\nJyfvOsNPn+TwYXUNEicnuKXtNfJDFxPh9hIBAeqU/QEB6t2LvfM13Bq5mhKUELWlTieO2NhYZsyY\ngdFoZOrUqbz88sulyjzzzDOsX78eFxcXVqxYQWhoqNl1dTodHh4KQ4fCxIkweLBlazkkJ6t9Gg8/\nDM/XweWx4+PjCS9azMIG2fL1bdoUT/v24RxKusqn+5fSKesFkpPh9Om/fv48x7Up7cC+AOerHemz\nfw/Nmql3Kc2agUvTTPY5/IdJ7V4xbfPxAQenPI5kHMbDyQNPZ0+8XbS5rbHlvx3Y/vXV2YWcjEYj\n06dPZ8OGDfj5+dGjRw8iIyMJCQkxlVm3bh1JSUkkJiayY8cOnnjiCbZv325W3SLHjsGaNeqEeE89\npa53/eCD5a/lUFiorrfx9dewbBm8+io8+6y6T1EUBn8xmKX3LSXQS/u51W39H68tX9/mzfEMGBCO\nr68HA/u9UEaJVly/nsPZC7mcSbsKkZCRof5cuqQml1OGJnzwg/o6PV39UdzTMT44GZ3zFRor3tyf\nthN3d3BzU+fwync9zWrDo/w9MA53d7WD39ERsgov8nHS67g0cqGVm55pnZ7HwUHd5+gIuYVX2ZG2\nmWEh92Nvf2PanesF1zmacRQneyfcGrnh30S9Lbflvx3Y/vWZQ5PEkZCQQFBQEAEBAQBERUURExNT\n4sN/7dq1TJw4EYBevXqRmZlJWloap06dqrRukZYt1WQxbZq6TOnSpeoqcl5e0LGj+i1Np1P/hzx5\nUp2uu1Ur9dHb339XOzmL6HQ6Phz6IQGeATX1tghh4uwMQa0bE9S6cRl7PYHS693n5OhJT9/LxYtq\nIrl0CbKzIStL/cnM8KXD9X+zeo/6Ojtb7aPJVRqR0aIb+bprKAYXvj6sbs/PV3/yGmWT1y2ewtj7\nATWZNGoEdk3TyImcgM4hD4dcP1rHb8TRUf3/KTYWCjyPcbTzKPodOGiq4+AAOU4n2OQ/EDvFAY/8\nWxl48Ufs7NT/F+3s4JrjGXa7v8FdWZ+W3G5/jq2NZ2KnOOJWqKf39VkoCqafHC5y3OlLuuQ+h06n\nPu3m4AAG+0scclqGvc4eN/tmhDlMNO2ztweDXSYnCjcS5jrStM3ODq4rWRy+vgEHO3tc7D3o5B6O\nTqc+OBETo5YpHl95r83dZq0yRdtubuUs/vrm34t/ITCHJokjNTUV/2KdBnq9nh07dlRaJjU1lXPn\nzlVat8i9X90LwDcPfEOvXi706qUmj2PH4JHY4Qx0/QpHXPDygrZt1aenJsTez15DDtN+hx8CfsDF\n8cajVLd632qV6xeiJri6qj9/facqQyOgbRnbPYFpFRy5FfAeAEbjjYRiMASQn7//r98hf4b638WL\nYdIkMBhu5VreHhjw1/6/6uUX+jPA8AsFhQWg2OETon7wFxaq/80t8KZV/qMEOqjbirbnGF3IMgyg\nkHyc7dwJ+KtLqehDMkex41q+Cx0aq3WMRvXncn4B+fnpXC8spLDQwLVramI0GtX/XlWusa/RLpTM\nkaZtigLZdlfY6fMZCoU457ciNDWcwkJ1AbHc3BuxFcVX0Wtzt1mzXnHFW55uboUqKl+UTM2hSeIw\nt8Ovut0v68avA8B1fNmD9XZS8SA+10fq9iC/2bNnax1CjbLl67PlawP4+OOav77PGVvm9mger7De\nRv5W5va9zK2w3kmWmH4/etT2/n5FidYcmiQOPz8/UlJSTK9TUlLQ6/UVljl79ix6vZ78/PxK60L1\nk44QQoiyaTLlSFhYGImJiSQnJ2MwGIiOjiYyMrJEmcjISFauXAnA9u3b8fT0pEWLFmbVFUIIUXM0\nueNwcHBg8eLFREREYDQamTJlCiEhISxZot4KTps2jaFDh7Ju3TqCgoJwdXXl008/rbCuEEKI2mGT\nAwDNGedRX02ePJkff/yR5s2bc+DAAa3DsaqUlBQmTJjAxYsX0el0PPbYYzzzzDNah2U1169fp3//\n/uTl5WEwGBg2bBhz51bcrl4fGY1GwsLC0Ov1fP/991qHY1UBAQF4eHhgb2+Po6MjCQkJWodkNZmZ\nmUydOpVDhw6h0+lYvnw5vXv3LruwYmMKCgqUtm3bKqdOnVIMBoPSpUsX5fDhw1qHZTW//vqrsmfP\nHuW2227TOhSrO3/+vLJ3715FURQlKytLufXWW23qb6coipKTk6MoiqLk5+crvXr1UrZs2aJxRNb3\n3nvvKePGjVPuv/9+rUOxuoCAAOXSpUtah1EjJkyYoCxbtkxRFPXfZ2ZmZrllbW5a9eJjRBwdHU3j\nPGxFv3798PLy0jqMGtGyZUu6/rValpubGyEhIZw7d07jqKzL5a+ZMg0GA0ajkaZNm2ockXWdPXuW\ndevWMXXqVJt9QMUWr+vKlSts2bKFyZMnA2qXQJMKZui0ucRR3vgPUb8kJyezd+9eevXqpXUoVlVY\nWEjXrl1p0aIFAwYMoEOHDlqHZFXPPfcc7777LnaWzO9Tj+h0OgYOHEhYWBgff/yx1uFYzalTp/Dx\n8WHSpEl069aNRx99lGvXrpVb3ub+ujIpXP2XnZ3N6NGjWbBgAW5ublqHY1V2dnbs27ePs2fP8uuv\nvxIfH691SFbzww8/0Lx5c0JDQ23yWznA1q1b2bt3L+vXr+fDDz9ky5YtWodkFQUFBezZs4cnn3yS\nPXv24Orqyj/+8Y9yy9tc4jBnjIiou/Lz8xk1ahQPPfQQw4fb7mJZTZo04d5772XXrl1ah2I1v//+\nO2vXriUwMJCxY8eyceNGJkyYoHVYVuXr6wuAj48PI0aMsJnOcb1ej16vp0ePHgCMHj2aPXv2lFve\n5hKHjPOovxRFYcqUKXTo0IEZM2ZoHY7VZWRkkJmZCUBubi4///yzacZnW/DOO++QkpLCqVOn+Prr\nr7nrrrtMY7FswbVr18jKygIgJyeHuLg4OnXqpHFU1tGyZUv8/f05fvw4ABs2bKBjx47lltdkHEdN\nsvVxHmPHjmXz5s1cunQJf39/5syZw6RJk7QOyyq2bt3KF198QefOnU0fqHPnzmXIkCEaR2Yd58+f\nZ+LEiRQWFlJYWMjDDz/M3XffrXVYNcbWmo0vXLjAiBEjALVpZ/z48QwePFjjqKxn0aJFjB8/HoPB\nQNu2bU1j58pik+M4hBBC1Byba6oSQghRsyRxCCGEsIgkDiGEEBaRxCGEEMIikjiEzbC3tyc0NNT0\nc+bMGa1DsooVK1bg4+PDY489Vq3jzJo1i/fee8/0evv27eUe8/r163Tt2hUnJyf+/PPPap1X2B6b\nexxXNFwuLi7s3bu3zH1FDw/Wx0dEdTodY8eOZeHChaX2FRQU4GDmep83X/v69eu55557yizr7OzM\nvn37CAwMtDxgYfPkjkPYrOTkZIKDg5k4cSKdOnUiJSWFd999l549e9KlSxdmzZplKvv2228THBxM\nv379GDdunOmbeXh4OLt37wbUAXxFH6RGo5EXX3zRdKylS5cCEB8fT3h4OA888AAhISE89NBDpnPs\n3BK2IAQAAASySURBVLmTO+64g65du9K7d2+ys7Pp378/f/zxh6lM3759y5wuv/hT8ytWrCAyMpK7\n776bQYMGkZOTw8CBA+nevTudO3dm7dq1ZV7XsWPHShxz48aNDBw4kEOHDtGrVy9CQ0Pp0qULSUlJ\nVX3LRQMhdxzCZuTm5poGDrZp04b333+fpKQkPv/8c3r27ElcXBxJSUkkJCRQWFjIsGHD2LJlCy4u\nLkRHR/PHH3+Qn59Pt27dCAsLA9Rv6WXdpSxbtgxPT08SEhLIy8ujb9++psFg+/bt4/Dhw/j6+nLH\nHXfw+++/ExYWRlRUFP/973/p3r072dnZNG7cmClTprBixQo++OADjh8/Tl5enlmjkffu3cuBAwfw\n9PTEaDTy3Xff4e7uTkZGBn369CEyMpLdu3eXe10ZGRk4Ojri7u7Of/7zH5599lnGjRtHQUEBBQUF\n1vqTCBsliUPYjMaNG5doqkpOTqZ169b07NkTgLi4OOLi4kzJJScnh8TERLKyshg5ciTOzs44Ozub\nNUVNXFwcBw4c4H//+x8AV69eJSkpCUdHR3r27EmrVq0A6Nq1K6dOncLd3R1fX1+6d+8OYJq8cfTo\n0bz55pu8++67LF++3KxZAHQ6HYMHD8bT0xNQZ9ydOXMmW7Zswc7OjnPnznHhwgW2bNlS6rqK7lzi\n4uKIiIgA4Pbbb+ftt9/m7NmzjBw5kqCgoMrfbNGgSVOVsGmurq4lXs+cOZO9e/eyd+9ejh8/blp/\noHhTUPHfHRwcKCwsBNQO4+IWL15sOtaJEycYOHAgiqLg5ORkKmNvb09BQUG5fSsuLi4MGjSINWvW\n8M033zB+/HizrqtoXQ+AL7/8koyMDPbs2cPevXtp3rw5169fR6fTlbquojhiY2NNU7mMHTuW77//\nnsaNGzN06FA2bdpkVgyi4ZLEIRqMiIgIli9fTk5ODqCu3ZKens6dd97JmjVruH79OllZWfzwww+m\nOgEBAaYZbIvuLoqO9dFHH5madY4fP17u+gU6nY7g4GDOnz9vOlZWVhZGoxGAqVOn8swzz9CzZ88K\nF88pcvMsQVevXqV58+bY29uzadMmTp8+jU6nK/e6FEVh//79dOnSBVDXYggMDOTpp59m2LBhNrck\nsbA+aaoSNqOsb/XFtw0aNIgjR47Qp08fANzd3fniiy8IDQ3lwQcfpEuXLjRv3pwePXqYPpxfeOEF\nxowZw9KlS7n33ntNx5s6dSrJycl069YNRVFo3rw53333Xbl9Io6OjkRHR/P000+Tm5uLi4sLP//8\nM66urnTr1o0mTZqYPVnlzecYP348999/P507dyYsLMw0qefN11XUZLd79+4Ss/L+97//5fPPP8fR\n0RFfX19effVVs+IQDZdMcijETWbPno2bmxvPP/98rZzv3LlzDBgwoNRTT0U+++wzdu3axaJFi6xy\nvrfffpt27doxZsyYSssGBgaye/dum1viVlSPNFUJUYbaGu+xcuVKevfuzTvvvFNumcaNG7N+/fpq\nDwAs8uqrr1aaNIoGABYUFNjsMrCi6uSOQwghhEXkq4QQQgiLSOIQQghhEUkcQgghLCKJQwghhEUk\ncQghhLCIJA4hhBAW+X/+nuw44UNfwAAAAABJRU5ErkJggg==\n" - } - ], - "prompt_number": 19 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": "Transformed Gaussian model compared to Gaussian model\n-------------------------------------------------------\n" - }, - { - "cell_type": "code", - "collapsed": false, - "input": "dt = St.sampling_period()\nva, sk, ku = St.stats_nl(moments='vsk' )\n#sa = sqrt(va)\ngh = wtm.TrHermite(mean=me, sigma=sa, skew=sk, kurt=ku, ysigma=sa)\n \nysim_t = St.sim(ns=240, dt=0.5)\nxsim_t = ysim_t.copy()\nxsim_t[:,1] = gh.gauss2dat(ysim_t[:,1])\n\nts_y = wo.mat2timeseries(ysim_t)\nts_x = wo.mat2timeseries(xsim_t)\nts_y.plot_wave(sym1='r.', ts=ts_x, sym2='b', sigma=sa, nsub=5, nfig=1)\nshow()", - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD9CAYAAAC1DKAUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8Tcf7xz9BYqnIImSXyCJBFlGxk6QScS1BUepblCL8\nUFTRPYm2SbRUKa1SWylaOxVrJfZQu6K2JiSRIJslkfV+fn+ciERutrvnOu/X67ySc+6cmWfOnDPP\nzDPPzOiRJEREREREXjlqaVoAERERERHNICoAERERkVcUUQGIiIiIvKKICkBERETkFUVUACIiIiKv\nKKICEBEREXlFUVgBjBkzBubm5nB3d5f5e0xMDIyMjODl5QUvLy989dVXiiYpIiIiIqIE6igawejR\nozFlyhSMHDmy3DA+Pj7YuXOnokmJiIiIiCgRhXsA3bp1g4mJSYVhxLlmIiIiItqHyscA9PT0cOLE\nCXh6eqJ37964evWqqpMUEREREakCCpuAKqNt27ZISEhAgwYNsGfPHgwYMAA3btwoE05PT0/VooiI\niIjoJPJaWVTeAzA0NESDBg0AABKJBPn5+UhPT5cZlqTOHiEhIRqXQcybmD8xf7p3KILKFcD9+/eL\nhTx9+jRIwtTUVNXJioiIiIhUgsImIAcHB9y5cwckYWtri7CwMOTn5wMAgoODsXnzZnzxxRd4+vQp\n6tSpgx9//FFhoUVEREREFEdhBbBmzRo0bNgQI0eOxOXLl8v83rx5c3To0AFRUVE4deoUpk6dilGj\nRimabI3D19dX0yKoDF3OGyDmr6aj6/lTBD0qakQCEB8fj379+slUABMmTICfnx+GDh0KAHB1dcXh\nw4dhbm5eWhA9PYXtWTWFhw+BT7odRW5mNn70+BkN/1gJGBtrWiwREZEaiCJ1p8q9gJKSkmBra1t8\nbmNjg8TExDIKAABCQ0OL//f19dU5zV1YCCxbBoSEAO/UTUbh/afofuAz7BoxG9a7fta0eCIiIjWA\nmJgYxMTEKCUulSsAoKyLUnkunyUVgLYTGhMq/PUNrdL52HWhiIoCnJNCcegQsHnhp2h06xZcbi1C\nx/M/oc/GUFhYVD0+8Vw3z7/oHgqpFPjqmHbII57Ld65KXm4ch4WFyR8ZlUBcXBzd3Nxk/hYcHMwN\nGzYUn7u4uDAlJaVMOCWJonXk55PjXQ/T0uAh13nOpTQ9Q/ghI4McMoTMyOCmTaSZGblzp2ZlFdEs\nZ86QbiYJNNPP4FS7bbx47JGmRaoS33fawF1uHzE/sI/wXouoFUXqToVr3T179tDBwYEGBgaMjIws\n83tERATr1KnDNm3a0NnZmTY2NrIF0VEF8P77ZE+TU8xEIxIQKn0ZnDpFWlmRCzpupLS7DymRiB9T\nDSNr9CReev1dSntVr+xyc8nPPyebNiXXuX7JW3DgZ5hDm/oP+frr5JIlZHq6CgVXgKgoslndZHbA\nSVohkZ+4buGtW5qW6tVCYwqgoKCADRs2ZNOmTamvr099fX1+9dVXXLp0KZcuXUqSjI6Opr29PR0d\nHenh4cGzZ8/KFkQHFcCKFWSLFmSG/2Ch8vf2rrBiiI8nWzf4j9Mxn4XQK1dZaDu5ueSvvr/wA5uN\nHGF1kJKAPHp7k80NH7B5vSTGdpqmU8pNKiU3bSLt6ibTAvfYDqf5W4fvmZdX+b3nz5MeHmTfvuS9\nexQUf9G7UpCawX37yKFDSZO6T3nSa6JWNQyePSMdHcmodp+RAC+3HsppE5/RzIz0s7rGXW4faZW8\nuorGFMCJEycYGBhYfB4REcGIiIhSYaKjo9m3b9/KBdExBXDiBNmkCXntGkuZeyoj3X8Iu+Ao32m8\nm3kPataHk5lJzp1LWluTASan+S1mcDVG8s+u4YyNJW+1f5tbMYBNcJ/RPiGaFlcpXLpE+vqS7u5k\ndPtZLIQedzh9QN+uebS2JiMiyLQ0IaxUSqamkv/8Qx7sPZ+fNvuVTQwyuOanp5RKiyIs513Z3voT\nNkM8U2GqNQ2DOXPIAQNYRuacHPL3liG0x3/8BF+xcPBbmhVUx9GYAti0aRPHjh1bfL527VpOnjy5\nVJiYmBiamprSw8ODEomEV65ckS0IwJCQkOIjOjpaEdE0SkKCYM758085bs7IYNbA/7FvYB4lEvLp\nU6WLp3QSEsgZM0hTU/J//xNatSVbssWVWdG1Qy4T2MSsUL7noyWkjZjKyVZb2MQgg0vmZTE/n2Uq\nwnPnyJEjSWODp7Spe5/6enk0MS5ky5akn/FZjsUyJsKqahW6RMIP8Q0lRsdYmKb5hsF//wnlHR9f\nTgCJhPfRhF0anufAvrl88kSt4uk00dHRpepKjSmAzZs3V6oAHj9+zKysLJJkVFQUnZ2dZQuiIz2A\n7GyyXTuh5acIeXnkqFFkx45Cq1FbWeWzkiZ1HnGa/VbGX8p88YOslmyJa7Gxgs1740b1y6wod+8K\ndu+JWFKlFvnDzkG8A1vmwOBFWFkKsiIyMpg3aBi7dMzn118rIRMKEhTEiuUoKuuclAy++y7p6Une\nuaM28V4pNKYATp48WcoEFB4eLnMguCT29vZMe94nLimIDigAqVRoAQ8bxhddegXjmzmTbGmcxLsd\nBmudPXXJEtKm7n1eg0uFA9zlcfEiaWlJLl+uIgFVQEYG2bo1+a3L8qpX4LIq+2qYBUuSkEBaWJCH\nDsmZASWwaxfp7CyYeqqCVErOmyeU9YkTqpVNXUjHjiN9fLTim9SYAsjPz6elpSUdHBzo6OhIS0tL\nXr16tVSYlJQUTp48mU5OTnRycqKlpaVsQXRAAUR4b6FXw+vM6jlAqS/Ftw4/sjluMxnmWmP//fZb\n0t6evO0zunot2Ze4fp1s1jCVkc2XVtt7Rt3k5Ajf/PvvU3DnrWoFLmdlXx779wuV6b17SomuWmRn\nkw4O5N691b/3zz/JJvUecabtet7yGa3VZV3MuHGUdvfhHd+R3Lr2KT/5hAwMJM30M9gM8fwQ3/CM\n/yylNPjkRaNeQJaWlmzevDkdHR1pYWHBq1evlvICmjhxIhs2bEhPT0+6u7uzVatWsgWp4Qpg9WrB\nLJAAa7lawxUikTAMn9OrwTU+uqPZj0YqJcPCBO+mu3eplMrtbofB9MR5jsYK5g4apjxhlUhhoeCN\nM2gQWVCgaWnIkBBBGeXnqz/dQYPkv/+/9kP5AeaxMR4y0Pw8t29Xfx6qw/bWn9AKiWyKFPa2OMvP\nPyd37CAT/d7hJbjxU8sVdGxeQCcn8tNPycuDQtTeM9BqL6Dg4GBuLGHo1cWJYLt2kebm5LVu4xRq\nDZdLRgalg4dw/Ls59PcX3Cw1gVRKzppFurmRyclKjFgi4RO8xgHG0ezWKZ8PHyoxbiUxYwbZtavg\n+qgNFBSQ/tZX+IXdKrVVNreGfkLTOpm84ztS/vSKzGHZr3flmp+esmNH0ua1NIbZrWCi3zta0yvI\nzSWnTyeb1UvhUXShtJ13ueNZUqkwie/DDwVX4CRYKr8RWAFa7QXUt29fHj9+vPi8R48ePHPmTFlB\naqgCOHZMmMUbG0uld/VfJj9fGHz73/+EFqk6kUrJKa0P8vWG/zK1x1tKV3AcMoSFaRn8+GPBxPDP\nP8qLXlG+/550dX3hzqktJHV8k6ZIFSocFVc22dlkO8Nr/A7TFKvcZHwj519/j8H4icZI50DrWO7b\np/73uyTx8WSHDsLcjLT/Mqv1TUt7VXNwXwkoUncqtBZQVbdxpBxrAWn7YnAv56FjxxInmzapPP3f\nflN5EuVi9hcAkz+UH3GJ5+bmpvzoFaVxY01LIIutsAaEZ6eGbVXPAPhAGemV+UZWAJiIbUnAtkD5\no1U2jf8s+qea3zT371fZCr/KXAxO5V5AuroWUHw8aWND/vab+tNOTSVdXMiFC1WfVmEhOW4c2bkz\n+SjgTbW1bo4fJy0NHvJdrGQc7NQ++C2VCvZu+3r3eBWuau3SV5mMDD4MGkNTk0Levq26ZH74QZjo\n9jRRRT3cl3oFUqmwNMpoi91shnga4hG7NL7GyZPJX34hzw2cw8LuvgqbvnJyhIl8v/9OhoaS/e3O\nsVndZJ7oOF1rTFFVQZG6U2EvIAcHB8bFxTE3N5eenp5lvIB2795NiURCUlAYHTp0kC1IDVIAD0dM\nZ4v6d/h9y5809qLExZHWr6VzlUuEymzAhYXke+8Jtu/Hj6lyE9fLZPgP5meYQ9PamZw0NkdtXi+5\nueSIEYKeS35juNq79NUlJESYcKYKDh8W5mtoZH2fovGCVK8e/GvHE86fT77zDtmi/h1aIonB+Il7\nun1VJXfUlBRyzx5h7sKg5mfoVD+BdWvl0rVFAQcOJD/5hFzr+hXTYaydyr4CNKIA0tLS6O/vTysr\nKzZo0IDNmzdneHg4SZbyArKzs6OpqSkNDAxYv359nVgL6HGXXlyFURp/Ua55j2AzxAt2WSXLUVBA\nvvsu2b07NTeLs0jh3L+RyenTSRMTcpbHHqZ27qcypZeeTvr5CUscZGVR7UpPHh49EpYdKWeSvdzc\nvSu4m8rj8qkUynv2Egmvw5nf2Cxkl475NDIihzqc5tzmP/Fzx984dUIOx4whBw8WBsqtDB7QuM5j\nvtE9jx9+SP7mOodX0JK50C/93VR3cp6WoBEFMHPmTM6dO5ckGRkZydmzZ8sMV97ErzKC1CAFoDUv\nikTCO7ClS704fjrjWaW+yFIpmZhI7t5NhocLbo1ejePZ0+QUJ9j+yW/CsrllC3n+zTCONN9DP9ML\nQrdfS0hIIMdb7qApUjkLkUzpN7bym6rBf/8Jg73TpmmHq2d1mDtXMffMl3n2THi9K5nXqRleUgwp\nKeTyFt9wBr5lKL7gd56ruXy5YNrZ4z6TcbCjtGRjrbzvtwYoe1loRAGUtOUnJyfTxcVFZjh7e3um\nVmEtgxqlALTlRSmS48HNTL7+OhkcXLbiKigQWnBDmv/NxnUy2cQgg/6+eZwxg/z1V/K013hGoRcX\n4/843XkX+/cn3V+7xQHYyizU176usETCeDTjpKa/08S4kFOmFM1HkIO0NOHZzJkjeHyY1H3KRU7f\na8XszuqSlSW01mU42FWb/PeCOcp8D4dYHH6xf4W2U16lrsRZ2NqKInWn3HsCm5iYICMj4/lAMkxN\nTYvPS+Lg4AAjIyPUrl0bwcHBGDdunMz49PT0EBISUnyu7V5A2sbjx8CAAUCTJsDatUBKCrBqFbBy\nJWBmBox98h3635wHSyRDb8gQ4I8iL57evYE9ewBvb+C554Ksa9pCZiYwfjywbBmSnxnju++AFSuA\nN5sehUfBeeTUeQ25g4YjB/WRu2s/ctKykFurPnI6v4FcGiA3F8g5dwW3U43xIN8E7Trrw7uTPtq3\nBzrOGwzr2C1COiWfUQ1hyRLgzz+FopOX6Gjg/X7/wSLrNrZhIBoO6V0znkOJ96LU+1re9RrMy15A\nYWFh8u+nXpF28Pf3p5ubW5ljx44dNDY2LhXWxMREZhz3ikbuHjx4QE9PTx45ckRmuEpEEakCz56R\nA+zO0b7ePZrqP+KksTk8d67ox+p0e2tYCyk1lfzafhknYxE/xDf8rOUmfvmlsITGIkzmzxjHNd4/\ncONGcts2Msp9Jv9BKxaglk7YgJ+Tm0va2ZFHj1b/3jt3hEdhZ0du9vpKMJnU0OfwqqFI3amQCSi5\naDrovXv3yjUBlSQ0NJTz5s2TLYioAJRCfvc3+Bf8mI16pSu3GlapV5sKlp+uklmA1IlntGoV2a1b\n1RcjzM4WTGCNGwuukDVl4FvkBRpRAEFBQWzatClr1arFyZMnyxwEzsrK4pYtW+ji4kIHBwfa2dlx\n3759sgURFYByqOGtWLmpTk9Ghyu4/Hxh9djw5j9XurheXJywB/FAs8OM8xmlk8/jVUAjCuDkyZPs\n1KkT69evz44dOzKj6OVJSkpi7969SZI3btyggYEBW7ZsyVatWhUvFidTEFEBKAcdrtxEqsbdDoP5\nOv7mUGzg04HvyAxz5IiwrPRCx4WCuaeG+b6LvECRurOWvAMRHTt2xIkTJ9ChQwcsWbIExkUDLFZW\nVti9ezcAIDU1FX5+frh69SquXLmCqVOnYseOHfImKVIVjI2FQTsdGfASqT62plk4im6o29gQnW+s\nRlxc6d9XrAAGDQLWrAHeb7EXeoAw4L9smSbEFdEgCq0FVBlJSUmwtbUtPrexscGpU6dUmaTaeL5s\nkfhX/Kt1f9evx9wuB9C8Xw+8blUbnToBPXsCzZsDT54InkJDhwInTgA9168Hxo9HqMOvwPf1tEN+\nHfhbU6jQDTQgIAApKSllroeHh6Nfv34AAD8/P8yfPx9t27YtE27Lli3Yu3cvli9fDgBYt24dTp06\nhR9++KGsIKIbqIiISoiJAd5+G7CyAkxMhA6iqammpRKRF2W6gVbYAzhw4IBckT7H2toaCQkJxecJ\nCQmwsbEpN3xoTVOfIiI1AF9fINb3I2z72waTmuyDfq21AEQTYU3l5cZxWFiY3HHJPQZQkvK0T7t2\n7XDz5k3Ex8cjLy8Pv//+O4KCgpSRZI1Dacu3aiG6nDdAN/JnlxyLabenQH/fn8LEqBLoQv4qQtfz\npwhyK4CZM2dCX18fMTExCAwMhEQiAQDcu3cPffr0AQDUqVMHT58+hYuLCwwNDZGamoqWLVsqR/Ia\nhi6/hLqcN0BH8teggfBXxmCvTuSvAnQ9f4ogtwJ47733cOXKFfj6+mL//v3YUzT/vKQXEAA0aNAA\nycnJyM3NRWJiouISi4iIVJ/164XlLbRtaQ8RjVLhGEBFuLq6VjmsvAMUIiIiSuK5e7CISAnkXgzu\nORV5AQHVWwxORERERKT6qMQLqCpuoJVx/PhxWFpa4uHDhwgICICrqyu6detWJpzYSxARERFRLyp1\nAwUAS0tLAECTJk0wcOBAnD59WqYCEBERERFRLyp1A83OzsaTJ08AAFlZWdi/fz/c3d2VkaSIiIiI\niILIrQC2bdsGW1tbHD16FO3bt4ehoSGA0m6gKSkp8PLyQu3atWFmZoa4uDicPn1aOZKLiIiIiCiE\n3Apg4MCBSEhIQHR0NM6cOQN7e3sApd1AHRwc8Msvv6BPnz549uwZ7t27h1GjRsHPzw+tW7eGm5sb\nFi1aBABIT09HQEAAWrRogZ49eyIzM1Px3GmAhIQEmfkLDQ2FjY0NvLy84OXlhb1792pYUvnIyclB\nhw4d0KZNG7Rq1Qoff/wxAN0pv/LypyvlBwCFhYXw8vIqHsfTlbJ7zsv506Wys7e3h4eHB7y8vNC+\nfXsAipWfwiagbt26wcTEpMIwJU1E+vr6WLBgAa5cuYLY2FgsWbIE165dQ2RkJAICAnDjxg306NED\nkZGRioqmEcrLn56eHj744AOcP38e58+fR69evTQtqlzUq1cP0dHRuHDhAi5duoTo6GgcO3ZMZ8qv\nvPzpSvkBwMKFC9GqVatizztdKbvnvJw/XSo7PT09xMTE4Pz588XWFEXKTyljABWhp6eHEydOwNPT\nE71790Z6ejratGkDAGjYsCFatmyJpKQk7Ny5E6NGjQIAjBo1Ctu3b1e1aCrBwsJCZv4A3fF0alA0\nqzQvLw+FhYUwMTHRmfIDZOcP0I3yS0xMRFRUFMaOHVucH10qO1n5o7DviYYlUx4v50Wh8pN7J4ES\nxMXF0c3NTeZvjx8/ZlZWFkkyKiqKzs7Ope5r1qwZHz9+TADiIR7iIR7iIcfxHKlUWma/9opQeQ/A\n0NCwuEUlkUiQn5+P9PR0PH36FIMGDcLChQuLB5BZpKl18QgJCdG4DGLexPyJ+dO9oyR6enrVmlSr\ncgVw//79YiFPnz4NkjA0NMSgQYMwYsQIDBgwQNUiiIiIiOg0zyfsJicno2nTplW+T+61gJ7z9ttv\n4/Dhw0hNTYWtrS3CwsKQn58PAAgODsbmzZvx008/oU6dOmjQoAE2bNiA9957D61atcK0adMUTV5E\nRETklWfNmjWYPXs21qxZU61GtcIKoH79+igsLISLiwsuX75c5vdJkybh+vXr2LNnD0ji2rVrWLdu\nXbErEwBEREQoKobWo8u7m+ly3gAxfzUdXc8fIKzasGLFCtjb2+OPaiz6p/BicEePHkXDhg0xcuRI\nmQogKioKixcvRlRUFE6dOoWpU6ciNja2rCB6emXsWSIimiQvT9g4XV8fePddTUsjIiIbRepOlc8D\nKOmi1KFDB2RmZuL+/fuKJisiojLy8oDly4EWLYDNc64g/P8SMNd1JVDDJ0iJiLyMwiagykhKSoKt\nrW3xuY2NDRITE2Fubl4mbMk9gcVN4UXUTX6+0OL/+muh8l+/Huj8ySQkJd6E3/Vo6HX/E7MuvaNp\nMUVecV7eFF4RVK4AAMh0VZKFpjeFD40R0g/1DRXPX7HzR48Ax6EfwkjvMdZZGKLL758j9ML32O+c\nhNDD9xDtOR0eDu1w4OtQHPhU8/Kq+/zZM8D7f+NRmFOAK7yPWht+Q+iF77VGPnWcawvK3BQeVAIV\nTQQLDg7mhg0bis9dXFyYkpJSJpySRBERkYvJk8mxFrtIQDiGDBF+yMgQ/s/IYGIi6eREfvONZmVV\nNykpZPv25PCm+9kFR/kVPnnxfEQ0jiJ1p8rnAQQFBeHXX38FAMTGxsLY2Fim+UdERFOcPQts2gRE\ntl4rXCi5cfrzrRSNjWFtDcTECD99+63GxFUrV64AHTsCEgmwru0C/I6hWKI/DQfeXqlp0USUgaLa\nZ9iwYbS0tKS+vj5tbGy4YsUKLl26lEuXLi0OM2nSJDo6OtLDw4Nnz56VGY8SRBERqTYFBWS7duTK\nlSzV2q+IhATSqVEKFzouJCWSSsPXVPbvJ5s0IX/9tehC0fM5tPMJLSzIu3c1Kp5IEYrUnQrXunv2\n7KGLiwudnJwYGRlZ5vfo6Gg2atSIbdq0YZs2bfjll1/KFkRUACIaYMkSsmtXsrCwevfFdRhKG9zl\nr3hH98wh48ZxWYtvaG6QxsO7H8sMEhlJduxI5uaqWTaRMmhMARQUFNDR0ZFxcXHMy8ujp6cnr169\nWipMdHQ0+/XrV7kgogIQUTPJyaSZGXn5shw3SyS8Clda6D/kjvVPlC6bpkhLI4c1OUhXXOUNOJWr\n3KRSMiiInDJFzQKKlEGRulOhMYDTp0/DyckJ9vb20NfXx7Bhw7Bjxw5ZZiZFkhHRYh6/+z52uH0K\nqaRPjfOT//BDYMwYwM1NjpvXr0fLIe7Yta8uxk5tiOhopYundvbvBzw9gaYNnuIc2sLZ2+TFWMhL\n6OkJLrNRUcCGDWoWVERpKOQGKsvH/9SpU6XClNwPwNraGvPmzUOrVq1kxifOA6hZpKYCvbZMwv2n\nDTDvSjyWDQtDy70LNC1WlTh0CDh6FLh6Vc4IigaH20EYI37rLaEybNdOmVKqh+xsYNYsYOdOYNUq\nwL+dDzC+n1D5GxuXe5+xMbB5MxDQ6Qlsv/kEXS1vC5MnKrhHRHGUOQ9AIbvL5s2bOXbs2OLztWvX\ncvLkyaXCVLQfQEkUFEVEzSQkkC1bkh87bGQBanFxs7k0a1zIL74gnz3TtHQVk5NDuriQ27crL84d\nO0jz+pm82m6EVg4M3x76MQeaHeYwy2hOGJPDjz4i584lF3f+jS3q3+Fwy0NMj8uUK+597jNohgfc\ngoG6Nx5SA1Ck7lTIBGRtbY2EhITi84SEBNjY2JQKU95+ACIqYvx4POkqASW9VWaSuXUL6NZNWB8n\n/Gwgag8ZhEkXx+PCxVq4fFkwI8T0nQf4+gK9VSeHvMzrug0tUo+j/8/Kky0oCPjWbjEkZ+Ygbc8p\nYPx4pcSrDAoLgVF7h8Eh9TSCkn+G+/m1MDQUenAX4wzx9bMP8FvyGzCZNU6u+HvaXMU+BGKK/lIs\n9l6tXOFFVIsimic/P58ODg6Mi4tjbm6uzEHglJQUSqVSkuSpU6doZ2cnMy4FRRGhMDAXareSdZBH\nSyRxgNUpRkSQhw6Rj0dNJn18FG6dXrxIWlmRP/9cfpht20ibuvf5LWaUnlSlBdy+TTauk8k42Clf\nNomEM/AtexsdZWGa9vQAvv2W7GZyiQWoRXp7ly5/iUR4Di9frw5F7qH/XXhEFxdy1qwKvKrGjVPK\neyjyAkXqToVr3Tlz5lBfX5/6+voMDAwkyVLzABYvXkxTU1MaGBiwQYMGXL16tWxBNKwArgz+gl/Y\nreKvHt/yxL7HfPBAqFBrCs+ekcOHk+2NrjEZ5vzPoz83/PKU06aRnTqRDWplcwx+YR7qyF3pnQwK\nZ1P9NG5sE17px5vo9w6tkcAtTjO15kOXSsnevcnwFqsUr/RkkZHBvEHD2KVjPr/+WnnRKsI//5CN\nG5O3zz+SPcehinMfqkpqqvC+DR8uuIgmJpJbt5IffUS+8QZpUucRP8WXlGpZw6AmozEFUBU30N27\nd1MikZAkY2Nj2aFDB9mCaFgB3PAezs8wh2/jN3qb3KSJCWloSHo1jucPTt8zP7CP1lRkL/PgAdml\ni/A9Zd+T/UE/DRhACXazr9ERZiVVPx8xMaSZfgZ3Q1K1lnNGBs/4z6JZ40KeOVPt5FTC1q3CuEXu\nfeVWei+TmEhaWJB//aWS6KtMXh7Ztm3FvTVVkJ1NDrA7x4a1s2imn8nePfMYGkpGRZHXu4+lBy7w\nI8tVlKZr5/dU09CYAjhx4kRxq58kIyIiGBERUSpMcHAwN27cWHyutWsByegKp6WRhz2n0A9/0Q2X\n+JdPqPLSU1JX+No10tGR/PjjSiYzFbVO/zckl127Vi/J/fsFf/m/2s+udst561bS2loYNNYkT56Q\ntrZkdLR60jtwgLS0JJOS1JOeLEJChNdLEz3Zwu6+TIRV2ZZ+RgYfBo2hp1sBZ8+WT7b4YbOZ3rmP\naEYqQmMKYNOmTZV6AfXt25fHjx8vPu/RowfPyGgSalwBlNcVlkgoBbjZcRbtmxXwzTfJuLiqRfnf\nf+SPP5JDHU7T3/hvehv9SxfnAlpYkPVrPaMzrvNbzGBq0Gi5RN4nWcCm+mlc6T6/yh9CYSH5/vuk\nhwd5717l4f/8U1gO4OhRym0umDuXbNNGqIQ1xcyZ5DvvqDfNOXOEWcZ5eepNlyT//pts2lSDCqiS\nsYXUVNJnUmvDAAAgAElEQVTTk9VSAlKpMJ5hXOcxG+IxzZHM7mZXOH48+V3HjdznPoPp/qrr2Wkr\nitSdCs0DqOru85RjOWi1zwMwNobepk3CqmCyuP0NgG8QfxfYulWBdB69+PcmgJkAZu4EoLdKzgin\nY8xlYIzJjGrfaWVV9bDdupU4Ke8ZVYKhoVy3KZV169SfpoGB+tN8jrW15tIGAPz9N1DBhlEXLwJz\n58oX9VMA91OBIyXnql0GYCLf+1kRL9dhmkRr5gGcPHmylAkoPDy8zHpAurgc9N0OgzkHn3EyFnF4\nsyMMDBQWFGteL4ndcJjh+Ijn/Ge+MMnIag2VaE2npgotG0dHsk3jO/zKfjnPdZlUxkaanU2GhQmD\neqGhZFbPAQoNZv70k+C7PsJ8L791Wc59W57w3j2hpbVxI2luTpazdl+1yc0lfS2v8X3rTYLcamql\nSaVCK/zHH9WSXBkePiSbNUxllPtMtZksZrjv45Amhyjtpf0mktRU4Z2fbLWFD3oMlSnv48fC4H3P\nnuSjR5TdEy36xgradeA/Jx5x5UpywgSyneE1OuImbXCXTetm0MhI6H03QiaHYx23df6m3HkrCQnk\nGp8VnG7zu1abmxSpO1XuBlpyEPjkyZNaOwhcLcrr3pZ3vYqmk8JC8qDHdE7FArbAv7Sol8533yV/\n77GUv7cMoX39ZA4ZkMv4+OrFWxH/tBvFFRjNqVjAN5peYuPGpFm9x7Q0eMhLXSco9aVP69yXEuym\nETI41PYYN28mi+YIqoxVqwTlXFCg2nQqYq/7h3TETT5DXZV7vpw/TzbVT+MDmGmdC255pHbux5FY\nTSNkMMjqNLdsESbrkcKAeps25NixlZjSKjDhlvkmJRImw5xL7CLp2zWPxsaC19K2gCX8o9UXDLbd\nTWfHAjZuTA42i+aPmCC40Grps9SYAiCF2b0tWrSgo6Mjw8PDSVL3l4Mu72VThktdiRf21rlH/OEH\nsrfpCXbECR6Cr/Jfwpc+EKmUvNdxIFNhqhI/eQJ80CaAPy/Ior8/aWQkjJHsc5+h9Bbr/Xc+oLl+\nGs90nqLZ1ptEwv7Yxq+tl6hUjsJCYYXO5W7fq8bNVVUUvReP2/pw1ZIs+voKvdzgljG0rZvCiBYr\n5fcYkvVNvnQtOVlYFbaH8Rn2xU5+h2m8EPCh0INXxjwJFaMRBZCWlkZ/f386OzszICCAGeU8HDs7\nO7q7u7NNmzb09vYuX5CapABUSQXdW5W8hOpMT0Za9++TPznPpyuusguO8pCSPK3y80lfo3P8FF9q\nviWckcH/ev8fG5sWqnQN/eXLBR/8wjTVurkqHRnvRVwc+ZX9cm5Df/WVXyWmWm1FIwpg5syZnDt3\nLkkyMjKSs2fPlhnO3t6eaWlplQsiKoDyUfdLqO70JBIWoBZ/bf4FHZsX0M+PPHZMsShnzCADzf6W\nPftVQ3zxBfnWW6qJ++FDwevnwgXVxK8R1N36rgGVvSw0ogBKDuYmJyfTxcVFZjh7e3umpqZWLoio\nAF5dSnx4eXnkL7+QdnZkoM1lJnYcVO0BuI0byebNybT/MrXqg87KEvKligliY8aQ06YpP16NUkMr\nZHWjSN2pVxRBtTExMUFGRsZzTyKYmpoWn5fEwcEBRkZGqF27NoKDgzFunOwFp/T09LTK1UpEs+Tl\nAXNdVuCXeH/sRh+4DWklrLtcCf/8A/j5AQcOAG3aqEHQarJ1K/DFF8D584C+vnLiPH4cGDpUWNq6\nUSPlxClSc1Ck7qxwHkBAQABSUlLKXP/666/LCFCeb//x48dhaWmJhw8fIiAgAK6uruhWyqn8BeJ+\nACLPMTAAPm+5BY7xf+GNOkfw+wgD+FVyT2YmMHAgsGCBdlb+gCDf0qXAkiXAtGmKx1dQAEycCMyf\nL1b+rwrKnAcgdw/A1dUVMTExsLCwQHJyMvz8/PDvv/9WeE9YWBgaNmyIGTPKTloSewAiZcjMBMaP\nR/SIlRj6XkN8/z0wfLjsoFIp0L8/0Lw5sGiResWsLv/+K0ys++cfwNxcsbi++w7YuxfYt0/YpUvk\n1UORulPu/QCCgoKwZs0aAMCaNWswYMCAMmGys7Px5MkTAEBWVhb2798Pd3d3eZMUedUo2nXLr19D\nHDoEfPSRMGv0+buelQWcPSvM7h3lEovMo5cw70aQ1u0/8DKursC7Vvsww+OAQltpnhn4NcJnP8Li\n3HHQe6TdeRbRUuQdPEhLS2OPHj3KuIEmJSWxd+/eJMnbt2/T09OTnp6ebN26dfE8AVkoIEqNIFpd\nq5BpAHXlLTGR9DC9S2/Dq2xWL4X160vp4UEOHSrsg3AfTVTiMqiK/D3qImFnHGNbnGGM7xdVv+8R\nuXQp+frrZLO6yVyNkQrnWZffTVL386dI3Sl3D+Cvv/5CcnIybt++jcjISBgX7QNqZWWF3bt3AxAG\ngCMjI5GTk4Pc3FzUqqXQBmQ1GqWt3aGFqCtv1tbA0ZbB+PLJNBzK6YwnfYbh4kVg40YgpNUmNMVD\nwNu73I3M5UUV+WvUCDiGrpjlsAWjbofgzTeBmzdlh83KAmJigNGjgWbNhAHur78G/vMbi1H4VeE8\n6/K7Ceh+/hRB7hrZ3d0d27ZtQ/fu3csNU1hYiMmTJ2Pv3r24evUqNmzYgGvXrsmbpIgIGjUCArEf\njt6NUXv5zy9+WL8eGDIE2L+/ZmxKvn499IYMwdCzs/DvjVpo3x7o1An44APgzz+B8HBho3kXF6BJ\nE+DDIfFodeQn3Hj9bWz+JROBgUDtDetqVp5FtA65VwN1dXWtNMzp06fh5OQEe3t7AMCwYcOwY8cO\ntGzZUt5kVcpzJyTxb/X+Pkct6XlsRWjDkcCyZQj93vjFdWNjhLb6A/i+huTvJXk/+ghISwNiVsfj\nn9UP4Wl8BwWtg9CjhwEWLgT0A95F6GFf/PifC0LHjwf++EPIf6s/EGqshfnTor/PUVY8OoWi9idf\nX99y1/epyn4BzwEgHuIhHuIhHnIc8iLXPIDw8HD069evolsBVH2/AAg5qHJYERERERHFqVABHDhw\nQKHIra2tkZCQUHyekJAAGxsbheIUEREREVEOSnHLKa/13q5dO9y8eRPx8fHIy8vD77//jqCgIGUk\nKSIiIiKiIHIrgG3btsHW1haxsbHo06cPJBIJAODevXvo06cPAKBOnTpYvHgxAgMD0apVKwwdOlRr\nB4BFREREXjXkVgADBw5EQkIC3n77bZBEYmIigNLzAABAIpEgMDAQenp62LhxI86fPw9AcBH18vIq\nHksIDQ2FjY0NvLy84OXlhb179yqSL41ib28PDw8PeHl5oX379gCA9PR0BAQEoEWLFujZsycytXy2\nakXIyp+ulF9mZiYGDx6Mli1bolWrVjh16pROld3L+YuNjdWZsrt+/XpxHry8vGBkZIRFixbpTPnJ\nyt/ChQsVKz+5h4+LOHLkCM+dO0c3NzeZv5fcEjI2NrZ4S8j58+dz+PDh7NevH0kyNDSU8+fPV1Qc\nrUDWHghV3T+hJiArf7pSfiNHjuSKFStIClueZmZm6lTZycqfrpRdSQoLC2lhYcG7d+/qVPk9p2T+\nFCk/hccAunXrBhMTk3J/37lzJ0aNGgUA6NChAzIzM3H+/HlERUVh7NixxeMHFPYmUFQcreHlvJR8\nDqNGjcL27ds1IZbSkFVWNb38Hj16hKNHj2LMmDEABBOmkZGRzpRdefkDan7ZvczBgwfh5OQEW1tb\nnSm/kpTMn0J1pzK0UVxcXLk9gL59+/L48ePF5z169GCPHj147tw5xsTEsG/fviTFeQDiIR7iIR7y\nHnZ2dvTw8OCYMWPK3Z5XFmpZnIcltFNqaipMTU3h5eVVRmuxSJMp8wiJDkFIdIjGz0NCQioN//gx\nMXh0X8we4QxKJGBGhtbIX9G5zygfrZJHzJ9i+fti+uv4yHYdHOrfg1HQF2g/KwQHDhC53XrgDd+u\naOo7ARn9R2mN/IqUny4cABAXF4cLFy7A0tJS5nL7FVXOClNRDyA4OJgbNmwoPjc1NaWlpSXt7e1p\nYWHBBg0acMSIEVSSKFpLSEhIub9dv05OmUKamJAdDK/QFVd5E46a3chcBhkZpFRa9npFedMFXrX8\nrWgRSW+c4gV4UDq4xDsokVAKcKr5enbtmM/sbPXKKS+6Xn4l686K6mJZqLwHEBQUhF9//RUAEBsb\nC2dnZ9y7dw9xcXHYuHEj3njjjeLfXyWkUmD3bqBXL6BrV6BhQ+DCBSC264eYioXoWucUDo9aoWkx\nkZEBLF8ubLPYtHEB+pmdRKr/MK1fc19EPp48AT67MxZLMAme3nWht7zEKqNFC9h9d1WCZg51MHSo\nsCOZiPawbdu2au25IvdicM/x9fXFsWPHUFhYCGNjY3z33XfIz88HAAQHB6NBgwY4ePAg6tati1q1\namH06NHF95Ks1nIRNZmS21uSwLhWx/B3oiU+cNiB7ZfGoJ5F0Ype69djwvjxcBpeF2+NaYjISGEZ\nYHWSP3Yitp9sit9SeyE6pyMCAvTw/vvAroJ++PKYL7z++ha/DVyA7tFhZfKmi7ycv4IC4Ej/+ciM\nz0TtevqoNfMD1G7UELV+WIjmaWfgYpYmrE5aQ1boLJm/yEjAf4AhvKXNhSWmS+ahaIOeWgBWrRJ2\nYBs3Dli5Urt3I9P19xMAPDw8oKenh+bNm+Pnn3+u/IbnKNL1KCgooKOjI+Pi4piXl0dPT09evXq1\nVJjo6OhiV8+KUFCUGsX8+aTnazf5BK+RQLmmnmvXSEdHctYssrBQPbIVFJCDzGLYASe5Eu8yc8DI\nFz9KJCTAKOf3aWFeyLAwIfyrwj//kDNnkpaWZDvDaxyArQzCdvaxPMNevcieJqdohgeMho/Wme+q\nQnw8aWpKJiRULfzTp2SHDuQsjz2kj4/wflRjAFJEOShSdypU6544cYKBgYHF5xEREYyIiCgVJjo6\nutjTp0JBXhEFsHu3UIHc8S3aycnbu8KPJjWV7G5xncOaHKS0l2o/MKmU/L//I99ofJ45MCgrW0aG\nULFlZDApifTzI30trzGp45s6+/E/HDGdS5y+o7fRv7SyLOTs2eTVqyxWhqWekUTCQ/BlkzppPHXw\nsUbllodhw8jQ0Ordk5pKur12m1OxgAWoVSMVX01HYwqgKss9x8TE0NTUlB4eHpRIJLxy5YpsQV4B\nBfDPP2STJuSJEyxVmVZGTjd/tkcsv8UMlX5gc+aQbdqQj+5UTbaCAmErRgfcYi70debjT0khf/qJ\n7NGDbFT7CYdiA/cgkAWD33oRSFb5FV3btfEJzc3Jy5fVL7u8HD9O2tgIrfrqku4/hH74i/2No/k0\nUfcaAdqOInWnQmMAVbHft23bFgkJCWjQoAH27NmDAQMG4MaNGzLDhpbYecHX11enbHepqUBQEDB/\nvrDzEyDYU6tC3Yb6+ANvoUOdc+g42gBdVSDf8uXA6tXA8eNAI4uqyVa7trAV48k7llhpNwcTlk1Q\ngWTqY5XPavx60RPns5wh6W+A//s/A/SqPQIN9m8Xtl1cvvFFYGMZz6joWl8A3xMIDAQOHwacnNSa\njWojlQLTpwu7kL32WvXvN9m0DHvHTsR4gzXwHWCAXbsACwvlyykiEBMTo7xtLhXRPCdPnixlAgoP\nD2dkZGSF98haRoDU7R5Abq5gIpV7BnpRyzLqjye0thZaqMpk+3bBLHXzpnyyne7xEa2tCmuMW6As\n9u4l7evd43YEMRv1XvRmqtFTe5mffybt7atuU9cUa9cKlixFx5mkUqEXaW8v9HZF1IMidadCtW5+\nfj4dHBwYFxfH3NxcmYPAKSkplBY5j586dYp2dnayBdFRBZCfT77ncoRBjY+ysFdvhe3kn31GvvGG\n8gZfj/abyyb66TzTeYpCsvXvTy5YoByZ1E1eHtmyJbm9bViVxmWqw7ffki5G93iz/XCtHCd5+lQw\n/Rw7prw4164lm9R7xP0eH2hlnnUNjSkAkoyKimKLFi3o6OjI8PBwkuTSpUu5dOlSkuTixYvZunVr\nenp6slOnTjx58qRsQXRQAZw5Q7ZtS/YwPsPHaFihx09VKSgQFMBnnyku3+3bpLl+GvfDX2HZLl4k\nzc3JJ08Ul0vdLFpE+vuT0nT5W/sVMd9hMc3wgIHYw62dv2F+vlKjV4iQtjs5tMlfSq+oYzzfpxUS\n+QHmMfvN4UqLV6QsGlUAe/bsoYuLC52cnMo1/0yZMoVOTk708PDguXPnZAuiQwrg8WNy6lShQlyz\nhoL3jhJblikppLU1GRUlfxxZWaSHB7m41RKlyTZ0KPmSE5jWk5oqDMyrdMBWIuEz1OXa5p+zS8d8\nWlmRn3vtYlyHoRptIV+/Tjauk8k7sFVK46QUEglTYcq3TPfTtUUBT59WXtQipdGYAqjKPIDyloMu\nI4guKIBx47it9ae0rXefo/+Xw4cPi64rYEcujyNHSPP6mXJVIlIpOXw4OXKkclu9166RZmZkZqbC\nUamNSZME11eV8lL5X75MTrbawsZ4yKZI4RtNL/H998lly8iTQeHM6eavcsUglQpuvAtaLlW62Ytk\nqTxv3Eg2bSr0WnNzlZeEiIDGFEBV5gEEBwdz48aNxecuLi5MkTGKWdMVQFwcGdT4KF1wTW0TgRY7\nLaAjbjIRVtVKb+FCwd1TFYO2o0aRNWXpleduuampGki8aF2dRM/e3Lv5CefNE55dm4Y36IJrvAh3\nlb5Dq1cL5sn8h6oxe73MvXtknz5km8Z3eLv9MHFsQIkoUncq5AaalJQEW1vb4nMbGxucOnWq0jCJ\niYkwNzcvE58q3EA1sdSEHwBsgprmx0+HDQBs2lTt9Bo0UIlAAICwMNXFrWzMzDSY+MUoYLBhmcue\nALDpssrfIf0mRf9s2qTSdErimFb0TwX7iKgDkpUH0kKU6Qaq8nkAQNkHXd59JRWAslBlIe/bB0yZ\nArRuDSxYANgbZwLjx5ddQ0VVZArpzXFagz921kdMTMWVWVKS4M6+ejXQs6fqxJowQch+ZKTq0lCU\nnTuBjz4CLl4E9PU1LU0Jisr0xqxfMHRcIzg6Ar/8otzXafRoIb4FC5QXZ5Xp3Rvf7HHD6noTcOSf\nxjBzNNKAEDWblxvHYYq0thTpelRlHsDLy0Hrggno4YjpHGQWQ4f69/jnRs27vUil5CefCGad9HTZ\nYXLGTGTHRv8wvMUqlXe9ExJI07pPmNxpoFZ29XNySCcnwfdfm3n2TFgm3N6ejO0frpT1dqKjSVtb\nwVFBIxSNDXw8/Rlff5189EgDMowbx/TOfbTy3ZQHRepOlc8DKDkIfPLkSbUOAkvHjmNBdz+lFvSV\nK6RDvSL3tpIThjSMVEp+8IEwlpeZKUzquXxZGFgcPZp0qp/AQdhEqbK9Pcphhs1GjsAa5XuXKIHP\nvXaxj+mJGlMBbNtGNtVPYyRmsRB6cj/PZ8/IFi3IHTuULKAcSKXkxIlk9+6qGYuqiIjmP9MH0Wr7\nFlSNxhQAWfk8AJKcNGkSHR0d6eHhwbNnz8oWRAUKYInTdxyJ1Qp9NCWJihIGDVe7z1ON54SCSKXk\npFaH2KxuMo3qPKGTQwFHjCB//JE832WSsFiXmmR+GjCADrjFP52nadUzWrRIUOCJsNJK5VQed3xH\nsguOMqDRSSb/K5+bVUgIOXCgcuVShMJCwRutd2/1eQd9/TXZ4rUEofy17PuVF40ogLS0NPr7+9PZ\n2ZkBAQHl7kNpZ2dHd3d3tmnTht7e3uULogIFkNVzAH0QzbFm21iYJn9BS6XCLFcLi6IZkypw61QW\nhd19eQyd+QBmpSs3dcuckcFonxDaWBdqzWNatoxs1oyM8xmllQq8QjIymD9oKD+f+YyWluS+fVW/\ntbCQXOWzkmb6GUzwe0er8pyXR/ZrdoFDm/zF/MA+KpXtyy9JFxcy6Wqm1n6/8qARBTBz5kzOnTuX\nJBkZGcnZ5Sx0U97aP2UEUcUYQEYGnwx8h1065nPiRNnbGVZGbi45bhzp7i64emo9spYp1iATJwom\nKE2zdq0wee7GDWq1Aq8Khw4JeZk5s/KW88WLZJcuZHvDKzwLL63s9TzrFsBA7OFg/MHcQcNUkkZY\nGOnqKrij6hoaUQAlB3OTk5Pp4uIiM5y9vT1Tq+BorcpB4EePhI0rpk6tnhL4+2+yY9Nb7Gt6nI8D\n3qwZFYaWVW6PHwuDmHv2qCb+O3eElv1bDqc503Y9T3WaKkxuK8GmTULvrZyVyGskDx+SfZtdoH29\ne5zYbBe3rn1aqsgfPSKnTRMmYP38M4V1qLSoYVAKiYQ5MGCQcQz79crjs2fKjT40VFjrKTlZufFq\nC4rUnXpFEVQbExMTZGRkPPckgqmpafF5SRwcHGBkZITatWsjODgY48aNkxmfnp4eQkJCis+VvRx0\nZibg7y/sbfvNNxW7VyclAZ98AuzfD3zZ6FuMvvERakMKDBlS5SWcRV5w8CAwZgxw+TJgpKDXX/7Y\niTj8dwPsedwFe+v1x4PU2ujZE/A/G4nb1wuwCUOQ08AUb45vgsGDhWW4x48XytLTUzn50Rbo44vL\nR9JxAAHYbz4CJ7LawM0N6Jy1Hxuve0HS9CwiYzoJrpaZanZRrg5FsuUvWYb/TTLGo0fAtm3KmacS\n9vpO/PGvOw51/BTmW37UvrzLwcvzAMLCwuR3d69IO/j7+9PNza3MsWPHDhobG5cKa2JiIjOOe0V9\nrgcPHtDT05NHjhyRGa4SUZRCWhrp6UnO9oxiQsfBzA3sV6o1lJUltBZMTcmPPy5yldMyk0pNZdw4\n4ZCX8+eFHlxT/TR2wEnOwWc83eOjF6uiFpWTtJ03Lx9/xNBQ0s0kgUa1n/BUp6m6WXYvvZvPnpEH\nD5Jf2K3icXTSSnNPZeTnk++8Q/r6Kr6w4NKlgvdbCprWyGdRVRSpOxUyASUX9anu3btXrgmoJKGh\noZw3b55sQdQ0D+DhQ2HvViskUh+5NDV4zJYtha0Nbere51sWhxl3sYRzspaZVGoqjx4JA7AHDlT9\nnpQUYfDd01O49/PPyZvdx8hWyLLKyceH+aitux9/ee9mDW+0FBSQY8eSnTrJv67Url2C2a/c90WH\n0IgCmDlzZvGkr4iICJmDwFlZWXxcNOPk6dOn7Ny5M/eV476gLgVAsvgDKWzXng9vZfLyZfKgx3St\nHSTTFfb2WsAm+ukcYnGYH0x6xgULyM2byVOnhC0Jly0TWvn+/sIGNY30szjCfC//aj/7hRdXdRRy\nDa8I5UYHGi2FheRUtwN0qJfIYx0/qFZeTp8WFiWMjaVOPIvK0IgCWLlyJV977TUCYMeOHYvdQJOS\nkti7d2+S5O3bt+ng4MC6devSwMCg1KzhMoKoUwHIeile1cpCnfj48Cy8uB7DONd9LSdPFjaSaWsW\nT2/Dq3zXej+/nZPNqChhcFfa3UcoE3mV8ivw8es0Pj7chv40RzI/ct1apbkCt28LjYft21Uvnrag\nEQVw7do1Xr9+nb6+vuVO7qrKctHFgmh6KQixslA95SlZHx/ZFb2olF9tiso/pU0g+/XKo6cneelS\n+cFTU4WZzosXq09EbUCRulPuxeBcXV0rDXP69Gk4OTnB3t4eADBs2DDs2LEDLVu2lDdZ1SFrk28R\n5bJ+vWxPlOfuHt7ewm+VhRd5NSgqf/Nly7DDSB8rVwpefNOnA23bAnXrAgYGL/5OmgT07y/8Faka\nCq0GWhlVWS5a1TxfYFT8qwV/jY0R2uoP4PuXrntsRWjDkcCyZQj93rjy8OLfV+PvS+X/3nvApUvA\n798l4ijvIU+vLm7Vd0cha6FxTiK61juD+vezEFprEEIj61UpnVedCucBBAQEICUlpcz18PBw9OvX\nDwDg5+eH+fPno23btmXCbdmyBXv37sXy5csBAOvWrcOpU6fwww8/lBVExfMAREREdARfX+DwYeH/\n53NzZF3TUZQ5D6DCHsCBAwfkivQ51tbWSEhIKD5PSEiAjY1NueFVsR+AiIiIjiHLZFieGVEHUeZ+\nALWUIE+52qddu3a4efMm4uPjkZeXh99//x1BQUHKSFJERORVZf16oZW/f/+LsSFZ10QqRW4FsG3b\nNtja2iI2NhZ9+vSBRCIBANy7dw99+vQBANSpUweLFy9GYGAgWrVqhaFDh2rnALAaUNYWbtqILucN\nEPOndTx32ChZ0cu6VkSNy58akVsBFBQUoFGjRsjLy0NUVBT27NkDALCyssLu3buLw02cOBF169aF\noaEhtm3bprjENRRdfgl1OW+AmL+ajq7nTxHk9gJyd3fHtm3bEBwcXGE4PT09xMTEwNTUVN6kRERE\nRERUgErnATxH3hFqERERERHVIfdy0M+pyA0UqN5y0CIiIiIi1UclbqBVmQdQGcePH4elpSUePnyI\ngIAAuLq6olu3bmXCib0EEREREfWi0nkAAGBpaQkAaNKkCQYOHIjTp0/LVAAiIiIiIupFpfMAsrOz\n8eTJEwBAVlYW9u/fD3d3d2UkKSIiIiKiICqdB5CSkoJu3bqhTZs26NChA/r27YuePXsqR3IRERER\nEYWQWwEMHDgQCQkJePvtt0ESiYmJAErPA3BwcMD333+PuLg46Ovr448//sC0adPg5eVVfBgZGWHR\nokVIT09HQEAAWrRogZ49eyIzM1M5OVQz169fL5O/hQsXIjQ0FDY2NsXX9+7dq2lR5SYiIgKtW7eG\nu7s7hg8fjtzcXJ0pP1l506WyW7hwIdzd3eHm5oaFCxcCgM6UHSA7fzW5/MaMGQNzc/NSlpOKyisi\nIgLOzs5wdXXF/v37K09A0bWojxw5wnPnztHNzU3m79HR0ezXr5/M3woLC2lhYcG7d+9y5syZnDt3\nLkkyMjJS5g5jNY2S+QsNDeX8+fM1LZLCxMXFsXnz5szJySFJvvXWW1y9erVOlF95edOVsrt8+TLd\n3Nz47NkzFhQU0N/fn7du3dKJsiPLz19NLj9Z9Wt55XXlyhV6enoyLy+PcXFxdHR0ZGFhYYXxKzwG\n0FaVJK0AACAASURBVK1bN5iYmFSmZGReP3jwIJycnGBra4udO3di1KhRAIBRo0Zh+/btioqmcUrm\nj8LmO5oWSWEaNWoEfX19ZGdno6CgANnZ2bCystKJ8pOVN2trawC64aX277//okOHDqhXrx5q164N\nHx8fbNmyRSfKDpCdv61btwKoueUnq34tr7x27NiBt99+G/r6+rC3t4eTkxNOnz5dcQLK0FJxcXHl\n9gBiYmJoampKDw8PSiQSXrlypfi30aNHc8mSJaRQOuIhHuIhHuIhx0GSkydP5rp164rr1/fee4+b\nN2+usO5WihdQRbRt2xYJCQm4ePEipkyZggEDBgAA8vLysGvXLgwZMqQ4LItaya/6ERISonEZtOUQ\nn4X4LMRnUfFREZVNsFW5AjA0NESDorW6JRIJ8vPzkZ6ejj179uD1119HkyZNVC2CiIiIiM7z8v4r\niYmJxSbM8lBYAYwZM6Z43X9Z3L9/H1OmTIGzszOcnZ2Rm5sLU1NTbNiwAW+//baiyYuIiIiIAAgK\nCsLGjRuRl5eHuLg43Lx5E+3bt6/wHrkXg3vO3bt3oaenh7y8PNja2iIsLAz5+fkAgODgYISFhWHt\n2rVwdHSEVCqFgYEBsrKycPDgweKtIkVKI26F+QLxWbxAfBYvEJ9FWVq1aoW33noLrVq1Qp06dfDj\njz9WagJSeDE4AIiPj0e/fv1w+fLlMr9NmDABfn5+GDp0KABhFdHDhw/D3Ny8tCB6epXas0RERFTL\nJv+f8cGxgWhvfAOBH7VF4MAGsLPTtFQiFaFI3anyMYCkpCTY2toWn9vY2BRPGhMREdEefvsNeP/o\nYKzJHYYB93/GkQVn4O0NtGwJTJsG7N0LJCcDqanAo0dAVhaQlwdIpZqWXEReFDYBVYWXtVN53ZKS\nm8K/vPGxzPAxQvhQ31DxXDwXzxU4X7UKmLotFCOG/Yk3fj0LeHvj9pwoONY9hKBGodi7Fwhe8j7S\nsuuj7tFPkV/PEM86hEEqBaSHQlFLT4paviGoBSkML34Jg7q1kN0+FLVzstDi5LuY12olDoToA/Xq\naUV+a+L5c2JiYpS3yxmVQEXzAIKDg7lhw4bicxcXF6akpJQJpyRRREREqsnSpaSNDfnvvyQzMsgh\nQ4S/L+PjQwLCMWRI8WWplMzv/gazUY+ZaMSHQWOYlETGxZHXvf/HjXiL5kjmZy03MS9PXbl6dVCk\n7lS5CSgoKAi//vorACA2NhbGxsZl7P8i8pOSAkxodRh9Gp/ExjaRyEmpueu4iKifRYuAiAggJgZw\ncUGFm6ujyJ0b3t7AsmXFl/X0gDqv1UV95MDI2wVma+bDygqwtwdamKVjKP7AhTbv4qxNf3TuDNy4\noY6ciVQJRbWPj48Pa9euTQA0MjLiihUruHTpUi5dupSksBaQvr4+DQwMWK9ePU6cOFFmPEoQpVIe\nj5rM31zn8N9uYylNl9HCqUFkZ5NffUWampIzbDZyLf5Hf+ynqcFjTphAxsYKLTMRkfL45hvSwYGM\nj6/iDRX1Dsr7rcR1qZRcsoQ0MyN/+kl8P5WFInWnQrVuQUEBHR0dGRcXx7y8PHp6evLq1aulwlS0\nGFwpQVSoALKzyXnzyKb6aeyJvbRGAh1fS+b775P79pFFa39plJwc8q+/yC/a7uSyFt/wUtcJLEgt\n+6EVFpLr1pG2tuTgweStWyQlEqFb7u3NO5cy+dVXpJMT2bIlObf9Jj7tGiiEkfXhiryShHtvYYv6\nd5jg947a34urV8m2bck+theZ3Gmg+G4qiMYUwIkTJxgYGFh8HhERwYiIiFJhoqOj2bdv38oFUYEC\nyMsT7JvW1uTAgeTlrhNIgNJ23rxw9BG/+ors1Ils1Ijsb3eO61uGsaBXH7W8jFIpef06uWgR2acP\naWhItm9Pzrb9jSOxms64zkZ1stijB/nZZ+SfgYt4wOMDehv9S++2+Tx6tERkMlpfUil59Cg5oPER\ndsFRPoJhKbutSAnGjRPs269IRfTHH6Rd3WTeg0UZe766yM0lP262lkbI4BD8zl1dIsTxATnRmALY\ntGkTx44dW3y+du1aTp48uVSYihaDKyUIwJCQkOIjOjpabrkKCsi1a0lHR7JnT/L06aIfyummPnxI\nrnX9ih1xgh64wKiuX6u0e7rObzmb10uiVd2HHP2/HG7cSKamFv1YojX/8FYm//xTUAA9jM+wNS5z\nHYazcPBbVU6rsFdvTsQStn/tMtPjMlWToRrMtWvku+ZRbICnbI7bfKPpJb73nmBe++038kRQBJ90\n7aUzyuHyZcEEc7bz5OL3TGP5kkiYDmMutQtnp/b5NDcnp08nz5/XjDg1hejo6FJ1pcYUwObNmytV\nAI8fP2ZWVhZJMioqis7OzrIFUVIPICGBbN/kNjs3usTo9rOq/nJLJJQC3Ob0IV1bFNDXt4TiUCLX\nrpGN62TyBDpSKqv1VZ4ttYRiqNYHm5FB6eAhnDbxGb28BGUnQp47J5jQmjQh5zivYQqa8ob7m9y3\n5QmXLiVnzybfeotsZ3iNzRDP8/Cs8T2ojAzBNLhmDSu256tToBIy3LghNHaaNSM9TO9yt9ssnVG8\nqkRjCuDkyZOlTEDh4eGMjIys8B57e3umpaWVFUQJCuD4cdLKipzb/Cehcq1O97bEy5ifTy5b9v/t\nnXlcVNX7xz8oICokorKr7DvOiChuKCqgqJhLplmJScrXyuz7VX5iZmAqamnl1/rmkqRlZioqlYCW\n4ZL7rrmliYoIyCqbyjKf3x8XJ5BFmIVhue/X675m7r1nzn3mmTPnOctzniPkNX68UDBVQVER6elJ\nfunyRd0rcyX/sDIZGRZGurmRVXjhNhsOHxbqFHNz8tNPybw81qzbgABuxcvsqJ3F6G/z611eVVFa\nKgw1zpypaUmeT2kpGeceSgskcQEWsqQOPV5NU1hIftp7K+dY/sAwm638YM4jRkQIPcplvXbwY5v/\ncZH9Jn4w5xHnzBF+j2nTyMn2R/iJzf8UGoJWpu5UKhRESUkJunTpgtatW0NLSwuFhYXYv38/nJ2d\n5WnS0tKwePFi+TZsBQUFuH//fqW8lA0FERUFhIUBGzcCw78YDsTFCe5q+/ZV7dJWCwoLgVWrgJUL\n8xDeOQoz7fcCW7YonN/ChcCxY0DcDznQCpkuuNIpmJcikMBHHwFbtwL79wPm5vX2aI1BAhcuALGx\nQMznt5CR1wpzbaMRtH8yWpnUQvc5OcD06Tg9YwPGTDZASAgwf77g+tiYCA8HEhKE311HR9PS1ILh\nw5EWdwYTDfZAt6cE3/+og44dNS1U9ZBATAzw738DPfIPwivjF5RAGyWuUpSMm4CSEqDkuy0oTbqP\nVngCPVc7tJo8AXp6QKtWQKvPluG76z1RAm1sHrEVnX/5qtbPVqruVNh0UPACMjMzo7W1NW1tbWlq\nasorV65UcAOdMWMG9fX1KZFI6O7uThcXlyrzUlSU4mLy3XdJBwdheIWkyru3d7zG0wq3+BVCFB4G\nOHVKGG64d08lIinF0qXCUMCdO5qWRA1Mm8bcfsO4s/tHfHPyY5qbC3NB775LxrvPYTFaKjzxmZws\ndNomThRaeo2FmBhhoVej6vmV/YeL07MZGkp27aqeIVlVcP06OWyY4HX322+sfri2pmHcgACWoAUj\nLb6gcadS7txZ++crU42r3QsoJCSEW7dulZ+rciVwRgY5eLCgfLUOEwYE8CZsaKmbym++LKjzxwsL\nSScnstyCaI3zWe+t7NIqhXGeHzS6MdaDIz/mFJNYjjM5zOH+RRw0iOzdm+zWjbRvfZf6yKUf9vJz\naVTF4TtF51HKUVhITpokDOU1BGP+PK5dExoex49rWhLliI4WvseaNQ1n/UBenjCs2qGD4GYu92Kq\nxZqISpS7d+wYaW1NzphRu4aGMgZAqSGgHTt2YO/evfKwzps3b8aJEyewevVqeZrAwEDMmzcPffv2\nBQD4+vpi+fLl6NGjR4W8tLS0EB4eLj9/Xiygy+PD4bbjI0VFFxEREWlUPK2qn40FtHDhQs0MAdXG\nC2jkyJH8448/5OdDhgzhmTNnKuVVV1FOe0zjd3i13v2YL10iTUxY6y7ab78J6xCqmPfWLGWt4cIe\n/fnh/z1ihw7kJ5+wQfpi37tHBgcLLcBPPyUfDw2sviVfj94tce6hdMIVDkQCjw+ep/bn1YW0NLJ/\nuwsMwVca8/VXB/n5gkv0XCzV2PdKTSXNdNP5C4arVQaZjIyKIjvq5fKA5N1qPaKUqcbV7gWktmBw\nKujOK8qZM6SxMblnT83psrOFFbtxcfUjV52owgXP31/wEqqwyEyD5AS9y3ldvqORzkPOfe/RPz9z\nQ3BhJMmAABajJddbLaKFeSnHjSsLqKZhzp8Xxsw/sN3CUmhp1tdfDaQPmcAuuM3ddrPr/XuVlgpV\nz3zbLfVW/1zv+SoL0LpaY6MRA5CZmcnBgwdTR0eH/fv3Z1paWpWhIIyNjWlgYECpVEpnZ2d6eXlV\nLUhdv4SGK4Fjx4QW6a+/VpNg2jRONonjjC4/N5o/n0wmrBK1aJvF103iecdnskZkl8mERVimuhmc\ngijehWXDbMGWK4MFBcLkeocOZEgIef/VOSweMJh5fmOYfjOHd+8KRvbiuAgm9x6rNv/2nTuFhV5b\nt1Lj/xG1kZ3N44PnsVPHUt64Ub+P/vxz0suLLHpQj7p9TmNXIwYgNDSUy5cvZ2xsLDt27EhDQ0NG\nRkaSZAUvICsrKwYHB9PW1pbdunWrcviHbJzhoA8eJNvpFtBIO4fttPOory9j69akri7ZEiV0xSXm\no03DrLxqILffMM7HIhohg3McYpiVVX/PTkwUJvXd3ckTfWZpfrVqHcnIIGfPJvVaPGYLlLAt8thB\n9yEtLARvJNc2t2iEDI7Hjzw2+H2VPVcmIz/6SPD2OX1aZdk2aL74Qpj4L6i7X4ZCnD8vGNe//66f\n58l5jiHXiAEoP5STkpJCR0fHKtNZWVkxQx7noAZBGqEBIMm8/sOYjg7MgiEfjp7M/Hzy0SOyeOgI\nYTFaI6q85JS1OJIlAZw+5TE7dhQiRz56pL5HFheTK1cKLejIyLK5iEbcgi0dNrzq3z8ggLnQ56ou\nn9C6awn79CG3bxfClyhKQYGwatnLi7x/X3nZGwsymeCRFRSkfs+gggLBzfO779T7HEXQiAEwNDSU\nv5fJZBXOy2NtbU2pVMoePXpw3bp11QvSSA1Atd2zRlx5PSv71avk6NHCEv2NA6P42NtXpUMYZ8+S\nPXqQgwapbtW1xqmFK2BJCbljhxCQ0Nqa/LzPD8ztV7e4Q2fGLKKH/jW+bv4bH6U0wrKmJPn5pKur\nsHJfnfzrX+Srr6r3GYqiTN1Zoxuon58fUlNTK11fsmQJgoKCkJ2dLb9mZGSErKysSmlTUlJgZmaG\n9PR0+Pn5YfXq1fD29q6Urq5uoA2GspWi9b2qVxMcPQrMH34Oxx46owvuwtn8IVwm94Szs7BvrIMD\n0KIFUFwsHEVFZe/DFqDw7xSktzRB+rT3kV7QFg8eAOnpQMreiziZ2hnLnb7BlINTodW+aeuwOo4d\nAz57MQG/pUswGd9iZsDfsI1dXW36w4eByEjg0u/p+KBoAUKwFlrjxwubuTQzrl8HvL2Fxf/PeJer\nhN27gf/8Bzh3DmjXTvX51xVVuoEqvA7AyckJBw4cgKmpKVJSUjBo0CBcu3atxs8sXLgQ+vr6mD17\ndmVBlAwFIVJPDB+Oorjf8LfbaFwJ/QZX77bF1avAlSvAzcuPwVJCp0UJdAzbQrdVC+joADppSWj9\nKAudkA7jznroNKY/OnUCjI2BTv/9AP0vr0UnZADNtAKTM3w47sb9if+ZLsKG4tfRu08LzJoFDBki\nhJ4ggb17gSVLgPv3hdAnk6NHodXen5UOe9LY2bEDCA0FzpwBjIxUl29yMuDhIRiBPn1Ul68q0Ugo\niNDQULnL59KlSzl37txKaQoKCpibm0uSzM/PZ9++fbl3794q81NCFJH6RIE9Y5+3BL6xTfSqjWe8\nitatE9xyXVzIxZ476aF/ja76ifx+XT6Liyt/prnzb7d9HNjuHB8MmaASfZSUCMOSixapQDg1okzd\nqfAno6Ki2LZtWwJg7969mV2m8OTkZA4fPpwk+ffff9PGxoatWrWirq5uhTUDlQQRDUDjR5H5ELEC\nqxGZTNgpbprZT9yNUYJffyPzKqsvigcM5jwsoQWS+PvACKXySk8nfS0uc7jR0XrbJEpRNGIArl69\nyuvXr9PHx6da187abBkpF0Q0AI0fsTJXH2JP6fmU6Wifw9s0My3lggX8p6dUB06dEhbSze38vVLB\nA+sLZerOFoqOOzk5OcHBwaHGNCdPnoSdnR2srKygo6ODiRMnIiYmRtFHijR0DA2FMfxmOg6tVrZs\nEeZImvE4/3Mp05HficU4e64Fjh0DBg8GkpJqn0VUFBAQAKxcCSxz2wxtlArzK+vWqU9uDaKtzsyT\nk5PRuXNn+bmlpSVOnDhRbfqIiAj5+9p4AT1NLr6Kr03+1dAQES7bgM8biDwN8fVzQ8BlGyIMAVMA\nffsCR44Anp7A+vXA2bPVf/7JE6BfP+D2bcHDytkZiDi1E7jzMyL2+Qn61/D3e8qzXkDKoJAbaGRk\nJAIDAwEAgwYNwsqVK+Hh4VEpXXR0NOLj42uMFioXRPQCEhERUQNHjwKThmbAWCsdNvoPYDXBC9ZO\nerC2BqysAG1tYNIkYYOkjRuBF17QtMR1Q5m6U7umm7/++qtCmT7FwsICSeX6X0lJSbC0tFQqTxER\nEZG60Lcv8Kf0dVz84yES86xx+7f7OJX3CrZtE1r8qXefYEHnTZjbfje0ZFsANKMhNkUnD7Zt20YX\nFxcC4ObNm6tMU1xcTG1tbTo6OrJbt25s3bq1OAlcCxISEjQtQoNB1MU/iLr4hzrrooZJdNmAgVW7\nLzcSlKk7FZ4ETk1NRVZWFlq0aIFZs2YhICAAAHD//n2MGDECAKCtrQ0jIyOUlpaioKAACxYsqLBf\nsEjVqGp8rykg6uIfRF38Q511UcMkulbbNsKbJjzZWx01DgHVxMyZMzFz5sxKcwDm5ubYs2ePPF2b\nNm1w/PhxdOjQQXlpRURERBThqYdaVWzZ0mzCuTyLwj2A2qKlpQVfX194enrKJ4NFREREGgzN2X25\npvEhX19furm5VTp++ukneZqaFoKR5P2y+LQPHjygRCLhoUOHqkwHQDzEQzzEQzwUOBRFrV5AAGBm\nZgYA6NSpE8aMGYOTJ09WGQ2UoguoiIiISL2ikiGg6irvwsJC5OXlAQAKCgqwb98+uLu7q+KRIiIi\nIiJKorAB2LVrFzp37ozjx49jxIgRVXoBpaamwtvbG1KpFF5eXhg5ciT8/f1VI7mIiIiIiFIobADG\njBmDpKQkvPLKKyCJe/fuAajoBWRjY4PPP/8ciYmJ0NHRwbZt27B48WKsWrUK7u7ucHNzw6pVqwAA\nERERsLS0RPfu3dG9e3fEx8er4Os1PKZOnQoTE5MKPaGsrCz4+fnBwcEB/v7+yMnJkd9bunQp7O3t\n4eTkhH379mlCZLVRF13cvn0brVu3lpePt956S1Niq4WqdLF9+3a4urqiZcuWOPs0jkEZza1cVKeL\n5lguQkND4ezsDIlEgrFjx+Lhw4fye3UuFwrPHpRx6NAhnj17lm5ublXeT0hIYGBgoPz80qVLdHNz\n46NHj1hSUkJfX1/evHmTERERXLlypbLiNHiq0ldoaCiXL19Okly2bJl8b4XLly9TIpGwqKiIiYmJ\ntLW1ZWlpqUbkVgd10UViYmK1ZawpUJUuqou42xzLRXW6aI7lYt++ffLfe+7cuUrVF0rPAXh7e6N9\n+/bPMzLy99euXYOXlxf09PTQsmVLDBw4EDt37qyUrqlSlb5++uknBAUFAQCCgoKwe/duAEBMTAxe\neeUV6OjowMrKCnZ2djh58mS9y6wu6qKLpk5Vuqgu4m5zLBe1iT7cFKlKF35+fmjRQqi6vby85KMv\nCpULVVipmqzwgQMHaGRkxG7dujEgIIA///wzHRwcmJmZyYKCAvbp04czZ87UuBuVeIiHeIhHYz1I\n8p133qkQlic4OJg7duxQbw/geXh4eCApKQkXLlzAzJkz8Z///Adz586Fv78/AgICIJVK0bJlSwCA\nTCaDTCbD/PnzMXXqVFDYsKbJHYmJiXBzc5OfGxoaVrivp6cHknjnnXewefNm+fXg4GBER0drXH5N\n6OLJkyfIysoCSZw5cwadO3dGbm6uxuVXpy6eHj4+Pjhz5gzCw8ObbbmoThfNuVwsXrwYY8eOrbH+\n1dLSqvG+0gZg6tSp8PT0xI0bN6q8b2BggLCwMNjb2yMsLAwFBQUYPXo0Tp8+jYMHD8LQ0BCOjo5y\nYbW0tPDmm282qS7t8zAxMZGH3U5JSUHbtm0BVI6meu/ePVhYWGhExvqiOl3o6urKu8IeHh6wtbWt\ntsw1dZpjuaiO5louNm7ciNjYWHz//ffya4qUC6UNwBtvvIFNmzZVe//777/HjRs3cOPGDcyaNQsZ\nGRkoKSkBANy9exe7du3CpEmTKnxm165dzWq9wKhRo+Q63LRpE5ycnOTXt27diqKiIiQmJuLGjRvo\n1auXJkVVO9XpIiMjA6WlpQCAW7du4caNG7CxsdGYnPUNSfn75lguylNeF82xXMTHx+OTTz5BTEwM\n9PT05NcVKhdUkokTJ9LY2JhaWlq0tLTkhg0buGbNGq5Zs4Yk2a9fP1paWlIikbBPnz7s0qULe/fu\nTRcXF0okEv7++++k8IvS3d2d3bp144svvsjU1FRlRWuQTJw4kWZmZtTR0aGlpSWjoqKYmZnJIUOG\n0N7enn5+fvz555/l6ZcsWUJbW1s6OjoyPj5eg5KrnrroIjo6mq6urpRKpfTw8OAvv/yiYelVy6hR\nE6nXsiO1oE39lh356viv+NFHu2hubkk9PT2amJiwV69e8vTNqVxs2LCBu3btoqVlZV3s2LGjSZeL\nqnRhZ2fHLl26UCqVUiqVsnw1XtdyUeOOYLXl9u3bCAwMxKVLlyrdCwwMxLx589C3b18AgK+vL5Yv\nX44ePXpUSCfuCCbSHCkqAj77DPjkE+Bd/Sj0ufMDrsAFV2xG4oq5Hy5fBrS0APdW1/F+x/Xwt7wi\nRK9sjoHLRKpEbTuCqYpnhatuYsJnig98rHwAALcNb8NKaoUInwgAQMSBslfxvNGdy2TAgv0R0NFp\nGPI0lPPbt4GTH0fA2hp4dX0EZLHfw+/rm/Dr+RARH7WGmd4RHBoYgQcPgJkzQzAhXQK/uCn49LUw\nfD3HVOPyi+eKnyuDKvcEVnoIiKzZDTQkJIQ//PCD/NzR0bHK4R0ViSLSgJDJyD17yO4dbrNNi0K+\n23U3713O0bRYGuf+fXLSJLJLF3LXLkFPJIWdqsaPr7RjFUkyIICF0OMC8/XsYFTKFSvIoqJ6FbvB\nIpORDx6Qx0ZFMkEyi4/8R1WtwyaKMnWn0rVuXFwcbWxsqKury2XLllW6v3TpUmpra1MqldLe3p6W\nlpZVCyIagCZFQgLZty/p4kLucFnA+zDlbHzC9jp5fOst8s4dTUtY/8hk5DrvTeyok80wm63Mv1eH\nSqqccfjrL9Lfn3RzI6uJrt5kKS0ltwxax7mdv+dLpofYvVsxX3iBNDQkPQ2usheO0wAPOcz0LD/7\njLx8uZyBbaJozACUlJRQX1+fxsbG1NHRoY6ODhcvXlxhEjghIYFWVla0tbVlt27dqt07QDQATYMT\nJ0hfX9LGhvz2W7KkhBX2Y037K4dz55JGRuT06eStW5qWuH5ISSFHjiSl+n/xElwFfSix/6xMRm7f\nTlq2zeRkkzimDJ7U5Fu9aWmC4fMyuMxFmM8fMIEnh4QxM7MsQVk5y+o+mDs25XPaNKGX1bkzGex4\niJc9JwtpmpieNGYAjh49yqFDh8rPly5dyqVLl1ZIk5CQwJEjRz5fEA0bgMI33uKx7jO4TbqEKxcX\n8r33yHHjSC8v0rxNFo20c2ism0UL81J27Ura2ZFOTqS0wx1OMt7HFU7rmPBzHnNqMcJREjydpQN8\nmlRhvHePHN31LC1bpXGN639Z9KDc96piaCM9nZw/nzRqlcdZFtuZ5zemyejiWXbuJE1MyPffJ58M\nDZQbQ1V839x+wxiK5eyIB/xUsrHJDgsdPEhaWJBhYWTx0BFV67CKciaTkVevkousvqYl7vIezBvl\nxu81oTEDsH37dr755pvy8++++47vvPNOhTTPhoK4fPly1YIADA8Plx8JCQnKiFYr0tPJb74hR48m\nX2iZRw+c5ljs4Cz7X7hiBbl1K3nkCHnX6yVmwIgpMGHSiBDeukVevy50L095TOc3COI7+C/7dLjG\ntm0F4zDB5iTndfmOIZ33cGzgEw4YQDo7kx07ki1RwheQQ28c5Ey7PYyKIs+eJZ88UftXVgvbtpHG\nxmR412/4CK3q1LrN6BvIydhIK9zivgEf1em5GRkZclc4U1NTWlhYUCqVUl9fn2+//bYiX6VGgoKC\naG1tzbVr19YqfU4OGRRE2toK5YhkpUpqzpw5NDU15YoVKxQTqqzVe9XtJfoPLqKLC7l/v2JZNURK\nS8klSwQDGhtbdrGmuZLqCAhgJMLo0eZK3YbeGiAJCQkV6kqNGYAdO3Y81wDk5uayoKCAJBkbG0t7\ne/uqBamPHsC0afy710SudFrHAX2FscOxY8lNm8iMIS9X3zIrN4TxvHslJeSff5KbHJfwI3zALzGD\n23qvZEKCcD0tTWjBZMCIvznO4IpFhXz1VWGsXE9PmDD9Q/p2o+gd5OSQr79O2tuTx4+zZj1VR9ln\n4hxmsotlKadOJbOy6i5LfUSTnTJlCqOjo2uV9sDIj9m1VQpDOu9hXlLNuoiIiFDcAJSrDGUyYVLZ\nykq41NjnWR48IIcOJfv1I5OSlMwsO5uyl8Yz6JUnHDtWMCxNBY0ZgGPHjrFHjx50dHSknZ0dT1PU\nXgAAE7lJREFUhw4dWuVE8MyZM2lnZ8du3brR3NycmfJBu3KCqNEA5OSQa9eSfV+4SGOkchrW8pf+\nkXz0qFyimloVityrqTKs5jOFhWS0ywfshDT+jBENuqt68CDZtSv5r3+R+fllFxVpmZX7TG4u+fbb\npLm5MGxSF8pXouWHHcPDwzl58mR6e3uza9eujI6O5uzZs+nu7s5hw4axuLiYJHn69GkOHDiQPXr0\n4NChQ5mSklLpGVOmTKkQXGvbtm10c3OjRCLhgAEDSArzYv7+c6ij1Z3WMODacr2hZcuW0d3dnRKJ\nhGFhYVXKrgoKC8nwcLJDq1xGWq8Vhp0aeGPiWf4IXEbLVmmca/NjxeFEJXn8mPT2FoaSmgoaMwCP\nHz+mtrY2Dx8+zPz8fOrp6VVYxUqSmzdv5rBhw0iSGzZsoK6ubtWCqNgAlJSQ8fHkK6+Q7dqRL71E\n/twjnEXQVtn4a40oUhmSZEAAT6AnTbQzuPF/+c9PX888njqD/9f5e5q1yuAvW/PU8oxDh4RexTjr\n09zpOp93fCZTllX7VvSzBsDb25slJSW8cOECW7duLV8hOWbMGO7evZtFRUXs06cPMzIySJJbt27l\n1KlTKz3jWQPg7u7O+/fvkyQfPnxImYwcPXot27dfzL8GBPMxQM82bZh44QJjY2PZt29fPiprdWSV\n6+ao2gA85VavCQzAHrriEv8Y9IHK81cX0dFkJ50soRGk5GR5VaSnC04KUVEqzVZjKFN3aiuzhuDs\n2bPo1q0bgoODUVpaioEDB+LPP/9EcnIyACAkJARfffUV7ty5A6lUijZt2sDU1BRpaWkwMTFR5tFV\nQgIXLwI/BMVh81VPmLXOxpQPLLF6dRt06AAg5z1g+hVg3Tr1r6Q0NAS2bav757ZsQa/p03Fgjg6G\nvdwWD/KB0FDVi1dXCguBTZuAT394H66PTuMCnNApehAwQYHv+By8vYELF4DVrqew4XJvzMA7KDVt\nAc/BQI8eQI+T/0Of/N9gavj4uatitbS0EBAQgJYtW8LNzQ0ymQxDhw4FALi7u+P27dv466+/cPny\nZfj6+gIASktLYW5u/lw5+/Xrh6CgILz88ssYPXosZs8Gfv99Hzp2vISXs1sBhobINTTEjbQ07N+/\nH1OnTpXHbnneHhqqwLpDLvZgBLbbhuHla0swMgRYtgyoh0crzFdfAYsWAfE9P4TH0T1Az57C/1WF\ndOwI7NkDDBgA2NgAAweqNPtGhVLB4JKTk+Hh4YHr16/j5s2beO2115CcnIyQkBCEhIQAEAr6jz/+\niPPnz+Po0aOwt7eXb2CgKm7cAD76CHBxAV58EUBWNuKLBuHUQ0e8fXKKUPkD/1TKDXkZfZmMTr1e\nwB9/CJVuaCggk2lGnAcPgPBwwMoKiI8Horqtwi6MQaee1ir/Y5andWvg/5x+wi8IRIrnKJw/R8yY\nAbRsCXx9pjtcj63HtLgxuP3q/OfmpaurCwBo0aIFdHR05NdbtGiBkpISkISrqyvOnTuHc+fO4eLF\ni7XakvSrr77C4sWLcedOEqyseuDIkSz4+ABr1nyBcxcv4lx2Nv5OTISfnx+Ayivi1c6WLdAaPx4v\nn56Ly1daQFsbcHUFfvhBaCw1JEjgww+BlSuBw4cBjz2LgPHjgX371PJ/dXIS2g4TJgA3b6o8+0aD\nUrGAoqOjER8fj/Xr1wMANm/ejBMnTmD16tXyNIGBgQgLC0O/fv0ACLGAPv74Y3h4eFQU5Dlxq0VE\nRESaAso2BJ4NBbFw4UKF81SqB/Bs/OmkpCRYWlrWmKamGNWs5QYJ+/YRFroP8Do24VcMQfG4CRXT\nZGeD48cLrw1gQwdlj4ICYkTnCwgwOobMIer9Xg8eEEEmcTBGKiLwIR6MaoAb85T7fdPTibAwonXr\nCPTrtxL37hEHDhxAYGAgSCIiIgIrV66Uf9bAwED+vvy98+fPY8CAAZBIJHB1dcXXX39d6blTpkyp\nsPFKYBdbtGlhD0Nta7wbMgMkIZPJ8P7778Pd3R1ubm4YPHiwfIOSZcuWwcXFBVKpFPPnz68gx4oV\nK+pNf0VFxGe2q2GGZAQiBieGhGnstywsJF58kfDzI3JzNSPDYqv16IpEXISbUK7U/Dxl8fHxQURE\nhPxQCipIZmYmBw8eTB0dHfbv359paWmUSCS8cuVKhXTGxsY0MDCgVCqls7Mzvby8qsyvNqI8ekS+\n956wIOTXnvOoygU1DZ0i78H8D1awM+7woM+HKs+/tJRcv17w559tvYN5aNuodJuWRs6ZQ7Zvlc/V\ndp+rxY22/CRwURHZ54VLfBefsxRaSk1UhoeHq2USuEbKYgt90WU5O1uW0t+//sJKyGTCROyRUUvZ\nv90FvmKWwCdpGixnAQH8Hq+wk3Ym47arx7FBnShRjVPhT4aGhnL58uWMjY1lx44daWhoyMjISJKs\nEArCysqKwcHBSoeCuHiRdHcXVudmZFBxL5vGSplbaaz9uzQ1KWV4OFnmwag0Fy8KcXt69ybPn2ej\n1m2i1wSa4x5/wXCVe4/MmjWLzs7OXLt2LT/8kPTveFqo/JUwlHPmzKGdnZ38/1JvlPuNnzwhv/5a\nWLA2wPQ6d7u+z7s+r7M08/nfSSYTwlwcDlzOePc5jPX8gL9szeNPP5G7d5M7/b7kFueFXGy/kZMn\nPqGXF9m+veCZ19PgChdigdIGVGnKdPFHXC5NTckvv9ScKIqgEQNQPqpnSkoKHR0dq0xnZWUld6+r\nUZBqvkRpKfnZZ8IK2qioph/YqVrK/WFTUoR4O97eyi32yc8nQ0PJTp3INWuayOKYgAAeRW920s7k\nleMP1fKII0eElan3r+Y0WkNZFcXF5HdOi+mD32mGZLZu+Zju7sJiyblzyQ0DvuG3Tou5wPZ7Thj7\nhB4epIEB2aGDEJ/HH/EchlgONz3DkSPJUaPI0R0O8WVsZRgiGeX5Jf/4Q1jgJZNRsYWDaubvv4UQ\nL7NmlcWxagQoYwAUngRu3749srOznw4jwcjISH5eHhsbG7Rr1w4tW7ZESEgIpk2bVmV+WlpaZRs9\nA7m5gIWFD/R23ceuK44oRBts/t0Ctt1fUETUJolMBqxYIXhNfPUV8Jy9oSvw11/Alld+RtTlXhjQ\n4TJWJvSAiUM79Qlbn+TkANOn45uBGxH5eRucPKlat8fcXEAqFTZxefFF1eXbYBg+HIiLA3r2RF70\nPtzMMMSNG0KZufFFPIrSsuGAv2DfywgOq2fC3r5Mv+U+V8Fzp7rrgPy3qhe37DqQkwO89JLgifbD\nD4C+vqYlqogqJ4FrNB2+vr50c3OrdMTExNDQ0LBC2vbt21eZx9OFMg8ePKBEIuGhagYaAVBicJNt\n2shoZkb6+JAhZjFci2ksRssGvSpWkxw/TtoYpNHX8BQ/sN3CXZvzmZRUuaeUnEx++inp6UmampKz\nLLbzFHpQHQttGgr//jfp56e6oTJSiO0zbZrq8mtwPGdPgrqubm+sw4lFReSbjodorJNJuzb3aNWl\nhJaWwn+nY0fSUDefLm1u8T2rnYzbnseyaDca4TnVeI0o3AOwsLCAvr4+bt68idjYWMyaNQvXrl2r\nlC4+Ph7vvfceSktLYWVlhWHDhmH27NmV0mlpaeEUesBhtCte2FW2yXxNrQcROXn9A/D7EV2chifO\nmI7A6VIPaGkJi6a63Y/DqTvGOJvvgNEv6+LVN1rBxwfQHtX0dVtSAowYIawP+ewz5fPbtg344APg\n3DmgbVvl82t0NNAWu7rgQB/8fegeCC1oD/eH9povoa0NaGsDLUcH4u+jqdiLodjb8VWcf+yMPn0A\nf3/Azw8wMADy84G8vHKvX3yD0pR0BNseUOm2nkptp6uo5QgODuacOXPo4+PDd955h3Pnzq2UJjc3\nl9bW1kxMTGR2djbbtGnD9evXV5kfahneVaQKnmmZyWTk3btCYLDwrt9wB8ayEHoVW/rNRLdZWUJY\niQ0blMvn7l1hruTkSdXIJdIIqEMQyIcPhf/bjBmkQ7sUWundp5t+Ivv0KqafnzCPMtkkjrPxicp7\n3UpU44pPAmdmZnLIkCFs3bo1e/fuzewyBSUnJ3P48OEkhXDRBgYGlEgkdHV15dChQyvtFyAXBGjy\nlZHaULTb3ky4elWovP/4Q7HPl5aSgwYJYYlFmhGKBogcOFD4zz1b0avpv6gRA/AUHx+fal07a7Nf\ngFwQgOHh/5yHh1M8V8V5WUENn/uoYcijofNXXyX1dR7xWs/XyICAOunj44+FnaU+/LB26cXzZn4e\nEMBwhDPcfJ28og8PJ8PnPlJLr1sZA1DjHICfnx9SU1MrXY+MjERgYCAAYNCgQVi5cmWl0A5A7UJF\nPOWpF9BTfHx84OPjU4fBLBGRmtnotAz/d30qvsEbGDG+ba2C9SUkCPFiTp0CunatByFFGj9qnitR\npRdQjdFAf/31V4UyfUptQkWUR+llzSIiNTDF5hAcrv+E8Tq78baTAeYRqC4EVX4+MG8eEB2Vg822\ni9F1xhWVTtyJNGEUjQRcS55tHC9cuFDhvBSOBbR9+3a4urriwIEDuHr1apVpPD09sX//fjg5OUEi\nkWDRokUYNWqUwsKKiCjFli3oO94SJ8+3Qsze1nj5ZaGif5Z9+wB3d+HeZelr8L+0UvCYmj69/mUW\nEVEjChuA1NRUZGVloUWLFpg1axYCAgIAAPfv38eIESMAANra2jAyMkJpaSkKCgqwYMECODs7q0Zy\nEZG6UtYys3Bph4MHhQU+ffsCiYnC7exs4I03hHp+zRrgm2+A9u3K4nCrIS69iIimUSocNFDzHAAA\nWFtb4/Tp0+ggD8pfjSDK+LKKiCgACaxeDURGAv/+N/Df/worqiMjBT9uAM3O912k8aFM3anUjmC1\nQUtLC76+vs8NBQFUnAMQJ4FF1I2WFvDuu8Jwz4oVwI8/Av37P5NIzeO5IiJ15dlJYGVQqxcQAKSk\npMDMzAzp6enw8/PD6tWr4e3tXVkQsQcgoimmTxeC3bRpI070ijQ6lKk7a5wD+PXXX3Hp0qVKR2Bg\nIEJDQ+Hs7IxTp05hzpw5ePjwYZV5XLhwAU5OTujbty86deqEkydPKiRoc0JV1r0pUC+6+Osv4ODB\nBj/RK5aLfxB1oRoUngT29/fH5cuX0bNnT3Tp0gVLly6tlCYvLw9vvfUW4uPjcerUKRw9ehTt2jWR\nqJNqRCzc/1AvumjTRnht4BO9Yrn4B1EXqkFhA5Cfn4+uXbvi+PHjiImJwbfffgugohfQ3r17kZGR\ngdGjR6N///7w9vZGRkaGaiQXEVEVW7aodQNyEZGGisIGYMyYMUhKSsKjR4/Qv39/rFixAgBgbm6O\nPXv2yNNNmDAB58+fx59//onXXnsNycnJykstIqJKnk70ipW/SDOjRi+g2kwCL1myBLq6upg0aVKl\ndFrVLbOshrqmb8oos7qvqSHq4h9EXfyDqAvlUSoUxMaNGxEbG4v9+/dXeb8uoSBEDyARERGR+kXh\nIaD4+Hh88skniImJgZ6eXpVpPD09cePGDdy+fRtFRUX48ccfxVAQIiIiIg0EhQ3AzJkzkZ+fDz8/\nP3Tv3h1vvfUWgMqhIL744gsMHToULi4umDBhghgKQkRERKShoGQoaqWJi4ujo6Mj7ezsuGzZMk2L\no1G6du1Kd3d3SqVS9uzZU9Pi1CtvvPEGjY2N6ebmJr+WmZlJX19f2tvb08/PT77pUFOnKl2Eh4fT\nwsKCUqmUUqmUcXFxGpSw/rh79y59fHzo4uJCV1dXrlq1imTzLBvV6UKZsqFRA1BSUkJbW1smJiay\nqKiIEomEV65c0aRIGsXKyoqZmZmaFkMjHDp0iGfPnq1Q6YWGhnL58uUkyWXLllW57WhTpCpdRERE\ncOXKlRqUSjOkpKTw3LlzJMm8vDw6ODjwypUrzbJsVKcLZcqGwkNAquDkyZOws7ODlZUVdHR0MHHi\nRMTExGhSJI3DZjoZ7u3tjfbt21e49tNPPyEoKAgAEBQUhN27d2tCtHqnKl0AzbNsmJqaQiqVAgD0\n9fXh7OyM5OTkZlk2qtMFoHjZ0KgBSE5ORufOneXnlpaWzXqdwNPAeZ6envJd1JozaWlpMDExAQCY\nmJggLS1NwxJpltWrV0MikSA4OBg5OTmaFqfeuX37Ns6dOwcvL69mXzae6qJ3794AFC8bGjUAot9/\nRY4cOYJz584hLi4OX375JQ4fPqxpkRoMWlpazbq8zJgxA4mJiTh//jzMzMwwe/ZsTYtUr+Tn52Pc\nuHFYtWoVDOSxugWaW9nIz8/HSy+9hFWrVkFfX1+psqFRA1DXLSObOmZmZgCATp06YcyYMc0+cJ6J\niYl8IWJKSgqMjY01LJHmMDY2lld0b775ZrMqG8XFxRg3bhxef/11jB49GkDzLRtPdfHaa6/JdaFM\n2dCoARDXCfxDYWEh8vLyAAAFBQXYt28f3N3dNSyVZhk1ahQ2bdoEANi0aZO8wDdHUlJS5O937drV\nbMoGSQQHB8PFxQXvvfee/HpzLBvV6UKpsqGiCWqFiY2NpYODA21tbRkZGalpcTTGrVu3KJFIKJFI\n6Orq2ux0MXHiRJqZmVFHR4eWlpaMiopiZmYmhwwZ0qxc/cjKutiwYQNff/11uru7s1u3bnzxxReZ\nmpqqaTHrhcOHD1NLS4sSiaSCm2NzLBtV6SI2NlapsqH0lpAiIiIiIo0TjQ4BiYiIiIhoDtEAiIiI\niDRTRAMgIiIi0kwRDYCIiIhIM0U0ACIiIiLNFNEAiIiIiDRT/h9Qx6hRc99mnQAAAABJRU5ErkJg\ngg==\n" - } - ], - "prompt_number": 20 - }, - { - "cell_type": "code", - "collapsed": false, - "input": "", - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] +{ + "metadata": { + "name": "WAFO Chapter 2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "CHAPTER2 Modelling random loads and stochastic waves\n", + "====================================================\n", + "\n", + "Chapter2 contains the commands used in Chapter 2 of the tutorial and present some tools for analysis of random functions with respect to their correlation, spectral and distributional properties. The presentation is divided into three examples: \n", + "\n", + "Example1 is devoted to estimation of different parameters in the model.\n", + "Example2 deals with spectral densities and\n", + "Example3 presents the use of WAFO to simulate samples of a Gaussian process.\n", + "\n", + "Some of the commands are edited for fast computation. \n", + "\n", + "Section 2.1 Introduction and preliminary analysis\n", + "=================================================\n", + "\n", + "Example 1: Sea data\n", + "-------------------\n", + "Observed crossings compared to the expected for Gaussian signals\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo\n", + "import wafo.objects as wo\n", + "xx = wafo.data.sea()\n", + "me = xx[:, 1].mean()\n", + "sa = xx[:, 1].std()\n", + "xx[:, 1] -= me\n", + "ts = wo.mat2timeseries(xx)\n", + "tp = ts.turning_points()\n", + "\n", + "cc = tp.cycle_pairs()\n", + "lc = cc.level_crossings()\n", + "lc.plot()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEVCAYAAAD+TqKGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4jOf6B/DvSGIPYovIIkg0hASNqj20sbUUrSVOUaKt\nJa2l1EF7hFJbF7X9iqqlai0Va6glqC091qotnISIIPYsYpKZ5/fHczonkW0mmZl3lu/nuuY6zcz7\nvnPnPTH3PNv9qIQQAkRERPkooXQARERk2ZgoiIioQEwURERUICYKIiIqEBMFEREViImCiIgKxERB\nFu+9997D559/rnQYudy8eRPOzs7gDHOydUwUZDBvb2/s37/fbO+nUqmgUqnM9n768vLyQkpKikXG\nZqjg4GAsX75c6TDIQjFRkMGU+OAu7rf2rKwsI0Vimwr7/5P3z74xUZDRCCEwa9Ys+Pj4oGrVqujb\nty8ePXoEAOjSpQsWLVqU4/jAwEBs3boVAHD58mWEhISgSpUq8PPzw6ZNm/R+32XLlqFBgwaoUKEC\n/P39cfbsWQCy5TNnzhwEBATA2dkZGo0G27Ztg7+/P1xcXNC+fXtcvnxZd53Zs2fDw8MDFSpUgJ+f\nHw4cOAAAiImJQVBQECpWrIgaNWrgk08+AQDEx8ejRIkS0Gq1AOS38n/9619o3bo1KlSogE6dOuHB\ngwe6669evRq1atVC1apVMX369AJbZrt27YK/vz8qVKgADw8PfP311wCA6OhoeHh4YObMmahWrRpq\n166NtWvX6s57/vw5xo0bh1q1aqFGjRoYPnw4MjIydK9HRkaicePGqFixInx8fLBnzx5MnjwZR44c\nQXh4OJydnfHxxx8DAEqUKIHFixfD19cXL730Em7cuJHj9/37d/67JbJy5Uq0atUKY8eOhYuLC3x8\nfHDs2DGsWLECXl5ecHV1xerVq/X+/5UsiCAykLe3t9i/f3+u5+fNmydatGghEhMThVqtFh9++KEI\nDQ0VQgixevVq0apVK92xf/31l6hUqZJQq9UiNTVVeHh4iJUrVwqNRiPOnDkjqlatKi5evCiEEOK9\n994Tn332WZ6xbNy4Ubi7u4t///vfQgghrl27Jm7cuCGEEKJWrVqiSZMm4tatWyIjI0NcuXJFlCtX\nTuzbt09kZWWJOXPmCB8fH6FWq8Xly5eFp6enSEpKEkIIcePGDXH9+nUhhBCvvvqqWLNmjRBCiLS0\nNHHixAkhhBBxcXFCpVIJjUYjhBCiXbt2wsfHR8TGxopnz56J4OBg8c9//lP3+5YvX14cPXpUqNVq\nMW7cOOHk5JTnfRRCiBo1aojff/9dCCHE48ePxenTp4UQQhw8eFA4OjqKTz75RKjVanHo0CFRrlw5\nceXKFSGEEKNHjxZvvfWWePTokUhJSRHdunUTEydOFEIIcfLkSVGxYkWxb98+IYQQiYmJ4vLly0II\nIYKDg8Xy5ctzxKBSqUTHjh3Fo0ePREZGRq7f98XzVqxYIRwdHcXKlSuFVqsVn332mXB3dxfh4eFC\nrVaLvXv3CmdnZ5GWlpbn70yWi4mCDJZfoqhfv36O52/fvi2cnJyERqMRT58+FeXKlRM3b94UQggx\nadIkERYWJoQQYv369aJNmzY5rvXBBx+IqVOnCiEKThQdO3YU8+fPzzfOFStW6H6eNm2a6Nu3r+5n\nrVYr3N3dxaFDh0RsbKyoXr262Ldvn1Cr1Tmu07ZtWzFlyhSRnJyc4/kXPziDg4PFjBkzdK8vXrxY\ndO7cWQghxNSpU0X//v11r6Wnp4uSJUvmmyi8vLzEkiVLxJMnT3I8/3eiSE9P1z3Xp08f8cUXXwit\nVivKlSunS3BCCHHs2DFRu3ZtIYS8p2PHjs3z/YKDg8UPP/yQ4zmVSiUOHjyY7+/793nZE4Wvr6/u\ntfPnzwuVSiXu3bune65KlSri3LlzecZAlotdT2Q08fHx6NmzJ1xcXODi4oIGDRrA0dERd+/ehbOz\nM9544w2sW7cOALB+/Xr84x//AADcuHEDJ0+e1J3n4uKCtWvX4u7du4W+561bt1C3bt18X/f09NT9\nd1JSEry8vHQ/q1QqeHp6IjExET4+Ppg3bx4iIiLg6uqK0NBQJCUlAQCWL1+Oq1evon79+njllVew\nc+fOfN+vRo0auv8uU6YMUlNTAQC3b9+Gh4dHjteqVKmS73U2b96MXbt2wdvbG8HBwThx4oTuNRcX\nF5QpU0b3c61atZCUlIT79+8jPT0dL7/8su4+dunSBffv39frXuU1TpH9/unD1dU1x+8IANWqVcvx\n3N/3hKwHEwUZjZeXF6KiovDo0SPdIz09HW5ubgCA0NBQrFu3DsePH0dGRgbat2+vO69du3Y5zktJ\nSck1ppEXT09PXLt2Ld/Xs3/41axZEzdu3ND9LIRAQkIC3N3ddfEdOXIEN27cgEqlwoQJEwAAPj4+\nWLt2LZKTkzFhwgS88847ePbsmUH3pmbNmrh165bu52fPnuUYv3hRUFAQtm7diuTkZPTo0QN9+vTR\nvfb3ff3bjRs3ULNmTVStWhVlypTBxYsXdffx8ePHePr0KYCC71V+g9nZny9XrhwA5HjvO3fuFPRr\nk41goqAiUavVyMjI0D2ysrIwbNgwTJo0CTdv3gQAJCcnY9u2bbpzunbtihs3bmDKlCno16+f7vk3\n33wTV69exZo1a5CZmYnMzEz88ccfuoFmUcCMp6FDh+Krr77C6dOnIYTAtWvXdO//oj59+mDnzp04\ncOAAMjMz8fXXX6N06dJo2bIlrl69igMHDuD58+coVaoUSpcuDQcHBwDAmjVrkJycDACoWLEiVCoV\nSpTI+59OfrG+/fbb2L59O44fPw61Wo2IiIh8j83MzMTPP/+MJ0+ewMHBAc7OzrpY/jZlyhRkZmbi\nyJEj2LlzJ3r37g2VSoX3338fo0eP1sWbmJiIvXv3AgDCwsKwYsUKHDhwAFqtFomJibhy5QoA2RK4\nfv16vvcZkC0Dd3d3/PTTT9BoNPjxxx8LPYdsAxMFFUnXrl1RtmxZ3WPatGkYNWoUunfvjo4dO6JC\nhQpo0aIFYmJidOeULFkSvXr1wv79+9G/f3/d8+XLl8fevXuxfv16uLu7w83NDRMnToRarQZQ8HTc\nd955B5MnT0b//v1RoUIF9OrVSzfT6kX16tXDmjVr8NFHH6FatWrYuXMntm/fDkdHRzx//hwTJ05E\ntWrV4Obmhvv372PmzJkAgD179qBhw4ZwdnbGmDFjsH79epQqVUoXW3bZf84et7+/PxYsWIB+/fqh\nZs2acHZ2RvXq1XXXedGaNWtQu3ZtVKxYEUuXLsXPP/+se61GjRpwcXFBzZo1MWDAACxZsgT16tUD\nIGdu+fj44NVXX0XFihUREhKCq1evAgCaNWuGFStWYMyYMahUqRKCg4N1SXXUqFH45ZdfULlyZYwe\nPTrPmAA5w2zu3LmoWrUqLl68iFatWuX5++Z1P8h6qURBX9cUcPnyZXz33Xd48OABOnXqhLCwMKVD\nIjK61NRUuLi44Nq1a6hVq5be50VHR2PAgAFISEgwYXREOVlci8LPzw//93//h/Xr12PPnj1Kh0Nk\nNNu3b0d6ejrS0tIwbtw4BAQEGJQkiJRilkQxZMgQuLq6olGjRjmej4qKgp+fH3x9fTF79mzd89u3\nb8cbb7yRox+byNpt27YN7u7ucHd3x/Xr17F+/foiXYfdOWRuZul6OnLkCMqXL4+BAwfizz//BABo\nNBq89NJL2LdvH9zd3dGsWTOsW7cO9evX15331ltvITIy0tThERFRARzN8SZt2rRBfHx8judiYmLg\n4+MDb29vAEC/fv0QGRmJe/fuYcuWLTmmTxIRkXLMkijykpiYmGMxj4eHB06ePIl27dqhXbt2BZ7L\npjcRUdEUpRNJscHs4n7YC1l+xKIfU6ZMUTwGxsk4rTVGxmn8R1Eplijc3d1zTPFLSEjIUeKgMBER\nEYiOjjZBZEREtiU6OhoRERFFPl+xRBEUFITY2FjEx8dDrVZjw4YN6N69u97nR0REIDg42HQBEhHZ\niODgYMtPFKGhoboyCZ6enlixYgUcHR2xcOFCdOrUCQ0aNEDfvn1zzHiyBdaSyBincVlDnNYQI8A4\nLYXFrczWh0qlwpQpUxAcHGzz/wcRERVXdHQ0oqOjMXXq1CKNVVhtorDCsImIFFXUz06LK+FBRESW\nxWoTBWc9ERHpp7izntj1RERkJ9j1REREJsFEQUREBbLaRMExCiIi/XCMgoiI9FLUz07FqscSWYun\nT4GEBODRI+DGDeDxY+DCBaBkScDZKQP1/70a2kwttFlaHL77Erq6/htlKpfFSws/QlYWcP068PLL\ngKsrAI0GePAAqFYNYBVkshJsURC94HmGwG9r7mLzT+k4d6kkrj10gYfjHbi8XAfVq6vg4gJ4ewPl\nygEPk7Nwdd9NODqqIEqUQIB3Cvaed0VJRy2uPHKFoyNQqxZw6hRQpgzQsukzlN2/HUElzsC9liOc\nvN3hVMcTTg18UTqgHpo1k8cRmUJRPzutNlGwhAcZW1oaMP87Lb7+/DEaOF7F2y/9hZZtHVG/gxvK\nB9YF6tQpcitACNmyOH0aSE8Hjh14hoc3UpD5MBWZj9OQqSmBFC9/xMYCAwcC06fLRERkDCzhQVQU\nWi2g1eK5xhGHDgE//QT8+ivQpQswfexDvNSisiJhJSQAkyYBZ84AixYBLcuehVPcVaBTJ6BiRUVi\nItthdy0KKwyblCYEEBODm0ujsHdzCvY2HIv9l2qifn2ZIEaOBCpVUjpIGebKlcCCBcB/YrPQoVwM\n3nm6HN07qVF+SB+gc2fAyUnpMMkKMVEQ5efJE5ybtQszFrvgeHognpesgJAOWej4TkWEhAA1ayod\nYP7u3QOiooD1P2Xi6O8CHcoex9tZG1Bj2ki4ve4Pf3+lIyRrwkRBlE1yMrB/P3DlCrBl1VPcS9Jg\n4tBkvDHKF3XqqqxywtH9+8Du3cDGFWlI05RC7H8c4esL/OtfQLt2nERFhWOiIIKceTpxIrBpk/zw\nrFMH6NkTaNkScHBQOjrjyswE1qwBZsyQv9/iBRqULycAR856p7zZXa0nrsym7IQAvhp2DfV8tShX\nDoiNBbZuBb75BmjTxvaSBCCHKQYPBs6fl62J2rU0+GfVH3BxxhYIdabS4ZEF4cpssmsZGcDYgcnY\nHOkIL1UCNm5xQu2utrWlrr6uXwcWTbyFzduckJ7piG6tH+Gd8XXQrn0JTrUlAOx6IjuUeiEew7vd\nQkpSCuZNvo9an/aFqlRJpcOyCAmbT2Lj2BPY8bAV/nRqgtlzHdC5M+DurnRkpCQmCrIbW7YAc6ar\n8eeZTHRrGIdle73h7FZe6bAsjxDAtm04VvlNzJrrgJMn5XqRjh2VDoyUwkRBNu/ePeDzz+XMn2XL\ngNb+j1DOw0XpsKzGkSNAnz7Ae+8BU6fKWlVkX+xuMJvsy/ffA/7+sqzF+fNyoTKThGHatJErvs+f\nB7p2zMSpU0pHRNaCLQqybEJgzqhb+CHKE9u2AX5+Sgdk/bLUWnxbax4Wpg6CYzUXvB5SAl9+CVSp\nonRkZGp216Lg9Fg7kJiI7wMWY9lSgYN71EwSRuJYsgTGXw7D9bcnYEdmZ2hu30HfvkBWltKRkalw\neizZpk2b8PsHq/B25nocjSkJnwbsUDeJyEhkfTgSb5Y9gGot6mLx9w5wdlY6KDIVu2tRkI1KTwc+\n/BAHR29FH8ctWLmpPJOEKb31FhzPn8bmhlOgevIYjRoB164pHRRZGrYoyLLcvYuPQy4h8nFbLFxU\nAt26KR2QfVm6VJY5nzYN+PBD21zRbs/YoiCbsOmwK/Y8D8aFv5gklPDBB8CxY3L6cenSwOjRckMn\nsm9MFGQR0tKAb78FRoyQi8LYT66cevXkNNo7d4AHdzIRFATcvq10VKQkJgpSTnIyoNFg716gYUPg\n6FHgt9+AV15ROjACgCqPruGnw7UwsG08OnSQiYPsExMFKSMmBmjaFKsnXcbgwXJB3S+/AI0bKx0Y\n6fj4ACtWYOKvr6BfvdN4800514DsDwezyfw2bwaGD8em93Zi1Jpm2L8fqG+fBV+tw5UrEN26ox/W\nwatbY8z9mt8vrRVrPZHlEwL4+mtg3jzcXr4bge82wt69QJMmSgdGhXr8GHd7DkPD48swYIQzhg2T\nYxlkXexu1hNXZluh+fOB1auB48fx0dJGGDaMScJqVKoE170/4fedT1C2LNCqFXDokNJBkb64Mpus\nx8OHEA6OmLW4AlatAs6elVMwyfrs2wf07y+3nR0zRuloSF/seiKrsGIF8NVXQFQU4OmpdDRUHLdu\nAa1byz3Je/aU/13Cavso7IPddT2R9Zk3Dxg3Dli3jknCFnh4AMePA07PniA8XCaKZ8+UjopMgYmC\nTOPWLSAzU/fjjh3Ad9/JWbEBAQrGRUblpk3EnC2+OPflTnh5yZXcbOzbHiYKMr6rV4EWLYCDBwHI\nVdcjRgArVwJ16yobGhmZuzuwYwdUYUOwpPOvOH4cmDCBJcttDRMFGdeVK0CHDnKvzY4dIYT8ltmu\nnXyQDXrlFeC331Bx0kjsG7oe584BderIP4EnT5QOjoyBiYKM59IlmSSmTweGDAEgPyxOnwYWL1Y4\nNjKtgADg4EFUnzMOewavx7ZtQHy8fJp1oqwfZz2RccTGAsHBwMyZwMCBAICdO4GPPgJOnACqV1c2\nPDKTy5cBJyddH+OMGcCPP8ovCp06KRwbcXosKSw1FTh8GOjaFYCc/eLvL2s4deyocGykGCGAyEj5\nheHaNaBUKaUjsm9MFGRRPvtMDlds2qR0JGQJ3npLToRbsABo2VLpaOyXzSSKyMhI7Ny5E0+fPkVY\nWBhCQkJyHcNEYbm0WmDsWGDbNtnA8PBQOiKyBBkZsmURHi4XXA4cCKhUSkdlf2wmUfzt8ePHGDdu\nHH744YdcrzFRWCatFhg2TI5p79gBVKyodERkEebOldOlW7fGhQtA376Atzcwfrwc1iLzseiV2UOG\nDIGrqysaNWqU4/moqCj4+fnB19cXs2fPzvHa9OnTER4ebo7wyFApKcDkyYBarXvqwAE5pf4//wF2\n72aSoGwCA4G33wbOnUPDhsAff8iuqN695QJMsgLCDA4fPixOnz4tGjZsqHsuKytL1K1bV8TFxQm1\nWi0CAwPFxYsXhVarFZ9++qnYt29fvtczU9iUl4wMIdq3F+L994XQaoUQQsTFCVG1qhD79ysbGlmw\njRuFcHMTIjZW99TmzUK4ugqxcKGCcdmZon52OpojGbVp0wbx8fE5nouJiYGPjw+8vb0BAP369UNk\nZCT27duH/fv34+nTp7h27Ro+/PBDc4RI+tBqgUGDgCpVgP/7P0ClgloNDB8OjBoll1AQ5al3b+Dx\nYzkF7uhRwM0NvXrJMvOtWwN+fsBrrykdJOXHLIkiL4mJifDMVhnOw8MDJ0+exIIFC/DRRx8Ven72\n2urBwcEIZmen6U2cKKeu7NsHODhACCA0VE6bHz9e6eDI4r3/vtx4e+RIYMsWAEDt2rK0y8CBwN69\ncko1GU90dLRR9u1RLFGoijnloTibcFAR/PKLnLZy9ChQujS0Wjl75do12edcsqTSAZJV+Owz2bLI\nJiQEmDVLbobUpw+wZAlnRBnLi1+ip06dWqTrKFbCw93dHQkJCbqfExIS4MG5lJbrzTdlS6JKFfz1\nlywTvm2bzB9MEqQ3lQpwccn19IABQGIicOqUbFXMnSt7OskyKJYogoKCEBsbi/j4eKjVamzYsAHd\nu3fX+3xuhWpmpUsDHh4QQn4pHD0a+P13wNdX6cDIVpQrJ7dX/eEH4Ndf5XBYtu+SVAxWsRVqaGgo\nDh06hAcPHqB69eqYNm0aBg8ejN27d2P06NHQaDQICwvDxIkT9boe11EoIzUVaNtWftM7fhwoU0bp\niMhWpaYC//ynXNl/6hQXbhqLzS24KwgThflduSLr9bi7yyJv7EMmo4mIAN54A2jWLNdL06fLopI7\ndpg/LFtk0QvuTIFdTyak1crRxZQU3VPh4bJk9KJFTBJkZIGBQK9eQFJSrpfGjwcuXpR7rFPRWUXX\nk7GxRWFiU6bIgesDB4BSpZCQADRuLAcbS5dWOjiySVOnAnv2yF0RXygxu3+/nIa9eTPQpo1C8dkI\nu2tRkIls2iQntm/ZApQqhbNn5QZmI0YwSZAJff454OYm11i88EH22muygftClR8yI6tNFOx6MoEz\nZ2RG2LoVcHVFZqYs8jdtGvDFF0oHRzatRAlg1SpZ/GnFilwvh4bKl2JjFYjNBrDriYzj/n0gKEhO\nYO/dG+fOySmwFSrIqYolrPYrBVmVmzeB8uWBypVzvTRxotwQa948BeKyEZz1RMWjVssaCm++iaws\nWVph1CiZLBwVW79P9D8JCXLce+xY2UOVx7o9KgTHKKh4SpaUq68hWxDe3sC4cUwSZDk8PWUFmWvX\nZDHBuDilI7IfVpsoOEZhGhcvAh9/LMcWiSxN/fpyrkVYGDBhgtLRWA+OUZDRZGUBzZsDH3wAsLo7\nWQS1Gjh3LtdivMePZav32jWgalVlQrNG7Hoiw2RkAA8f5njq559lvZ0PPlAoJqIXXbsGdO0q99fN\nplIluWne118rFJedYYvCXn34oVzYNH8+ADl1PTBQTnrq1Enh2Iiy+/FHWdM+JkbOiPqvpCSgUSNZ\nwZjb0ejH7loUHKMohrVrgehoYMYM3VO//SaTRceOyoVFlKchQ4BXX5WLerJ9yLm5yfWhffoA69cr\nGJ8V4BgFGeb6dfmP7rffZF2O/3r9dbnL2MCBCsZGlJ/0dPl3O2qUHMnO5s8/ZWmPGzeAihUVis9K\n2F2LgopArZZLXD//PEeSOH1aVoft10/B2IgKUrasbDYcP57rpUaN5C55a9cqEJedYIvCnmzfDixb\nJrc0zVYCNjRULsr+5BMFYyMqhmPHgO7d5aZHPXooHY3l4sps0k9WVo5VdHFxcubhf/4jy3UQWavD\nh+WueFevAk5OSkdjmdj1RPp5Yan1t98CQ4cySZD1a9tWlp5ZvlzpSGyP1RZoiIiIQHBwMII5L67I\nHjwA1qwBLlxQOhIi45g/H2jfXraSX35Z6WgsR3R0dLFmibLryY5NnAjcu8dvYGSl7t0D5syRj2zl\njbdskcuEvvxStpa5I+P/cIyCcrt6VTYbWrTI9dKVK0CrVsD580DNmgrERlRcmZmyv6l/f7mhezYX\nLwIDBsg1pd9+K0vTEMco6EVZWcC778rNiF4ghPx3NXkykwRZMScnYPVquY3q1as5XmrQAPjjD1mO\nplcv+U8hIUGhOG0AE4WtmjlTFsQZPjzXSydOyNlOL3wJI7I+vr5ARIRcKZqVleOlEiWA996Trefa\nteXSIW6nWjTserJFp08DnTvL//XwyPXyiBGAu7tsURBZPa1WFihr3x6YNCnfw27eBFq3luv2WrY0\nY3wWhF1PJGVkyM7ZefPyTBKpqcDGjcA//qFAbESmUKKELByYx/ap2Xl5yf3fhw8HHj0yU2w2wmoT\nBYsC5uPyZVn4JjQ0z5cXLZLlDry9zRsWkUl5esqigYUYNEjWNXv9dblNvL1gUUDSW0aGTBD79wP+\n/kpHQ6QMIWS5s++/l2VrPv0UcHBQOirzYNcTFWrNGrkIiUmC7JlKBUyfLusL7twJjB+vdESWjy0K\nO6HVAg0bAgsXAh06KB0NkWV49EgObIeHAyNHKh2N6bFFQQXauRMoWVJODCGyeQcPyu0aC+HiIv9t\nTJ8O7NhhhrisFBOFtVOrZelwrTbfQ5KSZEmDOXNYzoDshJ+fTBTnzhV6aJ06wK+/AoMHA0eOmCE2\nK8REYe3mzMm1v8SLFi+Wq1O5zSnZDTc3ubpu8GBZ6qMQr74qF3n36SMHuNPTzRCjFWGisGaXLwPf\nfSczQT6JQqsFVq2SpQyI7Mp77wHVqgFffaXX4V26yNpnSUlAYKDcDIkkDmZbK60WaNcO6NtXjsTl\nY9482aw+dMiMsRFZivh4uX3j77/L7ig9bdoEjBkjV3OXsKGv03Y3mG33C+6WLgU0mjxrOf3t6VNZ\nBmfFCvOFRWRRvL1li1utNui03r2BqlVtZ8yCC+7sVZ8+wJQpBS6KWLtWPjibg8hwc+YAmzfLPGMr\nmyAV9bPTane4s3sbN+p1yDvvmCEWIhs0ZgxQvjzQvbvc0mXlSvmzPbLaricq2LFjsh7/228rHQmR\ndXJykpWWY2Nl2Y+ZM5WOSDmFJorff/8913NHjx41STBkPDNnAl98ATg7Kx0JkXUrWxZYsABYsgS4\nfl3paJRRaKL4KI/dbcILmGVDynv+XM5y6tFD6UiILExmJvDZZ/IfiQFq1pQ1oYYNM/hUm5DvGMXx\n48dx7NgxJCcn45tvvtENgKSkpEBbwCpgMpFLl2TzII89Jl509ChQv36h5fmJ7I+TE3DhglyM969/\nGXTqmDGyO7dbNznlvFw5E8VogfJtUajVaqSkpECj0SAlJQWpqalITU1FhQoV8Msvv5gzRtJo5FaP\nBw7odfi6dcCbb5o4JiJrtWABMH9+rn22C1OypNwdr2pVuXrbnhQ6PTY+Ph7eFrbLjd1Nj12yRNYI\nP3y40GJN168Dr7wi/w1UqWKm+IiszTffAHv2AFFRBhdAu38fqFdPThgxYA2fRSjqZ2ehieLKlSv4\n6quvEB8fj6z/bl6uUqlwQM9vt6ZgV4ni/n2gQQNg3z4gIKDAQx89knsCf/gh8PHHZoqPyBplZgKN\nGwMzZhRpMG/FCrnh0bffAu++a4L4TMRkiSIgIADDhw9H06ZN4fDfbaBUKhVeVnAFil0livffl52h\n8+YVeFhGhiz6FxQkvywRUSEOHJCzPqZOLdLpZ88C/fsDzZsDP/xgHbvkmSxRvPzyyzh16lSRAzMF\nu0kUiYlyV5Xz54GKFfM9TKORC7VLlgR+/tm2atMQWbL0dKBrV/kFTc/ag4oyWa2nbt26YdGiRUhK\nSsLDhw91D1OJi4vD0KFD0bt3b5O9h9Vwd5cVYgtIEoCcvPHokVw5yiRBZD5lywJbtsgyOT//rHQ0\nplNoi8Kx6mrUAAAYJUlEQVTb2xuqPAZ74uLiTBYUAPTu3RubNm3K8zW7aVHoIS0N8PSUjQ49Zs4S\nkQns3QtMnAhYWOdLLiZrUcTHxyMuLi7XwxBDhgyBq6srGjVqlOP5qKgo+Pn5wdfXF7NnzzYscgIg\nyyG3bs0kQaSk114D7t2TX9hsUaFFAVetWpVni2LgwIF6v8ngwYPx0Ucf5ThHo9EgPDwc+/btg7u7\nO5o1a4bu3bujfv36el+XZJn9Ll2UjoLIBvz730DDhkDp0gaf6uAADBoku39tcTJJoS2KP/74Q/c4\nfPgwIiIisG3bNoPepE2bNnBxccnxXExMDHx8fODt7Q0nJyf069cPkZGRePjwIYYNG4azZ8/aZyvj\n2TODDr9wAXihoUZERTFjhpzvWkTvvSfHKWyxxEehLYqFCxfm+Pnx48fo27dvsd84MTERnp6eup89\nPDxw8uRJVK5cGd9//32h52ffhCM4OBjBwcHFjklxQgBvvCGLyujRTNBqgb/+KnBLCiLS11dfybmu\n770n99w2kI8PEBICtG8PbNggxw6VFh0dbZQN3gzej6Js2bJGGcjOqzvLEMXZrcli/forkJws/9r0\ncOOGnBD1QmONiIqibl1gyBBZNHD58iJdYvVqYO5coFkzuVd9p05GjtFAL36JnlrENSOFJopu3brp\n/lur1eLixYvo06dPkd4sO3d3dyQkJOh+TkhIgIc9j8hmZADjxgHLlgGO+uXv48fZ7URkVJMnAy+9\nBJw+DTRtavDpJUoAEybIjY769wdmzbKuldv5KfQT6ZP/Vr9SqVRwdHSEl5dXji6jogoKCkJsbCzi\n4+NRs2ZNbNiwAevWrdP7/IiICNvpcgLkyuuAADl9Qg+PHsk/SO6HTWREFSsC06bJ1dqRkUW+TNu2\nclv72bMtI1EUtwtKrz2z79y5gz/++AMqlQqvvPIKqlevbtCbhIaG4tChQ3jw4AGqV6+OadOmYfDg\nwdi9ezdGjx4NjUaDsLAwTJw4Ub+gbW0dRVKSbBqcOCE7OvXwj3/Ion/z55s4NiJ7o9EAT54Uu07/\ns2eAq6vsIraU7mGTlfDYuHEjxo8fj3bt2gEADh8+jLlz5yq6ctrmEkVqKnDkiN7zXDduBD7/HDhz\nRq4MJSLL1L070KEDMHq00pFIJi0KuG/fPl0rIjk5Ga+99hrOK7iyRKVSYcqUKbbV9aSnpCRZ9HL7\ndllOnIgs19WrQKtWwK5dcoBbKX93PU2dOtU0iaJRo0Y4f/68bpaSVqtFYGAg/vzzz6JFbAQ216LQ\nkxByd60mTeR+2ERk+bZsAcaOlev5qlZVNpaifnYWOpjduXNndOrUCf3794cQAhs2bEAXLgVWxM8/\nA7dvyz88IrIOvXrJ4cewsGKNjysq30QRGxuLu3fvYu7cudi8eTOOHj0KAGjZsiX69+9vtgDzY3Oz\nnvSwebNci1eypNKRENkJIeRiiCVLgNq1i3yZadPk5JO0NGX22jbZrKc33ngDM2fORMALu6qdP38e\nkydPxvbt24v8psVlE11PO3fKqXitW+t1uBBysejJk0CtWiaOjYj+Z+pUOdhQzDrir74qp8v+d16Q\nIoxePfbu3bu5kgQgB7dNXWLc5mVkACNGGHRKXJxczOPlZaKYiChvn3wCHDwoF+EVQ4sWcpGsNco3\nUTx+/DjfkzIyMkwSjN1YsECu+tSzNQHIPs4WLQzeB56Iiqt8ebk72KefyqZ9EbVqBRih7JIi8k0U\nQUFBWLp0aa7nly1bpuh+2X+LiIgwSrErs3vwAJgzR67tN8CZM4AF3HYi+xQWBty6JXcoKqIuXWTX\ncVKSEePSU3R0dLHq4+U7RnHnzh307NkTJUuW1CWGU6dO4fnz5/j111/hVoTqisZi1WMUY8YAajWw\naJFBp4WEyCl2nHBGpJCoKNlt3KNHkS8RFiZLSX36qRHjMoBJFtwJIXDw4EFcuHABKpUK/v7+6NCh\nQ7ECNQarTRRqtew/2rVLru3XkxBAtWrAn38WqfoxEVmI338Hhg4FLl1SphvZZCuzLZHVJgpAfuob\n+BcSHy9nTNy5Y5qQiMg8hJAtiiVL5L4V5mayPbMtldWOURiYJLRaOUFq0CATxUNEZqNSySHKfv2A\nY8fM974mG6OwZFbdojDQtGnAb78BBw4ATk5KR0NExhAVBQwcKDc66tzZfO9rdy0Ke7Bnj2yibtzI\nJEFkUdRqOYWpiDp3luU8Bg0CDNiGRzFMFOZQhAx+48b//og4gE1kYe7elVMQizFw2KIFsH+/LMuz\neLERYzMBJgpTu3dPLoDIzNT7lOfPgd695c6obduaMDYiKhpPT2DAAIPXQ72oYUO5Fc0338huZkvt\nUbfaRGE1g9nffiunLBnQdzRtGlCzpqwcQEQWauJE4KefgISEYl2mdm05bXbzZuCzz4wU2ws4mG3J\nHj4EfH2BU6cAb2+9Trl6FWjZEjh/XiYLIrJg//yn3MB+yZJiXyo5GQgOBvr3ByZPLn5oeeE6Cks0\ndaocbPjxR70OF0IOcnXqJFdhE5GFe/gQqFdP7kqk55fBgiQlye7mkSNNs32qyTYuoiJ6+hRYuNCg\nydK//gokJgIffWTCuIjIeCpXBo4eNVrtfzc3OcDdti1Qpgzw4YdGuWyxMVGYyu3b8muBr69eh6el\nyTJQq1dzKiyRVXnpJaNezstLJovgYJksBg406uWLhF1PFmLSJNlLVcy9UYjIRly6BLz2GvDdd3IW\npDGw68mKXb0KLFsGnDundCREZCnq1wd27wY6dgRKlwa6dVMuFqtNFLa0Z/bcubLbibOciCi7wEBg\nxw65zcC9e0DJkkW7jsn2zLZkttb1VKeO/GNo0EDpSIioWL7/Xi6wbdbMqJdt2lRujNmqVfGuw1pP\nliAzU852MkB8PJCeLpuZRGTltFq5YtbIOnSQhUGVwkRhTGvXymX9Bjh4UNal517YRDZgyBDg9Gn5\nMKL27eVnhVKYKIxFowG+/BIYNcqg0w4cUGYDEyIygdKl5T6nX3xh1Mu2aQPExMidWJXARGEsv/wC\nVKli0Ke+EPJbggXsLktExvL++8CJE7IOj5FUqCALCB4/brRLGoSJwhi0WmD6dFnRy4A+pGvX5OF1\n65owNiIyr7JlZennyEijXrZ9e+XGKax2eqxF2b5dLqfu0sWg0/7uduL4BJGNGTMGKGHc7+EdOsjy\ncUpgi8IYPD2B+fMN/sRntxORjTJykgDk1NizZ2W5H3NjojCGpk2B1q31PvzSJbluggPZRKSvsmWB\nJk3k3hXmZrVdT9a8MnvIEMDREejZ02hFJ4nIDgQFAX/+KbciMARXZlshLy+5/SGTBBEZIiJCzpYs\n6lgFV2ZbCa1W7sdeo4bSkRCRWezaZbRNZsqXB1JSjHIpgzBRFNX163LPCQM9eAA4OwOlSpkgJiKy\nPK++Kqs23LhR7Es5OwOpqUaIyUBMFEU1erTcks5At2+zSiyRXalcGfjgA2DWrGJfytmZLQrrceYM\ncOoUEBZm8KlJSXK7QyKyI2PHAhs2ALduFesyTBTW5Msv5crL0qUNPpUtCiI7VK2a/GI5Z06xLsNE\nYS0uXQIOHy7yrudsURDZqU8+AZ4/l9OWiqh8eY5RWIeZM2WF2HLlinQ6WxREdqpGDWDJkmLV7FGq\nRWG1C+4UM2lSsZoESUlcjU1ERcNEYS38/Ip1OlsURFRUHKOwExyjIKKiKldObp2s1Zr3fS2uRZGW\nloYRI0agVKlSCA4ORv/+/ZUOyWiEkKuymSiICM+eAWXKGHRKiRKyOGBammxdmIvFtSi2bNmCPn36\nYOnSpdi2bZvS4RjVgwfyG0ERZtUSkS25cAF4+eUiNQ2U6H4yS6IYMmQIXF1d0ahRoxzPR0VFwc/P\nD76+vpg9ezYAIDExEZ6engAABwcHc4RXuPXrjbL8nuMTRAQA8PeX3xqL8GXYZhPF4MGDERUVleM5\njUaD8PBwREVF4eLFi1i3bh0uXboEDw8PJCQkAAC05u6Iy8uDB8DIkUbZiITjE0QEQE6RnTABmD3b\n4HUVShQGNEuiaNOmDVxcXHI8FxMTAx8fH3h7e8PJyQn9+vVDZGQkevXqhc2bN2PEiBHo3r27OcIr\n2HffAb16yV3sioktCiLS6dkTSE4Gjh416DQlCgMqNpidvYsJADw8PHDy5EmULVsWP/74Y6HnR0RE\n6P7bZBsYPXkCLF4MnDxplMs1aAC4uhrlUkRk7RwcZCmgOXMM2iFz6FDAw0O/Y4u7YdHfFEsUqmKs\nTgRyJgqTWbQI6NIFqFvXKJdr3twolyEiWzFokCwUqNXq3b09YID+l3/xS/TUIu54pFiicHd3141F\nAEBCQgI89E2T5qDRAEuXyk1HiIhMoUwZYPp0paMolGLTY4OCghAbG4v4+Hio1Wps2LDBoDGJiIgI\nozSp8uXgAJw/L/uLiIisWHR0dLF6YcyyZ3ZoaCgOHTqEBw8eoHr16pg2bRoGDx6M3bt3Y/To0dBo\nNAgLC8PEiRP1up6175lNRKSEon52miVRGJtKpcKUKVNMN4hNRGRD/h7Unjp1qn0lCisMm4ioYMnJ\ncpMjEynqZ6fFlfAgIrJLFy4AzZoBWVlKR5ILE0V2Gg0weLAydXyJyL41bAi4uxeprIepWW2iMMms\np40bgWvX5Bp5IiJzGz0amDfP6Je1illPxmaSMQqtFggIAL7+GujUybjXJiLSR1YWUKcO8Ouvsrqs\nkXGMori2bpWLXzp2VDoSIrJXjo5AeLisMWdBrDZRGLXrSQi5OvKzz4q18TkRUbG9/77RWxPsejKG\n//xHVtrat88o5cSJiCyR3S24M3rYQrA1QUQ2jWMUxcUkQUSUJyYKIiIqkNUmCpNXjyUiUppGI7dj\nLiYOZhMR2apVq+Saiq1bjXI5DmYTEdma9HSgVi25HXOdOsW+HAeziYhsTdmyQFgYsGCBomGwRUFE\nZMkSEoDGjYG4OKBChWJdyu5aFBzMJiK74OkJvP46sGJFkS/BwWwiIlt35gxw8ybw1lvFugwHs4mI\nqEB21/VERETmwURBREQFYqIgIqICMVEQEVmT9HQgJcWsb2m1iYLTY4nILk2YAMyfb9ApnB5LRGRP\nzpwBuneXC/AcHQ06lbOeiIjsQZMmchHejh1me0smCiIiazNyJLBokdnejl1PRETW5vlzwMsLOHwY\neOklvU9j1xMRkb0oVQr46itArTbL27FFQURkJ9iiICIik2CiICKiAjFREBFRgaw2UXBlNhGRfrgy\nm4iI9MLBbCIiMgkmCiIiKhATBRERFYiJgoiICsREQUREBWKiICKiAjFREBFRgZgoiIioQEwURERU\nICYKIiIqkMUliri4OAwdOhS9e/dWOhQiIoIFJoratWvjhx9+UDoMo7CWooWM07isIU5riBFgnJbC\nZIliyJAhcHV1RaNGjXI8HxUVBT8/P/j6+mL27NmmenuLYC1/PIzTuKwhTmuIEWCclsJkiWLw4MGI\niorK8ZxGo0F4eDiioqJw8eJFrFu3DpcuXcJPP/2EMWPG4Pbt26YKh4iIishkiaJNmzZwcXHJ8VxM\nTAx8fHzg7e0NJycn9OvXD5GRkRgwYAC+/fZb1KxZEw8fPsSwYcNw9uxZm29xEBFZBWFCcXFxomHD\nhrqfN23aJIYOHar7+aeffhLh4eEGXxcAH3zwwQcfRXgUhSPMSKVSGeU6gpsWERGZjVlnPbm7uyMh\nIUH3c0JCAjw8PMwZAhERGcisiSIoKAixsbGIj4+HWq3Ghg0b0L17d3OGQEREBjJZoggNDUXLli1x\n9epVeHp6YsWKFXB0dMTChQvRqVMnNGjQAH379kX9+vULvdb48eNRv359BAYGolevXnjy5Emexyk9\n9XbTpk3w9/eHg4MDTp8+ne9x3t7eCAgIQJMmTfDKK6+YMUJJ3ziVvp8PHz5ESEgI6tWrh44dO+Lx\n48d5HqfE/dTn3nz88cfw9fVFYGAgzpw5Y5a4XlRYnNHR0ahYsSKaNGmCJk2aYPr06WaPMb+p9NlZ\nwr0sLE5LuJeA7Klp3749/P390bBhQ8yfPz/P4wy6p0Ua2TCzvXv3Co1GI4QQYsKECWLChAm5jsnK\nyhJ169YVcXFxQq1Wi8DAQHHx4kWzxnnp0iVx5coVERwcLE6dOpXvcd7e3uLBgwdmjCwnfeK0hPs5\nfvx4MXv2bCGEELNmzcrz/3chzH8/9bk3O3fuFF26dBFCCHHixAnRvHlzs8VnSJwHDx4U3bp1M3ts\n2R0+fFicPn06x8SX7CzhXgpReJyWcC+FECIpKUmcOXNGCCFESkqKqFevXrH/Pi1uZXZeQkJCUKKE\nDLV58+a4detWrmPym3prTn5+fqhXr55exwoFB+T1idMS7ue2bdswaNAgAMCgQYOwdevWfI815/3U\n595kj7158+Z4/Pgx7t69a7YY9Y0TUH5ySF5T6bOzhHsJFB4noPy9BIAaNWqgcePGAIDy5cujfv36\nudaoGXpPrSJRZPfjjz+ia9euuZ5PTEyEp6en7mcPDw8kJiaaMzS9qVQqvP766wgKCsKyZcuUDidP\nlnA/7969C1dXVwCAq6trvn/I5r6f+tybvI7J6wuOKekTp0qlwrFjxxAYGIiuXbvi4sWLZo1RH5Zw\nL/VhifcyPj4eZ86cQfPmzXM8b+g9Nev02IKEhITgzp07uZ7/8ssv0a1bNwDAjBkzULJkSfTv3z/X\nccaaelsYfeIszNGjR+Hm5obk5GSEhITAz88Pbdq0sag4lb6fM2bMyBVPfjGZ436+GIs+Xvx2aa57\nasj7NW3aFAkJCShbtix2796NHj164OrVq2aIzjBK30t9WNq9TE1NxTvvvIPvvvsO5cuXz/W6IffU\nYhLFb7/9VuDrK1euxK5du7B///48XzfX1NvC4tSHm5sbAKBatWro2bMnYmJijP7BVtw4LeF+urq6\n4s6dO6hRowaSkpJQvXr1PI8zx/3MTp978+Ixt27dgru7u8liyos+cTo7O+v+u0uXLhgxYgQePnyI\nypUrmy3OwljCvdSHJd3LzMxMvP3223j33XfRo0ePXK8bek+touspKioKc+fORWRkJEqXLp3nMZY2\n9Ta/vsr09HSkpKQAANLS0rB3794CZ3uYWn5xWsL97N69O1atWgUAWLVqVZ5/8ErcT33uTffu3bF6\n9WoAwIkTJ1CpUiVdN5q56BPn3bt3dX8DMTExEEJYVJIALONe6sNS7qUQAmFhYWjQoAFGjx6d5zEG\n31NjjbSbko+Pj/Dy8hKNGzcWjRs3FsOHDxdCCJGYmCi6du2qO27Xrl2iXr16om7duuLLL780e5xb\ntmwRHh4eonTp0sLV1VV07tw5V5zXr18XgYGBIjAwUPj7+1tsnEIofz8fPHggXnvtNeHr6ytCQkLE\no0ePcsWp1P3M6958//334vvvv9cdM3LkSFG3bl0REBBQ4Cw4JeNcuHCh8Pf3F4GBgaJFixbi+PHj\nZo+xX79+ws3NTTg5OQkPDw+xfPlyi7yXhcVpCfdSCCGOHDkiVCqVCAwM1H1m7tq1q1j3VCWEBQzT\nExGRxbKKriciIlIOEwURERWIiYKIiArEREFERAVioiDKQ14LlIwlIiICX3/9tcmuT2RsTBREeTDl\nyl9LXFVMVBAmCiI9Xb9+HV26dEFQUBDatm2LK1eu4MmTJ/D29tYdk5aWBi8vL2g0mjyPf9H8+fPh\n7++PwMBAhIaGmvG3IdKfxZTwILJ0H3zwAZYsWQIfHx+cPHkSI0aMwP79+9G4cWNER0cjODgYO3bs\nQOfOneHg4JDv8cD/WhWzZ89GfHw8nJyc8PTpUyV/PaJ8MVEQ6SE1NRXHjx9H7969dc+p1WoAQN++\nfbFhwwYEBwdj/fr1CA8PR2pqKo4dO5bn8dkFBASgf//+6NGjR54lSogsARMFkR60Wi0qVaqU505g\n3bp1w6RJk/Do0SOcPn0aHTp0QEpKClxcXPLdOezvggg7d+7E4cOHsX37dsyYMQN//vknHBwcTPq7\nEBmKYxREeqhQoQJq166NX375BYD8oD937hwAOUOqWbNm+Pjjj9GtWzeoVKo8jz9//nyOawohcPPm\nTQQHB2PWrFl48uQJ0tLSzPuLEemBiYIoD+np6fD09NQ95s2bh59//hnLly9H48aN0bBhQ2zfvl13\nfN++fbF27Vr07dtX99yLx2/btk33mkqlgkajwYABAxAQEICmTZti1KhRqFChgll/TyJ9sCggEREV\niC0KIiIqEBMFEREViImCiIgKxERBREQFYqIgIqICMVEQEVGB/h/cV8ENGKkrWAAAAABJRU5ErkJg\ngg==\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Average number of upcrossings per time unit\n", + "----------------------------------------------\n", + "Next we compute the mean frequency as the average number of upcrossings per time unit of the mean level (= 0); this may require interpolation in the crossing intensity curve, as follows. \n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "T = xx[:, 0].max() - xx[:, 0].min()\n", + "f0 = np.interp(0, lc.args, lc.data, 0) / T #! zero up-crossing frequency \n", + "print('f0 = %g' % f0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f0 = 0.224071\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Turningpoints and irregularity factor\n", + "----------------------------------------" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "fm = len(tp.data) / (2 * T) # frequency of maxima\n", + "alfa = f0 / fm # approx Tm24/Tm02\n", + "\n", + "print('fm = %g, alpha = %g, ' % (fm, alfa))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fm = 0.456159, alpha = 0.491212, \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visually examine data\n", + "------------------------\n", + "We finish this section with some remarks about the quality of the measured data. Especially sea surface measurements can be of poor quality. We shall now check the quality of the dataset {\\tt xx}. It is always good practice to visually examine the data before the analysis to get an impression of the quality, \n", + "non-linearities and narrow-bandedness of the data.First we shall plot the data and zoom in on a specific region. A part of sea data is visualized with the following commands" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "ts.plot_wave('k-', tp, '*', nfig=1, nsub=1)\n", + "\n", + "axis([0, 2, -2, 2])\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEXCAYAAACqIS9uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXl4E9X+/jvpnjRt06bpvlC6syPKTuuCLAIiqOwoYlkU\nwf2CegWvit7rFfSKV6kLisiioiIKyJWfRZYLXJW1rKV037ekaZO2Sc7vj35nyDIzmSRtU+i8z9Pn\naWZO5pzMzHnP57yfz/kcihBCIEKECBEiegwk7m6ACBEiRIjoWojEL0KECBE9DCLxixAhQkQPg0j8\nIkSIENHDIBK/CBEiRPQwiMQvQoQIET0MIvE7gcrKSowZMwYBAQF47rnn3N0cAEB8fDwOHDjQ5fVO\nnDgRX3zxRYdfV6fTYfLkyQgKCsKMGTM6/PoiOhY5OTmIiYnp9HokEgny8/M5z2/cuBFPPfVUp7eD\nC7t378bMmTPdVr9Q9AjiP3z4MEaMGIGgoCCEhIRg1KhR+P33352+XnZ2NlQqFTQaDd56660ObKnz\noCgKFEV1ah1r1qzBvHnzLI7t2bPH5lhH4JtvvkFVVRXq6uqwY8eODr9+T0ZXkXRXo7W1Fa+//jqe\nf/55AEBBQQEkEgkGDx5sUa6mpgbe3t7o1asXAOCNN97AxIkTLcokJSWxHvvqq68AcA9AkydPRm5u\nLs6ePdthv6szcNMTv0ajwaRJk7BixQrU19ejtLQUq1evho+Pj8PXIoTAZDKhsLAQaWlpndBaETQK\nCwuRnJwMiYT9FTUajV3cIhE0DAaDu5vAil27diEtLQ0REREWx3U6HXJzc5nPW7duRUJCAmMojRkz\nBkePHgW9lrW8vBwGgwGnTp2CyWRijl29ehVjxoyx245Zs2YhOzu7o35W54Dc5Pjf//5HgoKCOM+v\nXr2azJ07l/l87do1QlEUMRqNhBBCMjIyyIsvvkhGjhxJ/Pz8yNy5c4mXlxfx9vYm/v7+5MCBA+T4\n8eNk2LBhJCgoiERERJBly5aR1tZW5prnzp0jd911FwkODiZhYWFk7dq1hBBCjEYjeeONN0jv3r1J\nSEgIefDBB0ldXR1nW3fv3k0GDBhAgoKCyIgRI8iZM2eYc/Hx8eTAgQOEEEJMJhPndcePH082bNhg\ncd3+/fuT7777jhBCyPLly0lMTAwJCAggt9xyCzl06BAhhJC9e/cSb29v4uXlRfz9/cnAgQOZ+/Px\nxx8z9b766qskLi6OqFQqMn/+fKJWqy3u6+eff05iY2OJUqkkr7/+OuvvfPnlly3q+uSTT8imTZvI\niBEjyFNPPUVCQkLIX//6V6JWq8m8efNIaGgoiYuLI6+99hoxmUyEEGJRPigoiPTu3ZscOXKEfPrp\npyQmJoaoVCry+eefc97rjIwM8tJLL5ERI0YQf39/MnnyZFJdXU1mz55NAgICyK233koKCgqY8hcu\nXGCecUpKCvnqq6+Ycz/++CMZOHAgCQgIIDExMWTNmjXMOUfuS35+vsW7/OijjxKVSsV8njt3Lnnn\nnXcIIYR8+umnJC0tjcjlcpKQkEA2btxICCFEq9USX19fIpFIiL+/P5HL5aS8vJz3naHb+Mknn5DY\n2FiSkZFh07Zff/2VREdHM59LS0vJtGnTSGhoKOnVqxf517/+xRz38/OzeM///PNPolQqicFgIIQQ\n8sknn5C0tDSiUCjIuHHjSGFhIVOWoihy9epV1vuzYMECi3tHt/v1118nzz33HHN8yJAh5PXXXyfx\n8fGEEEJaWlqIVColf/75JyGEkB07dpAFCxaQjIwM8scffzDHEhMTBbXjyJEjpFevXqznugtueuLX\naDQkJCSEPPTQQ2Tv3r02xLpmzRq7xB8XF0fOnz9PjEYjaWtrIw8//DD561//ynznjz/+IMePHydG\no5EUFBSQtLQ0pgNqNBoSHh5O1q1bR1paWkhjYyM5fvw4IYSQd955hwwfPpyUlpaS1tZWsnjxYjJr\n1izW3/Hnn38SlUpFTpw4QUwmE/n8889JfHw8M8CYEz/fdTdv3kxGjhzJXDc3N5cEBQUx19myZQup\nq6sjRqORvP322yQ8PJy0tLQw92revHkW7crMzCSffPIJIaS9wyYmJpJr164RrVZLpk2bxpSn7+ui\nRYuIXq8np0+fJj4+PuTChQusv9e6rk2bNhFPT0+yYcMGYjQaiU6nI/PmzSNTp04lWq2WFBQUkOTk\nZKYtdPnPPvuMmEwm8tJLL5GoqChmUN6/fz+Ry+WkqamJtf6MjAySlJRE8vPziVqtJunp6SQxMZEc\nOHCAGAwGMn/+fLJgwQJCSDuZRkdHk88++4wYjUZy8uRJolQqyfnz5wkhhOTk5JBz584RQgg5c+YM\nCQsLI99//71T9yU2NpYhqOTkZNK7d2+mbGxsLDl16hQhhJCffvqJ5OfnE0IIOXjwoAWx5eTkWJA0\nIfzvDN3Ghx56iDQ3NxO9Xm/TLnPiNxqNZPDgweTVV18lbW1tJD8/nyQkJJCff/6ZEELIHXfcQT76\n6CPmu88++yxZunQpIYSQ77//niQmJpKLFy8So9FIXnvtNTJixAimLB/h3nrrreSbb75hPtPtLigo\nIDExMcRkMpHc3FySmppKfvnlF4b4CSHk9ttvJ+vXryeEEPL444+TTz/9lLz44osWxxYuXCioHbW1\ntYSiKNLY2Mh6vjvgpid+QtqtsYcffphER0cTT09PMmXKFFJZWUkIsW/xZ2ZmktWrV1tc7+GHHyYv\nvfQSZ33r168n9913HyGEkK1bt5LBgwezlktLS2PImhBCysrKiJeXF1O3OZYsWWIx2BBCSEpKCvnt\nt98IIZbEz3ddjUZDZDIZKSoqIoQQ8sILL1i80NZQKBTMzML6XhFiSfx33HEH+eCDD5hzly5dYuql\n72tpaSlz/rbbbiPbt29nrde6rk2bNpHY2Fjms8FgIN7e3hYEuXHjRpKZmcmUT0pKYs6dOXOGUBRF\nqqqqmGMhISHk9OnTrPVnZmYyMzNCCHnmmWfIxIkTmc+7d+9mZj3bt28no0ePtvj+okWLyCuvvMJ6\n7RUrVpCnnnqKEEIcvi/z5s0j69atI+Xl5SQlJYX85S9/IR9++KHNbMAaU6dOJe+++y4hxNY6J4T/\nnaHbeO3aNc7rm1/z2LFjFs+KEELWrl3LDJQff/wxueOOOwgh7bPEmJgYZmY5fvx45n0ipH0QkUql\nzPvKR7hJSUnM4ELI9XtrMBjIXXfdRX7++Wfyl7/8haxdu9aG+NesWcP02QEDBpC8vDyyb98+5lj/\n/v3J5s2bmfJ87WhtbSUURZHi4mLO++Vu3PQaPwCkpqZi06ZNKC4uxrlz51BWVoYnn3xS8PftOcIu\nX76MSZMmISIiAoGBgXjxxRdRW1sLACguLkZCQgLr9woKCnDfffdBoVBAoVAgPT0dnp6eqKystClb\nWFiIt99+mymrUChQUlKCsrIyh64rl8txzz33YNu2bQCA7du3Y86cOcx3//nPfyI9PR1BQUFQKBRQ\nq9WoqakRdJ/Ky8sRFxfHfI6NjYXBYLD4PeHh4cz/UqkUTU1Ngq4NWD6HmpoatLW12dRXWlrKfA4L\nC2P+9/PzAwCEhoZaHNNqtZz1mX/f19cXKpXK4jP93cLCQhw/ftzi2WzdupX53cePH8ftt98OlUqF\noKAgbNy4kXk/aAi9LxkZGcjJycGhQ4cwZswYZGRk4ODBg/jtt98wevRoptzevXsxbNgwhISEQKFQ\nYM+ePTZ1mkPIuyjUIVxYWIiysjKL+/HGG2+gqqoKADBt2jT897//RUVFBX777TdIJBKMGjWK+e6K\nFSuY74WEhACAxXPlgkKhgEajsTlOURTmz5+PTZs2Yfv27Zg3bx6j59MYM2YMDh8+jPr6elRXV6N3\n794YPnw4jh49ivr6euTm5grS9wGgsbERABAUFCSovDvQI4jfHCkpKXjooYdw7tw5AIBMJkNzczNz\nvqKiwuY79qJlli5divT0dOTl5UGtVuP1119nnEKxsbGc4WexsbHYt28f6uvrmb/m5mYb5xRd9sUX\nX7Qoq9VqWUMd7V131qxZ2LZtG/773/9Cr9fj9ttvBwAcOnQIb731Fr7++ms0NDSgvr4egYGBTCex\ndx8iIyNRUFDAfC4qKoKnp6cFgQoFW13mx5RKJby8vGzqi46OdrguZ9tDIzY2FhkZGRb3u7GxEe+/\n/z4AYPbs2Zg6dSpKSkrQ0NCAJUuWMO+Ho8jIyMChQ4eQk5ODzMxMjBo1CkeOHMHBgweRmZkJAGhp\nacH06dPx/PPPo6qqCvX19Zg4cSLvcxTyLgqNGouJiUGvXr0srqXRaPDjjz8CaCfou+++Gzt27MDW\nrVsxa9Ysi3ZkZ2dbfLepqQnDhg2zW2///v1x+fJl1nPTpk3Dnj170Lt3b9Z3ZNiwYVCr1fjoo48w\ncuRIAEBAQAAiIyORnZ2NyMhICyODDxcuXEB8fDz8/f0FlXcHbnriv3TpEtatW8dYDMXFxdi2bRuG\nDx8OABg4cCB+++03FBcXQ61W44033rC5hrV1YP1Zq9VCLpdDKpXi4sWL+OCDD5hz99xzD8rLy/Hu\nu++ipaUFjY2NOHHiBABgyZIleOGFF1BUVAQAqK6uxg8//MD6O7KysvDhhx/ixIkTIISgqakJP/30\nE6vFau+6EydORGFhIVavXm0Rc9zY2AhPT08olUq0trbib3/7m4UFFR4ejoKCApvfT2PWrFlYv349\nCgoKoNVq8cILL2DmzJmckTls99LecRoeHh548MEH8eKLL0Kr1aKwsBDr16/H3Llzeb/nCMzbwNee\ne+65B5cvX8aWLVvQ1taGtrY2/O9//8PFixcBtL8fCoUC3t7eOHHiBLZu3WqXRLnqS0xMhK+vL7Zs\n2YKMjAzI5XKoVCrs3LkTGRkZANrDGltbW6FUKiGRSLB3717s37+fuUZYWBhqa2stnq0j76I93Hbb\nbZDL5fjHP/4BnU4Ho9GIc+fOWYRQz549G59//jl27tyJ2bNnW7Rj7dq1OH/+PABArVbj66+/FlTv\nxIkTcfDgQdZzMpkMv/76Kz7++GPW835+fhgyZAjWrVtnYdmPGjUK69atY+6tOVpaWqDX65k/ejA/\nePCgTShod8NNT/xyuRzHjx/H0KFD4e/vj+HDh6N///54++23AQBjx47FjBkz0L9/f9x6662YPHmy\nTadk+2x+7J///Ce2bt2KgIAALFq0CDNnzmTOy+Vy/Oc//8Hu3bsRERGB5ORk5OTkAABWrFiBKVOm\n4O6770ZAQACGDx/ODArWuOWWW/DRRx9h2bJlCA4ORlJSEjZv3sxKIPau6+3tjWnTpuHAgQMWnW78\n+PEYP348kpOTER8fDz8/P8TGxjLnH3jgAQBASEgIhgwZYlPvI488gnnz5mHMmDFISEiAVCrFe++9\nx3kfuY6x3WO2dQrvvfceZDIZEhISMHr0aMyZMwcLFizgLO/oOgd79Zs/4/3792P79u2IiopCREQE\nVq1ahdbWVgDAv//9b7z88ssICAjAq6++ajNLc+S+AEBmZiaUSiWioqKYzwCYeHW5XI5//etfePDB\nBxEcHIxt27bh3nvvZb6fmpqKWbNmISEhAcHBwaioqLD7zgi5d3QZDw8P/Pjjjzh16hQSEhIQGhqK\nRYsWWQw0U6ZMQV5eHiIiItCvXz/m+NSpU/GXv/wFM2fORGBgIPr164eff/5ZUDsmTZqEixcvory8\nnLX84MGDmdh9tmtlZGSgurqakZ0AYPTo0aipqWGVefr06QOpVMr8ffbZZwDa5dPFixcz5ZYuXYql\nS5dyttsdoIg900qECBEibhB89NFHOH/+PNavX++W+nfv3o0vv/wS27dvd0v9QuES8RcXF2P+/Pmo\nqqoCRVFYtGgRli9fblNu+fLl2Lt3LzMqDho0yKVGixAhQoQI5+Hpype9vLywfv16DBw4EFqtFrfc\ncgvGjh1rsap1z549yMvLw5UrV3D8+HEsXboUx44dc7nhIkSIECHCObik8YeHh2PgwIEAAH9/f6Sl\npdmEF/7www946KGHAABDhw5FQ0MDa7iiCBEiRIjoGnSYc7egoAAnT57E0KFDLY6XlpZaxP9GR0ej\npKSko6oVIUKECBEOwiWph4ZWq8X999+Pd999lzV21dqN4GgUgwgRIkSI4IajrlqXLf62tjZMnz4d\nc+fOxdSpU23OR0VFobi4mPlcUlLChKFZg7SnkBD/XPxbvXq129twM/2J91O8n935zxm4RPyEECxc\nuBDp6emcKRCmTJmCzZs3AwCOHTuGoKAgp1ZyihAhQoSIjoFLUs+RI0ewZcsW9O/fnwnRXLt2LbP6\nb/HixZg4cSL27NmDxMREyGQybNq0yfVWixAhQoQIp+ES8Y8aNUpQzpENGza4Uo0IB0Gv5BTRMRDv\nZ8dCvJ/uR7dZuUtRlNN6lQgRIkT0VDjDnTd9rh4RIkSIEGEJkfhFiBAhoodBJH4RIkSI6GEQiV+E\nCBEiehhE4hchQoSIHgaR+EWIECGih0EkfhEiRIjoYRCJX4QIESJ6GETiFyFChIgeBpH4RYgQIaKH\nQSR+ESJEiOhhEIlfhAgRInoYROIXIUKEiB4GkfhFiBAhoodBJH4RLoEQglWr/iGm1BYh4gaCSPwi\nXMLOnT/j/ffL8e23+93dFBEiRAiESPwinEJ29hb06TMJTz+9H42N67Bq1W/o02cSsrO3uLtpIkSI\nsAOXtl4U0XORlTUHCkUIHnxwCwAKer0Ja9cuw/Tp49zdNBEiRNiByxb/I488grCwMPTr14/1fE5O\nDgIDAzFo0CAMGjQIr732mqtViugGoCgKFEUB8AMwDvX1TWbHRIgQ0Z3hssW/YMECPPHEE5g/fz5n\nmYyMDPzwww+uViWim+Hcucvw8fkOQ4akYezYOFy5UuzuJokQIUIAXLb4R48eDYVCwVtGjPi4OTFt\nWiYSEyOQnp4OlUqKlSsfdXeTRIgQIQCd7tylKApHjx7FgAEDMHHiRJw/f76zqxTRRSgoKEB8fDxS\nUlJw8eJFdzdHhAgRAtHpzt3BgwejuLgYUqkUe/fuxdSpU3H58mXWsmvWrGH+z8zMRGZmZmc3T4QL\nKCoqQmxsLBITE/Hrr7+6uzkiRPQI5OTkICcnx6VrUKQDdJiCggJMnjwZZ8+etVu2V69e+OOPPxAc\nHGzZEIoSJaEbDG+++Sbq6+sxY8YMLFiwAKdPn3Z3k0SI6HFwhjs7XeqprKxkGnXixAkQQmxIX8SN\niZaWFvj4+CAmJgbFxaJjV4SIGwUuSz2zZs3CwYMHUVNTg5iYGLzyyitoa2sDACxevBjffPMNPvjg\nA3h6ekIqlWL79u0uN1pE94Ber4dcLodSqYROp0NTUxNkMpm7myVChAg76BCppyMgSj03Hp5++mlE\nRUXhmWeeQVJSEnbv3o3U1FR3N0uEiB6Fbin1iLh5QUs9AES5R4SIGwgi8YtwGnq9niH+tLQ0nDx5\n0s0tEiFChBCIxC/CabS0tMDX1xcAMGXKFOzatcvNLRIhQoQQiMQvwmmYSz233347Tp8+jcbGRje3\nSoQIEfYgEr8Ip2FO/N7e3oiMjERJSYmbWyVChAh7EIlfhNPQ6/WM1AMAUVFRKC0tdWOLRIgQIQQi\n8YtwGuYWP9BO/GVlZW5skQgRIoRAJH4RTsOa+CMjI0WLX4SIGwAi8YtwGmwWv0j8IkR0f4jEL8Jp\nsGn8otQjQkT3h0j8IpyGtcWvVCpRW1vrxhaJECFCCETiF+E0rInf29sbra2tbmyRCBEihEAkfhFO\nwzxlAwD4+PiIxC9CxA0AkfhFOA3zlA2AaPHfKCCEYNWqf4jZcHswROK/ydCVnVqUem5M7Nz5M95/\nvxzffrvf3U0R4SaIxH+Toas6tdFohNFohJeXF3NMJP7ujezsLejTZxLmzt2CxsZ1WLXqN/TpMwnZ\n2Vvc3TQRXQyR+G8S0J16+fI9XdKpaWufoijmmEj83RtZWXOwZMk0tLQQABT0ehNeeWUZsrLmuLtp\nIroYIvHfJMjKmoM1ax5HfX0TuqJTW8s8QNcSv6hTOw6KonD+/HkAvujd+3E0NOhAUZTF4C2iZ8Dl\nPXdFdA/QHbi11QMhIXPQ0BDaqZ2ai/hbWlo6pT5r0JLWkCH7MX36uC6p82bAiRNnARzGF1/8grIy\nDa5cEXdN64lw2eJ/5JFHEBYWhn79+nGWWb58OZKSkjBgwABxl6ZORF5eMeTyPRg71oRNmyZ0aqd2\nl8VPS1pZWTtFnVoArGdGwcEmAM3QarWYPn0cVq581L0NFOEWuEz8CxYswL59+zjP79mzB3l5ebhy\n5Qqys7OxdOlSV6sUwYHnnnsEjY3lKC0t7fRObZ2uAbhO/J0pv9CSVmNjC0Sd2j6snf0VFRVITEyE\nRqNxc8tEuBMuE//o0aOhUCg4z//www946KGHAABDhw5FQ0MDKisrXa1WBAuqqqpgMpm6JFEam8Xv\n4eEBiqJgNBo7rV6KomAwGGA0eiEy8hFRp+YAPTNateo3i5lRfn4lkpOTReLv4eh0jb+0tBQxMTHM\n5+joaJSUlCAsLMym7Jo1a5j/MzMzkZmZ2dnNu6lQUVGBpKQkFBUVgRDSqWTIRvzA9dW7np6d92r9\n739nAWzHX/7yBqKiUkSdmgVZWXOgUIRgxYoDACg0Nuqxfv1izJv3MxISEkTiv4GRk5ODnJwcl67R\nJc5d66k/FyGZE78Ix1FeXo6EhATU1taipqYGoaGhnVYXF/HTco9UKu20uu+8cwDWr2+GRqPB8uWi\nY5cN9CxIo2kFMA51db2gVmugUqkQFBQkEn83ASEEL7zwFtaufU6woWZtFL/yyisO19vp4ZxRUVEo\nLr5ukZWUlCAqKqqzq+2RqKurQ3BwMDOr6kywafxA1zh48/PzAQANDQ2dWs+Njry8YqxenQpgP267\nrRBnz15GREQEAgICROLvJnDXKupOJ/4pU6Zg8+bNAIBjx44hKCiIVeYBAJhb/GvWiJ8d/Jy2Ywdk\nMhmio6MhfeutTq0vdtMmPFJUZHOeIf5O/L21tbX4p78/xvy//9dpv+9m+LxSX4oRIwYAABZX5OGJ\n2ssIDw9HQEAAxvz6q9vb15M//zF5Gt5XJeOFFw6hsXEdyha9jvdVydej0xy9voOgiIshGLNmzcLB\ngwdRU1ODsLAwvPLKK2hrawMALF68GACwbNky7Nu3DzKZDJs2bcLgwYNtG0JR4mIcF/Huu+/i6tWr\naGlpwaBBg7BkyZJOq+vbb7/FF198ge+++87ieEJCAn755RckJCR0Wt1PPvkkjh07hpiYGHz99ded\nVs/NgAMHDmDy5Mno168fFi9ejEOHDmHs2LHYvXs3tm3b5u7m9VgQQvDNN/uwfPkvqKh4GzExq7Bu\nXQamTx/nsG/OGe70dKg0C4S8PBs2bHC1mm4PZ7S6jkZzczOkUimUSuVNLfWo1WrEx8eLm74IgF6v\nR2RkJOrq6lBbW4uQkBBR6ukGMPfBUNQENDSkOBWd5qyxfEOkbLgRlud3h4yHOp0OUqm0SzR+Pudu\nZ6/eVavViIuLEzV+AWhpaUFERATq6+sZ4pfL5SLxdwPk5RXjiSdUIGQfNmwY41R02s6d3Guo+HBD\nEH93IFUuZGdvQWrqBDz11M9uX0lKW/xRUVFuJf6usPhjY2OhVqs7tZ6bAXq9HhEREWhoaEBNTQ1C\nQkIglUqh1+vd3bQej5Urs9C3by8AwKBBSQ4tuMzO3oLk5HGYN2+rU3V3a+K/vgjloNtJlQtZWXPQ\np08oSkqq4O6VpM3NzfDz84NSqURdXV2n1uVO4m9oaBAtfoHQ6/Xw9/eHTCZDfn4+goOD4ePjIxJ/\nNwE98zKPfBSCrKw5SE4OhKenc2HTLmv8nYmsrDkIClJgxoytoEl17dpl3SopV3titFb4+ASjrW0i\n6uuT3LaSlJZ6goKCOp0U3a3xx8XFQa1Wd/pCtRsd9PaYwcHByMvLQ0hICHx9fUXi7yZobGwE4Djx\nUxSF+no1DAaVU/V2a4ufoijodDoAvggPX9Btl+fX1GgxZ44nxo41YenSELetJKWlHoVCgfr6+k6t\ny91ST1hYGCiKEgnMDugBOigoCMXFjQgODoavr2+XZVEVwQ+NRgMvLy+UlZU5/N3KygY891ysU/V2\na+IHgLNnrwDYjltvre30jJPOom/fCAwd2hdjx47Fhx/+E2PHDnJLO2ipJzAwEBqNBiaTqdPqspey\nobNACIFarUZgYGCXzGxudND7IhMiBTANx4/n3vQW/40QDEJDo9EgLCwMTU1NDn9XJtNj2rS7naq3\n2xP/9OmZAJpRWVnZbdPI0iT41FNPYezYsbh48aJb2kFLPR4eHvD392emkZ0Bd1n8Op0OEokEPj4+\nCAwMFB28dnDkyEl88sn/Q0XFIAAf4623ziEj42FoNAZ3N63T0J2DQazR2NiIsLCw/1M2HENVVRVU\nqptQ6gGAmpoaJCYmdrp04QraNX4fSCQSxMTEuC37KC31AEBQUFCn3jN3afy0tQ9AtPgFID09HmPH\nDoSXlz8ACi0tBC+/vBRGY+cZBe4CHQzy9NP7u20wiDVoi7+5udmh7xFCUFtbC6VS6VS9IvF3AFpa\nWuDt7Q0ACAsL6zbE35mk6C6LX6PRWBB/d7D4u7O00P5uekGtbkF6+tNoaNDBy8sLBoOhU6VAd4De\nq0Gt1sHdEXZCQVv8jhJ/Q0MDZDIZwzuO4oYg/qSkJDQ0NHTLjgVYkqA7iV+n08HPzw8AOt3B6y7i\nb2xshFwuBwAEBga63eInhOC++5Zg3boC7Nz5s1vbwga9Xo/6ej02bRqPc+fexqZNE5CXV3JTOnjp\nwI/mZgKJZGK3DQYxh0ajQXh4uMNST1VVlUvZd28I4o+MjIS3t7dTDpCugDXxV1VVuaUdXWnxu0vq\n0Wq18Pf3B+B+qSc7ewtiY2/Hrl1taG19H8uX7+t20kJLSwumTh3F5ICh/WQ3q4M3L68YycknYTLt\nxZtvDu6WwSDmcFbqqampcVrmAW4Q4lcqlV0SougsaI0f6D5Sj0KhcJvU05mWpDXxu0vqyc7egpdf\nfg+lpbX8HGzeAAAgAElEQVQAfABQKC9vRllZRbeamXIN0Dcr8a9cmQW9vgZxcXHo1Su0WwaDmMNZ\n565er3dpz4tuT/zl5eVQqVTdmvi7i8ZPR/UAne/c7elST1bWHKxatQiEBAKgADwNQIKFC6dj0aK5\nbmkTG7iI/2ZdvUtvPdq3b99u4f+xB2ct/tbWVqf1faCbr9wFgKtXryIxMbHTicwVmJNgaGgoqqur\nu7wNJpPJopPfrM5da4vfmYUvHQGKovDHH7+j3XaqAOAFLy8jKioCupWmTK/ctcbNavFXV1fD398f\nkZGR3Z74TSYTmpqaoFKpHLb4XSX+bm3xG41GFBYWolevXt3e4qc7V/tiGdLljjOdTgdfX1+GdDr7\nfnUXjb+zcxLx4cSJMxg1KgJff50FitqD6dPj0LdvstvawwY+qedmc+4C7bvQKZXKG2KNR1NTE6RS\nKfz9/bvc4u/WxF9cXIzQ0FD4+flBoVC4tZPzwVzjB4CAgIBOXTzFBvMwR8A5i9+RsER3rdzVarWM\n1BMeHo6KiopOq4sPBoMBFRW52LnzPdx//wQoFN54771V3U5TplfuWuNmtfhpP1d3In6ufqXRaCCX\ny+Hn5yda/DTKy8vxn//8B7179wYA3HnnnVi9enW3eZjmMNf4Abgl33lDQ4MF8Tvj3HVkxaM7NX7a\n4o+MjHSb1HPq1ClER0czKyeFDrRdHfPf05y75sTv7lBfGlz9qrGxEQEBAZBKpaLFT+OBBx7A22+/\njUmTJgEA5s+fj9jYWJw+fdrNLbOFNQnK5fIut/jNV7QCjjl3nUl/7U6ph7b4IyMjUV5e3ml18SEn\nJweZmZnMZ6EWZlenE+hpzt2mpibIZLJusbiP7lf0vrrW/Uqj0SAgIICx+B0xBm5a4q+ursauXbvw\n7LPPMsdSU1PdlgeHD91B6rEmfkcs/qysOVi9einy8oogdMWjXq9nFouZoys1/oCAABgMBmi12k6r\njws5OTnIyMhgPtsjfpoEnnjiJ5fSCTg6Y+hpzt3uJPXQK4m12haw9Sta6vHw8ICXl5dDPhe3E/++\nffuQmpqKpKQk/P3vf7c5n5OTg8DAQAwaNAiDBg3Ca6+9Jui6dXV1UCgUFse6K/GzWfxdLfW4YvHT\newoAvvDxuVfQisfu4NylKMotVr/BYMDhw4dtiJ9voM3KmoPbb++L6moN2knA6FQ6AUdnDD3NudsZ\nUo+z8hzdh9TqFtaVxLTUAwB+fn4OyT1uJX6j0Yhly5Zh3759OH/+PLZt24YLFy7YlMvIyMDJkydx\n8uRJvPTSS3avazKZUF9ff0MQPyEEra2t8PLyYo65Q+ppaGhAUFAQ89lR5+6FC9cAbIdMdlhQ+mt3\nEb95HD8AREREdLnOf+rUKURFRVlkRrRnYVIUhfz8q/D0lMHXdypqa5scSidAzxgWLfrOoRlDT9P4\n6UiZjrT4XZHn8vKKsWCBDCbTXnz44R0W/YqWegBAKpU65OC19is6CpeI/8SJE0hMTER8fDy8vLww\nc+ZM7Nq1y6acoyNlY2MjpFKpBZkCQEJCAq5du+ZKkzscNOlLJNdvZXfQ+GUyGVpbWwWT8MKFUxEb\nq4RWq8WkSZm80SmEEOh0OrfH8QMd5+B1xKo7e/YsBg8ebHFMiKZ85UoxnnkmBo8/nogpU3QOpRPI\nypqDJ5+cjYaGJjiSgMzdUT1d7cxubm7uMI2/I7Z+XbkyC1FR7f1y2LC+Fv3K3Ihx1MHrVou/tLQU\nMTExzOfo6GiUlpZalKEoCkePHsWAAQMwceJEnD9/nvN6a9aswZo1a7B69WrW5cghISGora11pckd\nDmt9H2jXnt0t9VAU5ZDV39TUBH9/f4SHh9sl0ra2Nnh4eMDT03b9X1embADaLf6OkHocseq0Wi1j\nqdEQIi20tJTh0UdnYuTIkWhsrHAo9LN9wdif8PDwh4fHRNTXN9udMRBCODX+rnLu8t1XVwYFru92\npNRDa/R8vi8hv4HuT9bvqbnF70hIZ05ODg4cOIBDhw5hzZo1jv2o/4NLxC9kmjp48GAUFxfj9OnT\neOKJJzB16lTOsjTxz58/HxERETbng4ODUV9f361yobCFNbpL6jEnfqD9fgld+0BHQ0RFRdkM3tbg\ncuwCzln8jhCAtQToqsVPW3XPPvuLYKvOevAB2mdYfBabVqtFTU0NYmNj0bt3bxQUFDjc1gsX8vHA\nAyb07n0Vr73W3+6MgR6gPTw8bM51tsVP39fly/dw3ldXJBSu79JSj1wuh1ardYkrKIr6v+/7wtf3\nPlbfl5DfUF5eDg8PD5s1J7RzF3DM4s/MzMTQoUMxYcIE9xB/VFSUxSbBxcXFiI6Otigjl8sZ633C\nhAloa2uzS0Z1dXUIDg62Oe7t7Q0/Pz+3e+vNwaa1dQfnLgCoVCrBeYMcJX42+QBwjviFEgAhBDU1\nNQgJCWGO0c5dZ61H2qorLCyHUAmFnh2Zw57FVlRUhNjYWHh4eCAuLg4FBQUOt1Wl8sCUKXcgNDQU\ngwcn250x8D2nznbuLlgwA6GhQHl5Lazv68aNX0CpHIaFC3c6LKFkZ29BauoEzJjxGet3aanH09MT\nPj4+NmTq6HtCb/0aHX3OwvflyKYv5eXlSEtL6zCLH3Cz1DNkyBBcuXIFBQUFaG1txY4dOzBlyhSL\nMpWVlcxNPnHiBAghrKRuDi7iB7qf3MNm8XeHcE6gfWWro8QvJMlcRxH/dQ31N0EE0NTUBE9PT4vZ\nRkREBEpLSzFt2lKnrMfrFpwvpNJpgiKatFotZDKZxTF7FnRFRQUziw0MDIS3t7fD73F+fj569+4N\npVKJmpoau+XtEX9nWvy7du1CUVER/PwU8POztJaDg5XQaOTQaCRwdMOUrKw5yMqaCpPJg/W75hlq\n2Wbejs4y5s2bAH9/CTQajcXWr7TBUFxcafc3lJeXY9CgQTbEX1tbyxgxN5TG7+npiQ0bNmDcuHFI\nT0/HjBkzkJaWho0bN2Ljxo0AgG+++Qb9+vXDwIED8eSTT2L79u12r8tH/I7IF10BNo2/o6QeRyUQ\n86gewLGUBjTx03IaH/gIxZGUDXTnqa8X5rBky0F++PCfOHKkHLt2GZ12wF26VABgO+6/Xy4ooolN\n6vHz8+Ml0vLycoSHhzOf4+PjHZJ7CCG4evUqEhISBBM/l2MX6FziJ4TgnXfewdChY/DJJ+PQ1vYj\nPvlkHLZs+Q4REcMwZ87LaGuLACAF8CBKSmrwyy+/CZKO2zdaaQLgC5lsus1ATUs9gGU/dNTIoFFb\nW4uEhASbGXx7nQDgi8jIRzgNBkIIysvL0b9/f5tnZk78N5TFD7TLN5cuXUJeXh5WrVoFAFi8eDEW\nL14MAHj88cdx7tw5nDp1CkePHsWwYcPsXpMtlJPGjWDxy2SyDtk0xhHrpLa21mZHHkeJ39/fX9DA\nSieEY4MjFj/dUbRaA7y9p9i1tq2JPzt7C7Zu/X8wGGJAiBIAhWvXKjFqVD+H4uOnT88E0AyJRGJh\n1XGBTerx9fXl7bjmFj/QTvxvvPEG2traBLWR9m0FBwd3iMXfmc7d7du3o6mpCV988Q5mzZoMhUKB\nMWMG49tvP0BW1n0wGsMANAEYD8ALK1bEIT6+l+DrX7lSDLl8D9LTi20GalrqASwlV9rIqK5ugCOz\njJqaGkRHR8NgMNi81+fP5wPYjqlT/TgNBrVaDU9PT8TFxdnwlvn7fENZ/J2F7iT12LO62TR+e44+\ne3DGOmGzhsPCwpyy+O0Rf0dq/Hl5xbjnnkZ4ePyCTz8dz2ttV1dXW/zGrKw5eO21J9CeXVwPYAa8\nvHwxdmyGQ6mR6XskdLB2RuqxtvhffvllHD16FPn5+YLqzM/PR0JCAiiKcoj42SJ6hLTXWRBC8Pe/\n/x1vvvkmE/UVHh6O8vJyUBSFI0eOAvCCRKICRX0OwBf9+6dg5coswXXceedApKXFoqGhwWag5pJ6\nrhsZRvj6ThW8LSO9oXlgYKCN1b9kyQMAmnH69GlOg6G8vBwRERGsvHVDW/ydge5E/PasbjaLXyqV\nCiIRrkHFUQnEZDKx3jNnNH4h6Zw7Mqpn5cosBAV5QafT4Y47buO1tq0Ht/aOK4G3tw+iosoA+CMs\n7Djy8koE1w+ASfkglPidce7SBEBj4MCB6Nu3L65duyZIzqP1fQDdWuM/e/YsNBoNxo4dyxyLiIhg\nBtfS0hqMGuWDHTvuxVdfzYdUehAXLggb/GjU19ejV69erOGaXFIPAFy5UgQ/v10wmfYiO/suQeso\n6GCCgIAAm6AS+n3hCyemnzvbM7thNf7OAh/xK5XKLtnTlra6s7L4Iw/YNH6hD5FrULm+abQJwDi7\nMdsNDQ2Qy+U2C96c1fi70uIHrlvc5hFibGCb1eTlFWPr1sdQXLwdX355L2pqqjF9egbHFdih1WoR\nGhoquOOxafyOOHdpxMXFYeXK9YLkPFrfB9qNHyGb/bgjqqeoqAhpaWkWCxppix8AZDI9/vnPZ3D/\n/eNx//3jkZwsx4wZdzlUhznxs8Xxm0s95sQ/e/Y4yOUSpKSkIDExXNA6Cj6LX6vVIiYmhte4Ki8v\nR2RkpI3B2tzcDEIIM0iJxA9+jf+WW27B8ePHO70NWVlz8MILj6KhoRl8VjeXxs/3EIVIOXl5xVi6\nNBjAfjz3XCyvdcK18fKNQvyVlZVQKpVOEf/KlVnMRuKzZ0/B7NnjWFeP80Gr1UKlUrkk9diz+Kur\nqy18MNnZW/D113/i9OkYQXIeLfUAwvcadodzt6qqysbXZL7IznoAdCa1Qn19PcLCwuDl5QWtVmsx\nY+KL6ikrK0NMTAxSUlJw9epVQXXRVjmXxR8eHg6j0cj57lhLPXQ76evSxpwo9YDf4h89ejSOHTvW\nqWkBgHar+8KFiwB8ERQ0k1MTZNP47Uk9tJRTUWEb40xj5cos9OkTBwAIDPR0SAKhoVKpUF1dDZPJ\nZPf3OkL8HeXcpVFRUcEa7mYNrt9pjqlTp+L77793qP6mpiaEhYW5JPXYI1LzjXKys7fgnXe2gaIS\nAIRCiFPanPjZrE82uMO5W11dbZHDCLhugLS1taGsjFg8Q2eIv6GhAQqFAkFBQXjggWUWMyY+4qfJ\n1pGIKvqdY7vn9HugUqk4VQia+H19fZmBir6u+XoU0eIHP/EHBQUhISEBZ86c4b1GR+QIyc8vgbf3\n9xg2TM3ptefS+PkeormUExw8m3NQoV80e9YJFyF6e3tDLpcLCn+11vj57ps9i98RCcFkMqGqqgq9\ne/e2S7xCiP+OO+7AuXPnHNrwnrb4XZF67IVzmi/Wycqag1deWQbaKU1RM+06pc01fqEpQTrCueto\nP7Ke2QDXF3ouX/43AFPw17++w5xzJqdOfX09jh8/i6oqOfbv97aYMdXW6jilnrq6OoeJnx4s2AYo\n+j3gW/ti7tsxl3toCYmGaPGDn/iB9hfJns7fERte3HHHQPTpE4fy8nJOrz2bxi8kquf8+asgZAcy\nMvScg4pGo0FaWppTEggNoXIPTfze3t7w8fHhzXEvROoRShT19fXw9/eHQqHoEOL38fHBoEGDcPbs\nWUH1A+0d2BGLnyuqh6vjEkIslufTg7xOp0NoaAEoyh+PPx7N6ZRubW1FWVkZYmNjAQi3kjvCueto\nP2KTejZv/gHff38BH35YCuADvPvuNfj49Mfcucucyqlz4UIh9uz5AxSVYBbGW4FRo/rBaGzktfiD\ng4MdtvhpqYfN4re36LGsrMyC+GkHr2jxW0Gv18NgMLAmaaPBF9Vwfdebdv18xYq9SEu7x+ENL4D2\nDp6amsqbwoDN4vfy8oLJZOKN0R46NBG+vgYUFxdzDiqNjY1IT0+3S/xnzpxBUlIS6zmhxG++paE9\nYuGL6vHw8ABFUTAajXbrBNplnvDwcEGDpRDiB65LXELhCPG3tbXBYDDYECqfxa/T6eDt7W3hfKed\n0n/++R7k8r0ICVFyynlFRUWIjIxkvk8Tmr3B1RXnrr3do7jAZvHv3PkJAA0ALwAUTCYJnnhiFjZv\n/pdTUo+fH8Hjjz8ILy8Z6BkTRXnhrrvGoLW1lfnNHSH1mDt3XbX4lUqlaPFzob6+HsHBwbzxtXzE\nf33XmzYAFMrL65CRkebwhhdAOxn26tULarWas5OwafwURdkdwZ9//nmsXbuWl9Q1Gg369OnDW4YQ\ngu+//94mVQYNISkYAMsUsfZeQj5CARxbvVtZWYmwsDBBIbBCiT80NNRh4lepVIK2v6N1Xev3k8/i\nN5d5aNBO6cjISLS21uPxx2dw1mmu7wPtK+Z9fX3t7jzminOX7kcajQ4ABZ3OIGjBU1VVlYXGn529\nBYMGTYNEkoB2unkQRqMJZ85cgEQicYr46ZTgBkMroqPL4ekZiOHDq3DhQj78/PyYiCIu4o+NjUVh\nYaHdZ00IYeQhtkWZtMUfGhpqV+MHbKUe0eI3A1vqAWvwEf/1XW/0kMmmwctLhpqaaocW9NCg0+9G\nRkaipIR7Gs6mo/JZsDU1NSgoKMATTzyB+vp6zkFFo9EgKSmJt0xBQQEMBgP69OnDel6oxW++l609\n4udz7gKOOXiFWvz0WgXzzsIFPmcbG+jf7uPjY9fqYpN5gHYi5ZK42IifhkQiQVxcHAoLCznrNNf3\naQhx8Lri3KX7UV1dM4DxqK3VClrwZG3x0wMIRZkAxCEqqhcmTwYkkvZ2ObphEND+/pWV1WHr1sdQ\nVLQN999PQFESLFnygIVSwEX8crkcEonEbloVjUYDHx8feHt7sxIz/S6EhISwrn1pampCa2srw2fm\nvGUt9fR4i58tYsIa9haw5OUVY9YsD8yZE4qFC+XIz3cuXzttBffu3ZtzhSWb1APwj+CXLl1CWloa\nPDw8EBYWxhnN0tjYiKCgIN6Bp7q6GhEREZwdkk5iZg/mFr+99AOdQfz2LH61Wg2ZTGazVoENzlj8\n/v7+glJtcL2fFEXB29ublUz5iB9ozz/FR34FBQWIi4uzOCbEweuqczcvrxhhYQeRlRWLYcOKBC14\nUqvVFqHY9GAhlQ5FenoVNJoWPPTQNOzblw3AudxbOp0Ozz23gAnjHTVqINLTVRYRPYBtskRzw0HI\nPg7mcgxbf6bfBYVCwfob6Bh+um/yOXd7vMVvvvKOC/aIf+XKLAQESJCYmIipU8ciKMjgVFto3bt3\n797Iy8tjLcNF/HwkcvHiRaSmpgJot0q4ytEOwbCwME4is+cIT05OxuXLlznP03BE6rE3ODtC/LTU\nY8/iFyrzAK4RP1cb6OiWxsZGVosf4CZTc8cuG+xZvYWFhazEb08icdW5u3JlFpqbqzBx4kQ0N1fb\nXfBECGGdEeXlFWPTpvE4d+5tm0AGPpmECzqdzsLHRN8/WnqhwWXxA5aLyrhgbpVzET9fYkPr1drm\nxM/m3O1Ki992CyU3w3zlHReELFm/evUqRo0ahZiYGLvOUS7QEkBiYiJnSGVLSwtrp+Ybwc2Jn8/S\npTdj9vf35yxD+0S4kJqaikuXLnGeB653WJrM7RG/uSzEBkdCOisqKpCWlmbX4j9y5IhNfDgXHJV6\n6IGMrw10dItU+hvnoEffN+vFh/YsfoVCwUv8RUVFNsQvROppampCVFQU6zkhK3dbWlrQ2NiIkSNH\n4uLFiyCE8Eo9er0eXl5eNjuzmefhmT59nMU5Rx3xJpPJZkCjid/a4ucjfvM0Elywl1KB7jNcsxZr\n4lcqlThy5AhzbWvnriMWv1v33O0MWI/abBBC/HS2ypiYGJSUlDgVzy/E4ufS+PmI/+rVq0hMTATA\n7wugCcPf35/TkVdXV8e5yhlo36e4pKSEt5M3NzfD29ub6bD2YtLNI4DY4MiqUDp5Gd8MSafTYfny\n5Vi/fr2ga3ak1JOdvQVpaROxeHH7JucffliIkyfVrNEtfBY/H/ELsfjpUE4aQqQevr7k6ekJk8kE\ng4F7NkzPxkJDQ+Hl5WU3SIBtfYM9OPqsaNI3TwnhCPHTRpIQi7+0tJQZOO1Z/EKI357F7wjxW896\nHEW3JH57Uk9oaKjdl5CWLmQyGXx9fZ3K4U9btikpKZx7BTsj9dC6NsD/wGmJwB7x81n8Xl5eiI+P\n5xy4AEuZBxBm8fN1cEccVcXFxYiJieEdAI8dO4Y+ffpg6NChgq6pVCodJn6ZTMbahqysOYiPl6Gu\nTguAQksL0LdvKGt0C9eA6Qrxt7W1oaqqysZyFxINw/ecKIqCj48Pr0FgnlE0NTUVFy5ccLo+LgQF\nBaGpqUnwDJGN8IRIPXq9Hm1tbUz7hFj8RUVFzJ7ifM5dRyx+Om2DdVSPI7v20YO1EH8XF7od8QuV\nenQ6Ha80YE5mQjYX4bqGv78/0tPTUVNTw2ohOOPcpS0pupw9qUcmkzlN/EB7p7148SLneWvpxh5x\nWw8U1rDnHKZBCGE6F999yMnJQWZmpt3r0aBlEKGzPNpSZGsDRVE4e/YMAF/Exy9BU1Mb/Pz8WCUP\nrt/tCvGXlJQgPDzcRj5x1eKn2ys0sVxMTIzdvY2dIX6JRCI42yjAT/zWFr9UKkVLSwsMBoNNbhwh\n0W60UUJfi8u564jGT0f0+fv7W7wTAQEBaG5u5p2Bmd8DvuAKIeh2xC9E6qEoCjExMSgqKuIsY05O\nQlINs4EmRIlEgoyMDBw8eNCmDJfWFhAQwNmZq6qqGOLnsnRbWlpgNBrh4+PDa/HzJbSjYY/4O8Pi\nFyL11NfXw9PTkxnc+KKg+vXrZ/d6NOjFUnQGRHspB2hHGdssrbKyErW1Tejf/wLef38KZs/2hF7P\nrnNzWdD2pDE+4mfT9wFhzl17z8mRPQSE9CFniB9wTO5pbm4WTPwURTF9xzoU2J5fBbBP/LTF7+fn\nB0KITZ+xJv6IiAjU1NRg8eKVyMiwTM8hkUh4OcMcfAsohaJbEr89qQdoT2nLR/zmVlZQUJDTFj9N\niCNHjsTRo0dtynBp/FxOK3pUp6/LNTOgrX365eWyhjvC4rcmpq6Seqw7FtdvFBLiaw3a6heScoCe\ntbENPvv378e4cUOQkhKNxsZGJCZGYMyYdNbreHp6sq5Yttd+PuJn0/fNfx8fhFj8fBJLSUkJoqOj\nAQgjfmeeE+BYZI9Op7PhBz8/PxgMBtTX19v8XlrusZZWhKSKKC4uZu49n8UPsIelWhO/t7c3IiKS\n8MsvAQgIiLSpT6iBam8BpRB0O+IXIvUAYFbfsaG1tRUmk4khZFcsfvrBDhgwgDX/C5fUw2XFVFZW\nQqVSMaO9PeIH4JLGD3S8xW9P6nGG+PksfiGzQGuYTH4YPXq+3ZQD9NTa09OTdfD5/vvvMXXqVCYm\nnI/cPD09Wafq9gZKZy1+IcRvz+Lne055eXnMwjEhxpOzFn9ERIRdGYkGm9TTvoF7MIqKimwGBS7i\nt5ccjhAiSOqh30s2jjEnfjoFRm3trSAkGwcOeNu8j0JmIfQ9cDvx79u3D6mpqUhKSsLf//531jLL\nly9HUlISBgwYgJMnT/JeT2gn57P4aWKiyVXoDTVHS0sLsygHAPr374+zZ8/aSAZCiZ+WHCoqKhiZ\nB+B2ApvHfvMRf3V1td3VrElJSbyx/NZEbo8QOsriN7covb29YTAYWInTGeKPjQ3BggWTcPVqMYTu\np2D9LAgh+M9//oN77rmHIRC+3+7p6cman8le++0RP5vFL1Tq4auXz7lrMpmwe/fvTKoIIX3IWeJP\nSUmxG3JMgyuaJTo6GpcuXeIlfnMDyZ7FT7+/9O/hC+ekr2f+PIxGIxoaGpi+Sa9g9vb2B0ChrY2y\neR8dsfjdKvUYjUYsW7YM+/btw/nz57Ft2zYbz/+ePXuQl5eHK1euIDs7G0uXLuW9plCpxzzfhrWG\na+1Mc8bit36Jw8LCIJFIbBy8XBq/9fSVlhx27frFgviFWPxczl2j0YjCwkL06sW/UbVCoYBOp+NN\nDSHU4udKUmYOocRfWVnJaMgURXFa/c4Qf2BgIKqrq2AyeSE5eTnvfgrmxG9ef1lZGaRSKUJDQ5mo\nCz4y5bL4hRA/V9QZ2+It+vd1hMXP9U48//ybaG6+C1u27AMgXON39DkB9mek5rDW8WnExMTg3Llz\nNjNR+rlt3brXgvjtWfwNDQ0WqWPoOHtznjF/rtaDt1qthlwuh4eHB4DrK5j1egrp6U+zvo9Cecrt\nFv+JEyeQmJiI+Ph4eHl5YebMmTa7H/3www946KGHAABDhw5FQ0MDbyimI1JPUVGRhYZLDwLWROYM\n8bPJGSkpKbhy5YrFMXsaPz3FW7p0Fxob1+Gzzypx+HApM8XjIn4hFn9JSQmUSqXd0Z+iKF4HmnVi\nLT7ipgdEvoU8jhC/9SDINvtxlvhzc68C2I7du5dxpr42XwFpXf/ly5eRnJwM4LrlyEemXl5eTkk9\nXAvOCCG4fPmy01KPEIvf2rk7d+4y+Pj0x9tvXwXwAT76qAI+Pv3x739v6zSpJy0tTTDx81n8hYVq\npKSkWByXy+XYs+cgDh9Wobr6ej+j7x/XJkXWxO/p6QlPT09mRTotJ9PvjrXFzybB8q1gBoT7IjvC\n4gdxAV9//TV59NFHmc9ffPEFWbZsmUWZSZMmkSNHjjCf77zzTvL777/bXAuA+Cf+iX/in/jnxJ+j\ncMniF5rxkljp4lzfI4QgMzMTBw4cACGE90+v10MiCYBSuRzAF/D0vBXh4csBmBAVtQIyWV9s3PgF\nCCHYsWMH7r//frvXNP87evQohg0bZnHs6aefxj/+8Q+LY/3798epU6dY20evjoyISIKn5yLI5ffD\n23sJZs3KYspt3boVM2fOtPl+dnY2Hn30URBCcPjwYQwfPtymzMaNG/HII48I+j133XUX9u3bx3ru\ngQcewLZt25jP27dvxwMPPMBa9vz580hJSeGt629/+xtefPFFu20aOXIkDh48yHzu27cvTp8+bVNO\nKpUy+eeF/i1fvhwjR44E0B6Zw1Xu0qVLSExMBCEEn376KR5++GHm3DPPPIM333wThBB8+eWXmDlz\nJh1tROcAACAASURBVG6//Xb88ssvnPdxx44dNsdTU1ORm5vL297Y2Fjk5+dbHHvsscds3jf6r6io\nCFFRUZzX02q1kEqlvHXee++9+O6772yOP/zwMwAWw9t7FoDFePbZN1BQUICYmBje6z377LOc7bX3\nt3DhQjz99NN2y3344YdMvyCEYOPGL5Cefg/Cw58AYEJS0gtIT78HGzd+AZPJhM8++wa+vgsBEMTE\nrMTXX++FyWQCIQRRUVGMXGz999NPP2HChAkWx+hkiYS0O34jIyOZc3Sadfrz3r17cffddzt0D954\n4w0899xzdst99913uPfee5nPzsAl4qe3VKNRXFzMOOu4ypSUlHDmDwGET+t9fHwQGBiAhoYWAF+C\nkChUVNSh3ZFH0K9fGOM4USgUFjvc0yDkun/A/H+APfY6MjLSJvqAK1kSHR7Y0NCA2tomPPNMNAYM\nqEBGRgV0uuvTS1ekHus87Xzgy4liLbnwSTX2Inro7wuJ47eul83RbTKZWEP47CEwMJBZrcznxONz\n7rJJPZWVlTYbjdBwVuMH2PdNOH/+PAYOHMha3p5zV4jezpWa+dSpK0hIOAmdbguefTYeZ8/md2pU\nDwA8+uijOHTokN1y1u/C9bTP3rB24tN+Iy8vOauuzqfzW0s9gGVftf6tbFKPvfU11jBP6cAHt4dz\nDhkyBFeuXEFBQQFaW1uxY8cOmw1BpkyZgs2bNwNoX3ofFBRk0dmt4Yie6++vhESyGxQVDaPxdwAy\nSKX326yuHDRoEM6dO2ezT6+5f8A63pstEVlUVJRNimOuqB6g3cFbXFwMQqoxZ85U1NXVISjICzNn\njmXKcEX1WIdzspXhCvXjagtXrLQjxC+EUISu3DVfyAawD4K0I8s8N4sQBAQE/B+R8hOWuY+GT+On\nNWHzZfzWcDacE2AnfvNkftaQy+Vobm7m3OlMSEw9l3N3+vRbMX16BiQSCd56ayX27cuGXC5n0h5w\nwRXiF5JCAbDV+Gki12qNrOTOp6vzpb1gI36ZTAa1Wo1Vq/5h0w+sBxF7yRPZEBUVxZl+3Rwd4dx1\nKTunp6cnNmzYgHHjxsFoNGLhwoVIS0vDxo0bAQCLFy/GxIkTsWfPHiQmJkImk2HTpk281+Ty2lsj\nO3sLmps90dqaAKAcQBqAqWht/QJ+fv9FScl10lYqlVi0aBG2b9+O/v37Izt7C959dzuqqmLR2Dgc\ns2b9FQZDMgj5AqtWvYSXX34Pt90Wy2rxO0r858+fR2hoKJOnw9rpw2fx0zMjrhV95nHG9sDn3HWE\n+IUQihDnrl6vh16vR2BgIHOMb5cjR9F+j6UApuHw4ZNYtIi9HFdUj8FgQEFBARPHLpfLmWk+10ZB\nHWnxNzQ0oLGx0WYGTUMikTDRXub3kIbQAdra4s/NzcW7775rE6QhkUiYHFlcbXKF+OnfTwh/BlA2\n5y5N7tOm3Y1vv91vQe58mUH5wmjZiD8uLg47dvyIjRvVkEoP2lj85tcSsr7GGkIzCXeEc9fltMwT\nJkzAhAkTLI4tXrzY4vOGDRsEX09oR8/KmgNfXz8sWbIXOt10UNT3IGQ8CNmGIUOiMWPGJIvyaWlp\n+OGHH5jvKhQhmDv3KwBzIZfvQ3s0XftUce3aZaioyLMJTWWz+PmmXSqVCrm5uQgNDWVW9gkl/pqa\nGiZNgUKhgFqthtFoZMLDAMeIX6VS4dq1azbH9Xo9mpqaLKalQqJ6+CCE+K0XsgHsi7icIf7s7C1Y\nt+5rABMBfIyfflqCPn0mYcWKmVi0aK5FWfNwXPOBp7CwEOHh4cyzjYiIwLVr1xAcnMhZLxvxt7W1\nMak3+KBSqSyI/9KlS0hJSeElQVruYSN+tVrNmx8IYJd6cnJycN9992HEiBE25WmrvDOI39fXF1Kp\n1K6l3NzcbKMY8JE7H+xZ/ObrY7Kzt+Dw4VIcORKBxsYP8OGHT0KtbkB29hYsWjSXVerhuk9coInf\n3uDndqmnMyC0o7fv6iODp6cc0dGfgRAJoqOzYDRKcPp0HpP2mIZ5Tv32qSDQ2iqBUjkXWm0rKMoP\nFDUBDQ3N/zd1tJV6lEqlTbw138seGhqK3NxcqFQq+Pj4wMvLCxcuVFiQLJfUc+3aNUa/9/T0RGBg\noIVkYTQaUVZWxusvsW4Lm9RDh3KaSyl8Uk1HWfzWswyAPZzTGeLPypqDV19djsjIeAAUWluBV15Z\nhkcfnW2z5sPc4jev//jx4xYb2EdERCAsLAFq9e2c6R/YiJ9uv71AiLCwMIvnU1JSwrpwyxx8sfzm\nayS4wCb1nD17ljMvkr1Uxs7G8Ztf357c42o6YnM4YvFnZc3B1KkjUVvbBDpLa79+KsaP2BEaPz2A\n21uY1xH3oFsRPyHEoR9FT/Eee+xOPPtsHB577DbIZL+irm4krlyxfEHpnPp0p//zz/MAtmPSJG/0\n79+KhIQL6NOnBC+/nIYrV4pZCZ3eLYvu3PQeq0KkHgCQSkOh10/A4cOnmDJcFr+149Y6g2FFRQWC\ng4PtWpLmbeFKIWFNwK5q/M4Sf0dZ/LTG29hoQFTUI9Dr2499++1+m7w95sRPO3B1Oh2WLl2K559/\nHsD15fY6XSaMxo2c6R+4iF+IFWzt2BNC3Hyx/Oapv7nAJvWcOXMG/fv3Zy1vT4d3xeIHup74HdH4\n6X28ARko6h40NbVBJru+nsVa6rHee1gIKIpCbGysXbnnprP4dTodfHx8LOQMPqxcmYXp08dh1apF\nSEqKxpYtuyCR3AHgI6xbd8Gic9LTNtpiv+uuQZBI9KioqMDAgSo8/fRspKWlISoqECtXPsoavUJn\n0KM7m70XPTQ0FJcuVaK8XIM+fSahsXEUgI/x2mt/MG3jcmjW1tYiMvJ6Iidr4udays8FrqgeZ4i/\nu1v8wHWj4IMP7kN4+DE89tjfsGzZTzZ5e8ydu3Qe/8rKSgQGBmLs2HYnPB05IpUGgS/9A1vKBqFW\nsDXxCyFuPuIS8n3rlA2EEOTm5qJv376s5e1Z/M4maTO/fnex+M2lMnrgP3CgGsBUeHkFwdv7vygq\nuj77p2Vg2rBke7+FQIjOf9NZ/M52cuB65wwIUIKtc1IUhfj4eBQUFABol1L69OmDsrIy7N59GAMH\nDkRKSgqzgpCL4MxfFnskeO1aNYBpCA8P5yQONqmHzshoPgBaE795xIkQcEk9XMTPFY4p5BkJCee0\njugBOs7iB64bBQqFAjExMmzY8BKamtpgff+tnbseHh7Iz8+3WMlMzyCamkycy+0BfqnHHoKDg20s\nfnvEwWfxC/m+tcWv0WhgNBo5NXZ7G5R3hcUvNPhDCPgGTnOpl+YWuTwFwHgYjZ64/fZ0PPzweKZ8\nSEiIxS5lzhK/kHtw01n8rjxUuiNqNG2cnTM8PNziwQwcOBB5eRWorByBa9eqERkZyZznyqFuTvxc\nZWgLYefOJgAf49ixYDz99BvQ6WDTNi8vL5hMJgtLkS0+35r4+UL92BAYGAi9Xm+j6VonjQM6xuK3\nt41cZ1v8NOgwu/Y8KYCf330W9986KissLAxnz561mabbW24PsKdsEEqGISEhFv4jIRY7Xyy/UIvf\nnPhpnxGXP6I7EH9XWfzmv4V+Vxoa9EhNXQGj0RNabZPNAEnnHCKEsBo2QiBkv+huEdXTkXC1k/OF\ndQGWL9Yvv/wXubk1aG4eA+BjvPLKS9DpDiE0tH1xFVe0hLXFz7aYiY4aeuaZ3wBQMBgkGDNmKO67\n705Mnz7Oom3tTmopdDods5Vafn6+TeI1NuKfM8d2+z8uUBTFSBnm0QaVlZU2ddGZMq2jiOjfbK9z\nC9kas7Ky0mYrxY4M56RBP6+8vGKkp59BRcVV/PvfS5j7b51kLywsDOfOnbMhfiGRI65Y/M5KPa5q\n/OaGgPkes2xISEhgAiSsYTQa0dLS4hIhhYeHIzc3l7dMV2n81lIvzS333TcWvr4hKC5Os3He0sQ/\nYMAA+Pn5OWWVh4WF2Y3lp1dlu4KbivjtdU7zWGmVSoa+ffviyy+bUFfXPv1fuHAKfv11NwDhxM9G\nguYWQnr60yguNmHatAlMm6zbRhMerSmaR/TQUCqVFmTqqMXf/pvbrQlr4h8+fLhN+2mr3/r3CXlG\nKpWKcZJydVIui7+jpB4a9PNauTILX331AaqqqnD33SMwfXp7p2az+M+dO8eke3AE5km8zNsvxAoO\nDAxEU1MT2traGMmgq6We0tJSC7+SNZKTk5GXl8dqEAiNXuKDUKmnqy1+wJJbIiMDYTBU2hB/Wloa\ncnNznZZ5gPb3748//uAt44zj2Bo3jdQjBOYvVlVVFYKCFGhr82Dkl4CAAMbqEkL8fFvqCZEGaFgT\nHpvU05598PrGM46s2qXBFtnD9ZJyyT1CLH6JRGJ3FWJNTY3Ny9sZFr9MJkNLSwtaW1tRU1OD4OBg\nnDhxgjlvnV1VpVLhzJkz+OOPqw7nQWGz+IU6dyUSCRQKBerq6kAIYZXgrMEl9RBCBJGPtXPXXniw\nVCpFWFgY4yczh6syDyBc6ukqjZ/r94SFhSE/P9+G+AcPHozff//dZeK3N1u2zqbrDLoV8bvaye3B\n/MWqrKyEWt1iQc61tVpGTnFF6gGuOxcpisL06eOwcuWjnO0SQvypqanMZhX0Un1HOxpbLpDOIH7A\nfnQC217BnWHxUxTF6Pw1NTV46623sHLlSuY8m8Xf3AwcOxbJu10jG1wJ5wSuPx+1Wg1vb2+7BMcl\n9dTX10MqldqVGtgsfnvrQrhy57sa0QN0H43fYDCgpaWF8/63S6NBNit7b7nlFpw+fRpvvfWx08Rs\nvZ6DDSLxOwjz0bSyshIvvrjYgpxXr16G2tpaEEJYl2wDwi1+R2Du1DSZTLh27ZqN7p6cnIwrV67A\naDSitrYWSqXS4Wk1HaduDi7i51rEJfQZOUP8nWHxA+3PrLy8HIQQzJ8/H7m5ucx9MCf+7Owt+Oyz\ngwAmQq/fwBmvzwVXLH6gnfhramoExfAD3Ba/UIvTmvhPnDhhVz6k30NruLp4C2iXM+vr63nzAXWF\nxm9PtgoIiAAwDUeOnLY4LpfLERISi717/RAYyC2Z8cF6Bbc1TCYT0/9dQbci/q6SegwGA9Rqtc2W\nhbSVVVNTg7a2Nta2mGcp7IjpLWAZxnjixAnExMSwJohSqVQoLCxETU2NUw+e3jeWRktLCxobG1nD\n9zrC4ufaGrP1/7d39lFR1fkff8/wjCDPAgI/KBUGeRxWdDe1cBMLCUtrq13d06/j8mO3NDe3tvbs\n1moPlttx+1n9auVY2WY/s8ync3xIbYVWjFCBTNHEBxQZBOKZERiYub8/+N1xGO4d7r1z7zDDfF7n\neI7DfOfeL5fvvO/nfr6fB4MBBoNhhFAoYfEDQ3+zixcvIjw8HJ6enmZfLDBc+AsLl2LDhucRFfUf\nsBWvz4e9Fj+bZChkYxbgt/iFft7S1VNZWYnm5mbcfffdNj8THx/P2etaju+Ch4eHOQCBDzk1wt/f\nHwMDAyP2Zfh+FzZa79AhTwCbsW5dpdkwYN/r7/85TKZNKCnxE2U0sERERKCtrY23+F5bWxuCgoLM\ngSBScSrhd5Srp76+HtHR0ZyJYuHh4bh06RImTpzIece3DLuTS/gtBY9t7s0F+5gtVfjZNnQsXOUa\nWPhi8YX+jTQaDc6cOcP5Xnt7O4KDg0dcXyUt/u+++w6Dg4FgmKEeCmylVsuoHqHx+nzYa/GnpaXh\n9OnTgvz7AP/mrlDht7T4q6urMW/evFGTJ9nOd9bI9V1gk8SsS2uwyGnxq1QqTqufr/Q4G89vMnmC\nLf/OGgbse76+QRiK5PMQZTSweHh4YMKECSOezFnkcPMAbib8bO/Zs2fPjqjlwxIREYHa2lpO/z77\nPmuRCKlNLwRLV8+pU6cwd+5cznG33XYb6urq7BJ+ywVlyyVgr8WfnZ2NEydOcL7H5eYBuBO45HAh\nBAcHY9OmT9DWloOdOw8hLS3NfFOy3twVsylvjb0WP3tDstfVI/TGYRnO2dXVxbvmLeGz+IUUhRNC\nVFQUvvji4IjSGsCQ791kMtlt7VrCVZNfaLSepWFg6z0pc+KLNpJL+J0qnFNpV49KpcKkSZNQVlZm\nLrdrTUJCAqqrq3m/BJYJFt3d3bLcqCwFr7GxkTekjs08NhqNsrh6xAo/29lJyO+clJSE1tZWzpsU\nn/ArkcBVXLwVX311GR0dWgD/gz/9aShfIzzcaD6+5ZqTWukR4C7ZIGb+bDe33l5f5OePrI5pDZ+r\nR+iNw8fHx/w37urqEiTcfBa/lPrz1hQXb0V5+Q0cO3YRPT0fmEuks1VVWWvfnpBRa6xr7AC2jRtb\nuUKj5REJxe2EX6/Xj/C7y01UVBTKysqQn5/P+f6UKVNw/Phx3prrlha/VMvbGktXj63H9ISEBFRW\nVsLPz08WV49Y4TcYDFCr1Zwdx6xRq9VmyzonJ2fYex0dHbwWv9zCP9SJSY0XXjiFpqYhv/1//ddi\n7N//GQB5BIuFz9Uj1OKPjo6Gv38EKipikJlpu0IjwO/qaW5uHlZZlA/LBj9dXV2CbhaTJk1CV1fX\nCCNNSv15awoLl+LAgYPYvdsAQAW9fgD//d9P4tSp02AYRhHDkMvit/Ukb8swsMdosJ6T0sLvVK4e\nOf13fERGRuLf/z7D27JwypQpKCs7x2v9sMJvT1q2NazwGwwGdHV18Yo6a/FzxcALwV5Xj1g/bnR0\nNGdoGp/Fz7oeTKZbrSnlCOcMCQnFzZu3/PahoaHmsEE5BIuFq2SD0Pmzm4M3b+bAZCrGoUPqUTcH\nJ0yYwNkViy8izRrL9SDU4ler1ZwRW1LKEFvDht4CfvD0zEdrazfeeKMY7757Azt3HlJEH8Ra/I7A\n7YS/v7/f7uJDozFk4CxGayt3EbGGhg4MDORDr+d+nPTx8YGfnx86OzvtStSwhLV02eYkfG0GWeGv\nq6sT3eQBGOnqsfV0IYfw89Ud4RN+tVo9os6PHPs+1n771la9ObxTDsFisWdzl90c9PMb2hwcGFCP\nujmoUqlG/E2BIX+7EOFnLX6TySRY+AFuP79cN9Da2iYAzcjIMIBhvsaJE6Hmiqrz5xeiv19Y5V6h\nsBY/23PbaDRi9+7dsnyvpRISEuJewt/X1ye4vrxYWIvq229DAWzG3/9+fphFxb6/ZUsTgM24dGka\nr8XFWv1yCX9wcDDa2trQ2Nho83E7MjIS/f39+Ne/qpCUlCT6PPZa/GJFmE/4dTodr0vPOqRTDuG3\nTqZ78cUn4O3tjc7OTlktfns2d2/1EOAvMsgF1wZvR0eHoI1atVpt3lfp6uoSHKjA5ee312XGfv+u\nXo0F8At89107DIZYAJMAqHDlShPS0+MRFWX/BrIlrMXP9tx+881ifPnlt3jllVdkPY8Y3M7il6Pc\nKB+sRRUQEAquGG32/YEBNQAVjEZPXosrIiICV69excDAgCyRDJMnT4ZOp0NjYyOio6N5x6lUKsTF\nJaOvLw+nT3MXy7KFGB8/VwKXHBa/0WjEJ598gvvvv5/zM9Z+fqUivaKjo6HT6XifPqRgbzinlIgi\nrg1eoa4e4NaakMPit+c6st8/hvEGsAxBQRr4+08E0Ae1+pfw8vKFVpssSxSdJRcv6vDaa9vx3HNH\n0d39d7zyylfo7FyAZ599TdbziMGphb+trQ25ublITEzEggULeCeakJCA9PR0aLVazJw50+YxlXT1\nsNZTX5+K06ISE44VExODEydOIDIyUpYIA7aJg06n443oYS0inS4dwGb85S/HRSeIiInq4UqmkkP4\nP/roI8TExGDGjBmjnpfd0FNK+C9cuAA/Pz/ZwgPtDecUU+aDhWuDV6irB7j1FNjd3S1Y+Lksfnuf\nnG6VVTdg+vQ/QK8fgMHQh6CgWqjVgXjyyVhcvtwou/D//Oc/RXZ2PJqaagAUoLMzCMAm/OtfKkkJ\nWHJgS/hZd7C9SBb+119/Hbm5ubhw4QLuvvtuvP7665zjVCoVSkpKUFVVNaw4FhdKunqA0S0qoRaX\nVqvFu+9uk+UPAAwJv06nw9WrV5GQkMA5hrWIvLwmQEpWKSDO1WMZ8cEih6vnpZdewptvvsn7GUuL\nv6+vD56envD0lD/4bOrUqSgvL5fNzQNwC78YF4oUrF09bLkRIa4e4NaacAYfv+X3b8mS/8Ajj2jw\n4YfLkZlZi7CwcNx7b7bsm64hISG4efMmBgbiALQB8IDU75dcOHU45969e1FaWgoAeOyxx5CTk8Mr\n/kKrHCq9uTtauJXQcKz+fi9cv56NyZOvyDIvtpfp5cuXsXjxYs4xrEXENnOprzeJThDx8fGByWRC\nf3///1tXXby+9sDAwBG11+21+PV6PZqbm3mtfWC4xS80qUgKqamp+NvfNmPSJHncPMBI4R8cHMTA\nwICikWrWrh69Xg8fHx/BTzHsE4MY4ecqxyGHy8zy+/fJJ28AGGp6r1Lp8fzzv8H7778vu/AHBQWh\nubkLMTHVmDMnAzt2eCIw8HF0dARJTsCyF3bPzxq2lIwc3wnJwm9pLdoqJapSqTB//nx4eHigqKgI\nhYWFnOMA4OLFi9i6dStKSkqQk5MzIv57rCku3oqNGz9Ff38agM1obHwGKSn3mRNMpOLj44PAwEAc\nOlSBVatW8Y6zN0HEMgqkr68PERERvBFEAQEBI6JFxFr81pUG2QYzfOcEhlv8fBVS5aCjYxCNjbMQ\nFma78YcYrIWfjQdXUjysXT1ir5mlxS/0ySQ2NhYNDQ0wmUxQq9Xo7OyEh4eHIjc4yz6/tqrhSmXK\nlCn48cfraGvLxdWr7fj448ftTsCyFz49/eCDD/Dwww+jtLQUJSUldp3DpvDn5uZylkl99dVXh722\ndWcsKytDdHQ0WlpakJubC41Gw1uSIDw8HE8++SS0Wq3Q+TsU685agDfWrl1hV7IGS2BgFOrqZqGm\n5hpvExA5EkTYL3pbW5vNiKSAgAD09PQM+5lYiz8oKAi9vb3mQmiXLl3izZhmsczeFWOFCuXWzTsV\nwGbodL+V5eYNjBR+pd08wMgKk2I2doGh9dDU1AQPDw9BiXnAUMTXxIkT0dzcjKioKNTV1eG2225T\n5AbHtks1mUyyVcNlYddCe/ssGI3/wNWrz+LFF99Ga2uL3WvBHlgPgDU7d+7Ea6+9NsIoXrt2rehz\n2PTxHz58GN9///2If4sWLUJkZKR5co2Njbx+JzZKJSIiAosXL7bp53dEHL89yFmPg4XdtO3pmQtg\nM95444yim0psFMdooaiBgYF2C79KpRqW6Xzx4kXeGkksluUrlLD42b0Sg0EFQIUJE0Jl8+Val2yQ\nq5aTLax9/GKFf+LEiTh79izi4uJEndcyiauuro53b8pefHx84O/vj66uLtkTq6wj/UwmrzHz61vC\nFpO0dJGbTCacOXMGWVlZspxD8ubuokWL8NFHHwEYitTgqih58+ZNs7tAr9fj0KGhAll8KL25Kwf2\nFPHi4lbiTjAcsanEunpGE345XD3AcD8/V58BayxdPUpY/ErcvFm4LH65529NSEiIuUw4IM3VU1VV\nNeqTmDWOEn7gVr9puV097N/daPSWfS3Yg6+vL/z9/Yf9XS9fvozw8HDZDCHJPv7nn38eDz/8MN5/\n/30kJCTgs8+Gap/odDoUFhZi3759uHHjBpYsWQJgaKNr6dKlWLBgAe8xlYzjlwu56nGwcPXnVXLx\nsa4eIcLPZfHbyjPgwrKxhJBSE5abu0r5+OUqpmUNn49fSayzPKW4eiorK6HR/AwMwwhed5YbvI4S\nfrldPYBya8FeoqOj0djYaI6UOn36tE2jWSyShT80NBRHjhwZ8fPJkydj3759AIDbb78d1dXVgo/p\n7K4epXDk4rN09dh6vOdz9dhj8be2to5ahE9K/RixyH3zZrGu1eMo4be0DMWEcgJDfRNu3gTOnk3C\nzp2HBF8PjUZj/m7/8MMPmDNnjriJi8DS4pdb+JVaC/bCbmqnpKQAAM6dO4fp06fLdnyny9x1dleP\nEkhJ3JEK6+oZrWY7l8UvJWRPrPBbVktUMqpHCcbC1WPZEQ4Ql7xVXLwVL774IYCF6O8X12ryrrvu\nQmlpKXQ6Hb755hvMnz9f6q8wKkq5epwZ6w3eixcvCqq4KhQSfjdDjKunu7t72AaTEOG2Rorws64L\nJeP4lWCsXD3WFr9Q4S8sXIq1a1cgOjoeYveXUlJS0N7ejvvvfxxLlixR9O+kpMXvrFiGsQIQFBEn\nBqcSfg8PD0WyNIlbCI3q8fb2hlqtHtaPVIrwWy5gscIvV1cnR+Eswi9UhNm9pJ4eo+jNTbVaDY1m\nBk6ejEVwsPhKsWJQ0sfvrHBZ/KNFxInBqYSfrH3lYeOvr169OmqEjbW7R4rwT5s2DRcuXDDXjR9t\nj8DVLX7LcE5HRfV0dHSYn8zEuHoAaVFqbAjypUuJADZj9+5+RUOQ3dXVwxpMer0e7e3tiImJke34\nTmVeu+PGrqMJCAjAtm0HkZqaOqr1xAp/WFiYuXa9WOFPSkrC+fPnzTeN0axJV7b4fXx8zD1sgSGL\nX8loF2Doyczb29tcDE7s5q6UzU02kXH16lIM9Q5QYf16eRIZuQgPD0dzczNaWloU79DnLFg+KV+7\ndg1xcXE2M97FQha/m3HuXD3a23MQHT36RpFlhE13dzd8fX0FZ3eyhIaGws/PD99//72gL62l8Ntq\nFOOMWDYvB5TvIc1i6e4Ra/FLgXUHdXb2OyT+/fbbb0d5eTl8fHxc6gnQHixdPXL1/bDEqYSfLH7l\nYB/PP/+8B8BmVFdHjfp4btmWrrW1VXL1xaSkJJSVlYkW/oaGBt4y1c6It7c3+vv7zW4XR7QSBYYL\nv9g4fqnInchoi2nTpqGlpQXe3lGCCz66OpauHrlavFpCrh43wfrxnG00Y+vx3FKEpfj3WdLT07F9\n+3b4+kaNmiQUGBgIvV6P3t5edHR0yFb62hGwjegNBgN8fHwcJvyxsbG4du0a0tPTRbt6pOLIE5rJ\nvgAAEb1JREFU+Hc/Pz9ERNyGlpY5onINXJng4GD09fWht7d3/Fv85OpRDimP55aWpD3Cn52djdra\nBly4kIadOw/ZHKtWqxEYGIjz588jKipKVr+mI/D19UVf31A/597eXocYMxqNBufPnwfgGFePI2Gf\nVPX6OzE4+J6oXANXRqVSmWv2jHvhJ4tfWcQ+nlsKf0tLy6jlFrgoLt6Kl1/eCjFJQsHBwaipqXEp\nNw+Lj4+PWfj7+vocYvGzwt/b2wuj0eiQfQVHYd2EfiwbpDgadoNXrq5blpCrx40Q+3huKfwNDQ2S\nwskKC5ciODgE//mfu9HbO/TFXbfOtospLCwM1dXVsoavOQrLDV5HuXo0Gg0+/vhjNDY2IioqasyL\njMkJ+1RqMKgdUsvKmWA3eMe9xa9Eb1VCOpbCr9PpJAmxSqWCWu0BT88AwS6m+Ph4HDt2DLGxyiYG\nKYGlxe8o4U9JScGZM2dw6dIl0UX0XAFHbiQ7E+wGb2Nj4/je3B1Pj6jjgZCQEFRXV4NhGBw8WIGX\nXrpD0nHEFqFLSEjA7t278etf/1rS+cYSax+/I4Q/PDwcd911FzZs2DAuhd9ZC6kpTWRkJNavL4bR\n+CPS09NlPbZTCT9Z/M4Fa/Hv2HEQtbW+qK3VSTqO2C9ufHw8TKaJSEpKknS+sWQsXD0AsGzZMjz8\n8MPQaueJKq9MOC+Njd2or5+BoqJg2UtVkKuH4OXf/z6FI0cuY+XK/wXDZOKtt046JKJCp+sEsASX\nLzePOtbZGAtXDwDMmjULgD9qajSjRk4Rzg0bybR3rwHAZhw54iX7986phJ9cPc6Fn58fBgYG0dTk\nDeDvaG+fgK6uHsWSaNgF/+mnnXBEG0olGAtXT3HxVuTlPQG1ugD9/f/jNiGP4xU2kgnwBqCCwaCS\nPZLJqYSfLH7noqjo1/D2vokhj6AKRqMajzxyr2KNqNkFbzJ5wVVD91hXj9FoxODgoOgSF1Jw55DH\n8Yg9VVOFQsJP8BIZGYmbNwcBGJGY+BR8fT1x40arYv5jJfvhOgrW1cPG8Dti7uw1Uqv9Xfa6EcNR\nOpLJqTZ3ydXjXHh5eSEgwBs9Pdtx9mw79uz5SvFQOmftgSoU1tXjSP8+4PrXjRiO0pFMki3+zz//\nHCkpKfDw8EBlZSXvuIMHD0Kj0WDatGlYv369zWMeMtzalFpTsgZrStbQ6zF+nZgYhkmT/PHKsVfw\nfdg35raQSp2PbUO5tnStQ84n92u2NPO64+tguMNg9/GEvu77aQO+D/vG3L6z76fXneJ60GvHvBaL\nipG4U3f+/Hmo1WoUFRVhw4YNyMrKGjHGaDQiKSkJR44cQUxMDLKzs7Ft2zYkJyePnIhKhR07duDB\nBx+UMh1CIQoKClBe/gOam38g14EAnnjiCaSkpCA3Nxf5+fmora0d6ykR4xyVSiU64EKyxa/RaJCY\nmGhzTEVFBaZOnYqEhAR4eXnh0UcfxZ49e3jHk6vH+ejv90R7ew6FCAqE3dx1tKuHIMTgqeTBGxoa\nEBcXZ34dGxuLb7/9lnf8Z599Zn4/JycHOTk5Sk6PsEFx8VZs3PgpmppiYTS+hz/96S948cW3sWrV\no4pF9YwH2M1dEn5CKUpKSlBSUmLXMWwKf25u7rCGvyzr1q1DQUHBqAcX6xpYsWIFfvKTn4j6DKEM\nbP3+p546AjZEcLTiasStzV1HVeYk3A9ro3jt2rWij2FT+A8fPiz6gJbExMSgvv5WdEF9fb3NwlsU\nzuk8sOGAer3J7aoi2oOvry/a2trI4iecGlni+Pk2FmbMmIHa2lrU1dXBYDBg+/btWLRoEe9xyMfv\nXLhrVUR7YF09XV1dLtUonnAvJPv4d+3ahaeeego//vgj8vPzodVqceDAAeh0OhQWFmLfvn3w9PTE\nO++8g3vuuQdGoxHLly/njOhhIYvfuXDXqoj2wLp6HNX7liCkIDmcU26Gmi0Y4OXlNdZTIQjJbN26\nFfv370dGRgba2tpGzV0hCHtxaDinEpDoE65OWFgYWltbyeInnBqnEn6CcHXCwsLQ1tZGwk84NU4l\n/E7idSIIyZDFT7gCTiX8lB1KuDok/IQr4FTCTw0kCFdn4sSJ0Ov1aGlpIeEnnBZFSzaIhbJDCVdH\nrVYjJCQEly9fRlBQ0FhPhyA4cSqLnxpIEOOB0NBQtLczJPyE0+JUwk/ZocR4oL/fC8ASlJaeGuup\nEAQnTpXA5SRTIQhJsBVNr1wJRW/vR5g27S/w8vqOKpoSiiJFO53Kx08Qrgxb0fQPf/ga9fVU0ZRw\nXpzK1UMQrsx4aBZPuAdk8ROEjFDTc8IVIB8/QRCEC+PyRdoIgiAI5SHhJwiCcDNI+AmCINwMEn6C\nIAg3g4SfIAjCzSDhJwiCcDMkC//nn3+OlJQUeHh4oLKykndcQkIC0tPTodVqMXPmTKmnIwiCIGRC\ncgJXWloadu3ahaKiIpvjVCoVSkpKEBoaKvVUBEEQhIxIFn6NRiN4LCVmEQRBOA+Kl2xQqVSYP38+\nPDw8UFRUhMLCQt6xa9asMf8/JycHOTk5Sk+PIAjCpSgpKUFJSYldx7BZsiE3Nxc3btwY8fN169ah\noKAAADBv3jxs2LABWVlZnMdobGxEdHQ0WlpakJubi7fffhtz584dOREq2UAQBCEa2csyHz582K4J\nAUB0dDQAICIiAosXL0ZFRQWn8BMEQRCOQZZwTr67zc2bN9Hd3Q0A0Ov1OHToENLS0uQ4JUEQBCER\nycK/a9cuxMXFoby8HPn5+cjLywMA6HQ65OfnAwBu3LiBuXPnIjMzE7NmzcJ9992HBQsWyDNzgiAI\nQhJUlpkgCMKFobLMBEEQxKiQ8BMEQbgZJPwEQRBuBgk/QRCEm0HCTxAE4WaQ8BMEQbgZJPwEQRBu\nBgk/QRCEm0HCTxAE4WaQ8BMEQbgZJPwEQRBuBgk/QRCEm0HCTxAE4WaQ8BMEQbgZJPwEQRBuBgk/\nQRCEm0HCTxAE4WaQ8BMEQbgZkoX/2WefRXJyMjIyMrBkyRJ0dnZyjjt48CA0Gg2mTZuG9evXS54o\nIZySkpKxnsK4gq6nvND1HHskC/+CBQtw9uxZfPfdd0hMTMRrr702YozRaMSKFStw8OBB1NTUYNu2\nbTh37pxdEyZGh75Y8kLXU17oeo49koU/NzcXavXQx2fNmoXr16+PGFNRUYGpU6ciISEBXl5eePTR\nR7Fnzx7psyUIgiDsRhYf/wcffICFCxeO+HlDQwPi4uLMr2NjY9HQ0CDHKQmCIAiJeNp6Mzc3Fzdu\n3Bjx83Xr1qGgoAAA8Oqrr8Lb2xu/+tWvRoxTqVSiJiN2PMHP2rVrx3oK4wq6nvJC13NssSn8hw8f\ntvnhLVu2YP/+/fjqq68434+JiUF9fb35dX19PWJjYznHMgwz2lwJgiAIGZDs6jl48CDeeOMN7Nmz\nB76+vpxjZsyYgdraWtTV1cFgMGD79u1YtGiR5MkSBEEQ9iNZ+FeuXImenh7k5uZCq9XiiSeeAADo\ndDrk5+cDADw9PfHOO+/gnnvuwfTp0/HII48gOTlZnpkTBEEQ0mAcyIEDB5ikpCRm6tSpzOuvv845\nZuXKlczUqVOZ9PR0prKy0pHTczlGu55Hjx5lJk6cyGRmZjKZmZnMyy+/PAazdA0ef/xxZtKkSUxq\nairvGFqbwhntetLaFM61a9eYnJwcZvr06UxKSgqzceNGznFi1qfDhH9wcJCZMmUKc+XKFcZgMDAZ\nGRlMTU3NsDH79u1j8vLyGIZhmPLycmbWrFmOmp7LIeR6Hj16lCkoKBijGboWX3/9NVNZWckrVLQ2\nxTHa9aS1KZzGxkamqqqKYRiG6e7uZhITE+3WToeVbBAS079371489thjAIZyAzo6OtDU1OSoKboU\nQnMkGNo0F8TcuXMREhLC+z6tTXGMdj0BWptCiYqKQmZmJgAgICAAycnJ0Ol0w8aIXZ8OE34hMf1c\nY7gSwwhh11OlUuH48ePIyMjAwoULUVNT4+hpjhtobcoLrU1p1NXVoaqqCrNmzRr2c7Hr02Y4p5wI\njdG3tgIotp8bIdclKysL9fX18Pf3x4EDB/DAAw/gwoULDpjd+ITWpnzQ2hRPT08PHnroIWzcuBEB\nAQEj3hezPh1m8QuJ6bcec/36dcTExDhqii6FkOsZGBgIf39/AEBeXh4GBgbQ1tbm0HmOF2htygut\nTXEMDAzgwQcfxLJly/DAAw+MeF/s+nSY8AuJ6V+0aBH++c9/AgDKy8sRHByMyMhIR03RpRByPZua\nmsxWQEVFBRiGQWho6FhM1+WhtSkvtDaFwzAMli9fjunTp+P3v/895xix69Nhrh7LmH6j0Yjly5cj\nOTkZmzZtAgAUFRVh4cKF2L9/P6ZOnYoJEybgww8/dNT0XA4h13PHjh1477334OnpCX9/f3z66adj\nPGvn5Ze//CVKS0vx448/Ii4uDmvXrsXAwAAAWptSGO160toUTllZGbZu3Yr09HRotVoAQ2Vzrl27\nBkDa+lQxtLVOEAThVlAHLoIgCDeDhJ8gCMLNIOEnCIJwM0j4CYIg3AwSfsKpaG1thVarhVarRXR0\nNGJjY6HVahEYGIgVK1Yocs533nkHW7ZsEfWZ2bNnSz5faWkpvvnmG0mfbWpq4ux2RxBicFg4J0EI\nISwsDFVVVQCGujQFBgZi9erVip2PYRi8//77OHHihKjPlZWVST7n0aNHERgYiJ/97GeiPxsZGYmQ\nkBBUVlYiKytL8hwI94YsfsKpYaONS0pKzO0+16xZg8ceewx33nknEhISsHPnTjzzzDNIT09HXl4e\nBgcHAQCnTp1CTk4OZsyYgXvvvZezjWhZWRk0Gg08PYdsoJycHKxevRrZ2dlITk7GiRMnsHjxYiQm\nJuKFF14wf45NmS8pKUFOTg5+8YtfIDk5GcuWLTOPSUhIMGejnjx5EvPmzcPVq1exadMmvPnmm9Bq\ntSgrK0NLSwseeughzJw5EzNnzsTx48cBDD0ZsE8/WVlZ0Ov1AIaSdbZt2ybrdSbcCxJ+wiW5cuUK\njh49ir1792LZsmXIzc3F6dOn4efnh3379mFgYAArV67EF198gZMnT+Lxxx/Hn//85xHHOXbsGGbM\nmGF+rVKp4OPjgxMnTuB3v/sd7r//fvzjH//AmTNnsGXLFrS3t5vHsVRXV2Pjxo2oqanB5cuXzcLN\nVSslPj4ev/3tb7F69WpUVVVh9uzZWLVqFZ5++mlUVFRgx44d+M1vfgMA2LBhA959911UVVXh2LFj\n5k53M2fOxNdffy3fxSTcDnL1EC6HSqVCXl4ePDw8kJqaCpPJhHvuuQcAkJaWhrq6Oly4cAFnz57F\n/PnzAQBGoxGTJ08ecaxr165hzpw5w37Glr5ITU1FamqqOfX99ttvR319/YhywzNnzjQfOzMzE3V1\ndbjjjjts/g6WeZNHjhzBuXPnzK+7u7uh1+sxe/ZsPP3001i6dCmWLFlirr0SHR2Nurq6Ua8TQfBB\nwk+4JN7e3gAAtVoNLy8v88/VajUGBwfBMAxSUlLM1rctrJPXfXx8zMdi/295bGssx3h4eJjHeHp6\nwmQyAQD6+vpsnv/bb781/04szz33HO677z7s27cPs2fPxpdffomkpCQwDEOVQQm7IFcP4XIIqTKS\nlJSElpYWlJeXAxiqbshV8z0+Pp7T9y8HCQkJOHnyJADgiy++MP88MDAQ3d3d5tcLFizAW2+9ZX5d\nXV0NALh06RJSUlLwxz/+EdnZ2fjhhx8AAI2NjYiPj1dkzoR7QMJPODWsZatSqTj/bznG8rWXlxd2\n7NiB5557DpmZmdBqtZwhlHPmzDGLM9e5+SxrW+dn+etf/4pVq1YhOzsbnp6e5nEFBQXYtWuXeXP3\nrbfewsmTJ5GRkYGUlBQUFxcDADZu3Ii0tDRkZGTA29sbeXl5AIaqWd55552c5yQIIVCRNsKtYRgG\nWVlZnK4WZ2Xp0qV45plnzJUaCUIsZPETbo1KpUJhYSE++eSTsZ6KIJqbm9HR0UGiT9gFWfwEQRBu\nBln8BEEQbgYJP0EQhJtBwk8QBOFmkPATBEG4GST8BEEQbgYJP0EQhJvxf8XmMgVncOswAAAAAElF\nTkSuQmCC\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finding possible spurious points\n", + "------------------------------------\n", + "However, if the amount of data is too large for visual examinations one could use the following criteria to find possible spurious points. One must be careful using the criteria for extremevalue analysis, because\n", + "it might remove extreme waves that are OK and not spurious." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.misc as wm\n", + "dt = ts.sampling_period()\n", + "# dt = np.diff(xx[:2,0])\n", + "dcrit = 5 * dt\n", + "ddcrit = 9.81 / 2 * dt * dt\n", + "zcrit = 0\n", + "inds, indg = wm.findoutliers(ts.data, zcrit, dcrit, ddcrit, verbose=True)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Found 0 spurious positive jumps of Dx\n", + "Found 0 spurious negative jumps of Dx\n", + "Found 37 spurious positive jumps of D^2x\n", + "Found 200 spurious negative jumps of D^2x\n", + "Found 244 consecutive equal values\n", + "Found the total of 1152 spurious points\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 2.2 Frequency Modeling of Load Histories\n", + "---------------------------------------------------\n", + "Periodogram: Raw spectrum" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "Lmax = 9500\n", + "S = ts.tospecdata(L=Lmax)\n", + "S.plot()\n", + "axis([0, 5, 0, 0.7])\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEXCAYAAAC3c9OwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl8TOf+xz+TpUiIWCsSBNGIPSRiCWKNKKEoSouWNu0P\nt67qbV1d6HJbpdqqezVtkWspaVVxLWmqpFVKLClto8QSRohIrZF98vz+OD0z58ycmTlnlpyZyff9\neuU1Z3nO83zPmcn3c77PqmGMMRAEQRCEEV5qG0AQBEG4JiQQBEEQhCQkEARBEIQkJBAEQRCEJCQQ\nBEEQhCQkEARBEIQkJBAE4QSmT5+OV199VVba3NxceHl5oaqqymn2bNy4EfHx8U7Ln/BMSCAIl+an\nn35Cnz59EBgYiEaNGiE2NhbHjh1zapmhoaHYt2+fXXloNBpoNBoHWWQ/U6ZMwbfffqvf9/LywoUL\nF1S0iHAHfNQ2gCDMcffuXYwcORLJycmYMGECysrKcODAAdSqVcup5Wo0GlgaP1pZWQkfH+v/Oq4+\nBtXV7SPUhyIIwmU5e/YsNBoNJk6cCI1Gg9q1a2Po0KHo3LkzACAlJQV9+/bFnDlzEBgYiIiICNGb\n/507dzBjxgw0b94cISEhePXVV0XVOJ999hk6dOiAgIAAdOzYEVlZWXjiiSdw+fJljBo1CvXq1cOy\nZcv0VUBr1qxBq1atMGTIEADAo48+iqCgIAQGBmLAgAHIzs6WdV9VVVWYP38+mjRpgrZt22LXrl2i\n85bsTklJQWxsLF588UU0bNgQbdq0QVpamv7alJQUtG3bFgEBAWjTpg2++OIL/fF+/foBAPr37w8A\n6Nq1KwICAvDll1+ic+fO2Llzpz6fiooKNG7cGCdPnpT3ZRGeCSMIF+Xu3busUaNGbNq0aWzPnj3s\n5s2bovNr165lPj4+7MMPP2SVlZUsNTWV1a9fn926dYsxxtiYMWPYs88+y4qLi1lBQQHr2bMnS05O\nZowx9uWXX7Lg4GB27Ngxxhhj586dY5cuXWKMMRYaGsq+//57fTkXL15kGo2GTZs2jRUXF7PS0lJ9\n+UVFRay8vJzNnTuXdevWTX/N9OnT2SuvvCJ5X6tWrWLt27dnV65cYTdv3mRxcXHMy8uL6XQ6q3av\nXbuW+fr6ss8//5xVVVWxVatWsebNmzPGGCsqKmIBAQHs7NmzjDHG8vPz2e+//66/LjY2Vm+DRqNh\n58+f1++/9957bOLEifr9bdu2sS5dusj4lghPhgSCcGlOnz7Npk+fzkJCQpiPjw9LTExk169fZ4xx\nTo93jjw9e/Zk69evZ/n5+axWrVqspKREf+6LL75gAwcOZIwxNmzYMLZixQrJMs0JxMWLF83aeevW\nLabRaNjdu3cZY5YFYuDAgXqHzxhj6enpTKPRMJ1OZ9XutWvXsrCwMP25+/fvM41Gw65fv86KiopY\nYGAg+/rrr1lxcbGoTGsCkZeXx+rWrcvu3bvHGGNs3LhxbOnSpWbvl6gZUBUT4dK0b98ea9euhVar\nxW+//YarV69i7ty5+vPBwcGi9K1atcLVq1dx+fJlVFRUICgoCA0aNECDBg3w7LPP4saNGwCAK1eu\noG3btopsadGihX67qqoKL7/8MsLCwlC/fn20bt0aAFBYWGg1n2vXronyatmypX770qVLFu0GgGbN\nmum3/fz8AABFRUXw9/dHamoqPvnkEzRv3hwjR47EmTNnZN1b8+bN0bdvX2zZsgW3b99GWloapkyZ\nIutawnOhRmrCbQgPD8e0adPw6aef6o/l5eWJ0ly6dAmjR49GixYtUKtWLfz555/w8jJ9D2rRogXO\nnTsnWY653kfC4xs3bsSOHTvw/fffo1WrVrh9+zYaNmwoq+E3KCgIly9f1u8Lt63ZbY1hw4Zh2LBh\nKCsrw8KFC/H000/jxx9/lHXttGnTsHr1alRUVKBPnz4ICgpSXD7hWVAEQbgsZ86cwfLly/UioNVq\nsWnTJvTu3VufpqCgACtWrEBFRQW++uor/PHHHxgxYgSaNWuGYcOGYd68ebh37x6qqqpw/vx5vbOc\nOXMmli1bhhMnToAxhnPnzukd9YMPPojz589btK2oqAi1atVCw4YNcf/+ffzzn/8UnbckFBMmTMCK\nFSuQl5eHW7du4d1339WfCwoKsmi3JQoKCrB9+3bcv38fvr6+8Pf3h7e3t2RaqXt85JFHcOLECaxY\nsQJTp061Wh7h+ZBAEC5LvXr1cOTIEcTExKBu3bro3bs3unTpgvfff1+fJiYmBjk5OWjSpAleffVV\nfP3112jQoAEAYN26dSgvL0eHDh3QsGFDPProo8jPzwcAjB8/HgsXLsTkyZMREBCAsWPH4tatWwCA\nBQsW4K233kKDBg2wfPlyAKZRxdSpU9GqVSsEBwejU6dO6N27tyiNpXEQTz/9NOLj49G1a1dERUVh\n3LhxorSW7JbKl9+vqqrCBx98gODgYDRq1AgHDhzAqlWrJK9btGgRpk2bhgYNGmDLli0AgNq1a2Ps\n2LHIzc3F2LFjZX1HhGejYXJiYoJwQVJSUrB69WocOHBAbVM8hjfffBM5OTlYt26d2qYQLgC1QRAE\nAQC4efMm1qxZg/Xr16ttCuEiUBUT4ba42nQW7sxnn32Gli1bIiEhAbGxsWqbQ7gIVMVEEARBSEIR\nBEEQBCGJ27dBUBUDQRCEbVirQPKICIJxU4bU+L/XX39ddRtc5Y+eBT0LehaW/+TgEQJBEARBOB4S\nCIIgCEISEggPIi4uTm0TXAZ6FgboWRigZ6EMt+/mam31L4IgCMIUOb6TIgiCIAhCEhIIgiAIQhIS\nCIIgCEISEgiCIAhCEhIIgiAIQhISCIIgCEISEgiCIAhCEhIIgiAIQhISCIIgCEISEggHsXYtcOGC\n2lYQBEE4DhIIB/HUU8C776pthTKKi4EePdS2giAIV4UEogZz7Rpw4oTt1//nP0D37o6zhyAI14IE\nwoG425yB9i7Gt2sXkJXlGFsIgnA9SCAcSE0TCFrtlSA8GxIIB1JVpbYFBEEQjoMEwkPJzLTevkAR\nAEEQlvBR2wDCOcTEALVrAyUl5tNQFRNBEJagCMKBuFobhKvZQxCEe0ECQRAEQUhCAuHBUARBEIQ9\nkEAQNkNtEATh2ZBAOBBXe2O3Zg85eIIgLKGaQKSlpaF9+/Zo164dlixZIpkmIyMDkZGR6NSpE+Li\n4qrXQBenqgrYt09tKwiC8GRU6eaq0+kwe/Zs7N27F8HBwYiOjkZiYiIiIiL0aW7fvo1Zs2bh22+/\nRUhICAoLC9UwVRHVGUH8/DMweLDrRS0EQXgOqkQQmZmZCAsLQ2hoKHx9fTFp0iRs375dlOaLL77A\nuHHjEBISAgBo3LixGqa6LDRqmyAIZ6NKBJGXl4cWLVro90NCQnDkyBFRmpycHFRUVGDgwIG4d+8e\nnn/+eTzxxBOS+S1atEi/HRcXVyOqo+S0Hzg7uqA2DIJwHzIyMpCRkaHoGlUEQiPDs1RUVODEiRP4\n/vvvUVxcjN69e6NXr15o166dSVqhQBDyIQdPEDUH45fnxYsXW71GFYEIDg6GVqvV72u1Wn1VEk+L\nFi3QuHFj1KlTB3Xq1EH//v1x8uRJSYFwFaqzPcAVIgiCIDwbVdogoqKikJOTg9zcXJSXlyM1NRWJ\niYmiNKNHj8ZPP/0EnU6H4uJiHDlyBB06dFDDXMIMJEAE4dmoEkH4+Phg5cqViI+Ph06nw4wZMxAR\nEYHk5GQAQFJSEtq3b4/hw4ejS5cu8PLywtNPP00CQRAEUY1oGHPv90CNRgNXuAWNBnjiCWDduuop\n79AhoG9f82/xGg3g7Q1UVprPQ6sFWra0PRIYPRrYsYMiCYJwR+T4ThpJ7UBczVHSSGqCIOyBBIIg\nCIKQhASiGmHMcVEGvf0TBOFsSCCqkaVLAS964gRBuAnkrhyIteggK8txZVEEQRCEsyGBqEZczanz\n9rha4zpBEK4BCYQDcTdH6272EgRRvZBAuClyohG5EQsJBUEQUpBAEARBEJKQQLgpjmjP4CMHiiAI\ngpCCBMKBVKejJadOEISzIYGoRlytFxNFEARBWIIEgiCBIAhCEhIID8bVIhaCINwLEggHUp2zp7pC\nIzUJEEF4NiQQBEEQhCQkEB6M3MiA2iAIgpCCBMIN0ekckw/1YiIIwhIkEA6kuhytjw9w7pz1dNRG\nQBCEPZBAuCmFhY7LiyIIgiCkIIFwUxzh1EkYCIKwBAmEm+JI505CQRCEFCQQDuDxx7lPV3a0n34K\nrFghPkaN1ARBWEI1gUhLS0P79u3Rrl07LFmyxOR8RkYG6tevj8jISERGRuKtt95SwUp5bNwoL52a\nb/1z5gDPP++48gmC8Hx81ChUp9Nh9uzZ2Lt3L4KDgxEdHY3ExERERESI0g0YMAA7duxQw0SbcLXZ\nXIW9mCz1aKIIgiAIKVSJIDIzMxEWFobQ0FD4+vpi0qRJ2L59u0k6Rp7LYUgJBD1egiAsoUoEkZeX\nhxYtWuj3Q0JCcOTIEVEajUaDQ4cOoWvXrggODsayZcvQoUMHyfwWLVqk346Li0NcXJwzzHZrKIIg\niJpNRkYGMjIyFF2jikBoZIzg6t69O7RaLfz8/LBnzx6MGTMGZ8+elUwrFIiagiMHwZFAEITnY/zy\nvHjxYqvXqFLFFBwcDK1Wq9/XarUICQkRpalXrx78/PwAAAkJCaioqMDNmzer1U6luFobhBCqYiII\nQimqCERUVBRycnKQm5uL8vJypKamIjExUZTm+vXr+jaIzMxMMMbQsGFDNcz1eEgoCIKQQpUqJh8f\nH6xcuRLx8fHQ6XSYMWMGIiIikJycDABISkrCli1bsGrVKvj4+MDPzw+bN29Ww1S3pqLCsE0RBEEQ\nSlFFIACu2ighIUF0LCkpSb89a9YszJo1q7rNcipqOeQ7d4D7982fJ6EgCEIKGkntQNRytGVlwMmT\n5s8vW2b5ehIIgiCkIIFwU4RVRh9/DHTrpjwPEgaCICxBAlGNOMshl5TYdz0JBUEQUpBAuCmWnPqN\nG+J9WjiIIAhbIIFwIFJO+/ZtICbGueUaC0DTpvKus3c2VxIegvBsSCCczPnzQGam4/OlkdQEQTgb\nEggnUx1v2a++avm8OQEgYSAIwhIkEE7GHaphSCgIgpCCBMKBSDladxAIgiAIKUggnIwrCwQtOUoQ\nhCWsTrWRkpIia3pugFvgZ/r06fba5LZYc7RqOWISAIIgbMGqQDRo0ACxsbFo1KiR1cykVoWr6bhy\nBMFDAkIQhBRWBWL06NHo3LkzwsLCEBAQgOjoaMTExCAyMhI///wzCgoKMG7cOH1aQoyzBMIRTp2q\nmAiCsISs2Vy3bt2Kdu3aobi4GO+88w727duHDz/8EEVFRWjTpo1eIAhTnCUQSvIlASAIwhZkCUS7\ndu0AAH5+fggLC8O0adMAAOXl5VStJEDKEbuyc6YIgiAISyheD8LX1xfTp09HYmIiwsPDceXKFWfY\nRRAEQaiMYoGYPHkyevTogQ0bNmD//v2YOnWqM+zyGFyhkdpVe1cRBOHa2LSiXHh4ON58801H2+KR\nOMv5OqJ6iKqYCIKwhOKBcp9//jkOHz6M8vJyHDx4EFu2bHGGXW4JvakTBOFJKI4gCgoK8MMPP2DF\nihW4d+8e2rZti/HjxzvDNsICjnz7p+m+CYKQQrFAhISE6NsdqBeTe+Cs2VwpIiIIz0ZxFRPfi2nr\n1q3IycmhXkwqYatz/vlnIC/PMXkRBOHZKBaIkJAQLFiwAFlZWfjkk08QGxvrDLvcEjUcrdIy+/QB\nnnxSfC0JBEEQUigWiH//+98IDQ3Fm2++iY8//hjR0dE2FZyWlob27dujXbt2WLJkidl0R48ehY+P\nD7Zu3WpTOa6EWgJCAkAQhC0oFojAwED88MMPqKiosLlQnU6H2bNnIy0tDdnZ2di0aRNOnz4tme6l\nl17C8OHDwdzAy1XnSGp73v6Nr6FGaoIgpLBJII4ePYoJEyZgxIgReNXaepcSZGZmIiwsDKGhofD1\n9cWkSZMkG7s//vhjjB8/Hk2aNFFchhrs3Al88onaVoix5PzdQHMJglARxb2YRo4ciSZNmmDhwoVg\njOHy5cuKC83Ly0OLFi30+yEhIThy5IhJmu3bt2Pfvn04evSoxTUpFi1apN+Oi4tDXFycYpscxXPP\ncWtE/+1v1teKtgclEYS1iIGEgiA8n4yMDGRkZCi6xqpAnDlzBl5eXvoJ+4SN0hqNBq1atVJm5V/X\nWWPu3Ll49913odFowBizWMUkFAhXoLAQOHhQbSs45LRBkEAQhOdj/PK8ePFiq9dYFYi2bdsiIyMD\n6enp8PLyQnR0NKKiouwyNDg4GFqtVr+v1WoREhIiSnP8+HFMmjQJAFBYWIg9e/bA19cXiYmJdpXt\nKTiiDYKEgSAIS1gVCB8fHwwZMgRDhgwBwLUfrFq1ClVVVQgPD0dcXBx8fJTVVEVFRSEnJwe5ublo\n3rw5UlNTsWnTJlGaCxcu6LeffPJJjBo1yq3EwVWm/paKIKiKiSAIOShug+jZsyd69uwJgKt+Wr16\nNcrLyxEcHIz4+Hj4+/tbL9THBytXrkR8fDx0Oh1mzJiBiIgIJCcnAwCSkpKUmuVyONvpys3fUhUT\nCQNBEJawaTZXnvDwcISHhwMArl69ip07d2LixImyrk1ISEBCQoLomDlhWLt2rT1mqkJ1dQFVs5sr\nz7PPAu+8AzRoYF8+BEG4Foq7ud6/fx/Xr183Od68eXPZ4uDJ8MLgKmMEzEUQu3cDpaWGNPaQnAwY\ndUIjCMIDUBxBbNiwAbVq1cLWrVvRuHFjTJgwAcOHD3eGbW6JRiN2uK4wUE4qzcMPc11xHYUd4yYJ\ngnBRFEcQderUQYcOHXDz5k2sWbMGd+/edYZdbourVS1ZSldVpSwvS1RW2p8HQRCuhWKB6N69OzZv\n3owVK1YgJSUFleQZRFR3FZOtEYTcawmCqLkormLq1KkTli9fDgD4888/0bRpU4cb5UmoPebAUjdX\nR0YQN25w+bhK2wtBEPZjVy+moUOHOsoOj8Hrr5js0CGgvFwsEI4UCUdMteFIgUhKAgICgL/GNhIE\n4QEormIixNy5I97n36Dv3gXWrat+e4ypzsn6Cgocmx9BEOoiSyCKiooAABUVFdDpdE41yN1o08b8\nucpK9auYLJXtTNvKyoDcXMfnSxBE9WFVIN577z288cYbmDdvHu7cuYNnn322OuxyG27eFO8b18Gr\n3c3VUtUWX8XkaJsA4K23gNatHZs/QRDVi9U2iJiYGMTExMDX1xepqamocrRX8WCqYzyEEhuMj9nb\nBmGpQdpYOAmCcD+sRhD+/v5ISUmBt7c3Jk+ejP79+1eHXW6LIyKIGzeAq1ctp+Hz/egj5fnz2Kv1\n1E2WIDwbqxFEVFSUaHrvadOm6bdPnTqFzp07y1rfoaYgfBTC6h0lvZhiY4ELFyyPTubzWrjQcl5y\nJutzlKMnwSAIz0JxL6Z169Zh7ty5SElJgb+/v8k03TUdc1qpxHneuOHYkcnmurk6s5Ga3hkIwv2x\nqZvra6+9hqZNm2Lp0qXIyclxtE1ujbkIQglednY+HjRIng2OFgaKIAjCs1A8UK5x48Z44IEHMGLE\nCIwYMcIZNnkUtryly3n7tpRfYKD8tHLOm8OSnRRBEIT7o/hdNS0tDSNHjsS4ceOwZMkSZGZmOsMu\nt8URjdSOdK6WejFZsq2gAHj7bUDJsBeKIAjCs1AcQcTFxWHFihUoLi7GsWPHcOzYMf0Kc4RpFZNw\nW64DtTeCkJvWklA8+CD3OWMG0KyZvHKEdlMEQRDuj2KB0Gg0OHr0KKKjo9G/f3/q9moFR0cQSvOz\ntxcTRQUEUXNRLBA//PADAOCNN95A7dq1MWDAAMyePdvhhrkr5qqYqrMNQm5aWyb602iA7GwgIsI0\nLUUNBOFZKBaIcePGQaPRIDY2FiUlJfj999+dYZfb4ohuro4UCDltEEojiGvXpAWCIAjPwmoj9fHj\nx0X7/fr1Q2xsLABudTnhIDrjtDUROY3U9oxxUBqR2NpILed6S8cpmiAI98dqBLFnzx789ttvsjLT\narXo0aOH3Ua5M3KqmJKTgVmz7CtHyVu/Pd1cqX2CIGouVgXilVdeqQ47PBJzYmG8hoS166TykOu4\n5fSeUioC5tJT1EAQnoVqCwalpaWhffv2aNeuHZYsWWJyfvv27ejatSsiIyPRo0cP7Nu3TwUrlSMn\ngrDmSKurkVrOZH2WyiFBIAjPRhWB0Ol0mD17NtLS0pCdnY1Nmzbh9OnTojRDhgzByZMnkZWVhZSU\nFDzzzDNqmKoYOVNtWHPu1RVBCPMqKgLy8kzTHD5s2VZzkHgQhPujikBkZmYiLCwMoaGh8PX1xaRJ\nk7B9+3ZRGn9/f/12UVERGjduXN1m2oQjurmqwcyZQEiI6fEPPjA95ur3QhCEY1DczRUASktLodFo\nUKtWLZsKzcvLQ4sWLfT7ISEhOHLkiEm6bdu2YcGCBbh27RrS09PN5rdo0SL9dlxcHOLi4myyyxGY\nG01cnRPjWYsgpLq5FhZK5yU11Qa1QRCE+5GRkYGMjAxF18gSiKqqKmzbtg2bNm3CoUOHUFVVBcYY\nvL290bt3b0yZMgVjxoyRvS6E3HRjxozBmDFjcODAATzxxBM4c+aMZDqhQLgaalQxWStPSiDMlSl1\nnCIIgnA/jF+eFy9ebPUaWVVMcXFxOH78OObPn48LFy7g2rVryM/Px4ULFzB//nwcPXoUAwYMkG1o\ncHAwtFqtfl+r1SJEqn7jL/r164fKykr8+eefsstQi+qqYnJkGwRg/xTjxlA0QRDuj6wI4rvvvtNX\nJ+l0OjDG9FVMvXr1Qq9evVBWVia70KioKOTk5CA3NxfNmzdHamqqycJD58+fR5s2baDRaHDixAkA\nQKNGjWSX4cpUZwQhR0icEUFQlEEQ7o8sgRC2NQwZMgSDBw9G69atERAQgFGjRpmksVqojw9WrlyJ\n+Ph46HQ6zJgxAxEREUhOTgYAJCUl4euvv8a6devg6+uLunXrYvPmzUruSzUsRRBSTrOgANiwAZg3\nT1k5jhjAZuvIZ2qDIIiageJG6v379+u3f/zxR8ydOxcffvih4oITEhKQkJAgOpaUlKTf/sc//oF/\n/OMfivNVG6XrQWzaBLzwgnyBcEQ311On5NvI38/du0Dt2vJsJAjCM7Cp5vnChQv46aef0LFjR3z9\n9deOtsmtcbXJ+qTSlpSIj8sRm/r1AYF+Wy2HogmCcH9sEohmzZqhsLAQzz//PBYuXOhom9waZzdS\n2xJB2IPwfvixjOby9Pa2ryyCIFwLxQJx7Ngx+Pn5YcyYMVi/fj1WrlzpDLs8Ao3G8QsG8Thyqg1L\njdTCa/mhKnLaIKiRmiDcH8VtEMHBwdi2bRvKy8vxxx9/YPjw4c6wy22x5Gira1S1Ld1cHQFVKxGE\nZyFLIPhurQAQFBSEMWPGWExTk5EzF5OSPIzh87t8WX5+9szm6iP4hfTpAxw6ZD69cCwF/RQIwv2R\nPVBu6dKlOHv2rMm5M2fOYMmSJYoGynkKpaWmx4SOsaQE2LWL21bSNVSOc/3mG/PnbJmsz1yaKVMM\n2927m+YvxNGD7QiCUBdZEUR6ejo2btyIWbNm4bfffkO9evXAGENRURE6deqEKVOmYO/evc621eW4\nds30mNC5v/ii9TyURhiOrBaSk5cwguC3qQ2CIGoGsgfKPfXUU3jqqaeg0+lQWFgIjUaDxo0bw6sG\nvzYqufXqcJjr1wMdO9q2YJCcRurdu7lPJaOuCYJwX2S5uMzMTFz763XZ29sbaWlpmDlzJubOnYub\nN2861UBXRkn1kNQYgevXgT175OdhnI8xU6dyA+4c2UgtTCNRwyiC2iAIwrOQJRBJSUn6qTR+/PFH\nvPzyy5g2bRoCAgLcZiEfZ6C0/cDYIS9aBHz7rfhYSQmgYForq2WYOwaIu7kqyc8cNTiYJAiPRPZ0\n3w0bNgQApKamIikpCePGjcO4cePQtWtXpxroyihxiFIN2lJERQFXrpg/r/St396J9RgDvv9eXnpq\ngyAIz0KWi9PpdKioqAAA7N27FwMHDtSfq6ysdI5lboCSCGL+fHl5Zmfbbg9g+wC6q1e5z59/Nk3z\nwgvy8qNqJYLwLGQJxGOPPYYBAwYgMTERfn5+6NevHwAgJycHgYGBTjXQlVEiENZ6PElx8KD0MqDW\nsKWRml85bu1a03O+vvLKpTYIgvAsZFUxLVy4EIMGDUJ+fj6GDRum77nEGMPHH3/sVAPdjfPnpY/b\nUuVy6BCQl2d/PtbaIADDPErGS4wqEQiNhpuOIzpauY0EQbgesqfa6N27t8mxhx56yKHGuBtKnLXQ\nGfNv19besm1p9DWe/0nuQDneFimB8PGRvk4qv169gBo4JIYgPBLqd2IHzm6ItWU1NyW9mOSkkTp+\n/rxhTIRU2vJyaqQmCE+ABMIObHWCciMIW5Hbi0nOVBtS5154AXj4Ycv5EQTh/pBA2IHSHkOOcJy2\nRANK5mKyNQIRotGYit+JE8C5c8ryIQhCXRRP900YcORiPM5CrjDxbSTCthL+eiVlmaNHD6B1a+DC\nBfn5EQShLhRB2IEaVSmOHCgnJ4JQEvlYK5eqngjCvaAIopqwJVqw5ZqCAqBBA/ExOQ3Q5qbdEI6R\nsAZ/7YgRgL+/vGsIgnBdSCDswBWrmM6cEe/LjSAsVTG1bWtYbtQSwrLu37d8niAI14eqmOzAVauY\n5F4jJRCMAffuGdLk5wPBwcrLtGZHVRVw6pRj8iUIwjmoJhBpaWlo37492rVrhyVLlpic37hxI7p2\n7YouXbqgb9++OOWC3sQVIwhj5LYh8FNqVVWJq5Tefx9YulT6GmP7lTyPHTuAGjzPI0G4BapUMel0\nOsyePRt79+5FcHAwoqOjkZiYiIiICH2aNm3a4Mcff0T9+vWRlpaGZ555BocPH1bDXLMocYjCSfDs\nEQZnrCjHmEEg7LFFySC+khLl5REEUb2oEkFkZmYiLCwMoaGh8PX1xaRJk7B9+3ZRmt69e6N+/foA\ngJiYGFw+CkK8AAAgAElEQVSxNAe2SrhDnbqlCELY3tC4seGYrQImVc6NG9Ln3eHZEURNR5UIIi8v\nDy1atNDvh4SE4IiFVtDVq1djxIgRZs8vWrRIvx0XF4e4uDhHmGkVV5xqQwrjhmepPBMSgF9+sU8g\npLhyBWjSRLlNBEE4loyMDGRkZCi6RhWB0CjwQPv378eaNWtw8OBBs2mEAlGduMNbsNzJ+hzxdi91\nnVAIKIIgCPUwfnlevHix1WtUEYjg4GBotVr9vlarRYjEwgenTp3C008/jbS0NDQw7tzvArhDL6bS\nUvNv61IO254pQawJRF4et+/lRREEQbgDqrRBREVFIScnB7m5uSgvL0dqaioSExNFaS5fvoyxY8di\nw4YNCAsLU8NMq1RnFdOECebXmrDEokXyqpj4e6mqst15WxMIwLAGNwkEQbg+qgiEj48PVq5cifj4\neHTo0AETJ05EREQEkpOTkZycDAB44403cOvWLTz33HOIjIxEz5491TDVIjIiNLsQOtyvvgLS0pSL\n0o0b5kdCS42krqqSX4YtbRXl5eLyHEFWFjBunOPyIwiCQ7WR1AkJCUhISBAdS0pK0m9//vnn+Pzz\nz6vbLEVs3ly95Slx3jzCQXDGHD1qSOOsKqbqYPt2YOtWdcomCE+GRlKrwCuvyEtn/IZuy1u3l5f1\nuZSMR1Lb6uil7DM3VsKRYmLLynsEQViH5mJSAVurV3Q6sWPt1An47TfL13h5Gap1LGFLG4Tx4Lqb\nN61fU1UFTJoEnDwprww5VMeIdIKoidC7l4rY69jatpVXhpJGaiURhNHYRrz2mrzrUlOBP/6Ql1YO\nJBAE4RwognBhvvlGvG/svOVUrZw9C1y9aj2dI6qY5OCMvEkgCMI5UAThwvzwg+kxpQIhRxwc1Ugt\nBxIIgnAfSCDcCGPn+vXXyvOQ6i28ciWwc6ehDGdMCGhu3xGQQBCEc6AqJjdDuFaDLfj6mh7jB68B\n8toslJCeDvz3v47LTwoSCIJwDiQQbgRjQHi4fXlICYQQLy/HvuV/9hk3xYYzIYEgCOdAVUweTpcu\n4n1rAtGpk2MFgqbUIAj3hQTCjbDFcXt7i/cfeMB82iZNAH9/xwqEtUF6joAiCIJwDiQQKrFnj/Jr\nbHHcxg7aUgRx4wbwxhvVG0GcPg2UldlXBgkEQTgHEgiVsLD+kVmUOm6pBmdrVUwA0KaN6bH33lNW\nNo81gejQAVi2zLa8eUggCMI5kEB4MBoN4OcnPiZHIKQIDLRcPWUOOW0Q9vbMIoEgCOdAAuFCWIsQ\njKe2ePddy+k1GqBpU2DYMMMxWwXC29s5y50SBOG6kECoiNLZWg8fVp5/VZX4zd8egbDF2VMjNUG4\nLyQQKrJxo3hfqQO25hg1Gs5BC6fksFUgfHxsEwil19y8aX2GWmNIIAjCOZBAqMiNG+J9pc7UWpWP\nlEDY0o4A2F7FpDSCmDUL6NxZ2TW8QDz1lLLrCIKwDAmEC2HOAR86ZFt+Xl7cmg3CN2x7qphsQY7o\nCe2Ts3aFuevXrlV+LUEQ5iGBcCHMOVPBSqw25SlVxWQ8lbg1nCkQQmxZHY6qmAjCOZBAOIH/+z9g\nwgTl15lzpuaO29IGwW8rdcTVJRC2OHu512Rnq7duNkG4IyQQTsIWR2fOmWZn226DsUB89BH3qVQg\nnLnuc3U47StXgI4dgaNHnV8WQXgKJBAuhKPHDHh5cQIhFKuiIsM5JdgaQSjFGRHExYtAixbcdmmp\n8vwJoqZCAuEENBrb3oqd8SZtHEHUqsV9upJAKF0lzxhrAmFLw7eQBx8Etm2zLw+CcEdUE4i0tDS0\nb98e7dq1w5IlS0zO//HHH+jduzdq166N999/XwUL5VOnDveZmWl7Hrt2OT6CkKpiWr/ecE4J7iwQ\nQtttEeGCAuDHH5VfRxDujioCodPpMHv2bKSlpSE7OxubNm3C6dOnRWkaNWqEjz/+GPPnz1fDREWM\nGsV9Rkdzn7t2Kc9j5EjHRxBSVUxNmxrOKaE6BIIx5zZS2wNNGULURFQRiMzMTISFhSE0NBS+vr6Y\nNGkSthtNNNSkSRNERUXB19aO+05GOCgrMVF8LjfXtjxtma3V2nlXq2K6csX0GH/fISGmo8sdja0i\nTAJB1ERUWXI0Ly8PLfhWQwAhISE4cuSIzfktWrRIvx0XF4e4uDg7rJOHcFCWlPOU44jatgXOn1d2\njdIyzI2klhKIZcsA44AtJIRz6uYEwstLmfOcN8/0GH8fV6/Kz0eIHKG0F+oeS7g7GRkZyMjIUHSN\nKgKhcXCdgFAg1MDW2zF2iM7oxVRVJT2SWkog6tY1PcYLgzmB4PN+6SVAoilJFvY6X2vPTZi/rWWR\nQBDujvHL8+LFi61eo0oVU3BwMLRarX5fq9UiJCREDVOcQlCQvHQlJeL9VascawffBiE1klpKICw5\nWmsiWFmp3D4lVFSYP2fNeQvviwSCIOSjikBERUUhJycHubm5KC8vR2pqKhKNK/L/grnhf2bDhobt\njh2lV2iT4o03HGsHPxeTlEBIOXwpgZD7+C05cGtIlXH9uniA4AMPAAcOyL9eiPC+bI32qA2CqImo\nUsXk4+ODlStXIj4+HjqdDjNmzEBERASSk5MBAElJScjPz0d0dDTu3r0LLy8vfPTRR8jOzkZdqXqQ\nakaOQ+LTNGtme926vUhVMVlqbJa6rw8/BMaONX/PfN72CISU833sMWD/frFdgqBThBKBsBU3fE8h\nCLtRRSAAICEhAQkJCaJjSYJZ6Zo1ayaqhnIlrFWnGDtkZzkXa/lKVTFZ6r0k5UgfecRyGfy9Sj0T\nb2/bFwySGtxmznZrAuCIRYtIIIiaCI2ktoGyMsvnhY7MWCA2bXKOTebsMK5iUiIQwi6ptkQQPjJf\nPxgDjh+XzleIOduVtkHodIDRu4kkV68CK1aY5kEQNQUSCBswFghjZ2ZJIHr3dpwd1urTpaqYeNsY\nA86eFac3drTBwYZtYwfZtq3YBqkIQu4Qlqoq4IUXrKczvl/GuEWXlFYxFRcDaWnWy1uzBnj+eUNZ\nBFHTIIGwAePqD6EDat4c6NVL3AZh71QS5rCniokxoF07+fkZt10YTxtuTwSxYYO08zfG+Nlt2MCN\nDLf2dm/u/PXrlq+zd4oOgnB3SCBswDiCEDqPy5fF3VX56bV5HDkEhHfAAQHS55W2QViyTTCuUZSP\nI6qY7tyR103W2D6+8d+WKiYA+PRTw3GtlrNDiPBZURUTURMhgbABSxGEt7fYsfj5iR2YI2cOad6c\n+/zXv6TPS7VB8BMLSmFOIBgTVzfxeQs/pRy8EjE0bkgWPmP++Wk04me9d6/4vDmMBYLfFwpCy5bA\n5Mni64T2UwRB1ERIIGzAOIJQMpLXUQJRUABMmmQ5jXEbxLZtQL165tObi0QsIaeba5Mm1vMxXqdB\nuLAPLxaVlZwAnzjB7fMCIfX8//wTiIoyPV9VZRAjfpJgviG6oECch7UR2ImJjh/cSBCuBAmEDRhH\nEFLOw5xzkVvtYo0mTcRvuI8+aprGy4uzlU/n52c+v5wcYNo0+eXLqWLiz8mZCeX+ffPn+OfNl3H5\nsvi81PM/e9bQM0oYncTHA99/L07788/S+Qj3pUTof/8DvvjCvN0E4e6QQNiApTYIKeLjgR49uG1n\nTE7LGLB5s+lx3on/+ad4n79GSFiYshlb+bTGAiGspuGjAjkN88bTjggRRhDCTx7hvfDTm/Nl9ujB\nzRMlxPitn78XSwJBVUxETYQEwgYstUFI8Z//AMeOcduOiiCEGK+jcPs298k7yfJy4J13xF1s7W0s\n5683boN46CFDGmvjRYRYiiD4fHgRKiwUnxc+f/674Y+dOAEcOiROb7z4Dy8QVVXcmh6rV3M90Rwx\nhxNBuDMkEDagtA2C5+BB5RFEmzamPYikEDr8+vW5T96R+vgAL78srmKyVahmzOA+jauYeIEQLs3J\nV+3ImYbDkkDcvSvO57nnDGtrA2LnzadRMnkgfw9lZZyQb98OHDkC3LsnXYaQ6lqrmyDUgATCBuQI\nhJRD6dNHeVn79wP+/pbTmKvCyc+XPt6sGVelBIgnFuRp3x746Sfpa195RVym8TgIYX0/76SlprrY\nulW8byna4BuPhaJgTiD+ms7LpnWo+UUNebuFNlkbSU4QnggJhA3IaaS2B34JUx5rb+BSAmHOgQLA\ntWuGpUe1WtMeRI0bA337SpdlHHkYt0FI2SL1Nm9tjichvNC9+KLhWEWFoSzhLK9Ll3KfxcXm82vZ\n0nJ5vL1SXW2NXwbMifOKFaZtHwThbpBA2ICcRmp7RGPHDuDZZ7ltf3+xQERFAbNmidNLOSlrUQeP\nn59hGVI5dvHjIfj7M26DkBqUx58zJzrWkIqEWrY0OGvheT5a4SMdKYyfzblz4n3+eUtFEN7ewMWL\nhuPmBOK997g/Z3D3LrB7t3PyJgghJBBmOHHC8JZtjPDNsmVL6XS3btlX/qpVwM2bQKNGYoFo3x5Y\nuVKc1lovIUdFOKNGGSIGY4GQiiD4MReVlVx6fryBUqxNifHrr4btmze5z1OnzKcvLeVEkV+n4+BB\n8XmpCOLAAYOQCO0x9+wdOaWKkHPnuPEbDz/snPwJQggJhBmOHuUmgpOirAxo0IDbvnQJGDPG0HOI\n54cf7LeBL0NYRSPl7M3Vg/PdOZUKhJIGbH6Na14ghLbwjeJy14oYPFj6uLmR4rZSUsLZZq7dg3/e\nJ08ajl27BkyZwm2PHs2NGwHMC4Gz2ibateN6pBFEdUACYQZLTrW8XOwYNBpDzyEe43176NwZCA83\nf95cnTpfTeUMgeDz3L8f+P13ru5/xQqxY2zcmPvkHa41p8mLjbMpLeWqmYzbXngOH+Y+jaMQvgda\nQQGQns5tOytS4Nm3z/T7s2dxJoJQAgmEDZSVWXcM48YBgvXBrfLoo4C5Zbl37wZ++YXbNnaiJSXA\nsGGW81YqEHK6bvJ5tm4NdOjA2T9njkEMLlzg9qUw9+zktoXYS0mJZYEwh1DgjMeB6HTA3//OzTAL\niJ95Zqa404AxwkiFr47j8xg82P7qSsbE1XAEIRcSCDNYetstLwf69+fe7M2xerVhyUw5jB8PTJgg\nfa5WLaB2bcO2EP44YNp1lMcZAmFu7MeAAUC3bpxw8GMmjO0wNxbEuNw33uDycjRlZVwVU2kpMHWq\n/OuEvwnj+8/P55ZnfeIJbp9fDHHtWiAmhmuPuXDBMH8Uz9Wr3D3y03/4+nKiU1pqqAIrL+fstLR0\nbViY6RQkPIcPA126yLtHghBCAmEGqbfc0lKuaqGsjPuHs9QQakt5CQncCF5LtG9v/py5yfaUDuaS\nU8VkLs0HHwBZWdy28TM0FojISGDgQMN5466pr75qvqOAMZbmmZKiVi3urX/9evnXCLvT8tEH35At\njP6Egrxnj2F7+nRg6FBxnnyvsOHDxasN3rtneB4lJZyd334rbdf+/cD589xzf+0185HRjRumK/dZ\n4s4dy92FCc+HBMIMUk510yZuXqWffrI8bbZcHnrI0F3RywsYMsQwcZwUd+4Af/ub+fODBgG5uabH\nlY6atiYoL78snlLDEgkJwMiR3DY/qytfx3/ihPjNlu8dFBgo31aeZs2Upbd3BDS/Ip3UgDx+tT1A\n/Oz5CECq+2tlpXgeq/v3DY6er54y16g+aBD3WVoKvPkm8Mcf4vN8m8WMGYYZbqXIyRFXhbVpw81Y\nS9RcSCDMwFchCHsQ8dNB7N/PdT+1l1q1DGsjy5mCIyDActWXRgO0aiU+lpwMLFigzC5r4vfOO/IF\nYvduwxxQLVtyb9cdOxrOC0dy8+0rAwaY5jNvnuVy5NbT82MgrE2PYk1A+CqhjAzTvITjJIRRwfnz\n3OdLL3EN+8YLFAm5dcvQU4oXUanIQNhgzfe6Mx4nw0cBv/8uXZZGw0VHDz1kWGIV4LoMZ2dz20eO\ncONgli8HHnzQvN0AF5lRQ7pnQAJhhqef5j6F/5TCGUcdIRDCxmVnzPIKAM88I9+Z8wQFWU+zcCHX\n9dNeXn4ZuHKFmzdq+3Zg8WKuOiUvjzvP9wbj124wpnt37nPQIGD2bG578WLz5fFVUcJ5lnjGjjVs\nK/k+jMXE2khtAOjUyfIcW927m3Zy4KvueD7/HJg717DPdwo4dIgTrdu3uSqn337jjl+4YL68/v25\nT+Ou3fx3PGUK17338GHD1CeMSVdBPf00EBFhvizCjWAqsWfPHhYeHs7CwsLYu+++K5lmzpw5LCws\njHXp0oWdOHFCMo2zboH7+TNWWMjtl5cbjgGMHThge96DBzO2YIG4rO++s89exhjbv3+/3XmcO8dY\nSYn9tjiKP/9kLDub2/79d8Z69xZ/D4xxn2PGMLZuHbc9ezZjwH6Wnc3Ys89yx+LiuM8HH+Q+a9Uy\n5PHFF4y99x5j9+4ZjrVpIy5H6m/gQMaCgsTHoqMZGzvW+rXO/rt+nbF//5vf329ynufECfHxhATu\n+x8+3HBszhzD9oQJ3GdWFmOffcZtl5WJv7POncVlMMbY8eOM6XSMFRUxlpJi+TuvqmKsooKx4mLG\nRo5kbN48+35DQhzxP+IIKitNn1t1I8d3qiIQlZWVrG3btuzixYusvLycde3alWXzXuAvdu3axRIS\nEhhjjB0+fJjFxMRI5gVA78Rt5dIlxrp3536UjDF25IjpP9Px4+JjRuYqorKS+2fhGTGCsYIC2/Pj\nef311+3PxA345RdODBo35vYBxiZPZmz3bm67f3/GgNcZY4wdPcody89nLDiYscREU2fKU1ZmONa2\nrThNVBT3KfxtPPmkOE1FBWP//a99jp13ro79e93kWGiodNrERE74zOX1wAPSx8eP5z7XreNEEuBE\nV6fjHD7A2K5djH3zDbf9xRfc/8GePYxptYbv4PRp7uXpwQcZ+/pr8bMVEhfHfadlZVz+a9cydvUq\nd+7WLcb+7/8Yy8w0/e3w/yPXr5vmaczVq5ygWaKqyvRYSYn4eFmZ+P+dMU70+N+vNYqLpcuxF5cV\niEOHDrH4+Hj9/jvvvMPeeecdUZqkpCS2efNm/X54eDjLz883yQsAe+ABxk6eZOytt7gv9cYNxgID\nGdu4kbFt2xjbsoWx3FzGSksN1xUVcU45PV38Qw8JMf3xv/SSYfuTT7jPmzcd/1zspaYIhDHZ2Yzd\nvs39E547x9ihQ4yNHv06Y4z7x7pxg0tXXMz9s86bx1j9+lxUeP++OK+iIu77bdiQ2z97lrHffuOu\nzc3ljv38M5dm61YunVBoCgoM+2++yX0+9xz3Rv7II4x9+y1jTZuKf1/z53OfjRpxeWzYwFizZowN\nG8bY3r2MxcdzkawcMZB24K+zU6ecITzy/sLCrKd54gnGdu4UH3vjDdN0wshv0CDGvLwYa93acCw2\nVpw+IIDLG2Ds8GHGOnZ8nU2caDjfrBn3/Qwdytjq1Yx17MjYrFncM+fTrF7N2PLlnMB99x0noIcP\nM3bsmOF7/vJL7jd46xZ3bMgQxj76iLG//53b79aNi7r27uVecJo3547PnMnlO3QoY5Mmcb+BV17h\norP33+dEDmDs8ce5+0hOZmzfPi5vrZa79vRpxs6c4SLGjz5i7O5d7mVp3jxOkE+dYiw1lfut37vH\n/cZeftmFBeKrr75iM2fO1O+vX7+ezZ49W5Rm5MiR7ODBg/r9wYMHs2PHjpnkBcDkR2T8Dyj8Cwpi\nrF496z/Ypk0Zy8kRH9u8mXMqr73mvGdjDzVVIKSw9Cx0OvHLgjHTpnERiVwuXWJM8FNlFRVcdRhj\npgLEGCdgjRsztnAhY5cvc8fS0jjhsUZZGWN37nCRxrJljE2fztiLL3Ll/PEH5zD++U/OEb34Iud0\n+/d/nTHGOYszZxh7/nnGPviAczr/+Adnx6+/GsTt8GFOaEeO5Mrp359z8j//zFiDBlyaVq24qqdx\n4xjr0MHwP6LRcM4vJoZzdLw4PP64OM2jj3LO2dr/YePGtomStzcXmUuJpRoi6eVVveX5+MhJ56IC\nsWXLFlkC8dNPP+n3Bw8ezI4fP26SFycQ9Ed/9Ed/9Kf0zxpOWADTOsHBwdDyQ00BaLVahBjNM2Gc\n5sqVKwjmRxUJ4DSCIAiCcDSqdHONiopCTk4OcnNzUV5ejtTUVCQajchJTEzEunXrAACHDx9GYGAg\nHrTWAZsgCIJwGKpEED4+Pli5ciXi4+Oh0+kwY8YMREREIPmv9SKTkpIwYsQI7N69G2FhYfD398fa\ntWvVMJUgCKLGomFuWkeTlpaGuXPnQqfTYebMmXipBq/v+NRTT2HXrl1o2rQpfq3B03ZqtVpMnToV\nBQUF0Gg0eOaZZ/A3S3OTeDClpaUYMGAAysrKUF5ejtGjR+OdGr6QhE6nQ1RUFEJCQvC///1PbXNU\nIzQ0FAEBAfD29oavry8yMzPNpnVLgdDpdAgPD8fevXsRHByM6OhobNq0CRE1dPjmgQMHULduXUyd\nOrVGC0R+fj7y8/PRrVs3FBUVoUePHti2bVuN/V0UFxfDz88PlZWViI2NxbJlyxAbG6u2WaqxfPly\nHD9+HPfu3cOOHTvUNkc1WrdujePHj6OhcJ4bM7jlVBuZmZkICwtDaGgofH19MWnSJGzfvl1ts1Sj\nX79+aMAvP1eDadasGbr9NT943bp1ERERgauW5sj2cPz+mlekvLwcOp1OlkPwVK5cuYLdu3dj5syZ\n1LEF8jv3uKVA5OXloYVgIpuQkBDk8ZP3EASA3NxcZGVlISYmRm1TVKOqqgrdunXDgw8+iIEDB6JD\nhw5qm6Qaf//737F06VJ4OXsJQDdAo9FgyJAhiIqKwmeffWYxrVs+LY2zFvwlPIKioiKMHz8eH330\nEerWrau2Oarh5eWFX375BVeuXMGPP/6IjIwMtU1ShZ07d6Jp06aIjIyk6AHAwYMHkZWVhT179uDf\n//43DggXOjHCLQVCzjgKomZSUVGBcePG4fHHH8eYMWPUNsclqF+/Ph5++GEcO3ZMbVNU4dChQ9ix\nYwdat26Nxx57DPv27cNUJUsJehhBf03X3KRJEzzyyCMWG6ndUiDkjKMgah6MMcyYMQMdOnTAXOE8\n2DWQwsJC3L59GwBQUlKC7777DpGRkSpbpQ7/+te/oNVqcfHiRWzevBmDBg3Sj7GqaRQXF+PeX3Pd\n379/H+np6ehsYe1ktxQI4TiKDh06YOLEiTW2pwoAPPbYY+jTpw/Onj2LFi1a1NgxIwcPHsSGDRuw\nf/9+REZGIjIyEmn80m81jGvXrmHQoEHo1q0bYmJiMGrUKAwePFhts1yCmlxFff36dfTr10//uxg5\nciSGCRemMcItu7kSBEEQzsctIwiCIAjC+ZBAEARBEJKQQBAEQRCSkEAQBEEQkpBAEG6Ht7e3vpdS\nZGQkLl++rLZJDiElJQVNmjTBM888Y1c+ixYtwvvvv6/fP3z4sNk8S0tL0a1bN9SqVQs3b960q1zC\n81Blum+CsAc/Pz9kZWVJnuM75bljV0aNRoPHHnsMK1asMDlXWVkJHx95/67G975nzx4kJCRIpq1d\nuzZ++eUXtG7dWrnBhMdDEQTh9uTm5iI8PBzTpk1D586dodVqsXTpUvTs2RNdu3bFokWL9Gnffvtt\nhIeHo1+/fpg8ebL+TTsuLg7Hjx8HwA0y4x2mTqfDiy++qM/r008/BQBkZGQgLi4Ojz76KCIiIvD4\n44/ryzh69Cj69u2Lbt26oVevXigqKsKAAQNw8uRJfZrY2FjJmXeFvc5TUlKQmJiIwYMHY+jQobh/\n/z6GDBmCHj16oEuXLqIZSYX3debMGVGe+/btw5AhQ/D7778jJiYGkZGR6Nq1K86dO2frIydqCBRB\nEG5HSUmJflRwmzZtsHz5cpw7dw7r169Hz549kZ6ejnPnziEzMxNVVVUYPXo0Dhw4AD8/P6SmpuLk\nyZOoqKhA9+7dERUVBYB765aKOlavXo3AwEBkZmairKwMsbGx+oFFv/zyC7KzsxEUFIS+ffvi0KFD\niIqKwqRJk/Dll1+iR48eKCoqQp06dTBjxgykpKTggw8+wNmzZ1FWVmZxBCtPVlYWfv31VwQGBkKn\n0+Gbb75BvXr1UFhYiN69eyMxMRHHjx83e1+FhYXw9fVFvXr18Mknn+D555/H5MmTUVlZicrKSkd9\nJYSHQgJBuB116tQRVTHl5uaiVatW6NmzJwAgPT0d6enpehG5f/8+cnJycO/ePYwdOxa1a9dG7dq1\nZU3Pkp6ejl9//RVbtmwBANy9exfnzp2Dr68vevbsiebNmwMAunXrhosXL6JevXoICgpCjx49AEA/\nWeD48ePx5ptvYunSpVizZg2efPJJq2VrNBoMGzYMgYGBALjZWRcsWIADBw7Ay8sLV69exfXr13Hg\nwAGT++IjkfT0dMTHxwMA+vTpg7fffhtXrlzB2LFjERYWZv1hEzUaqmIiPAJ/f3/R/oIFC5CVlYWs\nrCycPXsWTz31FABxFY5w28fHB1VVVQC4hlshK1eu1Od1/vx5DBkyBIwx1KpVS5/G29sblZWVZts+\n/Pz8MHToUGzbtg1fffUVpkyZIuu++DUdAGDjxo0oLCzEiRMnkJWVhaZNm6K0tBQajcbkvng70tLS\nMHz4cADclCz/+9//UKdOHYwYMQL79++XZQNRcyGBIDyO+Ph4rFmzBvfv3wfArR9y48YN9O/fH9u2\nbUNpaSnu3buHnTt36q8JDQ3Vz3bKRwt8Xv/5z3/01TFnz55FcXGxZLkajQbh4eG4du2aPq979+5B\np9MBAGbOnIm//e1v6NmzJ+rXr2/1Poxnwbl79y6aNm0Kb29v7N+/H5cuXYJGozF7X4wxnDp1Cl27\ndgUAXLx4Ea1bt8acOXMwevToGr36ICEPqmIi3A6pt3ThsaFDh+L06dPo3bs3AKBevXrYsGEDIiMj\nMXHiRHTt2hVNmzZFdHS03gnPnz8fEyZMwKeffoqHH35Yn9/MmTORm5uL7t27gzGGpk2b4ptvvjHb\nZs4TFPIAAAEHSURBVOHr64vU1FTMmTMHJSUl8PPzw3fffQd/f390794d9evXl1W9xN+TsIwpU6Zg\n1KhR6NKlC6KiovQTVBrfF1/Vdvz4cdEMrl9++SXWr18PX19fBAUFYeHChbLsIGouNFkfUWNZvHgx\n6tatixdeeKFayrt69SoGDhxo0suI57///S+OHTuGjz/+2CHlvf3222jXrh0mTJhgNa2SdYqJmgNV\nMRE1muoaL7Fu3Tr06tUL//rXv8ymqVOnDvbs2WP3QDmehQsXWhUHfqBcZWUlLcdJmEARBEEQBCEJ\nvTIQBEEQkpBAEARBEJKQQBAEQRCSkEAQBEEQkpBAEARBEJKQQBAEQRCS/D/5ezxaVcA+sAAAAABJ\nRU5ErkJggg==\n" + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate moments \n", + "-------------------" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "mom, text = S.moment(nr=4)\n", + "print('sigma = %g, m0 = %g' % (sa, sqrt(mom[0])))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sigma = 0.472955, m0 = 0.472955\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 2.2.1 Random functions in Spectral Domain - Gaussian processes\n", + "--------------------------------------------------------------------------\n", + "Smoothing of spectral estimate \n", + "----------------------------------\n", + "By decreasing Lmax the spectrum estimate becomes smoother." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "Lmax0 = 200; Lmax1 = 50\n", + "S1 = ts.tospecdata(L=Lmax0)\n", + "S2 = ts.tospecdata(L=Lmax1)\n", + "S1.plot('-.')\n", + "S2.plot()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEXCAYAAABsyHmSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VHXa8PHvSS8kpEBCCmkEkiCElhBASlTKwmoQUJo+\nggIiu6isy76rD8s+oKuLYkHEgq6AWHEtgAoRUaJY6FVKCJBACiEEEtLLTM77x5CBkDaTdjLJ/bmu\nXM7p9wQz9/y6oqqqihBCCNEAVloHIIQQwnJJEhFCCNFgkkSEEEI0mCQRIYQQDSZJRAghRINJEhFC\nCNFgkkSEaEEzZ85k8eLFJp2bkpKClZUVFRUVzRbPhx9+yJgxY5rt/qLtkyQiLNLPP//MkCFDcHNz\nw9PTk6FDh7Jv375mfWZQUBA//PBDo+6hKAqKojRRRI1333338e233xq3raysOHv2rIYRCUtjo3UA\nQpgrLy+PO++8k9WrVzN58mRKS0vZuXMn9vb2zfpcRVGoa2yuTqfDxqb+P6nWPr63tccnWhcpiQiL\nc+rUKRRFYcqUKSiKgoODA6NGjaJ3794ArFu3jltvvZVHH30UNzc3IiIiqpQgrl69yqxZs/D19cXf\n35/FixdXqTJ655136NmzJ66urtxyyy0cPHiQ//mf/+H8+fPcdddduLi48OKLLxqrm9asWUNgYCAj\nR44E4N5778XHxwc3NzdGjBjB8ePHTXpfFRUVLFy4kM6dO9OtWze++eabKsfrinvdunUMHTqUv/3t\nb3h4eBASEkJ8fLzx2nXr1tGtWzdcXV0JCQnho48+Mu4fNmwYAMOHDwegT58+uLq68umnn9K7d2++\n/vpr433Ky8vp1KkThw8fNu0fS7R9qhAWJi8vT/X09FRnzJihbt26Vb1y5UqV42vXrlVtbGzUFStW\nqDqdTt2wYYPasWNHNScnR1VVVb377rvVRx55RC0qKlKzsrLUgQMHqqtXr1ZVVVU//fRT1c/PT923\nb5+qqqp6+vRp9dy5c6qqqmpQUJD6/fffG5+TnJysKoqizpgxQy0qKlJLSkqMzy8oKFDLysrUBQsW\nqH379jVeM3PmTPUf//hHje/rzTffVMPDw9W0tDT1ypUramxsrGplZaXq9fp64167dq1qa2ur/uc/\n/1ErKirUN998U/X19VVVVVULCgpUV1dX9dSpU6qqqmpmZqZ67Ngx43VDhw41xqAoinrmzBnj9gsv\nvKBOmTLFuL1x40Y1MjLShH8l0V5IEhEW6cSJE+rMmTNVf39/1cbGRo2Li1MvXryoqqrhg7HyA7TS\nwIED1ffff1/NzMxU7e3t1eLiYuOxjz76SL3ttttUVVXV0aNHqytXrqzxmbUlkeTk5FrjzMnJURVF\nUfPy8lRVrTuJ3HbbbcakoKqqum3bNlVRFFWv19cb99q1a9XQ0FDjscLCQlVRFPXixYtqQUGB6ubm\npn7++edqUVFRlWfWl0TS09PVDh06qPn5+aqqquqkSZPU5cuX1/p+Rfsj1VnCIoWHh7N27VpSU1P5\n/fffycjIYMGCBcbjfn5+Vc4PDAwkIyOD8+fPU15ejo+PD+7u7ri7u/PII49w6dIlANLS0ujWrZtZ\nsXTt2tX4uqKigieffJLQ0FA6duxIcHAwANnZ2fXe58KFC1XuFRAQYHx97ty5OuMG6NKli/G1k5MT\nAAUFBTg7O7NhwwbeeustfH19ufPOO0lMTDTpvfn6+nLrrbfy2WefkZubS3x8PPfdd59J14r2QRrW\nhcULCwtjxowZvP3228Z96enpVc45d+4c48ePp2vXrtjb23P58mWsrKp/h+ratSunT5+u8Tm19aq6\ncf+HH37I5s2b+f777wkMDCQ3NxcPDw+TGqt9fHw4f/68cfvG1/XFXZ/Ro0czevRoSktLWbRoEXPm\nzOGnn34y6doZM2bw7rvvUl5ezpAhQ/Dx8TH7+aLtkpKIsDiJiYm8/PLLxkSRmprKxx9/zODBg43n\nZGVlsXLlSsrLy/nvf//LyZMnGTduHF26dGH06NE88cQT5OfnU1FRwZkzZ4wfqLNnz+bFF1/kwIED\nqKrK6dOnjR/m3t7enDlzps7YCgoKsLe3x8PDg8LCQv73f/+3yvG6ksnkyZNZuXIl6enp5OTksGzZ\nMuMxHx+fOuOuS1ZWFps2baKwsBBbW1ucnZ2xtrau8dya3uOECRM4cOAAK1eu5IEHHqj3eaJ9kSQi\nLI6Liwu7d+8mJiaGDh06MHjwYCIjI3nppZeM58TExJCUlETnzp1ZvHgxn3/+Oe7u7gCsX7+esrIy\nevbsiYeHB/feey+ZmZkA3HPPPSxatIjp06fj6urKxIkTycnJAeCpp57iX//6F+7u7rz88stA9dLJ\nAw88QGBgIH5+fvTq1YvBgwdXOaeucSJz5sxhzJgx9OnTh6ioKCZNmlTl3Lrirum+ldsVFRW88sor\n+Pn54enpyc6dO3nzzTdrvG7JkiXMmDEDd3d3PvvsMwAcHByYOHEiKSkpTJw40aR/I9F+KKop5Wwh\nLMi6det499132blzp9ahtBnPPPMMSUlJrF+/XutQRCujWUkkPj6e8PBwunfvzvPPP1/t+Icffkif\nPn2IjIzk1ltv5ciRIyZfK4RoOleuXGHNmjU8/PDDWociWiFNkoher2f+/PnEx8dz/PhxPv74Y06c\nOFHlnJCQEH766SeOHDnC4sWLjf8Dm3KtaN9a29Qiluydd94hICCAsWPHMnToUK3DEa2QJtVZv/32\nG0uXLjWOqK1sQHzyySdrPD8nJ4fevXuTlpZm9rVCCCGajyYlkfT09Cr94f39/at1ybzRu+++y7hx\n4xp0rRBCiOajyTgRc6oaduzYwZo1a/jll1/MulaqM4QQomHMqaDSpCTi5+dHamqqcTs1NRV/f/9q\n5x05coQ5c+awefNmY/dMU68Fwy/CUn/+7//+T/MYJH7t42hvsUv82v+YS5MkEhUVRVJSEikpKZSV\nlbFhwwbi4uKqnHP+/HkmTpzIBx98QGhoqFnXCiGEaBmaVGfZ2NiwatUqxowZg16vZ9asWURERLB6\n9WoA5s6dy9NPP01OTg7z5s0DwNbWlj179tR6rRBCiJbXZgcb1reAUGuXkJBAbGys1mE0mMSvHUuO\nHSR+rZn72SlJpBF++w3s7aF//2Z9jBBCtBhzPztl7qxG+OwzGDAAiou1jkQIIbQhSaQRXnoJBg6E\n33/XOhIhhNCGVGc1UlkZ2Nk1+2OEEKJFSHVWC5MEIoRozySJCCGEaDBJIg2Qnw/PPqt1FEIIoT1J\nIg2g14OHx/XtK1egbbYsCSFE3aRhvQkEBcHhw9CxY4s8Tgghmo0MNrzG0kesCyGEFqR3lhBCiBYj\nSUQIIUSDSRJpgFWrIClJ6yiEEEJ7kkQaYM0auHr1+nZxMeTmahePEEJoRZJIA1y8CF26XN9+5x1Y\nvFi7eIQQQiuSRBpg8WLw8rq+3akTXLqkXTxCCKEVTVY2tHSPPFJ1u0sXUBRtYhFCCC3JOBEhhBBG\nMk5ECCFEi5Ekco1eDytWaB2FEEJYFkki15SVmdY4fvQovPlm88cjhBCWQNpEzJScDCdOwLhxVfdn\nZoK7O9jbN/kjhRCixUibSCOVl9d9PDi4egIBmD0bEhObJyYhhGitpCRyg6QkGDsWTp9upqCEEKKV\nk5JII3h4GBaYEkIIYRoZbHjNTz8ZBgwWF0NFBVhJehVCiHrJR+U1X30Fv/0GRUV1J5B16wznCSGE\nkCRiVFwMTk71T18SHw/nzlXfX1gIGRnNE5sQQrRWkkSuueMOiI6u/7zCQkOyudn27TB3btPHJYQQ\nrZm0iVwzYYJp582bB716Vd/fubPM5CuEaH8kidykvNxQpWVTy2+mpjEiAN7e4OrafHEJIURrJONE\nbnL//XD33XDPPc0QlBBCtHLmfnZKEhFCCGEkgw0baO1auHBB6yiEEMKySBK5pqDAMMiwPvPnQ2lp\n88cjhBCWQBrWr3n0UdPO69u39kb3tDRwcYGOHZsuLiGEaM2kTeQmej3odA2b0v2xx+DOO2H0aPOv\nFUKI1kAa1q9paBJZvRr274e3326GoIQQopWThvVGcnY2jEoXQghRP0kigKrCc88Z/uviYqjSEkII\nUT+pzsIwSt3R0dAWUpeUFPjwQ1i0qPHxCSFEayTVWQ1QXGxIIvVJTTXM4luXffukC7AQov2QJAJY\nW8Pf/17/eTfP4Lvs52WsP7y+yjkLF8KWLU0coBBCtFJSnWWG8+fhxAkYMwY+P/45C79biJVixbRe\n03jmtmdQFIW1a2HlSvj+e8Nyu0IIYUnM/eyUwYY3UVXD6obOztWPBQQYfk5fOc28b+ax5b4tBHYM\nJO6TOArLC3llzCvMnAn5+TWvOSKEEG2NlERucvUqhIfXPo+WqqpEvRPFQ30f4s8D/wzAxYKLhK0K\n4+LCi9jbNGCUohBCtBLSsN5IHTvWPRHj/gv7yS/N50/RfzLu8+7gTc/OPUlISWj+AIUQohXRLInE\nx8cTHh5O9+7def7556sdP3nyJIMHD8bBwYGXXnqpyrGgoCAiIyPp168fAwcObHQs6emGWXxNsSlx\nExMiJqDctBj7+LDxbD61udGxCCGEJdEkiej1eubPn098fDzHjx/n448/5sSJE1XO8fT05LXXXmPh\nwoXVrlcUhYSEBA4ePMiePXsaHU9FBZSU1H/ep5/CB3s3cnfY3dWOjQ8fz+bEzVWKgadPw+XLjQ5P\nCCFaLU2SyJ49ewgNDSUoKAhbW1umTp3Kpk2bqpzTuXNnoqKisLW1rfEeTdmU07WrYe30+lh3Pk1B\nRTYx/jHVjoV5huFo48jBzIPGfe+8A4cPN1mYQgjR6mjSOys9PZ2uXbsat/39/dm9e7fJ1yuKwsiR\nI7G2tmbu3LnMmTOnxvOWLFlifB0bG0tsbKxJ9y8qAju76lO+p9hvYsItd2GlVM+9iqIwPnw8mxI3\n0d+nPwA11NIJIUSrkpCQQEJCQoOv1ySJ3NyeYK5ffvkFHx8fLl26xKhRowgPD2fYsGHVzrsxiZhj\n2DDDLL4DBlTdvzFxI08NfarW6+J6xPFY/GMsjV3aoOcKIURLu/kL9tKl5n1+aVKd5efnR2pqqnE7\nNTUVf39/k6/38fEBDFVeEyZMaJJ2kRs5OVWfyTerMIujF49ye/DttV43pOsQzuWeI7Mgs0njEUKI\n1kqTJBIVFUVSUhIpKSmUlZWxYcMG4uLiajz35raPoqIi8vPzASgsLGTbtm307t27UfEcPw5ffHF9\nu1MnKCures53Z77j9uDbcbBxqPU+1lbW9OnShyMXjzQqHiGEsBSaVGfZ2NiwatUqxowZg16vZ9as\nWURERLB69WoA5s6dS2ZmJtHR0eTl5WFlZcWrr77K8ePHycrKYuLEiQDodDruu+8+RjdyKcFDh+Cr\nr+Dabfnyy+rn7M3YS2HiIM6ehZCQ2u8V6R3JkYtHGN3NENOOHRAbC42swRNCiFZJs2lPxo4dy9ix\nY6vsmzt3rvF1ly5dqlR5VerQoQOHDh1q0ljKyw0N6XXZm7GXzB//RV7NBSajSK9Ifjz3o3H7nnvg\n5Eno3LkJAhVCiFZGRqwDvXpBLbVpAOgqdBzOPIx6oX+9c2JVlkQq+fpCRkYTBSqEEK2MTMCIoRfW\nzT2xbnT80nH8Xf15eklHrrXp1+oWr1tIvJxIub4cW2tbRo4EK0nVQog2SpJIDcrKDKscVpY69mXs\nI8o3iskT67/WydaJgI4BJF5OpJdXL155pXljFUIILcl35Bq8/nrVgYJ7M/YS7Rtt8vWR3pEcvXi0\nGSITQojWRZJIDf7yF7hxvE1lScRUkV6RHMmSbr5CiLZPkgjw44/w0081HyvVlXIs6xj9fPqZfL+b\nG9eFEKKtkiSCof1Dp6v52NGso4R6hFJa4MSCBabd78YkkpUF+/Y1UaBCCNHKSMM6cMcdtR/bl7GP\naL9o7OxgyBDT7hfoFsjVkqtcKb5CcrIHW7dClOm1YUIIYTEkidRArzfMneXqeq09xCcKZ2eYPNm0\n660UK3p79+boxaOMiBlBTPWZ44UQok2Q6qwa7N9/vXTye9bv9PY2f26u3l69OZolPbSEEG2bJJEa\nODsbSiKqqpJ4OZEwzzCz7xHqEcqZnDPNEJ0QQrQekkSAzZurrkDYoYNhQapLRZewUqzo5NTJ7Ht2\nc+/GmSuSRIQQbZskEeC//62aRAID4cgROJl9kjDPMBRFYfdueOMN0+/ZzaObsSSydathkkchhGhr\nJIlQ+yy+idmJhHcKBwwz8Zqxgi/BbsEk5ySjqiozZ8Lly00TqxBCtCaSRIDx4w0z+d7sxvaQoiLq\nncH3Ri72LrjYu3Ch4AIdO8LVq00UrBBCtCLSxReYNq3m/SezTzKsv2Ht9thY6N/fvPtWtouMG+eL\njfymhRBtkHy01SI311CdFdbJUBKJiDD/HiHuIZzNOcuKFcOaODohhGgdpDqrFsNuKyU1L5UQ9zrW\nwq3HjY3rQgjRFtVbElm3bh2KiQuEGxqRZzY2plZhw7YzTNgQiJ11Pevm1qGbeze+PfNtE0YlhBCt\nS71JxN3dnaFDh+Lp6VnvzTZt2tQkQbW0NWvgD38wLGVbKTG7YYMMbyRjRYQQbV29SWT8+PH07t2b\n0NBQXF1diY6OJiYmhn79+vHbb7+RlZXFpEmTjOdaotJSqKiouu9k9klj916AVasgOhqz5sGqbBM5\nfRqKi6G3+bOnCCFEq2ZSw/oXX3xB9+7dKSoq4t///jc//PADK1asoKCggJCQEGMSsVTz5lXfl3g5\nkWEB1xvEIyPB29u8+3bp0IXC8kL2Hcmn+KqLJBEhRJtjUhLp3r07AE5OToSGhjJjxgwAysrKLLYK\nqz7Hs07ywC1zjNvDh5t/D0VRCHEPIXzIGfp26duE0QkhROtgdu8sW1tbZs6cyRdffEFSUhJpaWnN\nEZemVFXlcFoiR3Y0rk0ErldpCSFEW2T2OJHp06czYMAAPvjgA3bs2MEDDzzQHHFpKqckBxQVqxLz\nJ168mTSuCyHasgYNNgwLC+OZZ55p6lg08/LL8PDDhtl7AVJyU/BQgpvk3t3cu8m6IkKINsvs6qz/\n/Oc/7Nq1i7KyMn755Rc+++yz5oirRT37LJSUXN9OyU1hUEQQjz12fd+jj8KVK+bfO8Q9hKTsM3zz\nTePjFEKI1sbsJJKVlcWPP/7IzJkzWbZsGT///HNzxNWibp7FNyU3hSC3oCrnfPABqKr59w52D+bc\n1XPcf3/jYhRCiNbI7Oosf39/YztIW+mdtXAhODhc307JTaGbezfjtqpCfr5hzXVzdXXtSnpBKmX5\nKqqqYOLgfyGEsAjSOwv45z/rLomoKqxfD7a25t/b2c6ZDnYdGD8ti7KyxscqhBCtidlJxN/fn6ee\neoqDBw/y1ltvMXTo0OaIS1MpuSn4dQg0toFYWcH06Q2/X0DHAJ5adh57+6aJTwghWguzk8jrr79O\nUFAQzzzzDK+99hrR0dHNEZdmVFUlJTeFnOQgmqr3ckDHAM5dPdc0NxNCiFbE7CTi5ubGjz/+SHkb\nXTQ8pyQHK8WKUcPc+PrrprlnYMdAzl893zQ3E0KIVqRBSWTv3r1MnjyZcePGsXjx4uaIq8UUFcGL\nL17frqlnVmNJSUQI0VaZ3TvrzjvvpHPnzixatAhVVTl/3rK/YauqoYtvpZqSyO7d8Ouv8Je/NOwZ\ngR0D2Xx4J2fPQkjD17gSQohWp94kkpiYiJWVlXESxhsb0hVFITAwsPmiawHOzvDUU9e3a0oivr6G\naeAbKqBjAGcvnyMlRZKIEKJtqTeJdOvWjYSEBLZt24aVlRXR0dFERUW1RGyaSMlNMS6Jm5UFnp7Q\ntavhp6EC3QIpsj3P7bc3UZBCCNFK1JtEbGxsGDlyJCNHjgRgz549vPnmm1RUVBAWFkZsbCw2Ng2a\ngqtVSslN4fZgw6f9gAHwyy8QENC4e3Z26kxheSGFZYU42zk3QZRCCNE6mP3pP3DgQAYOHAgYqrre\nffddysrK8PPzY8yYMTg7W/aH5I3VWe7uhvmyGptEFEUhoGMA56+eJ6JzROODFEKIVqJRRYiwsDDC\nwgxrbmRkZPD1118zZcqUJgmspWRkwJYtMHv29TEilUmkRw8oKGia50gSEUK0RWZ38S0sLOTixYvV\n9vv6+lpcAgFITYW33za8rhwj4ubgBsBnn8HQobB0KRxt5GzuXnaBfLtbuvkKIdoWs5PIBx98wNat\nW4mLi+Ohhx4iPj6+OeJqMTfO4FvbGJHNm6G0tHHPcSgN4LPvLLs7tBBC3MzsJOLo6EjPnj25cuUK\na9asIS8vrzniajH+/vDgg4bXKbkpBLpV77KclQVeXo17TpB7AHlWUhIRQrQtZieR/v3788knn7By\n5UrWrVuHTqdrjrhaTFAQzJpleH3+6nkCOlZvRX/9dejSpXHPucUvkA6+UhIRQrQtZjes9+rVi5df\nfhmAy5cv49XYr+itSHp+Ov4u/sbtigo4fx7i4hp/7z5BAdh0kpKIEKJtMbskcqNRo0bRp0+fpopF\nc2l5afi7Xk8i2dkwZUrDVjS8mb+rPxn5Gegr9I2/mRBCtBKNSiJtzc1JxMvLMG9WU6xGaG9jTyen\nTlwouND4mwkhRCthUhIpuDZYory8HL2+ab5Jx8fHEx4eTvfu3Xn++eerHT958iSDBw/GwcGBl156\nyaxrzXHkCHz5peF1Wl4afq5+jbpfXQLdAjmXK1VaQoi2o94k8sILL/D000/zxBNPcPXqVR555JFG\nP1Sv1zN//nzi4+M5fvw4H3/8MSdOnKhyjqenJ6+99hoLFy40+1pzVFRc+1EryMjPwM+l+ZKIXVEA\nR1OlcV0I0XbU27AeExNDTEwMtra2bNiwgYqKikY/dM+ePYSGhhIUFATA1KlT2bRpExER10dzd+7c\nmc6dO/PNN9+Yfa05+vY1/GQVZuNi54KjrWOD7mOKipxAkrKkJCKEaDvqTSLOzs6sW7eORx55hOnT\npzfJiobp6el0vWFaXH9/f3bv3t3k1y5ZssT4OjY2ltjY2Frve3N7SHOY8ocAjl863qzPEEIIcyQk\nJJCQkNDg6+tNIlFRUVWmfp8xY4bx9ZEjR+jduzeKmS3P5p7f0GtvTCL1aYkkEtAxgK2ntzbrM4QQ\nwhw3f8FeunSpWdeb3Ttr/fr1LFiwgHXr1uHs7MzHH39s7i3w8/MjNTXVuJ2amoq/v2kf4I25ti7N\n3agOsta6EKLtaVAX33/+8594eXmxfPlykpKSzL4+KiqKpKQkUlJSKCsrY8OGDcTVMqJPvWmQhjnX\nmmLnTvjhh2slEZfmL4mcyz1X7T0JIYSlMnvEeqdOnbCzs2PcuHGMGzeuYQ+1sWHVqlWMGTMGvV7P\nrFmziIiIYPXq1QDMnTuXzMxMoqOjycvLw8rKildffZXjx4/ToUOHGq9tqB07DJMwpg9IJzYwtsH3\nMUVupht6PVwtvWqcKVgIISyZopr5tfixxx7jyJEjeHp6MnDgQG677TbjIlWtiaIoJn3jX7wYbG3h\nx6A7ePLWJxnVbVSzxfTVVzD951788sRHRHpHNttzhBCioUz97KxkdnVWbGwsCQkJvP/++wwePJh9\n+/aZe4tWZcQIw09LNKx7eoJNgQw4FEK0HWZXZymKwt69e4mOjmb48OEMHz68OeJqMSNHGtpd0n5p\ngd5ZAdCtU4A0rgsh2gyzk8iPP/4IwNNPP42DgwMjRoxg/vz5TR5YS8otycVascbF3qVZn+PvD/eM\nCuTcVSmJCCHaBrOTyKRJk1AUhaFDh1JcXMyxY8eaI64WlZ6f3uylkEoBHQM4lHmoRZ4lhBDNrd42\nkf3791fZHjZsGEOHDgUMqxzeOBDx5nMtRUu0h1QK6BggJREhRJtRb0lk69at/P777ybdLDU1lQED\nBjQ6qJa0cSMcVFouiciAQyFEW1JvEvnHP/7REnFopqICLpal4e/dMklkX4IP2YXZlOnLsLO2a5Fn\nCiFEc2n3i1JNnAg6p7RmnQL+RslnbOjk4ENaXlqLPE8IIZpTu08iYGhYb+55syo98YR08xVCtB2S\nRID0vJbrnQWywqEQou1oUBIpKSmhtLS0qWPRTEZ+Br4uvi32vMCOMlZECNE2mJREKioq+OKLL7j3\n3nvx8/MjODiYwMBA/Pz8uOeee/jyyy8tdmba/6wrJa80j05OnVrsmUFuQSTnJrfY84QQormYlERi\nY2PZv38/Cxcu5OzZs1y4cIHMzEzOnj3LwoUL2bt3LyNGjGjuWJvF6g8z8LD1wUppmZq9s2fh0qkQ\nzuacbZHnCSFEczJpxPp3332Hvb09AHq9HlVVURQFe3t7Bg0axKBBgyy2eqvIOoPODi1XlXXqFGz5\nKJhzt0lJRAhh+UxKIpUJBGDkyJHccccdBAcH4+rqyl133VXtHEsydGwGqW4tl0Q8PKA4sysXCy/K\nWBEhhMUze+6sHTt2GF//9NNPLFiwgBUrVjRpUC0pIiYdu5yWSyIBATD+Lhsuu/hy/up5Qj1CW+zZ\nQgjR1BrUEHD27Fl+/vlnbrnlFj7//POmjqlFZeRntNhAQ4AuXQwLYQW7BUu7iBDC4jUoiXTp0oXs\n7Gwef/xxFi1a1NQxtaiW7t5bKcQ9hOQcaRcRQlg2s5PIvn37cHJy4u677+b9999n1apVzRFXi0nP\nT9ckiQS7BUs3XyGExTO7TcTPz4+NGzdSVlbGyZMn+cMf/tAccbWYY+cycBvRctVZlYLdg9mUuKnF\nnyuEEE3JpCRS2aUXwMfHh7vvvrvOcyzJVTUDnxYuiWzcCHY+wVKdJYSweCYPNly+fDmnTp2qdiwx\nMZHnn3/eIgcb5pXmYWNbga+Ha4s+NzsbOllLw7oQwvKZlES2bduGp6cnf/7zn/Hx8aFHjx50794d\nHx8f5s+fj7e3N9u3b2/uWJtcZc+sli5BzZ4NIwZ4U6wrJr80v0WfLYQQTcnkwYYPPfQQDz30EHq9\nnuzsbBRFoVOnTlhZWe5EwFr1zAJQFMU4h1akd6QmMQghRGOZlAH27NnDhQsXALC2tiY+Pp7Zs2ez\nYMECrlxTVQ6JAAAcaklEQVS50qwBNqf0PG16ZlUKdpN2ESGEZTMpicydO9c4rclPP/3Ek08+yYwZ\nM3B1deXhhx9u1gCbU1peBud+b/meWZWC3aVdRAhh2UyeCt7DwwOADRs2MHfuXCZNmsS//vUvkpKS\nmjXA5pR2NYPd21u+JJKWBh99JGNFhBCWz6QkotfrKS8vB2D79u3cdtttxmM6na55ImsB6Xnp2BS3\nfBLJzIQXX7w2al2SiBDCgpnUsD5t2jRGjBhBp06dcHJyYtiwYQAkJSXh5ubWrAE2p8zCDGZObPnq\nrE6dDN18Q9xDOHPlTIs/XwghmopJSWTRokXcfvvtZGZmMnr0aGOPLFVVee2115o1wOaUWZjB/5vX\n8iURLy948EEI9QjlbM5ZdBU6bKzMnjxACCE0p6iWuq5tPRRFqXPJ3gq1AsdnHcn9ey6Oto4tGFlV\nQSuC2P7AdpkSXgjRKtT32Xkzyx3k0UiXiy7jbOusaQIBCO8UTmJ2oqYxCCFEQ7XbJJKWl0bXjl21\nDoOwTmGczD6pdRhCCNEg7TqJdLb34403tI0j3DOcxMtSEhFCWKZ2m0TS89PxcfbX7PlffQWHDklJ\nRAhh2dptl6C0vDS6e/vzp8naPF+nM/yEd5KSiBDCcrXrJDI8cLhmz58wwfBfVfWhuLyYnOIc3B3d\nNYtHCCEaol1XZ/m5aDdvViVFUQjrFCalESGERWq3SSQtLw1/V+3aRG4U5intIkIIy9Quk4iqqqRe\nTaUky58PP9Q6GmkXEUJYrnaZRPJK81AUhbQzrnzyiTYxZGdD5YwxUhIRQliqdplEKttDdDoFW1tt\nYigpgWXLDK9l1LoQwlK1yyRS2R4SHg5Tp2oTg6enoTSiqoaJGJNzk9FVWO60+kKI9qldJ5FbboHJ\nGo0TcXSEf/4T9HpwtHXEp4OPrHIohLA47TKJpOelt4qeWYsWgc21kTp9u/TlUOYhbQMSQggztcsk\nkpaf1irGiNyov09/Dlw4oHUYQghhlvaZRFrRGJFKkkSEEJZIsyQSHx9PeHg43bt35/nnn6/xnMce\ne4zu3bvTp08fDh48aNwfFBREZGQk/fr1Y+DAgWY/u7I669df4dtvG/wWmlRlEmmja4QJIdooTebO\n0uv1zJ8/n+3bt+Pn50d0dDRxcXFEREQYz9myZQunT58mKSmJ3bt3M2/ePHbt2gUYpgpJSEjAw8Oj\nQc9Py0vDz9WP003ybhpu5064ehXuvBO6dOiCnbUdqXmpBHQM0DgyIYQwjSYlkT179hAaGkpQUBC2\ntrZMnTqVTZs2VTln8+bNzJgxA4CYmBhyc3O5ePGi8XhDv7EXlxeTX5ZPJ6dODBkCY8Y0/H00lr29\noZdWJanSEkJYGk1KIunp6XTten1VQX9/f3bv3l3vOenp6Xh7e6MoCiNHjsTa2pq5c+cyZ86cGp+z\nZMkS4+vY2FhiY2ONAw2tFO2bg26uievv05/9F/Zzd/jd2gQkhGh3EhISSEhIaPD1miQRRVFMOq+2\n0sbPP/+Mr68vly5dYtSoUYSHhzNs2LBq592YRCq1lu69Nenv0593DryjdRhCiHak8gt2paVLl5p1\nvSZfx/38/EhNTTVup6am4u/vX+c5aWlp+PkZuuX6+voC0LlzZyZMmMCePXtMfnZle0hrJNVZQghL\no0kSiYqKIikpiZSUFMrKytiwYQNxcXFVzomLi2P9+vUA7Nq1Czc3N7y9vSkqKiI/Px+AwsJCtm3b\nRu/evU1+9rmr54wN15s3w759TfSmmkBX166U68u5kH9B61CEEMIkmiQRGxsbVq1axZgxY+jZsydT\npkwhIiKC1atXs3r1agDGjRtHSEgIoaGhzJ07lzfeeAOAzMxMhg0bRt++fYmJieHOO+9k9OjRJj87\nOTeZELcQADZuhMOHm/79mePVV+HUKcNrRVGkNCKEsCiaLY87duxYxo4dW2Xf3Llzq2yvWrWq2nUh\nISEcOtTw6UHO5pzl3p73AlBWBnZ2Db5Vk/jpJ+jSBXr0MGz39+nPvox9/LHHH7UNTAghTKB9F6UW\nlpyTTIi7oSQyYQL07attPD16QOINs8APDxzOj+d+1C4gIYQwg6K20SHSiqJU692lq9Dh/Jwz+U/l\nY2etcRHkmiNHoLAQBg82bOeX5uPzkg+X/nYJR1vHui8WQogmVtNnZ13aVUkk9WqqcWR4axEZeT2B\nALjYuxDpHclvab9pF5QQQpioXSWRszlnCXYL1jqMet0WfBs/JP+gdRhCCFGvdpVEknOvt4e0ZrcH\n3S5JRAhhEdpVErm5JPLGG3ChFQ7JGNJ1CEcuHiG/NF/rUIQQok7tLoncWBKxtgYTZ2BpVmVlMHw4\nlJQYth1tHYn2i2bn+Z3aBiaEEPVoV0kkOTeZYPfrJZG5cw1jNLRmZwcrVoCDw/V9UqUlhLAE7SqJ\n3FwSaU3696+6fXvw7Ww/u12bYIQQwkTtJonkl+ZTWFaIt7O31qGYJMY/hgsFFzh9Reuls4QQonbt\nJolUVmWZOg29lnQ6eO1VGyaG3cOG3zdoHY4QQtSq/SSRnORqY0SefhrKyzUKqA5WVrBjB1xKmMqG\nY5JEhBCtV7tJIjW1hyxd2jp6Z93Mygreew8ObLyVzKtXOH7puNYhCSFEjdpNEknOrVoS0esN/7XR\nbB7jurm7wy8/W3F/v8lSGhFCtFrtJoncXBJRVXjmGQ0DMoGPD0ztNZUNv28wa0I0IYRoKe0mifye\n9TsRnSOM2zY28L//q2FAJor2jaZMX8b+C/u1DkUIIappF0nkctFlckpyCPUI1ToUsymKwiNRj7By\n90qtQxFCiGraRRLZf2E//br0w0qxzLc7PXwO/z38NRl5rXCiLyFEu2aZn6pm2p+xnwG+A7QOo8H8\nPNyJcZrOa7tf1zoUIYSoon0kkQv7GeBTNYmkpMB//qNNPOZSFHh71mO8e+htisuLtQ5HCCGM2m0S\nURTDxIeWoodnD2L8Y1h/eL3WoQghhFGbX2P9ctFlgl8NJvfJXIttE6n0a+qvTP1sKqcePYWDjUP9\nFwghhJlkjfWbHMw8SD8fy21Uv9GQrkPo5z2A575/TetQhBACaAdJZH/Gfvr79K//RAvRO+vfvPDz\nC+QU52gdihBCtIMkUkN7iCX764xwKo5PZMn3/9Y6FCGEaL9JJCEBvvuu5eNpLHd3mBm4hPVH13Li\n0gmtwxFCtHNtOolcyL/ApcJL9PDsUe3Yjh3w668aBNUE3n7Zh2dHLmX2V7OpUCu0DkcI0Y616STy\nfwn/x5wBc7C2sq52rLAQnJw0CKqJPBL1CFaKFW/sfUPrUIQQ7Vib7uLrtdyLxPmJuDm4VTu+bRu4\nucHAgRoE10ROZp9k6Jqh7J2zl2D34PovEEKIepjbxbdNJ5E39rzBvOh5WofSrF757RU++v0jfn7w\nZ+xt7LUORwhh4SSJXKMoCuX6cmysWumqU03g+efhzjtVFv8+CR8XH14fJ3NrCSEaRwYb3qAtJxCA\nfv3AzU1h7fi1fHv6Wz448oHWIQkh2pk2XRJpo2+tRkcvHmXk+yP5YMIHjOo2SutwhBAWSkoiJnr2\nWcjL0zqKptPbuzefT/6c+764j91pu7UORwjRTrTbJNKhg2GJ3LZkaMBQ1o5fS9wncfxy/hetwxFC\ntAPtNok8/rhljxO52Y8/wr33wiDPP7L+7vXcveFuvjjxhdZhCSHauHabRNqaQYMgIAC6dYPLe8bw\n7f3f8ujWR3n6x6fRV+i1Dk8I0UZJw3obk51tWHDL0xMy8jO4/4v7qVAr+M+4Dwj18tc6PCFEKycN\n6+1cp06GBALg6+LLd//zHcN8RxH+Sj9W/PK6lEqEEE2qXZZEdu82rLE+ZUrLxqSlvSnH+euORyjR\nlfDi6BcZHjhc65CEEK2QlERMkJAAe/dqHUXLig7qScLMBB6LeYwZG2cw7sNxHMo8pHVYQggL1y6T\nyNmzEBKidRQtz0qx4v7I+0mcn8jtXccx4p2xTPtsOkmXk7QOTQhhodp0EqmtRDZhAtxxR8vG0prY\nWdsxrdt8+v6URMJnEUS9NYR7/3sve9L3aB2aEMLCtOk2kbfeUpk7V+tIWi9VhU2bQG9dQFrnd1mx\newUejh483P9hpvSaUuMU+kKItk1m8b1GURS8vFSSksDVVetoLEOFWsF3Z77j7QNvszXxO4Z1jWVa\n34mM6TYGHxcfrcMTQrQASSLXKIpCfLxKbCzYyzIbZntyyVWCRn/F9rSNfJ/8Pf6u/gzyH0SUTxRR\nvlH09u6NnbWd1mEKIZqYxSSR+Ph4FixYgF6vZ/bs2fz973+vds5jjz3G1q1bcXJyYt26dfTr18/k\na2v6RWRnG8ZQKErzvKemlJCQQGxsrNZhAKCr0LE/Yz87z+5l2Xv7KffaR5H9GW7p0oNuHt0Idgsm\nxD2EwI7BdHH0x9/di2N7jnH77bdrHXqDtabfv7ksOXaQ+LVmbhLRZApCvV7P/Pnz2b59O35+fkRH\nRxMXF0dERITxnC1btnD69GmSkpLYvXs38+bNY9euXSZdW5uZM2HxYoiJacY310Ra0/+INlY2xPjH\n0N87hqF2hjE2OQWFRI09TnJuMsk5yRy+eJgNhzfy2+/pdPTL4srWK3ju98TL2Qtnm45cSnPBydoF\nNycXBvR2wcXO8ONk64S+1IHD+x354xgHHG0ccbBxwNHWETsrRyh3wK2DIx0crh+zs7ZDaeZvAq3p\n928uS44dJH5Lo0kS2bNnD6GhoQQFBQEwdepUNm3aVCURbN68mRkzZgAQExNDbm4umZmZJCcn13tt\nbTZtAmvrJn877YatrWGOrkGDAJyBaKL9oquco6qGkt4/C/7Jn+f9mazCLNKz89iwKY+rxfmoJfkE\nu+WTX5pPdnE2xXnFXC0s4VhhMXm/l1BcXkyJroRiXTFXC0o4eaYY1boEa4dinDsajusqdDjYOGBv\n5UhpoQO+XtcTj4ONA4rOkTOJDthZOdLR2YFBA244bu0AOkcupDoyINIBBxsHbKxssLGyobTEmsMH\nrXGws2FP4mm2n92OtWKNtZU1NlY2lJdak3nBmrDuNlgrhn3WVtboy625mGmDva01Tg7W+HYx7K88\nx0qxxlqxwdbautmTnxAtTZMkkp6eTteuXY3b/v7+7N69u95z0tPTycjIqPfa2kgCaX6Vn5FWihXe\nHbzx7uBNb2/4wy0Nv6eqgk5nSGIA+go9JboSLucVcyKphJAe1xNPia6Ey1eL+YUSCkqLUWxLiPSu\nejzr6iX2nClB52nY1lXo0Kt68gt0HD2pR1ehpyQtkWU/ZxqP6Sv0FBbrSE3TExCkr7K/uFRH5kU9\nqqLD2laPq9u14xV69Kqecr2Ocp0erPQoKFgphp71Cgo6nWJ8bWd37bWioKCgqlBWquDoqBiTj4KC\nWqFQWASoCtZWCh1cDPsrzyn6uZjn/vE6HTtW3V+hV8i5YnhtY6Pg6Wl4TuUz9TqF3Fzo3Lnqfl25\nQlaW4Xm2tgpdulyPEUBXrpCdreDre32/oiiUlUF6mgKqgp09BHSt+j7KyhQyL0BQUNX9qXsyWP6X\nrwFwcICQkKqJt7QE0jOg2837S+HMGcM97B0Mk5FWvU4hPb2G/aUKp09jfF5oKMZYAEpKIC3NsP/G\nLwElxZB07TpHB4Xu3Q2vzx88z/Y12ykpgdRUhR49qj6vpBhOnTLcx9ER4/Fvpn+Di70LlkaTJGLq\nt7HGNtdY+re+pUuXah1Co7T2+A/Wc/z7n8/UuD+njmv0QHYdx1VU9FSfv0wFSmu5prCO++mA3JoO\nfF9cZxx6IKOWY+fruK4MqPm3Aol1XFcMHK3lWI2/z60XACgCrtRyXW37AQqAy7Ucq+v3UlDH8Ut1\nXJcPZN2wnbo51fg6q9rZ1+UBF6+9dn3IMruRapJE/Pz8SE29/ktOTU3F39+/znPS0tLw9/envLy8\n3muh8QlICCFE/TQZsR4VFUVSUhIpKSmUlZWxYcMG4uLiqpwTFxfH+vXrAdi1axdubm54e3ubdK0Q\nQoiWoUlJxMbGhlWrVjFmzBj0ej2zZs0iIiKC1atXAzB37lzGjRvHli1bCA0NxdnZmbVr19Z5rRBC\nCA2obdDWrVvVsLAwNTQ0VF22bJnW4Zjl/PnzamxsrNqzZ0/1lltuUV999VWtQzKbTqdT+/btq955\n551ah2K2nJwcddKkSWp4eLgaERGh/vbbb1qHZJbnnntO7dmzp9qrVy912rRpaklJidYh1enBBx9U\nvby81F69ehn3Xb58WR05cqTavXt3ddSoUWpOTo6GEdatpvgXLlyohoeHq5GRkeqECRPU3NxcDSOs\nXU2xV3rxxRdVRVHUy5cv13ufNjcBY+U4kvj4eI4fP87HH3/MiRMntA7LZLa2trzyyiscO3aMXbt2\n8frrr1tU/ACvvvoqPXv2tMiODY8//jjjxo3jxIkTHDlyxKJKuSkpKbzzzjscOHCAo0ePotfr+eST\nT7QOq04PPvgg8fHxVfYtW7aMUaNGcerUKe644w6WLVumUXT1qyn+0aNHc+zYMQ4fPkyPHj3497//\nrVF0daspdjC0M3/33XcEBgaadJ82l0RuHINia2trHEdiKbp06ULfvn0B6NChAxEREWRk1NaPpvVJ\nS0tjy5YtzJ492+I6N1y9epWdO3fy0EMPAYaq044dO2oclelcXV2xtbWlqKgInU5HUVERfn5+WodV\np2HDhuHu7l5l341jxGbMmMHGjRu1CM0kNcU/atQorKwMH60xMTGkpaVpEVq9aood4IknnuCFF14w\n+T5tLonUNr7EEqWkpHDw4EFiLGGI/TV/+ctfWL58ufGPyJIkJyfTuXNnHnzwQfr378+cOXMoKirS\nOiyTeXh48Ne//pWAgAB8fX1xc3Nj5MiRWodltosXL+Lt7Q2At7c3Fy9erOeK1mvNmjWMGzdO6zBM\ntmnTJvz9/YmMjDT5Gsv7S6+HJVah1KSgoIB77rmHV199lQ4dOmgdjkm+/vprvLy86Nevn8WVQgB0\nOh0HDhzgT3/6EwcOHMDZ2blVV6Xc7MyZM6xYsYKUlBQyMjIoKCjgww8/1DqsRlEUxWL/pp999lns\n7OyYPn261qGYpKioiOeee67K+C5T/o7bXBIxZQxKa1deXs6kSZO4//77ufvuu7UOx2S//vormzdv\nJjg4mGnTpvHDDz/wwAMPaB2Wyfz9/fH39yc62jCVyz333MOBAwc0jsp0+/btY8iQIXh6emJjY8PE\niRP59ddftQ7LbN7e3mRmZgJw4cIFvLy8NI7IfOvWrWPLli0WlcTPnDlDSkoKffr0ITg4mLS0NAYM\nGEBWVl3DJdtgErH0cSSqqjJr1ix69uzJggULtA7HLM899xypqakkJyfzySefcPvttxvH+liCLl26\n0LVrV06dOgXA9u3bueWWRszX0sLCw8PZtWsXxcXFqKrK9u3b6dmzp9ZhmS0uLo733nsPgPfee8+i\nvkiBYZbx5cuXs2nTJhwcHLQOx2S9e/fm4sWLJCcnk5ycjL+/PwcOHKg/iTdxr7FWYcuWLWqPHj3U\nbt26qc8995zW4Zhl586dqqIoap8+fdS+ffuqffv2Vbdu3ap1WGZLSEhQ77rrLq3DMNuhQ4fUqKio\nVt89szbPP/+8sYvvAw88oJaVlWkdUp2mTp2q+vj4qLa2tqq/v7+6Zs0a9fLly+odd9xhEV18b47/\n3XffVUNDQ9WAgADj3++8efO0DrNGlbHb2dkZf/c3Cg4ONqmLb5tdlEoIIUTza3PVWUIIIVqOJBEh\nhBANJklECCFEg0kSEUII0WCSRESbYW1tTb9+/Yw/58/XtbyS5Vi3bh2dO3fm4YcfbtR9lixZwksv\nvWTc3rVrV633LCkpoW/fvtjb23PlSl3LP4n2TpOp4IVoDk5OThw8WPN6hZWdEC1x9LOiKEybNo2V\nK1dWO6bT6bCxMe3P+Ob3vnXrVsaOHVvjuQ4ODhw6dIjg4GDzAxbtipRERJuVkpJCWFgYM2bMoHfv\n3qSmprJ8+XIGDhxInz59WLJkifHcZ599lrCwMIYNG8b06dON39hjY2PZv38/ANnZ2cYPVb1ez9/+\n9jfjvd5++20AEhISiI2N5d577yUiIoL777/f+Iy9e/dy66230rdvXwYNGkRBQQEjRozg8OHDxnOG\nDh3K0aPVF5K9sSf+unXriIuL44477mDUqFEUFhYycuRIBgwYQGRkJJs3b67xfSUmVl3A9ocffmDk\nyJEcO3aMmJgY+vXrR58+fThdueC4ECaQkohoM4qLi+nXrx8AISEhvPzyy5w+fZr333+fgQMHsm3b\nNk6fPs2ePXuoqKhg/Pjx7Ny5EycnJzZs2MDhw4cpLy+nf//+REVFAbXP3fTuu+/i5ubGnj17KC0t\nZejQoYwePRqAQ4cOcfz4cXx8fLj11lv59ddfiYqKYurUqXz66acMGDCAgoICHB0dmTVrFuvWreOV\nV17h1KlTlJaW0rt373rf68GDBzl69Chubm7o9Xq+/PJLXFxcyM7OZvDgwcTFxbF///5a31d2dja2\ntra4uLjw1ltv8fjjjzN9+nR0Oh06na6p/klEOyBJRLQZjo6OVaqzUlJSCAwMZODAgQBs27aNbdu2\nGRNNYWEhSUlJ5OfnM3HiRBwcHHBwcDBpmpxt27Zx9OhRPvvsMwDy8vI4ffo0tra2DBw4EF9fXwD6\n9u1LcnIyLi4u+Pj4MGDAAADjpJr33HMPzzzzDMuXL2fNmjU8+OCD9T5bURRGjx6Nm5sbABUVFTz1\n1FPs3LkTKysrMjIyuHjxIjt37qz2vipLNNu2bWPMmDEADBkyhGeffZa0tDQmTpxIaGho/b9sIa6R\n6izRpjk7O1fZfuqppzh48CAHDx7k1KlTxrVDbqwuuvG1jY0NFRUVgKGx+UarVq0y3uvMmTOMHDkS\nVVWxt7c3nmNtbY1Op6u1LcbJyYlRo0axceNG/vvf/3LfffeZ9L6cnJyMrz/88EOys7M5cOAABw8e\nxMvLi5KSEhRFqfa+KuOIj4/nD3/4AwDTpk3jq6++wtHRkXHjxrFjxw6TYhACJImIdmTMmDGsWbOG\nwsJCwLD2zKVLlxg+fDgbN26kpKSE/Px8vv76a+M1QUFB7Nu3D8BY6qi81xtvvGGs+jl16lSta48o\nikJYWBgXLlww3is/Px+9Xg/A7Nmzeeyxxxg4cKBJi2DdPFNRXl4eXl5eWFtbs2PHDs6dO4eiKLW+\nL1VVOXLkCH369AEM66gEBwfz6KOPMn78+BrbZISojVRniTajpm/7N+4bNWoUJ06cYPDgwQC4uLjw\nwQcf0K9fP6ZMmUKfPn3w8vIiOjra+EG9cOFCJk+ezNtvv80f//hH4/1mz55NSkoK/fv3R1VVvLy8\n+PLLL2ttQ7G1tWXDhg08+uijFBcX4+TkxHfffYezszP9+/enY8eOJlVlVb6nG59x3333cddddxEZ\nGUlUVJRxSd+b31dltd7+/fuNVXoAn376Ke+//z62trb4+PiwaNEik+IQAkAmYBTiJkuXLqVDhw78\n9a9/bZHnZWRkcNttt1XrPVXpvffeY9++fbz22mtN8rxnn32W7t27M3ny5HrPDQ4OZv/+/Xh4eDTJ\ns0XbI9VZQtSgpcaTrF+/nkGDBvHcc8/Veo6joyNbt25t9GDDSosWLao3gVQONtTpdBa51LFoOVIS\nEUII0WDyFUMIIUSDSRIRQgjRYJJEhBBCNJgkESGEEA0mSUQIIUSDSRIRQgjRYP8fk3L47sAbKMwA\nAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " Estimated autocovariance\n", + "----------------------------\n", + "Obviously knowing the spectrum one can compute the covariance\n", + "function. The following code will compute the covariance for the \n", + "unimodal spectral density S1 and compare it with estimated \n", + "covariance of the signal xx." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "Lmax = 85\n", + "R1 = S1.tocovdata(nr=1) \n", + "Rest = ts.tocovdata(lag=Lmax)\n", + "R1.plot('.')\n", + "Rest.plot()\n", + "axis([0, 25, -0.1, 0.25])\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcU9f7B/BPGA42yE5QZAhYZShoHVgc4MaJ4h4I1tbR\n2lbbWlu0v7rtUL+to9YtBbUVaxURFbfgtlQREBGMgCgbkRHO74+UhDCUhJAAed6vly9zkjue3IT7\n5Jxzz7kcxhgDIYQQIiU1ZQdACCGkeaIEQgghRCaUQAghhMiEEgghhBCZUAIhhBAiE0oghBBCZEIJ\nhBA56tKlCy5cuKDsMJoUXV1dpKSkKDsM0ggogRC58fLygpGREUpLS6VaT01NDcnJyTLvt7S0FMHB\nwejUqRN0dHTQsWNHBAQE4MmTJzJvU1ZxcXHo16+fwvdbl5kzZ6J169bQ1dUV/Tt06FCj7c/Lyws7\nd+6UeK6goADW1taNtk+iPJRAiFykpKQgNjYWpqamOHbsmNTrN2Q86/jx43H8+HGEhIQgPz8fd+/e\nhbu7O86cOSPzNqVVXl6usH1Jg8PhYOnSpSgoKBD98/Pza9T9EdVBCYTIxd69ezFo0CBMmzYNe/bs\nkXit+q/S3bt3w9PTEwBEv9ZdXFwkfh3v2LED9vb2aNeuHUaNGoX09PRa9xsVFYWoqCiEh4eje/fu\nUFNTg56eHubNm4fZs2cDAJ49ewZfX1+0a9cO9vb2+PXXX0XPa2lpIScnR7S927dvw8TEBAKBAI8e\nPcKAAQNgbGwMExMTTJ06FXl5eaJlra2tsW7dOjg7O0NXVxcCgQDW1tY4e/YsACA2Nha9evWCoaEh\nLC0tsWDBApSVlYnWV1NTw7Zt29CpUycYGhpi/vz5Eu9tx44d6Ny5M/T09PDOO+/g9u3borjHjRsH\nU1NT2NjYYPPmzfX9mERmzpyJ5cuXi8rR0dGwsrKSeG8bN26Ei4sLDAwM4O/vj5KSEtHr4eHhcHV1\nhb6+Puzs7HDq1CksW7YMFy9exPz586Grq4uFCxeK3mdlDTMvLw/Tp0+HqakprK2t8d1334l+POze\nvRt9+/bFZ599BiMjI9jY2CAiIkLq90YUiBEiB7a2tmz//v0sISGBaWpqsszMTNFrXl5ebOfOnaLy\nrl27WN++fUVlDofDHj16JCqfOXOGGRsbs9u3b7OSkhK2YMEC1q9fv1r3u3TpUubl5fXG2Dw9PdmH\nH37ISkpK2J07d5iJiQk7e/YsY4yxAQMGsB07doiW/fTTT9m8efMYY4wlJSWxqKgoVlpayrKysli/\nfv3YRx99JFq2Q4cOzM3NjT19+pS9fv2aMcaYtbU1O3PmDGOMsZs3b7KYmBgmEAhYSkoKc3JyYj/+\n+KPE+x45ciTLy8tjqampzMTEhEVERDDGGAsLC2NcLpfduHFDFMuTJ0+YQCBg3bp1Y99++y0rKytj\nycnJzMbGhp06darW9z5z5kz21Vdf1fr88uXLReVz584xHo8nKltbW7OePXuy9PR0lp2dzZycnNjW\nrVsZY4zFxMQwfX19FhUVxRhjjM/ns/j4eMZYzc+68n1Wfr7Tpk1jo0ePZoWFhSwlJYV16tRJtPyu\nXbuYpqYm+/XXX1lFRQX75ZdfmKWlZa3vizQNVAMhDXbp0iXw+Xz4+vrC3t4enTt3xsGDB2Xe3oED\nBxAQEABXV1e0atUKq1evxtWrV5Gamlpj2ZcvX8Lc3LzObaWlpeHKlStYu3YtWrVqBRcXF8yZMwd7\n9+4FAEyePBkhISEAhM1ooaGhmDx5MgDA1tYWAwcOhKamJoyNjfHxxx/j/Pnzom1zOBwsXLgQXC4X\nrVu3rrHvbt26oUePHlBTU0OHDh0QFBQksT4AfP7559DT04OVlRX69++Pu3fvAgB+/fVXLF26FN27\ndxfF0r59e1y/fh0vXrzAV199BQ0NDXTs2BFz5szB77//Xuv7Z4xhw4YNMDQ0hKGhIUxNTUXPs7c0\nGy5cuBDm5uYwNDTEyJEjcefOHQDAzp07ERAQgIEDBwIALC0t4eDgILHP2ggEAoSGhmL16tXQ1tZG\nhw4d8Mknn2Dfvn2iZTp06ICAgABwOBxMnz4d6enpeP78+RvjJMpDCYQ02J49e+Dj4wNdXV0AgJ+f\nX41mLGmkp6ejQ4cOorK2tjbatWsHPp9fY1ljY+M6m7cAYXOPkZERtLW1Rc+1b99etK2xY8fi6tWr\nyMjIwIULF6Cmpoa+ffsCADIzM+Hv7w8ejwd9fX1MmzYNL1++lNh+1Waf6hISEjBixAhYWFhAX18f\ny5Ytq7F+1eSnpaWFwsJCAMDTp09ha2tbY5tPnjzBs2fPRAnB0NAQq1evrvMky+Fw8NlnnyEnJwc5\nOTmi5erTV1E1trZt26KoqOiNsVXdZ21evHiBsrIyic+26mdRfZ9aWloAIDompOmhBEIapLi4GGFh\nYTh79iwsLCxgYWGBjRs34u7du7h37x4AYQKoPPkAQEZGxhu3aWlpKXHZZ1FREV6+fAkul1tj2UGD\nBiE2NrbW5FK5rezsbImTUGpqKng8HgDA0NAQPj4+CA0NxcGDBzFp0iTRcl9++SXU1dURFxeHvLw8\n7Nu3DxUVFRLbf9OJeN68eejcuTOSkpKQl5eH7777rsb6dbGyskJSUlKN59u3b4+OHTuKEkJOTg7y\n8/Nx/PjxOrdVW41AW1sbr169EpXf9pnUJzbgzcfD2NgYmpqaEp9t1c+CND+UQEiDHD16FBoaGnjw\n4AHu3r2Lu3fv4sGDB/D09BQ1E7m6uuKPP/5AcXExkpKSalzmaWZmhkePHonKkyZNwq5du3D37l2U\nlJTgyy+/xLvvvov27dvX2P/AgQPh7e2NMWPG4NatWygvL0dBQQG2bt2KXbt2wcrKCr1798YXX3yB\nkpIS3Lt3D7/99humTp0q2sbkyZOxZ88eHDlyRNR8BQh/+Wpra0NPTw98Ph/r16+X6tgUFhZCV1cX\nWlpaiI+Pxy+//PLG5as2K82ZMwcbNmzArVu3wBhDUlISUlNT0aNHD+jq6mLdunUoLi6GQCBAXFwc\nbty4Uec2a+Pq6ooTJ04gJycHGRkZ+PHHH9/6fiq3FRAQgF27duHs2bOoqKgAn8/Hw4cPAdT8LKtS\nV1fHhAkTsGzZMhQWFuLJkyf44YcfJD4L0rxQAiENsnfvXsyePRs8Hg+mpqYwNTWFmZkZ5s+fj4MH\nD6KiogIff/wxWrVqBTMzM8yaNQtTp06V+KUaHByMGTNmwNDQEIcPH8bAgQPx7bffYty4cbC0tMTj\nx4/rbOMHgMOHD2PYsGGYOHEiDAwM0LVrV9y6dQve3t4AgJCQEKSkpMDS0hJjx47FypUrMWDAANH6\nvr6+SEpKgoWFBbp27Sp6/ptvvsGtW7egr6+PkSNHYty4cVJdprphwwYcPHgQenp6CAoKgr+/v8T6\n1bfF4XBEz40fPx7Lli3D5MmToaenh7FjxyInJwdqamo4fvw47ty5AxsbG5iYmCAoKAj5+fm1xlB1\nm1VNmzYNLi4usLa2xpAhQ2rE9qbteHh4YNeuXfj4449hYGAALy8vUf/UokWLcPjwYRgZGeGjjz6q\nsZ3NmzdDW1sbNjY28PT0xJQpUzBr1qw6Y6XLgps2DntbTxohhBBSC6XUQCIiIuDo6Ah7e3usXbu2\nxusHDhyAi4sLnJ2d0adPH1FbOiC8Pt3Z2Rlubm7o0aOHIsMmhBBShcJrIAKBAA4ODoiKigKXy4WH\nhwdCQkLg5OQkWubq1avo3Lkz9PX1ERERgeDgYFy7dg0A0LFjR9y8eRNGRkaKDJsQQkg1Cq+BxMbG\nws7ODtbW1tDU1IS/vz/Cw8MllunVqxf09fUBAD179sTTp08lXqdWN0IIUT6FJxA+ny9x7TyPx6vz\nEkxAOGhp2LBhojKHw8GgQYPg7u6OHTt2NGqshBBC6qah6B1Kc1XFuXPn8Ntvv+Hy5cui5y5fvgwL\nCwtkZWXB29sbjo6OonmVZNkHIYQQMWlaeBReA+FyuUhLSxOV09LSah1IdO/ePQQGBuLYsWMwNDQU\nPW9hYQEAMDExwZgxYxAbG1vrfiqvqVf1f998843SY2gq/+hY0LGgY/Hmf9JSeAJxd3dHYmIiUlJS\nUFpaitDQUPj6+kosk5qairFjx2L//v2ws7MTPf/q1SsUFBQAEI5OjoyMlLhunxBCiOIovAlLQ0MD\nW7ZsweDBgyEQCBAQEAAnJyds27YNADB37lysXLkSOTk5mDdvHgBAU1MTsbGxyMjIwNixYwEI778w\nZcoU+Pj4KPotEEIIQQsdSMjhcGSqjrVE0dHR8PLyUnYYTQIdCzE6FmJ0LMSkPXdSAiGEEAJA+nMn\nzYVFCCFEJpRACCGEyIQSCCGEEJlQAiGEECITSiCEEEJkQgmEEEKITCiBEEIIkQklEEIIITKhBEII\nIUQmLTaBDBsG5OYqOwpCCGm5WmwCOXkSCApSdhSEENJytdi5sLq9W4AzJ3VgYKDsaAghpHmgubD+\n88GPxyl5EEJII2qxCeSvx78rOwRCCGnRWmwCOZdyDrmvqRedEEIaS4tNIAM6DsDR+KPKDoMQQlqs\nFptA/N/xR+i/ocoOgxBCWqwWm0BGdBqBq2lX8eLVC2WHQgghLVKLTSDarbQxxG4Ijtw/ouxQCCGk\nRWqxCQQAsi/4Y+n+EBqVTgghjaBFJ5DiuMHI072Kk6fKaVQ6IYTIWYtOILpt2gKF5ujaNxXbtys7\nGkIIaVmUkkAiIiLg6OgIe3t7rF27tsbrBw4cgIuLC5ydndGnTx/cu3ev3utWdfAgYKphh+BNSTQq\nnRBC5EzhCUQgEGD+/PmIiIjA/fv3ERISggcPHkgsY2NjgwsXLuDevXtYvnw5gv5rf6rPulUZGACj\n37NDRmlSo74nQghRRQpPILGxsbCzs4O1tTU0NTXh7++P8PBwiWV69eoFfX19AEDPnj3x9OnTeq9b\nnb2RPZKyKYEQQoi8aSh6h3w+H1ZWVqIyj8dDTExMncvv3LkTw4YNk3rd4OBgAED8i3ikGqYCg+UQ\nPCGEtCDR0dGIjo6WeX2FJxAOh1PvZc+dO4fffvsNly9flnrdygQS9zwOEw5NkCpGQghRBV5eXvDy\n8hKVV6xYIdX6Ck8gXC4XaWlponJaWhp4PF6N5e7du4fAwEBERETA0NBQqnWrsjG0wePcxxBUCKCu\npi6nd0EIIUThfSDu7u5ITExESkoKSktLERoaCl9fX4llUlNTMXbsWOzfvx92dnZSrVudlqYW2rVt\nB34Bv1HeDyGEqCqF10A0NDSwZcsWDB48GAKBAAEBAXBycsK2bdsAAHPnzsXKlSuRk5ODefPmAQA0\nNTURGxtb57pvY2dkh6TsJLTXb9+o740QQlRJi72lbdW3NefYHPTg9kBQdxqOTgghdaFb2taisgZC\nCCFEflQmgSRmJyo7DEIIaVFUJoFQDYQQQuRLJRKIraEtHmU/QgWrUHYohBDSYqhEAtFtrQu91npI\nL0hXdiiEENJiqEQCAagZixBC5I0SCCGEEJmoVgLJoQRCCCHyoloJhGoghBAiN5RACCGEyERlEoit\noS2SspOkGqZPCCGkbiqTQAzbGqK1ems8L3qu7FAIIaRFUJkEAgDqeXYYMiURw4YBubnKjoYQQpo3\nlUogLMcadx6n4uRJIIgm5iWEkAZRqQSiXcEFdPnw8AC2b1d2NIQQ0rypVAIJnMiDXfeniIwEDAyU\nHQ0hhDRvKpVA7E15cO77lJIHIYTIgUolEK4eF/x8ujc6IYTIg0olEJ4eD0/znyo7DEIIaRFUKoFY\n6FjgedFzlFeUKzsUQghp9lQqgWiqa6KdVjtkFmYqOxRCCGn2VCqBANSMRQgh8qJyCYSrywW/gDrS\nCSGkoZSSQCIiIuDo6Ah7e3usXbu2xuvx8fHo1asX2rRpg40bN0q8Zm1tDWdnZ7i5uaFHjx5S75tq\nIIQQIh8ait6hQCDA/PnzERUVBS6XCw8PD/j6+sLJyUm0TLt27bB582YcPXq0xvocDgfR0dEwMjKS\naf9UAyGEEPlQeA0kNjYWdnZ2sLa2hqamJvz9/REeHi6xjImJCdzd3aGpqVnrNhoyJTvVQAghRD4U\nXgPh8/mwsrISlXk8HmJiYuq9PofDwaBBg6Curo65c+ciMDCw1uWCg4NFj728vODl5QVAOJiQEggh\nhADR0dGIjo6WeX2FJxAOh9Og9S9fvgwLCwtkZWXB29sbjo6O8PT0rLFc1QRSFU+PR6PRCSEEkj+u\nAWDFihVSra/wJiwul4u0tDRROS0tDTwer97rW1hYABA2c40ZMwaxsbHS7f+/PhC6MyEhhDSMwhOI\nu7s7EhMTkZKSgtLSUoSGhsLX17fWZauf5F+9eoWCggIAQFFRESIjI9G1a1ep9q/dShttNNoguzhb\ntjdACCEEgBKasDQ0NLBlyxYMHjwYAoEAAQEBcHJywrZt2wAAc+fORUZGBjw8PJCfnw81NTX89NNP\nuH//Pp4/f46xY8cCAMrLyzFlyhT4+PhIHUNlR3o7rXZyfW+EEKJKOKwFtuVwOJw3NlEN2T8EC3os\nwPBOwxUYFSGENG1vO3dWp3Ij0YH/OtJpLAghhDSIyiYQupSXEEIaRiUTCI1GJ4SQhlPJBEI1EEII\naTiVTCA0Gp0QQhpOJRMIjUYnhJCGU8kEYtjGECWCEhSWFio7FEIIabZUMoFwOByqhRBCSAOpZAIB\nqCOdEEIaSmUTCFeXOtIJIaQhVDaB0Gh0QghpGJVNIBf+5uJ/+55i2DAgN1fZ0RBCSPOjsgkkL42L\nZwXPcPIkEBSk7GgIIaT5UdkEoq9mCeg+g4cHsH27sqMhhJDmR2UTyLYNlmhr+gyRkYCBgbKjIYSQ\n5kdlE4gD1xzlrZ9DV0+g7FAIIaRZUtkE0kq9FfTb6OPFqxfKDoUQQpollU0gAGCpa4lnBc+UHQYh\nhDRLlEAogRBCiEwogVACIYQQmah0ArHQsUB6YbqywyCEkGZJpRMI1UAIIUR2lEAogRBCiEyUkkAi\nIiLg6OgIe3t7rF27tsbr8fHx6NWrF9q0aYONGzdKta40KIEQQojsFJ5ABAIB5s+fj4iICNy/fx8h\nISF48OCBxDLt2rXD5s2b8emnn0q9rjQogRBCiOwUnkBiY2NhZ2cHa2traGpqwt/fH+Hh4RLLmJiY\nwN3dHZqamlKvKw0zbTNkvcqCoIJGoxNCiLQ0FL1DPp8PKysrUZnH4yEmJkbu6wYHB4see3l5wcvL\nq8YymuqaMGprhOdFz2Gha1G/N0AIIS1EdHQ0oqOjZV5f4QmEw+EoZN2qCeRNKpuxKIEQQlRN9R/X\nK1askGp9hTdhcblcpKWlicppaWng8XiNvm5dqB+EEEJko/AE4u7ujsTERKSkpKC0tBShoaHw9fWt\ndVnGmMzr1hcNJiSEENkovAlLQ0MDW7ZsweDBgyEQCBAQEAAnJyds27YNADB37lxkZGTAw8MD+fn5\nUFNTw08//YT79+9DR0en1nUbgmoghBAiGw6r/jO/BeBwODVqL3XZemMrbqXfwvaRdFtCQohqk+bc\nCaj4SHSAaiCEECIrSiC6ltQHQgghMlD5BGKhY0E1EEIIkUGdCWTmzJmix3v27FFELEphpmOGF69e\noLyiXNmhEEJIs1JnArl7967o8Y8//qiQYJRBQ00DxlrGyCzMVHYohBDSrKh8ExZAHemEECKLOseB\nPH36FAsXLgRjDHw+X/QYEF7qtWnTJoUF2dhoMCEhhEivzgSyfv160dxT3bt3b9AcVk0d1UAIIUR6\ndSaQiRMnoqCgAKamphLPP3/+HLq6uo0emCJRAiGEEOnV2QeycOFCXLx4scbzly9fxuLFixs1KEWj\nBEIIIdKrM4HcvHkT48aNq/H8mDFjcP78+UYNStFoMCEhhEivzgTy6tWrOleqqKholGCUhQYTEkKI\n9OpMIKamprXe7S82NrZGv0hz98NKS/yb+gzDhgG5ucqOhhBCmoc6O9E3bNiACRMmYObMmejevTsY\nY7h58yb27NmD0NBQRcbY6NLiTVHWLwcnI0sRFNQKYWHKjogQQpq+OmsgPXr0QExMDCoqKrB7927s\n2bMHjDHs3bu3xU1toq2lDhSZwrlPOrbTrO6EEFIv9bofyK1bt3Dw4EEcOnQIHTt2xLhx47BgwQJF\nxCcTaee0z80FbFf3xMEZP2Bw596NGBkhhDRd0p4762zCevjwIUJCQhAaGgoTExP4+fmBMYbo6Gh5\nxNmkGBgA73XjIp/xlR0KIYQ0G3UmECcnJ4wYMQKnTp1C+/btAQDff/+9wgJTNK4eF/wCSiCEEFJf\ndfaB/PHHH2jbti369euH999/H2fOnJGqatPccHUpgRBCiDTqTCCjR49GaGgo4uLi4OnpiR9++AFZ\nWVmYN28eIiMjFRmjQnB1ueDnUwIhhJD6eut07jo6OpgyZQqOHz+OtLQ0uLm5Yc2aNYqITaF4ejyq\ngRBCiBTqdRVWcyPtlQQAkPAyAcMODEPSwqRGiooQQpo2ac+ddEOp/1T2gbTAfEoIIY1CKQkkIiIC\njo6OsLe3x9q1a2tdZuHChbC3t4eLiwtu374tet7a2hrOzs5wc3NDjx495BaTditttFZvjezibLlt\nkxBCWrI6L+NtLAKBAPPnz0dUVBS4XC48PDzg6+sLJycn0TInTpxAUlISEhMTERMTg3nz5uHatWsA\nhFWs6OhoGBkZyT22ykt522m1k/u2CSGkpVF4DSQ2NhZ2dnawtraGpqYm/P39ER4eLrHMsWPHMGPG\nDABAz549kZubi8zMTNHrjdXMRFdiEUJI/Sm8BsLn82FlZSUq83i8GrP+1rYMn8+HmZkZOBwOBg0a\nBHV1dcydOxeBgYG17ic4OFj02MvLC15eXm+NjQYTEkJUSXR0dINmF1F4AqnvvdXrqmVcunQJlpaW\nyMrKgre3NxwdHeHp6VljuaoJpL6oBkIIUSXVf1yvWLFCqvUV3oTF5XKRlpYmKqelpYHH471xmadP\nn4LL5QIALC0tAQAmJiYYM2YMYmNj5RcbjUYnhJB6U3gCcXd3R2JiIlJSUlBaWorQ0FD4+vpKLOPr\n64u9e/cCAK5duwYDAwOYmZnh1atXKCgoAAAUFRUhMjISXbt2lVts1IRFCCH1p/AmLA0NDWzZsgWD\nBw+GQCBAQEAAnJycsG3bNgDA3LlzMWzYMJw4cQJ2dnbQ1tbGrl27AAAZGRkYO3YsAKC8vBxTpkyB\nj4+P3GKjJixCCKk/GoleRWZhJrr80gVZn2U1QlSEENK00Uj0BjDRNkF+ST5el79WdiiEENLkUQKp\nQo2jBnMdczwreKbsUAghpMmjBFIN9YMQQkj9UAKphq7EIoSQ+qEEUg3VQAghpH4UfhlvU0eDCUl9\nPC96jrOPz+Je5j3czbyLR9mPoN9GHyZaJjDVNkUvXi/4OvjCTMdM2aES0mgogVTD1ePiRvoNZYdB\nmqAKVoHTj05jx60diEqOgpe1F9zM3RDYLRB2RnYoKClA1qssZBRm4GzKWSyJWoLOJp0xpesUzHab\njTYabZT9FgiRK0og1VATFqmuglXg0L+HsPzccui00kFgt0Ds9N0J/Tb6da4T1D0IJeUlOJdyDv+7\n/j+svrQaX/T9AgFuAWit0VqB0RPSeGggYTVJ2Unw3ueNx4seyzkq0hxFJUfh86jPAQBrB63FQJuB\nMm3nOv86gs8H49/n/2Kn706Zt0NIY5L23EkJpJrismIYrDXA62Wv6z1zMGl50gvSsShiEW6m38Tq\ngasxvvN4qHEafs1J5KNIzA6fjQnvTMCqgauoWYs0KTQSvYHaaraFTisdvHj1QtmhECWoYBXYcXMH\nXLa6wM7IDnHz4jDhnQk1kkdQEODlBQwbBsycKX6cmyv5Wm6u5PZ9bH1w9/27SM1LhccOD8S/iFfQ\nOyNE/qgPpBZcXS6e5j+FibaJskMhCpTwMgFBfwWhuLwYUdOj4GzmLPF6UBCQkABoaQH5+cDly8Ln\nTUyArCzxMs+fA+fPC8vdugHt2wvXOXgQMDAA2mm1wyG/Q/j11q/w2u2FPyb+gd5WvRX4TgmRD6qB\n1CInlYvp8/m1/oIkLU+ZoAyrLq5C7529MdZpLK7MvgJnM+caNYmEBGFiOHkSePRIuK6HB+DiIn68\nfbswWVSWLS3F6wQFiffJ4XAQ2D0Qu0fvxqjfR+Fo/FGFvmdC5IESSC0E2VaIS0ut8UdPWhbGGI7G\nH4XbNjdcTL2Im0E3sbDnQqirqQOQTBhBQZKJ4do1wM8PiIwEDh0SPzYwENY0Kst6euJ1tLRqNm0N\nsRuCk1NO4oO/P8D2m9sVfxAIaQDqRK+Fw5xVSHiSB4+8taKTAmk5GGM49egUlp9bjjJBGb7t/y1G\ndBoBDocj0UxVVgZERQlP/pGRwnWDgoS1jPp+Jyr7RLZvB0aPFjdt+fkJt1G5r+9+foRRf/bHN+99\ng4BuAY3zxgl5C7oKCw1PIDuuHcC3YX/h3te/U/JoQeJfxOPAPwdw4N4BaLfSxtf9vsa4zuPw/ly1\nWvs2Ro0CWrWSLmG8ybBhwtpMZUKqnlD+75cE9N/TH+sGrcMU5ykN3yEhUpL23Emd6LXobGkNy84p\nlDyauczCTJx/ch7RKdE4l3IOea/zMKnrJByZcASu5q6iy7Qrm6oAwNxc+L+HB7B7t3xrnwcPStZg\nqjaJCZ/rhMipkRi0bxDaaLTBuM7j5LdzQhoB9YHUooNBBzzJe6L4HQsEwn+VXrwAiovFZT4fKCoS\nl1NTgf/uEQ8AePKkccspKZLlx4+FP9krJScDeXniclKSZDkhQfKqhIcPpS/n5NRaLhWU4sqlEKyL\nWoHxYePR4ccOcNzUCftv7oKdkR2c7h/AwN9PIW39V/jpCzf078/B+57/Iu9xtuhEPvGdOMSefCnu\nz3hyV/gZVLp1S3y5FQDExgovuap0+TKQkSEunz8PPBPfW8bgRhTCvn8qSkphAafw/vA0REYCS5YA\nS7uewPqJOgjzPYkPTnyAyIPfCj+DSn//LfwM6ls+flyy/NdfkuXwcOFnWOnPPyXLR44IP9NKYWHi\nqwcA4Pcx57FoAAAgAElEQVTfhZ9xpZAQIDFRXD54UPiZVzpwQLK8f3/N8sOH4vK+fc2rrIIogdTC\nQscC2cXZ0t+Z8MULyRN8VJTkCWDjRuD2bXE5MBA4e1ZcHj1a3NgOAIsXA1euiMvBwcD16+LyqlXC\nk1qlNWsat7xunWR5wwbgzh1x+fvvgXv3xOVNmyTLP/8MxMWJy1u3Sl++f19UfLZtAzaeXA7vfd5o\nt64dZhz+CAf2xiHpr7H4Y1QUfv89AO1/+ApR3y7G87vd4HJjD/hR93HihPDcbntpN9YHxIs6vXcP\n3Aur4gSEhf1X8wgJkTxBVj+hnjgh+fmeOydM8pWuXQMyM8Xle/eAly9FRZ2n8fhlVY6oL6QoLhk3\no/OxeZkrDvsdxpSkdbj55Jp4/ZQUoLCw/uXUVMny06eS5YwM4NUrcTkrS/IHS24uUFIiLhcVCTuG\nKpWUSP7gKS8HKirE5aqPa6OmVrNc9TkNjeZVVkGq3Qdy9arwOssOHYTllSuFl8n06wfbTbY4mdoP\nnQZPBry9ha8vWgQMHw74+AjLs2cDY8YAI0cKy3PmAOPHA0OGCMubNgF9+woHAwDCE4y9PcDjCct8\nvvBMpa0tl/etCsorynHo30PYdWcXrj+7DtOXY9Dq0RiYl3qiOMdA1H/h5yc5HsPcXHi+9PAA9PUl\nO8ebQlNl9f6RJUuAK9l/IsnhQ1wNvAg3a1tlh0hUgNT9x6wFqvNt3brF2D//iMs//sjYxYvi8p07\njGVkMMYY67+7P4u8vJexnBzx66mpjOXlicu5uYyVlMgxclIXQYWA/f7P78xhswMz/8KTOfmFMJ/h\nRaxPH8YA4T9zc+H/Hh7Cj23oUHE5JYUxPz/h8zk54sdNRfWY3nvvv/fl/gvT/sKWZRRkKDU+Urv0\ngnT2c+zPLP91vrJDkQtpU4JqdaInJgJt2gBdugjLixZJvl45IgyAtYE1Ulq/lvx5amUlubx+3bOx\nEvmJeRqDucfnQlNdE5uGbsJ3Ad64cJ6DB5Ds9D50CPjsM3EndfVO67Aw8TarPm4Kqscn6mDnvA8v\nz2cYETIC52acg04rHeUESESe5j/FHw/+wOH7h/HP838wzH4YRjqMhG5rXWWHpnAtuwmrrEzYMTdz\nJiDlxIgrolegrKIM/zfg/xonSPJWggoB1lxag++iNsE6fhM6FE5AyEEOJk8WN/dUTxotRdXxI58t\nYTiuFgBBm0zc/zocxkaq9buvKUjLS8ORB0dw6P4hxL+Ix8hOI+HX2Q+DbAbVe3r+qmOMTE2FXVZV\np7hpCprFZbwRERH46KOPIBAIMGfOHCxdurTGMgsXLsTJkyehpaWF3bt3w83Nrd7ripSXAw8eAK9f\nA23bShVjB4MOOPP4jFTrNDWzg4px99l9qOvkQMsoB1lZALd4KML26zSZL2xdUvNSMfWPqdBQ04BL\nzE1ci+ThAYR/hG+qWbQUVd9XYgIHGRe3AZN80WPlPDz6YTvNFK0AyTnJoppGYnYifB188ZXnVxho\nMxCt1FuJlqsrMVRPElUvF686f1r1+dKWLKnf9prC37DCayACgQAODg6IiooCl8uFh4cHQkJC4OTk\nJFrmxIkT2LJlC06cOIGYmBgsWrQI165dq9e6QMMHEgJAdEo0lp9bjouzLjZoO8rAGEP4w3D471mE\nklwD4JUxWjEDlFa8AnjXYP16LLqWz0ZeXG9oa3GazJex0u302+j7ywiYpcyHw4slKC9Tb3Kd3opU\n2cHe7d1CpPR/D7r8Ueic9XWT+9yau+dFz3El7QpOJ59G5KNI8LMKYJDpC17+eDi27o/UFM1aT+RV\nB4RWTQxVH/v5CS+Aq6w5V72Qo1Ur1Hnxx5u2V3UmgzclmqoJ6W3fmSbfiX7lyhU2ePBgUXn16tVs\n9erVEsvMnTuX/f7776Kyg4MDS09Pr9e6jP3XEVRc3KA4k7OTmdX3Vg3ahjJMfD+ZGc0fwbSXOrBu\n486IOpEHDRJ2yrr2TWfBp9eyNktsGfxHMWhnMD8/ZUctdib5DDNZZ8I6jz8k6hwfNarpdXorUtUO\n9l7e6QwLbRi6bW9Sn1tTFhgovChh6FDhMZwV+Ip1H3aXuU4JY66LVjLjD8axNl+0Z62WGzDDBYOZ\nw6z17GLCHdbvPYHoO2hiwmp97OcnebFG5d9Z9cfVL96o+rjq+tXLb9qe6EKLt8RXdbmOHSWPRdVj\nM2NGM+hE5/P5sKrSGc3j8RATE/PWZfh8Pp49e/bWdSsF/9//Ca/TBuDl5QUvLy+p4uTp8ZBRmIEy\nQRk01TWlWldZHmU/wh+GfVB2aSFw5QisRrSCrZ+wqQeobPYxh4HBElz9YRFOlayAxgIXDB+7BcB4\npcYOAIMWheGCzny4JYVBL9cL99E4I8Kbm6rNWQYa5sD+CGgG9cPo8aYARik1NkV7Uz/CkiXAwwQG\nTb2XaG2RhMc5T1Chk4Z8PEW6WRqgnwrzjakoNc8D07QFXjqgbbIDilPGAvzVMFa3w4ssDnIAbCoE\ntKvMFFC1xlD1seTfVt2PRYNHa7mQo3qTbNXym7anVc/4Jk8WL9eqlbh2IzyW0bh7NxqAeHtSkXu6\nf4vDhw+zOXPmiMr79u1j8+fPl1hmxIgR7NKlS6LywIED2Y0bN+q1LmPSZ9G6WH1vxZKzk+WyrcaW\nU5zDHLc4sndm/CzxK6XO5f/7BRR5/yrTX9aJmc2dyQYPe620X/n77u5jrb6wYDC7Q7WON6j83M7G\nX2cm60zYyA8vSfyibAmq/yqu+v6q/po26vCMwe4EQ+91rMNH05nuYneGz/UZPtdnGh90Z/AbzzD4\nY6brs5GhcxhzGhTD4p+msyFDBQ2qMTSVy8DrG590tR3pzp0KTyBXr16VaIZatWoVW7NmjcQyc+fO\nZSEhIaKyg4MDy8jIqNe6jFU5CCUljH37rczNWX1/68vOPT4n07qKVCYoYz77fNiCEwtk+nL37V/I\nMHE0w8z32Cj/l40XaB32393PLDZYMM+x/9Yr+RGhU0mnmOaXpqKk25ybtKomjapje0TNMZpFzGtG\nNLMP+D8G/1FMcymXaS4zYpg+kJlN/4j9dHEHe9fvCkPbF8zdo0IiGVQdA8RY008MjelNySUnpxkk\nkLKyMmZjY8MeP37MSkpKmIuLC7t//77EMn///TcbOnQoY0yYcHr27FnvdRmrchCKi4WDBSsqZIp1\n6h9T2a7bu2RaV1ECAxmznPMhM/5oMMt6WSbTNoYOZQyccmY+/ROm96UD6zE4SSG/aAMDGXP0O8Ba\nf2nBriTFqcQfsLy5Tglj+MScden/b41f601NfWsW5uaMQa2UOfpcYB1nf8UwpydT+0qLuW/tyT4M\nX8zeDQhjd1KSWXZ2Rb0SA6m/Jp9AGGPsxIkTrFOnTszW1patWrWKMcbY1q1b2datW0XLfPjhh8zW\n1pY5OzuzmzdvvnHd6uo8CMeOMXbyZL3jXHZmGQs+F1zv5ZWhy9i/GBbYM7TOlfkXaNU/NvtJPzN8\nYs7AjWn0X7ROfgcZPrFgMIlr1r+elSknh7Eec/Yxyw1c5jEkQaLztCl4a82iakd0q3xm4/s7G77b\nj2ku12cuP3djHx3/nL038wzjPy9S9ltRCc0igTS2Og/C5cuM3bghLm/fzti1a+Lyw4eMvRQ34ew4\nt5HNPDRV/HpWFmNFVb7IJSWMCQRyilp6peWlTHupA4P9cbk1+wwdyhg6HWMaXxizQ7frn2yltf/u\nftb6SwsG03+oyUoOdtzcwdp80Z7B8BHz8Kj5C78xSVWzqNbf0O3dfLb96gE2bO8oprFclw3aNYTt\nuLmDZRZmNm7QpFaUQJgUByEqirHERHF56VLhc/+JXDic9d/oLH49MJCxv/8WlydOZOzIEXF54ULG\nTp8Wl3fsYOzuXXH52jXG0tPF5ezsBs2ltSVmC3tv50A23q9CbieJytpIxL+Xmdl6M+a1cK9cT0SB\ngYw5TtjHWn9pwSJvx1EzgxxtPP8La7PMkp2LvyFx4vbzq3kpa0NJVbOo1heR+aKEHbhxlPE+Hs/0\nVumxofuHst23d7OcYvoiKBslECa/q7AevnjIbH6yqf8KT54IJ1isFB7OWFKSuLxyJWMxMeLy5MmM\nRUSIyxMmMBYZKS4HBTEWHS0uL1womvwxtziXmX6txe6c3C1+ffFixqpcvdbQ8v1PZzDdJeYMXl8z\ncAQsvNMnkst/+qmwVlfps88Yu3JFXF66lLGrV8XlL75g/X2XMSy2ZDD5lx1x/FKyBvillOVly95c\n/uoryfLy5ZLH/+uvJcvffMNYbKy4vGIFY9evi8vffSdZg127VjhBZ6WNG4UTclbatImxe/fE5V9+\nYSwuTlzevp2xf/8Vl3fuZKxqn95vvzH24IG4vGvXW8t/nN7EjNcZs+7+f7Pp2M3Gd3kgqglMx27W\nCfGisQDrnfeyJaMfihJB4fb9bNkEcflnz4NsskeCqGYR7PQ7m90vUbS98QhjNkgS1SyW2B5m03on\niRJG4d4jLO/2I+bnx1h2dgW7tn8t+zBkGjNeZ8w8f/Nk236dx148EDdPs6NHGUtOrn85PLxplVsA\nac+dNKnOG7TXb4+n+U8hqBBAXU29Hiu0lyz7+kqWly+XLB84IFn+9VegdZV5dZYtAwwNxeX584XD\nUQGsurQKw22HwKVnlX3MmSOeXVAOZafZS+H1yef4y3ou9DvfwLmMr7B9iSMq9P8b0TpzJmBhIV5/\n+nTJ8uTJwunyIZzX6st30hFbEQ3sPAOPjo7w3jAesOGJlx8/XjzVfX3KY8dKTnBZvTx6tORn4usr\nWR4xQjyVPyAc8l31dW9vye316yd6PwCAHj2EgxEqde0KtGsnLtvZSU64aWkpOXV/u3bCyT0r6ekJ\nL9SvpKMjGssEQHih/lvKY6z7wsLRA6MxBtaCYdi5tDf0/xsz8Bpt0KWrGjL1hGMBLKCB5DQOYv+7\nR9fOl0AKA87/d8uZjrpluFFQgQQIv3bDsopx9YEAQUHC7emiAN26lGHDceF8ZN945qK8RylebxSO\nP9A+nI3Ekofo/MFe9Nh/AGp5BZjq6IfYObHoaNhRuJCgyvc9I0N4zOpbfvYMsLVtOmVV1EiJTKnk\n+bbMN5iztLw0uW1PHvzff8w0lhmx/r78Rm/+yclhbJxfKZt39CPWZqkNg8VNqTtpZwTlMaP5w5nR\nYi92Kz6Lmq0UIOFFAnPb6sYG7xvMUnJS6hwLUH3sgyyjqqtLzU1l6y+vZ922dWNm683YopOL2HX+\ndVYh49WQRHGkPXdSAnmLd399l118cvHtCyqQRVAgQ/+vFH61jcvUgwyfmTCT2YFswuz0OtvUK9vH\nhwytYAdvhrO2nzkwDH+fQa20yVwdpApKy0vZqgurWLu17diWmC2stLyUMVb/QWfSXBb7JPcJ+/7K\n96zXr72Y0VojFhAewE4/Os3KBLJdWk6UQ9pzZ8uezl0O/A/7Y2SnkZjiPEUu22uo7OJsmK2yRfkP\n8fDobKbQyQVzc4GZ7+fAasp32BqzC+WXFwAPxmB8vy4wNFAXTTGRly/AlecRgFcw9NuVwjZ1BW4d\nHK2ykyEq24OsB5h/cj4SXibgA/cPENg9EMZaxg3apqBCgOvPruNE4gmcSDyBlNwUjHIcBb/OfhjQ\ncYDEbLWk+ZD23EkJ5C2WRi2Ffmt9fOn5pVy211AbrmzA9bS7YEf2KfUeGF5jHuF82Qa0cTqH1u0y\noc7vjexsDmCUBBikAC8cYctfjtg9Y6DGUasxJxBRvNvpt7EpdhOOxh/FIJtB8LHxgY+tDzoYdHjr\nukWlRYh7HoeLqRdxMfUiLqVegoWOBYZ3Go7h9sPRi9er2cwZR+pGCQTyTSB9P/4Fya9uwzVtu9Kn\nzxZUCGC/2R4h40LQk9dTeYFA8oZHJRqZGDr3Em7f1MA7lrY4vMMGX3+hRQmjicoqysLfiX/jdPJp\nnH50Gm0128LG0AZWelbg6fFQwSrwquwVisqKwM/nI/5FPDKLMuFo7Ig+Vn3g2d4Tnh08Yalr+fad\nkWaFEgjkm0Ccx57CP7rrgL1n4Oen3JsX/fXwL3x74VvEBsYqL4g6VE0olDSajwpWgeScZKTmpSI1\nLxX8fD7UOGrQ0tSCdittmGmbwcnECR0NOtbvSkTSrFECgXwTSP/RTxBt2xseF/lKb7/32eeDac7T\nMM1lmvKCIIS0WNKeO9UaMZYW4cguK6jr5OLwX/lKTR7xL+JxN/MuJrwzQXlBEEJIFZRA3sLIUA1d\nLTshs/yhUuMYt3YL2vwbiDG+rZGbq9RQCCEEACWQenE0dkT8i3il7f91+WsktD6I1D/m4uRJYV8D\nIYQoGyWQenAydkL8S+UlkL8e/gX9V92AfCuJ22gSQogyUQKpB0djRzzIeqC0/e//Zz9Wjp8KPz8a\niEcIaToogdSDMpuwXrx6geiUaEztPhZhYZQ8CCFNByWQerA3skdyTjLKBGUK3/ehfw9hqN1Q6LXW\nU/i+CSHkTSiB1ENbzbbg6nHxOPexwve9/5/9mOZM4z4IIU0PJZB6UkY/SHJOMhJfJsLH1keh+yWE\nkPqgBFJPyugHOXDvACZ2mUiT1BFCmiS6I2E9ObZzxJWnVxS2v8AghgOG++GavBe5vajznBDS9FAN\npJ4UXQO5lX4TxcUVuHq4Bw0cJIQ0SZRA6snJxAnxL+LlNknj2+RYhgJx/vDw4NDAQUJIk6TQBJKd\nnQ1vb2906tQJPj4+yK1jUqeIiAg4OjrC3t4ea9euFT0fHBwMHo8HNzc3uLm5ISIiQlGhw1jLGOoc\ndWQWZTb6vhhjKHMIgw93Ag0cJIQ0WQpNIGvWrIG3tzcSEhIwcOBArFmzpsYyAoEA8+fPR0REBO7f\nv4+QkBA8eCC8+onD4WDx4sW4ffs2bt++jSFDhigyfIU1Y117eg26rbURsbcLJQ9CSJOl0ARy7Ngx\nzJgxAwAwY8YMHD16tMYysbGxsLOzg7W1NTQ1NeHv74/w8HDR68q8fYmiEkjov6GY+M5EcDicRt8X\nIYTISqFXYWVmZsLMzAwAYGZmhszMms1BfD4fVlZWojKPx0NMTIyovHnzZuzduxfu7u7YuHEjDOr4\niR4cHCx67OXlBS8vrwbH72Ts1OgJpIJV4ND9Qzgz/Uyj7ocQQqKjoxEdHS3z+nJPIN7e3sjIyKjx\n/HfffSdR5nA4tf7CftOv7nnz5uHrr78GACxfvhyffPIJdu7cWeuyVROIvDgaOyIyOVLu263qcupl\nGGsZw9HYsVH3Qwgh1X9cr1ixQqr15Z5ATp8+XedrZmZmyMjIgLm5OdLT02FqalpjGS6Xi7S0NFE5\nLS0NPB4PACSWnzNnDkaOHCnHyN/O0dgRVx7Gw8sL0NICDh6Ufwd3ZfMVIYQ0dQrtA/H19cWePXsA\nAHv27MHo0aNrLOPu7o7ExESkpKSgtLQUoaGh8PX1BQCkp6eLlvvzzz/RtWtXxQT+H2sDa7zivMD5\na3mNcmOnOUECbL90GKe+n0B3HSSENHkKTSCff/45Tp8+jU6dOuHs2bP4/PPPAQDPnj3D8OHDAQAa\nGhrYsmULBg8ejM6dO2PixIlwcnICACxduhTOzs5wcXHB+fPn8cMPPygyfKirqUO/qDvAjW2UGzvd\neH4BZS+5uHDUjgYPEkKaPA5T5mVNjYTD4TTa1Vof//0FIk+0xuXvguXefNX+g7lIu2cLj9IlNP6D\nEKJw0p47aSS6lAbY9Qb33StyP7mXlJegsMNhDG8/iZIHIaRZoAQipV5WvRDDj4GgQiDX7Z5IPAEX\nc2ccP2hFyYMQ0ixQApGSsZYxLHQsEPc8Tq7b3f/PfkztOlWu2ySEkMZECUQGva1640qa/KZ2zynO\nQVRyFMZ1Hie3bRJCSGOjBCKDPlZ9cDntsty2d+TBEXjbeMOgDbVdEUKaD0ogMpB3DWT/vf2Y6kzN\nV4SQ5oUSiAwcjB2QV5KH9IL0ty/8Fql5qYh7HoehdkPlEBkhhCgOJRAZqHHU0IvXSy61kPErDqJV\n0niM8W1No88JIc0KJRAZ9bbq3eB7pDPG8K/GPqSfmtIoU6MQQkhjogQioz5WfXA5tWEd6eefnAeH\nw4DUvo0yNQohhDQmSiAy8uB64J/n/6C4rFjmbWyK2YQVwxfAz49Do88JIc0OJRAZaWlqQbvoHfQe\nfxPDhkHq/ouU3BScf3Iec9+dhrAwSh6EkOaHEkgDtH3mjTuv/5Sp/+Ln6z9jputM6LTSaZzgCCGk\nkVECaYCOubMBl73o3vO1VP0XRaVF+O32b/jQ48PGC44QQhoZJZAGOLrLFmbMDXN/PFLvJqigIMBt\nxgGoP+sDI45N4wZICCGNiBJIAxgYAP+bNRf7Hmyr9zoPExgSDTfj+bGFdNkuIaRZowTSQL4OvkjM\nTsT9rPv1Wr7Q8i+Aw+BuPIAu2yWENGuUQBpIU10Ts91mY/vNt2eD/JJ8PHefj/eKNuN0JIeuvCKE\nNGt0S1s5SMlNgft2d6R9nIa2mm3rXG7e3/NQXlGOHSN3KCw2QgipL7qlrRJYG1ijbY4H3KYeqnNM\nyPmU8/jr4V9Y771e8QESQkgjoAQiJwYJ8/HQ4hucvB5fo3N8dlAxhv4yB2Y3/ge8pnYrQkjLoKHs\nAFoKq+LhiDv/HBqB72HqpBAEBQ1AQgJQYfQAcRZLUfzYDbcOjUJQORAWpuxoCSGk4RRaA8nOzoa3\ntzc6deoEHx8f5NYx/8fs2bNhZmaGrl27yrS+Mhw8CPjZz8Ifk35H4KlJiHq9FudN/XDR1gtlj3sC\n4b8pZcLE6Ohoxe6wCaNjIUbHQoyOhewUmkDWrFkDb29vJCQkYODAgVizZk2ty82aNQsREREyr68M\nBgbCmsXIrv1xYeYFFLSLBtJ6o9ulZMT9sgx+o3SUMmEi/XGI0bEQo2MhRsdCdgpNIMeOHcOMGTMA\nADNmzMDRo0drXc7T0xOGhoYyr69sDsYOSPzmJPysPsaZk9ro0AE0YSIhpMVRaB9IZmYmzMzMAABm\nZmbIzMxU6PqKVFkjIYSQlkru40C8vb2RkZFR4/nvvvsOM2bMQE5Ojug5IyMjZGdn17qdlJQUjBw5\nEv/884/oOUNDw3qtz+FwGvIWCCFEZUmTEuReAzl9+nSdr5mZmSEjIwPm5uZIT0+HqampVNuu7/ot\ncGwkIYQ0OQrtA/H19cWePXsAAHv27MHo0aMVuj4hhBD5UehUJtnZ2ZgwYQJSU1NhbW2NsLAwGBgY\n4NmzZwgMDMTff/8NAJg0aRLOnz+Ply9fwtTUFCtXrsSsWbPqXJ8QQogSsBbm5MmTzMHBgdnZ2bE1\na9YoOxyl6tChA+vatStzdXVlHh4eyg5HoWbNmsVMTU1Zly5dRM+9fPmSDRo0iNnb2zNvb2+Wk5Oj\nxAgVp7Zj8c033zAul8tcXV2Zq6srO3nypBIjVIzU1FTm5eXFOnfuzN555x32008/McZU83tR17GQ\n9nvRoiZTFAgEcHBwQFRUFLhcLjw8PBASEgInJydlh6YUHTt2xM2bN2FkZKTsUBTu4sWL0NHRwfTp\n00UXYixZsgTGxsZYsmQJ1q5di5ycnCY1lqix1HYsVqxYAV1dXSxevFjJ0SlORkYGMjIy4OrqisLC\nQnTv3h1Hjx7Frl27VO57UdexCAsLk+p70aLmwoqNjYWdnR2sra2hqakJf39/hIeHKzsspWpBvw+k\nUttYouYyjkje6hpXpWrfDXNzc7i6ugIAdHR04OTkBD6fr5Lfi7qOBSDd96JFJRA+nw8rKytRmcfj\niQ6KKuJwOBg0aBDc3d2xYwdNId+cxhEpwubNm+Hi4oKAgIAmNS2QIqSkpOD27dvo2bOnyn8vKo/F\nu+++C0C670WLSiA0/kPS5cuXcfv2bZw8eRL/+9//cPHiRWWH1GRwOByV/r7MmzcPjx8/xp07d2Bh\nYYFPPvlE2SEpTGFhIcaNG4effvoJurq6Eq+p2veisLAQ48ePx08//QQdHR2pvxctKoFwuVykpaWJ\nymlpaeDxeEqMSLksLCwAACYmJhgzZgxiY2OVHJFyVY4jAiDTOKSWxNTUVHSynDNnjsp8N8rKyjBu\n3DhMmzZNNAxAVb8Xlcdi6tSpomMh7feiRSUQd3d3JCYmIiUlBaWlpQgNDYWvr6+yw1KKV69eoaCg\nAABQVFSEyMjIGrMbqxoaRySWnp4uevznn3+qxHeDMYaAgAB07twZH330keh5Vfxe1HUspP5eNOq1\nYkpw4sQJ1qlTJ2Zra8tWrVql7HCUJjk5mbm4uDAXFxf2zjvvqNyx8Pf3ZxYWFkxTU5PxeDz222+/\nsZcvX7KBAweq1OWajNU8Fjt37mTTpk1jXbt2Zc7OzmzUqFEsIyND2WE2uosXLzIOh8NcXFwkLlNV\nxe9FbcfixIkTUn8vWtRlvIQQQhSnRTVhEUIIURxKIIQQQmRCCYQQQohMKIEQQgiRCSUQQqSko6Mj\n922qq6ujW7duEpdRVvfZZ5/BwsICGzdulPv+CZGFQm9pS0hL0BgjlbW0tHDr1q03LrN+/fpGSV6E\nyIpqIITIwV9//YV3330X3bp1g7e3N54/fw4AyMrKgre3N7p06YLAwEBYW1vXeRvnSgKBADNnzkTX\nrl3h7OyMH3/8URFvgRCpUQIhRA48PT1x7do13Lp1CxMnTsS6desACKdNHzRoEOLi4jB+/Hikpqa+\ndVt37tzBs2fP8M8//+DevXuYNWtWY4dPiEyoCYsQOUhLS8OECROQkZGB0tJS2NjYABBOaFk5Pfjg\nwYNrnVa9OltbWyQnJ2PhwoUYPnw4fHx8GjV2QmRFNRBC5GDBggVYuHAh7t27h23btqG4uFj0mrST\nPRgYGODevXvw8vLC1q1bMWfOHHmHS4hcUAIhRA7y8/NhaWkJANi9e7fo+T59+iAsLAwAEBkZiZyc\nnLdu6+XLlygvL8fYsWPx7bffvrVznRBloSYsQqT06tUriRuXLV68GMHBwfDz84OhoSEGDBiAJ0+e\nANmL9cQAAAC4SURBVAC++eYbTJo0Cfv27UOvXr1gbm5e4x4U1fH5fMyaNQsVFRUA0OJvr0qaL0og\nhEhJIBDU+nxttw7Q19fHqVOnoK6ujqtXr+LGjRvQ1NR84/adnZ1x8+bNWl+juU9JU0JNWIQ0otTU\nVHh4eMDV1RWLFi2q89bCenp69RpIeODAARoLQpoMms6dEEKITKgGQgghRCaUQAghhMiEEgghhBCZ\nUAIhhBAiE0oghBBCZEIJhBBCiEz+H72XH4/yYkS0AAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see in Figure below that the covariance function corresponding to the spectral density S2 significantly differs from the one estimated directly from data. It can be seen in Figure above that the covariance corresponding to S1 agrees much better with the estimated covariance function." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "R2 = S2.tocovdata(nr=1)\n", + "R2.plot('.')\n", + "Rest.plot()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX/P/DXsLiA7JtsggoKKCAKmilFClqW5B5q5oLK\nx1LLyq99sgXtZ6nlx0z7pLmFmoT1SbFSxA0xUzFFUdEUFYERXFgUhViG8/uDGHZlhmEGmNfz8eAR\n5845577vjM2be+6550qEEAJEREQK0tF0AERE1DIxgRARkVKYQIiISClMIEREpBQmECIiUgoTCBER\nKYUJhEiFevbsifj4eE2H0awYGRkhNTVV02FQE2ACIZUJCAiAubk5iouLFWqno6OD69evK73f4uJi\nhIeHo1u3bujQoQM6d+6M0NBQ3Lx5U+k+lXXhwgU888wzat9vfaZMmYK2bdvCyMhI/vPjjz822f4C\nAgKwcePGatvy8/Ph7OzcZPskzWECIZVITU1FQkICrK2tsXv3boXbN+Z+1jFjxuDXX39FZGQkHjx4\ngHPnzsHX1xcHDx5Uuk9FlZaWqm1fipBIJFiwYAHy8/PlP2PHjm3S/ZH2YAIhldiyZQsCAwMxadIk\nREREVHut5l+l3333Hfz9/QFA/te6t7d3tb+O169fD1dXV1hYWODll19GZmZmnfs9cOAADhw4gOjo\naPTp0wc6OjowNjbGrFmzMG3aNADArVu3EBwcDAsLC7i6umLDhg3y7QYGBsjNzZX3l5iYCCsrK8hk\nMly7dg2DBg2CpaUlrKys8Oqrr+L+/fvyus7Ozli+fDm8vLxgZGQEmUwGZ2dnHDp0CACQkJCA/v37\nw8zMDHZ2dpgzZw5KSkrk7XV0dLBu3Tp069YNZmZmmD17drVjW79+PTw8PGBsbIwePXogMTFRHvfo\n0aNhbW2NLl26YPXq1Q39mOSmTJmCDz/8UF6Oi4uDo6NjtWNbsWIFvL29YWpqipCQEBQVFclfj46O\nRq9evWBiYgIXFxfs27cPCxcuxNGjRzF79mwYGRlh7ty58uOsOMO8f/8+XnvtNVhbW8PZ2RlLliyR\n//Hw3XffYeDAgZg/fz7Mzc3RpUsXxMTEKHxspEaCSAW6du0qtm3bJq5cuSL09fXF7du35a8FBASI\njRs3ysubN28WAwcOlJclEom4du2avHzw4EFhaWkpEhMTRVFRkZgzZ4545pln6tzvggULREBAwGNj\n8/f3F2+88YYoKioSZ8+eFVZWVuLQoUNCCCEGDRok1q9fL6/77rvvilmzZgkhhEhJSREHDhwQxcXF\n4u7du+KZZ54Rb731lryuk5OT8PHxERkZGeLvv/8WQgjh7OwsDh48KIQQ4vTp0+LkyZNCJpOJ1NRU\n4e7uLr788stqxz18+HBx//59kZaWJqysrERMTIwQQogdO3YIe3t78eeff8pjuXnzppDJZKJ3797i\nk08+ESUlJeL69euiS5cuYt++fXUe+5QpU8QHH3xQ5/YPP/xQXj58+LBwcHCQl52dnUW/fv1EZmam\nyMnJEe7u7mLt2rVCCCFOnjwpTExMxIEDB4QQQkilUnH58mUhRO3PuuI4Kz7fSZMmiREjRoiHDx+K\n1NRU0a1bN3n9zZs3C319fbFhwwZRVlYmvvnmG2FnZ1fncVHzwDMQarTff/8dUqkUwcHBcHV1hYeH\nB7Zv3650f99//z1CQ0PRq1cvtGnTBp999hmOHz+OtLS0WnWzs7PRsWPHevtKT0/HH3/8gWXLlqFN\nmzbw9vbG9OnTsWXLFgDAhAkTEBkZCaB8GC0qKgoTJkwAAHTt2hWDBw+Gvr4+LC0tMW/ePBw5ckTe\nt0Qiwdy5c2Fvb4+2bdvW2nfv3r3Rt29f6OjowMnJCTNnzqzWHgDee+89GBsbw9HREc899xzOnTsH\nANiwYQMWLFiAPn36yGPp1KkTTp06hXv37uGDDz6Anp4eOnfujOnTp+OHH36o8/iFEPjiiy9gZmYG\nMzMzWFtby7eLJwwbzp07Fx07doSZmRmGDx+Os2fPAgA2btyI0NBQDB48GABgZ2eH7t27V9tnXWQy\nGaKiovDZZ5/B0NAQTk5OeOedd7B161Z5HScnJ4SGhkIikeC1115DZmYm7ty589g4SXOYQKjRIiIi\nMGTIEBgZGQEAxo4dW2sYSxGZmZlwcnKSlw0NDWFhYQGpVFqrrqWlZb3DW0D5cI+5uTkMDQ3l2zp1\n6iTva9SoUTh+/DiysrIQHx8PHR0dDBw4EABw+/ZthISEwMHBASYmJpg0aRKys7Or9V912KemK1eu\n4KWXXoKtrS1MTEywcOHCWu2rJj8DAwM8fPgQAJCRkYGuXbvW6vPmzZu4deuWPCGYmZnhs88+q/dL\nViKRYP78+cjNzUVubq68XkOuVVSNrX379nj06NFjY6u6z7rcu3cPJSUl1T7bqp9FzX0aGBgAgPw9\noeaHCYQapbCwEDt27MChQ4dga2sLW1tbrFixAufOnUNSUhKA8gRQ8eUDAFlZWY/t087Ortq0z0eP\nHiE7Oxv29va16gYGBiIhIaHO5FLRV05OTrUvobS0NDg4OAAAzMzMMGTIEERFRWH79u0YP368vN77\n778PXV1dXLhwAffv38fWrVtRVlZWrf/HfRHPmjULHh4eSElJwf3797FkyZJa7evj6OiIlJSUWts7\ndeqEzp07yxNCbm4uHjx4gF9//bXevuo6IzA0NERBQYG8/KTPpCGxAY9/PywtLaGvr1/ts636WVDL\nwwRCjbJr1y7o6enh0qVLOHfuHM6dO4dLly7B399fPkzUq1cv/PzzzygsLERKSkqtaZ42Nja4du2a\nvDx+/Hhs3rwZ586dQ1FREd5//3089dRT6NSpU639Dx48GEFBQRg5ciTOnDmD0tJS5OfnY+3atdi8\neTMcHR3x9NNP49///jeKioqQlJSETZs24dVXX5X3MWHCBEREROB///uffPgKKP/L19DQEMbGxpBK\npfj8888Vem8ePnwIIyMjGBgY4PLly/jmm28eW7/qsNL06dPxxRdf4MyZMxBCICUlBWlpaejbty+M\njIywfPlyFBYWQiaT4cKFC/jzzz/r7bMuvXr1wp49e5Cbm4usrCx8+eWXTzyeir5CQ0OxefNmHDp0\nCGVlZZBKpfjrr78A1P4sq9LV1cW4ceOwcOFCPHz4EDdv3sTKlSurfRbUsjCBUKNs2bIF06ZNg4OD\nA6ytrWFtbQ0bGxvMnj0b27dvR1lZGebNm4c2bdrAxsYGU6dOxauvvlrtL9Xw8HBMnjwZZmZm+Omn\nnzB48GB88sknGD16NOzs7HDjxo16x/gB4KeffsKwYcPwyiuvwNTUFJ6enjhz5gyCgoIAAJGRkUhN\nTYWdnR1GjRqFxYsXY9CgQfL2wcHBSElJga2tLTw9PeXbP/74Y5w5cwYmJiYYPnw4Ro8erdA01S++\n+ALbt2+HsbExZs6ciZCQkGrta/YlkUjk28aMGYOFCxdiwoQJMDY2xqhRo5CbmwsdHR38+uuvOHv2\nLLp06QIrKyvMnDkTDx48qDOGqn1WNWnSJHh7e8PZ2RnPP/98rdge14+fnx82b96MefPmwdTUFAEB\nAfLrU2+++SZ++uknmJub46233qrVz+rVq2FoaIguXbrA398fEydOxNSpU+uNldOCmzeJeNKVNCIi\nojpo5AwkJiYGbm5ucHV1xbJly2q9/v3338Pb2xteXl4YMGCAfCwdKJ+f7uXlBR8fH/Tt21edYRMR\nURVqPwORyWTo3r07Dhw4AHt7e/j5+SEyMhLu7u7yOsePH4eHhwdMTEwQExOD8PBwnDhxAgDQuXNn\nnD59Gubm5uoMm4iIalD7GUhCQgJcXFzg7OwMfX19hISEIDo6ulqd/v37w8TEBADQr18/ZGRkVHud\no25ERJqn9gQilUqrzZ13cHCodwomUH7T0rBhw+RliUSCwMBA+Pr6Yv369U0aKxER1U9P3TtUZFbF\n4cOHsWnTJhw7dky+7dixY7C1tcXdu3cRFBQENzc3+bpKyuyDiIgqKTLCo/YzEHt7e6Snp8vL6enp\ndd5IlJSUhBkzZmD37t0wMzOTb7e1tQUAWFlZYeTIkUhISKhzPxVz6lviz8cff6zxGBi/5uPQttgZ\nv+Z/FKX2BOLr64urV68iNTUVxcXFiIqKQnBwcLU6aWlpGDVqFLZt2wYXFxf59oKCAuTn5wMovzs5\nNja22rx9IiJSH7UPYenp6WHNmjUYOnQoZDIZQkND4e7ujnXr1gEAwsLCsHjxYuTm5mLWrFkAAH19\nfSQkJCArKwujRo0CUP78hYkTJ2LIkCHqPgQiIkIrvZFQIpEodTrWXMTFxSEgIEDTYSiN8WtOS44d\nYPyapuh3JxMIEREBUPy7k2thERGRUphAiIhIKUwgRESkFCYQIiJSChMIEREphQmEiIiUwgRCRERK\nYQIhIiKlMIEQEZFSWm0CGTYMyMvTdBRERK1Xq00ge/cCM2dqOgoiotar1a6F5ecnEBsLmJpqOhoi\nopaBiymi/E04d/MGvDo5azoUIqIWg4sp/iMx54imQyAiatVabQKJT4vXdAhERK1aq00gR1J5BkJE\n1JRabQLJ+zsP0gdSTYdBRNRqtdoE4u/kjyM3eRZCRNRUWm0CedbpWcTf5HUQIqKm0moTSPzWZ7E1\n/gjvSCciaiKtNoFkX/RCQbtr2BtbxDvSiYiaQKtNIIYGusBDG3gNyMK332o6GiKi1kcjCSQmJgZu\nbm5wdXXFsmXLar3+/fffw9vbG15eXhgwYACSkpIa3LbC9u2Aub4dPl97i8uZEBE1AbUnEJlMhtmz\nZyMmJgbJycmIjIzEpUuXqtXp0qUL4uPjkZSUhA8//BAz/xmDakjbCqamwDO97fAQmU1+TERE2kjt\nCSQhIQEuLi5wdnaGvr4+QkJCEB0dXa1O//79YWJiAgDo168fMjIyGty2KtsOtriVf6vpDoaISIvp\nqXuHUqkUjo6O8rKDgwNOnjxZb/2NGzdi2LBhCrcNDw/H5ZuXcb7sPHoW9ERAQIBqDoCIqJWIi4tD\nXFyc0u3VnkAkEkmD6x4+fBibNm3CsWPHFG4bHh6OTYmbEH8znsmDiKgOAQEB1b4fFy1apFB7tScQ\ne3t7pKeny8vp6elwcHCoVS8pKQkzZsxATEwMzMzMFGpbwc7IDpkPeQ2EiKgpqP0aiK+vL65evYrU\n1FQUFxcjKioKwcHB1eqkpaVh1KhR2LZtG1xcXBRqWxWvgRARNR21n4Ho6elhzZo1GDp0KGQyGUJD\nQ+Hu7o5169YBAMLCwrB48WLk5uZi1qxZAAB9fX0kJCTU27Y+dkZ2TCBERE2k1T6RUAiBMlGGdv+v\nHR78+wHa6bXTdFhERM0an0hYhY5EB7ZGtsh6mKXpUIiIWp1WnUAAXgchImoqrT6B8DoIEVHTYAIh\nIiKlaEUC4b0gRESq1+oTCK+BEBE1jVafQDiERUTUNLQigWTmcwiLiEjVtCKB8AyEiEj1Wn0CMW9v\njkclj1BYUqjpUIiIWpVWn0AkEglsO9hyJhYRkYq1+gQC8DoIEVFT0JoEIs2XajoMIqJWRSsSSPIp\nayz89C6GDQPy8jQdDRFR66AVCaTgniVSpPewdy8wc6amoyEiah20IoEYwAIwyIafH/Dtt5qOhoio\nddCKBDIvzBKO3e8hNhYwNdV0NERErYNWJJBOlpZw632PyYOISIW0IoFYGljiXsE9TYdBRNSqaEUC\nsTCwQHZhtqbDICJqVbQigfAMhIhI9bQigRjqG0JWJuN6WEREKqQVCUQikXAYi4hIxTSSQGJiYuDm\n5gZXV1csW7as1uuXL19G//790a5dO6xYsaLaa87OzvDy8oKPjw/69u3b4H1yGIuISLX01L1DmUyG\n2bNn48CBA7C3t4efnx+Cg4Ph7u4ur2NhYYHVq1dj165dtdpLJBLExcXB3Nxcof0ygRARqZbaz0AS\nEhLg4uICZ2dn6OvrIyQkBNHR0dXqWFlZwdfXF/r6+nX2IYRQeL8W7S2QXcAhLCIiVVH7GYhUKoWj\no6O87ODggJMnTza4vUQiQWBgIHR1dREWFoYZM2bUWS88PFz+e0BAAM9AiIhqiIuLQ1xcnNLt1Z5A\nJBJJo9ofO3YMtra2uHv3LoKCguDm5gZ/f/9a9aomEAA4dPgQEwgRURUBAQEICAiQlxctWqRQe7UP\nYdnb2yM9PV1eTk9Ph4ODQ4Pb29raAigf5ho5ciQSEhIa1M7SwJKzsIiIVEjtCcTX1xdXr15Famoq\niouLERUVheDg4Drr1rzWUVBQgPz8fADAo0ePEBsbC09Pzwbt16K9Bc9AiIhUSO1DWHp6elizZg2G\nDh0KmUyG0NBQuLu7Y926dQCAsLAwZGVlwc/PDw8ePICOjg5WrVqF5ORk3LlzB6NGjQIAlJaWYuLE\niRgyZEiD9strIEREqiURykxpauYkEkmts5fTt05jxi8zcCbsjIaiIiJq3ur67nwcrbgTHeCCikRE\nqqY1CYRDWEREqqU1CYQLKhIRqZbWJBAuqEhEpFpak0AADmMREakSEwgRESlF6xIIF1QkIlINrUog\nvBudiEh1tCqBcAiLiEh1tC6BcBYWEZFqaFUC4RAWEZHqaFUC4RAWEZHqaFUC4Y2ERESqo1UJ5ItP\nzJF8PQfDhgF5eZqOhoioZdOqBJJxxQJ/62Rj715g5kxNR0NE1LJpVQIxamsM6BWiT98SfPutpqMh\nImrZtCqBRG6XoK0ww/adOTA11XQ0REQtm1YlEFNTwNnGHDL9HE2HQkTU4mlVAgHKZ2LlFDKBEBE1\nltYlEPP25pzKS0SkAlqZQHgGQkTUeFqXQCzaW3BJdyIiFdC6BGLe3hw5f/MMhIiosTSSQGJiYuDm\n5gZXV1csW7as1uuXL19G//790a5dO6xYsUKhtk/CMxAiItVQewKRyWSYPXs2YmJikJycjMjISFy6\ndKlaHQsLC6xevRrvvvuuwm2fhNdAiIhUQ+0JJCEhAS4uLnB2doa+vj5CQkIQHR1drY6VlRV8fX2h\nr6+vcNsn4SwsIiLV0FP3DqVSKRwdHeVlBwcHnDx5UuVtw8PD5b8HBAQgICAAAO8DISKqEBcXh7i4\nOKXbqz2BSCQStbStmkCq4hAWEVG5qn9cA8CiRYsUaq/2ISx7e3ukp6fLy+np6XBwcGjythV4EZ2I\nSDXUnkB8fX1x9epVpKamori4GFFRUQgODq6zrhBC6bb16dCmA4pkRSgqLVL6GIiISANDWHp6eliz\nZg2GDh0KmUyG0NBQuLu7Y926dQCAsLAwZGVlwc/PDw8ePICOjg5WrVqF5ORkdOjQoc62ipBIJPJh\nLFsj26Y4RCIirSARNf/MbwUkEkmts5eqPL72wI9jf0QP6x5qjIqIqHl70ndnTVp3JzrAqbxERKqg\nlQmEU3mJiBpPKxMIp/ISETVevQlkypQp8t8jIiLUEYvamLc351ReIqJGqjeBnDt3Tv77l19+qZZg\n1MWivQVX5CUiaiStHcLiGQgRUePUex9IRkYG5s6dCyEEpFKp/HegfKrXV199pbYgVc2iPS+iExE1\nVr0J5PPPP5evPdWnT59GrWHV3HAaLxFR49WbQF555RXk5+fD2tq62vY7d+7AyMioyQNrSpyFRUTU\nePVeA5k7dy6OHj1aa/uxY8fw9ttvN2lQTc3CgAsqEhE1Vr1LmfTu3Rtnzpyps5GHhweSk5ObNLDG\neNLt+A+LH8L6c2sULCxQY1RERM2bypYyKSio/8u1rKxMsaiaGUN9Q8iEDIUlhZoOhYioxao3gVhb\nW9f5tL+EhIRa10Vamqor8hIRkXLqvYj+xRdfYNy4cZgyZQr69OkDIQROnz6NiIgIREVFqTPGJmHR\n3gLZhdmwN7bXdChERC1SvWcgffv2xcmTJ1FWVobvvvsOEREREEJgy5YtrWJpk+wMC7wWlo1hw4C8\nPE1HQ0TU8jz2TnQbGxssXrwYCxcuROfOnREREYGPPvpI4Yc4NUelDyxw7mo29u4FZs7UdDRERC1P\nvUNYf/31FyIjIxEVFQUrKyuMHTsWQgjExcWpMbym015YAgb34OcHfPutpqMhImp56j0DcXd3x5kz\nZ7Bv3z7Ex8djzpw50NXVVWdsTWr0MAv09MtGbCxgaqrpaIiIWp56E8jPP/+M9u3b45lnnsG//vUv\nHDx4UKH5wc2dvZkFgl7OZvIgIlJSvQlkxIgRiIqKwoULF+Dv74+VK1fi7t27mDVrFmJjY9UZY5Ow\nNLDEvYJ7mg6DiKjFeuJy7h06dMDEiRPx66+/Ij09HT4+Pli6dKk6YmtSFdN4iYhIOQo9D8Tc3Bwz\nZ87EoUOHmioetbE0sOR6WEREjaCVD5QCyhdU5BAWEZHyNJJAYmJi4ObmBldXVyxbtqzOOnPnzoWr\nqyu8vb2RmJgo3+7s7AwvLy/4+Pigb9++SsfAISwiosap9z6QpiKTyTB79mwcOHAA9vb28PPzQ3Bw\ncLWbE/fs2YOUlBRcvXoVJ0+exKxZs3DixAkA5etYxcXFwdzcvFFxmLYzRX5RPkrLSqGno/a3gYio\nxVP7GUhCQgJcXFzg7OwMfX19hISEIDo6ulqd3bt3Y/LkyQCAfv36IS8vD7dv35a/rorpxLo6ujBt\nZ8oFFYmIlKT2P72lUikcHR3lZQcHh1qr/tZVRyqVwsbGBhKJBIGBgdDV1UVYWBhmzJhR537Cw8Pl\nvwcEBCAgIKBWnYoL6daGLXt1YSIiZcTFxTVqdRG1J5CGPlu9vrOM33//HXZ2drh79y6CgoLg5uYG\nf3//WvWqJpD68EI6EWmzmn9cL1q0SKH2ah/Csre3R3p6urycnp4OBweHx9bJyMiAvX35sut2dnYA\nACsrK4wcORIJCQlKx8IL6UREylN7AvH19cXVq1eRmpqK4uJiREVFITg4uFqd4OBgbNmyBQBw4sQJ\nmJqawsbGBgUFBcjPzwcAPHr0CLGxsfD09FQ6Ft4LQkSkPLUPYenp6WHNmjUYOnQoZDIZQkND4e7u\njnXr1gEAwsLCMGzYMOzZswcuLi4wNDTE5s2bAQBZWVkYNWoUAKC0tBQTJ07EkCFDlI6FQ1hERMqT\niNa0QuI/Gvpg+KW/L0VOYQ6WBy1XQ1RERM1bQ787K2jtnejAP0NYvAZCRKQUrU4gFu05hEVEpCyt\nTiC8iE5EpDytTiAWBpzGS0SkLO1OIBzCIiJSmlavImje3hx5f+ehTJRBR6LVuVTjcgpzEH05GodS\nD+FM5hlYGliik0knDOkyBON6jENbvbaaDpGIatDqb019XX0Y6hvi/t/3NR2K1vq79G988ccX6L6m\nO/ak7MFAx4HYNnIbwp8NxyDnQdiatBWdV3XG58c+R2lZqabDJaIqtPoMBKi8mdCsvZmmQ9E6iZmJ\neOWnV+Bu5Y6jU4/CzdKtVp2pPlNx4c4FzNs3Dzsv78S2UdvQxayLBqIlopq0+gwE4L0gmiCEwDen\nvsHQbUPxyXOfIDokus7kUaGndU/se3UfxvUYh34b+uHA9QNqjJaI6sMzEF5IVytZmQyz987GsbRj\nODbtGFwtXBvUTkeig7eeegt9bPtg9I7R2DpyK4a6DG3iaInocXgGwntB1KagpACjd4xGSk4Kfp/2\ne4OTR1X+Tv7YFbILk3ZOwr6UfU0QJRE1lNYnEN4Loh7ZBdkI3BIIo7ZG+G3CbzBua6x0X087Pi1P\nIpfvXVZhlESkCCYQDmE1udS8VAzYNADPOD2DLSO2oI1um0b3+bTj0/hs8GcY8cMIzqIj0hCtTyD7\nfrbG5h13MWwYkJen6Whan0M3DmHApgF43e91LA1c2uAnUjZEaO9QPNf5Oby26zWFVhAlItXQ+gSS\nm2GNrAd3sHcvMHOmpqNpPUpkJXj/4Pt49edXsSl4E+b2m9sk+1n1/Crcyr+FdafXNUn/RFQ/rU8g\nRjrWQIfb8PMDvv1W09G0fCWyEmxK3ITua7rj/J3zOPuvs006W6qNbhtsGbEFHxz6ACk5KU22HyKq\nTasfKAUAianX4L8+CBnzr8PUtIkDa6WEEDibdRaRFyIReSES3S264+NnP4a/k7/aYlh1YhWiLkYh\nfmo89HS0fnY6kVL4QCkFudhaQxjeVn3ykMmAgoLKcmEhkJFRWS4oAG7cqCw/etT48vXr1cspVf4i\nf/gQuFxlxlJ+PnDpUvVycnL18sWL9ZZLcrMRc3AdZv02C86rnDEmahT0s/Owd+JeHHjtAPzNvIGk\npMr29+8DiYmV5bw84M8/K8s5OcAff1SW790DDh+uLN++DcTEVJazsoBffpEX53Qag/Z5D/Gf4/8p\n35CZCfz8c2X9muVbt2qXf/qpsiyVAlFRleWMDGD79spyejqwdWtlOS0N+O676uVNmyrLN28CGzdW\nL2/YUL28fr3mykRK0PoE0qFNBwgh8Kj40eMrFhWVfylUSE8H1lUZd09MBMaPryyfPAm8/HJl+eJF\n4J13KsuXLwMffFBZ/usv4MMPG1f++OPK8pUrwCefVJZTUoDlVR7de+0asGJF9fLKldXLq1bVKqfm\npWL2ntmwX+uKRQc/QhfTLoiZGIOUgJ1YcliCntY9y+unpgLffFPZPi2t+hdmzS/gzExg587K8t27\nwMGDleW8PODUqcpyjYSmU1CI9bIXsfzY8vKhrCcl3MLC2uX09MpyUVF50qpQUgLk5laWZbLyPisI\nUV6narnqX3ISSflP1bKubvWyvr7mykTKEK1QvYclk1X+fu2aELNmCSGEcFrpJK6f2i/EmDGVr1+4\nIMSQIZXl8+eFCA6uLEulQqxfX1l+9EiI69dVEH3zlJWfJcJ+CRPmy8zF+wffF9dzmuexrvhjhXju\nu+dEWVmZpkMhanEUTQnacwZy9y7g6QmUlZWXrayACRMAANaG1rhtpg8sWVJZ39UViIioLPfsCURH\nV5bt7IDp0yvLBgZA585NeACaE3stFj7rfGCgb4C/Zv+FJYOWoLNZ8zzWuf3mIr84H5sSNz25spZL\nv5+Oree2PrkiUT1afwKpGEawsgLi4gCdfw7ZyAgYOBAAYNPBBndK7wPdulW2a9MG6NhRvbE2M0II\nfHT4I0wFOFq9AAAcFklEQVSLnoZto7bhP0P/A0sDS02H9Vh6OnrYMHwD/n3w37j98PaTG2ihc1nn\n8OrPr8J7rTcu3L3Ae2hIaa07gWzaVP06gJVVndWsDa35ZVODEALz98/Hb1d/Q2JYIgZ1HqTpkBrM\nu6M3pvlMw1v73tJ0KM2GEAJxqXF4ftvzeOH7F+Bp7Ynrb17HssBlKr25k7SLRhJITEwM3Nzc4Orq\nimXLltVZZ+7cuXB1dYW3tzcSq8zeaUhbuVGjgNmznxiPjaEN7jy6o9AxNJUHRQ9wPP04dl7aid+u\n/IYyUab2GCqSx+HUw9g/aT+sDOtOvM3ZR89+hARpAvZc3aPpUDSqtKwUOy7uQN8NfRH2axjGeIzB\njTdvYMHABTBtx3nr1EiqvwzzeKWlpaJr167ixo0bori4WHh7e4vk5ORqdX777TfxwgsvCCGEOHHi\nhOjXr1+D2wqh+IWglcdXirl75yp5RKpz/vZ50eEDJ2H0tp9oN+VlYTivjzCa30v87+w+tcax6sQq\n4flfT5FdkK3W/apabEqscFrpJPKL8jUdilqVlZWJpKwkMT92vuj4RUcxYOMAsfPSTiErkz25MWk1\nRb871X7HVUJCAlxcXODs7AwACAkJQXR0NNzd3eV1du/ejcmTJwMA+vXrh7y8PGRlZeHGjRtPbCtX\nWgroNezwrA2tcSLjRKOOq7FemLMPB40noc2hL/HwxIR/tgrA/We8UjYLtqvGoUfWp4jcLlH5PSsz\nZ5bP+r12DTD1jkdyzyXw+fMEXv3FHNbW5TNyr10DnJwAY2PU2nbzZv2vKVpflX0ZGwdBz+NZuL3+\nIST7VjZB/5o8tsptKdfKYOOeghslJ9Gm6zHct94LXR0JzG+9AnHqEGDijm9/Ana1wGNrDvU1Hev2\n7Wi2NzmrPYFIpVI4OjrKyw4ODjh58uQT60ilUty6deuJbSuEL14sv2AeEBCAgICAemPS9BDW5XuX\nccB4Ikq37UJJWvmFfRMT4P59Cfw6jIbk9LNI6DYU6XgI126r0K6tjtL/uKomi4o+HjwAjh0DYCRF\nRvfxwE9bcPpa+SwrK6vyCWxA5X2QdW173GuK1ldlXxbn/4PsV3oCIgQZx/qpvH/1HpsAzG4gI/sc\nILmMtiaXUdQtGRhwCdICSyCjH3DxKSD6TVhK3JB+t/zaRsXVveZ9bM27vib3PXMmsGMHmkRcXBzi\n4uKUbq/2ayANvWAnGjkzJHzxYoSHhyM8PPyxyQP45yL6I/VfRJ85E3g2QGDgp7PRJeNDIG0gfHyA\nESOAc+eAsWOB2FjAor0lEHEIOg5ncM9vDjIyBI4dA/buBXr3BgICAEfH8kllw4YBU6ZU31b1teRk\n4MiR8n+cFX1cuwZAIoPuuInAqddhcq987So/P8DbuzxWExPUu+1xrylaX5V9+fkBPm4WwL6V0Bk5\nHdAtVnn/TXlsxuZFgHMc7MYvhmxCELDAHJJpzwK9N6Jj5xx00X0G2PsVjNdLgS9TYbI/CjgxD36d\n3dHLW9Ksj60l1dd0rE25Rl9AQID8ezI8PFzxDppmJK1+x48fF0OHDpWXP/30U7F06dJqdcLCwkRk\nZKS83L17d5GVldWgtkJUGcfLzxfiwYMnxnT74W1hudxS0UNptGefFQIeOwRmeYrhL5eIsWOFyM2t\nXS83V4ixY4UIGHpf4PUeot2zXwlACD8/IQYMqLjlufLHyqr2toqfjh3L/2tiIuR9pKYK4TnrM/HU\n2gAxZmypSE0V8lgq9v24baqs3xT7HjO2TAze8JLweP3jZn9swSF3xdLY9cLu7WBhtMRYmP2fn5j7\ny3wReXq3GB5yW+3vnSY/t+ZSX9OxqpOiKUHtCaSkpER06dJF3LhxQxQVFT3xIvrx48flF9Eb0laI\nKm/CunVCfPTRE2MqlZUK3UW6okRW0sijU0zQi/kC8xyE25D4Bv1Dyc0VYtiE68JqWUfhP2WfyM0V\n4oUXaieEwMDq22omi5r/QE9JTwnrz61FWl5a0x+0hkgfSIX159YiISNB06HUUlBcILad2yYCtwQK\nk89MxNgdY8W2c9vE3Ud3NR0aaZlmn0CEEGLPnj2iW7duomvXruLTTz8VQgixdu1asXbtWnmdN954\nQ3Tt2lV4eXmJ06dPP7ZtTfI3oaxMiNLSyhfy65+NY7XcSmTmZzbiqBQXvn+ZcJwXovBfGfGp8cJq\nuZW4cu+Kwn/h1JRflC+6re4moi5EqeagmrEfzv8guq/uLh4VP9J0KEIIIdLy0sQ7+94R5svMxfPb\nnhdRF6KaTWyknRRNINqznPu9e8CAAeUr0OrolC+Ed+UK4OMDAPD8b0987/8lvDwDy+uXlgJ//w10\n6KDy+GbOBP66UoY/+3fHrte2Isj9KYX7WPvnWqxJWIMT00+gQxvlY5y+ezpkQobNL29Wuo+WZPz/\nxsPKwApfvfCVxmK4eOcilh5bit+u/IapPlMxt+9cOJk6aSweogpczr0+lpbA+fOVS5ncugV8+aX8\nZWtJB9xe8u/K+pcuAUOHVi9PmFBZvn0biIysLBcVVU6feIIrV4D4tDgU3G+Pbz/up8zRIKxPGPra\n90Xo7lClJxz8ePFHHLl5BF89r7kvU3X7etjX+OXKL4g8H/nkyip2NussRkaNxKAtg+Bh6YHrb17H\niiErmDyoxdKeBAKUr29VocZiiTbWXXDn/SpLX3h6/jO39R9OTtWXTy8sLF+CvMKFC0BoaGU5IaH6\ncu6JicC0aQDK11006bMc0/8ywvpv/5mVdu4cEBZWWf8JZUlSEv67R4Lrudex5OiS8tf/9a/K+klJ\nwOuvV5bPnwfmzJEXU0/uwxs7JmP7qO0wamtUHv9bVY6/rvK8efWXL14E3n67evnddyvLycnA//1f\nZfnSJeD99yvLly8DVWeBXLkCfPZZZfnaNeA//6ksX78OrF5dWa65fHxqKrB2ba2yeXtz7HplF+b+\nNhtn1iysfP3mzerTXWo+r6Pm8z5qLkdf83khUinwww/lb8Wdixi75SW8sOE5POv0LG68eQP/7vIa\nTH/ZX73+jz9Wlm/dUm+ZSAnalUAe44lTeQ0MgKo3LDo7V//C7NMH2L27styrV/UHCLm6AgsWAAC+\n2nAXBe4n8OFHn1few9G5c7Uv+IaU282Zh90hu7H57GZseBgPvPFG5etOTtUf8t6pEzB1KgAg7+88\nvHRqHj7o+Tr87P3KX7e3ByZOrKxfV7nq805qlu3sgHHjKsu2tsDo0ZXljh2rJ1Rr6+pneBYW5UOM\nFYyNy5N4hfbty4+pQps25WeVFfT0yhfIrKCrCxga1ln27uiNb55egpF565CZ/88fATo6QNu2lfVr\nPq+j5vM+aj4PpObzQoqKcDEzCSE/hWDQlkHoa9YTKUbv462n3oKBvkH5GatUWq1+tXJhoXrLRErQ\nnmsgT/Dp0U/xoOgBlgYubaKoKn3xxxe4cOcCvhvxnUr6u5p9Fc9+9yy+HvY1RrqPfGzdYlkxXvj+\nBfSw6qHR6wDNwfJjy7Hu9DrEvhqLruZdVdZvYmYilhxdgqNpR/FO/3fwut/rjbpORaQuin538uHR\n/7AxtCl/kl0TqbgD3MAAuDksAmuH/1dlfbtauOKX8b/gpciXkJKTgneffrfOGzbv/30f03ZPg6G+\nIVYOXVlHT9rl/wb8H4zbGsN/sz9+nfAretv2Vrov8c9qt8v/WI6k20mY//R8RIyIgGEbwyc3Jmqh\nmED+0dR3o1+5Un4HOExvoG2fO3ja8WmV9t/Hrg9OTj+JMTvG4KT0JD557hO4W1UOuf2e9jsm7ZyE\n512ex4ohK6Cro/uY3rTHv3z/BUsDSwzdNhTTe0/HB/4fKPSln1+Uj8gLkfjmz29QWFKI+U/Px65X\ndqGtXtsnNyZq4ZhA/rHxKxscbXcHw7Y1zeJlBgbl/+0U9Av8vV5ski/wTiadcHTqUSw6sgiBWwNh\n0d4CnUw6ITErEUIIrHtpHYZ3H67y/bZ0YzzGYIDjALy7/124f+2OWb6z8Jr3a7A3tq+z/sPihzhw\n/QB2XNyBvSl78Zzzc1gWuAyBXQKhI+FlRdIevAbyj6eeT8VJj2eAlWkYO1b1i5fl5ZUPY915PhBv\nPT0bI9xGqHYHNZSJMvyR/gfuProLH1sfOJk48cFBDXBKegobEjfgx4s/orNZZ7hbusPJ1AkFJQXI\nLczF2ayzuJpzFf3s+2Fcj3EY5T4K1obWmg6bSCUU/e5kAvnH0BcLEdvbFL77CrE/VqdJlk++//d9\nOK50ROY7mRwbb+YKSwpx/s55JN9NRtr9NHRo0wEmbU3Q07onfGx90Ea3zZM7IWphmECgXALJywNs\nVljh/KwL6GZn0yRxRV2IwpakLfhtwm9N0j8RUWNwFpaSTE0BDwcHPEA6ANUlkKqzrwxf243gbsEq\n65uISJN4xa8KR2NHpN9PV2mfFbOv9u4rQfTFvXip20sq7Z+ISFN4BlKFo4kjMh5kqLTPitlXboEn\n0cbWud6ZPURELQ0TSBWOxo5If6DaM5Dt28uHsVxCD6FEZ7BK+yYi0iQOYVXhYOyg8gRialo+Jfh4\n1mEMch6k0r6JiDSJCaQKR2PVD2EB5VNCT0lPYWCngSrvm4hIU5hAqnA0Uf1FdAD4I/0PeNl4lS+b\nTkTUSjCBVGFvZI/Mh5mQlclU2u+h1EMY1JnDV0TUujCBVNFWry1M25mqZFHFmTOBgABg2DDgQMph\nJhAianU4C6uGiusgdkZ2jepHvvpum3zo+iahv0N/1QRIRNRM8AykBlVdB6m4/8M18CieduqL9vrt\nG90nEVFzwjOQGlR1L0jF/R8dJx2GlfFzKoiMiKh54RlIDQ7GDiqZyltx/8fJ2/F41vlZFURGRNS8\nqDWB5OTkICgoCN26dcOQIUOQl5dXZ72YmBi4ubnB1dUVy5Ytk28PDw+Hg4MDfHx84OPjg5iYGJXH\nqMq70R8WP8TFOxfR176vSvojImpO1JpAli5diqCgIFy5cgWDBw/G0qVLa9WRyWSYPXs2YmJikJyc\njMjISFy6dAlA+VLDb7/9NhITE5GYmIjnn39e5TGq8l6Q4+nH0du2N9rptVNJf0REzYlaE8ju3bsx\nefJkAMDkyZOxa9euWnUSEhLg4uICZ2dn6OvrIyQkBNHR0fLXm/rxJY7GjkhKzZBPwa3nJKlOVafu\n5uUB8WnxeMbpmaYKlYhIo9R6Ef327duwsSl/1oaNjQ1u3659v4VUKoWjo6O87ODggJMnT8rLq1ev\nxpYtW+Dr64sVK1bAtJ5HB4aHh8t/DwgIQEBAQINitDOyQ4FOFo7EywChi5kzG/54W/nUXZQnk9vD\n4rHQf2HDGhMRqVlcXBzi4uKUbq/yBBIUFISsrKxa25csWVKtLJFI6nxG9+Oe2z1r1ix89NFHAIAP\nP/wQ77zzDjZu3Fhn3aoJRBH6uvpoU2qJIqNM+HV3wLffNrxtxdRdPz/gq//+DZdvT/P+DyJqtmr+\ncb1o0SKF2qs8gezfv7/e12xsbJCVlYWOHTsiMzMT1tbWterY29sjPb3yGkR6ejocHBwAoFr96dOn\nY/jw4SqMvFJPR0eYjEjH/1Y5KPRs9Iqpu99+C5y/fwoeVh5c/4qIWi21XgMJDg5GREQEACAiIgIj\nRoyoVcfX1xdXr15FamoqiouLERUVheDg8sfAZmZmyuvt3LkTnp6eTRJnZ4tOmDH/pkLJA6icumtq\nCsTf5PUPImrd1JpA3nvvPezfvx/dunXDoUOH8N577wEAbt26hRdffBEAoKenhzVr1mDo0KHw8PDA\nK6+8And3dwDAggUL4OXlBW9vbxw5cgQrV65skjjdLN1w+d7lRvXBC+hE1NpJRFNPa9IAiUTSqNla\nkecjsfPyTuwY28Cr5zWUyEpgsdwCqW+lwry9udJxEBGpk6LfnbwTvQ7uVu64dO+S0u1P3TqFruZd\nmTyIqFXjWlh16G7RHSk5KSgtK4WezpPfopkzy6fwGhiUX0g/fIPLtxNR68czkDq0128PeyN7XMu5\n1qD6Ffd/7N1bnkwOpR7Cc85cQJGIWjcmkHp4WHkg+W5yg+rWvP8jQZrAC+hE1OoxgdRDkesg27cD\nY8cCsbHA5Ycn4GHlAeO2xk0cIRGRZjGB1MPD0gObf01u0JpYVe//OJzK6x9EpB2YQOrhYeWBLFly\ntWsbDXHoxiEMcmYCIaLWjwmkHm6Wbig0+AuQyODnh1prYtVceRcAHhU/QmJmIgZ0GqD2eImI1I0J\npB5GbY1ga2qJF8bfRGwsai1rUnPmFQD8nvY7fGx9YKBvoP6AiYjUjAnkMXpYu+ONjy/VuSZW1ZlX\nFWcnv179FcNchqkvQCIiDWICeYyqU3krhqwcHYGBA4GSEmDECMjPToQQ2P3Xbrzs9rJmgyYiUhPe\nif4YHlYeOJZ+DED1h0VlZJT/d+zYyqGtc7fPQV9HH+6W7hqIlIhI/XgG8hi9bXvjePpxAJVDViYm\n5f+teWF991+7Edw9+LEPxCIiak2YQB6jV8deyP07Fzdyb8hvFjx3rvKmwarXRqL/isbL3Tl8RUTa\ng8u5P8GUXVPQ174vXvd7vd466ffT4bPOB1nvZjVo8UUiouaIy7mr2AsuL2DP1T2PrfPLlV8wzHUY\nkwcRaRUmkCcY0nUI4m/G4+/Sv+uts+PiDg5fEZHWYQJ5ArP2ZvCy8cKR1CN1vn5KegrXc68juHuw\nmiMjItIsJpAGeMHlBexJqXsY6/M/Psfb/d+Gvq6+mqMiItIsJpAGGOY6DHuv7q21PSUnBYdTD2N6\n7+kaiIqISLOYQBqgV8deKJIV4Ze/fqm2fcXxFQjrE4YObTpoKDIiIs1hAmkAiUSCH0b/gNDdobhw\n5wIAYF/KPvxw4QfM6TtHw9EREWmGWhNITk4OgoKC0K1bNwwZMgR59Tyladq0abCxsYGnp6dS7ZtC\nf8f+WDl0JYZHDsf03dMR9msY/jfuf7DpYKPyfcXFxam8T3Vi/JrTkmMHGH9Lo9YEsnTpUgQFBeHK\nlSsYPHgwli5dWme9qVOnIiYmRun2TWWi10SE9QmDvq4+kmYlNdmTB1v6P0LGrzktOXaA8bc0ak0g\nu3fvxuTJkwEAkydPxq5du+qs5+/vDzMzM6XbN6X3Br6Hb178hs88JyKtp9YEcvv2bdjYlA/52NjY\n4Pbt22ptT0REqqPytbCCgoKQlZVVa/uSJUswefJk5ObmyreZm5sjJyenzn5SU1MxfPhwnD9/Xr7N\nzMysQe25Ii4RkXIUSQkqX7xp//799b5mY2ODrKwsdOzYEZmZmbC2tlao74a2b4XrQxIRNTtqHcIK\nDg5GREQEACAiIgIjRoxQa3siIlIdtS7nnpOTg3HjxiEtLQ3Ozs7YsWMHTE1NcevWLcyYMQO//fYb\nAGD8+PE4cuQIsrOzYW1tjcWLF2Pq1Kn1ticiIg0QrczevXtF9+7dhYuLi1i6dKmmw1GYk5OT8PT0\nFL169RJ+fn6aDuexpk6dKqytrUXPnj3l27Kzs0VgYKBwdXUVQUFBIjc3V4MRPl5d8X/88cfC3t5e\n9OrVS/Tq1Uvs3btXgxE+XlpamggICBAeHh6iR48eYtWqVUKIlvMZ1Bd/S/gMCgsLRd++fYW3t7dw\nd3cX7733nhCi5bz39cWv6HvfqhJIaWmp6Nq1q7hx44YoLi4W3t7eIjk5WdNhKcTZ2VlkZ2drOowG\niY+PF2fOnKn2BTx//nyxbNkyIYQQS5cuFQsWLNBUeE9UV/zh4eFixYoVGoyq4TIzM0ViYqIQQoj8\n/HzRrVs3kZyc3GI+g/ribymfwaNHj4QQQpSUlIh+/fqJo0ePtpj3Xoi641f0vW9VS5kkJCTAxcUF\nzs7O0NfXR0hICKKjozUdlsJEC5kEUNf9Os3hXp2Gqu9+o5by/nfs2BG9evUCAHTo0AHu7u6QSqUt\n5jOoL36gZXwGBgYGAIDi4mLIZDKYmZm1mPceqDt+QLH3vlUlEKlUCkdHR3nZwcFB/g+ypZBIJAgM\nDISvry/Wr1+v6XAU1hru1Vm9ejW8vb0RGhqq1uVyGiM1NRWJiYno169fi/wMKuJ/6qmnALSMz6Cs\nrAy9evWCjY0NnnvuOfTo0aNFvfd1xQ8o9t63qgTSGu7/OHbsGBITE7F37158/fXXOHr0qKZDUppE\nImlxn8msWbNw48YNnD17Fra2tnjnnXc0HdITPXz4EKNHj8aqVatgZGRU7bWW8Bk8fPgQY8aMwapV\nq9ChQ4cW8xno6Ojg7NmzyMjIQHx8PA4fPlzt9eb+3teMPy4uTuH3vlUlEHt7e6Snp8vL6enpcHBw\n0GBEirO1tQUAWFlZYeTIkUhISNBwRIqpuFcHgFL3+miatbW1/H/86dOnN/v3v6SkBKNHj8akSZPk\n09pb0mdQEf+rr74qj7+lfQYmJiZ48cUXcfr06Rb13leoiP/PP/9U+L1vVQnE19cXV69eRWpqKoqL\nixEVFYXg4JbzqNmCggLk5+cDAB49eoTY2NhaKxI3dy39Xp3MzEz57zt37mzW778QAqGhofDw8MBb\nb70l395SPoP64m8Jn8G9e/fkwzuFhYXYv38/fHx8Wsx7X1/8VVcRadB7r/pr+5q1Z88e0a1bN9G1\na1fx6aefajochVy/fl14e3sLb29v0aNHj2Yff0hIiLC1tRX6+vrCwcFBbNq0SWRnZ4vBgwc3+2mM\nQtSOf+PGjWLSpEnC09NTeHl5iZdffllkZWVpOsx6HT16VEgkEuHt7V1t2mVL+Qzqin/Pnj0t4jNI\nSkoSPj4+wtvbW3h6eorly5cLIUSLee/ri1/R916tNxISEVHr0aqGsIiISH2YQIiISClMIEREpBQm\nECIiUgoTCJGCOnTooPI+dXV10bt372pTWGuaP38+bG1tsWLFCpXvn0gZKn+gFFFr1xR3FxsYGODM\nmTOPrfP55583SfIiUhbPQIhU4JdffsFTTz2F3r17IygoCHfu3AEA3L17F0FBQejZsydmzJgBZ2fn\neh/jXEEmk2HKlCnw9PSEl5cXvvzyS3UcApHCmECIVMDf3x8nTpzAmTNn8Morr2D58uUAgEWLFiEw\nMBAXLlzAmDFjkJaW9sS+zp49i1u3buH8+fNISkrC1KlTmzp8IqVwCItIBdLT0zFu3DhkZWWhuLgY\nXbp0AVC+OGbFkt5Dhw6tc/n4mrp27Yrr169j7ty5ePHFFzFkyJAmjZ1IWTwDIVKBOXPmYO7cuUhK\nSsK6detQWFgof03RxR5MTU2RlJSEgIAArF27FtOnT1d1uEQqwQRCpAIPHjyAnZ0dAOC7776Tbx8w\nYAB27NgBAIiNjUVubu4T+8rOzkZpaSlGjRqFTz755IkX14k0hUNYRAoqKCio9uCyt99+G+Hh4Rg7\ndizMzMwwaNAg3Lx5EwDw8ccfY/z48di6dSv69++Pjh071npmR01SqRRTp05FWVkZAGDp0qVNdzBE\njcAEQqQgmUxW5/a6Hh1gYmKCffv2QVdXF8ePH8eff/4JfX39x/bv5eWF06dP1/ka1z6l5oRDWERN\nKC0tDX5+fujVqxfefPPNeh9TbGxs3KAbCb///nveC0LNBpdzJyIipfAMhIiIlMIEQkRESmECISIi\npTCBEBGRUphAiIhIKUwgRESklP8PMsK4ELXZVjoAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 2.2.2 Transformed Gaussian models\n", + "-------------------------------------------\n", + "We begin with computing skewness and kurtosis for the data set xx and compare it with the second order wave approximation proposed by Winterstein:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.stats as ws\n", + "rho3 = ws.skew(xx[:, 1])\n", + "rho4 = ws.kurtosis(xx[:, 1])\n", + "\n", + "sk, ku = S1.stats_nl(moments='sk')" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 13 + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Comparisons of 3 transformations" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "import wafo.transform.models as wtm\n", + "gh = wtm.TrHermite(mean=me, sigma=sa, skew=sk, kurt=ku).trdata()\n", + "g = wtm.TrLinear(mean=me, sigma=sa).trdata() # Linear transformation \n", + "glc, gemp = lc.trdata(mean=me, sigma=sa)\n", + "\n", + "glc.plot('b-') #! Transf. estimated from level-crossings\n", + "gh.plot('b-.') #! Hermite Transf. estimated from moments\n", + "g.plot('r')\n", + "grid('on')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAETCAYAAADecgZGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdUFPcWwPEvIAoGxYIdFbtgARQ0GguaEBVj19h7S7Em\nsUaN3WjUWGM0FiyxxF6e8mygxl7AFhNNFEUJ9gJYaPP+mCfGUFx1l9mdvZ9zch7DzrL3vkkuw51f\nsVEURUEIIYRVsdU6ACGEEBlPir8QQlghKf5CCGGFpPgLIYQVkuIvhBBWSIq/EEJYISn+QhjBzZs3\nqVWrFtmzZ2fQoEFahyPEK2XSOgAh3paTkxM2NjYAxMbG4uDggJ2dHQALFiygbdu2Jo9hwYIF5M2b\nl0ePHpn8s4QwBin+wuLFxMQkf12sWDEWLVpE3bp1U5yXkJBApkym+Vf+6tWruLu7v9F7TRmXEGmR\nto/QrZCQEFxdXZkyZQoFChSge/fuPHjwgI8++oi8efOSK1cuGjVqxI0bN5Lf4+fnx6hRo6hRowbZ\ns2enXr163L17F4CnT5/SoUMHXFxcyJkzJ1WqVOHWrVt06dKFZcuWMWXKFLJly8bevXuJi4tjwIAB\nFCpUiEKFCjFw4EDi4uJSjatbt26MGTOGVq1a0bFjR7Jnz07FihW5dOkSkyZNIl++fBQtWpRdu3Zp\n8v+j0Ccp/kLXbt68yf3797l27Rrz588nKSmJ7t27c+3aNa5du4ajoyN9+vR56T2rVq0iMDCQW7du\nERcXx9SpUwFYunQpjx494vr169y7d4/58+fj6OhIYGAg7du3Z8iQIURHR1O3bl3Gjx/PsWPHOH36\nNKdPn+bYsWOMHz8+1bgWLFiAoihs27aNTp06cf/+fby9vfH39wcgMjKSkSNH0rt374z7P07onhR/\noWu2traMGTMGe3t7HBwcyJUrF82aNcPBwQEnJyeGDx/Ovn37ks+3sbGha9eulCxZEgcHBz7++GPC\nwsIAyJw5M3fv3uXSpUvY2Njg7e1NtmzZkt/7z2WyVq5cyahRo3BxccHFxYVvvvmG5cuXpxkXQK1a\ntfD398fOzo6WLVty9+5dhg4dip2dHa1btyY8PFyeKQijkeIvdC1Pnjxkzpw5+fjx48f07t0bNzc3\nnJ2dqV27Ng8fPnypcOfPnz/5a0dHx+RnCh07dqRevXq0adOGQoUKMWTIEBISElL93MjISIoWLZp8\nXKRIESIjI9OMCyBv3rwvfa6Li0vyg2xHR0fg5ecbQrwNKf5C154Xz+emTZvGxYsXOXbsGA8fPmTf\nvn0oioIhi9tmypSJUaNGcf78eQ4dOsS2bdtYtmxZqucWLFiQ8PDw5ONr165RsGDBNOP697EQpibF\nX1iVmJgYHB0dcXZ25t69e4wZMybFOWn9IggODubs2bMkJiaSLVs27O3tk4eU/vs9bdu2Zfz48dy5\nc4c7d+4wduxYOnbsmGZcsrK6yGhS/IWu/fuOesCAATx58gQXFxeqV69OgwYN0r0Lt7GxST6+efMm\nrVq1wtnZGQ8PD/z8/JIL+j/PAxgxYgQ+Pj5UrFiRihUr4uPjw4gRI9KM69/vT+scIYzFRjZzEUII\n66Ppnf+DBw9o2bIl7u7ueHh4cOTIES3DEUIIq6HptML+/fsTEBDAunXrSEhIIDY2VstwhBDCamjW\n9nn48CHe3t5cvnxZi48XQgirplnb58qVK+TJk4euXbtSqVIlevbsyePHj7UKRwghrIpmd/4nTpyg\nWrVqHDp0CF9fXwYMGED27NkZO3bsi+BkdIMQQryRV5V2ze78XV1dcXV1xdfXF4CWLVty6tSpFOc9\nn4Cjx3+++eYbzWOQ/CQ/a8vNGvIzhGbFP3/+/BQuXJiLFy8CsHv3bsqVK6dVOJr45wxQPZL8LJee\ncwP952cITUf7zJ49m/bt2xMXF0eJEiVYsmSJluEIIYTV0LT4e3p6cvz4cS1D0FSXLl20DsGkJD/L\npefcQP/5GcKsZ/ja2NgY3L8SQgihMqR2yto+GgoJCdE6BJOS/CyXnnMD/ednCCn+QghhhaTtI4QQ\nOiNtHyGEEKmS4q8hvfcdJT/LpefcQP/5GUKKvxBCWCHp+QshhM5Iz18IIUSqpPhrSO99R8nPcuk5\nN9B/foaQ4i+EEFZIev5CCKEz0vMXQghTUxTYs0f9XwsixV9Deu87Sn6WS8+5gRHzu3cP2rSB/v3V\nry2IFH8hhHgTe/eClxcUKADHj0Pu3FpH9Fqk5y+EEK/h9t3rRA3oToXg87B4MXz4odYhpSA9fyGE\nMKIVPw8lslxhroYGQ1iYWRZ+Q0nx15D0VS2bnvPTc27w+vnFxT9lcquC1Os1me0NStIg7DG4uJgm\nuAwixV8IIdIRcnAlIR5ZqXXkbw7+MpVhSy5hl0nTHXCNQnr+QgiRlo0bedCtHUvezULP9eE4Zc2h\ndUQGMaR2SvEXQoh/i46GAQNg3z5YsQLefVfriF6LPPA1c9JXtWx6zk/PucEr8jtyBLy9wcYGQkMt\nrvAbSoq/EEIAMY8fsL19VWjaFKZMgYULIVu2dN/z8CGMGqX+oWBppO0jhLB6G7d8R4HPB/PIwQa/\nvZfJXNjtle9ZuRK++AIaNYLJkyFXLtPHaShDaqflP7IWQog3lJiQwOSeZen5y18s+qggX6z4i8z2\nDga9N08eCApSJ/laImn7aMiq+6o6oOf89JwbqPmdOrOTLZ5ZaLjjL3YuHMbQNTcMLvwA/v6WW/hB\nir8QwhodP477h+24mTcrBc9H0L7txHRPHzsWbt3KoNgyiPT8hRDW48kTGDoUNm6EwECoW9egt61a\nBe+/D3nzpnzt/n2YMweGDIHMmY0b7puyiKGeiYmJeHt706hRI61DEULo2enT4OsLUVHq1wYWfoC2\nbVMW/oQE+OEHKFsWbtyAp0+NHK+JaV78Z86ciYeHBzY2NlqHkuGsoa+qZ3rOT0+5xcU/ZUG7sigf\nfKDenq9eTcjp06mee+MGDB8OiYnp/8xdu9R+/7p16tc//gjZs5sgeBPStPhfv36d7du306NHD2nv\nCCGMbmfwIg6WyYr7wT+48J+l0LGjOnkrFdOnQ8WK6svx8an/vEuXoHFj+OQTGDdO3cCrYkUTJmBC\nmvb8W7VqxfDhw3n06BFTp05l69atL70uPX8hxJua1LcS3ZaEssIvF5+tvYqjo1O6569fr07sLV48\n5WsPHqjFfulSGDxY3bgrSxYTBW4EZj3Of9u2beTNmxdvb+90/8Ts0qULbm5uAOTIkQMvLy/8/PyA\nF3+ayrEcy7EcPz8uUSIPBxp74Xo5ge96NWTq9G0GvT937hCuXYPixV+8npQEly758c03ULlyCAsW\nQPPm5pWvn58fISEhBAYGAiTXy1dSNDJs2DDF1dVVcXNzU/Lnz69kzZpV6dix40vnaBhehggODtY6\nBJOS/CyXxeZ24ICS6FZUWVnDWbkScS7VU+LjFaV9+2DlyZP0f9SePYpSsaKi1KqlKKdOmSBWEzKk\ndmrW8584cSIRERFcuXKF1atXU7duXZYtW6ZVOEIISxYfD19/Da1aYTtrNm0PPMDNtVyqp2bKpG67\nm1Zf/6+/oFkz6N4dRo6EkBC1HaQ3ZjHOf9++fUybNo0tW7a89H3p+QshXumPP6BDB3Us5uLFkC/f\nG/2YR49gwgR1Pbcvv1TX7XEwfMKvWbGIcf4AtWvXTlH4hRAiPYkJCUzpVIK46lWhWzfYti1F4Y+M\nVEfxpPtzEtWCX6aMOov33Dl1uKelFn5DmUXxt1bPH9joleRnucw9t8MnN7OjfGbe332ZnUtGwKef\nphjC+Xzo5p07KcftP89v/3513ldgIGzdCkuWqC0hayCregohLMqUYbXpMHc/x6s4UX39JSo750/1\nvCxZ4NAhKF065Wt//w2tWsGxY+rS/R9/nObwf90yi55/WqTnL4R4LjE6mqUf5qHu78/YMqwF/Qav\ne+2fER0NkybB/PnqLo1ffQWOjiYIVmMW0/MXQoh0nTqFXZUquNnmJvbory8V/vh4WLQI0qt1SUlq\na6dsWbh+Hc6cUUfy6LHwG0qKv4bMva/6tiQ/y2U2uSUmwrffQv36MGoUdQ/eoFzp9146xdZWHfAT\nE5P6j/j1V6hSRb3b37ABli2DS5dCTB+7mZOevxDCPF29Cp06qdX9xAkoUiTV0+zs1L79v127pi7F\ncPCg+vujXTvr6+unR3r+QgizkpiYyOTPK9J39RWyDR+tDrq3swMgNhaCg+Gjj9J+f2ysuqfu3LnQ\nty8MGgTvvJMxsZsL6fkLISzK2d8PsK5SFppu+I1103uot+52diiKuv+Khwf88kvq/f2kJFi+XB2v\n/+efEBYGo0dbX+E3lBR/DZlNX9VEJD/LpUVuM79tRvZ3a/HIyZ5sZ/6ga7dZL72+a5f60HbZspTt\nmyNHoHp1mD1b/eWwciUULpz2Z+n52hlKev5CCG09e8aChgVoeew+K/vVYdD4vSlOsbFRd836t+vX\n1V0Zg4PVIZwdOqiPCMSrSc9fCKGd336D9u258M5jHs2eRlVvtZl/7hyUL5/22x4/hu++g1mz1Mm9\nQ4eCU/rL9VsV6fkLIcyToqi7nteuDZ99hvuB35ML/7Nn6oPahw9Tf9uqVep4/fPn4eRJGD9eCv+b\nkOKvIb33HSU/y2XS3KKiICBAfTp76BD07PlSEz9LFrWN4+z88tuOH4caNdQ7/hUr1N6+ofuW/Jue\nr52hpPgLITLM5EHVuVO6sLqa2q+/QqlS3L6d/nsiI6FLF3Xv3G7d1F8CtWplSLi6Jj1/IYTJXb52\nhgMtfaj5Zzw7RrXj8wE/c/s2DBmijtQ5ezZ5KH+yp0/VlTmnTYMePdS9WrJn1yZ+SyM9fyGE5n78\noRsJlTyxS4T4E8f4fMDPgLqqZo4cavH/Z+FXFFi3Dtzd1bv8Y8fUSVtS+I1Lir+G9N53lPwsl1Fy\nS0hgactSNBu8hPUdKtPhZBxlivsmv7xzp3pn/8+iHhYGderA2LHqYm0bN0KJEm8fyr/p+doZSoq/\nEML4Ll+G2rX5KCo754KWMnjaiRSnZM784uubN9XnvvXqQZs2cOoU1K2bgfFaIen5CyGMR1Fg6VJ1\nQZ3hw6F/fxIVW3x9YceOlNvrPnumjtWfPFldw23UKLUVJN6OIbVTZvgKIYzj7l345BP4/XfYuxcq\nVADADti+/eXCryiwZYu6ZlvZsurKm2XKaBO2tZK2j4b03neU/CzX6+Y2dWx9rpfIQ5Krq/qU9v+F\n/7n8/9hp8exZ8PeHYcPUlTe3bcv4wq/na2coKf5CiDcWdSecebWy0nraf/nli/qEdvieZm0diI1N\nee6dO/DZZ/D++9CkCZw+rfb4hTak+GvIz89P6xBMSvKzXIbktmzFYG6VL0a+e8+4/etOYthOQAA0\nbQpZs744Lz4eZsxQh27a2cGFC+ryDfb2pov/VfR87QwlPX8hxOtJSmJ7n/o0WLqLn9qUZsj889hl\nykTsA/XO3sXlxanbt8MXX0DRohASAuXKaRa1+Be589eQ3vuOkp/lSjO3GzegXj3qhT7i5Ia5DF/0\nB3aZ1HvImjVfFP4LF6BBAxgwAKZOhaAg8yr8er52hpLiL4QwzPr1UKkS1KrFwg6/4uvzWYpT7t2D\n/v3VtXf8/dWlmT/6SPbONUcyzl8Ika7E+/ex++ILdSG2FSugalXmzYOGDV/sqZ6QAPPnw5gx0Lw5\njBsHefJoG7c1k7V9hBBvZe6M9oSXyMX9xFgIDYWqVQF1A5XnhX/XLvDyUv8w2L0bfvxRCr8lkOKv\nIb33HSU/y/Wf/2xm5ofOtBi5kiWNP8Q58JcUO6ZcvgzNmkHv3uqd/p49ULGiRgG/Jj1fO0NpWvwj\nIiKoU6cO5cqVo3z58syaNevVbxJCmNT6zZO51qUpZa7EMMA/hOXB/+XatRevx8bCiBHqkvy+vupO\njM2aSV/f0mja84+KiiIqKgovLy9iYmKoXLkymzZtwt3dXQ1Oev5CZBxF4crUETiNnsiiRoVQKoYT\ndTMT48dDtmzqkgxr1qjL9tSsCVOmgKur1kGL1Jj92j758+cn///nfTs5OeHu7k5kZGRy8RdCZJDb\nt6FnT4pdvcqZrasZWrc1ivLibj4sDPr1g+hoWLlSLf7CspnNJK/w8HBCQ0Op+v8HSs916dIFt/9v\n1JkjRw68vLySZ+c979tZ6vGMGTN0lY/kZ17xGXz89ClK9+4E16yF7ZQp+NX1T37t0SMICvJj/Xro\n0CGEhg2hZk0zi/8Njv/Z8zeHeIyRT2BgIEByvXwlxQxER0crlStXVjZu3PjS980kPJMJDg7WOgST\nkvzM2+MHdxWlTx9FKVxYmd9mr7Jw4YvXdu8OVubMUZQ8eRSlb19FuXtXuzhNwdKv3asYUjs1H+cf\nHx/PRx99RIMGDRgwYMBLr0nPXwjTWLS4L9WGzsHW04uyv+zlgU1OsmcHW1t1GYZ+/dTZujNnplig\nU1gAQ2qnpsVfURQ6d+5M7ty5+f7771O8LsVfCON68iSG2W2L02X3bRZ2KMeQOWHJyzNcu6Y+zD16\nVF2SoUULGcFjqcx+ktfBgwdZsWIFwcHBeHt74+3tTVBQkJYhZah/9h31SPIzL0F7FnDUIzvvHo9m\n6ailDP/xHHaZMvH0qTpOv1Il8PBQh266uITouvBb2rUzBU0f+NaoUYOkpCQtQxDCKiSsXEGlnr2Z\nUciPa+9tZ2Z3R0DdWrFvX3Vy1smT6uqbwjpo3vNPj7R9hHhLDx/C55/DiRNc/HYGlx3qU78+XL2q\nrrh57hzMng3162sdqDAms2/7CCFMaP9+8PQEZ2c4dYrSTetTpw5MnAiVK6ttnrNnpfBbKyn+GtJ7\n31Hy08a9h1E86PsFcS3aqJvkzp0LWbOye7fa3jlyRN1md+RIcHBI/WeYa27Govf8DGE2k7yEEG9v\nzboxlOw3mljnAhzpHMbghnm5fl3dTevECXXoZqNGWkcpzIH0/IXQgcSEBKZ0Lk6PTREsbF6UwUv+\nJEnJxIwZMHmyur3isGHg6Kh1pCIjmP3aPkKIt3fo+Ebud2iJf0wSIcvGMazFCEJC1Oe8RYqobZ6S\nJbWOUpgb6flrSO99R8nP9O4v20qx2m04l6UspS7cxq/WCDp1gs6dYfx4dQP1Nyn85pCbKek9P0NI\n8RfCEsXGEt/jE6K79WNjsx30O3qe9etcKF8e8uaF8+dljX2RPun5C2FpTpyA9u2halVuj5rN3QRn\neveGx49hwQLw9tY6QKE1GecvhI48eRLDjaGfQ0AAjB3L0wXLmLPcmRo1oGVLtbcvhV8YSoq/hvTe\nd5T8jGfDpjmcLOnClXUL4eRJgvO2xtNTnaQVFqYu0WBnZ7zPk2unf1L8hTBjiQkJTOrlQc32fdlT\nsgSuex7SZWRhOndWt1HcsEG2UhRvRnr+Qpipsxf288fHdXG/mcixKf2xYQZDhqjt/jFj1H11hUiN\njPMXwkJdmr8Xl2H1Oexhz6OFf7BieAkePFCHblaurHV0Qg+k7aMhvfcdJb/Xdz/qGf8pN4hsn3fi\nnQVbiWn+hEYNSxAQoG6yklGFX66d/smdvxDm4vx5HtduRyHnEkRuD+PTkS44OsoMXWEa0vMXQmNx\n8U85PbInvouCiBv7LZNudmPOXBsmTIAePdR9dYV4HdLzF8LM7Tu8mqed2pHjKZz+8SIdRpekaFEI\nDZVRPMK05J5CQ3rvO0p+6esf0Ioy/m35rbgzP7e4Q73PSzJ8OGzdqn3hl2unf3LnL0QGu3ztDL+2\n8KHvX/HM7NGLtdvmUyW3OmErTx6toxPWQnr+QmSkI0e42yKA/xSIJbjiKXbvKscPP8gGK8K4ZG0f\nIczEhbMJ3Ok3Bpo04e/eCxl97xko5Th7Vgq/0IYUfw3pve8o+UFSEgSO/IuYSjWJDznIiIah1Jvf\nnFmzYMkSyJHD9HG+Cbl2+mdQzz82NpaIiAhsbGxwdXXlnXfeMXVcQli8xIQEVn7WmqaB+7ncfgS1\nf+2L7zNbzp6FXLm0jk5YuzR7/tHR0fz000+sXr2aO3fukC9fPhRF4ebNm+TOnZv27dvTs2dPnJyc\nTBec9PyFhTpx5r9EtA2g+N0kNtcLYd7O2sydC82bax2ZsAZv1fNv2rQp2bJlY+vWrVy+fJnDhw9z\n5MgRrly5wrZt23jnnXdo0qSJ0YMWwtJNG12P/DXrcyNnVtrmjuTs49qcOSOFX5gZxYyZeXhvLTg4\nWOsQTMra8jt15i9lZpmSyrXsKL1atlHy5lWU1au1ie1tWdu10xtDaucrH/guXLjwpeOEhARGjx5t\nmt9EQliq06cp2+pDXG2iaFbyCDfjV3H6NLRurXVgQqTulcV/z549BAQEEBkZyblz56hWrRrR0dFG\n+fCgoCDKli1LqVKlmDx5slF+piXx8/PTOgSTsor8kpJg2jSUDz5gr+coet9+RL/+Vdm4EfLn1zrC\nN2cV187KGTTJa/Xq1fTp04d33nmHn3/+mRo1arz1BycmJlKmTBl2795NoUKF8PX1ZdWqVbi7u78I\nTh74CjOVmAi7A69Tb2Vnnj56Rmfb5UQ5FGPZMihaVOvohLUzyiSvixcvMmvWLJo3b06RIkVYsWIF\nsbGxbx3csWPHKFmyJG5ubtjb29OmTRs2b9781j/Xkuh9rLFe87t6FXp5f86z3hU44VyXYuEhVG5R\njL179VP49XrtntN7foZ45Tj/xo0bM2fOHD744AOSkpL4/vvv8fX15bfffnurD75x4waFCxdOPnZ1\ndeXo0aMpzuvSpQtubm4A5MiRAy8vr+Q/2Z5fQEs9DgsLM6t4JL9XH0dE/g5jRjHk9l06lmzKrdD3\n2LErE15e5hGfHFvncUhICIGBgQDJ9fJVXtn2efjwIc7Ozi99748//qBMmTIGfUBa1q9fT1BQED/9\n9BMAK1as4OjRo8yePftFcNL2EWZkzrQ2BExYw94Sjky4d46mjYszaRI4OGgdmRAve6u2z/PfKv8u\n/EBy4Q8ODn7j4AoVKkRERETycUREBK5ar2MrRCqexD5iln92Woxew+QaDRgT9Zif5hfn+++l8AvL\nlWbx37ZtG1WqVGH48OFs2LCBw4cPc/DgQdavX8+wYcPw9fVlx44db/zBPj4+XLp0ifDwcOLi4liz\nZg2NGzd+459niZ7/gtUrPeS3ZvxFYiu8T7mIJBqVCuKB43ZOn4YPPtBHfmnRc26g//wMkWbPf+rU\nqURHR7NlyxZ27drF1atXAShatCg1atTg66+/fqulHTJlysScOXOoV68eiYmJdO/e/aWRPkJoSlHg\np59oMf1rtlcdQ/fjn/L9DBvatwcbG62DE+LtvbLnP23atBTfc3Z2xsfHBy8vL5MFBtLzFxq5dQt6\n9CA+/Aa9nVZw0dadn3/Wz0geoX9GGep58uRJ5s+fT2RkJJGRkSxYsICgoCB69uxplROzhH49fAhj\n+zXgSfmy/JmlHCVuHaZoPXdCQqTwCx161foPNWrUUKKjo5OPo6OjlZo1ayqxsbFK2bJlX3/Riddg\nQHgWTe/ri1hSfhs3/anMLV5GCc9uo/Rq1lcpUkRR9u9P/z2WlN/r0nNuiqL//Aypna8c53/79m0y\nZ86cfGxvb8/NmzfJmjUrDjLUQejA3Nn9qPvNjzzJ50DzkqcobudFWBjkzKl1ZEKYzit7/uPGjWPD\nhg00bdoURVHYunUrjRs35quvvqJXr178/PPPpgtOev7ClBIT+b5FQdrvvsUU/yos/fUokyZB9+7y\nUFdYNkNqp0Fr+xw/fpyDBw9iY2PDe++9h4+Pj9GCTI8Uf2EyV69Cp06cvnmeb0rPIvxaO1atAhlw\nJvTAaBu4+/r6MmDAAPr3759hhd8a6H2ssTnml5gIG1qtRPH15bJHQ5rE3sSteDuOHHn9wm+O+RmL\nnnMD/ednCIP28BVCFx48wO6zz/A7EMrsgCAmbarEokUQEKB1YEJkPIPaPlqRto8wlpnfNqf9tJ04\nNOxC04tTsHXKytKlUKCA1pEJYXxGa/sIYamu/x3F3LpOtJq4kelN/SgZNIe6H2UlKEgKv7BuUvw1\npPe+o9b5TZ0ymdsVi1H4ejyj2+9kedA21q6F4cPB1gj/5mudnynpOTfQf36GkJ6/0B9F4dtG1ei+\n9xjTavgQEn2IXFczERoKLi5aByeEeZCev9CXqCjo1o3rl88y66NBLF3ej6++gi+/NM7dvhCWwJDa\nKXf+Qj82b4bevUns1pMZpTazdq09mzZBtWpaByaE+ZF7IQ3pve+YUfklPorlToteMHAgkbPXU233\nOC6F2xMaatrCr+frp+fcQP/5GUKKv7BoP/7QjavFc3P+VBybx4Th9fl7tG0LmzZBrlxaRyeE+ZKe\nv7BIMY8fML9VcTrsu8/CLpWIsjnJtm2wZg1UqaJ1dEJoS8b5C13avGMGp8vmxOv3B+xZvJQNh08S\nGQmhoVL4hTCUFH8N6b3vaPT8FIVFnzWgeouBHKhckJvjHzOgTye6doV16yBHDuN+3Kvo+frpOTfQ\nf36GkNE+wjLcu8etZr2pdvgqw5tPJ2u+gSz4GrZvB1lrUIjXJz1/Yf5274auXfm9QktOt57ErAUO\n5MwJy5bJQ10hUiPj/IVle/oUvv5afYq7ZAnXbfwZ0BH69YMhQ2TSlhBvQ/7z0ZDe+45vk9+yFYM5\n55aV+L8ukRR6mvFH/enUCX7+GYYNM4/Cr+frp+fcQP/5GULu/IVZiYt/yvdti9Ntx99M8q7HsAUb\n6NIlEw8fwvHjUKiQ1hEKoQ/S8xdmI+TgSuI7d+CdOIWI6dPJ/s5APvsMmjeHb78Fe3utIxTCMsg4\nf2ExDk7/Avd67TlX2pkKF+5z7/ZAOneGadPUf6TwC2FcUvw1pPe+o0H5RUejdO2K74wt/DprEL3W\n3ufT3jmYNw8OHlTv+s2Vnq+fnnMD/ednCCn+QjuHDpHk6UXw/kwEFAzDo9oUqlaFTJngyBEoVUrr\nAIXQL+n5i4wXHw/jx8P8+Uwu9iMXPZpSpw4MHAgTJ0KPHmBjo3WQQlgus+75Dxo0CHd3dzw9PWne\nvDkPHz5kgBv8AAATKElEQVTUKhSRgTZumcLR4pm5FbwNQkPpurkpTk4wahT897/Qs6cUfiEygmbF\n/8MPP+T8+fOcPn2a0qVLM2nSJK1C0Yze+47/zC8xIYFJXUpQo+0QgqsXJMeeg1xPLEDTpnD5Mpw8\nCZUqaRfrm9Dz9dNzbqD//AyhWfH39/fH9v8zdapWrcr169e1CkWY2InTQWyrmIUGQVdYNWE0Q9fc\nYF+IA76+0KiRugFXzpxaRymEdTGLSV6LFy+mbdu2qb7WpUsX3NzcAMiRIwdeXl74+fkBL357W+rx\n8++ZSzymyG/buG/w/m4sRyu/w74Gy7G7kZNx42DePBg8OARvb7C1NY945fq9OPbz8zOreCS/9I9D\nQkIIDAwESK6Xr2LSB77+/v5ERUWl+P7EiRNp1KgRABMmTODUqVOsX78+ZXDywNdyPXmiLsCzaRPH\nJ/bBt8Ng7t6FDh0gJkZdrqdgQa2DFEKfDKqdioaWLFmiVK9eXXny5Emqr2scnskFBwdrHYJphIYq\niru7ElynjqLcu6coiqIcPaooRYsqypdfKkpcnLbhGYtur5+i79wURf/5GVI7Nev5BwUF8d1337F5\n82YcHBy0CkMYUWJ8PHz3Hfj7E9FxOIsLjUTJkZMffoCGDWH6dJg6VWbrCmEONBvnX6pUKeLi4sj1\n/wXZq1Wrxg8//PBycNL2sRg7gxeRuXtPCjjm5eKnR+g2xo1vv4W9e+HcOXWnLZm0JUTGMKR2yiQv\n8dYmfe5J96VnWFYnF5//cpXx453w8YERI9Q9defOhaxZtY5SCOth1pO8hOWPNf7tz8Os8s5E8zVn\n2DStF19tvYujoxOentCrFwQEhLB4sX4Lv6Vfv/ToOTfQf36GMIuhnsIC7d9P1ia1eVImM1nCTtPL\ntRxxcTBoEGzbps7WffRIZusKYa6k7SNeT1wcjB4NS5YQMXUUxxw+5fFj8PODjz+GvHkhMFAmbQmh\nJWn7COP6/XeoXh3OnIGwMAq3/xQPD3j2DHx9oWlT2LhRCr8QlkCKv4Yspe+YmJBA7KypULOmuuTm\n1q2QLx9JSbB2rboo2+rVKTdVt5T83pSe89NzbqD//AwhPX+RrkPHN/KgQwuKPM5M+QNhJJQsSyYb\nuHNHna37+LG6KFuBAlpHKoR4HdLzF2maPKwWneYcYF1VJ9qtu8Salfn55ReYPFnt77dura6/n0lu\nIYQwK4bUTvnPVqQQ8fcf7GpWkdZ/xLH2m5b0+2otfftCSAi0aKGuxLlggdrjF0JYJun5a8gs+44n\nTvDUsxyOz5J4fPwQ/b5aC6jLM5QtC5s2waFDhhV+s8zPiPScn55zA/3nZwgp/kKVmKj2cAICKDR1\nAW1D4/EoWQ2ACxfgiy8gWzY4fBhKltQ4ViHEW5Oev4DwcOjYUW3eL1sGhQuTlKSO3Fm9Gvr2Vfv8\n3bppHagQwhDS8xfpSkxIIHLBVAqPng6DB6u397a2rF4NR46ofwzs2AG7doGXl9bRCiGMSdo+GtKy\n73j2wn42VHIgesxw2LkTvvoqeZB+pUpw4ABERMCJE29e+PXeV9VzfnrODfSfnyGk+FuhGZOa4Fyt\nNvez2eN8+uJL1f2//4VatdRhnBs3Qo4cGgYqhDAZ6flbkdt3r7O2RRmanHrMqgHv89XY3QBERUGe\nPDBuHPz0E6xcCbVraxysEOKNSc9fvHD+PNEB1XDN+pS/92/nK68GKApMmgQLF0KJEuqabSdOyGxd\nIayBtH00lCF9R0WB2bPBzw+3EdNoePYZPl4NABg+HH7+WV2YrVIl2LPHuIVf731VPeen59xA//kZ\nQu789ezvv6FrV7h/Hw4dwvYf+ygqirrJyq1b6p1/kyYaximEyHDS89epE3O/xmfcIujdW91P8R+7\npsfEQM+e6uSt9evVlo8QQj+k52+FLl87w68tfHjvr3iebQomSy2/5Neio9Xhmy1aqMvyHz4Mjo7a\nxSqE0I70/DVk7L7jj3O6kujtiY0CSadOvlT4T52CGjXUUTyDBsGiRaYv/Hrvq+o5Pz3nBvrPzxBy\n568DMY8f8FPLYrTb/4DFPSsz7PsTL73+7Jla7KOjZbauEEIlPX9L99df3Gz2IWcfX8EmMJD3a3R6\n6eVr16BVKyhYEJYskUlbQlgD2cNXzxRFrebvvku+bn354GLCS4X/zz8hKAiqVIGWLWHDBin8QogX\npPhr6I37jnfvqhX9++9h714YMOClzXNXrABPT+jcGX75Re3x29gYJ+bXofe+qp7z03NuoP/8DCHF\n38Ksn/GJWtnd3ODYMahQ4aXXly6FXr3A3R1On1bX6RFCiH+Tnr+FiLoTzuZmHgScecL9edOp2G5g\ninOOHFH7+82awfTpsreuENZKev46sXTZl9wpVwyX+8+4e2hPisL/fAWHxo1h7lyYNUsKvxAifZoW\n/2nTpmFra8u9e/e0DEMzr+o7xsU/ZUqL/AR8Op0tjUrTNOwZXuXqvnTO9evQti0sXqxO2mrc2IQB\nvya991X1nJ+ecwP952cIzYp/REQEu3btomjRolqFYN6uXyfJ/wNqnrjNoXXfM3zhH9j963b+1Cl1\naYYsWdRN1WWZBiGEoTTr+bdq1YqRI0fSpEkTTp48Sa5cuVKcY7U9/7VroU8fdfPcoUNT7eGsXAn9\n+6t7rvfsqUGMQgizZbZr+2zevBlXV1cqVqyoxcebr0eP1IJ/+DBs3aoO0v+XZ8/UrXZ37oTdu9WB\nP0II8bpMVvz9/f2JiopK8f0JEyYwadIkdu7cmfy99H5DdenSBTc3NwBy5MiBl5cXfn5+wIu+naUe\nz5gxIzmfH2d2ouSkIDL5VMHv1Clwckpx/pIlIUycCBUq+HHiBISGhhASYj75pJefOcQj+Rl+/M+e\nuDnEI/m9Op/AwECA5Hr5SkoGO3v2rJI3b17Fzc1NcXNzUzJlyqQULVpUuXnzZopzNQgvQwUHBysP\nHt5WZvhnV/52QlkzoV2a5y5dqih2dorSrJmiJCVlYJBvITg4WOsQTErP+ek5N0XRf36G1E7Nx/kX\nK1bManv+azdOoGjfEdzLaoPTil+oUaVlinMSE2HYMHXc/iefqEM6tZitK4SwHGbb8/8nGyusZIkJ\nCUzpVpqe66+wsElhBi27nGIkD8Dt29C+PcTHQ0iIuiSzEEIYg+aTvC5fvpzqXb9u3b6NXYsWNN57\ng1lfdWToymupFv7Dh6FyZfDxUZdhtsTC/8++qh7pOT895wb6z88Qmhd/q7J9uzo8p2xZyl2Opm6d\nbilOURR1vbYmTdTZuhMnymxdIYTxad7zT49uev6PH8PgwerwzaVL4f9P6/8tOhp69IB9+9SVOL/8\nMmPDFELog6ztYwYWL+rDvXLF4d49dZnNNAr/+fPg6wvOznDyJPTrl7FxCiGsixR/E3nyJIbvmuTh\no/5zWdm4uDol91+7qTzvO65Yof5OGDYMFiyAQoXA3j7jYzY2vfdV9ZyfnnMD/ednCOkmm0DQngU4\n9uhNFQVObppHnw8+SfW8+Hj49FP1ge6ePSATnoUQGUV6/kb23efedF4axtL3Xeiz+gqOjk6pnhce\nrq69D+qSDaGhYGeXcXEKIfRLev4Z6cEDaN+eNpv+ZMuMTxm0+XaahX/7dqhaVW3v3LoFq1ZJ4RdC\nZCwp/sawb586hDNHDgpfukmPHj+kelpiIowYoW6zuH49fPhhCIcPQ7lyGRtuRtF7X1XP+ek5N9B/\nfoaQnv/biIuDUaNg2TJYuBACAtI89dYtaNcOkpLU0Tz58kFCAhQsmIHxCiHE/0nP/w2t+mUUVYbM\nokSFWmrhz5s3zXMPHYLWraFjRxg7ViZtCSFMS3r+JpCYkMC3bYvwQddxrK/lAps3p1n4FQVmzFA3\nVJ84EaKiZFE2IYR5kOL/Gg4d28guj8y8vz+C4OXjGLz0zzSr+aNH6t3+8uVw5Ija8mnd+uUHu3rv\nO0p+lkvPuYH+8zOEFH8DzRsVQPH3m3OxqBOlL9zm4+Yj0jz33Dl1tm7OnHDwIBQrphb9evUyMGAh\nhEiH9PwNoSj81uQ99tYuQp8vV6d76ooVMHAgTJsGnTplUHxCCPEPhtROKf5G8vQpDBgAe/fCunWw\nZg3UrAn162sdmRDC2sgD3wwSHq6ut3/njtrfnzFDXa7Bxyf99+m97yj5WS495wb6z88QUvzf0n/+\no87Wbd8e1q5VR/hkzqwWfxcXraMTQojUSdvnDSUmwjffqMvzr14N772ndURCCKGyiD18LdGtW9C2\nrfr1yZPpzu8SQgizJG2f13TwoLq3brVqsHOn2ue/cuXNfpbe+46Sn+XSc26g//wMIXf+Bno+W/fb\nb2HxYmjYUP3+wYOQO7c6ll8IISyF9PwNoCjqDN1Ll9RhnG5uWkckhBBpk3H+RrRzJ9SqBQ4OWkci\nhBDpk3H+RvThh5AlC+zerf4lYAx67ztKfpZLz7mB/vMzhBR/AyUlqTN4v/gCYmK0jkYIId6OtH0M\nNHu2OolryxbIkUPraIQQIm3S8zeip0/Vdo+jo9aRCCFE+qTnb0QODsYv/HrvO0p+lkvPuYH+8zOE\nZsV/9uzZuLu7U758eYYMGaJVGJoKCwvTOgSTkvwsl55zA/3nZwhNJnkFBwezZcsWzpw5g729Pbdv\n39YiDM09ePBA6xBMSvKzXHrODfSfnyE0ufOfN28ew4YNw97eHoA8efJoEYYQQlgtTYr/pUuX2L9/\nP++++y5+fn6cOHFCizA0Fx4ernUIJiX5WS495wb6z88QJhvt4+/vT1RUVIrvT5gwga+//pq6desy\nc+ZMjh8/TuvWrbl8+XLK4NLYHF0IIUT6NFvSedeuXWm+Nm/ePJo3bw6Ar68vtra23L17l9y5c790\nnrkM8xRCCL3RpO3TtGlT9u7dC8DFixeJi4tLUfiFEEKYjiaTvOLj4+nWrRthYWFkzpyZadOm4efn\nl9FhCCGE1dLkzt/e3p7ly5dz9uxZTp48mW7hHzlyJJ6ennh5efH+++8TERGRcYFmgEGDBuHu7o6n\npyfNmzfn4cOHWodkNGvXrqVcuXLY2dlx6tQprcMxmqCgIMqWLUupUqWYPHmy1uEYVbdu3ciXLx8V\nKlTQOhSTiIiIoE6dOpQrV47y5csza9YsrUMyqqdPn1K1alW8vLzw8PBg2LBhaZ+smLlHjx4lfz1r\n1iyle/fuGkZjfDt37lQSExMVRVGUIUOGKEOGDNE4IuO5cOGC8scffyh+fn7KyZMntQ7HKBISEpQS\nJUooV65cUeLi4hRPT0/lt99+0zoso9m/f79y6tQppXz58lqHYhJ///23EhoaqiiKokRHRyulS5fW\n1fVTFEWJjY1VFEVR4uPjlapVqyoHDhxI9TyzX94hW7ZsyV/HxMTg4uKiYTTG5+/vj62tehmqVq3K\n9evXNY7IeMqWLUvp0qW1DsOojh07RsmSJXFzc8Pe3p42bdqwefNmrcMympo1a5IzZ06twzCZ/Pnz\n4+XlBYCTkxPu7u5ERkZqHJVxZc2aFYC4uDgSExPJlStXqueZffEH+PrrrylSpAhLly5l6NChWodj\nMosXLyYgIEDrMEQ6bty4QeHChZOPXV1duXHjhoYRiTcVHh5OaGgoVatW1ToUo0pKSsLLy4t8+fJR\np04dPDw8Uj3PLIq/v78/FSpUSPHP1q1bAXVuwLVr1+jSpQsDBw7UONrX96r8QM0xc+bMtGvXTsNI\nX58huemJzD3Rh5iYGFq2bMnMmTNxcnLSOhyjsrW1JSwsjOvXr7N///40F7Eziw3c05sT8E/t2rWz\nyDvjV+UXGBjI9u3b2bNnTwZFZDyGXju9KFSo0EuDDiIiInB1ddUwIvG64uPjadGiBR06dKBp06Za\nh2Myzs7ONGzYkBMnTqQ6qMYs7vzTc+nSpeSvN2/ejLe3t4bRGF9QUBDfffcdmzdvxkHHGwQrOpmw\n5+Pjw6VLlwgPDycuLo41a9bQuHFjrcMSBlIUhe7du+Ph4cGAAQO0Dsfo7ty5k7xo3ZMnT9i1a1fa\nNTPjnkG/mRYtWijly5dXPD09lebNmys3b97UOiSjKlmypFKkSBHFy8tL8fLyUj799FOtQzKaDRs2\nKK6uroqDg4OSL18+pX79+lqHZBTbt29XSpcurZQoUUKZOHGi1uEYVZs2bZQCBQoomTNnVlxdXZXF\nixdrHZJRHThwQLGxsVE8PT2T/5vbsWOH1mEZzZkzZxRvb2/F09NTqVChgjJlypQ0zzXrnbyEEEKY\nhtm3fYQQQhifFH8hhLBCUvyFEMIKSfEXQggrJMVfiNdw/PhxPD09efbsGbGxsZQvX57ffvtN67CE\neG0y2keI1zRy5EiePn3KkydPKFy4MEOGDNE6JCFemxR/IV5TfHw8Pj4+ODo6cvjwYVnyQVgkafsI\n8Zru3LlDbGwsMTExPHnyROtwhHgjcucvxGtq3Lgx7dq14/Lly/z999/Mnj1b65CEeG1msbCbEJZi\n2bJlZMmShTZt2pCUlET16tUJCQmRbUiFxZE7fyGEsELS8xdCCCskxV8IIayQFH8hhLBCUvyFEMIK\nSfEXQggrJMVfCCGs0P8A797ScbJhOE8AAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 14 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Test Gaussianity of a stochastic process\n", + "------------------------------------------\n", + "TESTGAUSSIAN simulates e(g(u)-u) = int (g(u)-u)^2 du for Gaussian processes given the spectral density, S. The result is plotted if test0 is given. This is useful for testing if the process X(t) is Gaussian.\n", + "If 95% of TEST1 is less than TEST0 then X(t) is not Gaussian at a 5% level.\n", + "\n", + "As we see from the figure below: none of the simulated values of test1 is above 1.00. Thus the data significantly departs from a Gaussian distribution. " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "test0 = glc.dist2gauss()\n", + "# the following test takes time\n", + "N = len(xx)\n", + "test1 = S1.testgaussian(ns=N, cases=50, test0=test0)\n", + "is_gaussian = sum(test1 > test0) > 5 \n", + "print(is_gaussian)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "False\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlGXiB/DvKBiVZpbJCkOhQFwEGRJhPWqMFxwvQZnu\nhpbHQ6aspWR77PJTO0KZlzx79pDunrWt7GK5tl0WE528MZIWFwmjTbfIxAZWPOJl0zTD4fn9IY6O\nzAzMMO+87zvv93OO58zlmZmHx3fe7/s+l3d0QggBIiLSvG5yV4CIiJSBgUBERAAYCERE1IaBQERE\nABgIRETUhoFAREQAJA6ERx99FKGhoUhKSnJbrqqqCkFBQfjoo4+krA4REbkhaSDk5ubCbDa7LWOz\n2fDss89i/Pjx4JIIIiL5SBoII0eORJ8+fdyWWbNmDaZOnYo77rhDyqoQEVEHZB1DaGxsRHFxMebO\nnQsA0Ol0claHiEjTguT88AULFmDlypXQ6XQQQrjsMmJQEBF5x5OueFnPEKqrq5GTk4MBAwbgww8/\nxOOPP47Nmzc7LXslMLT+b+nSpbLXQSn/2BZsC7aF+3+ekvUM4YcffrDfzs3NRVZWFrKzs2WsERGR\ndkkaCNOmTcOePXvQ3NyMiIgIFBYWoqWlBQCQl5cn5UcTEZGHJA2EjRs3drrs+vXrJaxJ4DAajXJX\nQTHYFlexLa5iW3hPJ7zpaPKzK4PORETUeZ7uO3npCiIiAsBAICKiNgwEIiICwEAgIqI2DAQiIgLA\nQCAiojYMBCIiAsBAICKiNgwEIiICwEAgIqI2DAQiIgLAQCAiojYMBCIiAiDzD+T4QoGlAIV7Cts9\nvjRjKQqMBSzP8izP8pov31m8/DURUYDi5a+JiMgrDAQiIgLAQCAiojYMBCIiAsBAICKiNgwEIiIC\nwEAgIqI2kgbCo48+itDQUCQlJTl9/t1330VycjIGDx6M4cOHo7a2VsrqEBGRG5IGQm5uLsxms8vn\nBw4ciLKyMtTW1uL555/HnDlzpKwOERG5IWkgjBw5En369HH5/LBhw9C7d28AQHp6OhoaGqSsDhER\nuaGYaxm9/vrrmDhxosvnCwoK7LeNRiOMRqP0lSIiUhGLxQKLxeL16yW/llF9fT2ysrLw9ddfuyxT\nWlqKJ554Avv27XN6RsFrGRERec7TfafsZwi1tbWYPXs2zGaz2+4lIiKSlqzTTn/88Uc8+OCD2LBh\nA6Kjo+WsChGR5knaZTRt2jTs2bMHzc3NCA0NRWFhIVpaWgAAeXl5eOyxx/Dxxx/jzjvvBAAEBwej\nsrKyfSXZZURE5DFP9538PQQiogDF30MgIiKvMBCIiAgAA4GIiNowEIiICAADgYiI2jAQiIgIAAOB\niIjaMBCIiAgAA4GIiNowEIiICAADgYiI2jAQiIgIAAOBiIjaMBCIiAgAA4GIiNowEIiICAADgYiI\n2jAQiIgIAAOBiIjaMBCIiAgAA4GIiNowEIiICAADgYiI2kgaCI8++ihCQ0ORlJTkskx+fj5iYmKQ\nnJyMmpoaKatDRERuSBoIubm5MJvNLp/funUrvv/+e9TV1eHVV1/F3LlzpawOERG5IWkgjBw5En36\n9HH5/ObNmzFz5kwAQHp6Os6cOYPjx49LWSUiInIhSM4Pb2xsREREhP2+Xq9HQ0MDQkND25UtKCiw\n3zYajTAajX6oIRGRelgsFlgsFq9fL2sgAIAQwuG+TqdzWu7aQCAiovauP1guLCz06PWyzjIKDw+H\n1Wq1329oaEB4eLiMNSIi0i5ZAyE7Oxtvv/02AKC8vBy33nqr0+4iIiKSnqRdRtOmTcOePXvQ3NyM\niIgIFBYWoqWlBQCQl5eHiRMnYuvWrYiOjsbNN9+M9evXS1kdIiJyQyeu78RXIJ1O126sgYiI3PN0\n38mVykREBICBQEREbRgIREQEgIFARERtGAhERASAgUBERG0YCEREBICBQEREbRgIREQEgIFARERt\nGAhERASAgUBERG0YCEREBICBQEREbRgIREQEgIFARERtGAhERASAgUBERG0YCEREBICBQEREbRgI\nREQEgIFARERtgjoq8M0336CsrAz19fXQ6XSIjIzEyJEjMWjQIH/Uj4iI/MTlGcI777yDtLQ0LFy4\nEE1NTRg4cCAiIyNx7NgxLFy4EEOHDsWGDRvcvrnZbEZcXBxiYmKwatWqds83Nzdj/PjxMBgMSExM\nxJtvvtnlP4iIiLzj8gzh9OnT2LVrF3r16uX0+Z9++sntDtxms2HevHnYuXMnwsPDMXToUGRnZyM+\nPt5eZu3atUhJScGKFSvQ3NyM2NhYPPLIIwgK6vDEhYiIfMzlGUJ+fr7LMACAW265Bfn5+S6fr6ys\nRHR0NCIjIxEcHIycnBwUFxc7lOnfvz9++uknAJcD5vbbb2cYEBHJpMO9b25ubrvHdDod3njjDbev\na2xsREREhP2+Xq9HRUWFQ5nZs2dj9OjRCAsLw9mzZ/H++++7fL+CggL7baPRCKPR2FHViYg0xWKx\nwGKxeP36DgNh0qRJ0Ol0AIALFy7g448/RlhYWIdvfOU17ixfvhwGgwEWiwWHDx9GZmYmvvrqK6dn\nJtcGAnVdSUkZXnllOy5eDMINN1xCfv44TJp0r9zVIqIuuP5gubCw0KPXdxgIU6dOdbg/ffp0DB8+\nvMM3Dg8Ph9Vqtd+3Wq3Q6/UOZT7//HMsXrwYABAVFYUBAwbg22+/RWpqaqcqT94pKSnDk09+isOH\nX7I/dvjw5f8HhgKRdnm8DuG7777DiRMnOiyXmpqKuro61NfX49dff8WmTZuQnZ3tUCYuLg47d+4E\nABw/fhzffvstBg4c6GmVyEOvvLLdIQwA4PDhl7BmzQ6ZakREStDhGULPnj3t3T86nQ6hoaFOp5C2\ne+OgIKxduxYmkwk2mw2zZs1CfHw81q1bBwDIy8vDokWLkJubi+TkZLS2tuLll1/Gbbfd1sU/iTpy\n8aLz//Zffunu55oQkZLohBBC7kp0RKfTQQXVVA2TaQm2b1/m5PHnYTa/KEONiEgKnu47Peoy4sBu\nYMjPH4eoqMUOj0VFLcL8+Zky1YiIlMCjM4SUlBTU1NRIWR+neIbgeyUlZVizZgd++aU7QkJsmD8/\nkwPKRAHG032nR4FgMBhw4MABryrWFQwEIiLPSRoIra2t6NbN/xdIZSAQEXnO032n21lGLS0t2L59\nu8PVTu+66y7ce++9MJlMvMwEEVEAcXmG8OKLL+LDDz/EsGHDkJaWhrCwMLS2tuLYsWOorKxEeXk5\npk6diiVLlkhfSZ4hEBF5zGddRps3b0ZWVpbLS1C0trZiy5Yt7RabSYGBQETkOUnHEOTCQCAi8pxP\nxxAAYNSoUU4/ZPfu3Z7VjIiIFK3DQFi9erX99i+//IIPP/yQg8lERAHIqy6joUOHoqqqSor6OMUu\nIyIiz/m8y+jUqVP2262trdi/f7/9V860jr8pQESBpMNAuOeee+wzjYKCghAZGYnXX39d8oopHX9T\ngIgCDWcZeYlXDCUipfPZ1U4787ucpaWlnf6gQMPfFCCiQOOyy2jLli145plnMHbsWKSmpqJ///5o\nbW1FU1MT9u/fj507d2LUqFFOp6VqwQ03XHL6eEiIzc81ISLyDbddRmfPnkVxcTH27duHo0ePAgDu\nuusujBgxAvfffz969uzpn0oqsMvI2RhCVNQiFBWN5xgCESkCVyr7EX9TgIiUzOeB8Kc//and9Yx6\n9+6NIUOGwGAweFdLDyk1EIiIlMzngTB9+nTs378fWVlZEEKgpKQESUlJOHr0KKZOnYpnn322y5Xu\nsJIMBCIij/k8EEaOHIlt27bZxwvOnTuHiRMnwmw2Y8iQITh06FDXatyZSjIQiIg85rNpp1ecOHEC\nPXr0sN8PDg7G8ePHcdNNNyEkJMS7WhIRkeJ0uFL54YcfRnp6Oh544AEIIfDJJ59g+vTp+Pnnn5GQ\nkOCPOhKRSvHyLurSqVlGVVVV2LdvH3Q6HYYPH47U1NROvbnZbMaCBQtgs9nw2GOPOR1vsFgseOqp\np9DS0oK+ffs6XRDHLiMi9XE+NXsxiopMDAU/8dkYwtmzZ9GrVy+3L3ZXxmazITY2Fjt37kR4eDiG\nDh2KjRs3Ij4+3l7mzJkzGD58OD799FPo9Xo0Nzejb9++Xf6jiEh+vLyL/Hw2hjB58mQ88cQT2L59\nu8MVT0+ePIlPP/0Uc+fOxeTJk12+cWVlJaKjoxEZGYng4GDk5OSguLjYocx7772HKVOmQK/XA4DT\nMCAideLlXdTH5RjCzp07sXv3brz33nt48skn8d///hcAEBYWhhEjRuDhhx+G0Wh0+caNjY2IiIiw\n39fr9aioqHAoU1dXh5aWFowaNQpnz57Fk08+iRkzZjh9v4KCAvtto9Ho9rOJSH68vIv/WSyWTl2H\nzhW3g8qjR4+G0WjEhg0bcOTIESxduhRHjx5FU1MT0tPT3b7x9YvZnGlpacGXX36JXbt24fz58xg2\nbBh++9vfIiYmpl3ZawOBiJQvP38cDh9e3O7yLvPnj5exVoHt+oPlwsJCj17f4Syjxx9/HN27d8fu\n3buxdOlS9OrVC1OnTu3wF9PCw8NhtVrt961Wq71r6IqIiAj07dsXN954I2688Ubce++9+Oqrr5wG\nAhGpy5WB4zVrnr/m8i681peSdRgIFRUVqKmpQUpKCgDgtttuw6+//trhG6empqKurg719fUICwvD\npk2bsHHjRocy999/P+bNmwebzYaLFy+ioqICf/zjH738U4hIaSZNupcBoCIdBkKPHj1gs13t8ztx\n4gS6detwPRuCgoKwdu1amEwm2Gw2zJo1C/Hx8Vi3bh0AIC8vD3FxcRg/fjwGDx6Mbt26Yfbs2Vzb\nQEQkkw7XIWzYsAHvv/8+qqurMXPmTHzwwQdYtmwZfv/73/urjqqcdsoFOUQkN0kuf33o0CHs2rUL\nADBmzBiHtQT+oLZA4IIcIlIC/h6CAnBBDhEpgc8vbkee44IcIlIjBoIEuCCHiNSIgSCB/PxxiIpa\n7PDY5QU5mTLViJSupKQMJtMSGI0FMJmWoKSkTO4qkQZ1OO2UPMcFOeQJZ5MQDh++fEDBbUY+Wpwp\nyEFlIplxEoLyBMpMQQ4qE6kMJyEozyuvbHcIAwA4fPglrFmzQ6Ya+QcDgUhmnISgPFoNaQYCkcw4\nCUF5tBrSHFQmkhknISiPVi/dzUFlIiInSkrKsGbNjmtCOlN1Ia2ZS1docUoYEZEnPA0EVXYZcd42\nEZHvqfIMgfO2iaiztNyboIkzBK1OCSMiz7A3wTOqmXZ67fVdtDoljIg8o9UFZt5SzRnC9u3L7Mmu\n1SlhROQZ9iZ4RjWBAFxJ9qvjBJy3TUTusDfBM6oKBOBqsk+adC8DgIjcYm+CZ1QXCEx28jUtz0IJ\ndFwF7hlVBQKT3Tnu0LzHWSiBj70JnaeaQDCZnmeyO8EdWte4noXyPNuPNEfSaadmsxlxcXGIiYnB\nqlWrXJarqqpCUFAQPvroIzfv9SK/oE5wWl3XcBYK0VWSBYLNZsO8efNgNptx8OBBbNy4EYcOHXJa\n7tlnn8X48eN5ATsvcIfWNZyFQnSVZIFQWVmJ6OhoREZGIjg4GDk5OSguLm5Xbs2aNZg6dSruuOMO\nqaoS0LhD6xr+FgHRVZKNITQ2NiIiIsJ+X6/Xo6Kiol2Z4uJi7N69G1VVVdDpdC7fr6CgwH7baDTC\naDT6usqqxGl1XcNZKBRILBYLLBaL16+XLBDc7dyvWLBgAVauXGm/AJO7LqNrA4Gu4g6t6zgLhQLF\n9QfLhYWFHr1eskAIDw+H1Wq137dardDr9Q5lqqurkZOTAwBobm7Gtm3bEBwcjOzsbKmqFZC4QyNS\nPjVMD5csEFJTU1FXV4f6+nqEhYVh06ZN2Lhxo0OZH374wX47NzcXWVlZDAMiCjhqmR4u2aByUFAQ\n1q5dC5PJhISEBDz00EOIj4/HunXrsG7dOqk+lohUrqSkDCbTEhiNBQ5XOVYztUwPl3Rh2oQJEzBh\nwgSHx/Ly8pyWXb9+vZRVISIVUMuRtKfUMj1cNb+HQESBTy1H0p5Sy/RwBgIRKYZajqQ9pZb1Lqq5\nlhERBT61HEl7Si3Tw3VCBdeL8PSHoolInZyNIURFLUJRkfJ2nmrg6b6TgUBEilJSUoY1a3ZccySd\nyTDwEgOB7NSwEIbUg9uT+ni67+QYQoAK1Ol7JA9uT9rAWUYBKlCn75E8uD1pAwMhQAXq9D2SB7cn\nbWCXUYAK1Ol7/sZ+88u4PWkDAyFA8XcSuo795ldxe9IGzjIKYJy+1zUm0xJs377MyePPw2x+UYYa\nyYvbk/pwlhHZ8XcSuob95o64PQU+BgKRC972m3PcoXPYTsrDQCBywZt+c447dA7bSZk4hkDt8Mjt\nKk/7zTnu0DlsJ//gGAJ1CY/cHHnab85xh85hOykTF6aRA65I7RrO1+8ctpMyMRDIAY/cukaKH0IJ\nxN8YVssPxmgNu4zIAY/cusbXP4TSlS48JY8FqeUHY7SGg8rkQA0/UKLkHZ2veTv46vz/cTGKikxu\n20pLbasFHFSmLlH6kZvWBr297cJzPRb0vMt20lrbUnsMBGpHyStSvdnRqZm3XXjeBInW2pbak3xQ\n2Ww2Iy4uDjExMVi1alW75999910kJydj8ODBGD58OGpra6WuEqmY1ga9vR189SZItNa21J6kZwg2\nmw3z5s3Dzp07ER4ejqFDhyI7Oxvx8fH2MgMHDkRZWRl69+4Ns9mMOXPmoLy8XMpqkYopZdDbX33t\n3nbhebPKWiltS/KRNBAqKysRHR2NyMhIAEBOTg6Ki4sdAmHYsGH22+np6WhoaJCySqRySrgMs7/7\n2r3pwvMmSJTQtiQvSQOhsbERERER9vt6vR4VFRUuy7/++uuYOHGi0+cKCgrst41GI4xGo6+qSSrS\n0Y7OH0fuaulr9zRIlD6hgDpmsVhgsVi8fr2kgaDT6TpdtrS0FG+88Qb27dvn9PlrA0EKnG6nHq52\ndP46cldSX7uvt1slTyjoCL/D7Q+WCwsLPXq9pIEQHh4Oq9Vqv2+1WqHX69uVq62txezZs2E2m9Gn\nTx8pq+QUp9vJw9dfYH8duSulr53b7VVsCx8REmppaREDBw4UR44cERcvXhTJycni4MGDDmWOHj0q\noqKixBdffOHyfSSuphg3brEARLt/JtMSST9Xy7Zs2SOiohY5tHdU1CKxZcser98zI2Op0//HjIyl\nvqu4cFX3/+tS3b3B7fYqtoVznu47JT1DCAoKwtq1a2EymWCz2TBr1izEx8dj3bp1AIC8vDy88MIL\nOH36NObOnQsACA4ORmVlpZTVakdJXQBaIcXRvL+O3JXS187t9iq2hW9IvjBtwoQJmDBhgsNjeXl5\n9tuvvfYaXnvtNamr4ZZSugC0RIovsD9nySihr53b7VX+botAHa/gSmVwup0cOvoCe/OFU8qRu79o\ncbt1tV34sy0Cebwi4AKBOxJ1cPcF7soXTglH7v6ite22M9uFP9rCXXfnledVe+Yg0ViGT3W2mlIM\nVJJ0tmzZI0ymJSIjY6kwmZbY/584QEjOKGW7cDV5YdCgOYrb/3i6iw+oMwQpBioDta9QCVwdzXOA\nkJxRynbhqruzqekMTp5c5/CYEhcsuhNQgeDrDSaQ+wqVLJAHS3mA4T2lbBeuujtvuikMJ0+2L6+m\nA5mACgRfbzBquURBoAnUwVKlHGCoNZSUsl24Gq945ZXt+Prr9uXVdCATUIHg6w1GqlNUtX4h/SVQ\nB0uVcIChlFDyhpK2C1fdnb4OLH/vKwIqEHy9wUhxiqrmL6Q/BeJsISX0gSshlLpCyduFkn5P21sB\nFQiAbzcYKU5R1f6FJO8poQ9cCaEUyLzd/zg7E5BjXxFwgeCOp6dfUpyi8gupXUroA1dCKJEjV2cC\nN9103mn5K/sKKbqTNBMI3p5++foU1dsvJMcd1E8JfeBKCCVy5OpM4PbbH3JaPiTEJl13kkTrIXzK\nF9VUyqIWb66UqYYFd1u27BHjxi0WGRlLxbhxixVVNyGUXz9/crUgkOTh2UK3/7Nvy53Zn3m679TM\nGYJSumrcHSW6OgtQyriDq/opfaBc6fXzNyUPzGqRq14Dvb4f5s/PdLqvWL16t9PXdHV/pplAUFLf\nqbMvpLudlhLCzF39lBJYrii9fqRt7rrxXIW3VPszzQSC0vtO3e20brhBOH2NP8PMXf2UEFjuKL1+\nJB8ljM15M7Yk1f5MM4GghAE9d9zttJ5+erTsYeaufko6+3JG6fUjeSipK9HTbjyp9meaCQRA2X2n\n7nZaSggzd/WbP1/ZZ19KPzskeai9K1GK/ZmmAkHJOtppyR1mHfVzAso9+1J6/Uge7Epsj4GgEErf\naXVUP3eBpZR+WqW0JSkDuxLb07XNVVU0nU4HFVSTnHDWTxsVtRhFRSbuoAOEEgLfG863zUUoKlLO\ngVhXebrv5BkCSUrt/bTknpIGZj2l9LNyOTAQSFLspw1sag98diU66iblm5vNZsTFxSEmJgarVq1y\nWiY/Px8xMTFITk5GTU2NlNUJCBaLRe4qeETKflq1tYWU5GoLJQY+twvvSRYINpsN8+bNg9lsxsGD\nB7Fx40YcOnTIoczWrVvx/fffo66uDq+++irmzp0rVXUChto29vz8cYiKWuzw2OXZSZldfm+1tYWU\n5GoLJQ7McrvwnmRdRpWVlYiOjkZkZCQAICcnB8XFxYiPj7eX2bx5M2bOnAkASE9Px5kzZ3D8+HGE\nhoZKVS3yM/bTBjau8QgskgVCY2MjIiIi7Pf1ej0qKio6LNPQ0MBACDDspw1cDPzAIlkg6HS6TpW7\nfkqUq9d19v20oLCwUO4qKAbb4iqltMWnny6TuwqKaQu1kSwQwsPDYbVa7fetViv0er3bMg0NDQgP\nD2/3XlyDQEQkPckGlVNTU1FXV4f6+nr8+uuv2LRpE7Kzsx3KZGdn4+233wYAlJeX49Zbb2V3ERGR\nTCQ7QwgKCsLatWthMplgs9kwa9YsxMfHY926dQCAvLw8TJw4EVu3bkV0dDRuvvlmrF+/XqrqEBFR\nR3zzI3DS2LZtm4iNjRXR0dFi5cqVclfHr3Jzc0W/fv1EYmKi/bGTJ0+KsWPHipiYGJGZmSlOnz4t\nYw3958cffxRGo1EkJCSIQYMGiaKiIiGENtvjwoULIi0tTSQnJ4v4+Hjx3HPPCSG02RZXXLp0SRgM\nBnHfffcJIbTbFnfddZdISkoSBoNBDB06VAjheVtIujCtKzqzjiGQ5ebmwmw2Ozy2cuVKZGZm4rvv\nvsOYMWOwcuVKmWrnX8HBwfjzn/+Mb775BuXl5fjLX/6CQ4cOabI9QkJCUFpaigMHDqC2thalpaXY\nu3evJtviiqKiIiQkJNgnnmi1LXQ6HSwWC2pqalBZWQnAi7bwR3J54/PPPxcmk8l+f8WKFWLFihUy\n1sj/jhw54nCGEBsbK5qamoQQQhw7dkzExsbKVTVZ3X///WLHjh2ab4+ff/5ZpKamin//+9+abQur\n1SrGjBkjdu/ebT9D0GpbREZGiubmZofHPG0LxZ4hOFuj0NjYKGON5Hftor3Q0FAcP35c5hr5X319\nPWpqapCenq7Z9mhtbYXBYEBoaChGjRqFQYMGabYtnnrqKaxevRrdul3dlWm1LXQ6HcaOHYvU1FT8\n/e9/B+B5Wyj24nZcd+CeTqfTXBudO3cOU6ZMQVFREXr16uXwnJbao1u3bjhw4AD+97//wWQyobS0\n1OF5rbTFli1b0K9fP6SkpLi8XIVW2gIA9u3bh/79++PEiRPIzMxEXFycw/OdaQvFniF0Zh2D1oSG\nhqKpqQkAcOzYMfTr10/mGvlPS0sLpkyZghkzZuCBBx4AoO32AIDevXtj0qRJqK6u1mRbfP7559i8\neTMGDBiAadOmYffu3ZgxY4Ym2wIA+vfvDwC44447MHnyZFRWVnrcFooNhM6sY9Ca7OxsvPXWWwCA\nt956y75jDHRCCMyaNQsJCQlYsGCB/XEttkdzczPOnDkDALhw4QJ27NiBlJQUTbbF8uXLYbVaceTI\nEfzjH//A6NGj8c4772iyLc6fP4+zZ88CAH7++Wds374dSUlJnreFVAMcvrB161Zx9913i6ioKLF8\n+XK5q+NXOTk5on///iI4OFjo9XrxxhtviJMnT4oxY8ZobjrdZ599JnQ6nUhOThYGg0EYDAaxbds2\nTbZHbW2tSElJEcnJySIpKUm8/PLLQgihyba4lsViEVlZWUIIbbbFDz/8IJKTk0VycrIYNGiQfX/p\naVuo4ic0iYhIeortMiIiIv9iIBAREQAGAhERtWEgEBERAAYCKcRLL72ExMREJCcnIyUlBVVVVQCA\n2bNn++waVpGRkTh16pTbMsuXL3e4P3z4cJ98tlTefPNNzJ8/X+5qUIBQ7Epl0o4vvvgCJSUlqKmp\nQXBwME6dOoWLFy8CgH0Jvi90ZsXqihUrsGjRIvv9ffv2+ezzpdDVVbitra0Ol30gbeOWQLJrampC\n3759ERwcDAC47bbb7KsujUYjvvzySwBAz5498cwzzyAxMRGZmZkoLy9HRkYGoqKi8MknnwBof8R8\n3333oaysrN1nTp48GampqUhMTLSHznPPPYcLFy4gJSUFM2bMsH8mcHlx3NNPP42kpCQMHjwY77//\nPgDAYrHAaDTid7/7HeLj4/HII484/RuNRiOee+45pKenIzY2Fnv37u2wvp35e4HLq/hHjRqFu+++\nGy+88IL98Q0bNiA9PR0pKSn4wx/+gNbWVvv7Lly4EAaDAeXl5Z34HyLNkHzFBFEHzp07JwwGg7j7\n7rvF448/Lvbs2WN/zmg0iurqaiGEEDqdTpjNZiGEEJMnTxaZmZni0qVL4quvvhIGg0EIIcT69evF\nvHnz7K+/77777O8XGRkpTp48KYQQ4tSpU0IIIc6fPy8SExPt93v27OlQtyv3P/jgA5GZmSlaW1vF\n8ePHxZ133imOHTsmSktLRe/evUVjY6NobW0Vw4YNE3v37m33NxqNRrFw4UIhxOUFl2PHju2wvp39\ne/v37y/YP3OtAAAC1ElEQVROnTolLly4IBITE8X+/fvFwYMHRVZWlrh06ZIQQoi5c+eKt99+2/6+\n//znPzv3n0Oawi4jkt3NN9+M6upqfPbZZygtLcVDDz2ElStXYubMmQ7levToAZPJBABISkpCSEgI\nunfvjsTERNTX13v0mUVFRfjXv/4F4PIRdl1dHdLS0lyW37t3L6ZPnw6dTod+/fohIyMDVVVVuOWW\nW5CWloawsDAAgMFgQH19vdOxhwcffBAAcM8993Sqvp39e8eNG4c+ffrYP2Pv3r3o3r07qqurkZqa\nCuDyZS5+85vfAAC6d++OKVOmdPj5pD0MBFKEbt26ISMjAxkZGUhKSsJbb73VLhCudCldKd+jRw/7\n7UuXLgG4/NOtV7pGAOCXX35p91kWiwW7du1CeXk5QkJCMGrUKKflrqXT6SCuW9R/pf/+hhtusD/W\nvXt3e12ud6XctWXc1bczf+/1hBD2es2cObPdIDlw+Ud2tHIFUPIMxxBIdt999x3q6urs92tqahAZ\nGenVe0VGRuLAgQMQQsBqtdp/OepaP/30E/r06YOQkBD85z//cehHDw4OdrqzHTlyJDZt2oTW1lac\nOHECZWVlSEtLaxcSUtS3Izt27MDp06dx4cIFFBcXY8SIERgzZgw++OADnDhxAgBw6tQp/Pjjj12q\nKwU+niGQ7M6dO4f58+fjzJkzCAoKQkxMDF599dV25a4/qr32/pXbI0aMwIABA5CQkID4+HgMGTKk\n3fuMHz8ef/vb35CQkIDY2FgMGzbM/tycOXMwePBgDBkyBO+88479fSdPnowvvvgCycnJ0Ol0WL16\nNfr164dDhw65rZcrnalvZ/5enU6HtLQ0TJkyBQ0NDZgxYwbuueceAMCyZcswbtw4tLa2Ijg4GH/9\n619x55138uyAXOLF7YiICAC7jIiIqA0DgYiIADAQiIioDQOBiIgAMBCIiKgNA4GIiAAA/w8sSZOh\nY0it2QAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 15 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Normalplot of data xx\n", + "------------------------\n", + "indicates that the underlying distribution has a \"heavy\" upper tail and a \"light\" lower tail." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "import pylab\n", + "ws.probplot(ts.data.ravel(), dist='norm', plot=pylab)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtcz/f///Hbu5OOSCo6EAqlkMOyA3JIThl2IGxmZnbA\nZ4fvZzbsK9vYxw6ffdnwM59tjDnsZA5htpF8ZtakzRBCUQk5pKN0eP3+eNW73t7vlNT73eFxvVxc\n1vv1fr3fPbLtfe951iiKoiCEEEKUY2bqAoQQQtQ9Eg5CCCH0SDgIIYTQI+EghBBCj4SDEEIIPRIO\nQggh9Eg4iEbHzMyMs2fPVuu1Xl5e/PLLLwaf279/P507d9a5d8+ePQAsWrSIadOmVet73o2oqCg8\nPT1r/fuIhk/CQdQLXl5e2Nra4uDgQKtWrZgyZQo5OTlGr0Oj0aDRaAw+17dvX06cOKFzb6k5c+aw\natUqAJKSkjAzM6O4uLhaNaxevRpzc3McHBxo1qwZgYGBREZG3vX7PPXUU7z55pvVqkE0fBIOol7Q\naDRs376drKwsDh8+zKFDh3jnnXf07issLDRBddVzL+tPH3zwQbKyssjIyGDq1Kk8/vjjZGRk1GB1\norGTcBD1jpubG0OHDuXYsWOA2k20fPlyfHx86NSpEwCrVq3Cx8cHJycnHn74YdLS0nTeIzIykg4d\nOuDs7Mxrr72m/aA+c+YMAwcOpGXLljg7OzNp0iRu3Lih89qYmBi6dOlCixYtePrpp8nPzwfu3KUT\nERHBE088AUC/fv0AaN68OU2bNiU6OhonJyeOHj2qvf/y5cvY2dlx9epVg+9XWq9Go2HKlCnk5eUZ\n7CqLj48nODgYR0dH/P392bZtGwCffvop69ev57333sPBwYGHH364or9u0UhJOIh6o/QDMTk5mZ07\ndxIYGKh9bsuWLfzxxx8cP36cPXv2MGfOHL755hvS0tJo27Yt48eP13mvH374gdjYWA4fPsyWLVv4\n/PPPtc/NnTuXtLQ04uPjSU5OJiIiQqeG9evXs3v3bs6cOcOpU6cMtmBuV76Laf/+/QDcuHGDzMxM\n+vXrx/jx41m3bp32ng0bNjB48GCcnJzu+L6FhYX85z//wcHBAR8fH53nCgoKCAsLY+jQoaSnp/Px\nxx8zceJETp06xbPPPsvEiROZPXs2WVlZbNmypdKfQTQuEg6iXlAUhdGjR+Po6Ejfvn0JDg5mzpw5\n2uffeOMNmjdvTpMmTfjqq6+YOnUq3bt3x8rKinfffZfffvuN8+fPa++fPXs2zZs3x9PTk5deeokN\nGzYA0KFDBwYNGoSlpSUtW7bk5ZdfZt++fdrXaTQaZsyYgbu7O46OjsydO1f72srqN/R1qSeffFLn\nfdauXattaRhy8OBBHB0dad26NZs2bWLz5s04ODjo3ZOTk8Prr7+OhYUFAwYMYOTIkdrvoyjKPXVt\niYbNwtQFCFEVGo2GLVu2MHDgQIPPl+/OSUtLo1evXtrHdnZ2ODk5kZqaSps2bfTub9OmDRcuXADg\n0qVL/OMf/+C///0vWVlZFBcX06JFiwq/V/nX3ougoCBsbGyIioqiVatWnDlzhlGjRlV4f58+fbQt\nkIpcuHBBr5urbdu22norGlgXAqTlIBqI8h90bm5uJCUlaR/n5ORw9epV3N3dtdfKtyLOnz+vfW7O\nnDmYm5tz9OhRbty4wdq1a/VmFd3+Wjc3t2rXWt7kyZNZt24da9eu5bHHHsPKyuqu3vd2bm5uJCcn\n67QOzp07p/1ZJRzEnUg4iAYnPDycL774gr/++ov8/HzmzJlDnz59tK0GgA8++ICMjAySk5NZunQp\n48aNAyA7Oxs7OzuaNm1Kamoq77//vs57K4rCsmXLSE1N5dq1ayxcuFBvPKMyzs7OmJmZcebMGZ3r\nkyZN4vvvv+err77iySefrOZPXyYoKAhbW1vee+89CgoKiIqKYvv27dp6XV1dq73eQzR8Eg6i3rv9\nN+BBgwbx9ttv88gjj+Dm5kZiYiIbN27Uuefhhx+mZ8+eBAYGMnLkSJ5++mkA5s+fz+HDh2nWrBlh\nYWE88sgjOu+v0WiYOHEiQ4YMoUOHDvj4+DBv3rwKayl/vfQ5W1tb5s6dy4MPPoijoyMxMTGA2l3V\no0cPzMzMeOihh+74897pt/7S56ysrNi2bRs7d+7E2dmZGTNmsHbtWjp27AjA1KlTOX78OI6Ojowd\nO7bC9xONk0YO+xGi7pg6dSru7u689dZbpi5FNHJGbzkkJyczYMAAunTpgr+/P0uXLjV436xZs/Dx\n8aFbt27ExcUZuUohjC8pKYnvv/+eqVOnmroUIYwfDpaWlnz00UccO3aMgwcPsmzZMuLj43Xu2bFj\nB6dPnyYhIYFPP/2U559/3thlCmFUb775JgEBAbz22mu0bdvW1OUIYfpupdGjRzNz5kwGDRqkvfbc\nc88xYMAA7SBh586d2bdvH66urqYqUwghGhWTDkgnJSURFxdHUFCQzvXU1FSd+dkeHh6kpKQYuzwh\nhGi0TLYILjs7m0cffZQlS5Zgb2+v9/ztDRpDszNknrYQQlRPZZ1GJmk5FBQU8MgjjzBp0iRGjx6t\n97y7uzvJycnaxykpKToLmMor3QKgLv+ZP3++yWtoCDVKnVJnXf9TX+qsCqOHg6IoTJ06FT8/P156\n6SWD94waNYovv/wSUPeHad68uYw3CCGEERm9W+nXX39l3bp1dO3aVbur5qJFi7RbEkyfPp3hw4ez\nY8cOvL29sbOz44svvjB2mUIIUa9ERkazdOlu8vMtaNKkkFmzhjBiRL9qv5/Rw+Ghhx6q0glYn3zy\niRGqMY7g4GBTl1Cp+lAjSJ01TeqsWaaqMzIymn/840fOnFmovXbmzFyAageEyaey3guNRlPl/jMh\nhGioQkPnsXu3/rkioaFvsmvX23rXq/LZKVt2CyFEHVFR11BlXUb5+YY/ym/eNK92LRIOQghhQqUf\n/Kmp6Zw9qyEv7/9pnztzZi5//HGUdetS79hl1KSJ4bPTra2Lql2XdCsJIYSRGQ6EeYB+15CT0ziu\nXt2kd718l5GhMYcOHeawZMlQg2MO0q0khBB1jO4HeflAMPxxXFhoY/B6+S6j0gD4+OM3uXnTHGvr\nImbONBwMVSXhIIQQRhIZGc3kycvKtQTKfwQb7hqysMgzeP32LqMRI/rhHeRKem46D7Wp+DyQqpLD\nfoQQopZFRkbTo8czPProBq5e9S33TPlAGALM1Xldhw5zmDGjPx066F+fOTNE+zi/MJ+39r3Fg58/\nyJlruicMVpe0HIQQohaVdSO1Qu1Cmlfu2dJAWAioXUA2NuPw9nbDzc1e2zXUu3d0hV1G+8/t59nt\nz9LRqSNx0+PwbOZJTZABaSGEqAWRkdG8+eaX/P33JQoLtwERJX+igR9RAwEgGhubZeUCIaRKYwXX\n867z2s+vsTNhJ0uHLWVM5zFV3oxUBqSFEMIEIiOjeeaZNVy82ArwKLla2oVU+sH/JmBOy5YnWL36\nxSoPHiuKwqZjm3jlx1cY4zuGYy8co5l1s5r9AZCWgxBC1Dh1xTKUdSO9g36L4c7TTQ1JvJ7ICzte\nICUzhU9Hfsr9nvdXq76qfHbKgLQQQtQwdcVyacdM6bhCPyAUeBNr68n06PFilYOhsLiQ9399n96r\netO/bX8OP3u42sFQVdKtJIQQNaB0jOHUqTRycgACS565vRspgdWrX6hya+GP1D+Ytm0aLnYu/P7M\n73Ro0aHmizdAupWEEOIeREZGM2vWEs6eVQBHoBVqC2FNyddl3UitWr3Mf/4zpkrBkJWfxby989h0\ndBMfDPmAiQETa+z0SxmQFkKIWqIbCpaAT8kz5bfAWAuEY2lZRECAM2+9Na5KwbDlxBZm7pzJ4PaD\nOfbCMZxsnWr+B6iEhIMQQtyFyMhopk5dyKVLdpSFgqGP0n6Udik98EAEUVERlb53amYqM3fO5Ojl\no6wZvYYB7QbUXOF3SQakhRCiCiIjo+nQ4RFGjnyHS5dsAT/AFzUYCsv90VfZ7qhFxUUsi1lG95Xd\n8Xfx58jzR0waDCAtByGEqFTZugUL1HGF0i0wSsNgCOoYA5SteFa1avUyM2eOqfC9j1w6wrPbnsXS\n3JJ9T+3Dz9mvxuuvDhmQFkKISvTo8SJxcY6ov08nUbawrTQUSgeh1wJpgAZrazv8/JwqHGfILcjl\nrX1v8Xnc5ywcuJCpPaZipjFOZ06dXefw9NNP4+rqSkBAgMHno6KiaNasGYGBgQQGBvLOO/p7nAsh\nhDFERkbz999XKOs+ykMNhTTURW2TgcvACjSaDDp0cGL79n+Sl7eR2NhlBoNh95ndBKwIICkjiSPP\nH2Faz2lGC4aqMknLYf/+/djb2/Pkk0/y999/6z0fFRXFv//9b7Zu3XrH95GWgxCitrVu/TgXL2pQ\nB56HAP8HuAATUFsK2UABrVqZ8Z//zLjjbKTLOZd55cdX+DX5V5YPX84wn2FG+An01dmWQ9++fXF0\ndLzjPfKhL4QwpYiI5VhY3MfFi8VAc8paCi8BV4APgAxsbHKZP38gaWlfVxgMiqLwedznBKwIoLVD\na44+f9RkwVBVdXJAWqPRcODAAbp164a7uzsffPABfn51Y5BGCNGwRUQs5513VlNU5Ag4o35MOqO2\nGtYCKwA7wJUePW4RG7vqju938spJpm+fTk5BDrsm7iKwdeAd768r6mQ49OjRg+TkZGxtbdm5cyej\nR4/m1KlTBu+NiIjQfh0cHExwcLBxihRCNDj+/mM4diwXNQzsARvUj8nSVkNZEFhZPcNbbz1Z4Xvl\nF+az+NfFLP19KW/2e5MZ983A3My8wvtrU1RUFFFRUXf1GpPNVkpKSiIsLMzgmMPt2rVrR2xsLC1a\ntNC5LmMOQoia0r//FKKjL1MWCqAOPr+IOiPJDHV8wQq4yvz5w4mIeMHge5U/gOeTYZ/U2AE8NaXe\nbp9x6dIlXFxc0Gg0xMTEoCiKXjAIIURNiYhYTnT0JdSBZlBDAaA/sB51RtJPgDnwF+HhXQwGw70c\nwFPXmCQcwsPD2bdvH1euXMHT05MFCxZQUFAAwPTp0/n2229ZsWIFFhYW2NrasnHjRlOUKYRoBCZM\nmM2GDX+hDjqXD4VtwBGgK7AcsAbS6dfPhfXrF+u8h7EO4DEmWQQnhGi0IiKWs2DBDsAWNRiGoYZC\nW9RQ+Ba1i8kWC4tc5s4doddiqKkDeIypzk5lFUIIU1ODYQvgBOSj7pUUB4QBp4BIwAkzM4X58wdQ\nUBCpEwymOIDHmOrkmIMQQtQmtSvpIOoYQz5QgPpx2ALYWXI9E3PzcxQWxui9vvQAHmc7Z6MewGNM\nEg5CiEYjMjKaxx+fTW6uI9AUyAVaA7eABKAT0BMoAo4zb95TOq+vzQN46hoJByFEo6C2FqKAZqjB\nAHAJyETdafUG8Bfq+EMm4eEBOt1IdeEAHmOSAWkhRIOnrmFIRf192Aa1pQBlA9BmqAf3WAFZhId3\n1c5IKn8Az8qRK01+zkJNkAFpIUSjNmHCbDQaf6Kj0wAH1AVutygNgbIBaAfUqaw5dOlizfr1i+vk\nATzGJN1KQogGSe1G2gN4oobCTdSxhJuoA84KcBxILXn+Ev36tWLfvi/q7AE8xiTdSkKIBkmjKd31\n1AF124ubqOcxaFD3TnKk/HYY/fo5s/PnZby17y0+i/uMRQMXGfUAHmOqt9tnCCHEvWjWLAhogxoE\nOaiDzZaoLYZ04HzJdXsgg/Dwrjz19iACVgTQ2603fz//N63sW5mo+rqh4UWiEKLRKh1jyMxsgfrh\nn4U6XdUSdfuLNNTttr0AaNMmg0vZazB7NJXp26fzybBP2PjoxkYfDCDhIIRoINQxhp9QxxgcgAzU\nQ3maoM5QykKdxmoPZOHXpQnzfwivVwfwGJOMOQghGgSNZihqN5IDahCEAV+jhoQN6hiDHZDFi/OD\nONYumuxb2Xw68tN6cwBPTZGprEKIRsHMzB81FEqD4SrqNNXHgc6oK581YH6SBVEPsNF2GaM7jebg\n1IONLhiqSgakhRD1ltqVFInalZRdcvUq6h5JRymbpnoZ2iTRcso1YtNiiZseV+cO4KlrJByEEPWO\nepxnAmo3UukYQxLqVFUX1NlJJXseWedDyN9YdbnGynFr6/UBPMYk4SCEqFfUYDgNeKA7xtAFOAtc\nQB1baAb+1yD0T3rbB/HT60fr/QE8xiQD0kKIeqNJk+7cutW65JE9ajhkAZeBHqgth0vQXAMjYqBp\nFgfe2NugzlmoCbIITgjRIKihUFjyqHwogDrW4Az8CWYtoM9FeCgeDrgwb9D/SjBUk7QchBB1lq1t\nT/Ly8kse3T6AfAV1S4w+wAlwy4Cwc5BrA9s7Mn9WuN6RnkJVlc9Ok4TD008/TWRkJC4uLvz9998G\n75k1axY7d+7E1taW1atXExioP91MwkGIhkuj8S/5qjQUHEr+eRIoRl3xbAtWl2FgHvhfhN2d4Egh\ninLM2OXWK3V2ncOUKVPYtWtXhc/v2LGD06dPk5CQwKeffsrzzz9vxOqEEKamBoMnZTORSgeds1C3\n1rYG8qDTOXgxCZpoYNmDdClqL8FQQ0wy5tC3b1+SkpIqfH7r1q1MnjwZgKCgIDIyMrh06RKurq5G\nqlAIYQpl3Uil22yXH1tIQx1w7gwOyTDsCrjmwOaukATbt89nxIh+pim8AaqTA9Kpqal4epb1L3p4\neJCSkmIwHCIiIrRfBwcHExwcbIQKhRA1TbcbqbSlAJBc8s/7QRMDvQ5A8BU45AXfB2FWnM1WCYY7\nioqKIioq6q5eUyfDAdDrD6to0Ur5cBBC1D+6q5yhdGO8slDoDJwA170QdgWKLGF1EJor1yku3mKK\nkuud239xXrBgQaWvqZPh4O7uTnJysvZxSkoK7u7uJqxICFEbmjULIjMzB/1upGTACbgKlsehfzYE\nXoJfukBcU7Zve0taCrWsTm68N2rUKL788ksADh48SPPmzWW8QYgGxt9/DJmZjpR1I2WjBsMF1NbC\nVWh/C55PguYKrHiQfvbdUIqjJBiMwCQth/DwcPbt28eVK1fw9PRkwYIFFBQUADB9+nSGDx/Ojh07\n8Pb2xs7Oji+++MIUZQohaklExHKOHbuJGgrlWwsl7E5DaDp4ZkFkdzhtg5XVVfbt22OaghshWQQn\nhDCqsoFnX8p2Uk1GPXMhFwIzYNAlOOIJe7tDwU1sbC6Tmxtrknobojq7CK6mSDgIUX+Ymfmj/u/q\nTlmP9hUgD7gfnKJgZBo0MYetveGiJV26WHP06GYTVdxwSTgIIUyuLBRAd+D5JFAE5o7w0EkIyoB9\nfhDTCpQUFOWoqUpu8CQchBAmVRYM5bfAyAYUIBnaFEJYIlxtDjt6QWYxkCzBUMtkV1YhhMnY2vZE\nUcqvXSgdeM4A6wwIyQefZNjpD/HeqKGRzPbty01VsihHwkEIUePKBp1v3wLjPPhnqjOR4m1hWRDk\nOwJFwE22b18u01TrCOlWEkLUGP2dVEslQ/NbMCIPmqbDNjdI6YQaHmqLQbqSjEfGHIQQRqMbDKUt\nhuNgpkCfq/DQFTjgBAe6Q3FTJBRMR8YchBBGUbbFNuhsmueWB2EXINccVrWH6x0obS1YWaWRny/B\nUFdJOAghqs3FpS/p6dfR2xvJKgkGXgb/PNjtBEf8gabqc8RLa6EekG4lIcRd8/cfw7FjCSWPbtti\nu9MxGH4RztrBblfIa4eMLdQt0q0khKhx+oPOJVtsO5yFYWngqsBmd0iyo6xFIcFQ39TJXVmFEHWT\n7vGd9oADaLKg91/w3BlIt4YVnpDUFmiHul/SFbZvf0OCoZ6RbiUhRKV0VzqXG1twzYKww1BsC9ua\nq+EgrYU6r8a7lYqKisjJyaFp06b3VJgQov4weHynZRH0j4PA67DHFQ43B8W55HlL4Ao2Npnk5kow\n1FeVdiuFh4eTmZlJTk4OAQEB+Pr68t577xmjNiGECWk0/ga6kbKg/Ul4Pkpd1LaiI8Q6gqJB7UKy\nBvJo2jRXttiu5yoNh+PHj9O0aVN++OEHhg0bRlJSEmvXrjVGbUIIE7Cw6GpgQZsD2F2Fsb9BWArs\n8IJvPSHbrOQe35L741GUndy48bsJKhc1qdJupcLCQgoKCvjhhx948cUXsbS0RKPRGKM2IYSRVTgT\nqXsqDI6HI+1huQUUlIZC6diCrF1oaCptOUyfPh0vLy+ys7Pp168fSUlJNGvWzBi1CSGMyOBMJKdL\nMHk/3Hca1nWD3VZQ4EL5mUj9+rWSYGiA7nq2kqIoFBUVYWFh+iUSMltJiJpRFgwlM5HMb8BDZyEo\nEfY5Q0yLcuMKLSltMYSHd2X9+sUmrFxUR1U+OyttOVy8eJGpU6cydOhQAOLj41mzZs09FbZr1y46\nd+6Mj48Pixfr/4cVFRVFs2bNCAwMJDAwkHfeeeeevp8QwjDdQeeSLqI25+C5feB2CVb2hN+dSoLB\nE/AqeaU6tiDB0HBVGg5PPfUUQ4YM4cKFCwD4+Pjw0UcfVfsbFhUVMWPGDHbt2sXx48fZsGED8fHx\nevf179+fuLg44uLimDdvXrW/nxBCX1kogDYYrK9D2O/w6GHY4wIbPOFGDmproSw8wsO7SjdSI1Bp\nOFy5coVx48Zhbm4OgKWl5T11KcXExODt7Y2XlxeWlpaMHz+eLVu26N0n3UVC1A7dUPAE7MA/AV7c\np565s8wb4puiLnST1kJjVemnvL29PVevXtU+Pnjw4D0NSKempuLpWXYQiIeHB7//rjvtTaPRcODA\nAbp164a7uzsffPABfn5+Bt8vIiJC+3VwcDDBwcHVrk2Ihk53a217aJ4LI/ZB0yzY5AkpdqjnO8tM\npIYkKiqKqKiou3pNpeHw4YcfEhYWxtmzZ3nggQdIT0/n22+/rW6NVZoG26NHD5KTk7G1tWXnzp2M\nHj2aU6dOGby3fDgIIQzT60IyU6DP3+qg8wFHONABijXoB4Nsf9EQ3P6L84IFCyp9TaXh0LNnT/bt\n28fJkycB6NSpE5aWltUu0t3dneTkZO3j5ORkPDw8dO5xcHDQfj1s2DBeeOEFrl27RosWLar9fYVo\njCZMmM2GDZElj0o+9N1SIewo5BbDKi+43hq4qnuPBEOjV2k4rFmzRmfa0+HDhwF48sknq/UNe/Xq\nRUJCAklJSbi5ubFp0yY2bNigc8+lS5dwcXFBo9EQExODoigSDELcJb0FbVZNYOAf4J+qnrNwpBnq\nuMJVDE9R3WmCqkVdUWk4/PHHH9quoJs3b/LLL7/Qo0ePaoeDhYUFn3zyCaGhoRQVFTF16lR8fX1Z\nuXIloC66+/bbb1mxYgUWFhbY2tqycePGan0vIRorNRg8UD/87aFTGgyPgrM2sKwD5JX/X1/GF4S+\nu14El5GRwbhx4/jxxx9rq6Yqk0VwQuiyte1JXl4+2g98h5sw7A91a+1tLiUH8NgAeUgXUuNVKyfB\n2drakpiYWO2ihBC1Q6cbSWMHvY5B8Gk41By+bwuFpTPXJRhE5SoNh7CwMO3XxcXFHD9+nMcff7xW\nixJCVF3Zec4lYwuuhRD2MxQXweo2JQfwlCfBICpXabdS+bmxFhYWtG3bVmedgilJt5Jo7HRaCxY2\n0D8eepyBPS3hsCMoLZGZSOJ2VfnslGNChaindBa0tc+BkYfgQjPY1RSyy083l1AQuu5pzMHe3r7C\nBWsajYbMzMx7q04IUS06rQU7Cwg9Am3SIdIZEhxuu1uCQVSPtByEqEfKgsEDul+FkCPwlxvstSk5\ngKc8CQZhWI12K12+fJmbN29qH7dp0+beqqsBEg6isdBpLTjlwMgT0CQftrrCRavb7pZQEHdWI+c5\nbN26FR8fH9q1a0f//v3x8vJi2LBhNVakEOLOtMFg7g79z8PU3+GEE6zyKAkGm3J3SzCImlFpOMyb\nN4/ffvuNjh07kpiYyC+//EJQUJAxahOiUYuMjC4bdG5jB8/9Bm7psPJ++N285AAeKFu34FvyWN1a\nW4JB3ItK1zlYWlrSsmVLiouLKSoqYsCAAfzjH/8wRm1CNFra1oJ1Kwg5CT4XYWcniL8FXLntbmkt\niJpXaTg4OjqSlZVF3759mThxIi4uLtjb2xujNiEanbKxhZbgnwGhv0K8Cyx7APIvou6VVJ4Eg6gd\nFQ5If/PNN4SFhVFUVIS1tTXFxcV89dVXZGZmMnHiRJycnIxdqx4ZkBYNRVkoAM2dYMRJaJoH23wh\nJbvkCQcgq+RrCQVRffc0W2n06NH8+uuvDB06lPDwcEJDQ7VHhdYVEg6iIdAGg5k79DkHDyXCgfZw\noA0Up952txXgSmkw9OvXin37vjBuwaLeu+eprDdu3GDz5s1s3LiRP//8k9GjRxMeHk7//v1rvNjq\nkHAQ9ZnO9FS3GxAWD7lWsL0zXNcgYwuittToOocrV67w3XffsWzZMq5du0ZKSkqNFHkvJBxEfaTT\nhWTVGgYmgX8y7O4ER1oDpf9vdQZOlHwtwSBqTo1t2X39+nW+//57Nm3axLVr13jsscdqpEAhGpOy\nsxYAPKHTZRj+K5xtAcsehLxLlAUDqMEgB/EI06iw5ZCVlaXtUjp8+DCjRo0iPDyc4ODgCvdcMjZp\nOYj6QqcLyeEmDEsA1xvqgHNSbgWvKgsGG5vL5ObGGqdY0eDdU7dSy5YtCQ0NJTw8nCFDhmBldfsS\nfdOTcBD1gXYhm0aBXpcg+Dgc8oT97aHwgoFXSBeSqF33FA65ubnY2trWSmE1RcJB1GU6rQXXQgg7\nDMXFsM0f0q8beIWEgjCOe9pbqTaDYdeuXXTu3BkfHx8WL15s8J5Zs2bh4+NDt27diIuLq7VahKgN\n2mCwcINBifDkPohrDV+4STCIeuGuz5C+V0VFRcyYMYOff/4Zd3d3evfuzahRo/D19dXes2PHDk6f\nPk1CQgK///47zz//PAcPHjR2qULcNZ3WQvsrMPIAXHCAFe3Uz/07rnCWAWdRdxg9HGJiYvD29sbL\nywuA8ePHs2XLFp1w2Lp1K5MnTwYgKCiIjIwMLl26hKurq7HLFaJKdKan2rpC6HFoewUifSHhpoFX\nSCiIuq33235tAAAgAElEQVTCcAgLC9N+fXv/lEajYevWrdX6hqmpqTpnUHt4ePD7779Xek9KSorB\ncIiIiNB+HRwcTHBwcLXqEqK6dA/gSYXBv6rrFZY9AAVpt90toSCMLyoqiqioqLt6TYXh8OqrrwKw\nefNmLl68yKRJk1AUhQ0bNtzTb/BVnQZ7+2BJRa8rHw5CGFPZuoXSA3gOQ5NCWNcTLt4A7hQMMq4g\njOf2X5wXLFhQ6WsqDIfSN3r11VeJjS2bXz1q1Ch69uxZ7SLd3d1JTk7WPk5OTsbDw+OO96SkpODu\n7l7t7ylETWrbNoTz50s++M3d4aHzEHQa9rWHmLagGNo9QIJB1C+VHvaTm5vLmTNntI/Pnj1Lbm5F\ni3Yq16tXLxISEkhKSuLWrVts2rSJUaNG6dwzatQovvzySwAOHjxI8+bNZbxBmFz//lPQaPxLgqGi\nA3huDwY5hEfUT5UOSH/00UcMGDCAdu3aAZCUlMSnn35a/W9oYcEnn3xCaGgoRUVFTJ06FV9fX1au\nXAnA9OnTGT58ODt27MDb2xs7Ozu++EJ2nRSmpTMLybqgCgfwlNxb0lowN0+lsFBCQdQfVdp47+bN\nm5w8eRKAzp0706RJk1ovrCpkEZwwBu0KZ5SSA3j+Ug/g+cWn5ACe20kXkqjbamRX1pycHP79739z\n/vx5Vq1aRUJCAidPnmTkyJE1Wmx1SDiI2qTTWmiugRFx0DQbtnUpdwBPeRIKon64pxXSpaZMmYKV\nlRUHDhwAwM3Njblz59ZMhULUQRqNv+4BPA+kwrM/wzkHWNlWgkE0CpWOOZw5c4avv/6ajRs3AmBn\nZ1frRQlhCjoL2bQH8MRArjn8xweulU6ntgJuld0n6xZEA1RpODRp0oS8vDzt4zNnztSZMQchaopO\nF5JVIQw8Xe4AnkLUbS9Kz3C+hYSCaOgqDYeIiAiGDh1KSkoKEyZM4Ndff2X16tVGKE2I2qcTCgCd\nMmF4nHoAz/IHIfcSZfshZSGhIBqLOw5IFxcX88033zBo0CDtxndBQUE4OzsbrcA7kQFpUV16XUgO\n5jDsT3C9rg44GzyAR8YVRMNQI7OVevbsqbNCui6RcBDVodNa0B7AcwwOtYH9VlBoaJ7G7WsWjhiv\nYCFqWI2Ew+uvv07Lli0ZN26czmB0ixYtaqbKeyDhIO6GXheSSxGExYJSDNucIN3awKuktSAanhoJ\nBy8vL4Ob3iUmJt5bdTVAwkFUlU4wWNhA/3jocRb2+MBhBZQ7nbMgoSAalhoJh7pMwkFURq+10D4H\nRh6CC81gV1PItrztFRIKouGrymdnpbOV6vIKaSEqojfgbGupbnvRNh0inSHBwcCrJBiEKCUrpEWD\no9ta8IDuV+CFHyHHDJZ5GQgG2TlViNvJCmnRYOh1ITkpJQfw5MM6D7hoc9srZM2CEBWRFdKiQdAJ\nBnMbeOgUBJ2CfR0gxuyOA86ynbYQ+mSFtKjX9FoLbW5C2H64ZgsrveCG+W2vkNaCEFVRpdlKV65c\n0a6Q7tOnDy1btqz1wqpCZis1ThMmzGbDhshyVzzBugmEHAGfC7DTBeIdKNv2otx9MuAsxL1NZY2N\njdVb36AoivZajx49aqjM6pNwaHz0ZiFpD+D5E064wM92kH+n1oKEghD3FA7BwcFoNBry8vKIjY2l\na9euABw5coRevXrx22+/1XzFd0nCofEoCwUPtC0CnQN4nCHFloq305ZQEKLUPR32ExUVxd69e3Fz\nc+Pw4cPExsYSGxtLXFwcbm5uNV6sEIb4+4+5bVzBAczs4IEL5Q7gaQMpg0ruuYUaHmXB0KZNoQSD\nEHep0jEHPz8/jh8/Xum1qrh27Rrjxo3j3LlzeHl58fXXX9O8eXO9+7y8vGjatCnm5uZYWloSExNj\nuHhpOTRoeoPN2INbKoQdhVwriHSEa+VnzpWEB1lAMlZWFuTn/2nMkoWoF2pk+4zx48djb2/PpEmT\nUBSF9evXk52dzYYNG+66oNdee42WLVvy2muvsXjxYq5fv86//vUvvfvatWtHbGxspZv7STg0TPqh\n4ABWBTAwDvxTYbcrHGmGOtmuqNwry1oLVlZpEgxCVKBGwuHmzZssX76c/fv3A9CvXz+ef/55rK0N\n7WB5Z507d2bfvn24urpy8eJFgoODOXHihN597dq149ChQzg5Od25eAmHBsPgDCTsAQ10OgPDj8NZ\na/jJFXJdgasG7s3G2Tmby5f3G7FyIeqfew6HwsJCQkJC2Lt3b40U5OjoyPXr1wF15lOLFi20j8tr\n3749zZo1w9zcnOnTpzNt2jTDxWs0zJ8/X/s4ODiY4ODgGqlVGI/+DCQAe3C4AsPi1QN4treGxBbI\nYLMQdy8qKoqoqCjt4wULFtx7y2HQoEF89913BscGDAkJCeHixYt61xcuXMjkyZN1wqBFixZcu3ZN\n7960tDRat25Neno6ISEhfPzxx/Tt21e/eGk51GsuLn1JT7+Ozgwk7NUvex2D4FNwyBH2PwSFCSXP\na0ruLxtsPnfuJ+MXL0Q9ViO7strZ2REQEEBISIh2XyWNRsPSpUsN3v/TTxX/j1randSqVSvS0tJw\ncXExeF/r1q0BcHZ2ZsyYMcTExBgMB1E/2dr2JC8vv+RRue4jAJcLEHYMlFuw2gvSHYEEoCXqYLMl\ncJ3t299gxIh+Rq9diMai0nAYO3YsY8eO1UkaQ4f/VMWoUaNYs2YNs2fPZs2aNYwePVrvntzcXIqK\ninBwcCAnJ4fdu3frdB2J+stw91HJ7CKLIuh/Bnqcgz0ucNgLlAIgD90upETpQhLCCCrtVsrLy+P0\n6dNoNBq8vb2rNRBd6tq1azz++OOcP39eZyrrhQsXmDZtGpGRkZw9e5axY8cC6pjHxIkTeeONNwwX\nL91K9YK//xiOHSvtFio3poAGyIL2Z2BkElywgV2+kJ1dco90IQlRG+5pQLqgoIC5c+fy+eef06ZN\nGwDOnz/PlClTWLRoEZaWt5+gZXwSDnVbhQPNpaFgewtCY6FtLkR2goTSf5c2qN1IaiiEh3dl/frF\nxitciAbunsLhpZdeIjs7m48++ggHB/VwlMzMTF599VVsbW1ZsmRJzVd8lyQc6i6DC9hKQwEFuv8N\ngy/BET/YWwgFZsgMJCGM457Cwdvbm1OnTmFmprvDRlFREZ06deL06dM1V2k1STjUPU2adOfWrUIM\nhwLgdBpGXoAmxbDNE9KskFAQwrjuaW8lMzMzvWAAMDc3N3hdNG4TJsxGo/EvFwz2qIPN2UAWmJ+D\n/rEwNRFONoX/tJdgEKIOq3C2kq+vL2vWrGHy5Mk619euXUvnzp1rvTBRfxjuQiodVL4AbTIhLA2u\nWcHK9nDj9lCQQ3eEqGsq7FZKSUlh7Nix2NjY0LNnT0A94yE3N5fNmzfj4eFh1EINkW4l04qIWM6C\nBcspW8RWvgspGayLIOQS+GTDzlYlB/C0QVoKQpjWPW+foSgKe/bs4dixY2g0Gvz8/Bg0aFBFtxud\nhIPp6LYWbhtX4Dx0yYShF+GEA/zsCvleSCgIUTfUyMZ7dZmEg/GVhYI76pBV+S6kZGh+C0akQdMC\n2OYGKZ2QUBCibqmR7TOEAENrFsq3Fq6AWS70uQoPXYEDTvCbExS1RYJBiPpJWg7ijszM/Cn7Ky6/\n5UU2oADJ4JYHYZfUnS62t4Zr3kgoCFF3SctB3BODh+4AamshA6wyYOBl8M8sOYDHn7LgkBlIQtRn\n0nIQetq2DeH8+TQMhwJAMnTKhOHp5Q7gaUdpa8HG5jK5ubHGLlsIUUXSchB3pWxqKhiehZQMDgUw\n7Ba4XoIfWkOiL7JeQYiGR1oO4g67ppabhaRRoJdS7gCeQChshowrCFH/3NP2GaLh8/cfg0bjXxIM\n7uhve5Gs/nFpBk8nQsA5WN0F9vYuCYZM5s8Pk2AQogGSbqVGquw0tgo2yCMZLJpA//PQ4wTsaQOH\nO4FijxoKA4iIeMEUpQshjEC6lRohdRbS7aFQOjU1Rf1n+1slB/DYwq5AyG4JZGNllUZ+/p8mqVsI\nUTNkQFro0N1O+/aWQob6tW0hhF6GttkQ6Q4JnSkdf+jSxZqjRyUYhGgMpOXQwPXvP4Xo6D/KXSm/\nGyrABaAI9QAeMxgcD0eaw95AKGiOTE0VouGRvZUasbK1ChrU7qLyaxayKAsFc3AqhpFnSw7gCYQ0\ndyAbjSaZ4mIZbBaioalzs5W++eYbunTpgrm5OYcPH67wvl27dtG5c2d8fHxYvFjODr5bGo0/589f\nRA0Ej5J/OlAWDJcAczBvAv0uwtR4ONkG/jMc0prh7HwRRdkpwSBEI2bUcAgICGDz5s3069evwnuK\nioqYMWMGu3bt4vjx42zYsIH4+HgjVlk/qSexdS032OxB2bTU0lDIAtKAImiTD88dA3cFVobCQS8o\nPomi7OTy5f2m+jGEEHWEUQekq3KCXExMDN7e3nh5eQEwfvx4tmzZgq+vby1XV/9MmDCbDRt+BAoB\nK9R/na7ob3cBaigUgnUPCIkEn0zY5Q/HOwA5ODtnc/mytBSEEKo6N1spNTUVT09P7WMPDw9+//33\nCu+PiIjQfh0cHExwcHAtVlc3lG1zYYPa+PMs92xpKwHgMnALdcyhD3T5GYZugBOtYVlfyM/Hyuq0\nTE0VooGLiooiKirqrl5T4+EQEhLCxYsX9a4vWrSIsLCwSl+v0Wju6vuVD4eGLjIymrFjX+XWLdAN\nhNJpqaA9X4GbJdetoPlVGLEJmgKb+kJKE2xskslVZAaSEI3B7b84L1iwoNLX1Hg4/PTTT/f0end3\nd5KTk7WPk5OT68R51aYUEbGct976DEWxAFqWXHUod0f57qNsoC2QBGaZ0CcDHkqHA53gNzf6PejG\nvuQvjFS5EKK+Mlm3UkXTqHr16kVCQgJJSUm4ubmxadMmNmzYYOTq6obIyGgef3w2ubkATqj/uuxL\nni1d0QxwFXXcAaAncALcFAhLgbwm8J8ebP/yPUaMqHgigBBClGfUcNi8eTOzZs3iypUrjBgxgsDA\nQHbu3MmFCxeYNm0akZGRWFhY8MknnxAaGkpRURFTp05tlIPR6uK1BMCx5IoNYA7kAMXADaAAda1C\naSviOlj9CgNzwf8i7O6IZ4YL56/+bOzyhRD1nCyCq4PUBWwWqNlthxoGeahBkIfaanBCHVfIKLlu\nDZ2KYXg8nG3BWIcxfLf2Y9P8AEKIOk32VqpnysYWXFG7j8xQWwpFqEFQCNgC1qgzkawAN3Awg2GH\naOGr8M3k7QxsN9BEP4EQoqGQlkMdoa5Z+As1EJqithCKUQPgQsk/nYF01O6k5qCxhV7HsR2ezCv9\nX2Ju37lYW1ib6CcQQtQXsrdSPRAZGc3UqQu5dMkcdexAQ1lroRA1KIrRbqVNS8AeXNJwmpJI547t\n+DTsU/yc/Uz0Ewgh6hvpVqrDykKhGLWbyK7kn1cBP+AvoDmQibqQzRWwxLZZLiMWN2Fv5kneGfAO\n03pOw0wjB/oJIWqWhIMJREZGM2nS/5GRYUXZGMI11JaBX8nX3YD/As0AJzSabCb9bzsOtNiBxqkZ\nRyYcobVDa1P9CEKIBk66lYwsMjKaxx57j7y80paCBnWwuQDIRV3A1gw4jtqayKRTIPR+04n95/az\nfMRyhvsMN1X5QogGQLqV6hh10DkOddzACjUUFNSxBqXkzynUNQ12QAZB081I9I7F1e4Jjr1wDDsr\nOxNVL4RoTCQcjEQNhpOoi9raAwmooXANdVzBAXXtQhPACk3L87R9MZVCt6bsDNtJj9Y9TFW6EKIR\nknCoZZGR0cyatYSzZ28CvYEkYAhqt1EmaljcKLluC+YW2If+jdkDKfxjUAQz7puBhZn8axJCGJd8\n6tSwyMho3nzzS06dSiMn5wbgAliirlEoRF2/ULrH0VK0oUAz3PrkYj76b7q1CWDZ8B20adbGBD+B\nEELIgHSNiohYzrvvRnHrVuleR9mAD2oGxwMvAv+HGhj/T/s6M7vJBP7PGdKaJrJk6BIe8X3krrcu\nF0KIqpJFcEakzkJaRl6eT7mrpQ2zQsANOAJMQG0x3AKsMO+WiM3oMzzRewLvDnqXZtbNjFu4EKLR\nkXAwoh49XiQuzvm2q6XbaA8BfgTcgWjAGpqfp/Uz53Bqb8unIz/lfs/7jVmuEKIRk3CoRZGR0Sxd\nupvU1HTOnUsmJ6c5itL+truGAGuAVkAo8BOYaTB/8AesBp7lzUFzefWBV7EytzJ6/UKIxkvCoZZE\nRCznvfeOkJc3AbVFUDo+UBoGpUpDYS2QDW6XsXrkT3y92vHtUxvxbuFt3MKFEAIJh1pRNrawCZgH\nvANEAANRg6I0DNKAXDQaO2yb22A78iQFnVJYOvL/mNR1kgw4CyFMRlZI16DSbqQ//jhNXl7pyXTl\nB5xLp6f+hDq20IoePS4yf30YM3bMYFD7Qbwf8gstbVve/tZCCFHnSDhUQWRkNP/4x4+cObMQtZVQ\nOtBcfsB5LrCQ0pBo6z8Tm8kJ/M/u/2H16NVyAI8Qol6RcKiCpUt3lwQDqIFQGgahlIUCwJs0sT6H\ny/BzXO/xF08EzJQDeIQQ9ZJRw+Gbb74hIiKCEydO8Mcff9Cjh+H9gry8vGjatCnm5uZYWloSExNj\nzDL15OeX/2sqnZZaMvuIK5iZheHp2Rr3HhquPRCLUwtHVo78lS4uXUxSrxBC3CujhkNAQACbN29m\n+vTpd7xPo9EQFRVFixYtjFTZnTVpUljuUdnYgqPjee67rw3Pvvgoh2z3surwKt4JlgN4hBD1n1HD\noXPnzlW+ty5Moiq/lsHG5jny8kq3vOhHhw67WLJkKk18b/Hc9ufo6daTI8/JATxCiIahTo45aDQa\nBg8ejLm5OdOnT2fatGkV3hsREaH9Ojg4mODg4BqpQXcQGiAaG5txeHu74eZmz5PP9WHjrVXs3yoH\n8Agh6raoqCiioqLu6jU1vs4hJCSEixcv6l1ftGgRYWFhAAwYMIAPP/ywwjGHtLQ0WrduTXp6OiEh\nIXz88cf07dtXv/haXOcQGjqP3bvf0bs+JHQe49/twOu/vM4TXZ9gQfACOYBHCFGvmGSdw08//XTP\n79G6tdo14+zszJgxY4iJiTEYDrVJdxC6hNMpYjp/xdU/nNg5UQ7gEUI0XCYbNa0otXJzc8nKygIg\nJyeH3bt3ExAQYLS6IiOjCQ2dx5EjJ8oumt+Cfm/D1AdwzfDh4DMHJRiEEA2aUcNh8+bNeHp6cvDg\nQUaMGMGwYcMAuHDhAiNGjADg4sWL9O3bl+7duxMUFMTIkSMZMmSIUeorHWfYvfsdrl9/AZgLbf4L\nz3UH9xja7BzHh4/Nk5PZhKim6dOnY29vz969e3Wu//vf/6ZLly5069aNwYMHc/78+Sq/Z2JiIkFB\nQfj4+DB+/HgKCgoM3jd79mwCAgIICAjg66+/1l7fs2cPPXv2JCAggKeeeoqioiIArly5wtChQ+ne\nvTv+/v6sXr1a+5qnn34aV1dXo/7ianRKPVbT5Q8ZMlcBRf1jfU1hZJjCKw6KXe/+ypDQucr27ftq\n9PsJ0RgUFxcrRUVFyttvv62MHz9eOXr0qOLr66scOXJEe8/evXuVvLw8RVEUZcWKFcq4ceOq/P6P\nPfaYsmnTJkVRFOW5555TVqxYoXfP9u3blZCQEKWoqEjJyclRevfurWRlZSlFRUWKp6enkpCQoCiK\novzv//6v8tlnnymKoijz589XXn/9dUVRFCU9PV1p0aKFUlBQoCiKokRHRyuHDx9W/P39q/E3YnpV\n+eyUyfjlqOMMCnTZBC92AcUDliXTyzaYH3e9w4gR/Sp9DyEEJCUl0alTJyZPnkxAQADr1q0jPj6e\n9evX06VLF7Zu3cq0adNITU0F1JmG1tbqTgJBQUGkpKRU6fsoisLevXt59NFHAZg8eTI//PCD3n3x\n8fH069cPMzMzbG1t6dq1Kzt37uTq1atYWVnh7a3ukDx48GC+++47QB37zMzMBCAzMxMnJycsLNRe\ng759++Lo6HgPf0N1n/SPlFPc9ApMHAFNk2HTd5CiHsBjbV1k4sqEqH9Onz7N2rVrue+++wB48skn\ntc95e3tz8OBBg6/77LPPGD5cnRqelZVFv376v5RpNBrWr19Py5Ytad68OWZm6u+57u7u2sApr1u3\nbixYsIBXX32VnJwc9u7dS5cuXXB2dqawsJDY2Fh69uzJt99+S3JyMgDPPPMMgwYNws3NjaysLJ2u\nqMagUYdD6SK3m7fMuOh1gOQeB2kR15trG2OhSD2Ap0OHOcycOdTElQpR/7Rt21YbDFW1bt06Dh8+\nzEcffQSAg4MDcXFxFd5/5cqVKr1vSEgIf/zxBw888ADOzs7cf//92kDZuHEjL7/8Mvn5+QwZMgRz\nc3MA3n33Xbp3705UVBRnzpwhJCSEv/76CwcHhzt9qwaj0YaDdpFb3hgIexbyWtBmyxNMeTiAg/lv\nc/OmOdbWRcycOVS6k4SoBju7u1v/8/PPP7No0SKio6OxtLQE1JZD3759DZ5/smHDBjp16kRGRgbF\nxcWYmZmRkpKCu7u7wfefM2cOc+bMAWDixIl06tQJgD59+hAdHQ3A7t27SUhIAODAgQPMnTsXgA4d\nOtCuXTtOnjxJr1697urnqq8abTj8+5NtnPEpAP+RsPt9ODKJ82g46Pomu3a9beryhGhU4uLieO65\n5/jxxx9p2bLszBMHBwf+/PPPO752wIABfPPNN4wbN441a9YwevRovXuKi4u5fv06Tk5OHDlyhCNH\njmhnQaanp+Ps7Ex+fj7vvfce8+bNA9Ttfn7++WcefPBBLl26xMmTJ2nf/vajgBuw2h8Xrz0Vlb99\n+z5lyJC5Sv/+85UhQ/RnGW05sUVp8npThdGTFWzTy2YooSj9+883QuVCNGyJiYlKQEBAle8fPHiw\n0qpVK6V79+5K9+7dlYcffrjKrz179qxy3333Kd7e3srjjz+u3Lp1S1EURTl06JDyzDPPKIqiKHl5\neYqfn5/i5+en3H///cpff/2lff0///lPxdfXV+nUqZOyZMkS7fX09HRl5MiRSteuXRV/f3/lq6++\n0j43fvx4pXXr1oqVlZXi4eGhfP7551Wuty6oykd/gzsmVH9PJOjQYS5LloQS2M+bWTtnceTSEZpG\n30fst+v03jM0VFoOQoiGrSrbZzS4qay6B/Oozpx9m39+/S7d/l83fJ19OfL8ERY89SwdOszVuU8d\nfA4xZrlCCFEnNbgxB709kVz+hrBnSXVI5cDkKO0BPKWDzB9//KYMPgshxG0aXDhoD+axyIP+b0OP\nVbDnHfq0TNY7mW3EiH4SBkIIYUCD61aaNWuI2l3U/hdwPAMrjtAh4xyzZhpnfyYhhGgIGtyANKiD\n0h9//FO57qIQaSEIIUSJqgxIN8hwEEIIUbFGOVtJCCHEvZNwEEIIoUfCQQghhB4JByGEEHokHIQQ\nQugxajj885//xNfXl27dujF27Fhu3Lhh8L5du3bRuXNnfHx8WLx4sTFLrBVRUVGmLqFS9aFGkDpr\nmtRZs+pLnVVh1HAYMmQIx44d46+//qJjx468++67evcUFRUxY8YMdu3axfHjx9mwYQPx8fHGLLPG\n1Yf/YOpDjSB11jSps2bVlzqrwqjhEBISoj19qaJzYmNiYvD29sbLywtLS0vGjx/Pli1bjFmmEEI0\neiYbc/j888+158SWl5qaiqenp/axh4eHwTNhhRBC1J4aXyEdEhLCxYsX9a4vWrSIsLAwABYuXMjh\nw4f57rvv9O777rvv2LVrF6tWrQLUM2V///13Pv74Y/3iDRwdKIQQonKVffTX+K6sP/300x2fX716\nNTt27OCXX34x+Ly7uzvJycnax8nJyXh4eBi8V7bOEEKI2mHUbqVdu3bx/vvvs2XLFqytrQ3e06tX\nLxISEkhKSuLWrVts2rSJUaNGGbNMIYRo9IwaDjNnziQ7O5uQkBACAwN54YUXALhw4QIjRowAwMLC\ngk8++YTQ0FD8/PwYN24cvr6+xixTCCFELZxdbXQffPCBotFolKtXr5q6FIPmzZundO3aVenWrZsy\ncOBA5fz586YuyaD/+Z//UTp37qx07dpVGTNmjJKRkWHqkgz6+uuvFT8/P8XMzEyJjY01dTl6du7c\nqXTq1Enx9vZW/vWvf5m6HIOmTJmiuLi4KP7+/qYu5Y7Onz+vBAcHK35+fkqXLl2UJUuWmLokPXl5\necp9992ndOvWTfH19VVef/11U5d0R4WFhUr37t2VkSNH3vG+eh8O58+fV0JDQxUvL686Gw6ZmZna\nr5cuXapMnTrVhNVUbPfu3UpRUZGiKIoye/ZsZfbs2SauyLD4+Hjl5MmTSnBwcJ0Lh8LCQqVDhw5K\nYmKicuvWLaVbt27K8ePHTV2WnujoaOXw4cN1PhzS0tKUuLg4RVEUJSsrS+nYsWOd/PvMyclRFEVR\nCgoKlKCgIGX//v0mrqhiH374oTJhwgQlLCzsjvfV++0zXnnlFd577z1Tl3FHDg4O2q+zs7Np2bKl\nCaupWFXWodQFnTt3pmPHjqYuw6D6sk6nb9++ODo6mrqMSrVq1Yru3bsDYG9vj6+vLxcuXDBxVfps\nbW0BuHXrFkVFRbRo0cLEFRmWkpLCjh07eOaZZxr2eQ5btmzBw8ODrl27mrqUSs2dO5c2bdqwZs0a\nXn/9dVOXU6mK1qGIO5N1OrUnKSmJuLg4goKCTF2KnuLiYrp3746rqysDBgzAz8/P1CUZ9PLLL/P+\n++9rfwm8kxqfylrTKlo3sXDhQt599112796tvVZZEtamytZ3LFy4kIULF/Kvf/2Ll19+mS+++MIE\nVVZ9HYqVlRUTJkwwdnlaVamzLpK1N7UjOzubRx99lCVLlmBvb2/qcvSYmZnx559/cuPGDUJDQ4mK\niiI4ONjUZenYvn07Li4uBAYGVmmbjzofDhWtmzh69CiJiYl069YNUJtLPXv2JCYmBhcXF2OWCFS+\nvsaQ+t8AAAUeSURBVKPUhAkTTPob+b2uQzGWqv591jV3s05HVE1BQQGPPPIIkyZNYvTo0aYu546a\nNWvGiBEjOHToUJ0LhwMHDrB161Z27NjBzZs3yczM5Mknn+TLL780/AKjjIAYQV0ekD516pT266VL\nlyqTJk0yYTUV27lzp+Ln56ekp6ebupQqCQ4OVg4dOmTqMnQUFBQo7du3VxITE5X8/Pw6OyCtKIqS\nmJhY5weki4uLlSeeeEJ56aWXTF1KhdLT05Xr168riqIoubm5St++fZWff/7ZxFXdWVRUVKWzler1\nmEN5dbk5/8YbbxAQEED37t2Jioriww8/NHVJBlW0DqWu2bx5M56enhw8eJARI0YwbNgwU5ekVV/W\n6YSHh/PAAw9w6tQpPD09TdbNWZlff/2VdevWsXfvXgIDAwkMDGTXrl2mLktHWloaAwcOpHv37gQF\nBREWFsagQYNMXValKvvMrPG9lYQQQtR/DablIIQQouZIOAghhNAj4SCEEEKPhIMQQgg9Eg6iUUtJ\nSeHhhx+mY8eOeHt789JLL1FQUFCj32Pfvn389ttv2scrV65k3bp1ADz11FMGD70SwtQkHESjpSgK\nY8eOZezYsZw6dYpTp06RnZ3N3Llza/T77N27lwMHDmgfT58+nUmTJgHqdMK6PA1bNF4SDqLR2rNn\nDzY2NkyePBlQt0D46KOP+Pzzz1mxYgUzZ87U3jty5Ej27dsHwAsvvEDv3r3x9/cnIiJCe4+XlxcR\nERH07NmTrl27cvLkSZKSkli5ciUfffQRgYGB/Pe//yUiIkJnrUvpbPLY2FiCg4Pp1asXQ4cO1W4f\nsnTpUrp06UK3bt0IDw+v7b8WIYB6sH2GELXl2LFj9OzZU+eag4MDbdq0oaioSOd6+d/wFy5ciKOj\nI0VFRQwePJijR4/i7++PRqPB2dmZ2NhYVqxYwQcffMCqVat47rnncHBw4JVXXgHgl19+0WktaDQa\nCgoKmDlzJtu2bcPJyYlNmzYxd+5cPvvsMxYvXkxSUhKWlpZkZmbW8t+KECoJB9Fo3ak7507jDps2\nbWLVqlUUFhaSlpbG8ePH8ff3B2Ds2LEA9OjRg++//177mtvXmpZ/rCgKJ0+e5NixYwwePBiAoqIi\n3NzcAOjatSsTJkxg9OjRdX5vIdFwSDiIRsvPz49vv/1W51pmZibJyck4Oztz+vRp7fWbN28CkJiY\nyIcffsihQ4do9v/buX8VxaE4iuNfCcFCzDyBRRr/gmBvIQh2dlaChYWVoIiPIIK1hS9gqSAoYm+j\nWAmCD6CVpApBKyFbuCsOmWEZ2F0W5nzKXMgltzn5ceC+vVGv159rAOFwGADDMLjf75/u/VEwZTKZ\nd93EL8vlkvV6zWKxoN/vczgcMAzjax8r8kXqHOTbKhaL3G43xuMx8Phb73a7VKtVbNtmv9/j+z7n\n85ndbgeA53lEIhEsy+JyubBarX67TzQaxfO8d89eJ4dQKEQikcBxHLbbLfCYXI7HI77vczqdKBQK\nDAYDXNfler3+qSMQ+ZQmB/nWZrMZzWaTXq+H4ziUSiVGoxGmaWLbNul0mlQq9ewmstksuVyOZDJJ\nLBYjn89/+N7XjqJcLlOpVJjP5wyHw+f6K9M0mU6ntFotXNflfr/T6XSIx+PUajVc18X3fdrtNpZl\n/cUTEXnQxXsiP202GxqNBpPJ5L+8SVXkX1I4iIhIgDoHEREJUDiIiEiAwkFERAIUDiIiEqBwEBGR\nAIWDiIgE/ABEguqfnObDqQAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 16 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 2.2.3 Spectral densities of sea data\n", + "-----------------------------------------------\n", + "Example 2: Different forms of spectra" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.spectrum.models as wsm\n", + "clf()\n", + "Hm0 = 7; Tp = 11;\n", + "spec = wsm.Jonswap(Hm0=Hm0, Tp=Tp).tospecdata()\n", + "spec.plot()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEXCAYAAABYsbiOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPsCSLLAqICibmioqIKLgzpriV6FVL0RKX\nsq65tS/aVbPFtNXsdssFLH6lNyv1dpXriporKJlLghsqgiQuIDsMz++PExMgywBz5pxhPu/Xixcz\nc84853s4Ot95lvM8GiGEABERUSWslA6AiIjUi0mCiIiqxCRBRERVYpIgIqIqMUkQEVGVmCSIiKhK\nTBJEZsbHxwe7d+82aN+oqCgMGDBA1nj+/ve/4+2335b1GKQcJgkyiFarxdq1a5UOw6jWrl0LX19f\nODs7o3nz5njkkUeQnZ0t2/GSk5NhZWWFkpKSepWj0Wig0WiMFFX9ffHFF1i4cCEAIDY2Fq1atVI4\nIjImG6UDIPOgtg+m+tq3bx8WLFiA//3vf/D398edO3fw888/m+TY1d2/qtPpYG1tbZI4iAzBmgTV\n2urVq9G+fXu4ublh9OjRSEtL02+zsrLCl19+iQ4dOqBJkyaYPXu2ftuFCxcQEhICV1dXeHh4YOLE\niQCARYsWYe7cuQCAoqIiODo64pVXXgEA5OXlwc7ODnfv3gUAPPbYY2jRogVcXV0REhKCs2fP6suf\nOnUqnn32WQwdOhTOzs7QarW4evVqpecQFxeHPn36wN/fHwDQpEkTPPnkk2jcuLFBZZ07dw6hoaFw\nc3NDp06d8P333+u35eXl4cUXX4SPjw9cXV0xcOBA5OfnY+DAgQAAV1dXODs748iRI4iKikK/fv3w\nwgsvwN3dHUuWLMGlS5fw8MMPw93dHR4eHnjiiSeQmZlp0LW5desWwsLC4OLiguDgYFy8eLHc9uri\nnjp1Kp577jk8+uijcHZ2Ru/evXHp0iX99ueffx6enp5wcXFBt27d9H/7qVOn4s0330Rubi5GjBiB\n1NRUODk5wdnZGWlpaXBwcMDt27f15Zw4cQLNmjWDTqcz6JxIYYLIAFqtVqxdu1bs3r1buLu7i4SE\nBFFQUCDmzJkjBg4cqN9Po9GIUaNGiczMTHH16lXh4eEh/ve//wkhhJg4caJ49913hRBCFBQUiIMH\nDwohhNizZ4/w8/MTQghx8OBB0bZtWxEcHCyEEGL37t2ie/fu+vIjIyNFdna2KCwsFPPnzy+3LSIi\nQjg5OYkDBw6IgoICMW/ePNG/f/9Kz+fAgQPC3t5eLFq0SPzyyy8iPz+/3PbqysrOzhbe3t4iKipK\n6HQ6kZCQINzd3cXZs2eFEELMmjVLDBo0SKSmpgqdTicOHz4sCgoKRHJystBoNEKn05U7HxsbG7Fq\n1Sqh0+lEXl6euHDhgti1a5coLCwUN2/eFAMHDhTz58/Xv8fHx0fs3r270vOaMGGCmDBhgsjNzRWn\nT58WXl5eYsCAAQbFHRERIdzc3ERcXJwoLi4WkydPFhMnThRCCBETEyMCAwNFZmamEEKIc+fOibS0\nNCGEEFOnThVvvvmmEEKI2NhY4e3tXS6mkSNHii+++EL/fP78+WLu3LmVxk/qwyRBBtFqtWLNmjVi\nxowZ4tVXX9W/np2dLWxtbcWVK1eEEFKSKP3wF0KIxx9/XLz//vtCCCGmTJkiZs6cKVJSUsqVnZub\nK+zs7MStW7fEsmXLxLvvviu8vb1Fdna2+Mc//iHmzZtXaUx37twRGo1GZGVlCSGkD7nw8PBysVlb\nW993vFLbt28Xo0aNEq6urqJx48bihRde0H+AV1XWtWvXxIYNG/QfvKVmzpwplixZInQ6nbC3txe/\n/fbbfce7fPlypUniwQcfrDS+Uj/99JMICAjQP68qSRQXFwtbW1uRmJiof+2NN97QJ7fq4i4956ef\nflq/bdu2baJTp05CCClZd+jQQRw5cqRc/EJISWLhwoVCCCH27t17X5LYsGGD6Nevnz7G5s2bi7i4\nuGrPmdSDzU1UK6mpqWjdurX+uaOjI9zc3HD9+nX9a82bN9c/dnBwwL179wAAy5cvhxACQUFB6Nq1\nKyIjIwEA9vb26NmzJ/bt24f9+/cjJCQEffv2xcGDB/XPAam9/rXXXkO7du3g4uKCNm3aAAAyMjIA\nSP0m3t7e5WJr2rQpUlNTKz2X4cOHY+vWrbhz5w62bNmCqKgorFmzpsayrly5gqNHj6JJkyb6n2+/\n/Rbp6em4desW8vPz0bZtW4P/phU7etPT0zFx4kR4e3vDxcUFTz75JG7dulVjOTdv3kRxcXG58h58\n8EH94+riLj1nT09P/f729vb6jvyHH34Ys2fPxnPPPQdPT08888wz+utak9GjR+Ps2bNITk7Gzp07\n4eLigp49exr0XlIekwTVSsuWLZGcnKx/npOTg1u3bsHLy6vG93p6euKrr77C9evX8eWXX2LWrFn6\nNu+QkBDs3r0bCQkJ6NWrF0JCQhATE4Njx47p2/K//fZbbN26Fbt370ZmZiYuX74M4K+OYCEErl27\npj9ednY2bt++jZYtW9YY28MPP4yHH34YZ86cqbYsLy8vPPjggwgJCcGdO3f0P/fu3cPnn38ONzc3\n2NnZ4cKFC/cdo6qO/4qvv/HGG7C2tsbp06eRmZmJb775xqARUR4eHrCxsSnXd1L2cXVxG2LOnDmI\nj4/H2bNnkZSUhBUrVtx3DpWdo52dHR577DFER0cjOjoaU6ZMMeh4pA5MEmQwjUaD8PBwREZG4uTJ\nkygoKMAbb7yB3r17l/vGWpYoM5Ln+++/R0pKCgCp81aj0cDKSvonGBISgq+//hpdunSBra0ttFot\n1qxZg4ceeghubm4ApA/qRo0aoWnTpsjJycEbb7xx3/G2bduGgwcPorCwEG+++Sb69OlTaQLbunUr\nNm7ciDt37kAIgWPHjmHfvn3o3bt3jWU98sgjSEpKQnR0NIqKilBUVIS4uDicO3cOVlZWmD59Ol54\n4QWkpaVBp9Ph8OHDKCwshIeHB6ysrO7rTK4oOzsbjo6OcHZ2xvXr18t9GFfH2toaY8eOxeLFi5GX\nl4ezZ89i/fr1+g/u6uKueK0qio+Px9GjR1FUVAQHBwfY2dnpR2EJqdkagPRF4NatW8jKyir3/ilT\npiAyMhJbt27Fk08+adD5kDowSZDBNBoNBg8ejKVLl2LcuHFo2bIlLl++jA0bNpTbp+J7Sl+Lj49H\n79694eTkhNGjR2PlypXw8fEBAPTp06fcCCBfX1/Y29vrnwPSB03r1q3h5eWFrl27ok+fPuWOp9Fo\nMGnSJCxZsgRubm5ISEhAdHR0pefSpEkTrF69Gh06dNA36bzyyisIDw+vsSwnJyfs2LEDGzZsgJeX\nF1q0aIHXX38dhYWFAIAPPvgAfn5+6NWrF9zc3PD6669DCAEHBwcsWLAA/fr1Q9OmTXH06NFKhxYv\nWrQIJ06cgIuLC0aNGoVx48YZPPx41apVyM7ORvPmzTF9+nRMnz5dv62muCuLpfR5VlYWZs6ciaZN\nm8LHxwfu7u54+eWX73tfp06dEB4ejoceeghNmzbFjRs3AAD9+vWDlZUVAgMDeR+FmdGI6r4+EP0p\nMDAQixYtQlhYmNKhVGnatGnw9vbG0qVLVVUWSYYMGYJJkyaVS1ykforUJKZPnw5PT0/4+fndt+3D\nDz+ElZVVuXHVpKwzZ87g999/R0BAgNKhVMuY33f43cm44uLicOLECUyYMEHpUKiWFEkS06ZNQ0xM\nzH2vX7t2DTt37iw3eoaU9eqrr2LYsGFYvny56psJjHlXeEO7w1xJERERCA0NxSeffAJHR0elw6Fa\nUqy5KTk5GaNGjcKpU6f0rz322GN48803MXr0aBw/fhxNmzZVIjQiIvqTajqut2zZAm9vb3Tr1k3p\nUIiI6E+qmOAvNzcX7777Lnbu3Kl/raoKDpsAiIjqpi4NR6qoSVy8eBHJycnw9/dHmzZtkJKSgsDA\nQPzxxx+V7l86Lrsh/ixatEjxGHh+PDeeX8P7qStV1CT8/Pz0UwMAQJs2bdgnQUSkAorUJMLDw9G3\nb18kJSWhVatW+jl8SrFJqXK7dwOffaZ0FERkSRSpSXz33XfVbi87h72l0Wq1VW6LigKuXQPmzDFZ\nOEZX3fmZu4Z8bgDPz1KZ3R3XGo2mXu1r5qqkBPD0BGxsgDJr/BARGaSun52q6LimmsXHAx4ewL17\ngIGLlBER1RuThJnYtg145BGgY0cgMVHpaIjIUjBJmIm4OGDAACYJIjItJgkzcfs24O7OJEFEpsUk\nYSbu3gWaNAE6dQL+XCOGiEh2TBJm4s4dwNWVNQkiMi0OgTUDQgB2dtKopsJCwMtLGuVERGQoDoFt\nwPLyACsrKVE4OQEFBdIPEZHcmCTMwJ07Un8EAGg0gJsbcOuWsjERkWVgkjADpf0RpZgkiMhUmCTM\nQOnIplJubkBGhnLxEJHlYJIwA2WbmwDpfgnWJIjIFJgkzEDFJMHmJiIyFSYJM1BZnwSbm4jIFJgk\nzACbm4hIKUwSZqCyjmsmCSIyBSYJM1BZnwSbm4jIFJgkzAA7rolIKUwSZqBixzX7JIjIVJgkzACb\nm4hIKUwSZqBix7WrqzQLbHGxcjERkWVgkjADFWsS1tZSorhzR7mYiMgyKJIkpk+fDk9PT/j5+elf\ne/nll+Hr6wt/f3+MHTsWmZmZSoSmOsXFQH4+4OhY/nU2ORGRKSiSJKZNm4aYmJhyrw0dOhRnzpzB\nyZMn0aFDB7z33ntKhKY62dlA48bSFOFlcYQTEZmCIkliwIABaFK2/QRAaGgorKykcIKDg5GSkqJE\naKpTmiQqcnWV+iqIiORko3QAlVm3bh3Cw8Or3L548WL9Y61WC61WK39QCsnJqTxJuLhIy5kSEVUm\nNjYWsbGx9S5HdUninXfewQMPPIBJkyZVuU/ZJNHQZWff3x8BSDUJJgkiqkrFL9BLliypUzmqShJR\nUVHYtm0bdu/erXQoqlFVc5OLC5ubiEh+qkkSMTExWLFiBfbt2wc7Ozulw1GN6vokOASWiOSmSMd1\neHg4+vbti8TERLRq1Qrr1q3DnDlzkJ2djdDQUAQEBGDWrFlKhKY6rEkQkZIUqUl899139702ffp0\nBSJRv+pqEuyTICK58Y5rlatudBNrEkQkNyYJlePoJiJSEpOEylXXJ8EkQURyY5JQOXZcE5GSmCRU\njh3XRKQkJgmVqypJODoCBQVAUZHpYyIiy8EkoXJVjW7SaNgvQUTyY5JQuapGNwHslyAi+TFJqFxV\nzU0A+yWISH5MEipXXZJgTYKI5MYkoXKsSRCRkpgkVK6qjmuAHddEJD8mCRUTovqOay5hSkRyY5JQ\nsYICwNoasLWtfDtrEkQkNyYJFauuPwJgxzURyY9JQsVqShLsuCYiuTFJqBhrEkSkNCYJFatuZBPA\nmgQRyY9JQsWqG9kEsOOaiOTHJKFihvRJsLmJiOTEJKFihvRJsCZBRHJiklAxQ5OEEKaLiYgsC5OE\nitWUJB54QLrRLjfXdDERkWVRJElMnz4dnp6e8PPz0792+/ZthIaGokOHDhg6dCjusrG9xtFNAIfB\nEpG8FEkS06ZNQ0xMTLnXli1bhtDQUCQlJWHw4MFYtmyZEqGpSk2jmwAOgyUieSmSJAYMGIAmTZqU\ne23r1q2IiIgAAERERGDz5s1KhKYqNTU3AaxJEJG8bJQOoFR6ejo8PT0BAJ6enkhPT69y38WLF+sf\na7VaaLVamaNThiFJgjUJIqpMbGwsYmNj612OapJEWRqNBhqNpsrtZZNEQ2ZoTYJJgogqqvgFesmS\nJXUqRzWjmzw9PXHjxg0AQFpaGpo1a6ZwRMoztCbB5iYikotqkkRYWBjWr18PAFi/fj3GjBmjcETK\nM3R0E2sSRCQXRZJEeHg4+vbti8TERLRq1QqRkZF47bXXsHPnTnTo0AF79uzBa6+9pkRoqmLo6CbW\nJIhILor0SXz33XeVvr5r1y4TR6JuhvZJpKSYJh4isjyqaW6i+7FPgoiUxiShYhzdRERKY5JQqZIS\nID8fcHCofj8mCSKSE5OESuXmAvb2gFUNV4jNTUQkJyYJlTJkZBPAmgQRyYtJQqUM6Y8AWJMgInkx\nSaiUoUmicWOpaaq4WP6YiMjyMEmolKFJwsoKcHYGsrLkj4mILA+ThEoZMiVHKfZLEJFcmCRUytCa\nBMDpwolIPjVOyxEVFVXttN1lCSEwderU+sZEMHx0E8CFh4hIPjUmiSZNmqB///5wc3OrsbAtW7YY\nJShiTYKI1KHGJDF69Gj4+fmhXbt2cHZ2Rq9evRAcHIyAgAAcPnwYf/zxB8aNG6ffl4yjNkmCNQki\nkotBs8D++OOPaN++PXJzc/Hee+9hz549+OSTT5CdnY2HHnpInyTIeGqbJFiTICI5GJQk2rdvDwBw\ncHBAu3btEBERAQAoLCxkE5NMcnIAb2/D9uUNdUQkl1qPbrK1tcXUqVPx448/4vz580jhYgayqG3H\nNWsSRCSHWi86NGnSJAQGBiI6Ohp79+7FlClT5IjL4t27J90kZwhXV+D33+WNh4gsU51WpuvYsSOW\nLl1q7FiojKwswMnJsH1ZkyAiudS6uWnNmjU4cuQICgsLcfDgQWzatEmOuCxeVlbtahJMEkQkh1rX\nJP744w/s27cPK1euxL1799C2bVuMHz9ejtgsWm2amzgElojkUusk4e3tre+H4Ogm+dSmuYk1CSKS\nS62TROnoprCwMHTs2JGjm2RSm+Ym1iSISC4aIYSozRsOHDiAZs2aITo6Gnfv3sWUKVPQq1cvueK7\nj0ajQS1DNkuNGkmJolGjmvfNz5cSRX4+YOA0W0RkYer62VnrJDFx4kSsX78ejQz59KqD9957D9HR\n0bCysoKfnx8iIyPLHcsSkkRBgdTUVFho+Hvs7IA7d6R1sYmIKqrrZ2etRze5urpi3759KCoqqvXB\napKcnIzVq1fjxIkTOHXqFHQ6HTZs2GD046hdbZqaSnEYLBHJoU5JIi4uDo8//jhGjhyJN99802jB\nODs7w9bWFrm5uSguLkZubi68vLyMVr65qM3IplKcmoOI5FDrjutHH30UHh4eWLBgAYQQuHr1qtGC\nadq0KV588UU8+OCDsLe3x7BhwzBkyJD79lu8eLH+sVarhVarNVoMalCXmoSbG3DrljzxEJH5iY2N\nRWxsbL3LqbFPIjExEVZWVvpJ/uR08eJFjBo1CgcOHICLiwsee+wxjB8/HpMnT/4rYAvok9i/H1iw\nADhwwPD3hIUBM2YAnK2diCojW59E27ZtceXKFXz++ef44osvEB8fX6cADREfH4++ffvCzc0NNjY2\nGDt2LA4dOiTb8dSqLs1NrEkQkRxqbG6ysbHBkCFD9M0+x44dwxdffIGSkhJ07NgRWq0WNjZ1mgLq\nPp06dcLSpUuRl5cHOzs77Nq1C0FBQUYp25zUpbnJ3R3IyJAnHiKyXLX+dA8KCtJ/cCcmJmLt2rUo\nLCyEl5cXhg0bBkdD57euhL+/P6ZMmYKePXvCysoKPXr0wMyZM+tcnrmqzd3WpZgkiEgOtb5Poiqp\nqak4cOAAJkyYYIziqmQJfRIffADcuCH9NtSaNcDhw8DatfLFRUTmy2T3SeTk5CA9Pf2+11u2bCl7\ngrAUbG4iIrWodXNTdHQ0GjVqhB9//BHu7u54/PHHMXz4cDlis1hZWUDr1rV7D5MEEcmh1jUJe3t7\ndO7cGbdv38a6deuQlZUlR1wWjaObiEgtap0kevTogQ0bNmDlypWIiopCcXGxHHFZNDY3EZFa1Lq5\nqWvXrvjoo48AALdu3UKzZs2MHpSlq0uSaNJEmpZDpwOsreWJi4gsT71ucAgNDTVWHFRGXYbA2thI\nieXuXanpiYjIGGrd3ETyq0ufBMAmJyIyPoOSRHZ2NgCgqKgIOp1O1oCobs1NAJMEERlfjUli+fLl\neOutt/DCCy8gMzMTzz77rCnismiZmXVLEhzhRETGVmOfRHBwMIKDg2Fra4uNGzeipKTEFHFZLJ0O\nyMlhTYKI1KHGmoSjoyOioqJgbW2NSZMmYeDAgaaIy2LdvSutMmdVh94id3fg5k3jx0RElqvGmkTP\nnj3Rs2dP/fOIiAj9499++w1+fn7QaDTyRGeBbt+WhrPWhacnkJpq3HiIyLLV+vvq119/jfnz5yMq\nKgqOjo747rvv5IjLYt25U/ck0aIFkJZm3HiIyLLVaQjsP/7xDzRr1gwrVqzA+fPnjR2TRbt9G2ja\ntG7vZZIgImOr9c107u7ueOCBBzBy5EiMHDlSjpgsWn1rEjduGDceIrJstU4SMTExWL58Odzc3BAU\nFIRBgwZZ5OpxcqlPkmjenDUJIjKuWjc3abVaxMbG4ptvvkGfPn1kXfPaEtWnucnVFSgsBHJzjRsT\nEVmuWicJjUaDuLg4ODg4YODAgZg1a5YccVms+tQkNBrWJojIuGrd3LRv3z4AwFtvvQU7OzuEhIRg\n9uzZRg/MUt25A3TuXPf3l/ZLtG1rvJiIyHLVOkmMGzcOGo0G/fv3R15eHs6cOSNHXBarPs1NAGsS\nRGRcNTY3HT9+vNzzAQMGoH///gCkVerK3mhXcV+qvfo0NwEcBktExlVjTWL79u04ffq0QYVdu3YN\ngYGB9Q7KkjFJEJGa1JgkFi5caIo46E/1bW5q0QI4eNB48RCRZVPdokN3797F+PHj4evri86dO+PI\nkSNKh2RSrEkQkZrUa/lSOcybNw8jR47Epk2bUFxcjJycHKVDMpmCAqCoCHB0rHsZXl7AtWvGi4mI\nLJtGCCGUDqJUZmYmAgICcOnSpSr30Wg0UFHIRnXjBuDvD6Sn172Mu3eBVq2k1e04OS8RlarrZ2ed\nahL5+fnQaDRo1KhRXd5epcuXL8PDwwPTpk3DyZMnERgYiE8//RQODg7l9lu8eLH+sVarhVarNWoc\nSqlvUxMg3XVtYyP1bbi5GScuIjI/sbGxiI2NrXc5BtUkSkpKsHnzZnz33Xc4dOgQSkpKIISAtbU1\n+vTpg8mTJ2PMmDH1XlciPj4effr0waFDh9CrVy/Mnz8fzs7OeOutt/4KuAHXJA4eBF5+GTh0qH7l\nBAQAa9YAHGhGRKXq+tlpUMe1VqvF8ePH8dJLL+HSpUtIS0vDjRs3cOnSJbz00kuIi4tDSEhIrQ9e\nkbe3N7y9vdGrVy8AwPjx43HixIl6l2su/vgDaNas/uX4+ACXL9e/HCIig5qbdu7cqW9a0ul0EELo\nm5t69+6N3r17o6CgoN7BNG/eHK1atUJSUhI6dOiAXbt2oUuXLvUu11wYK0m0aQMkJ9e/HCIig5JE\n2b6HIUOGYPDgwWjTpg2cnZ0xatSo+/apj88++wyTJ09GYWEh2rZti8jISKOUaw6MWZNISqp/OURE\nte643rt3r/7x/v37MX/+fHzyySdGC8jf3x9xcXFGK8+cpKcDHTrUvxwfH2DHjvqXQ0RUp5vpLl26\nhF9++QVdunTBDz/8YOyYLNYffwCenvUvx8eHzU1EZBx1ShLNmzdHRkYG5s2bhwULFhg7JotlrOam\n1q2lJNFAB4ERkQnV+ma6+Ph4/cyvQgj4+fkZPAGgMTTkIbC+vsCmTYAx+urd3ICzZ41TMyEi82ey\nm+m8vLywefNmFBYW4ty5cxg+fHitD0qVM1ZzEwB06gScO8ckQUT1Y1BNonTIa333MYaGWpMoKgIc\nHKT5m6yMMO3i009LN9M9+2z9yyIi8yf7zXQrVqxAUiXjKhMTE/H+++8b5WY6S3bzptREZIwEAUhL\noJ49a5yyiMhyGfSRtGPHDri5ueG5555DixYt0KFDB7Rv3x4tWrTA7Nmz4enpiV27dskda4NmrE7r\nUkwSRGQMte641ul0yMjIgEajgbu7O6yM9dXXQA21uWnHDmDFCmDnTuOUd/Uq0Ls3kJpqnPKIyLzJ\n2tx07NgxpP25ko21tTViYmLw1FNPYf78+bh9+3atD0r3M3ZNolUr4N49aepwIqK6MihJPPPMM/pp\nN/bv34/XXnsNERERcHZ2xsyZM2UN0FKkpxs3SWg00pDa3383XplEZHkMShIlJSVo+ufCyxs3bsQz\nzzyDcePG4e2338b58+dlDdBSpKcbf7hqly7AqVPGLZOILItBSUKn06GoqAgAsGvXLgwaNEi/rbi4\nWJ7ILMz169LSo8bUsycQH2/cMonIshh0M114eDhCQkLg7u4OBwcHDBgwAABw/vx5uLq6yhqgpZAj\nSQQFAatXG7dMIrIsBo9uOnz4MG7cuIGhQ4fC0dERAJCUlITs7Gz06NFD1iDLaqijm9q1A7ZtM84s\nsKUKCoCmTaVO8T8vGRFZqLp+dtZ6CKzSGmKSEEK62zojw/gf5kFBwEcfAf37G7dcIjIvsg6BJXnd\nvg3Y2cnzbT8oCDh2zPjlEpFlYJJQgevXAW9vecoOCgKOHJGnbCJq+JgkVCAlxfid1qVCQoB9+7i2\nBBHVDZOECqSkyFeTaN0acHICTLjkBxE1IEwSKiDH8NeyBg8GOP8iEdUFk4QKyFmTAIAhQ4Ddu+Ur\nn4gaLiYJFZCz4xoABg0CDhwACgvlOwYRNUxMEiogZ8c1ALi7S/M47dkj3zGIqGFSZZLQ6XQICAjA\nqFGjlA5FdkIAV64ADz4o73H+9jfgp5/kPQYRNTyqTBKffvopOnfubJI1s5V2+zZgYwPIPQXW3/4G\nbNkC6HTyHoeIGhbVJYmUlBRs27YNTz31VIObfqMyycmAj4/8x2nXTlqv4vBh+Y9FRA2HQbPAmtLz\nzz+PFStWICsrq8p9Fi9erH+s1Wqh1WrlD0wmpkoSADBhAvDtt5zHicgSxMbGIjY2tt7lqGqCv59/\n/hnbt2/H559/jtjYWHz44Yf4z3/+U26fhjbB34cfSh3XH38s/7GuXAECA6XRVH8uNEhEFqJBTPB3\n6NAhbN26FW3atEF4eDj27NmDKVOmKB2WrJKTgTZtTHOs1q2Brl2lKcmJiAyhqppEWfv27cMHH3zQ\n4GsSjz4KzJwJhIWZ5niRkdIop61bTXM8IlKHBlGTqMgSRjeZsk8CkPolDh2SjktEVBPV1iSq0pBq\nEkJIk+82rzR9AAATM0lEQVRdvw64uJjuuC++KA27ff990x2TiJTFlenMUEaGtFzp7dumPe6FC0Df\nvlJHtr29aY9NRMpokM1NDd3ly6ZtairVrh3QsyewcaPpj01E5oVJQkEXLwJt2ypz7NmzgVWruBgR\nEVWPSUJBSiaJ4cOBu3d5BzYRVY9JQkFKJgkrK6kDe9kyZY5PROaBSUJBSiYJAJg2DYiPB377TbkY\niEjdmCQUpHSSsLMDnn+etQkiqhqHwCokLw9o0gTIyQGsrZWL49494KGHpL6Jdu2Ui4OI5MUhsGbm\n8mVpLiUlEwQg3cw3axawfLmycRCROjFJKETppqay5s4FfvwRuHRJ6UiISG2YJBSipiTh5gbMmQOU\nWaaDiAgAk4Rizp+XpuRQixdeAHbsAE6fVjoSIlITJgmFJCaqK0k4OQGvvgosXKh0JESkJkwSCklK\nUleSAIC//x04fhw4ckTpSIhILTgEVgG5uVI/QHa28qObKoqMBFavBg4eBCxgOQ8ii8EhsGbk/Hmp\n01ptCQIAIiKAwkLg22+VjoSI1IBJQgFqbGoqZWUFrFwp9U9kZysdDREpjUlCAWpOEoC0IJFWy+k6\niIhJQhGJiUDHjkpHUb1ly4B//UtqGiMiy8UkoQC11yQAwNsbWLAAmDmTCxMRWTImCRMTQn33SFRl\n7lxpAsI1a5SOhIiUwiGwJnbzptTUdOuWeQwx/e03YPBg4ORJoGVLpaMhorriEFgzUdrUZA4JAgC6\ndQOefVb6MePcTER1pKokce3aNQwaNAhdunRB165dsXLlSqVDMjpz6I+oaOFCICUF+OorpSMhIlOz\nUTqAsmxtbfHxxx+je/fuyM7ORmBgIEJDQ+Hr66t0aEZjDiObKmrUSLq5bsAAYOBAoAFdDiKqgapq\nEs2bN0f37t0BAI0bN4avry9SU1MVjsq4zLEmAQCdOgHvvAOEhwMFBUpHQ0SmoqqaRFnJyclISEhA\ncHDwfdsWl1n4QKvVQqvVmi6wejKXkU2VefppaTrxefOkeyiISL1iY2MRGxtb73JUObopOzsbWq0W\nCxcuxJgxY8ptM+fRTTod0LixNLLJwUHpaOomKwsIDpbWn3j6aaWjISJD1fWzU3U1iaKiIowbNw5P\nPPHEfQnC3CUnA82amW+CAABnZ2DzZql/omtXoE8fpSMiIjmpqk9CCIEZM2agc+fOmD9/vtLhGN3p\n00CXLkpHUX8dOwJr1wLjx0uJj4gaLlUliYMHDyI6Ohp79+5FQEAAAgICEBMTo3RYRnPmjPTtuyEY\nNQp45RVg+HCp+YyIGiZVNTf1798fJSUlSochm9OnpQ/VhmLePCA1FXj0UWD3bvNuRiOiyqmqJtHQ\nnTnTMJqbylq2TBqtNXYskJ+vdDREZGyqHN1UHXMd3VRcDDg5mffIpqoUFwNPPimd25YtgL290hER\nUUWcu0nlLlwAvLwaXoIAABsb4JtvAA8PICxMmjmWiBoGJgkTaSgjm6piYwN8/TXQqhUwaBDwxx9K\nR0RExsAkYSK//gr8OeNIg2VtLQ2NHTFCWgKVq9oRmT8mCRM5fhzo0UPpKOSn0QBLlgCvvgr07w80\noBHMRBaJHdcmIATg6QmcOCEtC2op9u8HJk4EZs0C3ngDsOJXEiLFsONaxa5fl357eSkbh6kNHAjE\nxwPbt0tNUA1sQl8ii8AkYQInTgCBgeazGp0xtWwJ7Nsn9VEEBACbNikdERHVBpOECVhKf0RVbGyA\nRYuArVulVe7GjAGuXVM6KiIyBJOECcTHSzUJSxccDJw8KdUoAgKA5ct5lzaR2jFJyEynAw4dkkb6\nkLQU6qJF0t/k8GFpSo/ISOnvRETqwyQhs99+A5o3l9aRoL906AD89BOwYQOwbh3QrZvUX8FkQaQu\nTBIy279fGuVDlevbV/obLVsGfPCBtFbF559zag8itWCSkBmTRM00Gml9isOHgfXrgV27AB8f6Ya8\nc+eUjo7IsjFJyKikhEmiNjQaoF8/qRnq0CHptUGDpNfWrgUyM5WNj8gS8Y5rGR06BDz9tLSOBNVN\nUZE0tUdkpFTD6N8fGDcOGD0acHdXOjoi81HXz04mCRm9+CLQuLE0lxHV3717wH//C/zwA7BjhzSr\nbmgoMGQI0Ls3YGurdIRE6sUkoTJCAG3aSDeQdeumdDQNT14ecPCgVLvYuVNar2PAAECrle7HCAxs\nmGt3ENUVk4TKxMUBkycDiYmWOR2HqWVkAHv2AL/8Ahw5Iq3f0bGjlDB69ZISdefOgKOj0pESKYNJ\nQmUmTwb8/IDXXlM6EsuUny+t4XH0qHTH+6lTUsL28pKuS9eu0r0a7doBbdtKq+oxmVNDxiShIhcv\nSt9gL10CnJ2VjoZKFRVJzVKnTkk1jQsXpGt14YK0rV076cfHR0om3t7Sby8voEULaQ4qInPVYJJE\nTEwM5s+fD51Oh6eeegqvvvpque1qTxJCAOHhQPv2wNKltX9/bGwstFqt0eNSC7We3+3bfyWMK1ek\n6d1TUqTf168DN29Ko6m8vKQ76N3d//rx8JB+X70ai6FDtfDwAFxcGt76GWq9dsbS0M+vrp+dqvpu\npNPpMHv2bOzatQteXl7o1asXwsLC4Ovrq3RoBvv8c+D336WpJuqiof9DVev5NW0q/fTqVfn24mLg\nxg0pYaSnS30gpT+JiVIS+fXXWHz6qRYZGUBWljSyzdlZShhlf1d87OgodbKX/tjbl39e9nVra9P+\nXcpS67UzloZ+fnWlqiRx7NgxtGvXDj4+PgCAiRMnYsuWLWaRJNLSgPffB77/XrqBjiNrGhYbG6n5\nqbqVBRcvln4AaQ6q7GwpWWRmVv47Kwu4fBnIzZVGa+Xm1vxjayv922rUCHjggb9+l/6UfV7V49If\nW1sp6djY/PW77OOKr509K93oWHG/yt5jbS3VpKyspL6e0sd1eV7dPuxHkp+qksT169fRqlUr/XNv\nb28cPXr0vv0efVRq1ilV+riy12raXpf3lH2s0/31zXL8eGlCPze3qs6QLIW1tVRbcHEByvyTrhch\ngIICKVkUFkqPCwvvf1zdttLHBQXSv93CQul3cfFfv8s+Lvva6dPStClVba/4mhDSrAMlJeUfV3xe\n3baangM1J5HSH6D6x7m5wD//afj+an1cylgJVFV9Ej/88ANiYmKwevVqAEB0dDSOHj2Kzz77TL+P\nhl8diIjqxOz7JLy8vHCtzJJl165dg3eF+r2KchoRUYOnqvEXPXv2xPnz55GcnIzCwkJs3LgRYWFh\nSodFRGSxVFWTsLGxwapVqzBs2DDodDrMmDHDLDqtiYgaKlXVJABgxIgRSExMxKpVq7B+/Xq0b98e\n77//fqX7zp07F+3bt4e/vz8SEhJMHGn9xMTEoFOnTlWeX2xsLFxcXBAQEICAgAC8/fbbCkRZN9On\nT4enpyf8/Pyq3Mdcr11N52bO1w2QmngHDRqELl26oGvXrli5cmWl+5nr9TPk/Mz5Gubn5yM4OBjd\nu3dH586d8frrr1e6X62un1Ch4uJi0bZtW3H58mVRWFgo/P39xdmzZ8vt89///leMGDFCCCHEkSNH\nRHBwsBKh1okh57d3714xatQohSKsn/3794sTJ06Irl27VrrdnK9dTedmztdNCCHS0tJEQkKCEEKI\ne/fuiQ4dOjSo/3uGnJ+5X8OcnBwhhBBFRUUiODhYHDhwoNz22l4/1dUkgPL3S9ja2urvlyhr69at\niIiIAAAEBwfj7t27SE9PVyLcWjPk/ADz7aQfMGAAmjRpUuV2c752NZ0bYL7XDQCaN2+O7t27AwAa\nN24MX19fpKamltvHnK+fIecHmPc1dPjzJq3CwkLodDo0bdq03PbaXj9VJonK7pe4fv16jfukpKSY\nLMb6MOT8NBoNDh06BH9/f4wcORJnz541dZiyMedrV5OGdN2Sk5ORkJCA4ODgcq83lOtX1fmZ+zUs\nKSlB9+7d4enpiUGDBqFz587lttf2+qmq47qUofdCVMz25nIPhSFx9ujRA9euXYODgwO2b9+OMWPG\nICkpyQTRmYa5XruaNJTrlp2djfHjx+PTTz9F48aN79tu7tevuvMz92toZWWFX3/9FZmZmRg2bFil\n043U5vqpsiZhyP0SFfdJSUmBl5eXyWKsD0POz8nJSV9tHDFiBIqKinD79m2TxikXc752NWkI162o\nqAjjxo3DE088gTFjxty33dyvX03n1xCuIQC4uLjgkUceQXx8fLnXa3v9VJkkDLlfIiwsDF9//TUA\n4MiRI3B1dYWnp6cS4daaIeeXnp6uz/bHjh2DEOK+tkVzZc7Xribmft2EEJgxYwY6d+6M+fPnV7qP\nOV8/Q87PnK9hRkYG7t69CwDIy8vDzp07ERAQUG6f2l4/VTY3VXW/xJdffgkAeOaZZzBy5Ehs27YN\n7dq1g6OjIyIjIxWO2nCGnN+mTZvwxRdfwMbGBg4ODtiwYYPCURsuPDwc+/btQ0ZGBlq1aoUlS5ag\nqKgIgPlfu5rOzZyvGwAcPHgQ0dHR6Natm/7D5d1338XVq1cBmP/1M+T8zPkapqWlISIiAiUlJSgp\nKcGTTz6JwYMH1+uzU1VzNxERkbqosrmJiIjUgUmCiIiqxCRBRERVYpIgIqIqMUmQ6llbW+snWwsI\nCNCPRDF3UVFR8PDwwMyZM+tVzuLFi/Hhhx/qnx85cqTKMvPz89G9e3c0atTILMf+k+mpcggsUVkO\nDg5VzlRZOjjP3O74BaSYw8PDK52JtLi4GDY2hv33rHju27dvx4gRIyrd187ODr/++ivatGlT+4DJ\nIrEmQWYnOTkZHTt2REREBPz8/HDt2jWsWLECQUFB8Pf3x+LFi/X7vvPOO+jYsSMGDBiASZMm6b9x\na7VaHD9+HIB0A1Lph6ZOp8PLL7+sL+urr74CAP3UBo899hh8fX3xxBNP6I8RFxeHfv36oXv37ujd\nuzeys7MREhKCkydP6vfp378/Tp06dd+5lB2BHhUVhbCwMAwePBihoaHIycnBkCFDEBgYiG7dumHr\n1q2VnldiYmK5Mvfs2YMhQ4bgzJkzCA4ORkBAAPz9/XHhwoW6/snJgrEmQaqXl5env/HpoYcewkcf\nfYQLFy7gm2++QVBQEHbs2IELFy7g2LFjKCkpwejRo3HgwAE4ODhg48aNOHnyJIqKitCjRw/07NkT\ngPTtu7Lax9q1a+Hq6opjx46hoKAA/fv3x9ChQwEAv/76K86ePYsWLVqgX79+OHToEHr27ImJEyfi\n3//+NwIDA5GdnQ17e3vMmDEDUVFR+Pjjj5GUlISCgoJq19colZCQgFOnTsHV1RU6nQ4//fQTnJyc\nkJGRgT59+iAsLAzHjx+v8rwyMjJga2sLJycn/Otf/8K8efMwadIkFBcXo7i42FiXhCwIkwSpnr29\nfbnmpuTkZLRu3RpBQUEAgB07dmDHjh36RJKTk4Pz58/j3r17GDt2LOzs7GBnZ2fQUrg7duzAqVOn\nsGnTJgBAVlYWLly4AFtbWwQFBaFly5YAgO7du+Py5ctwcnJCixYtEBgYCAD6yeLGjx+PpUuXYsWK\nFVi3bh2mTZtW47E1Gg2GDh0KV1dXANJsnq+//joOHDgAKysrpKamIj09HQcOHLjvvEprJDt27MCw\nYcMAAH379sU777yDlJQUjB07Fu3atav5j01UAZubyCw5OjqWe/76668jISEBCQkJSEpKwvTp0wGU\nb84p+9jGxgYlJSUApM7cslatWqUv6+LFixgyZAiEEGjUqJF+H2traxQXF1fZF+Lg4IDQ0FBs3rwZ\n33//PSZPnmzQeZVOLAcA//d//4eMjAycOHECCQkJaNasGfLz86HRaO47r9I4YmJiMHz4cADSFCL/\n+c9/YG9vj5EjR2Lv3r0GxUBUFpMEmb1hw4Zh3bp1yMnJASDNl3/z5k0MHDgQmzdvRn5+Pu7du4ef\nf/5Z/x4fHx/97JiltYbSsv75z3/qm2aSkpKQm5tb6XE1Gg06duyItLQ0fVn37t2DTqcDADz11FOY\nO3cugoKC4OLiUuN5VJwhJysrC82aNYO1tTX27t2LK1euQKPRVHleQgj89ttv8Pf3BwBcvnwZbdq0\nwZw5czB69OhK+0SIasLmJlK9yr6tl30tNDQUv//+O/r06QNAmuo5OjoaAQEBmDBhAvz9/dGsWTP0\n6tVL/0H80ksv4fHHH8dXX32FRx55RF/eU089heTkZPTo0QNCCDRr1gw//fRTlX0Ytra22LhxI+bM\nmYO8vDw4ODhg586dcHR0RI8ePeDi4mJQU1PpOZU9xuTJkzFq1Ch069YNPXv2hK+vLwDcd16lzW7H\njx8vN+Pnv//9b3zzzTewtbVFixYtsGDBAoPiICqLE/yRxViyZAkaN26MF1980STHS01NxaBBg+4b\nfVRq/fr1iI+Px2effWaU473zzjto3749Hn/88Rr3bdOmDY4fP242U2CTctjcRBbFVPdTfP311+jd\nuzfefffdKvext7fH9u3b630zXakFCxbUmCBKb6YrLi6GlRX/+1PNWJMgIqIq8asEERFViUmCiIiq\nxCRBRERVYpIgIqIqMUkQEVGVmCSIiKhK/w99Jxb5rtOQTgAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 17 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Directional spectrum and Encountered directional spectrum\n", + "=========================================================\n", + "Directional spectrum\n", + "---------------------" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "D = wsm.Spreading('cos2s')\n", + "Sd = D.tospecdata2d(spec)\n", + "Sd.plot()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEXCAYAAACtTzM+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX+x/HXZZF9EwMFRdxXENTEtTBzTa0hM00Nt8Zm\nWrSafk2TpZba4thiTU22aJmVWpM5lmSapI6aqbjvJaEiKC5sgnAv5/cHeJNAvaCXzffz8fDx4N57\n7vl+vpyH5835nnO+x2QYhoGIiNzwHCq7ABERqRoUCCIiAigQRESkiAJBREQABYKIiBRRIIiICKBA\nkArwl7/8henTp1dIW23btmXt2rV2bSMxMREHBwcKCgrs2o5IRVMgyDUJDQ3F3d0db29v/Pz86Nat\nG++++y6X3t7yzjvvMHny5Ove9ujRo3n22WeLvbd7925uueWW695WWaxfv56uXbvi6+uLv78/3bt3\nZ8uWLXZtMzQ0lB9++MGubUjNp0CQa2IymVi+fDkZGRkkJSXx97//nZdffplx48bZ9H2z2WznCitW\nRkYGAwcOZOLEiZw9e5bjx48zZcoUXFxc7NquyWTiSveY1rTfs9iJIXINQkNDjdWrVxd7b/PmzYaD\ng4OxZ88ewzAMIzY21pg8ebJhGIaxZs0aIzg42Hj55ZeNunXrGvfff79RUFBgvPjii0aTJk0Mf39/\nY+jQocaZM2es61u3bp3RpUsXw9fX12jQoIExf/58Y+7cuYazs7NRq1Ytw9PT0xg8eLBhGIbRsGFD\nY9WqVYZhGEZubq4xceJEIygoyAgKCjImTZpkXLhwoVgds2fPNgICAox69eoZ8+bNs7a5fPlyIyIi\nwvD29jYaNGhgTJ061frZkSNHDJPJZFgslhK/j59//tnw9fW97O9r3rx5RteuXY2HH37Y8PHxMVq2\nbFns93fu3Dlj7NixRr169Yzg4GBj8uTJxdqZO3eu0apVK8PLy8to3bq1sW3bNmPkyJGGg4OD4ebm\nZnh6ehqzZs2y1vjBBx8YISEhxq233mrEx8cb9evXL1ZPw4YNre1PmTLFGDJkiDFy5EjDy8vLCAsL\nMw4ePGjMnDnTCAgIMEJCQoyVK1detm9S/ekIQa67m2++mfr167Nu3Tqg8K9Xk8lk/Tw1NZWzZ8+S\nlJTEu+++y5w5c1i2bBlr167lxIkT+Pn58dBDDwHw22+/MWDAACZOnEhaWhrbt28nIiKCBx54gBEj\nRvDUU0+RmZnJ119/XaKtGTNmsHnzZnbs2MGOHTvYvHlzsXMZqampZGRkkJyczAcffMBDDz1Eeno6\nAJ6ennzyySekp6fzzTff8M4771jbuJIWLVrg6OjI6NGjiYuL4+zZsyWW2bx5M02bNuX06dNMmzaN\nmJgYzp07BxQOg9WqVYtffvmFhIQEVq5cyfvvvw/AkiVLmDZtGgsWLCAjI4Nly5bh7+/PggULCAkJ\nYfny5WRmZvK3v/3N2tbatWvZv38/cXFxpR5BXLpdAJYvX87999/P2bNniYyMpHfv3gAkJyfz7LPP\nMmHChKv+DqQaq+xEkuqttCMEwzCMzp07GzNnzjQMwzBGjx5d7AihVq1a1r/UDcMwWrVqVWwdycnJ\nhrOzs2E2m42ZM2caMTExpbZ96XpLq6dJkybGihUrrJ999913RmhoqLUONze3Yn99BwQEGD/99FOp\nbU2cONF47LHHDMO48hGCYRjGvn37jNGjRxv169c3nJycjMGDBxupqamGYRQeIQQFBRVbvlOnTsaC\nBQuMlJQUw8XFxcjJybF+9umnnxo9e/Y0DMMw+vTpY8yZM6fUNv+4HS7WeOTIEet7a9asKXGEcOn3\npkyZYvTp08f62bJlywxPT0+joKDAMAzDyMjIMEwmk5Genl5qDVL9OVV2IEnNdOzYMWrXrl3qZzfd\ndBO1atWyvk5MTORPf/oTDg6/H7A6OTmRmprKsWPHaNy4cblqSE5OpmHDhtbXISEhJCcnW1/7+/sX\na9Pd3Z2srCwAfvrpJ/7+97+zZ88e8vLyuHDhAkOHDrWp3ZYtWzJv3jwADhw4wMiRI5k0aRKffvop\nAMHBwcWWb9iwIcnJySQlJZGfn0+9evWsnxUUFBASEgIU/k6bNGlSll8BDRo0KNPyAQEB1p/d3Nyo\nU6eO9SjCzc0NgKysLLy9vcu0XqkeNGQk193PP/9McnIy3bt3t7536dDEH4cpQkJCrMMrF/+dP3+e\noKAgGjRowC+//FJqO39czx8FBQWRmJhofZ2UlERQUJBNfbjvvvu46667OHbsGOfOnePBBx8s12Wm\nLVq0IDY2lt27d1vfO378eLFlfvvtN4KDg2nQoAEuLi6cPn3a+ntIT09n165dQOHO/fDhw6W2c7nf\nxaXve3h4cP78eetri8XCqVOnytwnqbkUCHLNjKKx6YyMDJYvX87w4cMZNWoUbdq0sX5uXOEKmAcf\nfJB//OMfJCUlAXDq1CmWLVsGwIgRI1i1ahVLlizBbDZz+vRpduzYAUBgYCC//vrrZdc7fPhwpk+f\nTlpaGmlpaTz//POMGjXKpj5lZWXh5+dHrVq12Lx5M59++ulVAwgKjwheffVV607/6NGjfPbZZ3Tp\n0sW6zMmTJ5kzZw75+fksWbKE/fv3M2DAAOrWrUufPn14/PHHyczMpKCggF9++cV6X8X48eP55z//\nybZt2zAMg8OHD1t/Z4GBgZcNzouaN29Obm4u3377Lfn5+UyfPp0LFy7Y9PuQG4MCQa7ZoEGD8Pb2\nJiQkhBdffJEnnnjCOmQCJU8q/3HHOnHiRAYPHkyfPn3w9vamS5cubN68GSj8q/jbb79l9uzZ+Pv7\nExkZyc6dOwEYN24ce/fuxc/Pj5iYmBJ1TZ48mY4dOxIeHk54eDgdO3Ysdj/ElXbwb7/9Ns899xze\n3t688MIL3HvvvcU+v9x3vby8+Omnn4iKisLT05MuXboQHh7O7NmzrctERUVx6NAhbrrpJp599lm+\n/PJL/Pz8APj444/Jy8ujdevW1K5dm3vuuYeUlBQAhgwZwjPPPMN9992Ht7c3MTEx1pPWTz/9NNOn\nT8fPz49XX3211Bp9fHx4++23GT9+PPXr18fT07PYkNIft1Np67AlFKX6MhlX+tNNRK6r+fPn88EH\nH1ivwBKpSnSEICIigAJBpEKVNiwjUlVoyEhERAAdIYiISJEqfWOaDq1FRMqnPIM/lXaEkJubS1RU\nFBEREbRu3Zqnn3661OUuXsNeE/9NmTKl0mtQ39Q/9a/m/SuvSjtCcHV1Zc2aNbi7u2M2m+nevTvr\n168vdneriIhUnEo9h+Du7g5AXl4eFovlsnPfiIiI/VVqIBQUFBAREUFgYCA9e/akdevWlVlOhYuO\njq7sEuymJvcN1L/qrqb3r7yqxGWn6enp9O3bl5deeqnYhjKZTEyZMsX6Ojo6WhtSROQP4uPjiY+P\nt76eNm1auc4lVIlAAHjhhRdwc3Mr9nCPqz0WUERESirvvrPShozS0tKsT4nKycnh+++/JzIysrLK\nERG54VXaVUYnTpwgNjaWgoICCgoKGDVqFL169aqsckREbnhVZsioNBoyEhEpu2o3ZCQiIlWLAkFE\nRAAFgoiIFFEgiIgIoEAQEZEiCgQREQEUCCIiUkSBICIigAJBRESKKBBERARQIIiISBEFgoiIAAoE\nEREpokAQERFAgSAiIkUUCCIiAigQRESkiAJBREQABYKIiBRRIIiICKBAEBGRIgoEEREBFAgiIlJE\ngSAiIoACQUREiigQREQEUCCIiEiRSguEo0eP0rNnT9q0aUPbtm2ZM2dOZZUiIiKAyTAMozIaTklJ\nISUlhYiICLKysujQoQNLly6lVatWvxdnMlFJ5YmIVFvl3XdW2hFC3bp1iYiIAMDT05NWrVqRnJxc\nWeWIiNzwnCq7AIDExEQSEhKIiooq8dnUqVOtP0dHRxMdHV1xhYmIVAPx8fHEx8df83oqbcjooqys\nLKKjo5k8eTJ33XVXsc80ZCQiUnbVbsgIID8/n7vvvpuRI0eWCAMREalYlXaEYBgGsbGx+Pv789pr\nr5W6jI4QRETKrrz7zkoLhPXr13PLLbcQHh6OyWQC4MUXX6Rfv36/F6dAEBEps2oXCLZQIIiIlF21\nPIcgIiJVhwJBREQABYKIiBRRIIiICKBAEBGRIgoEEREBFAgiIlJEgSAiIoACQUREiigQREQEUCCI\niEgRBYKIiAAKBBERKXLFR2jOnj37qivw9PRkwoQJ160gERGpHFec/rpevXo8+OCDl/2yYRgsXLiQ\nQ4cO2ac4TX8tIlJm5d13XvEIYeTIkUyZMuWKK8jOzi5zoyIiUvXoATkiIjWMXY4QLj2HcGkDFx95\n+fjjj5e5QRERqZquGAiZmZmYTCYOHDjAzz//zODBgzEMg+XLl9OpU6eKqlFERCqATUNGPXr04Ntv\nv8XLywsoDIoBAwawbt06+xanISMRkTKz6zOVT548ibOzs/W1s7MzJ0+eLHNjIiJSdV1xyOii+++/\nn06dOhETE4NhGCxdupTY2Fh71yYiIhXI5quMtm7dyrp16zCZTNxyyy1ERkbauzYNGYmIlEN5951l\nuuw0NTWV3Nxc61VGISEhZW6wLBQIIiJlZ9dzCMuWLaNZs2Y0btyY6OhoQkND6d+/f5kbExGRqsum\nQJg8eTIbN26kefPmHDlyhNWrVxMVFWXv2kREpALZFAjOzs7UqVOHgoICLBYLPXv2ZMuWLdfc+Nix\nYwkMDCQsLOya1yUiItfGpkDw8/MjMzOTHj16MGLECB599FE8PT2vufExY8YQFxd3zesREZFrZ9NJ\n5ezsbFxdXSkoKGDhwoVkZGQwYsQI/P39r7mAxMREBg0axK5du0oWp5PKIiJlZpe5jADMZjMDBw5k\nzZo1ODo6Mnr06PLUJyIiVdxVA8HJyQkHBwfOnTuHr69vRdRUzNSpU60/R0dHEx0dXeE1iIhUZfHx\n8cTHx1/zemwaMho8eDAJCQn06dMHd3f3wi+aTMyZM+eaC9CQkYjI9WW3ISOAmJgYYmJirDekGYZh\n/VlERGqGSn1AzvDhw/nxxx85ffo0AQEBPP/884wZM+b34nSEICJSZnaZuuLPf/4zc+fOveIKbFmm\nvBQIIiJlZ5cho6+++gpXV9crrviHH34oc6MiIlL1XDEQZs2addVzBT169LiuBQmkpGQxZUo83357\niFOnsmne3J/Y2HZMmNART89alV2eiNRQlXoO4WpuxCGjfftOcdttHzNqVDgPPtiRgAAPduxI4bXX\nNrFzZyqffz6E9u3rVXaZIlKFVcj01xXtRguEHTtS6NdvIa+8cjujRrUr8fnnn+/mkUdWMH16TyZM\n6FgJFYpIdaBAqOZ+/fUsPXrM4/XX+3LPPW0uu9yBA2nExCymT58mzJ7dBwcHXf4rIsVVWCBYLBay\ns7Px9vYuc2NldaMEQn6+ha5dP2TEiDAmTep81eXPncvlzjs/p2FDH+bNuxNHR5vmKBSRG4RdH5Az\nfPhwMjIyyM7OJiwsjFatWvHKK6+UuTEp3cyZ6/D3d2PiRNueMeHr68qKFSNIScli1KivMJsL7Fyh\niNwIbAqEvXv34u3tzdKlS+nfvz+JiYksWLDA3rXdEJYtO8C7727lgw8GF6U6zF8NYY+A693Q8i/w\n1nIwW4p/z93dma+/HkZa2nliY5cqFETkmtkUCGazmfz8fJYuXcqgQYNwdnbW1BXXKD/fwksvrWf8\n+GV8/fUwgoO9yTfD2Dkw57/w6jg4+ym8/wj8ZyP0eQ7SMoqvw82tMBTOnMnh7rsXk5OTXzmdEZEa\nwaZAmDBhAqGhoWRlZXHLLbeQmJiIj4+PvWursbKy8hg48DNWrfqVzZsf4OabgwH4xwI4lgbrXoLe\nEeDmAt1bw/fPQ3go3DkDLvxhn38xFDw8nOnffyHp6bkV3yERqRHKdZWRYRhYLBacnGyaG6/cauJJ\nZbO5gN69F9C4sR/vvjsQJ6fCTP7mZ/jrv2Hba+Bfyvn6ggIY+grU9oS5D5f2ucEjj6xg06ZjxMWN\n4KabPOzcExGpqux6lVFubi5ffvkliYmJmM1ma4PPPfdc2SstS3E1MBD+8Y/VbNt2gm+/HWG9ZDQr\nB1o/BB9Ngp7h8A1n+A9nsGBwOz4M5yYcMZF5HsIehbkPQZ/Ikus2DIPJk9fw1Vf7+P77UQQH2/9K\nMBGpeuw6/fWdd96Jr68vHTp0wNXVtcyNSKFdu1L58MMEdu36S7H7B6Z9Dre2hehwgzmcII5zPEYQ\nLjjwPqmsJYM5NMbL3YF3/wp/eQf2/QtqORdfv8lkYsaM2/DxcaFnz49Yv34sAQE6UhAR29h0hNC2\nbVt2795dEfUUU9OOEO65ZwmdOwfzxBNdre9t+wX6T4Vdb8J639PM5yTzaIo/hXt7MwZPkogXjjxP\nCFC4/MCb4aE7Lt/WlCnxfPPNQdasicXLy8WOvRKRqsau9yF07dqVnTt3lnnl8rs9e06ybt1vPPjg\n71NOmC0w/k2YNQbMvnnMJpl/Eoo/zuRzBgvnccLEdELYQhYrOQfAzFEwfTFkX+H88dSpt9K+fT2G\nD/8Si0WXpIrI1dkUCOvWraNDhw40b96csLAwwsLCCA8Pt3dtNcqHH27ngQc64OHx+2ylc78DHw8Y\n1RNmcZwR1KERORxgGPvoz156k8o8PHDkWerzKsnkYxDZBHq0hre+uXx7JpOJf/1rAFlZeTz3XLz9\nOygi1Z5NQ0aJiYmFC1/yCE2A0NBQuxV2sb2aMGRkGAYhIa8TFzeCNm0CAMg8D00nwMrnwdQom0kc\n4b804iixeNONejxKHsf4lYfxZygBjGIshxhIbWLwZ/dv0GsyJL5feHnq5Zw6lU2HDnN5771B9O3b\ntIJ6LCKVya5DRqGhoZw7d45ly5bx3//+l/T0dLuHQU1y5Mg5CgoMaxgAfLau8B6Ddo1gLqmMJ5BM\nPqEWQdRjEiYccaEhjfk3KbzDBY4xmkAWkwZA24aF9yb89+crt33TTR78+98DmTgxjvx8y5UXFpEb\nmk2B8MYbbzBy5EhOnTpFamoqI0eOZM6cOfaurcbYvPk4UVHBxd5bGA/33wbHuMA2shiEiZN8RDBP\nYEo5CD99Ain7cSEYf4Zwio/oghdHyeM4F4DCoaaPbXhgXf/+TQkO9ubjj3fYoXciUlPYNGQUFhbG\npk2b8PAovIQxOzubzp07s2vXLvsWV0OGjB577Dvq1vXgqae6A3D0FERMguT58JbzcSzACD6ngPM0\nONIH/nUHNI+GQz/Cfe+SH9mdfQymNXG8QAYhuDCOQLJyoMFY2P8OBPpeuYaNG48ybNiXHDz4MC4u\n9r2hUEQql12HjAAcHBxK/Vmubtu2E3ToEGR9vWg9/Kkz4FzAfzjDUNw5zZcEZN0Jc++GUR/Cn7+A\nh+Ng4Z9xPpOLD704zZf0w48VnAXA0w3u6lx4tHE1Xbo0oE2bm/jggwT7dFJEqj2b9uxjxowhKiqK\nqVOnMmXKFDp37szYsWPtXVuNsX9/Gm3a3GR9/c0WiOkCP5NFI1zwZj0etMPlf99C677QbnDhgg07\nQPc/w8pX8GMg6fxAJzw5Th5pFE5qNKwHfLXJtjqeeqobc+duvd7dE5EawqZAePzxx5k3bx5+fn74\n+/szf/58HnvsMXvXViPk5Vk4ezaHwEBPAAwDtv8KHZrCLs4TiQcZrMWH22DL5xB1f/EVdBsPWxfh\nYWlJDgdwwEwr3NnLeQC6tISEXyHPholOu3ULISkpneTkzOvdTRGpAa4YCBkZhfMtnzlzhkaNGjFy\n5EhGjBhBw4YNOXPmTIUUWN2dOJFJYKCndaqKpFOFl4kG+sJOsgnHjUw24p0SCJknsTSMYkGfPsyu\nV4+Nr74KNzWG2iE4HtlDLeqRw2Ha4MYecgDwdofmQfDzoavX4uTkQO/eTfjuu8P27LKIVFNXDITh\nw4cD0L59ezp06EDHjh3p2LEjHTp0oEOHDhVSYHWXnJxJUJCX9fX2IxDZGAwMdnGelpzAAU9qbVsL\nkUPY9sGHGBYLI7/7jvUvvsipffugxW1wYDXuhHGeXbTBnT1FRwhQOA/S2j221dOvXxPi4n653t0U\nkRrgioHwzTeFt8ImJiZy5MiREv/k6pKTM6lXz9P6escRaBcKJ8jHAXAhAS86wd44LC378ePzz9Nn\n9mwCw8O55bnn+P7JJ6H5bXAwHnfacp49tMadfZcEQo/WsH6fbfX06dOEVat+rRFXb4nI9WXTOYRe\nvXrZ9J6UlJWVh7f377cSn0qHerXhNPkE4kw+ybgQAqcOk5btipufH3UjIgBoeeedpGzfDgFN4UwS\ntahLPqcIxJk0zNZ1NgosfLCOLYKDvblwwUxmZt517aeIVH9XDIScnBxOnz7NqVOnOHPmjPVfYmIi\nx48fv+bG4+LiaNmyJc2aNePll1++5vVVRbm5Zlxdf7/uPyMHvNwgCwteOGLmLE4Wb8g+w7lTmfg2\namRd1isoiPOnTmGp5QNZp3DEBwsZuBRttgsUTlrn7w2ny3CeODDQk9TUrOvTQRGpMa54h9K7777L\nG2+8QXJycrFzBl5eXjz8cCmP7SoDi8XCww8/zKpVqwgODubmm29m8ODBtGrV6prWW9VcuGApFgiZ\nRYGQSQGeRYHgnAF41iH96FF8Gza0Luvg5IRnvXpknM7ELz8Xx3w3LM7pAHjhSCYWXHCgTpkDwYPU\n1GyaNfO/Xt0UkRrgioEwadIkJk2axJtvvskjjzxyXRvevHkzTZs2tc6JNGzYML7++usaFwgljhDO\nF14ZlInl90BIzwefINKTkvC5JBAAfBs25FxSEn6edXDKNmP2LQwEz6JAqIMz7kUjUucvYP35SnSE\nICKlsWkOA5PJxNmzZ/Hz8wPg7NmzfPbZZ/z1r38td8PHjx+nQYMG1tf169fnp59+KrHc1KlTrT9H\nR0cTHR1d7jYrg8VSUOzpaGYLODlAPgbOmCjgAqY8Czi7kZ+djXf9+sW+7+zhQV5WFji5YMq3YFA4\n9u+MiXx+PzHs4gwX8m0LBFdXJ3JzzVdfUESqhfj4eOLj4695PTYFwnvvvVdsiMjPz4+5c+deUyBc\nnEr7ai4NhOrI1dWJkyd/vyLI0xWycsETB7Kw4IQfZh8XyEjBu8EdZBw9Wuz76UlJ+ISEwOo0LJ5O\nOOIDFJ6D8MQRKAyZrBzwcbetppMns/VoTZEa5I9/LE+bNq1c67HpKqOCggIKCn5/6pbFYiE/34Zb\nY68gODiYo5fs/I4ePUr9P/x1XBO4uBT/a9zbvXDYyAtHayDk+ThAejI+ISGkJyVZlzUMg/TffsM3\nKBDMFzC7GjgVBUImFryLAuFMJvh6gK1TTKWmZlnvnBYRucimXUjfvn0ZNmwYq1evZtWqVQwbNox+\n/fpdU8MdO3bk0KFDJCYmkpeXx6JFixg8ePA1rbMq+uPwjJdb4YnlwnMABThRG7PrBXBwxLdeHc79\n9pt12dyzZzE5OODqZAbPOlhMGUVXGhnkUoB70eY7nVl4pZGtUlOzCQzUEYKIFGfTkNHLL7/M3Llz\neeeddwDo3bs348ePv7aGnZx466236Nu3LxaLhXHjxtW4E8oAbm5OnD//+9GUjweczQJvHEnHjDP+\nmDkFvsH413Elbd8+LmRm4uLlxcndu/ENDYX0E+AVgJmzOOJNRtFwkQOFw26p56COjYGQm2smPT2X\nOnVsHF8SkRuGTYHg6OhIbGwsPXv2pGXLltet8f79+9O/f//rtr6qKCDAg1Onsq2vWwTDj7shBBdS\nyMeR1mTyATTpjvvJrbQYPJgNr7zCrVOnsvKJJ4iaOBF++R+ERpHDAdxozkFyaIKrdZ0/HYQOTWyr\nZ/36JDp2DMLRUVOYi0hxNu0Vli1bRmRkpHWYKCEhoUYO79hDUJAXx4//fpNARKPC2U5r4UBTXEmi\nNefZS0HEANj2BbfNnMna6dP5sFs3anl5ETFmDBxYDS1u4zy7cCeMvZynNb//hb92D9zSxrZ64uIO\n06+fnq0sIiXZFAhTp07lp59+sl52GhkZya+//mrXwmqKoCCvYtNNtwmBwycgNw/CcWcnBbjRiqyW\nPpB6AB8Pg8ePH+eWyZMZ+sUXmPJz4fA6jBa3cp69uNOGPeTQtigQLBb43z7bA2HFisP0769AEJGS\nbAoEZ2dnfH2LP6NRT02zjbe3C4ZhkJlZ+Bxk11rQtB7sSYIwPNjJebzpQYbTRoj4E2xdjFdQEM0H\nDsStdm3YsRRCo8j1ysKZOjjhwx7O0wY3APYehQAfCLjKIzQBkpLSOXkyu9jT20RELrJpr96mTRsW\nLlyI2Wzm0KFDPPLII3Tt2tXetdUIJpOJRo38OHTo9+dHdGsN32+Hm/HkJzJxpRdn+Y6CbvfD6lch\nI7VwQXMefPsC3PoQGfyIJ504xgUysNCo6BzC8p/htnDbann//W3ExLQqdqOciMhFNgXCW2+9xZ49\ne3BxcWH48OF4e3vz+uuv27u2GqNdu0C2b0+xvh7eAz5bC/WoRTs8+AFf3GjF2UYnC5+Q9m4M7F0J\nb/aDoLYY4f1J4zP8uZs4ztEbHxwxYRjw0Q8Qe9vVazh9+jxvv/0zTz3VzY49FZHq7KpXGZnNZu64\n4w7WrFnDzJkzK6KmGufmm4PYvPk4Y8dGAtC9NZzJKhw2Gh5yE2+QTG8eIIm/43fHf3EwCmDFdGge\nDXdM4awpjloE4UE4K9jPkwQDhVcXGUDnFlevYdasDQwZ0prGjf3s11ERqdauGghOTk44ODhw7ty5\nEucRxDZRUfWZP3+H9bWDAwzrAQvjYfr9XsykgIO0xJfmpDksImDwdOuyBmZO8gH1eJTfyOUU+dxM\n4V3GH/8A9/eEq80Ccvx4Bu+9t43t2yfYo3siUkPYdB+Ch4cHYWFh9O7dGw+PwjtcTSYTc+bMsWtx\nNUVkZF0OHTrNuXO5+PoWjv2P6QW3TYZ/3GNijFsAc0nhdR7nMKPxpCPutAUgmddwxBdvbuE9TtAf\nPxwxkZUDi9fDllev3LZhGEycGMeECR1o0MDH3l0VkWrMpkCIiYkhJiam2Hu2Tk4nhfMZ3X57Y77+\nej+xsYXbt9tjAAAVDUlEQVRPQ2sdAre3g5e/hGdH1uZDUtlBCC2ZxkHu5yaGkcMB8jlFMz4mDQtf\ncpqvKLwx8O1voVc7CA28ctuvv76JX389yyefxFx5QRG54ZmMKvxwXZPJVGOe/btkyR7efHMza9eO\nsb53LA0iJsKGVyAp+ByvkcyXtASSOMdKnAnAjwE4UItn+A1vHHmK+mSch2YT4IcZhfc1XM7Klb8Q\nG7uUTZvG0bChhvtEbhTl3XdeMRDuuecelixZQlhYWKkN7ty5s8wNlqm4GhQIZnMBrVr9i/feG0R0\ndKj1/deXwdJN8MN0+D+HRPxw4hmKz/r6DWd4kxS+oAWeODLlU0g8CR9Nunx7W7cm07//Qv7zn3vp\n3v0KqSEiNY5dAiE5OZmgoCASExNL/fzi087spSYFAsDHH+/g/fe38eOPo61DbhYLdPk/+HNfGNLH\nzCgO0QNvHicIR2AZZ3mF47xPE1rhTspZaPNw4bmDRpcZLjpwII2ePT/i7bfv4K67rt/cUyJSPdgl\nECpbTQsEs7mAqKj3GT26HY88EmV9f/uv0GcK7P0XOHqb+T8S2U8OTpjwwpHZhNKs6M7koS9Dk3rw\n4v2lt7F9ewoDBizkxRd7Wc9XiMiNxS6B4OnpedmTxyaTiYyMjDI3WBY1LRAAfvnlDF26fMCiRUPo\n2bOR9f3H3ocTZ+GzvxVeRnqUCxRgEIILpqJprhfGw/OLYPvr4FbKozI3bDjKXXd9zttv38GQIa0r\nqEciUtXY9Qhh8uTJBAUFMXLkSAAWLlxIcnIyL7zwQtkrLUtxNTAQANasOcK9937BG2/0Y/jwwvMz\nORcKh44e6AMP3VHyOz8dgIEvwOrpEB5a8vPvvjvMqFFfsWDBn+jbV5PXidzI7BoI4eHhJU4gl/be\n9VZTAwEgIeEE9933H9q2DeDjj+/Czc2ZQ8kQ/Q94/C54bHDhDWyGUTjNxcT3YP5EuOPmkuv6/PPd\nTJwYx1df3UvXrg0qvjMiUqWUd99p01xGHh4efPLJJ1gsFiwWCwsXLsTTU8/kvRaRkfVISJiAk5MD\n9933HwoKDJoFwcZZ8MX/oOF4GPIStH248F6FldNKD4OPPtrOE0+sZNWqUQoDEbkmNh0hHDlyhIkT\nJ7JhwwYAunXrxhtvvKGrjK6DvDwLPXt+RExMS5544vcZZPckwdbDEBoAPdqUPj3FRx9t5x//+IHV\nq++nZcs6FVi1iFRlusqoGvv117NERb1PfHwsbdoE2PSd997byrRpP7JqlcJARIqz65CR2Ffjxn78\n85+9ufPOz0lJybrisgUFBtOmxfPii+tZsyZWYSAi141NcxmJ/cXGRpCUlM7tt39MXNxI6tf3LrHM\n2bM53H//UtLSzrNhwzjq1tV5HBG5fnSEUIVMnnwLI0aE0a3bh+zde8r6vmEYrFz5CxER79K0aW1+\n/HG0wkBErjubziGkpKTwzDPPcPz4ceLi4ti7dy8bN25k3Lhx9i3uBjmH8Efz5iXwf/+3inbtAgkM\n9GT79hQKCgxmzerNwIHNK7s8Eani7HpSuV+/fowZM4YZM2awc+dO8vPziYyMZPfu3eUq1ubibtBA\nADh3LpeNG49y6tR5WrTw5+abg/UsZBGxiV0DoWPHjmzZsoXIyEgSEhIAiIiIYPv27WWvtCzF3cCB\nICJSXna9ysjT05PTp09bX2/atAkfHz19S0SkJrEpEGbPns2gQYP49ddf6dq1K6NGjbqmx2cuWbKE\nNm3a4OjoyLZt28q9HhERuX5svjHNbDazf/9+DMOgRYsW1KpVq9yN7t+/HwcHByZMmMDs2bNp3759\n6cVpyEhEpMzKu++06T6E8PBwhg0bxr333kuTJk3K3MgftWyph7aIiFQ1Ng0ZLVu2DEdHR4YOHUrH\njh355z//SVJSkr1rExGRCmTTEUJoaChPPfUUTz31FIcOHeKFF17gqaeewmKxXPY7vXv3JiUlpcT7\nM2fOZNCgQTYXOHXqVOvP0dHRREdH2/xdEZEbQXx8PPHx8de8HpvPISQmJrJo0SIWL16Mo6Mj9957\nL0888cQ1Nd6zZ0+dQxARuc7seg4hKiqKvLw8hg4dypIlS2jcuHGZG7oc7fBFRKoGm44Q9u/ff11P\nBH/11Vc8+uijpKWl4ePjQ2RkJCtWrChZnI4QRETKzO7PQ1i+fDl79+4lJycHU9HTWp577rkyN1im\n4hQIIiJlZtc7lSdMmMDixYutN6MtXryY3377rcyNiYhI1WXTEUJYWBi7du0iPDycnTt3kpWVRb9+\n/Vi/fr19i9MRgohImdn1CMHNzQ0Ad3d3jh8/jpOTU6mXlIqISPVl01VGAwcO5OzZszz55JN06NAB\ngAceeMCuhYmISMW64pDRa6+9Rrdu3Wjfvj1OToXZkZubS25uLr6+vvYvTkNGIiJlZpf7EI4dO8ak\nSZPYt28fYWFhdO/ena5du9K1a9dyFyoiIlWTTSeVL1y4wJYtW9i4cSMbNmxg48aN+Pr6sm/fPvsW\npyMEEZEys+udyjk5OWRkZJCenk56ejpBQUGEh4eXuTEREam6rniE8MADD7B37168vLzo1KkTXbp0\noXPnzvj5+VVMcTpCEBEpM7tcdpqUlMSFCxeoW7cuwcHBBAcHV8jJZBERqXhXPYdQUFDAnj17rOcP\ndu3ahb+/P507d+b555+3b3E6QhARKTO7z2V09OhRNmzYwP/+9z+WL1/O6dOnSU9PL3ODZSpOgSAi\nUmZ2CYQ33njDelWRk5MTXbt2pVu3bnTt2pW2bdvi6Oh4TUVftTgFgohImdnlKqPExESGDh3Ka6+9\nRlBQULmLExGRqs/mIaPKoCMEEZGys+vkdiIiUvMpEEREBFAgiIhIEQWCiIgACgQRESmiQBAREUCB\nICIiRRQIIiICKBBERKSIAkFERAAFgoiIFFEgiIgIUEmB8OSTT9KqVSvatWtHTEyM3Z+rICIiV1cp\ngdCnTx/27NnDjh07aN68OS+++GJllCEiIpeolEDo3bs3Dg6FTUdFRXHs2LHKKENERC5xxQfkVIQP\nP/yQ4cOHX/bzqVOnWn+Ojo4mOjra/kWJiFQj8fHxxMfHX/N67PaAnN69e5OSklLi/ZkzZzJo0CAA\nZsyYwbZt2/jyyy9LL04PyBERKTO7PFPZnubPn897773H6tWrcXV1LXUZBYKISNnZ5ZnK9hIXF8es\nWbP48ccfLxsGIiJSsSrlCKFZs2bk5eVRu3ZtALp06cLbb79dsjgdIYiIlFm1GzKyhQJBRKTsyrvv\n1J3KIiICKBBERKSIAkFERAAFgoiIFFEgiIgIoEAQEZEiCgQREQEUCCIiUkSBICIigAJBRESKKBBE\nRARQIIiISBEFgoiIAAoEEREpokAQERFAgSAiIkUUCCIiAigQRESkiAJBREQABYKIiBRRIIiICKBA\nEBGRIgoEEREBFAgiIlJEgSAiIoACQUREilRKIDz77LO0a9eOiIgIevXqxdGjRyujDBERuYTJMAyj\nohvNzMzEy8sLgDfffJMdO3bw/vvvlyzOZKISyhMRqdbKu++slCOEi2EAkJWVRZ06dSqjDBERuYRT\nZTX8zDPPsGDBAtzd3dm0aVNllSEiIkXsNmTUu3dvUlJSSrw/c+ZMBg0aZH390ksvceDAAebNm1ey\nOJOJKVOmWF9HR0cTHR1tj3JFRKqt+Ph44uPjra+nTZtWriGjSjmHcKmkpCQGDBjA7t27S3xW088h\nxMfH19iAq8l9A/Wvuqvp/atW5xAOHTpk/fnrr78mMjKyMsqodJcmek1Tk/sG6l91V9P7V16Vcg7h\n6aef5sCBAzg6OtKkSRPeeeedyihDREQuUSmB8MUXX1RGsyIicgWVfg7hSkwmU2WXICJSLZVn115p\nl53aogpnlYhIjaO5jEREBFAgiIhIkSoRCHFxcbRs2ZJmzZrx8ssvl7rMo48+SrNmzWjXrh0JCQkV\nXGH5Xa1v8fHx+Pj4EBkZSWRkJNOnT6+EKstn7NixBAYGEhYWdtllqut2g6v3rzpvO4CjR4/Ss2dP\n2rRpQ9u2bZkzZ06py1XXbWhL/6rrNszNzSUqKoqIiAhat27N008/XepyZd52RiUzm81GkyZNjCNH\njhh5eXlGu3btjL179xZb5ptvvjH69+9vGIZhbNq0yYiKiqqMUsvMlr6tWbPGGDRoUCVVeG3Wrl1r\nbNu2zWjbtm2pn1fX7XbR1fpXnbedYRjGiRMnjISEBMMwDCMzM9No3rx5jfm/Zxi29a86b8Ps7GzD\nMAwjPz/fiIqKMtatW1fs8/Jsu0o/Qti8eTNNmzYlNDQUZ2dnhg0bxtdff11smWXLlhEbGwtAVFQU\n586dIzU1tTLKLRNb+gbV9+R5jx498PPzu+zn1XW7XXS1/kH13XYAdevWJSIiAgBPT09atWpFcnJy\nsWWq8za0pX9Qfbehu7s7AHl5eVgsFmrXrl3s8/Jsu0oPhOPHj9OgQQPr6/r163P8+PGrLnPs2LEK\nq7G8bOmbyWRiw4YNtGvXjgEDBrB3796KLtNuqut2s1VN2naJiYkkJCQQFRVV7P2asg0v17/qvA0L\nCgqIiIggMDCQnj170rp162Kfl2fbVfplp7bea/DHFK8O9yjYUmP79u05evQo7u7urFixgrvuuouD\nBw9WQHUVozpuN1vVlG2XlZXFkCFDeOONN/D09CzxeXXfhlfqX3Xehg4ODmzfvp309HT69u1b6vxM\nZd12lX6EEBwcXOyJaUePHqV+/fpXXObYsWMEBwdXWI3lZUvfvLy8rId+/fv3Jz8/nzNnzlRonfZS\nXbebrWrCtsvPz+fuu+9m5MiR3HXXXSU+r+7b8Gr9qwnb0MfHhzvuuIMtW7YUe788267SA6Fjx44c\nOnSIxMRE8vLyWLRoEYMHDy62zODBg/n4448B2LRpE76+vgQGBlZGuWViS99SU1OtKb5582YMwygx\nFlhdVdftZqvqvu0Mw2DcuHG0bt2aSZMmlbpMdd6GtvSvum7DtLQ0zp07B0BOTg7ff/99iUlCy7Pt\nKn3IyMnJibfeeou+fftisVgYN24crVq14t133wVgwoQJDBgwgG+//ZamTZvi4eFR6rMTqiJb+vbF\nF1/wzjvv4OTkhLu7O59//nklV2274cOH8+OPP5KWlkaDBg2YNm0a+fn5QPXebhddrX/VedsB/O9/\n/+OTTz4hPDzcujOZOXMmSUlJQPXfhrb0r7puwxMnThAbG0tBQQEFBQWMGjWKXr16XfN+s0rPZSQi\nIhWn0oeMRESkalAgiIgIoEAQEZEiCgQREQEUCFLFODo6Wicai4yMtF4RUt3Nnz+fm266iT//+c/X\ntJ6pU6cye/Zs6+tNmzZddp25ublERETg4uJS7a6tl8pR6ZedilzK3d39srMyXrwgrrrdKQuFNQ8f\nPrzUGTfNZjNOTrb9V/xj31esWEH//v1LXdbV1ZXt27fTqFGjshcsNyQdIUiVlpiYSIsWLYiNjSUs\nLIyjR48ya9YsOnXqRLt27Zg6dap12RkzZtCiRQt69OjBfffdZ/1LOjo6mq1btwKFN/Rc3EFaLBae\nfPJJ67rmzp0LYJ0C4J577qFVq1aMHDnS2sbPP/9Mt27diIiIoHPnzmRlZXHrrbeyY8cO6zLdu3dn\n165dJfpy6RXe8+fPZ/DgwfTq1YvevXuTnZ3N7bffTocOHQgPD2fZsmWl9uvAgQPF1vnDDz9w++23\ns2fPHqKiooiMjKRdu3YcPny4vL9yuYHpCEGqlJycHOtNRI0bN+bVV1/l8OHDLFiwgE6dOrFy5UoO\nHz7M5s2bKSgo4M4772TdunW4u7uzaNEiduzYQX5+Pu3bt6djx45A4V/VpR1VfPDBB/j6+rJ582Yu\nXLhA9+7d6dOnDwDbt29n79691KtXj27durFhwwY6duzIsGHDWLx4MR06dCArKws3NzfGjRvH/Pnz\nee211zh48CAXLly44jMiLkpISGDXrl34+vpisVj46quv8PLyIi0tjS5dujB48GC2bt162X6lpaXh\n7OyMl5cX//73v5k4cSL33XcfZrMZs9l8vTaJ3EAUCFKluLm5FRsySkxMpGHDhnTq1AmAlStXsnLl\nSmtoZGdnc+jQITIzM4mJicHV1RVXV9cSU4SUZuXKlezatYsvvvgCgIyMDA4fPoyzszOdOnUiKCgI\ngIiICI4cOYKXlxf16tWjQ4cOANaJ0oYMGcILL7zArFmz+PDDDxkzZsxV2zaZTPTp0wdfX1+gcObK\np59+mnXr1uHg4EBycjKpqamsW7euRL8uHmmsXLmSvn37AtC1a1dmzJjBsWPHiImJoWnTplf/ZYv8\ngYaMpMrz8PAo9vrpp58mISGBhIQEDh48yNixY4HiQzKX/uzk5ERBQQFQeKL1Um+99ZZ1Xb/88gu3\n3347hmHg4uJiXcbR0RGz2XzZcxfu7u707t2bpUuXsmTJEkaMGGFTvy5OqgawcOFC0tLS2LZtGwkJ\nCQQEBJCbm4vJZCrRr4t1xMXF0a9fP6Bwmo3//ve/uLm5MWDAANasWWNTDSKXUiBItdK3b18+/PBD\nsrOzgcI530+dOsUtt9zC0qVLyc3NJTMzk+XLl1u/Exoaap0J8uLRwMV1vf3229bhlYMHD3L+/PlS\n2zWZTLRo0YITJ05Y15WZmYnFYgFg/PjxPProo3Tq1AkfH5+r9uOPM8ZkZGQQEBCAo6Mja9as4bff\nfsNkMl22X4ZhsHPnTtq1awfAkSNHaNSoEY888gh33nlnqecwRK5GQ0ZSpZT2V/il7/Xu3Zt9+/bR\npUsXoHD64k8++YTIyEjuvfde2rVrR0BAADfffLN1p/u3v/2NoUOHMnfuXO644w7r+saPH09iYiLt\n27fHMAwCAgL46quvLnvOwdnZmUWLFvHII4+Qk5ODu7s733//PR4eHrRv3x4fHx+bhosu9unSNkaM\nGMGgQYMIDw+nY8eOtGrVCqBEvy4OnW3durXY7JaLFy9mwYIFODs7U69ePZ555hmb6hC5lCa3kxpp\n2rRpeHp68sQTT1RIe8nJyfTs2bPEVUAXffTRR2zZsoU333zzurQ3Y8YMmjVrxtChQ6+6bKNGjdi6\ndWu1mNZZKpeGjKTGqqj7FT7++GM6d+7MzJkzL7uMm5sbK1asuOYb0y565plnrhoGF29MM5vNODjo\nv7pcnY4QREQE0BGCiIgUUSCIiAigQBARkSIKBBERARQIIiJSRIEgIiIA/D/vK76bjLbnAwAAAABJ\nRU5ErkJggg==\n" + } + ], + "prompt_number": 18 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Encountered directional spectrum\n", + "--------------------------------- " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#clf()\n", + "#Se = spec2spec(Sd,'encdir',0,10);\n", + "#plotspec(Se), hold on\n", + "#plotspec(Sd,1,'--'), hold off\n", + "##!wafostamp('','(ER)')\n", + "#disp('Block = 17'),pause(pstate)\n", + "#\n", + "##!#! Frequency spectra\n", + "#clf\n", + "#Sd1 =spec2spec(Sd,'freq');\n", + "#Sd2 = spec2spec(Se,'enc');\n", + "#plotspec(spec), hold on\n", + "#plotspec(Sd1,1,'.'),\n", + "#plotspec(Sd2),\n", + "##!wafostamp('','(ER)')\n", + "#hold off\n", + "#disp('Block = 18'),pause(pstate)\n", + "#\n", + "##!#! Wave number spectrum\n", + "#clf\n", + "#Sk = spec2spec(spec,'k1d')\n", + "#Skd = spec2spec(Sd,'k1d')\n", + "#plotspec(Sk), hold on\n", + "#plotspec(Skd,1,'--'), hold off\n", + "##!wafostamp('','(ER)')\n", + "#disp('Block = 19'),pause(pstate)\n", + "#\n", + "##!#! Effect of waterdepth on spectrum\n", + "#clf\n", + "#plotspec(spec,1,'--'), hold on\n", + "#S20 = spec;\n", + "#S20.S = S20.S.*phi1(S20.w,20);\n", + "#S20.h = 20;\n", + "#plotspec(S20), hold off\n", + "##!wafostamp('','(ER)')\n", + "#disp('Block = 20'),pause(pstate)\n", + "#\n", + "##!#! Section 2.3 Simulation of transformed Gaussian process\n", + "##!#! Example 3: Simulation of random sea \n", + "##! The reconstruct function replaces the spurious points of seasurface by\n", + "##! simulated data on the basis of the remaining data and a transformed Gaussian\n", + "##! process. As noted previously one must be careful using the criteria \n", + "##! for finding spurious points when reconstructing a dataset, because\n", + "##! these criteria might remove the highest and steepest waves as we can see\n", + "##! in this plot where the spurious points is indicated with a '+' sign:\n", + "##!\n", + "#clf\n", + "#[y, grec] = reconstruct(xx,inds);\n", + "#waveplot(y,'-',xx(inds,:),'+',1,1)\n", + "#axis([0 inf -inf inf])\n", + "##!wafostamp('','(ER)')\n", + "#disp('Block = 21'),pause(pstate)\n", + "#\n", + "##! Compare transformation (grec) from reconstructed (y) \n", + "##! with original (glc) from (xx)\n", + "#clf\n", + "#trplot(g), hold on\n", + "#plot(gemp(:,1),gemp(:,2))\n", + "#plot(glc(:,1),glc(:,2),'-.')\n", + "#plot(grec(:,1),grec(:,2)), hold off \n", + "#disp('Block = 22'),pause(pstate)\n", + "#\n", + "##!#!\n", + "#clf\n", + "#L = 200;\n", + "#x = dat2gaus(y,grec);\n", + "#Sx = dat2spec(x,L);\n", + "#disp('Block = 23'),pause(pstate)\n", + "# \n", + "##!#!\n", + "#clf\n", + "#dt = spec2dt(Sx)\n", + "#Ny = fix(2*60/dt) #! = 2 minutes\n", + "#Sx.tr = grec;\n", + "#ysim = spec2sdat(Sx,Ny);\n", + "#waveplot(ysim,'-')\n", + "##!wafostamp('','(CR)')\n", + "#disp('Block = 24'),pause(pstate)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Estimated spectrum compared to Torsethaugen spectrum\n", + "-------------------------------------------------------" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "fp = 1.1;dw = 0.01\n", + "H0 = S1.characteristic('Hm0')[0]\n", + "St = wsm.Torsethaugen(Hm0=H0,Tp=2*pi/fp).tospecdata(np.arange(0,5+dw/2,dw)) \n", + "S1.plot()\n", + "St.plot('-.')\n", + "axis([0, 6, 0, 0.4])\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEXCAYAAAC6baP3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+wPHPsAiyCSIqMiQohmguKG6liaViVrhmqKW5\nlC1W9mv1Vje1xavd6rrUvVqa2WLcriVWSmSKmam45q6gooiiYKKAyMBwfn+cGEG2GRg4MHzfrxev\nmHOe55zvGWy+c57nPM+jUxRFQQghhDCTndYBCCGEqF8kcQghhLCIJA4hhBAWkcQhhBDCIpI4hBBC\nWEQShxBCCItI4hB1Vnh4OMuWLdM6jAYpPj4ef39/s8vXxt/K3d2d5OTkGj2HMI8kDgGAm5sb7u7u\nuLu7Y2dnh4uLi+n1qlWravz8s2bN4uGHHy6xTafTodPpavzcNSkzM5PJkyfj6+uLh4cHwcHBzJs3\nr0bPWdZ7WdNq42+VlZVFQEAAAI888givv/56jZ5PlM9B6wBE3ZCdnW36PTAwkGXLlnHXXXdZdIyC\nggIcHOSfVHHPPfccubm5HD16lCZNmnDs2DEOHjyoaUxFY37re1IW2pE7DlGhvLw8ZsyYgZ+fH35+\nfjz33HMYDAZAbc7Q6/XMnz8fX19fpkyZwqVLl7jvvvvw8vLC29ubO++80/RBde7cOUaNGkXz5s1p\n06YNixYtAiA2Npa5c+cSHR2Nu7s7oaGhpvMnJyfTt29fPDw8iIiI4NKlS6Z9DzzwAL6+vnh6etK/\nf38OHz5s2ndz08mKFSvo16+f6XVcXBzBwcF4enry1FNP0b9//xLlly9fTocOHWjatClDhgzhzJkz\npn12dnYsWbKEW2+9FS8vL6ZPn17u+7dr1y7Gjh1LkyZNAAgODmbUqFEljrVo0SLatm2Lj48PL730\nEsUnc6gojkOHDjFo0CC8vb1p2bIlc+fO5aeffirzvQwPD+e1117jjjvuwNXVlZMnT/Lpp5/SoUMH\nPDw8aNu2LUuXLi33Om72888/0759ezw9PXn66adRFMXsuCt6/5KSkujfvz+enp74+PgQFRVVot6J\nEydYunQpX331FfPnz8fd3Z3IyEj++c9/Mnr06BIxPvPMM8yYMcPsaxIWUIS4SUBAgPLLL78oiqIo\nr7/+utKnTx8lPT1dSU9PV26//Xbl9ddfVxRFUTZt2qQ4ODgor7zyimIwGJTc3FzllVdeUR5//HGl\noKBAKSgoUH777TdFURTFaDQq3bp1U958800lPz9fOXnypNKmTRvlp59+UhRFUWbNmqU8/PDDJeLo\n37+/0rZtWyUxMVHJzc1VwsPDlVdeecW0/9NPP1Wys7MVg8GgzJgxQ+natatpX3h4uLJs2bISZfv2\n7asoiqKkp6crHh4eynfffacYjUZlwYIFiqOjo6n8mjVrlKCgIOXo0aOK0WhU3nrrLeX22283HUun\n0yn333+/cuXKFeXMmTOKj4+PEhsbW+Z7OXXqVKVjx47Kp59+qhw/frzUfp1Op9x1113K5cuXlTNn\nzii33nqr8sknn1Qax9WrV5WWLVsq77//vpKXl6dkZWUpO3bsqPC9bN26tXL48GHFaDQq+fn5yo8/\n/qicPHlSURRF2bx5s+Li4qLs2bPH9LfV6/VlXlN6erri7u6urF69WikoKFA++OADxcHBoVrvX9G/\ng6ioKOWdd95RFEVR8vLylK1bt5aod+LECUVRFOWRRx4x/TtUFEU5f/684urqqmRmZiqKoij5+flK\n8+bNTdcjrEsShyileOJo27atsn79etO+n376SQkICFAURf1wadSokZKXl2fa//e//10ZNmyYkpSU\nVOKY27dvV2655ZYS29555x1l0qRJiqIoyhtvvKE89NBDJfaHh4crb7/9tun1Rx99pAwZMqTMmC9f\nvqzodDrl6tWrprrlJY7PPvusxAeZoiiKv7+/qfyQIUNK1DUajYqLi4ty5swZRVHUD7DiH2hjxoxR\n/vGPf5QZV25urvLOO+8o3bt3VxwdHZWgoKAS76dOpzN9aBZd4913311hHKdPn1a++uorpVu3bmWe\ns7z38o033iizfJHhw4crCxYsUBSl4sTx2WefKX369CmxTa/XV+v9mzdvnqIoijJhwgTlscceU86e\nPVvqvDcnjtdee63E/iFDhigff/yxoiiK8v333ysdO3as8HpF1UlTlajQuXPnaN26ten1Lbfcwrlz\n50yvfXx8aNSoken1iy++SFBQEIMHD6Zt27amjuDTp09z7tw5vLy8TD9z587l4sWLFZ6/ZcuWpt8b\nN25s6osxGo288sorBAUF0aRJEwIDAwHIyMgw65r0en2JbcVfnz59mmeffdYUp7e3NwCpqallxuXi\n4lKij6g4Z2dnZs6cya5du7h06RJjxozhgQceIDMz01Sm+NNLxd/fiuI4e/Ysbdq0qfRai7v5Kan1\n69fTu3dvvL298fLyYt26dSWaAstT1vtX/NhVef+ysrIAmD9/Poqi0LNnT2677TY+/fRTs69v4sSJ\nfPHFFwB88cUXtf6AQEMiiUNUqFWrViUegTxz5gytWrUyvb65g9XNzY1//vOfnDhxgrVr1/L++++z\nceNGbrnlFgIDA7l8+bLp5+rVq/zwww+A2n5tia+++oq1a9fyyy+/cOXKFU6dOgXc6Ph1dXUlJyfH\nVD4tLa3ENZ09e9b0WlGUEq9vueUWli5dWiLWnJwcevfubVGMN3N3d2fmzJnk5OSY4gVKtP+fOXMG\nPz+/CuPo06cP/v7+nDx5sszzlPdeFv9b5eXlMWrUKF566SUuXrzI5cuXGTp0aIl+ivK0atWKlJQU\n02tFUUq8rs7716JFC5YuXUpqaipLlizhySefLPM6y+rYHzZsGPv37+fgwYP8+OOPjB8/vtLziaqR\nxCEqNHbsWN566y0yMjLIyMhgzpw5FX6T+/HHH0lKSkJRFDw8PLC3t8fe3p6ePXvi7u7O/Pnzyc3N\nxWg0cvDgQXbt2gWoHxjJycmlPrjK+yDLzs7GycmJpk2bkpOTw9/+9rcS+7t27cq3335Lbm4uSUlJ\nJTq+hw4dyoEDB4iJiaGgoIAPP/ywRGJ5/PHHeeedd0yd7VeuXOGbb74p95or+rB988032bVrFwaD\ngevXr7NgwQK8vLwIDg42lfnnP/9JZmYmKSkpLFy4kAcffLDSOO677z7Onz/PggULyMvLIysri4SE\nBLPfS4PBgMFgoFmzZtjZ2bF+/Xri4uLKvY7i7r33Xg4dOsR3331HQUEBCxcutNr7980335iSuKen\nJzqdrsxE2KJFi1IJpXHjxowaNYpx48bRq1evUndFwnokcYgKvfbaa4SFhdG5c2c6d+5MWFgYr732\nmmn/zd/8EhMTGTRoEO7u7tx+++2mJ5bs7Oz44Ycf2LdvH23atMHHx4fHHnuMq1evAuoTUgDe3t6E\nhYWVefziYwUmTJhA69at8fPz47bbbqNPnz4lyj733HM0atSIFi1aMGnSJB566CHT/mbNmvHNN9/w\n0ksv0axZM44cOUJYWBhOTk4ADB8+nJdffpmoqCiaNGlCp06d+Omnn8q95orGMNjZ2TFp0iR8fHzw\n8/Pjl19+4ccff8TFxcVUZtiwYXTv3p3Q0FDuu+8+Jk+eXGkcbm5u/Pzzz3z//ff4+vpy6623Eh8f\nb/Z76e7uzsKFCxkzZgxNmzZl1apVDBs2rNR1lcXb25tvvvmGV155hWbNmpGUlETfvn1N+6vz/u3a\ntYvevXvj7u7OsGHDWLhwoWnsRvF6U6ZM4fDhw3h5eTFy5EjT9okTJ3Lw4EFppqphOsWce1MhbFhh\nYSH+/v589dVX9O/fv1bPbWdnR1JSksX9FaJsKSkptG/fngsXLuDm5qZ1ODZLszuO2NhY2rdvT7t2\n7SocSbtz504cHBxYvXq1xXWFKE9cXByZmZnk5eXxzjvvAFS7D0Noq7CwkPfee4+xY8dK0qhhmgzz\nNRqNTJ8+nQ0bNuDn50ePHj2IjIwkJCSkVLmXX36ZIUOGWFxXiIps27aNcePGYTAY6NixI2vWrDE1\nVdUmGb1tHTk5ObRo0YLAwEBiY2O1DsfmaZI4EhISCAoKMrVdRkVFERMTU+rDf9GiRYwePZqdO3da\nXFeIirzxxhu88cYbWoeB0WjUOgSb4OrqWu4j0cL6NGmqSk1NLfHct16vL/GMd1GZmJgYnnjiCeDG\nNzNz6gohhKg5mtxxmHN7PmPGDP7xj3+g0+lKzINj7q29NAEIIUTVVPbMlCZ3HH5+fiUGDKWkpJR6\n5nr37t1ERUURGBjI6tWrefLJJ1m7dq1ZdYsUJRxb/HnjjTc0j0GuT65Nrs/2fsyhyR1HWFgYiYmJ\nJCcn06pVK6Kjo0ut+VB8cM+kSZO4//77iYyMpKCgoNK6Qgghao4micPBwYHFixcTERGB0WhkypQp\nhISEsGTJEgCmTZtmcV0hhBC1w2YHABb1jdiq+Ph4wsPDtQ6jxtjy9dnytYFcX31nzmenJA4hhBAm\n5nx2ylxVQgghLCKJQwghhEUkcQghhLCIJA4hhBAWkcQhhBDCIpI4hBBCWEQShxBCCItI4hBCCGER\nSRxCCCEsIolDCCGERSRx2IhjGcfIvJ6pdRhCiAZAEoeN+GTvJ/yR9ofWYQghGgCZ5FAIIYSJTHLY\nwJzPOs+zsc9qHYYQwsZJ4rAh7k7ufLz7YwqVQq1DEULYMEkcNsStkRtujdy4mHNR61CEEDZMEocN\nSMtO43D6YQA+H/E5bo3cNI5ICGHLJHHYgPWJ65m/dT4AEUERkjiEEDVKs8QRGxtL+/btadeuHfPm\nzSu1PyYmhi5duhAaGkr37t3ZuHGjaV9AQACdO3cmNDSUnj171mbYdVLGtQyauTTTOgwhRAOhyeO4\nRqOR4OBgNmzYgJ+fHz169GDVqlWEhISYyuTk5ODq6grAgQMHGDFiBElJSQAEBgaye/dumjZtWu45\nGtLjuMv3LsfBzoEJXSZoHYoQop4z57PToZZiKSEhIYGgoCACAgIAiIqKIiYmpkTiKEoaANnZ2TRr\nVvIbdUNJCuaYHDpZ6xCEEA2IJk1Vqamp+Pv7m17r9XpSU1NLlVuzZg0hISHcc889LFy40LRdp9Mx\ncOBAwsLC+Pjjj2sl5vpiW8o25myeo3UYQggbpskdh06nM6vc8OHDGT58OFu2bOHhhx/m2LFjAGzd\nuhVfX1/S09MZNGgQ7du3p1+/fqXqz5o1y/R7eHg44eHh1gi/Tgv0CmRou6FahyGEqCfi4+OJj4+3\nqI4mfRzbt29n1qxZxMbGAjB37lzs7Ox4+eWXy63Ttm1bEhIS8Pb2LrF99uzZuLm58fzzz5fY3pD6\nOIQQwlrq7JQjYWFhJCYmkpycjMFgIDo6msjIyBJlTpw4YQp+z549AHh7e3Pt2jWysrIAtQM9Li6O\nTp061e4F1DGbkzdzveC61mEIIRoITZqqHBwcWLx4MRERERiNRqZMmUJISAhLliwBYNq0aaxevZqV\nK1fi6OiIm5sbX3/9NQBpaWmMHDkSgIKCAsaPH8/gwYO1uIw6Y/HOxXRu0RlnB2etQxFCNAAyO64Q\nQgiTOttUJWrWQ98+JPNVCSFqjCQOG7QvbR8Xsi9oHYYQwkZJ4rBB3i7e/Jn7p9ZhCCFslPRx1HOX\ncy9z7NIxeut7m7btPrebAM8AvF28K6gphBClSR9HA7D/wn5e+vmlEtu6t+ouSUMIUWMkcdRzWYYs\n3J3ctQ5DCNGASOKo5zycPOij76N1GEKIBkT6OIQQQphIH0cD9XvK7/ztl79pHYYQwkbJHYcNyriW\nwbmsc3Ru0VnrUIQQ9Yw5n52SOIQQQphIU1UDsPf8Xs5lndM6DCFEAyKJo56LOxHH8UvHtQ5DCNGA\nSFOVEEIIE2mqasCGfjmUrLwsrcMQQtggSRw26sDFA1y+flnrMIQQNkgSh41q4tSEzOuZWochhLBB\nkjjquXWJ6ygoLCi1feWIlbTxaqNBREIIWyed4/WYoig4vOlA3mt5ONhpsny8EMLG1OnO8djYWNq3\nb0+7du2YN29eqf0xMTF06dKF0NBQunfvzsaNG82u21Dk5Ofg7OAsSUMIUas0ueMwGo0EBwezYcMG\n/Pz86NGjB6tWrSIkJMRUJicnB1dXVwAOHDjAiBEjSEpKMqsuNIw7jszrmUxfN50vRn6hdShCCBtR\nZ+84EhISCAoKIiAgAEdHR6KiooiJiSlRpihpAGRnZ9OsWTOz6zYUns6ekjSEELVOkzaO1NRU/P39\nTa/1ej07duwoVW7NmjXMnDmT8+fPExcXZ1FdgFmzZpl+Dw8PJzw83DoXUA9EH4wmLTuNZ3s/q3Uo\nQog6LD4+nvj4eIvqaJI4dDqdWeWGDx/O8OHD2bJlCw8//DBHjx616DzFE0dD0/eWvhiMBq3DEELU\ncTd/qZ49e3aldTRJHH5+fqSkpJhep6SkoNfryy3fr18/CgoK+PPPP9Hr9RbVbaj8PPy0DkEIYaM0\n6eMICwsjMTGR5ORkDAYD0dHRREZGlihz4sQJUwfNnj17APD29jarbkORnJnMvrR9WochhGhgNLnj\ncHBwYPHixURERGA0GpkyZQohISEsWbIEgGnTprF69WpWrlyJo6Mjbm5ufP311xXWbYiOZRwj6c8k\nurbsqnUoQogGRAYACiGEMKmzj+OKmpd5PZOILyK0DkMIYYMkcdgoZwdn4pPj5a5LCGF1kjhslLOD\nM3Y6O64XXNc6FCGEjZHEUY9tPbOVtOy0cvdvmbQFR3vHWoxICNEQSOKox/4e/3cOXjxY7v6wVmEy\nAaIQwuokcdRjV/Ou4uHkoXUYQogGRhJHPXa7/+20dGupdRhCiAZGxnEIIYQwkXEcDdy83+bx30P/\n1ToMIYSNkTsOG5acmYyroys+rj5ahyKEqCfM+eyUxCGEEMJEmqpsWLYhm/WJ67UOQwjRAEniqKeu\n5l1lfZIkDiFE7ZOmKiGEECbSVNXAHbhwgIe/e1jrMIQQNkYShw3T6XTsPrdb6zCEEDZGEocN83T2\n5EreFa3DEELYGOnjqKeOpB/BYDTQpWWXcssUFBZwJP0InVp0qsXIhBD1mTmfnZVOnbpixQp0Op1Z\nJ1QUhUceecSssqJ6/nf4f+QZ8ypMHA52DpI0hBBWV2ni8PLyom/fvnh7e1d6sJiYGLNPHBsby4wZ\nMzAajUydOpWXX365xP4vv/yS+fPnoygK7u7u/Pvf/6Zz584ABAQE4OHhgb29PY6OjiQkJJh9Xltx\n1XAVHxcZES6EqH1mNVV16tSJoKAgPDw86NGjB7169SI0NJRt27Zx8eJFRo0aZdFJjUYjwcHBbNiw\nAT8/P3r06MGqVasICQkxldm2bRsdOnSgSZMmxMbGMmvWLLZv3w5AYGAgu3fvpmnTpuVfmI03VS3f\nuxw/dz8igmRdcSGE9VilqQrg22+/pV27dly7do25c+eyceNG/vWvf5GdnU2bNm0sThwJCQkEBQUR\nEBAAQFRUFDExMSUSR58+fUy/9+rVi7Nnz5Y4hi0nBXNMDp2sdQhCiAbKrMTRrl07AFxcXAgKCmLi\nxIkAGAwGi5qniqSmpuLv7296rdfr2bFjR7nlly1bxtChQ02vdTodAwcOxN7enmnTpvHoo4+WWW/W\nrFmm38PDwwkPD7c41vruse8f45Guj3C7/+1ahyKEqIPi4+OJj4+3qI7F64o6OjryyCOPEBkZSXBw\ncKk7AXOY29kOsGnTJpYvX87WrVtN27Zu3Yqvry/p6ekMGjSI9u3b069fv1J1iyeOhuqVvq/Q3LW5\n1mEIIeqom79Uz549u9I6Fo/jGDduHDNnzmTv3r385z//oW/fvpYeAj8/P1JSUkyvU1JS0Ov1pcrt\n37+fRx99lLVr1+Ll5WXa7uvrC4CPjw8jRoxokJ3j5mrj1Qa3Rm5ahyGEsCGajOMoKCggODiYX375\nhVatWtGzZ89SneNnzpzhrrvu4osvvqB3796m7deuXcNoNOLu7k5OTg6DBw/mjTfeYPDgwSXOYeud\n498c+obI4EicHJy0DkUIYUOs1jle3CeffMJtt91Gt27d2LlzJ+fPn2f06NEWHcPBwYHFixcTERGB\n0WhkypQphISEsGTJEgCmTZvGnDlzuHz5Mk888QSA6bHbtLQ0Ro4cCagJaPz48aWSRkOwLmkd9wff\nr3UYQogGyOI7jnfeeQd7e3v++OMPsrKyaNu2Lf/6179qKr4qs/U7DiGEqAk1cseh1+uZMGECUPWn\nqkTt+f7Y92w5s4X5g+ZrHYoQwkZo8lSVqD1GxcixS8e0DkMIYUMsfqpKr9dX+6kqUXuaODUh83qm\n1mEIIWyIxX0cUVFRfPbZZzg51e2neWy5j+PMlTOc+PMEAwIHVFo2x5BDxrUMWnu2roXIhBD1XY2s\nAOjp6cnmzZvJz8+vcmCieralbOOjXR+ZVda1kaskDSGEVVUpcezcuZMxY8YwdOhQXn/99ZqIS1Tg\nSt4VPJ09tQ5DCNFAWdw5ft999+Hj48Orr76KoiicOXOmJuISFWjdpDUuji5ahyGEaKAq7eM4duwY\ndnZ2pokO6wtb7uMQQoiaYs5nZ6WJo6CggPj4eFMC6dGjB2FhYVYNtCZI4rjhrs/u4rPhn+HfxL/y\nwkKIBs0qieNmCQkJ7N69m8LCQoKDgwkPD8fBweIWrxonieOGk5dPovfQ08i+kdahCCHquBpJHMUd\nO3aM+Ph4DAYDfn5+RERE4OrqWtXDWZUkDiGEsFyNJ47izp07x5YtW3jwwQetcbhqs+XEsfrwau5u\nc7c8WSWEsLoaGceRk5PDhQsXSm1v1apVnUkatm7nuZ1cL7iudRhCiAbK4juOJUuW4OTkxLfffkuz\nZs0YM2YMQ4YMqan4qsyW7ziEEKKm1MgdR+PGjenQoQN//vkny5cv5+rVq1UOUNSOBdsXsGD7Aq3D\nEELYCIsTR7du3fj6669ZuHAhK1asoKCgoCbiElaUX5hPytWUygsKIYQZLH6O9rbbbuP9998H4NKl\nSzRv3tzqQQnr8nT25EjGEa3DEELYCE3WHK8NttrHcfLySRIvJRIRFGF2nSvXr5BfmE8zl2Y1GJkQ\nwhbUSB+H0NbvKb+zcv9Ki+o0cW4iSUMIYTVmJY7s7GwA8vPzMRqNVjlxbGws7du3p127dsybN6/U\n/i+//JIuXbrQuXNn7rjjDvbv3292XVuWcS1DkoAQQlOVNlXNnz+fjIwMCgoK+Nvf/sbMmTP5+OOP\nq3VSo9FIcHAwGzZswM/Pjx49erBq1SpCQkJMZbZt20aHDh1o0qQJsbGxzJo1i+3bt5tVF2y3qWp9\n4noMRgPD2g/TOhQhhA0y57Oz0s7xXr160atXLxwdHYmOjqawsLDagSUkJBAUFERAQACgrioYExNT\n4sO/T58+JWIoWtvcnLq27J5292gdghCigas0cbi6urJixQoef/xxxo0bZ5WV/1JTU/H3vzFTq16v\nZ8eOHeWWX7ZsGUOHDrW47qxZs0y/h4eHEx4eXr3A67HuS7uzbtw6Wri10DoUIUQdEh8fT3x8vEV1\nKk0cYWFhJaZRnzhxoun3/fv306lTJ3Q6nUUntaT8pk2bWL58OVu3brW4bvHE0dCtjVorfSNCiFJu\n/lI9e/bsSutY/FTVypUrmTFjBitWrMDV1ZVVq1ZZegj8/PxISbkxIC0lJQW9Xl+q3P79+3n00UdZ\nu3YtXl5eFtVtaLKzoaJmST8PP+zt7GsvICGEzarS47h///vfad68Oe+++y6JiYkW1w8LCyMxMZHk\n5GQMBgPR0dFERkaWKHPmzBlGjhzJF198QVBQkEV1bVWhUsjCHQtLdFz9+ivccQc0bQpeXlCFPC6E\nEBaxeOR4s2bNaNSoEUOHDjX1O1h8UgcHFi9eTEREBEajkSlTphASEsKSJUsAmDZtGnPmzOHy5cs8\n8cQTADg6OpKQkFBu3YbAYDRw9upZU3Pd11/Ds8/CggUwejQcOgRDh6p3HuPGaRysEMJmWTxy/Jln\nnmH//v14e3vTs2dPBgwYQM+ePWsqviqz1cdxi+zapSaJX36BTp1ubN+zB+69FxITwc1Nu/iEEPVT\njYwcDw8PJz4+ns8//5w+ffqwa9euKgcoqiYvDx55BP71r5JJA6BbNxgwQN1X3Ip9K3hlwyu1FqMQ\nwnZZnDh0Oh07d+7ExcWFO++8kyeffLIm4hIV+OQTaN0axo4te/+cOfDBB5Cbe2NbI/tGJGcm10p8\nQgjbZnEfx+bNmwGYM2cOzs7O9O/fn+nTp1s9MFE2RYEPP4SPPoLynkwOCoKwMIiJgagodZuPiw/p\n19JrL1AhhM2yOHGMGjUKnU5H3759yc3N5dChQzURlyjD6sOryTnVCTu7W+nfv+KyjzwCK1bcSBx3\ntr6THn49ajpEIUQDUGnn+O7du+nevbtZB7OkbE2zxc7xuz67C7a8yqjQu3nqqYrL5uaCnx/s3w8y\nzEUIYS6rzFW1fv16Dh48aNYJU1JS6kzi0NLFi+DjU35TUlWlXEkhPd6PL+ZUXrZxYxg5EqKj4fnn\nrRuHEKJhk4WcrCwjQ/2m37cvLFsGf83FaBWPfTmH3999mYP7nMwqv2EDzJwJO3daLwYhhG2ThZw0\nEB0Nw4ZBhw4wf751j90q8e8MHWxe0gAID4czZ+DECevGIYRo2CRxWNnKlTB5sjqi+9tvwUrrXgEQ\nGwsR5q8Yi4ODOqI8Olp9PTlmMv87/D/rBSSEaJCkqcqKjh1Tv+WnpKgf2qGh6nQgd95Z/WNfuaJ2\ncmdkgJP5Nx1s2QJPPaV2kmflZeHi6CKTHQohylVjTVXXr18nLy+vSkHZss2bYcgQNWkAjBoF/7PS\nF/xdu6BrV8uSBqgTIP75Jxw+DO5O7pI0hBDVZlbiKCws5Ntvv+WBBx7Az8+PwMBAWrdujZ+fH6NH\nj+a7776zuUdfq+LIEbVvo0hkJKxfb51jv7ftn3Todc7ienZ2MGbMjeYqIYSoLrMSR3h4OLt37+aF\nF17g5MmTnD9/nrS0NE6ePMkLL7zAzp076V/ZiLQG4OhRaN/+xuuOHeHCBbh0qfrHTjvVlB6hjatU\nNypKnUlgGTHqAAAgAElEQVRXcrsQwhrM6uPIy8vD6a82EqPRiJ2dXamV+IqXqQu06OMICFAfgS22\nfAh33w0vvAD3VHOpcD8/tb+iTRvL6yqKeif04YcwYIBi8YqNQoiGw2p9HMUTwsCBA3n77bf58ssv\n+f7778ss0xDl5Kh3F4GBJbf36gUVLKdultRUdUbcm49tLp0OXnwR3p6fg/d8b2lWFEJUi8Wd45s2\nbeK1115j/PjxNGnShBkzZtREXPXO8ePqnYb9TX3P1kgcO3dCz57VG4k+fjwcO+hKoVEnkx0KIaql\nSk9VnTx5kt9++42OHTuyevVqa8dULx05AmUtRNirFyQkVK9/Ye9edZ2N6nBygjffhLwLgRy/cKZ6\nBxNCNGhVShwtW7YkIyODZ599lldffdXaMdVLN3eMF2nZUl2JLympasctVApZfmUcHToZqhcg6oy5\nozJ/573nw6zSYS+EaJgsThy7du3CxcWF4cOH8/nnn7N48eKaiKveKS9xgDoQcN++qh330MVDpDns\nILRzo6oH9xedDpb+uxF+furdUVQUvP8+/PYbXLtW7cMLIRoIixOHn58fa9as4b///S9vvvkmQ4YM\nqdKJY2Njad++Pe3atWPevHml9h89epQ+ffrg7OzMe++9V2JfQEAAnTt3JjQ0tM6sd37mjLoqX1m6\ndq164vjhyM8oSYNo167qsRXn4gKLF6v9LkOHwsmT8H//p87mO3Mm5Odb5zxCCNtl1kJOinLjEU5f\nX1+GDx9eYZnKGI1Gpk+fzoYNG/Dz86NHjx5ERkYSUqyTwNvbm0WLFrFmzZpS9XU6HfHx8TRt2tSs\n89WG1FT1kdmydOmizpRbFSGMJPhSgWk0urUEBqo/Eyaory9ehIkT1bmtvvtOHTgohBBlMXsA4Lvv\nvsvx48dL7Tt27Bjz5s2zaABgQkICQUFBBAQE4OjoSFRUFDExMSXK+Pj4EBYWhqOjY5nHqEuPlBqN\n6qO4rVqVvb86dxzpiQH0aBtUeUELXMsv3S7VvDmsXQvp6fDuu1Y9nRDCxpj1PTYuLo4vv/ySp556\nioMHD+Lu7o6iKGRnZ3Pbbbcxfvx4NmzYYPZJU1NT8ff3N73W6/XssOCZVZ1Ox8CBA7G3t2fatGk8\n+uijZZabNWuW6ffw8HDCw8PNPoclLl4ELy9oVE43REAAZGerExQ2a2bZsQ8cgE6dqh2iSW5+Lrd8\ncAsXX7yIna7k9wZHR3VqktBQeOCBqg02FELUL/Hx8cTHx1tUx6zE4eTkxOTJk5k8eTJGo5GMjAx0\nOh3NmjXDrgptGtUdubx161Z8fX1JT09n0KBBtG/fnn79+pUqVzxx1KSKmqlA7ZTu3Bn++EMdSW6J\n/fvh/vurF19xjR0bl5k0ivj7w5NPwty58PHH1juvEKJuuvlL9ezZsyutY9anfkJCAufPnwfA3t6e\n2NhYpk6dyowZM/jzzz8tDtTPz4+UlBTT65SUFPQWLIzt6+sLqM1ZI0aMICEhweIYrKmyxAGWN1cV\nKoUYCvKtfscBlJs0isyYoa4lkpxs3fMKIWyDWYlj2rRppilFfv31V1555RUmTpyIh4cHjz32mMUn\nDQsLIzExkeTkZAwGA9HR0URGRpZZ9ua+jGvXrpGVlQVATk4OcXFxdLL2J6uFaiJx7EvbR/jyQdjZ\nQYsW1YvPUk2bqh3ln3xSu+cVQtQPZjVVFRYWmp5gio6OZtq0aYwaNYpRo0bRpUsXy0/q4MDixYuJ\niIjAaDQyZcoUQkJCWLJkCaAmqrS0NHr06MHVq1exs7NjwYIFHD58mIsXLzJy5EgACgoKGD9+PIMH\nD7Y4BmsyJ3F06QIffGD+Mbv5duMlvx9Z1Ll6U41U1YQJMGIEzJkjT1gJIUoyK3EYjUby8/NxdHRk\nw4YNLF261LSvoKCgSie+5557uOemKWOnTZtm+r1ly5YlmrOKuLm5sa+qjyjVkNTUylf569hRHT1+\n/To4O5t33MTDrlZvpgK1Gex81nn8PMrPdl26qCPef/8d+va1fgxCiPrLrO+SY8eOpX///kRGRuLi\n4mLqiE5MTMTT07NGA6wPzp6t/I7D2VmdBPHwYfOPu3+/2qlubdmGbIIXB1OoFJZbRqeDhx6Czz+3\n/vmFEPWbWYnj1Vdf5b333mPSpEn89ttvpiepFEVh0aJFNRpgfWBOUxWo3+ItuVmqiY5xAA8nD5o2\nbsqpy6cqLPfAAxATA4Xl5xchRANk9njkPn36lNp26623WjWY+srcxNG1q/pIbkXOXDnDiT9P0Fc/\ngGPH1CaumjCo7SBSrqbQtmnbcsu0aaOOT9mzB8LCaiYOIUT9Y+WJLBqe7GwoKABzWuy6doVia1+V\n6YPtH+Bo54hPzgBuuUWdW6omLIs0bw6Ue++FH3+UxCGEuEGel6mmCxfUqdPNefKp6JHc8pp+ruZd\n5bN9n/F0z6fZs6f6a3BYQ1HiEEKIIpI4quniRXWep5uVNZdWs2bqGIkypvwCwGA08H7E+/g38a8z\niaNvX0hMVBOkEEKAJI5qKy9xTF47mf0X9ptebzm9hed+eo6ePdWlYMvSzKUZj3R9BKDOJA5HRxgw\nACyYikwIYeMkcVRTeYnj+T7PE9T0xqy2nVt05qekn8jv+m8qmyGlsFBt0goNtXKwNzl79WyJ5Fae\nwYMhLq5mYxFC1B+SOKrpwoWyE8dtzW/DxfFGz3YT5yasHbuWk42/ZseuildLSkoCb2+1Wasm7b+w\nn/jk+ErLFSWOOjSTvRBCQ5I4quniRfPnkgpqGsSWKfEc2u+I4a8lxNOy0/jqwFcl+kRqq5lqaLuh\nPNPrmUrLtWkDrq5w8GDNxySEqPskcVRTeU1V5XF319GmjTq4D6CgsIDUq6klpprfubNu9G8UJ81V\nQogikjiq6ebEkWPIwVhorLBOv35QtG6K3kPPi3e8WGL/5s1gwYKKtUIShxCiiCSOaro5ccz9bS5v\n/vpmhXUGDiz/KaXMTDh2DHr2tGKQVjBggDrhYW6u1pEIIbQmiaOabk4cv535jdv9b6+wzoABsHUr\n5OWV3rdlC/TuXf4ytDVh6e6lJF5KrLBMkybqXFu//VZLQQkh6ixJHNVQUACXL6tPQBW5mHOR0JYV\nP0fr5QXt28O2baX3xcdDDS2NXq5D6Yf48sCXlZaT5iohBEjiqJZLl9Qk4FBsxq/DTx3Gx9Wn0rqD\nBsHPP5fevnGjekdSmyZ1ncSn+z6ttG9GEocQAiRxVIulT1QVN2IEfPklGIt9Vh84AOnptd+/0bVl\nVxYMWVDh+hygTnSYkgJ/LT8vhGigJHFUQ3USR1iYWnfduhvbliyBqVNL3sHUluHth+No71hhGQcH\nuOsumX5EiIZOEkc1VCdxAEyfDosXq7/n5MBXX6mJoy6T5iohhGaJIzY2lvbt29OuXTvmzZtXav/R\no0fp06cPzs7OvPfeexbVrS03J47D6YcpKDR/DfYxYyA5GZ57Du6/H4YNA73e+nFaU1HfjKwKKETD\npUniMBqNTJ8+ndjYWA4fPsyqVas4cuRIiTLe3t4sWrSIF154weK6teXmeaqmrJ3C9YLrZtd3dlaf\nrEpKgh494JNPaiBIC6XnpJNtyC53f2AgeHhYtgSuEMK2aJI4EhISCAoKIiAgAEdHR6KiooiJiSlR\nxsfHh7CwMBwdHS2uW1tunqdq25RtuDVys+gYTZuqqwLOmwf29lYOsApe2/QaW89srbDM8OGwenUt\nBSSEqHM0WTo2NTUVf39/02u9Xs+OHTusXnfWrFmm38PDwwm38gCJ6vZx1EX/ufc/JebNKssDD8D4\n8fDWW+atfCiEqLvi4+OJL5oDyUyaJI7KPpisVbd44qgJtpg4zHl/w8IgPx/271dHkwsh6q+bv1TP\nnj270jqaNFX5+fmRkpJiep2SkoLezF7h6tS1NltMHObQ6dS7jm++0ToSIYQWNEkcYWFhJCYmkpyc\njMFgIDo6msjIyDLL3rx2tyV1a1rxxPFH2h9cuX5Fkzi0UJQ4ZHEnIRoeTRKHg4MDixcvJiIigg4d\nOvDggw8SEhLCkiVLWLJkCQBpaWn4+/vzwQcf8NZbb3HLLbeQnZ1dbt3alpOjjvp2+6svfMraKRzN\nOFrrcdSUQqWQ/iv6czrzdJn7w8LAYFCbq4QQDYtOufkrvY3Q6XSl7las6dQpdTLC06fVuyKveV6c\neOYE3i7eldatL2bHz+Zg+kG+eaDsNqkXXwQnJ7WTXAhhG8z57JSR41VU/FHcPGMevfW9adq4hhcJ\nr2Uv3fESxzKOkXo1tcz9Y8ZIc5UQDZEkjioq3r/h7OBM7EOx1XparC5q7NiYvdP24ufhV+b+sDB1\navm9e2s5MCGEpiRxVFFDeaLK3q78UYk6HYwbp87yK4RoOCRxVFFDSRyVGTcOvv665PTwQgjbJomj\nihpi4sjNzy3VaRYSovb1bN6sUVBCiFoniaOKik9wmJCawMWci9oGVAvG/G8M286WXu923Dh1Sngh\nRMMgiaOKij9V9WPijyRnJmsaT21YNWoVt/vfXmp7VBR8+y1cN39iYCFEPSaJo4qK33HMDp9NT79a\nXu9VA+XN/KvXq3NWrV9fywEJITQhiaOKzp8HX1+to6g7xo+Xp6uEaChk5HgVGAzg6gp5eWDXQFOv\noihcybuCp7MnAJcvQ0AAnDkDTZpoG5sQoupk5HgNKWqmaqhJA2DtsbUM+WII+cZ8ALy84K674Lvv\nNA5MCFHjGvBHX9WlpUHLlurvJy+fZGfqTm0D0kBkcCRejb14bdNrpm3SXCVEwyCJowqK9298f+x7\nVu5fqW1AGtDpdHw+4nOcHZxNt7X33gu7d6vvjxDCdkniqILiiSPlagr+Hv4VV7BRzVyaMTt8tmmO\nrsaNYdgwiI7WODAhRI2SxFEFxZuqgpoG0aNVD20DqkNkMKAQtk+TNcfru/PnoXNn9ffHwx7XNpg6\n5q67ICUFEhOhXTutoxFC1AS546gCGcNRtvWJ63n5lxeIioLPPtM6GiFETZE7jioo3lQlbriz9Z0E\nNwvmuh4GDoQ33gBHR62jEkJYm9xxVIHccZTNtZErbbza0KEDtG0LP/ygdURCiJqgWeKIjY2lffv2\ntGvXjnnz5pVZ5plnnqFdu3Z06dKFvcWWmQsICKBz586EhobSs2ftzhGlKDfuOFKupBB3Iq5Wz19f\nTJsG//631lEIIWqCJonDaDQyffp0YmNjOXz4MKtWreLIkSMlyqxbt46kpCQSExNZunQpTzzxhGmf\nTqcjPj6evXv3kpCQUKux//mnOt2IszNcyr3E0YyjtXr++uKBB+DAiQze+3GN1qEIIaxMk8SRkJBA\nUFAQAQEBODo6EhUVRUxMTIkya9euZeLEiQD06tWLzMxMLly4YNqv1RRb587daKbq2rIrz/R6RpM4\n6jonJ3jkiUu8vm06/94ptx5C2BJNOsdTU1Px978xaE6v17Njx45Ky6SmptKiRQt0Oh0DBw7E3t6e\nadOm8eijj5Z5nlmzZpl+Dw8PJzw8vNqxnz4NrVtX+zANwmtPBPNxly3M84qgf0B/Ovh00DokIcRN\n4uPjiY+Pt6iOJomjaKRxZcq7q/jtt99o1aoV6enpDBo0iPbt29OvX79S5YonDmtJTlZngRWVc3WF\nt14I5POvDhDyf05ahyOEKMPNX6pnz55daR1Nmqr8/PxISUkxvU5JSUGv11dY5uzZs/j5+QHQqlUr\nAHx8fBgxYkSt9nNI4rDMo4+CIdeJ5cu1jkQIYS2aJI6wsDASExNJTk7GYDAQHR1NZGRkiTKRkZGs\nXKlOHrh9+3Y8PT1p0aIF165dIysrC4CcnBzi4uLo1KlTrcV++vSNxPHvnf+moLCg1s5dH9nbw/Ll\n8Mor6gSIAMZCI6czT2sbmBCiyjRJHA4ODixevJiIiAg6dOjAgw8+SEhICEuWLGHJkiUADB06lDZt\n2hAUFMS0adP46KOPAEhLS6Nfv3507dqVXr16cd999zF48OBai73ojuNq3lVe+PkF7HX2tXbu+qpT\nJ1iyBCIjYc8e2Je2j+fjntc6LCFEFckKgBby8YGDB+EiB3jwfw9y+KnDVj+HrVq9Gh5/HJ57Dp58\nUsHT07y+LiFE7THns1OmHLFAdjbk5Kir/2VfduGJsCcqryRMRo1S7z7mzAG9XkenTurr9u0hJET9\nad0azHx2QgihEbnjsMChQzB6NNw0VlFUwbVrkJAAhw/D0aOw7dxmDhfG0HTfWwwd5EJEBNx9t6xf\nLkRtkzsOK0tOljEc1uLiAuHh6g9AxrWOPLt+KVtu74QLX7N0aQ8mToSuXSEiAoYMgW7dGvY670LU\nFXLHYYGPPoL9++E//7HqYUUxPyX9RMfmHdF76MnNhV9/hZ9+Un8uXoSHHlL7SG65RetIhbBN5nx2\nyvc3C5w4AYGBWkdh2yKCItB7qGN6GjdW7zbef19tJty5ExwcIDQUHn5YmgyF0IokDgscOAC33ab+\nPu+3eeQV5GkbUAOx5uga3vv9PQIC4N131QQeEgL9+6t3IMeOaR2hEA2LJA4zKQrs26e2uRsLjVwr\nuEYj+0Zah9Ug9L2lL/e0u8f02tMT/vY3SEpSE0jfvjB8uNqsZZsNr0LULdLHYabz59VHR9PT5XHR\numJn6k5CfUMxXHdg5Ur44ANwd4f/+z91WndZfVAIy0kfhxX98Qd06SJJo64oKCzg+bjnaf2v1ry5\nbSaPTSvkyBGYNQs++QTatFHXPbfNr0VCaEsSh5mKEoeoGxzsHPh10q/8/PDP6N312OnssLOD++6D\njRvVUeoLF6prnyclaR2tELZFEoeZJHHUTR18OvBUz6dKbc9vuZXnP43m3nuhd294+20wGDQIUAgb\nJInDTEUd4wBvbn6TS9cuaRuQqJCHkwct3Jrxf/8Hu3bBtm3q32/TJmm7EqK6pHPcDCkp6odOWhrY\n2Rtxm+tGxosZuDZytcrxRc1TFPj2W3jk26noWhzkDv87eHvE43QLaKd1aELUKdI5biUxMWrbuaMj\nHM04ir+HvySNekanUydZPPfJImbcNpfko17cOaCAoUPhH/9QH+XNzVX/vjI+R4iKyR2HGe6+G55+\nWh0rkHo1lZ3ndjK8/XCrHFto58oV+Pln+P132LpVnS6/0cMjGJD/T7q3aUtAgLr8rYsLXDam4NPY\nF0d7B3Q6dXvLlupMyfayJIuwIeZ8dkriqMSlS+qjnefPqx8gwnbl5sLevepsvUePqk2UubnqVPrb\nunYmt3Eizrlt6bRjG7lX3ElLgz//BG9v8NMXcms7O4KCoF07uPVWdXCizO4r6htJHFa4tNmz4fhx\n+PJLKwQl6rVr+ddIvJRI5xad0f01oKegAFLT8umwwpt/t77MiSR7EhPVaVCOHiukccdfaOfbks6B\nvnQPaUaHDmpC8fbW+GKEKEeDTxyFhUq1BuwlJamPcu7dC/7+1otN2B6D0VBqCpqr17O5Z+UwUi6f\nJyfvOsNPn+TwYXUNEicnuKXtNfJDFxPh9hIBAeqU/QEB6t2LvfM13Bq5mhKUELWlTieO2NhYZsyY\ngdFoZOrUqbz88sulyjzzzDOsX78eFxcXVqxYQWhoqNl1dTodHh4KQ4fCxIkweLBlazkkJ6t9Gg8/\nDM/XweWx4+PjCS9azMIG2fL1bdoUT/v24RxKusqn+5fSKesFkpPh9Om/fv48x7Up7cC+AOerHemz\nfw/Nmql3Kc2agUvTTPY5/IdJ7V4xbfPxAQenPI5kHMbDyQNPZ0+8XbS5rbHlvx3Y/vXV2YWcjEYj\n06dPZ8OGDfj5+dGjRw8iIyMJCQkxlVm3bh1JSUkkJiayY8cOnnjiCbZv325W3SLHjsGaNeqEeE89\npa53/eCD5a/lUFiorrfx9dewbBm8+io8+6y6T1EUBn8xmKX3LSXQS/u51W39H68tX9/mzfEMGBCO\nr68HA/u9UEaJVly/nsPZC7mcSbsKkZCRof5cuqQml1OGJnzwg/o6PV39UdzTMT44GZ3zFRor3tyf\nthN3d3BzU+fwync9zWrDo/w9MA53d7WD39ERsgov8nHS67g0cqGVm55pnZ7HwUHd5+gIuYVX2ZG2\nmWEh92Nvf2PanesF1zmacRQneyfcGrnh30S9Lbflvx3Y/vWZQ5PEkZCQQFBQEAEBAQBERUURExNT\n4sN/7dq1TJw4EYBevXqRmZlJWloap06dqrRukZYt1WQxbZq6TOnSpeoqcl5e0LGj+i1Np1P/hzx5\nUp2uu1Ur9dHb339XOzmL6HQ6Phz6IQGeATX1tghh4uwMQa0bE9S6cRl7PYHS693n5OhJT9/LxYtq\nIrl0CbKzIStL/cnM8KXD9X+zeo/6Ojtb7aPJVRqR0aIb+bprKAYXvj6sbs/PV3/yGmWT1y2ewtj7\nATWZNGoEdk3TyImcgM4hD4dcP1rHb8TRUf3/KTYWCjyPcbTzKPodOGiq4+AAOU4n2OQ/EDvFAY/8\nWxl48Ufs7NT/F+3s4JrjGXa7v8FdWZ+W3G5/jq2NZ2KnOOJWqKf39VkoCqafHC5y3OlLuuQ+h06n\nPu3m4AAG+0scclqGvc4eN/tmhDlMNO2ztweDXSYnCjcS5jrStM3ODq4rWRy+vgEHO3tc7D3o5B6O\nTqc+OBETo5YpHl95r83dZq0yRdtubuUs/vrm34t/ITCHJokjNTUV/2KdBnq9nh07dlRaJjU1lXPn\nzlVat8i9X90LwDcPfEOvXi706qUmj2PH4JHY4Qx0/QpHXPDygrZt1aenJsTez15DDtN+hx8CfsDF\n8cajVLd632qV6xeiJri6qj9/facqQyOgbRnbPYFpFRy5FfAeAEbjjYRiMASQn7//r98hf4b638WL\nYdIkMBhu5VreHhjw1/6/6uUX+jPA8AsFhQWg2OETon7wFxaq/80t8KZV/qMEOqjbirbnGF3IMgyg\nkHyc7dwJ+KtLqehDMkex41q+Cx0aq3WMRvXncn4B+fnpXC8spLDQwLVramI0GtX/XlWusa/RLpTM\nkaZtigLZdlfY6fMZCoU457ciNDWcwkJ1AbHc3BuxFcVX0Wtzt1mzXnHFW55uboUqKl+UTM2hSeIw\nt8Ovut0v68avA8B1fNmD9XZS8SA+10fq9iC/2bNnax1CjbLl67PlawP4+OOav77PGVvm9mger7De\nRv5W5va9zK2w3kmWmH4/etT2/n5FidYcmiQOPz8/UlJSTK9TUlLQ6/UVljl79ix6vZ78/PxK60L1\nk44QQoiyaTLlSFhYGImJiSQnJ2MwGIiOjiYyMrJEmcjISFauXAnA9u3b8fT0pEWLFmbVFUIIUXM0\nueNwcHBg8eLFREREYDQamTJlCiEhISxZot4KTps2jaFDh7Ju3TqCgoJwdXXl008/rbCuEEKI2mGT\nAwDNGedRX02ePJkff/yR5s2bc+DAAa3DsaqUlBQmTJjAxYsX0el0PPbYYzzzzDNah2U1169fp3//\n/uTl5WEwGBg2bBhz51bcrl4fGY1GwsLC0Ov1fP/991qHY1UBAQF4eHhgb2+Po6MjCQkJWodkNZmZ\nmUydOpVDhw6h0+lYvnw5vXv3LruwYmMKCgqUtm3bKqdOnVIMBoPSpUsX5fDhw1qHZTW//vqrsmfP\nHuW2227TOhSrO3/+vLJ3715FURQlKytLufXWW23qb6coipKTk6MoiqLk5+crvXr1UrZs2aJxRNb3\n3nvvKePGjVPuv/9+rUOxuoCAAOXSpUtah1EjJkyYoCxbtkxRFPXfZ2ZmZrllbW5a9eJjRBwdHU3j\nPGxFv3798PLy0jqMGtGyZUu6/rValpubGyEhIZw7d07jqKzL5a+ZMg0GA0ajkaZNm2ockXWdPXuW\ndevWMXXqVJt9QMUWr+vKlSts2bKFyZMnA2qXQJMKZui0ucRR3vgPUb8kJyezd+9eevXqpXUoVlVY\nWEjXrl1p0aIFAwYMoEOHDlqHZFXPPfcc7777LnaWzO9Tj+h0OgYOHEhYWBgff/yx1uFYzalTp/Dx\n8WHSpEl069aNRx99lGvXrpVb3ub+ujIpXP2XnZ3N6NGjWbBgAW5ublqHY1V2dnbs27ePs2fP8uuv\nvxIfH691SFbzww8/0Lx5c0JDQ23yWznA1q1b2bt3L+vXr+fDDz9ky5YtWodkFQUFBezZs4cnn3yS\nPXv24Orqyj/+8Y9yy9tc4jBnjIiou/Lz8xk1ahQPPfQQw4fb7mJZTZo04d5772XXrl1ah2I1v//+\nO2vXriUwMJCxY8eyceNGJkyYoHVYVuXr6wuAj48PI0aMsJnOcb1ej16vp0ePHgCMHj2aPXv2lFve\n5hKHjPOovxRFYcqUKXTo0IEZM2ZoHY7VZWRkkJmZCUBubi4///yzacZnW/DOO++QkpLCqVOn+Prr\nr7nrrrtMY7FswbVr18jKygIgJyeHuLg4OnXqpHFU1tGyZUv8/f05fvw4ABs2bKBjx47lltdkHEdN\nsvVxHmPHjmXz5s1cunQJf39/5syZw6RJk7QOyyq2bt3KF198QefOnU0fqHPnzmXIkCEaR2Yd58+f\nZ+LEiRQWFlJYWMjDDz/M3XffrXVYNcbWmo0vXLjAiBEjALVpZ/z48QwePFjjqKxn0aJFjB8/HoPB\nQNu2bU1j58pik+M4hBBC1Byba6oSQghRsyRxCCGEsIgkDiGEEBaRxCGEEMIikjiEzbC3tyc0NNT0\nc+bMGa1DsooVK1bg4+PDY489Vq3jzJo1i/fee8/0evv27eUe8/r163Tt2hUnJyf+/PPPap1X2B6b\nexxXNFwuLi7s3bu3zH1FDw/Wx0dEdTodY8eOZeHChaX2FRQU4GDmep83X/v69eu55557yizr7OzM\nvn37CAwMtDxgYfPkjkPYrOTkZIKDg5k4cSKdOnUiJSWFd999l549e9KlSxdmzZplKvv2228THBxM\nv379GDdunOmbeXh4OLt37wbUAXxFH6RGo5EXX3zRdKylS5cCEB8fT3h4OA888AAhISE89NBDpnPs\n3BK2IAQAAASySURBVLmTO+64g65du9K7d2+ys7Pp378/f/zxh6lM3759y5wuv/hT8ytWrCAyMpK7\n776bQYMGkZOTw8CBA+nevTudO3dm7dq1ZV7XsWPHShxz48aNDBw4kEOHDtGrVy9CQ0Pp0qULSUlJ\nVX3LRQMhdxzCZuTm5poGDrZp04b333+fpKQkPv/8c3r27ElcXBxJSUkkJCRQWFjIsGHD2LJlCy4u\nLkRHR/PHH3+Qn59Pt27dCAsLA9Rv6WXdpSxbtgxPT08SEhLIy8ujb9++psFg+/bt4/Dhw/j6+nLH\nHXfw+++/ExYWRlRUFP/973/p3r072dnZNG7cmClTprBixQo++OADjh8/Tl5enlmjkffu3cuBAwfw\n9PTEaDTy3Xff4e7uTkZGBn369CEyMpLdu3eXe10ZGRk4Ojri7u7Of/7zH5599lnGjRtHQUEBBQUF\n1vqTCBsliUPYjMaNG5doqkpOTqZ169b07NkTgLi4OOLi4kzJJScnh8TERLKyshg5ciTOzs44Ozub\nNUVNXFwcBw4c4H//+x8AV69eJSkpCUdHR3r27EmrVq0A6Nq1K6dOncLd3R1fX1+6d+8OYJq8cfTo\n0bz55pu8++67LF++3KxZAHQ6HYMHD8bT0xNQZ9ydOXMmW7Zswc7OjnPnznHhwgW2bNlS6rqK7lzi\n4uKIiIgA4Pbbb+ftt9/m7NmzjBw5kqCgoMrfbNGgSVOVsGmurq4lXs+cOZO9e/eyd+9ejh8/blp/\noHhTUPHfHRwcKCwsBNQO4+IWL15sOtaJEycYOHAgiqLg5ORkKmNvb09BQUG5fSsuLi4MGjSINWvW\n8M033zB+/HizrqtoXQ+AL7/8koyMDPbs2cPevXtp3rw5169fR6fTlbquojhiY2NNU7mMHTuW77//\nnsaNGzN06FA2bdpkVgyi4ZLEIRqMiIgIli9fTk5ODqCu3ZKens6dd97JmjVruH79OllZWfzwww+m\nOgEBAaYZbIvuLoqO9dFHH5madY4fP17u+gU6nY7g4GDOnz9vOlZWVhZGoxGAqVOn8swzz9CzZ88K\nF88pcvMsQVevXqV58+bY29uzadMmTp8+jU6nK/e6FEVh//79dOnSBVDXYggMDOTpp59m2LBhNrck\nsbA+aaoSNqOsb/XFtw0aNIgjR47Qp08fANzd3fniiy8IDQ3lwQcfpEuXLjRv3pwePXqYPpxfeOEF\nxowZw9KlS7n33ntNx5s6dSrJycl069YNRVFo3rw53333Xbl9Io6OjkRHR/P000+Tm5uLi4sLP//8\nM66urnTr1o0mTZqYPVnlzecYP348999/P507dyYsLMw0qefN11XUZLd79+4Ss/L+97//5fPPP8fR\n0RFfX19effVVs+IQDZdMcijETWbPno2bmxvPP/98rZzv3LlzDBgwoNRTT0U+++wzdu3axaJFi6xy\nvrfffpt27doxZsyYSssGBgaye/dum1viVlSPNFUJUYbaGu+xcuVKevfuzTvvvFNumcaNG7N+/fpq\nDwAs8uqrr1aaNIoGABYUFNjsMrCi6uSOQwghhEXkq4QQQgiLSOIQQghhEUkcQgghLCKJQwghhEUk\ncQghhLCIJA4hhBAW+X/+nuw44UNfwAAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 19 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Transformed Gaussian model compared to Gaussian model\n", + "-------------------------------------------------------\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "dt = St.sampling_period()\n", + "va, sk, ku = St.stats_nl(moments='vsk' )\n", + "#sa = sqrt(va)\n", + "gh = wtm.TrHermite(mean=me, sigma=sa, skew=sk, kurt=ku, ysigma=sa)\n", + " \n", + "ysim_t = St.sim(ns=240, dt=0.5)\n", + "xsim_t = ysim_t.copy()\n", + "xsim_t[:,1] = gh.gauss2dat(ysim_t[:,1])\n", + "\n", + "ts_y = wo.mat2timeseries(ysim_t)\n", + "ts_x = wo.mat2timeseries(xsim_t)\n", + "ts_y.plot_wave(sym1='r.', ts=ts_x, sym2='b', sigma=sa, nsub=5, nfig=1)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD9CAYAAAC1DKAUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8Tcf7xz9BYqnIImSXyCJBFlGxk6QScS1BUepblCL8\nUFTRPYm2SbRUKa1SWylaOxVrJfZQu6K2JiSRIJslkfV+fn+ciERutrvnOu/X67ySc+6cmWfOnDPP\nzDPPzOiRJEREREREXjlqaVoAERERERHNICoAERERkVcUUQGIiIiIvKKICkBERETkFUVUACIiIiKv\nKKICEBEREXlFUVgBjBkzBubm5nB3d5f5e0xMDIyMjODl5QUvLy989dVXiiYpIiIiIqIE6igawejR\nozFlyhSMHDmy3DA+Pj7YuXOnokmJiIiIiCgRhXsA3bp1g4mJSYVhxLlmIiIiItqHyscA9PT0cOLE\nCXh6eqJ37964evWqqpMUEREREakCCpuAKqNt27ZISEhAgwYNsGfPHgwYMAA3btwoE05PT0/VooiI\niIjoJPJaWVTeAzA0NESDBg0AABKJBPn5+UhPT5cZlqTOHiEhIRqXQcybmD8xf7p3KILKFcD9+/eL\nhTx9+jRIwtTUVNXJioiIiIhUgsImIAcHB9y5cwckYWtri7CwMOTn5wMAgoODsXnzZnzxxRd4+vQp\n6tSpgx9//FFhoUVEREREFEdhBbBmzRo0bNgQI0eOxOXLl8v83rx5c3To0AFRUVE4deoUpk6dilGj\nRimabI3D19dX0yKoDF3OGyDmr6aj6/lTBD0qakQCEB8fj379+slUABMmTICfnx+GDh0KAHB1dcXh\nw4dhbm5eWhA9PYXtWTWFhw+BT7odRW5mNn70+BkN/1gJGBtrWiwREZEaiCJ1p8q9gJKSkmBra1t8\nbmNjg8TExDIKAABCQ0OL//f19dU5zV1YCCxbBoSEAO/UTUbh/afofuAz7BoxG9a7fta0eCIiIjWA\nmJgYxMTEKCUulSsAoKyLUnkunyUVgLYTGhMq/PUNrdL52HWhiIoCnJNCcegQsHnhp2h06xZcbi1C\nx/M/oc/GUFhYVD0+8Vw3z7/oHgqpFPjqmHbII57Ld65KXm4ch4WFyR8ZlUBcXBzd3Nxk/hYcHMwN\nGzYUn7u4uDAlJaVMOCWJonXk55PjXQ/T0uAh13nOpTQ9Q/ghI4McMoTMyOCmTaSZGblzp2ZlFdEs\nZ86QbiYJNNPP4FS7bbx47JGmRaoS33fawF1uHzE/sI/wXouoFUXqToVr3T179tDBwYEGBgaMjIws\n83tERATr1KnDNm3a0NnZmTY2NrIF0VEF8P77ZE+TU8xEIxIQKn0ZnDpFWlmRCzpupLS7DymRiB9T\nDSNr9CReev1dSntVr+xyc8nPPyebNiXXuX7JW3DgZ5hDm/oP+frr5JIlZHq6CgVXgKgoslndZHbA\nSVohkZ+4buGtW5qW6tVCYwqgoKCADRs2ZNOmTamvr099fX1+9dVXXLp0KZcuXUqSjI6Opr29PR0d\nHenh4cGzZ8/KFkQHFcCKFWSLFmSG/2Ch8vf2rrBiiI8nWzf4j9Mxn4XQK1dZaDu5ueSvvr/wA5uN\nHGF1kJKAPHp7k80NH7B5vSTGdpqmU8pNKiU3bSLt6ibTAvfYDqf5W4fvmZdX+b3nz5MeHmTfvuS9\nexQUf9G7UpCawX37yKFDSZO6T3nSa6JWNQyePSMdHcmodp+RAC+3HsppE5/RzIz0s7rGXW4faZW8\nuorGFMCJEycYGBhYfB4REcGIiIhSYaKjo9m3b9/KBdExBXDiBNmkCXntGkuZeyoj3X8Iu+Ao32m8\nm3kPataHk5lJzp1LWluTASan+S1mcDVG8s+u4YyNJW+1f5tbMYBNcJ/RPiGaFlcpXLpE+vqS7u5k\ndPtZLIQedzh9QN+uebS2JiMiyLQ0IaxUSqamkv/8Qx7sPZ+fNvuVTQwyuOanp5RKiyIs513Z3voT\nNkM8U2GqNQ2DOXPIAQNYRuacHPL3liG0x3/8BF+xcPBbmhVUx9GYAti0aRPHjh1bfL527VpOnjy5\nVJiYmBiamprSw8ODEomEV65ckS0IwJCQkOIjOjpaEdE0SkKCYM758085bs7IYNbA/7FvYB4lEvLp\nU6WLp3QSEsgZM0hTU/J//xNatSVbssWVWdG1Qy4T2MSsUL7noyWkjZjKyVZb2MQgg0vmZTE/n2Uq\nwnPnyJEjSWODp7Spe5/6enk0MS5ky5akn/FZjsUyJsKqahW6RMIP8Q0lRsdYmKb5hsF//wnlHR9f\nTgCJhPfRhF0anufAvrl88kSt4uk00dHRpepKjSmAzZs3V6oAHj9+zKysLJJkVFQUnZ2dZQuiIz2A\n7GyyXTuh5acIeXnkqFFkx45Cq1FbWeWzkiZ1HnGa/VbGX8p88YOslmyJa7Gxgs1740b1y6wod+8K\ndu+JWFKlFvnDzkG8A1vmwOBFWFkKsiIyMpg3aBi7dMzn118rIRMKEhTEiuUoKuuclAy++y7p6Une\nuaM28V4pNKYATp48WcoEFB4eLnMguCT29vZMe94nLimIDigAqVRoAQ8bxhddegXjmzmTbGmcxLsd\nBmudPXXJEtKm7n1eg0uFA9zlcfEiaWlJLl+uIgFVQEYG2bo1+a3L8qpX4LIq+2qYBUuSkEBaWJCH\nDsmZASWwaxfp7CyYeqqCVErOmyeU9YkTqpVNXUjHjiN9fLTim9SYAsjPz6elpSUdHBzo6OhIS0tL\nXr16tVSYlJQUTp48mU5OTnRycqKlpaVsQXRAAUR4b6FXw+vM6jlAqS/Ftw4/sjluMxnmWmP//fZb\n0t6evO0zunot2Ze4fp1s1jCVkc2XVtt7Rt3k5Ajf/PvvU3DnrWoFLmdlXx779wuV6b17SomuWmRn\nkw4O5N691b/3zz/JJvUecabtet7yGa3VZV3MuHGUdvfhHd+R3Lr2KT/5hAwMJM30M9gM8fwQ3/CM\n/yylNPjkRaNeQJaWlmzevDkdHR1pYWHBq1evlvICmjhxIhs2bEhPT0+6u7uzVatWsgWp4Qpg9WrB\nLJAAa7lawxUikTAMn9OrwTU+uqPZj0YqJcPCBO+mu3eplMrtbofB9MR5jsYK5g4apjxhlUhhoeCN\nM2gQWVCgaWnIkBBBGeXnqz/dQYPkv/+/9kP5AeaxMR4y0Pw8t29Xfx6qw/bWn9AKiWyKFPa2OMvP\nPyd37CAT/d7hJbjxU8sVdGxeQCcn8tNPycuDQtTeM9BqL6Dg4GBuLGHo1cWJYLt2kebm5LVu4xRq\nDZdLRgalg4dw/Ls59PcX3Cw1gVRKzppFurmRyclKjFgi4RO8xgHG0ezWKZ8PHyoxbiUxYwbZtavg\n+qgNFBSQ/tZX+IXdKrVVNreGfkLTOpm84ztS/vSKzGHZr3flmp+esmNH0ua1NIbZrWCi3zta0yvI\nzSWnTyeb1UvhUXShtJ13ueNZUqkwie/DDwVX4CRYKr8RWAFa7QXUt29fHj9+vPi8R48ePHPmTFlB\naqgCOHZMmMUbG0uld/VfJj9fGHz73/+EFqk6kUrJKa0P8vWG/zK1x1tKV3AcMoSFaRn8+GPBxPDP\nP8qLXlG+/550dX3hzqktJHV8k6ZIFSocFVc22dlkO8Nr/A7TFKvcZHwj519/j8H4icZI50DrWO7b\np/73uyTx8WSHDsLcjLT/Mqv1TUt7VXNwXwkoUncqtBZQVbdxpBxrAWn7YnAv56FjxxInmzapPP3f\nflN5EuVi9hcAkz+UH3GJ5+bmpvzoFaVxY01LIIutsAaEZ6eGbVXPAPhAGemV+UZWAJiIbUnAtkD5\no1U2jf8s+qea3zT371fZCr/KXAxO5V5AuroWUHw8aWND/vab+tNOTSVdXMiFC1WfVmEhOW4c2bkz\n+SjgTbW1bo4fJy0NHvJdrGQc7NQ++C2VCvZu+3r3eBWuau3SV5mMDD4MGkNTk0Levq26ZH74QZjo\n9jRRRT3cl3oFUqmwNMpoi91shnga4hG7NL7GyZPJX34hzw2cw8LuvgqbvnJyhIl8v/9OhoaS/e3O\nsVndZJ7oOF1rTFFVQZG6U2EvIAcHB8bFxTE3N5eenp5lvIB2795NiURCUlAYHTp0kC1IDVIAD0dM\nZ4v6d/h9y5809qLExZHWr6VzlUuEymzAhYXke+8Jtu/Hj6lyE9fLZPgP5meYQ9PamZw0NkdtXi+5\nueSIEYKeS35juNq79NUlJESYcKYKDh8W5mtoZH2fovGCVK8e/GvHE86fT77zDtmi/h1aIonB+Il7\nun1VJXfUlBRyzx5h7sKg5mfoVD+BdWvl0rVFAQcOJD/5hFzr+hXTYaydyr4CNKIA0tLS6O/vTysr\nKzZo0IDNmzdneHg4SZbyArKzs6OpqSkNDAxYv359nVgL6HGXXlyFURp/Ua55j2AzxAt2WSXLUVBA\nvvsu2b07NTeLs0jh3L+RyenTSRMTcpbHHqZ27qcypZeeTvr5CUscZGVR7UpPHh49EpYdKWeSvdzc\nvSu4m8rj8qkUynv2Egmvw5nf2Cxkl475NDIihzqc5tzmP/Fzx984dUIOx4whBw8WBsqtDB7QuM5j\nvtE9jx9+SP7mOodX0JK50C/93VR3cp6WoBEFMHPmTM6dO5ckGRkZydmzZ8sMV97ErzKC1CAFoDUv\nikTCO7ClS704fjrjWaW+yFIpmZhI7t5NhocLbo1ejePZ0+QUJ9j+yW/CsrllC3n+zTCONN9DP9ML\nQrdfS0hIIMdb7qApUjkLkUzpN7bym6rBf/8Jg73TpmmHq2d1mDtXMffMl3n2THi9K5nXqRleUgwp\nKeTyFt9wBr5lKL7gd56ruXy5YNrZ4z6TcbCjtGRjrbzvtwYoe1loRAGUtOUnJyfTxcVFZjh7e3um\nVmEtgxqlALTlRSmS48HNTL7+OhkcXLbiKigQWnBDmv/NxnUy2cQgg/6+eZwxg/z1V/K013hGoRcX\n4/843XkX+/cn3V+7xQHYyizU176usETCeDTjpKa/08S4kFOmFM1HkIO0NOHZzJkjeHyY1H3KRU7f\na8XszuqSlSW01mU42FWb/PeCOcp8D4dYHH6xf4W2U16lrsRZ2NqKInWn3HsCm5iYICMj4/lAMkxN\nTYvPS+Lg4AAjIyPUrl0bwcHBGDdunMz49PT0EBISUnyu7V5A2sbjx8CAAUCTJsDatUBKCrBqFbBy\nJWBmBox98h3635wHSyRDb8gQ4I8iL57evYE9ewBvb+C554Ksa9pCZiYwfjywbBmSnxnju++AFSuA\nN5sehUfBeeTUeQ25g4YjB/WRu2s/ctKykFurPnI6v4FcGiA3F8g5dwW3U43xIN8E7Trrw7uTPtq3\nBzrOGwzr2C1COiWfUQ1hyRLgzz+FopOX6Gjg/X7/wSLrNrZhIBoO6V0znkOJ96LU+1re9RrMy15A\nYWFh8u+nXpF28Pf3p5ubW5ljx44dNDY2LhXWxMREZhz3ikbuHjx4QE9PTx45ckRmuEpEEakCz56R\nA+zO0b7ePZrqP+KksTk8d67ox+p0e2tYCyk1lfzafhknYxE/xDf8rOUmfvmlsITGIkzmzxjHNd4/\ncONGcts2Msp9Jv9BKxaglk7YgJ+Tm0va2ZFHj1b/3jt3hEdhZ0du9vpKMJnU0OfwqqFI3amQCSi5\naDrovXv3yjUBlSQ0NJTz5s2TLYioAJRCfvc3+Bf8mI16pSu3GlapV5sKlp+uklmA1IlntGoV2a1b\n1RcjzM4WTGCNGwuukDVl4FvkBRpRAEFBQWzatClr1arFyZMnyxwEzsrK4pYtW+ji4kIHBwfa2dlx\n3759sgURFYByqOGtWLmpTk9Ghyu4/Hxh9djw5j9XurheXJywB/FAs8OM8xmlk8/jVUAjCuDkyZPs\n1KkT69evz44dOzKj6OVJSkpi7969SZI3btyggYEBW7ZsyVatWhUvFidTEFEBKAcdrtxEqsbdDoP5\nOv7mUGzg04HvyAxz5IiwrPRCx4WCuaeG+b6LvECRurOWvAMRHTt2xIkTJ9ChQwcsWbIExkUDLFZW\nVti9ezcAIDU1FX5+frh69SquXLmCqVOnYseOHfImKVIVjI2FQTsdGfASqT62plk4im6o29gQnW+s\nRlxc6d9XrAAGDQLWrAHeb7EXeoAw4L9smSbEFdEgCq0FVBlJSUmwtbUtPrexscGpU6dUmaTaeL5s\nkfhX/Kt1f9evx9wuB9C8Xw+8blUbnToBPXsCzZsDT54InkJDhwInTgA9168Hxo9HqMOvwPf1tEN+\nHfhbU6jQDTQgIAApKSllroeHh6Nfv34AAD8/P8yfPx9t27YtE27Lli3Yu3cvli9fDgBYt24dTp06\nhR9++KGsIKIbqIiISoiJAd5+G7CyAkxMhA6iqammpRKRF2W6gVbYAzhw4IBckT7H2toaCQkJxecJ\nCQmwsbEpN3xoTVOfIiI1AF9fINb3I2z72waTmuyDfq21AEQTYU3l5cZxWFiY3HHJPQZQkvK0T7t2\n7XDz5k3Ex8cjLy8Pv//+O4KCgpSRZI1Dacu3aiG6nDdAN/JnlxyLabenQH/fn8LEqBLoQv4qQtfz\npwhyK4CZM2dCX18fMTExCAwMhEQiAQDcu3cPffr0AQDUqVMHT58+hYuLCwwNDZGamoqWLVsqR/Ia\nhi6/hLqcN0BH8teggfBXxmCvTuSvAnQ9f4ogtwJ47733cOXKFfj6+mL//v3YUzT/vKQXEAA0aNAA\nycnJyM3NRWJiouISi4iIVJ/164XlLbRtaQ8RjVLhGEBFuLq6VjmsvAMUIiIiSuK5e7CISAnkXgzu\nORV5AQHVWwxORERERKT6qMQLqCpuoJVx/PhxWFpa4uHDhwgICICrqyu6detWJpzYSxARERFRLyp1\nAwUAS0tLAECTJk0wcOBAnD59WqYCEBERERFRLyp1A83OzsaTJ08AAFlZWdi/fz/c3d2VkaSIiIiI\niILIrQC2bdsGW1tbHD16FO3bt4ehoSGA0m6gKSkp8PLyQu3atWFmZoa4uDicPn1aOZKLiIiIiCiE\n3Apg4MCBSEhIQHR0NM6cOQN7e3sApd1AHRwc8Msvv6BPnz549uwZ7t27h1GjRsHPzw+tW7eGm5sb\nFi1aBABIT09HQEAAWrRogZ49eyIzM1Px3GmAhIQEmfkLDQ2FjY0NvLy84OXlhb1792pYUvnIyclB\nhw4d0KZNG7Rq1Qoff/wxAN0pv/LypyvlBwCFhYXw8vIqHsfTlbJ7zsv506Wys7e3h4eHB7y8vNC+\nfXsAipWfwiagbt26wcTEpMIwJU1E+vr6WLBgAa5cuYLY2FgsWbIE165dQ2RkJAICAnDjxg306NED\nkZGRioqmEcrLn56eHj744AOcP38e58+fR69evTQtqlzUq1cP0dHRuHDhAi5duoTo6GgcO3ZMZ8qv\nvPzpSvkBwMKFC9GqVatizztdKbvnvJw/XSo7PT09xMTE4Pz588XWFEXKTyljABWhp6eHEydOwNPT\nE71790Z6ejratGkDAGjYsCFatmyJpKQk7Ny5E6NGjQIAjBo1Ctu3b1e1aCrBwsJCZv4A3fF0alA0\nqzQvLw+FhYUwMTHRmfIDZOcP0I3yS0xMRFRUFMaOHVucH10qO1n5o7DviYYlUx4v50Wh8pN7J4ES\nxMXF0c3NTeZvjx8/ZlZWFkkyKiqKzs7Ope5r1qwZHz9+TADiIR7iIR7iIcfxHKlUWma/9opQeQ/A\n0NCwuEUlkUiQn5+P9PR0PH36FIMGDcLChQuLB5BZpKl18QgJCdG4DGLexPyJ+dO9oyR6enrVmlSr\ncgVw//79YiFPnz4NkjA0NMSgQYMwYsQIDBgwQNUiiIiIiOg0zyfsJicno2nTplW+T+61gJ7z9ttv\n4/Dhw0hNTYWtrS3CwsKQn58PAAgODsbmzZvx008/oU6dOmjQoAE2bNiA9957D61atcK0adMUTV5E\nRETklWfNmjWYPXs21qxZU61GtcIKoH79+igsLISLiwsuX75c5vdJkybh+vXr2LNnD0ji2rVrWLdu\nXbErEwBEREQoKobWo8u7m+ly3gAxfzUdXc8fIKzasGLFCtjb2+OPaiz6p/BicEePHkXDhg0xcuRI\nmQogKioKixcvRlRUFE6dOoWpU6ciNja2rCB6emXsWSIimiQvT9g4XV8fePddTUsjIiIbRepOlc8D\nKOmi1KFDB2RmZuL+/fuKJisiojLy8oDly4EWLYDNc64g/P8SMNd1JVDDJ0iJiLyMwiagykhKSoKt\nrW3xuY2NDRITE2Fubl4mbMk9gcVN4UXUTX6+0OL/+muh8l+/Huj8ySQkJd6E3/Vo6HX/E7MuvaNp\nMUVecV7eFF4RVK4AAMh0VZKFpjeFD40R0g/1DRXPX7HzR48Ax6EfwkjvMdZZGKLL758j9ML32O+c\nhNDD9xDtOR0eDu1w4OtQHPhU8/Kq+/zZM8D7f+NRmFOAK7yPWht+Q+iF77VGPnWcawvK3BQeVAIV\nTQQLDg7mhg0bis9dXFyYkpJSJpySRBERkYvJk8mxFrtIQDiGDBF+yMgQ/s/IYGIi6eREfvONZmVV\nNykpZPv25PCm+9kFR/kVPnnxfEQ0jiJ1p8rnAQQFBeHXX38FAMTGxsLY2Fim+UdERFOcPQts2gRE\ntl4rXCi5cfrzrRSNjWFtDcTECD99+63GxFUrV64AHTsCEgmwru0C/I6hWKI/DQfeXqlp0USUgaLa\nZ9iwYbS0tKS+vj5tbGy4YsUKLl26lEuXLi0OM2nSJDo6OtLDw4Nnz56VGY8SRBERqTYFBWS7duTK\nlSzV2q+IhATSqVEKFzouJCWSSsPXVPbvJ5s0IX/9tehC0fM5tPMJLSzIu3c1Kp5IEYrUnQrXunv2\n7KGLiwudnJwYGRlZ5vfo6Gg2atSIbdq0YZs2bfjll1/KFkRUACIaYMkSsmtXsrCwevfFdRhKG9zl\nr3hH98wh48ZxWYtvaG6QxsO7H8sMEhlJduxI5uaqWTaRMmhMARQUFNDR0ZFxcXHMy8ujp6cnr169\nWipMdHQ0+/XrV7kgogIQUTPJyaSZGXn5shw3SyS8Clda6D/kjvVPlC6bpkhLI4c1OUhXXOUNOJWr\n3KRSMiiInDJFzQKKlEGRulOhMYDTp0/DyckJ9vb20NfXx7Bhw7Bjxw5ZZiZFkhHRYh6/+z52uH0K\nqaRPjfOT//BDYMwYwM1NjpvXr0fLIe7Yta8uxk5tiOhopYundvbvBzw9gaYNnuIc2sLZ2+TFWMhL\n6OkJLrNRUcCGDWoWVERpKOQGKsvH/9SpU6XClNwPwNraGvPmzUOrVq1kxifOA6hZpKYCvbZMwv2n\nDTDvSjyWDQtDy70LNC1WlTh0CDh6FLh6Vc4IigaH20EYI37rLaEybNdOmVKqh+xsYNYsYOdOYNUq\nwL+dDzC+n1D5GxuXe5+xMbB5MxDQ6Qlsv/kEXS1vC5MnKrhHRHGUOQ9AIbvL5s2bOXbs2OLztWvX\ncvLkyaXCVLQfQEkUFEVEzSQkkC1bkh87bGQBanFxs7k0a1zIL74gnz3TtHQVk5NDuriQ27crL84d\nO0jz+pm82m6EVg4M3x76MQeaHeYwy2hOGJPDjz4i584lF3f+jS3q3+Fwy0NMj8uUK+597jNohgfc\ngoG6Nx5SA1Ck7lTIBGRtbY2EhITi84SEBNjY2JQKU95+ACIqYvx4POkqASW9VWaSuXUL6NZNWB8n\n/Gwgag8ZhEkXx+PCxVq4fFkwI8T0nQf4+gK9VSeHvMzrug0tUo+j/8/Kky0oCPjWbjEkZ+Ygbc8p\nYPx4pcSrDAoLgVF7h8Eh9TSCkn+G+/m1MDQUenAX4wzx9bMP8FvyGzCZNU6u+HvaXMU+BGKK/lIs\n9l6tXOFFVIsimic/P58ODg6Mi4tjbm6uzEHglJQUSqVSkuSpU6doZ2cnMy4FRRGhMDAXareSdZBH\nSyRxgNUpRkSQhw6Rj0dNJn18FG6dXrxIWlmRP/9cfpht20ibuvf5LWaUnlSlBdy+TTauk8k42Clf\nNomEM/AtexsdZWGa9vQAvv2W7GZyiQWoRXp7ly5/iUR4Di9frw5F7qH/XXhEFxdy1qwKvKrGjVPK\neyjyAkXqToVr3Tlz5lBfX5/6+voMDAwkyVLzABYvXkxTU1MaGBiwQYMGXL16tWxBNKwArgz+gl/Y\nreKvHt/yxL7HfPBAqFBrCs+ekcOHk+2NrjEZ5vzPoz83/PKU06aRnTqRDWplcwx+YR7qyF3pnQwK\nZ1P9NG5sE17px5vo9w6tkcAtTjO15kOXSsnevcnwFqsUr/RkkZHBvEHD2KVjPr/+WnnRKsI//5CN\nG5O3zz+SPcehinMfqkpqqvC+DR8uuIgmJpJbt5IffUS+8QZpUucRP8WXlGpZw6AmozEFUBU30N27\nd1MikZAkY2Nj2aFDB9mCaFgB3PAezs8wh2/jN3qb3KSJCWloSHo1jucPTt8zP7CP1lRkL/PgAdml\ni/A9Zd+T/UE/DRhACXazr9ERZiVVPx8xMaSZfgZ3Q1K1lnNGBs/4z6JZ40KeOVPt5FTC1q3CuEXu\nfeVWei+TmEhaWJB//aWS6KtMXh7Ztm3FvTVVkJ1NDrA7x4a1s2imn8nePfMYGkpGRZHXu4+lBy7w\nI8tVlKZr5/dU09CYAjhx4kRxq58kIyIiGBERUSpMcHAwN27cWHyutWsByegKp6WRhz2n0A9/0Q2X\n+JdPqPLSU1JX+No10tGR/PjjSiYzFbVO/zckl127Vi/J/fsFf/m/2s+udst561bS2loYNNYkT56Q\ntrZkdLR60jtwgLS0JJOS1JOeLEJChNdLEz3Zwu6+TIRV2ZZ+RgYfBo2hp1sBZ8+WT7b4YbOZ3rmP\naEYqQmMKYNOmTZV6AfXt25fHjx8vPu/RowfPyGgSalwBlNcVlkgoBbjZcRbtmxXwzTfJuLiqRfnf\nf+SPP5JDHU7T3/hvehv9SxfnAlpYkPVrPaMzrvNbzGBq0Gi5RN4nWcCm+mlc6T6/yh9CYSH5/vuk\nhwd5717l4f/8U1gO4OhRym0umDuXbNNGqIQ1xcyZ5DvvqDfNOXOEWcZ5eepNlyT//pts2lSDCqiS\nsYXUVNJnUmvDAAAgAElEQVTTk9VSAlKpMJ5hXOcxG+IxzZHM7mZXOH48+V3HjdznPoPp/qrr2Wkr\nitSdCs0DqOru85RjOWi1zwMwNobepk3CqmCyuP0NgG8QfxfYulWBdB69+PcmgJkAZu4EoLdKzgin\nY8xlYIzJjGrfaWVV9bDdupU4Ke8ZVYKhoVy3KZV169SfpoGB+tN8jrW15tIGAPz9N1DBhlEXLwJz\n58oX9VMA91OBIyXnql0GYCLf+1kRL9dhmkRr5gGcPHmylAkoPDy8zHpAurgc9N0OgzkHn3EyFnF4\nsyMMDBQWFGteL4ndcJjh+Ijn/Ge+MMnIag2VaE2npgotG0dHsk3jO/zKfjnPdZlUxkaanU2GhQmD\neqGhZFbPAQoNZv70k+C7PsJ8L791Wc59W57w3j2hpbVxI2luTpazdl+1yc0lfS2v8X3rTYLcamql\nSaVCK/zHH9WSXBkePiSbNUxllPtMtZksZrjv45Amhyjtpf0mktRU4Z2fbLWFD3oMlSnv48fC4H3P\nnuSjR5TdEy36xgradeA/Jx5x5UpywgSyneE1OuImbXCXTetm0MhI6H03QiaHYx23df6m3HkrCQnk\nGp8VnG7zu1abmxSpO1XuBlpyEPjkyZNaOwhcLcrr3pZ3vYqmk8JC8qDHdE7FArbAv7Sol8533yV/\n77GUv7cMoX39ZA4ZkMv4+OrFWxH/tBvFFRjNqVjAN5peYuPGpFm9x7Q0eMhLXSco9aVP69yXEuym\nETI41PYYN28mi+YIqoxVqwTlXFCg2nQqYq/7h3TETT5DXZV7vpw/TzbVT+MDmGmdC255pHbux5FY\nTSNkMMjqNLdsESbrkcKAeps25NixlZjSKjDhlvkmJRImw5xL7CLp2zWPxsaC19K2gCX8o9UXDLbd\nTWfHAjZuTA42i+aPmCC40Grps9SYAiCF2b0tWrSgo6Mjw8PDSVL3l4Mu72VThktdiRf21rlH/OEH\nsrfpCXbECR6Cr/Jfwpc+EKmUvNdxIFNhqhI/eQJ80CaAPy/Ior8/aWQkjJHsc5+h9Bbr/Xc+oLl+\nGs90nqLZ1ptEwv7Yxq+tl6hUjsJCYYXO5W7fq8bNVVUUvReP2/pw1ZIs+voKvdzgljG0rZvCiBYr\n5fcYkvVNvnQtOVlYFbaH8Rn2xU5+h2m8EPCh0INXxjwJFaMRBZCWlkZ/f386OzszICCAGeU8HDs7\nO7q7u7NNmzb09vYuX5CapABUSQXdW5W8hOpMT0Za9++TPznPpyuusguO8pCSPK3y80lfo3P8FF9q\nviWckcH/ev8fG5sWqnQN/eXLBR/8wjTVurkqHRnvRVwc+ZX9cm5Df/WVXyWmWm1FIwpg5syZnDt3\nLkkyMjKSs2fPlhnO3t6eaWlplQsiKoDyUfdLqO70JBIWoBZ/bf4FHZsX0M+PPHZMsShnzCADzf6W\nPftVQ3zxBfnWW6qJ++FDwevnwgXVxK8R1N36rgGVvSw0ogBKDuYmJyfTxcVFZjh7e3umpqZWLoio\nAF5dSnx4eXnkL7+QdnZkoM1lJnYcVO0BuI0byebNybT/MrXqg87KEvKligliY8aQ06YpP16NUkMr\nZHWjSN2pVxRBtTExMUFGRsZzTyKYmpoWn5fEwcEBRkZGqF27NoKDgzFunOwFp/T09LTK1UpEs+Tl\nAXNdVuCXeH/sRh+4DWklrLtcCf/8A/j5AQcOAG3aqEHQarJ1K/DFF8D584C+vnLiPH4cGDpUWNq6\nUSPlxClSc1Ck7qxwHkBAQABSUlLKXP/666/LCFCeb//x48dhaWmJhw8fIiAgAK6uruhWyqn8BeJ+\nACLPMTAAPm+5BY7xf+GNOkfw+wgD+FVyT2YmMHAgsGCBdlb+gCDf0qXAkiXAtGmKx1dQAEycCMyf\nL1b+rwrKnAcgdw/A1dUVMTExsLCwQHJyMvz8/PDvv/9WeE9YWBgaNmyIGTPKTloSewAiZcjMBMaP\nR/SIlRj6XkN8/z0wfLjsoFIp0L8/0Lw5sGiResWsLv/+K0ys++cfwNxcsbi++w7YuxfYt0/YpUvk\n1UORulPu/QCCgoKwZs0aAMCaNWswYMCAMmGys7Px5MkTAEBWVhb2798Pd3d3eZMUedUo2nXLr19D\nHDoEfPSRMGv0+buelQWcPSvM7h3lEovMo5cw70aQ1u0/8DKursC7Vvsww+OAQltpnhn4NcJnP8Li\n3HHQe6TdeRbRUuQdPEhLS2OPHj3KuIEmJSWxd+/eJMnbt2/T09OTnp6ebN26dfE8AVkoIEqNIFpd\nq5BpAHXlLTGR9DC9S2/Dq2xWL4X160vp4UEOHSrsg3AfTVTiMqiK/D3qImFnHGNbnGGM7xdVv+8R\nuXQp+frrZLO6yVyNkQrnWZffTVL386dI3Sl3D+Cvv/5CcnIybt++jcjISBgX7QNqZWWF3bt3AxAG\ngCMjI5GTk4Pc3FzUqqXQBmQ1GqWt3aGFqCtv1tbA0ZbB+PLJNBzK6YwnfYbh4kVg40YgpNUmNMVD\nwNu73I3M5UUV+WvUCDiGrpjlsAWjbofgzTeBmzdlh83KAmJigNGjgWbNhAHur78G/vMbi1H4VeE8\n6/K7Ceh+/hRB7hrZ3d0d27ZtQ/fu3csNU1hYiMmTJ2Pv3r24evUqNmzYgGvXrsmbpIgIGjUCArEf\njt6NUXv5zy9+WL8eGDIE2L+/ZmxKvn499IYMwdCzs/DvjVpo3x7o1An44APgzz+B8HBho3kXF6BJ\nE+DDIfFodeQn3Hj9bWz+JROBgUDtDetqVp5FtA65VwN1dXWtNMzp06fh5OQEe3t7AMCwYcOwY8cO\ntGzZUt5kVcpzJyTxb/X+Pkct6XlsRWjDkcCyZQj93vjFdWNjhLb6A/i+huTvJXk/+ghISwNiVsfj\nn9UP4Wl8BwWtg9CjhwEWLgT0A95F6GFf/PifC0LHjwf++EPIf6s/EGqshfnTor/PUVY8OoWi9idf\nX99y1/epyn4BzwEgHuIhHuIhHnIc8iLXPIDw8HD069evolsBVH2/AAg5qHJYERERERHFqVABHDhw\nQKHIra2tkZCQUHyekJAAGxsbheIUEREREVEOSnHLKa/13q5dO9y8eRPx8fHIy8vD77//jqCgIGUk\nKSIiIiKiIHIrgG3btsHW1haxsbHo06cPJBIJAODevXvo06cPAKBOnTpYvHgxAgMD0apVKwwdOlRr\nB4BFREREXjXkVgADBw5EQkIC3n77bZBEYmIigNLzAABAIpEgMDAQenp62LhxI86fPw9AcBH18vIq\nHksIDQ2FjY0NvLy84OXlhb179yqSL41ib28PDw8PeHl5oX379gCA9PR0BAQEoEWLFujZsycytXy2\nakXIyp+ulF9mZiYGDx6Mli1bolWrVjh16pROld3L+YuNjdWZsrt+/XpxHry8vGBkZIRFixbpTPnJ\nyt/ChQsVKz+5h4+LOHLkCM+dO0c3NzeZv5fcEjI2NrZ4S8j58+dz+PDh7NevH0kyNDSU8+fPV1Qc\nrUDWHghV3T+hJiArf7pSfiNHjuSKFStIClueZmZm6lTZycqfrpRdSQoLC2lhYcG7d+/qVPk9p2T+\nFCk/hccAunXrBhMTk3J/37lzJ0aNGgUA6NChAzIzM3H+/HlERUVh7NixxeMHFPYmUFQcreHlvJR8\nDqNGjcL27ds1IZbSkFVWNb38Hj16hKNHj2LMmDEABBOmkZGRzpRdefkDan7ZvczBgwfh5OQEW1tb\nnSm/kpTMn0J1pzK0UVxcXLk9gL59+/L48ePF5z169GCPHj147tw5xsTEsG/fviTFeQDiIR7iIR7y\nHnZ2dvTw8OCYMWPK3Z5XFmpZnIcltFNqaipMTU3h5eVVRmuxSJMp8wiJDkFIdIjGz0NCQioN//gx\nMXh0X8we4QxKJGBGhtbIX9G5zygfrZJHzJ9i+fti+uv4yHYdHOrfg1HQF2g/KwQHDhC53XrgDd+u\naOo7ARn9R2mN/IqUny4cABAXF4cLFy7A0tJS5nL7FVXOClNRDyA4OJgbNmwoPjc1NaWlpSXt7e1p\nYWHBBg0acMSIEVSSKFpLSEhIub9dv05OmUKamJAdDK/QFVd5E46a3chcBhkZpFRa9npFedMFXrX8\nrWgRSW+c4gV4UDq4xDsokVAKcKr5enbtmM/sbPXKKS+6Xn4l686K6mJZqLwHEBQUhF9//RUAEBsb\nC2dnZ9y7dw9xcXHYuHEj3njjjeLfXyWkUmD3bqBXL6BrV6BhQ+DCBSC264eYioXoWucUDo9aoWkx\nkZEBLF8ubLPYtHEB+pmdRKr/MK1fc19EPp48AT67MxZLMAme3nWht7zEKqNFC9h9d1WCZg51MHSo\nsCOZiPawbdu2au25IvdicM/x9fXFsWPHUFhYCGNjY3z33XfIz88HAAQHB6NBgwY4ePAg6tati1q1\namH06NHF95Ks1nIRNZmS21uSwLhWx/B3oiU+cNiB7ZfGoJ5F0Ype69djwvjxcBpeF2+NaYjISGEZ\nYHWSP3Yitp9sit9SeyE6pyMCAvTw/vvAroJ++PKYL7z++ha/DVyA7tFhZfKmi7ycv4IC4Ej/+ciM\nz0TtevqoNfMD1G7UELV+WIjmaWfgYpYmrE5aQ1boLJm/yEjAf4AhvKXNhSWmS+ahaIOeWgBWrRJ2\nYBs3Dli5Urt3I9P19xMAPDw8oKenh+bNm+Pnn3+u/IbnKNL1KCgooKOjI+Pi4piXl0dPT09evXq1\nVJjo6OhiV8+KUFCUGsX8+aTnazf5BK+RQLmmnmvXSEdHctYssrBQPbIVFJCDzGLYASe5Eu8yc8DI\nFz9KJCTAKOf3aWFeyLAwIfyrwj//kDNnkpaWZDvDaxyArQzCdvaxPMNevcieJqdohgeMho/Wme+q\nQnw8aWpKJiRULfzTp2SHDuQsjz2kj4/wflRjAFJEOShSdypU6544cYKBgYHF5xEREYyIiCgVJjo6\nutjTp0JBXhEFsHu3UIHc8S3aycnbu8KPJjWV7G5xncOaHKS0l2o/MKmU/L//I99ofJ45MCgrW0aG\nULFlZDApifTzI30trzGp45s6+/E/HDGdS5y+o7fRv7SyLOTs2eTVqyxWhqWekUTCQ/BlkzppPHXw\nsUbllodhw8jQ0Ordk5pKur12m1OxgAWoVSMVX01HYwqgKss9x8TE0NTUlB4eHpRIJLxy5YpsQV4B\nBfDPP2STJuSJEyxVmVZGTjd/tkcsv8UMlX5gc+aQbdqQj+5UTbaCAmErRgfcYi70debjT0khf/qJ\n7NGDbFT7CYdiA/cgkAWD33oRSFb5FV3btfEJzc3Jy5fVL7u8HD9O2tgIrfrqku4/hH74i/2No/k0\nUfcaAdqOInWnQmMAVbHft23bFgkJCWjQoAH27NmDAQMG4MaNGzLDhpbYecHX11enbHepqUBQEDB/\nvrDzEyDYU6tC3Yb6+ANvoUOdc+g42gBdVSDf8uXA6tXA8eNAI4uqyVa7trAV48k7llhpNwcTlk1Q\ngWTqY5XPavx60RPns5wh6W+A//s/A/SqPQIN9m8Xtl1cvvFFYGMZz6joWl8A3xMIDAQOHwacnNSa\njWojlQLTpwu7kL32WvXvN9m0DHvHTsR4gzXwHWCAXbsACwvlyykiEBMTo7xtLhXRPCdPnixlAgoP\nD2dkZGSF98haRoDU7R5Abq5gIpV7BnpRyzLqjye0thZaqMpk+3bBLHXzpnyyne7xEa2tCmuMW6As\n9u4l7evd43YEMRv1XvRmqtFTe5mffybt7atuU9cUa9cKlixFx5mkUqEXaW8v9HZF1IMidadCtW5+\nfj4dHBwYFxfH3NxcmYPAKSkplBY5j586dYp2dnayBdFRBZCfT77ncoRBjY+ysFdvhe3kn31GvvGG\n8gZfj/abyyb66TzTeYpCsvXvTy5YoByZ1E1eHtmyJbm9bViVxmWqw7ffki5G93iz/XCtHCd5+lQw\n/Rw7prw4164lm9R7xP0eH2hlnnUNjSkAkoyKimKLFi3o6OjI8PBwkuTSpUu5dOlSkuTixYvZunVr\nenp6slOnTjx58qRsQXRQAZw5Q7ZtS/YwPsPHaFihx09VKSgQFMBnnyku3+3bpLl+GvfDX2HZLl4k\nzc3JJ08Ul0vdLFpE+vuT0nT5W/sVMd9hMc3wgIHYw62dv2F+vlKjV4iQtjs5tMlfSq+oYzzfpxUS\n+QHmMfvN4UqLV6QsGlUAe/bsoYuLC52cnMo1/0yZMoVOTk708PDguXPnZAuiQwrg8WNy6lShQlyz\nhoL3jhJblikppLU1GRUlfxxZWaSHB7m41RKlyTZ0KPmSE5jWk5oqDMyrdMBWIuEz1OXa5p+zS8d8\nWlmRn3vtYlyHoRptIV+/Tjauk8k7sFVK46QUEglTYcq3TPfTtUUBT59WXtQipdGYAqjKPIDyloMu\nI4guKIBx47it9ae0rXefo/+Xw4cPi64rYEcujyNHSPP6mXJVIlIpOXw4OXKkclu9166RZmZkZqbC\nUamNSZME11eV8lL5X75MTrbawsZ4yKZI4RtNL/H998lly8iTQeHM6eavcsUglQpuvAtaLlW62Ytk\nqTxv3Eg2bSr0WnNzlZeEiIDGFEBV5gEEBwdz48aNxecuLi5MkTGKWdMVQFwcGdT4KF1wTW0TgRY7\nLaAjbjIRVtVKb+FCwd1TFYO2o0aRNWXpleduuampGki8aF2dRM/e3Lv5CefNE55dm4Y36IJrvAh3\nlb5Dq1cL5sn8h6oxe73MvXtknz5km8Z3eLv9MHFsQIkoUncq5AaalJQEW1vb4nMbGxucOnWq0jCJ\niYkwNzcvE58q3EA1sdSEHwBsgprmx0+HDQBs2lTt9Bo0UIlAAICwMNXFrWzMzDSY+MUoYLBhmcue\nALDpssrfIf0mRf9s2qTSdErimFb0TwX7iKgDkpUH0kKU6Qaq8nkAQNkHXd59JRWAslBlIe/bB0yZ\nArRuDSxYANgbZwLjx5ddQ0VVZArpzXFagz921kdMTMWVWVKS4M6+ejXQs6fqxJowQch+ZKTq0lCU\nnTuBjz4CLl4E9PU1LU0Jisr0xqxfMHRcIzg6Ar/8otzXafRoIb4FC5QXZ5Xp3Rvf7HHD6noTcOSf\nxjBzNNKAEDWblxvHYYq0thTpelRlHsDLy0Hrggno4YjpHGQWQ4f69/jnRs27vUil5CefCGad9HTZ\nYXLGTGTHRv8wvMUqlXe9ExJI07pPmNxpoFZ29XNySCcnwfdfm3n2TFgm3N6ejO0frpT1dqKjSVtb\nwVFBIxSNDXw8/Rlff5189EgDMowbx/TOfbTy3ZQHRepOlc8DKDkIfPLkSbUOAkvHjmNBdz+lFvSV\nK6RDvSL3tpIThjSMVEp+8IEwlpeZKUzquXxZGFgcPZp0qp/AQdhEqbK9Pcphhs1GjsAa5XuXKIHP\nvXaxj+mJGlMBbNtGNtVPYyRmsRB6cj/PZ8/IFi3IHTuULKAcSKXkxIlk9+6qGYuqiIjmP9MH0Wr7\nFlSNxhQAWfk8AJKcNGkSHR0d6eHhwbNnz8oWRAUKYInTdxyJ1Qp9NCWJihIGDVe7z1ON54SCSKXk\npFaH2KxuMo3qPKGTQwFHjCB//JE832WSsFiXmmR+GjCADrjFP52nadUzWrRIUOCJsNJK5VQed3xH\nsguOMqDRSSb/K5+bVUgIOXCgcuVShMJCwRutd2/1eQd9/TXZ4rUEofy17PuVF40ogLS0NPr7+9PZ\n2ZkBAQHl7kNpZ2dHd3d3tmnTht7e3uULogIFkNVzAH0QzbFm21iYJn9BS6XCLFcLi6IZkypw61QW\nhd19eQyd+QBmpSs3dcuckcFonxDaWBdqzWNatoxs1oyM8xmllQq8QjIymD9oKD+f+YyWluS+fVW/\ntbCQXOWzkmb6GUzwe0er8pyXR/ZrdoFDm/zF/MA+KpXtyy9JFxcy6Wqm1n6/8qARBTBz5kzOnTuX\nJBkZGcnZ5Sx0U97aP2UEUcUYQEYGnwx8h1065nPiRNnbGVZGbi45bhzp7i64emo9spYp1iATJwom\nKE2zdq0wee7GDWq1Aq8Khw4JeZk5s/KW88WLZJcuZHvDKzwLL63s9TzrFsBA7OFg/MHcQcNUkkZY\nGOnqKrij6hoaUQAlB3OTk5Pp4uIiM5y9vT1Tq+BorcpB4EePhI0rpk6tnhL4+2+yY9Nb7Gt6nI8D\n3qwZFYaWVW6PHwuDmHv2qCb+O3eElv1bDqc503Y9T3WaKkxuK8GmTULvrZyVyGskDx+SfZtdoH29\ne5zYbBe3rn1aqsgfPSKnTRMmYP38M4V1qLSoYVAKiYQ5MGCQcQz79crjs2fKjT40VFjrKTlZufFq\nC4rUnXpFEVQbExMTZGRkPPckgqmpafF5SRwcHGBkZITatWsjODgY48aNkxmfnp4eQkJCis+VvRx0\nZibg7y/sbfvNNxW7VyclAZ98AuzfD3zZ6FuMvvERakMKDBlS5SWcRV5w8CAwZgxw+TJgpKDXX/7Y\niTj8dwPsedwFe+v1x4PU2ujZE/A/G4nb1wuwCUOQ08AUb45vgsGDhWW4x48XytLTUzn50Rbo44vL\nR9JxAAHYbz4CJ7LawM0N6Jy1Hxuve0HS9CwiYzoJrpaZanZRrg5FsuUvWYb/TTLGo0fAtm3KmacS\n9vpO/PGvOw51/BTmW37UvrzLwcvzAMLCwuR3d69IO/j7+9PNza3MsWPHDhobG5cKa2JiIjOOe0V9\nrgcPHtDT05NHjhyRGa4SUZRCWhrp6UnO9oxiQsfBzA3sV6o1lJUltBZMTcmPPy5yldMyk0pNZdw4\n4ZCX8+eFHlxT/TR2wEnOwWc83eOjF6uiFpWTtJ03Lx9/xNBQ0s0kgUa1n/BUp6m6WXYvvZvPnpEH\nD5Jf2K3icXTSSnNPZeTnk++8Q/r6Kr6w4NKlgvdbCprWyGdRVRSpOxUyASUX9anu3btXrgmoJKGh\noZw3b55sQdQ0D+DhQ2HvViskUh+5NDV4zJYtha0Nbere51sWhxl3sYRzspaZVGoqjx4JA7AHDlT9\nnpQUYfDd01O49/PPyZvdx8hWyLLKyceH+aitux9/ee9mDW+0FBSQY8eSnTrJv67Url2C2a/c90WH\n0IgCmDlzZvGkr4iICJmDwFlZWXxcNOPk6dOn7Ny5M/eV476gLgVAsvgDKWzXng9vZfLyZfKgx3St\nHSTTFfb2WsAm+ukcYnGYH0x6xgULyM2byVOnhC0Jly0TWvn+/sIGNY30szjCfC//aj/7hRdXdRRy\nDa8I5UYHGi2FheRUtwN0qJfIYx0/qFZeTp8WFiWMjaVOPIvK0IgCWLlyJV977TUCYMeOHYvdQJOS\nkti7d2+S5O3bt+ng4MC6devSwMCg1KzhMoKoUwHIeile1cpCnfj48Cy8uB7DONd9LSdPFjaSaWsW\nT2/Dq3zXej+/nZPNqChhcFfa3UcoE3mV8ivw8es0Pj7chv40RzI/ct1apbkCt28LjYft21Uvnrag\nEQVw7do1Xr9+nb6+vuVO7qrKctHFgmh6KQixslA95SlZHx/ZFb2olF9tiso/pU0g+/XKo6cneelS\n+cFTU4WZzosXq09EbUCRulPuxeBcXV0rDXP69Gk4OTnB3t4eADBs2DDs2LEDLVu2lDdZ1SFrk28R\n5bJ+vWxPlOfuHt7ewm+VhRd5NSgqf/Nly7DDSB8rVwpefNOnA23bAnXrAgYGL/5OmgT07y/8Faka\nCq0GWhlVWS5a1TxfYFT8qwV/jY0R2uoP4PuXrntsRWjDkcCyZQj93rjy8OLfV+PvS+X/3nvApUvA\n798l4ijvIU+vLm7Vd0cha6FxTiK61juD+vezEFprEEIj61UpnVedCucBBAQEICUlpcz18PBw9OvX\nDwDg5+eH+fPno23btmXCbdmyBXv37sXy5csBAOvWrcOpU6fwww8/lBVExfMAREREdARfX+DwYeH/\n53NzZF3TUZQ5D6DCHsCBAwfkivQ51tbWSEhIKD5PSEiAjY1NueFVsR+AiIiIjiHLZFieGVEHUeZ+\nALWUIE+52qddu3a4efMm4uPjkZeXh99//x1BQUHKSFJERORVZf16oZW/f/+LsSFZ10QqRW4FsG3b\nNtja2iI2NhZ9+vSBRCIBANy7dw99+vQBANSpUweLFy9GYGAgWrVqhaFDh2rnALAaUNYWbtqILucN\nEPOndTx32ChZ0cu6VkSNy58akVsBFBQUoFGjRsjLy0NUVBT27NkDALCyssLu3buLw02cOBF169aF\noaEhtm3bprjENRRdfgl1OW+AmL+ajq7nTxHk9gJyd3fHtm3bEBwcXGE4PT09xMTEwNTUVN6kRERE\nRERUgErnATxH3hFqERERERHVIfdy0M+pyA0UqN5y0CIiIiIi1UclbqBVmQdQGcePH4elpSUePnyI\ngIAAuLq6olu3bmXCib0EEREREfWi0nkAAGBpaQkAaNKkCQYOHIjTp0/LVAAiIiIiIupFpfMAsrOz\n8eTJEwBAVlYW9u/fD3d3d2UkKSIiIiKiICqdB5CSkoJu3bqhTZs26NChA/r27YuePXsqR3IRERER\nEYWQWwEMHDgQCQkJePvtt0ESiYmJAErPA3BwcMD333+PuLg46Ovr448//sC0adPg5eVVfBgZGWHR\nokVIT09HQEAAWrRogZ49eyIzM1M5OVQz169fL5O/hQsXIjQ0FDY2NsXX9+7dq2lR5SYiIgKtW7eG\nu7s7hg8fjtzcXJ0pP1l506WyW7hwIdzd3eHm5oaFCxcCgM6UHSA7fzW5/MaMGQNzc/NSlpOKyisi\nIgLOzs5wdXXF/v37K09A0bWojxw5wnPnztHNzU3m79HR0ezXr5/M3woLC2lhYcG7d+9y5syZnDt3\nLkkyMjJS5g5jNY2S+QsNDeX8+fM1LZLCxMXFsXnz5szJySFJvvXWW1y9erVOlF95edOVsrt8+TLd\n3Nz47NkzFhQU0N/fn7du3dKJsiPLz19NLj9Z9Wt55XXlyhV6enoyLy+PcXFxdHR0ZGFhYYXxKzwG\n0FaVJK0AACAASURBVK1bN5iYmFSmZGReP3jwIJycnGBra4udO3di1KhRAIBRo0Zh+/btioqmcUrm\nj8LmO5oWSWEaNWoEfX19ZGdno6CgANnZ2bCystKJ8pOVN2trawC64aX277//okOHDqhXrx5q164N\nHx8fbNmyRSfKDpCdv61btwKoueUnq34tr7x27NiBt99+G/r6+rC3t4eTkxNOnz5dcQLK0FJxcXHl\n9gBiYmJoampKDw8PSiQSXrlypfi30aNHc8mSJaRQOuIhHuIhHuIhx0GSkydP5rp164rr1/fee4+b\nN2+usO5WihdQRbRt2xYJCQm4ePEipkyZggEDBgAA8vLysGvXLgwZMqQ4LItaya/6ERISonEZtOUQ\nn4X4LMRnUfFREZVNsFW5AjA0NESDorW6JRIJ8vPzkZ6ejj179uD1119HkyZNVC2CiIiIiM7z8v4r\niYmJxSbM8lBYAYwZM6Z43X9Z3L9/H1OmTIGzszOcnZ2Rm5sLU1NTbNiwAW+//baiyYuIiIiIAAgK\nCsLGjRuRl5eHuLg43Lx5E+3bt6/wHrkXg3vO3bt3oaenh7y8PNja2iIsLAz5+fkAgODgYISFhWHt\n2rVwdHSEVCqFgYEBsrKycPDgweKtIkVKI26F+QLxWbxAfBYvEJ9FWVq1aoW33noLrVq1Qp06dfDj\njz9WagJSeDE4AIiPj0e/fv1w+fLlMr9NmDABfn5+GDp0KABhFdHDhw/D3Ny8tCB6epXas0RERFTL\nJv+f8cGxgWhvfAOBH7VF4MAGsLPTtFQiFaFI3anyMYCkpCTY2toWn9vY2BRPGhMREdEefvsNeP/o\nYKzJHYYB93/GkQVn4O0NtGwJTJsG7N0LJCcDqanAo0dAVhaQlwdIpZqWXEReFDYBVYWXtVN53ZKS\nm8K/vPGxzPAxQvhQ31DxXDwXzxU4X7UKmLotFCOG/Yk3fj0LeHvj9pwoONY9hKBGodi7Fwhe8j7S\nsuuj7tFPkV/PEM86hEEqBaSHQlFLT4paviGoBSkML34Jg7q1kN0+FLVzstDi5LuY12olDoToA/Xq\naUV+a+L5c2JiYpS3yxmVQEXzAIKDg7lhw4bicxcXF6akpJQJpyRRREREqsnSpaSNDfnvvyQzMsgh\nQ4S/L+PjQwLCMWRI8WWplMzv/gazUY+ZaMSHQWOYlETGxZHXvf/HjXiL5kjmZy03MS9PXbl6dVCk\n7lS5CSgoKAi//vorACA2NhbGxsZl7P8i8pOSAkxodRh9Gp/ExjaRyEmpueu4iKifRYuAiAggJgZw\ncUGFm6ujyJ0b3t7AsmXFl/X0gDqv1UV95MDI2wVma+bDygqwtwdamKVjKP7AhTbv4qxNf3TuDNy4\noY6ciVQJRbWPj48Pa9euTQA0MjLiihUruHTpUi5dupSksBaQvr4+DQwMWK9ePU6cOFFmPEoQpVIe\nj5rM31zn8N9uYylNl9HCqUFkZ5NffUWampIzbDZyLf5Hf+ynqcFjTphAxsYKLTMRkfL45hvSwYGM\nj6/iDRX1Dsr7rcR1qZRcsoQ0MyN/+kl8P5WFInWnQrVuQUEBHR0dGRcXx7y8PHp6evLq1aulwlS0\nGFwpQVSoALKzyXnzyKb6aeyJvbRGAh1fS+b775P79pFFa39plJwc8q+/yC/a7uSyFt/wUtcJLEgt\n+6EVFpLr1pG2tuTgweStWyQlEqFb7u3NO5cy+dVXpJMT2bIlObf9Jj7tGiiEkfXhiryShHtvYYv6\nd5jg947a34urV8m2bck+theZ3Gmg+G4qiMYUwIkTJxgYGFh8HhERwYiIiFJhoqOj2bdv38oFUYEC\nyMsT7JvW1uTAgeTlrhNIgNJ23rxw9BG/+ors1Ils1Ijsb3eO61uGsaBXH7W8jFIpef06uWgR2acP\naWhItm9Pzrb9jSOxms64zkZ1stijB/nZZ+SfgYt4wOMDehv9S++2+Tx6tERkMlpfUil59Cg5oPER\ndsFRPoJhKbutSAnGjRPs269IRfTHH6Rd3WTeg0UZe766yM0lP262lkbI4BD8zl1dIsTxATnRmALY\ntGkTx44dW3y+du1aTp48uVSYihaDKyUIwJCQkOIjOjpabrkKCsi1a0lHR7JnT/L06aIfyummPnxI\nrnX9ih1xgh64wKiuX6u0e7rObzmb10uiVd2HHP2/HG7cSKamFv1YojX/8FYm//xTUAA9jM+wNS5z\nHYazcPBbVU6rsFdvTsQStn/tMtPjMlWToRrMtWvku+ZRbICnbI7bfKPpJb73nmBe++038kRQBJ90\n7aUzyuHyZcEEc7bz5OL3TGP5kkiYDmMutQtnp/b5NDcnp08nz5/XjDg1hejo6FJ1pcYUwObNmytV\nAI8fP2ZWVhZJMioqis7OzrIFUVIPICGBbN/kNjs3usTo9rOq/nJLJJQC3Ob0IV1bFNDXt4TiUCLX\nrpGN62TyBDpSKqv1VZ4ttYRiqNYHm5FB6eAhnDbxGb28BGUnQp47J5jQmjQh5zivYQqa8ob7m9y3\n5QmXLiVnzybfeotsZ3iNzRDP8/Cs8T2ojAzBNLhmDSu256tToBIy3LghNHaaNSM9TO9yt9ssnVG8\nqkRjCuDkyZOlTEDh4eGMjIys8B57e3umpaWVFUQJCuD4cdLKipzb/Cehcq1O97bEy5ifTy5b9v/t\nnXlcVNX7xz8oICokorKr7DvOiChuKCqgqJhLplmJScrXyuz7VX5iZmAqamnl1/rmkqRlZioqlYCW\n4ZL7rrmliYoIyCqbyjKf3x8XJ5BFmIVhue/X675m7r1nzn3mmTPnOctzniPkNX68UDBVQVER6elJ\nfunyRd0rcyX/sDIZGRZGurmRVXjhNhsOHxbqFHNz8tNPybw81qzbgABuxcvsqJ3F6G/z611eVVFa\nKgw1zpypaUmeT2kpGeceSgskcQEWsqQOPV5NU1hIftp7K+dY/sAwm638YM4jRkQIPcplvXbwY5v/\ncZH9Jn4w5xHnzBF+j2nTyMn2R/iJzf8UGoJWpu5UKhRESUkJunTpgtatW0NLSwuFhYXYv38/nJ2d\n5WnS0tKwePFi+TZsBQUFuH//fqW8lA0FERUFhIUBGzcCw78YDsTFCe5q+/ZV7dJWCwoLgVWrgJUL\n8xDeOQoz7fcCW7YonN/ChcCxY0DcDznQCpkuuNIpmJcikMBHHwFbtwL79wPm5vX2aI1BAhcuALGx\nQMznt5CR1wpzbaMRtH8yWpnUQvc5OcD06Tg9YwPGTDZASAgwf77g+tiYCA8HEhKE311HR9PS1ILh\nw5EWdwYTDfZAt6cE3/+og44dNS1U9ZBATAzw738DPfIPwivjF5RAGyWuUpSMm4CSEqDkuy0oTbqP\nVngCPVc7tJo8AXp6QKtWQKvPluG76z1RAm1sHrEVnX/5qtbPVqruVNh0UPACMjMzo7W1NW1tbWlq\nasorV65UcAOdMWMG9fX1KZFI6O7uThcXlyrzUlSU4mLy3XdJBwdheIWkyru3d7zG0wq3+BVCFB4G\nOHVKGG64d08lIinF0qXCUMCdO5qWRA1Mm8bcfsO4s/tHfHPyY5qbC3NB775LxrvPYTFaKjzxmZws\ndNomThRaeo2FmBhhoVej6vmV/YeL07MZGkp27aqeIVlVcP06OWyY4HX322+sfri2pmHcgACWoAUj\nLb6gcadS7txZ++crU42r3QsoJCSEW7dulZ+rciVwRgY5eLCgfLUOEwYE8CZsaKmbym++LKjzxwsL\nSScnstyCaI3zWe+t7NIqhXGeHzS6MdaDIz/mFJNYjjM5zOH+RRw0iOzdm+zWjbRvfZf6yKUf9vJz\naVTF4TtF51HKUVhITpokDOU1BGP+PK5dExoex49rWhLliI4WvseaNQ1n/UBenjCs2qGD4GYu92Kq\nxZqISpS7d+wYaW1NzphRu4aGMgZAqSGgHTt2YO/evfKwzps3b8aJEyewevVqeZrAwEDMmzcPffv2\nBQD4+vpi+fLl6NGjR4W8tLS0EB4eLj9/Xiygy+PD4bbjI0VFFxEREWlUPK2qn40FtHDhQs0MAdXG\nC2jkyJH8448/5OdDhgzhmTNnKuVVV1FOe0zjd3i13v2YL10iTUxY6y7ab78J6xCqmPfWLGWt4cIe\n/fnh/z1ihw7kJ5+wQfpi37tHBgcLLcBPPyUfDw2sviVfj94tce6hdMIVDkQCjw+ep/bn1YW0NLJ/\nuwsMwVca8/VXB/n5gkv0XCzV2PdKTSXNdNP5C4arVQaZjIyKIjvq5fKA5N1qPaKUqcbV7gWktmBw\nKujOK8qZM6SxMblnT83psrOFFbtxcfUjV52owgXP31/wEqqwyEyD5AS9y3ldvqORzkPOfe/RPz9z\nQ3BhJMmAABajJddbLaKFeSnHjSsLqKZhzp8Xxsw/sN3CUmhp1tdfDaQPmcAuuM3ddrPr/XuVlgpV\nz3zbLfVW/1zv+SoL0LpaY6MRA5CZmcnBgwdTR0eH/fv3Z1paWpWhIIyNjWlgYECpVEpnZ2d6eXlV\nLUhdv4SGK4Fjx4QW6a+/VpNg2jRONonjjC4/N5o/n0wmrBK1aJvF103iecdnskZkl8mERVimuhmc\ngijehWXDbMGWK4MFBcLkeocOZEgIef/VOSweMJh5fmOYfjOHd+8KRvbiuAgm9x6rNv/2nTuFhV5b\nt1Lj/xG1kZ3N44PnsVPHUt64Ub+P/vxz0suLLHpQj7p9TmNXIwYgNDSUy5cvZ2xsLDt27EhDQ0NG\nRkaSZAUvICsrKwYHB9PW1pbdunWrcviHbJzhoA8eJNvpFtBIO4fttPOory9j69akri7ZEiV0xSXm\no03DrLxqILffMM7HIhohg3McYpiVVX/PTkwUJvXd3ckTfWZpfrVqHcnIIGfPJvVaPGYLlLAt8thB\n9yEtLARvJNc2t2iEDI7Hjzw2+H2VPVcmIz/6SPD2OX1aZdk2aL74Qpj4L6i7X4ZCnD8vGNe//66f\n58l5jiHXiAEoP5STkpJCR0fHKtNZWVkxQx7noAZBGqEBIMm8/sOYjg7MgiEfjp7M/Hzy0SOyeOgI\nYTFaI6q85JS1OJIlAZw+5TE7dhQiRz56pL5HFheTK1cKLejIyLK5iEbcgi0dNrzq3z8ggLnQ56ou\nn9C6awn79CG3bxfClyhKQYGwatnLi7x/X3nZGwsymeCRFRSkfs+gggLBzfO779T7HEXQiAEwNDSU\nv5fJZBXOy2NtbU2pVMoePXpw3bp11QvSSA1Atd2zRlx5PSv71avk6NHCEv2NA6P42NtXpUMYZ8+S\nPXqQgwapbtW1xqmFK2BJCbljhxCQ0Nqa/LzPD8ztV7e4Q2fGLKKH/jW+bv4bH6U0wrKmJPn5pKur\nsHJfnfzrX+Srr6r3GYqiTN1Zoxuon58fUlNTK11fsmQJgoKCkJ2dLb9mZGSErKysSmlTUlJgZmaG\n9PR0+Pn5YfXq1fD29q6Urq5uoA2GspWi9b2qVxMcPQrMH34Oxx46owvuwtn8IVwm94Szs7BvrIMD\n0KIFUFwsHEVFZe/DFqDw7xSktzRB+rT3kV7QFg8eAOnpQMreiziZ2hnLnb7BlINTodW+aeuwOo4d\nAz57MQG/pUswGd9iZsDfsI1dXW36w4eByEjg0u/p+KBoAUKwFlrjxwubuTQzrl8HvL2Fxf/PeJer\nhN27gf/8Bzh3DmjXTvX51xVVuoEqvA7AyckJBw4cgKmpKVJSUjBo0CBcu3atxs8sXLgQ+vr6mD17\ndmVBlAwFIVJPDB+Oorjf8LfbaFwJ/QZX77bF1avAlSvAzcuPwVJCp0UJdAzbQrdVC+joADppSWj9\nKAudkA7jznroNKY/OnUCjI2BTv/9AP0vr0UnZADNtAKTM3w47sb9if+ZLsKG4tfRu08LzJoFDBki\nhJ4ggb17gSVLgPv3hdAnk6NHodXen5UOe9LY2bEDCA0FzpwBjIxUl29yMuDhIRiBPn1Ul68q0Ugo\niNDQULnL59KlSzl37txKaQoKCpibm0uSzM/PZ9++fbl3794q81NCFJH6RIE9Y5+3BL6xTfSqjWe8\nitatE9xyXVzIxZ476aF/ja76ifx+XT6Liyt/prnzb7d9HNjuHB8MmaASfZSUCMOSixapQDg1okzd\nqfAno6Ki2LZtWwJg7969mV2m8OTkZA4fPpwk+ffff9PGxoatWrWirq5uhTUDlQQRDUDjR5H5ELEC\nqxGZTNgpbprZT9yNUYJffyPzKqsvigcM5jwsoQWS+PvACKXySk8nfS0uc7jR0XrbJEpRNGIArl69\nyuvXr9PHx6da187abBkpF0Q0AI0fsTJXH2JP6fmU6Wifw9s0My3lggX8p6dUB06dEhbSze38vVLB\nA+sLZerOFoqOOzk5OcHBwaHGNCdPnoSdnR2srKygo6ODiRMnIiYmRtFHijR0DA2FMfxmOg6tVrZs\nEeZImvE4/3Mp05HficU4e64Fjh0DBg8GkpJqn0VUFBAQAKxcCSxz2wxtlArzK+vWqU9uDaKtzsyT\nk5PRuXNn+bmlpSVOnDhRbfqIiAj5+9p4AT1NLr6Kr03+1dAQES7bgM8biDwN8fVzQ8BlGyIMAVMA\nffsCR44Anp7A+vXA2bPVf/7JE6BfP+D2bcHDytkZiDi1E7jzMyL2+Qn61/D3e8qzXkDKoJAbaGRk\nJAIDAwEAgwYNwsqVK+Hh4VEpXXR0NOLj42uMFioXRPQCEhERUQNHjwKThmbAWCsdNvoPYDXBC9ZO\nerC2BqysAG1tYNIkYYOkjRuBF17QtMR1Q5m6U7umm7/++qtCmT7FwsICSeX6X0lJSbC0tFQqTxER\nEZG60Lcv8Kf0dVz84yES86xx+7f7OJX3CrZtE1r8qXefYEHnTZjbfje0ZFsANKMhNkUnD7Zt20YX\nFxcC4ObNm6tMU1xcTG1tbTo6OrJbt25s3bq1OAlcCxISEjQtQoNB1MU/iLr4hzrrooZJdNmAgVW7\nLzcSlKk7FZ4ETk1NRVZWFlq0aIFZs2YhICAAAHD//n2MGDECAKCtrQ0jIyOUlpaioKAACxYsqLBf\nsEjVqGp8rykg6uIfRF38Q511UcMkulbbNsKbJjzZWx01DgHVxMyZMzFz5sxKcwDm5ubYs2ePPF2b\nNm1w/PhxdOjQQXlpRURERBThqYdaVWzZ0mzCuTyLwj2A2qKlpQVfX194enrKJ4NFREREGgzN2X25\npvEhX19furm5VTp++ukneZqaFoKR5P2y+LQPHjygRCLhoUOHqkwHQDzEQzzEQzwUOBRFrV5AAGBm\nZgYA6NSpE8aMGYOTJ09WGQ2UoguoiIiISL2ikiGg6irvwsJC5OXlAQAKCgqwb98+uLu7q+KRIiIi\nIiJKorAB2LVrFzp37ozjx49jxIgRVXoBpaamwtvbG1KpFF5eXhg5ciT8/f1VI7mIiIiIiFIobADG\njBmDpKQkvPLKKyCJe/fuAajoBWRjY4PPP/8ciYmJ0NHRwbZt27B48WKsWrUK7u7ucHNzw6pVqwAA\nERERsLS0RPfu3dG9e3fEx8er4Os1PKZOnQoTE5MKPaGsrCz4+fnBwcEB/v7+yMnJkd9bunQp7O3t\n4eTkhH379mlCZLVRF13cvn0brVu3lpePt956S1Niq4WqdLF9+3a4urqiZcuWOPs0jkEZza1cVKeL\n5lguQkND4ezsDIlEgrFjx+Lhw4fye3UuFwrPHpRx6NAhnj17lm5ublXeT0hIYGBgoPz80qVLdHNz\n46NHj1hSUkJfX1/evHmTERERXLlypbLiNHiq0ldoaCiXL19Okly2bJl8b4XLly9TIpGwqKiIiYmJ\ntLW1ZWlpqUbkVgd10UViYmK1ZawpUJUuqou42xzLRXW6aI7lYt++ffLfe+7cuUrVF0rPAXh7e6N9\n+/bPMzLy99euXYOXlxf09PTQsmVLDBw4EDt37qyUrqlSlb5++uknBAUFAQCCgoKwe/duAEBMTAxe\neeUV6OjowMrKCnZ2djh58mS9y6wu6qKLpk5Vuqgu4m5zLBe1iT7cFKlKF35+fmjRQqi6vby85KMv\nCpULVVipmqzwgQMHaGRkxG7dujEgIIA///wzHRwcmJmZyYKCAvbp04czZ87UuBuVeIiHeIhHYz1I\n8p133qkQlic4OJg7duxQbw/geXh4eCApKQkXLlzAzJkz8Z///Adz586Fv78/AgICIJVK0bJlSwCA\nTCaDTCbD/PnzMXXqVFDYsKbJHYmJiXBzc5OfGxoaVrivp6cHknjnnXewefNm+fXg4GBER0drXH5N\n6OLJkyfIysoCSZw5cwadO3dGbm6uxuVXpy6eHj4+Pjhz5gzCw8ObbbmoThfNuVwsXrwYY8eOrbH+\n1dLSqvG+0gZg6tSp8PT0xI0bN6q8b2BggLCwMNjb2yMsLAwFBQUYPXo0Tp8+jYMHD8LQ0BCOjo5y\nYbW0tPDmm282qS7t8zAxMZGH3U5JSUHbtm0BVI6meu/ePVhYWGhExvqiOl3o6urKu8IeHh6wtbWt\ntsw1dZpjuaiO5louNm7ciNjYWHz//ffya4qUC6UNwBtvvIFNmzZVe//777/HjRs3cOPGDcyaNQsZ\nGRkoKSkBANy9exe7du3CpEmTKnxm165dzWq9wKhRo+Q63LRpE5ycnOTXt27diqKiIiQmJuLGjRvo\n1auXJkVVO9XpIiMjA6WlpQCAW7du4caNG7CxsdGYnPUNSfn75lguylNeF82xXMTHx+OTTz5BTEwM\n9PT05NcVKhdUkokTJ9LY2JhaWlq0tLTkhg0buGbNGq5Zs4Yk2a9fP1paWlIikbBPnz7s0qULe/fu\nTRcXF0okEv7++++k8IvS3d2d3bp144svvsjU1FRlRWuQTJw4kWZmZtTR0aGlpSWjoqKYmZnJIUOG\n0N7enn5+fvz555/l6ZcsWUJbW1s6OjoyPj5eg5KrnrroIjo6mq6urpRKpfTw8OAvv/yiYelVy6hR\nE6nXsiO1oE39lh356viv+NFHu2hubkk9PT2amJiwV69e8vTNqVxs2LCBu3btoqVlZV3s2LGjSZeL\nqnRhZ2fHLl26UCqVUiqVsnw1XtdyUeOOYLXl9u3bCAwMxKVLlyrdCwwMxLx589C3b18AgK+vL5Yv\nX44ePXpUSCfuCCbSHCkqAj77DPjkE+Bd/Sj0ufMDrsAFV2xG4oq5Hy5fBrS0APdW1/F+x/Xwt7wi\nRK9sjoHLRKpEbTuCqYpnhatuYsJnig98rHwAALcNb8NKaoUInwgAQMSBslfxvNGdy2TAgv0R0NFp\nGPI0lPPbt4GTH0fA2hp4dX0EZLHfw+/rm/Dr+RARH7WGmd4RHBoYgQcPgJkzQzAhXQK/uCn49LUw\nfD3HVOPyi+eKnyuDKvcEVnoIiKzZDTQkJIQ//PCD/NzR0bHK4R0ViSLSgJDJyD17yO4dbrNNi0K+\n23U3713O0bRYGuf+fXLSJLJLF3LXLkFPJIWdqsaPr7RjFUkyIICF0OMC8/XsYFTKFSvIoqJ6FbvB\nIpORDx6Qx0ZFMkEyi4/8R1WtwyaKMnWn0rVuXFwcbWxsqKury2XLllW6v3TpUmpra1MqldLe3p6W\nlpZVCyIagCZFQgLZty/p4kLucFnA+zDlbHzC9jp5fOst8s4dTUtY/8hk5DrvTeyok80wm63Mv1eH\nSqqccfjrL9Lfn3RzI6uJrt5kKS0ltwxax7mdv+dLpofYvVsxX3iBNDQkPQ2usheO0wAPOcz0LD/7\njLx8uZyBbaJozACUlJRQX1+fxsbG1NHRoY6ODhcvXlxhEjghIYFWVla0tbVlt27dqt07QDQATYMT\nJ0hfX9LGhvz2W7KkhBX2Y037K4dz55JGRuT06eStW5qWuH5ISSFHjiSl+n/xElwFfSix/6xMRm7f\nTlq2zeRkkzimDJ7U5Fu9aWmC4fMyuMxFmM8fMIEnh4QxM7MsQVk5y+o+mDs25XPaNKGX1bkzGex4\niJc9JwtpmpieNGYAjh49yqFDh8rPly5dyqVLl1ZIk5CQwJEjRz5fEA0bgMI33uKx7jO4TbqEKxcX\n8r33yHHjSC8v0rxNFo20c2ism0UL81J27Ura2ZFOTqS0wx1OMt7HFU7rmPBzHnNqMcJREjydpQN8\nmlRhvHePHN31LC1bpXGN639Z9KDc96piaCM9nZw/nzRqlcdZFtuZ5zemyejiWXbuJE1MyPffJ58M\nDZQbQ1V839x+wxiK5eyIB/xUsrHJDgsdPEhaWJBhYWTx0BFV67CKciaTkVevkousvqYl7vIezBvl\nxu81oTEDsH37dr755pvy8++++47vvPNOhTTPhoK4fPly1YIADA8Plx8JCQnKiFYr0tPJb74hR48m\nX2iZRw+c5ljs4Cz7X7hiBbl1K3nkCHnX6yVmwIgpMGHSiBDeukVevy50L095TOc3COI7+C/7dLjG\ntm0F4zDB5iTndfmOIZ33cGzgEw4YQDo7kx07ki1RwheQQ28c5Ey7PYyKIs+eJZ88UftXVgvbtpHG\nxmR412/4CK3q1LrN6BvIydhIK9zivgEf1em5GRkZclc4U1NTWlhYUCqVUl9fn2+//bYiX6VGgoKC\naG1tzbVr19YqfU4OGRRE2toK5YhkpUpqzpw5NDU15YoVKxQTqqzVe9XtJfoPLqKLC7l/v2JZNURK\nS8klSwQDGhtbdrGmuZLqCAhgJMLo0eZK3YbeGiAJCQkV6kqNGYAdO3Y81wDk5uayoKCAJBkbG0t7\ne/uqBamPHsC0afy710SudFrHAX2FscOxY8lNm8iMIS9X3zIrN4TxvHslJeSff5KbHJfwI3zALzGD\n23qvZEKCcD0tTWjBZMCIvznO4IpFhXz1VWGsXE9PmDD9Q/p2o+gd5OSQr79O2tuTx4+zZj1VR9ln\n4hxmsotlKadOJbOy6i5LfUSTnTJlCqOjo2uV9sDIj9m1VQpDOu9hXlLNuoiIiFDcAJSrDGUyYVLZ\nykq41NjnWR48IIcOJfv1I5OSlMwsO5uyl8Yz6JUnHDtWMCxNBY0ZgGPHjrFHjx50dHSknZ0dT1PU\nXgAAE7lJREFUhw4dWuVE8MyZM2lnZ8du3brR3NycmfJBu3KCqNEA5OSQa9eSfV+4SGOkchrW8pf+\nkXz0qFyimloVityrqTKs5jOFhWS0ywfshDT+jBENuqt68CDZtSv5r3+R+fllFxVpmZX7TG4u+fbb\npLm5MGxSF8pXouWHHcPDwzl58mR6e3uza9eujI6O5uzZs+nu7s5hw4axuLiYJHn69GkOHDiQPXr0\n4NChQ5mSklLpGVOmTKkQXGvbtm10c3OjRCLhgAEDSArzYv7+c6ij1Z3WMODacr2hZcuW0d3dnRKJ\nhGFhYVXKrgoKC8nwcLJDq1xGWq8Vhp0aeGPiWf4IXEbLVmmca/NjxeFEJXn8mPT2FoaSmgoaMwCP\nHz+mtrY2Dx8+zPz8fOrp6VVYxUqSmzdv5rBhw0iSGzZsoK6ubtWCqNgAlJSQ8fHkK6+Q7dqRL71E\n/twjnEXQVtn4a40oUhmSZEAAT6AnTbQzuPF/+c9PX888njqD/9f5e5q1yuAvW/PU8oxDh4RexTjr\n09zpOp93fCZTllX7VvSzBsDb25slJSW8cOECW7duLV8hOWbMGO7evZtFRUXs06cPMzIySJJbt27l\n1KlTKz3jWQPg7u7O+/fvkyQfPnxImYwcPXot27dfzL8GBPMxQM82bZh44QJjY2PZt29fPiprdWSV\n6+ao2gA85VavCQzAHrriEv8Y9IHK81cX0dFkJ50soRGk5GR5VaSnC04KUVEqzVZjKFN3aiuzhuDs\n2bPo1q0bgoODUVpaioEDB+LPP/9EcnIyACAkJARfffUV7ty5A6lUijZt2sDU1BRpaWkwMTFR5tFV\nQgIXLwI/BMVh81VPmLXOxpQPLLF6dRt06AAg5z1g+hVg3Tr1r6Q0NAS2bav757ZsQa/p03Fgjg6G\nvdwWD/KB0FDVi1dXCguBTZuAT394H66PTuMCnNApehAwQYHv+By8vYELF4DVrqew4XJvzMA7KDVt\nAc/BQI8eQI+T/0Of/N9gavj4uatitbS0EBAQgJYtW8LNzQ0ymQxDhw4FALi7u+P27dv466+/cPny\nZfj6+gIASktLYW5u/lw5+/Xrh6CgILz88ssYPXosZs8Gfv99Hzp2vISXs1sBhobINTTEjbQ07N+/\nH1OnTpXHbnneHhqqwLpDLvZgBLbbhuHla0swMgRYtgyoh0crzFdfAYsWAfE9P4TH0T1Az57C/1WF\ndOwI7NkDDBgA2NgAAweqNPtGhVLB4JKTk+Hh4YHr16/j5s2beO2115CcnIyQkBCEhIQAEAr6jz/+\niPPnz+Po0aOwt7eXb2CgKm7cAD76CHBxAV58EUBWNuKLBuHUQ0e8fXKKUPkD/1TKDXkZfZmMTr1e\nwB9/CJVuaCggk2lGnAcPgPBwwMoKiI8Horqtwi6MQaee1ir/Y5andWvg/5x+wi8IRIrnKJw/R8yY\nAbRsCXx9pjtcj63HtLgxuP3q/OfmpaurCwBo0aIFdHR05NdbtGiBkpISkISrqyvOnTuHc+fO4eLF\ni7XakvSrr77C4sWLcedOEqyseuDIkSz4+ABr1nyBcxcv4lx2Nv5OTISfnx+Ayivi1c6WLdAaPx4v\nn56Ly1daQFsbcHUFfvhBaCw1JEjgww+BlSuBw4cBjz2LgPHjgX371PJ/dXIS2g4TJgA3b6o8+0aD\nUrGAoqOjER8fj/Xr1wMANm/ejBMnTmD16tXyNIGBgQgLC0O/fv0ACLGAPv74Y3h4eFQU5Dlxq0VE\nRESaAso2BJ4NBbFw4UKF81SqB/Bs/OmkpCRYWlrWmKamGNWs5QYJ+/YRFroP8Do24VcMQfG4CRXT\nZGeD48cLrw1gQwdlj4ICYkTnCwgwOobMIer9Xg8eEEEmcTBGKiLwIR6MaoAb85T7fdPTibAwonXr\nCPTrtxL37hEHDhxAYGAgSCIiIgIrV66Uf9bAwED+vvy98+fPY8CAAZBIJHB1dcXXX39d6blTpkyp\nsPFKYBdbtGlhD0Nta7wbMgMkIZPJ8P7778Pd3R1ubm4YPHiwfIOSZcuWwcXFBVKpFPPnz68gx4oV\nK+pNf0VFxGe2q2GGZAQiBieGhGnstywsJF58kfDzI3JzNSPDYqv16IpEXISbUK7U/Dxl8fHxQURE\nhPxQCipIZmYmBw8eTB0dHfbv359paWmUSCS8cuVKhXTGxsY0MDCgVCqls7Mzvby8qsyvNqI8ekS+\n956wIOTXnvOoygU1DZ0i78H8D1awM+7woM+HKs+/tJRcv17w559tvYN5aNuodJuWRs6ZQ7Zvlc/V\ndp+rxY22/CRwURHZ54VLfBefsxRaSk1UhoeHq2USuEbKYgt90WU5O1uW0t+//sJKyGTCROyRUUvZ\nv90FvmKWwCdpGixnAQH8Hq+wk3Ym47arx7FBnShRjVPhT4aGhnL58uWMjY1lx44daWhoyMjISJKs\nEArCysqKwcHBSoeCuHiRdHcXVudmZFBxL5vGSplbaaz9uzQ1KWV4OFnmwag0Fy8KcXt69ybPn2ej\n1m2i1wSa4x5/wXCVe4/MmjWLzs7OXLt2LT/8kPTveFqo/JUwlHPmzKGdnZ38/1JvlPuNnzwhv/5a\nWLA2wPQ6d7u+z7s+r7M08/nfSSYTwlwcDlzOePc5jPX8gL9szeNPP5G7d5M7/b7kFueFXGy/kZMn\nPqGXF9m+veCZ19PgChdigdIGVGnKdPFHXC5NTckvv9ScKIqgEQNQPqpnSkoKHR0dq0xnZWUld6+r\nUZBqvkRpKfnZZ8IK2qioph/YqVrK/WFTUoR4O97eyi32yc8nQ0PJTp3INWuayOKYgAAeRW920s7k\nleMP1fKII0eElan3r+Y0WkNZFcXF5HdOi+mD32mGZLZu+Zju7sJiyblzyQ0DvuG3Tou5wPZ7Thj7\nhB4epIEB2aGDEJ/HH/EchlgONz3DkSPJUaPI0R0O8WVsZRgiGeX5Jf/4Q1jgJZNRsYWDaubvv4UQ\nL7NmlcWxagQoYwAUngRu3749srOznw4jwcjISH5eHhsbG7Rr1w4tW7ZESEgIpk2bVmV+WlpaZRs9\nA7m5gIWFD/R23ceuK44oRBts/t0Ctt1fUETUJolMBqxYIXhNfPUV8Jy9oSvw11/Alld+RtTlXhjQ\n4TJWJvSAiUM79Qlbn+TkANOn45uBGxH5eRucPKlat8fcXEAqFTZxefFF1eXbYBg+HIiLA3r2RF70\nPtzMMMSNG0KZufFFPIrSsuGAv2DfywgOq2fC3r5Mv+U+V8Fzp7rrgPy3qhe37DqQkwO89JLgifbD\nD4C+vqYlqogqJ4FrNB2+vr50c3OrdMTExNDQ0LBC2vbt21eZx9OFMg8ePKBEIuGhagYaAVBicJNt\n2shoZkb6+JAhZjFci2ksRssGvSpWkxw/TtoYpNHX8BQ/sN3CXZvzmZRUuaeUnEx++inp6UmampKz\nLLbzFHpQHQttGgr//jfp56e6oTJSiO0zbZrq8mtwPGdPgrqubm+sw4lFReSbjodorJNJuzb3aNWl\nhJaWwn+nY0fSUDefLm1u8T2rnYzbnseyaDca4TnVeI0o3AOwsLCAvr4+bt68idjYWMyaNQvXrl2r\nlC4+Ph7vvfceSktLYWVlhWHDhmH27NmV0mlpaeEUesBhtCte2FW2yXxNrQcROXn9A/D7EV2chifO\nmI7A6VIPaGkJi6a63Y/DqTvGOJvvgNEv6+LVN1rBxwfQHtX0dVtSAowYIawP+ewz5fPbtg344APg\n3DmgbVvl82t0NNAWu7rgQB/8fegeCC1oD/eH9povoa0NaGsDLUcH4u+jqdiLodjb8VWcf+yMPn0A\nf3/Azw8wMADy84G8vHKvX3yD0pR0BNseUOm2nkptp6uo5QgODuacOXPo4+PDd955h3Pnzq2UJjc3\nl9bW1kxMTGR2djbbtGnD9evXV5kfahneVaQKnmmZyWTk3btCYLDwrt9wB8ayEHoVW/rNRLdZWUJY\niQ0blMvn7l1hruTkSdXIJdIIqEMQyIcPhf/bjBmkQ7sUWundp5t+Ivv0KqafnzCPMtkkjrPxicp7\n3UpU44pPAmdmZnLIkCFs3bo1e/fuzewyBSUnJ3P48OEkhXDRBgYGlEgkdHV15dChQyvtFyAXBGjy\nlZHaULTb3ky4elWovP/4Q7HPl5aSgwYJYYlFmhGKBogcOFD4zz1b0avpv6gRA/AUHx+fal07a7Nf\ngFwQgOHh/5yHh1M8V8V5WUENn/uoYcijofNXXyX1dR7xWs/XyICAOunj44+FnaU+/LB26cXzZn4e\nEMBwhDPcfJ28og8PJ8PnPlJLr1sZA1DjHICfnx9SU1MrXY+MjERgYCAAYNCgQVi5cmWl0A5A7UJF\nPOWpF9BTfHx84OPjU4fBLBGRmtnotAz/d30qvsEbGDG+ba2C9SUkCPFiTp0CunatByFFGj9qnitR\npRdQjdFAf/31V4UyfUptQkWUR+llzSIiNTDF5hAcrv+E8Tq78baTAeYRqC4EVX4+MG8eEB2Vg822\ni9F1xhWVTtyJNGEUjQRcS55tHC9cuFDhvBSOBbR9+3a4urriwIEDuHr1apVpPD09sX//fjg5OUEi\nkWDRokUYNWqUwsKKiCjFli3oO94SJ8+3Qsze1nj5ZaGif5Z9+wB3d+HeZelr8L+0UvCYmj69/mUW\nEVEjChuA1NRUZGVloUWLFpg1axYCAgIAAPfv38eIESMAANra2jAyMkJpaSkKCgqwYMECODs7q0Zy\nEZG6UtYys3Bph4MHhQU+ffsCiYnC7exs4I03hHp+zRrgm2+A9u3K4nCrIS69iIimUSocNFDzHAAA\nWFtb4/Tp0+ggD8pfjSDK+LKKiCgACaxeDURGAv/+N/Df/worqiMjBT9uAM3O912k8aFM3anUjmC1\nQUtLC76+vs8NBQFUnAMQJ4FF1I2WFvDuu8Jwz4oVwI8/Av37P5NIzeO5IiJ15dlJYGVQqxcQAKSk\npMDMzAzp6enw8/PD6tWr4e3tXVkQsQcgoimmTxeC3bRpI070ijQ6lKk7a5wD+PXXX3Hp0qVKR2Bg\nIEJDQ+Hs7IxTp05hzpw5ePjwYZV5XLhwAU5OTujbty86deqEkydPKiRoc0JV1r0pUC+6+Osv4ODB\nBj/RK5aLfxB1oRoUngT29/fH5cuX0bNnT3Tp0gVLly6tlCYvLw9vvfUW4uPjcerUKRw9ehTt2jWR\nqJNqRCzc/1AvumjTRnht4BO9Yrn4B1EXqkFhA5Cfn4+uXbvi+PHjiImJwbfffgugohfQ3r17kZGR\ngdGjR6N///7w9vZGRkaGaiQXEVEVW7aodQNyEZGGisIGYMyYMUhKSsKjR4/Qv39/rFixAgBgbm6O\nPXv2yNNNmDAB58+fx59//onXXnsNycnJykstIqJKnk70ipW/SDOjRi+g2kwCL1myBLq6upg0aVKl\ndFrVLbOshrqmb8oos7qvqSHq4h9EXfyDqAvlUSoUxMaNGxEbG4v9+/dXeb8uoSBEDyARERGR+kXh\nIaD4+Hh88skniImJgZ6eXpVpPD09cePGDdy+fRtFRUX48ccfxVAQIiIiIg0EhQ3AzJkzkZ+fDz8/\nP3Tv3h1vvfUWgMqhIL744gsMHToULi4umDBhghgKQkRERKShoGQoaqWJi4ujo6Mj7ezsuGzZMk2L\no1G6du1Kd3d3SqVS9uzZU9Pi1CtvvPEGjY2N6ebmJr+WmZlJX19f2tvb08/PT77pUFOnKl2Eh4fT\nwsKCUqmUUqmUcXFxGpSw/rh79y59fHzo4uJCV1dXrlq1imTzLBvV6UKZsqFRA1BSUkJbW1smJiay\nqKiIEomEV65c0aRIGsXKyoqZmZmaFkMjHDp0iGfPnq1Q6YWGhnL58uUkyWXLllW57WhTpCpdRERE\ncOXKlRqUSjOkpKTw3LlzJMm8vDw6ODjwypUrzbJsVKcLZcqGwkNAquDkyZOws7ODlZUVdHR0MHHi\nRMTExGhSJI3DZjoZ7u3tjfbt21e49tNPPyEoKAgAEBQUhN27d2tCtHqnKl0AzbNsmJqaQiqVAgD0\n9fXh7OyM5OTkZlk2qtMFoHjZ0KgBSE5ORufOneXnlpaWzXqdwNPAeZ6envJd1JozaWlpMDExAQCY\nmJggLS1NwxJpltWrV0MikSA4OBg5OTmaFqfeuX37Ns6dOwcvL69mXzae6qJ3794AFC8bGjUAot9/\nRY4cOYJz584hLi4OX375JQ4fPqxpkRoMWlpazbq8zJgxA4mJiTh//jzMzMwwe/ZsTYtUr+Tn52Pc\nuHFYtWoVDOSxugWaW9nIz8/HSy+9hFWrVkFfX1+psqFRA1DXLSObOmZmZgCATp06YcyYMc0+cJ6J\niYl8IWJKSgqMjY01LJHmMDY2lld0b775ZrMqG8XFxRg3bhxef/11jB49GkDzLRtPdfHaa6/JdaFM\n2dCoARDXCfxDYWEh8vLyAAAFBQXYt28f3N3dNSyVZhk1ahQ2bdoEANi0aZO8wDdHUlJS5O937drV\nbMoGSQQHB8PFxQXvvfee/HpzLBvV6UKpsqGiCWqFiY2NpYODA21tbRkZGalpcTTGrVu3KJFIKJFI\n6Orq2ux0MXHiRJqZmVFHR4eWlpaMiopiZmYmhwwZ0qxc/cjKutiwYQNff/11uru7s1u3bnzxxReZ\nmpqqaTHrhcOHD1NLS4sSiaSCm2NzLBtV6SI2NlapsqH0lpAiIiIiIo0TjQ4BiYiIiIhoDtEAiIiI\niDRTRAMgIiIi0kwRDYCIiIhIM0U0ACIiIiLNFNEAiIiIiDRT/h9Qx6hRc99mnQAAAABJRU5ErkJg\ngg==\n" + } + ], + "prompt_number": 20 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] } \ No newline at end of file diff --git a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 3.ipynb b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 3.ipynb new file mode 100644 index 0000000..8787457 --- /dev/null +++ b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 3.ipynb @@ -0,0 +1,73 @@ +{ + "metadata": { + "name": "WAFO Chapter 3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "CHAPTER3 Demonstrates distributions of wave characteristics\n", + "=============================================================\n", + "\n", + "Chapter3 contains the commands used in Chapter3 in the tutorial.\n", + " \n", + "Some of the commands are edited for fast computation. \n", + "\n", + "Section 3.2 Estimation of wave characteristics from data\n", + "----------------------------------------------------------\n", + "Example 1\n", + "~~~~~~~~~~ " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "speed = 'fast'\n", + "#speed = 'slow'\n", + "\n", + "import wafo.data as wd\n", + "import wafo.misc as wm\n", + "import wafo.objects as wo\n", + "xx = wd.sea() \n", + "xx[:,1] = wm.detrendma(xx[:,1],len(xx))\n", + "ts = wo.mat2timeseries(xx)\n", + "Tcrcr, ix = ts.wave_periods(vh=0, pdef='c2c', wdef='tw', rate=8)\n", + "Tc, ixc = ts.wave_periods(vh=0, pdef='u2d', wdef='tw', rate=8)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "pyerr", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mxx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mwm\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdetrendma\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[0mts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mwo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmat2timeseries\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[0mTcrcr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mix\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwave_periods\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvh\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpdef\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'c2c'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwdef\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'tw'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrate\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[0mTc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mixc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwave_periods\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvh\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpdef\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'u2d'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwdef\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'tw'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrate\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\pab\\workspace\\pywafo_svn\\pywafo\\src\\wafo\\objects.pyc\u001b[0m in \u001b[0;36mwave_periods\u001b[1;34m(self, vh, pdef, wdef, index, rate)\u001b[0m\n\u001b[0;32m 1980\u001b[0m \u001b[0mn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mceil\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mrate\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1981\u001b[0m \u001b[0mti\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlinspace\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1982\u001b[1;33m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstineman_interp\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mti\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1983\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1984\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mC:\\Python27\\lib\\site-packages\\matplotlib\\mlab.pyc\u001b[0m in \u001b[0;36mstineman_interp\u001b[1;34m(xi, x, y, yp)\u001b[0m\n\u001b[0;32m 2932\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfloat_\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2933\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfloat_\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2934\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2935\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2936\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0myp\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAssertionError\u001b[0m: " + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 4.ipynb b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 4.ipynb new file mode 100644 index 0000000..7ab36e8 --- /dev/null +++ b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 4.ipynb @@ -0,0 +1,468 @@ +{ + "metadata": { + "name": "WAFO Chapter 4" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Chapter 4 Fatigue load analysis and rain-flow cycles\n", + "=====================================================\n", + "\n", + "Section 4.3.1 Crossing intensity\n", + "--------------------------------\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.data as wd\n", + "import wafo.objects as wo\n", + "\n", + "printing=0\n", + "xx_sea = wd.sea() \n", + "ts = wo.mat2timeseries(xx_sea)\n", + "tp = ts.turning_points()\n", + "mM = tp.cycle_pairs(kind='min2max')\n", + "lc = mM.level_crossings(intensity=True)\n", + "T_sea = ts.args[-1]-ts.args[0]\n", + "\n", + "subplot(1,2,1)\n", + "lc.plot()\n", + "subplot(1,2,2)\n", + "lc.setplotter(plotmethod='step')\n", + "lc.plot()\n", + "show() \n", + " \n", + " \n", + "m_sea = ts.data.mean() \n", + "f0_sea = interp(m_sea, lc.args,lc.data)\n", + "extr_sea = len(tp.data)/(2*T_sea)\n", + "alfa_sea = f0_sea/extr_sea\n", + "print('alfa = %g ' % alfa_sea )" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEVCAYAAADzUNLBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX6B/DPQQEXQAdFZFNURFxBRS2NxFxySVPLQssS\nl1xSU7O0ul2wxbRbv9K01BLLDU1btEQ0FdwVTcxuKKIXFBFNAQVBWYbn98eRiWV2ZuacmXnerxcv\nnTNneWZ4hu+c7yoQEYExxhjTwUHqABhjjFkHLjAYY4zphQsMxhhjeuECgzHGmF64wGCMMaYXLjAY\nY4zphQuMWpowYQLeffddqcOo4erVq3B1dQX3mmbG4txm1dlcgeHv74/9+/db7HqCIEAQBItdT18t\nWrRAQUGBLGMzVHh4ONauXSt1GJLj3BZxbkvH5goMKZK8tt90ysrKTBSJbdL1+7SX949z2/ZYW27b\nXIGhCRFhyZIlCAgIQNOmTfH8888jLy8PADBkyBCsXLmyyv7BwcH4+eefAQAXLlzAwIED0aRJEwQF\nBWHbtm16X/frr79Ghw4d4Obmho4dO+Ls2bMAxG+LH3/8Mbp06QJXV1colUrs3LkTHTt2hEKhQL9+\n/XDhwgXVeZYuXQpfX1+4ubkhKCgIBw4cAAAkJSUhNDQUjRo1QvPmzfH6668DADIyMuDg4IDy8nIA\n4jeZf//733jsscfg5uaGJ598Ejk5Oarzr1+/Hi1btkTTpk3xwQcfaP02GxcXh44dO8LNzQ2+vr74\n9NNPAQCJiYnw9fXFRx99BA8PD7Rq1QqbN29WHVdcXIz58+ejZcuWaN68OaZPn44HDx6ont+xYwdC\nQkLQqFEjBAQEYM+ePXjnnXdw+PBhzJw5E66urpg9ezYAwMHBAV9++SXatm2Ldu3a4cqVK1Veb8Vr\nrvj29u2336JPnz6YN28eFAoFAgICcOzYMaxbtw4tWrSAp6cn1q9fr/fvVU44tzm3LZbbZGP8/f1p\n//79NbZ//vnn9Oijj1JWVhaVlJTQ1KlTaezYsUREtH79eurTp49q37/++osaN25MJSUldO/ePfL1\n9aVvv/2WlEolJScnU9OmTSklJYWIiCZMmED/+te/1Mby/fffk4+PD50+fZqIiC5dukRXrlwhIqKW\nLVtS165d6dq1a/TgwQNKTU2lhg0b0r59+6isrIw+/vhjCggIoJKSErpw4QL5+flRdnY2ERFduXKF\nLl++TEREjzzyCG3cuJGIiAoLC+nEiRNERJSenk6CIJBSqSQior59+1JAQAClpaXR/fv3KTw8nBYu\nXKh6vS4uLnT06FEqKSmh+fPnk6Ojo9r3kYioefPmdOTIESIiunPnDp05c4aIiBISEqhu3br0+uuv\nU0lJCR08eJAaNmxIqampREQ0Z84cevrppykvL48KCgpo+PDh9NZbbxER0cmTJ6lRo0a0b98+IiLK\nysqiCxcuEBFReHg4rV27tkoMgiDQoEGDKC8vjx48eFDj9VY/bt26dVS3bl369ttvqby8nP71r3+R\nj48PzZw5k0pKSmjv3r3k6upKhYWFal+zHHBuc25XkCq37abAaN++fZXt169fJ0dHR1IqlZSfn08N\nGzakq1evEhHR22+/TZMmTSIioi1btlBYWFiVc73yyiu0aNEiItL+oRo0aBAtX75cY5zr1q1TPX7v\nvffo+eefVz0uLy8nHx8fOnjwIKWlpVGzZs1o3759VFJSUuU8jz/+OEVFRdGtW7eqbK+eZOHh4fTh\nhx+qnv/yyy9p8ODBRES0aNEiGjdunOq5oqIicnJy0vihatGiBa1evZru3r1bZXvFh6qoqEi17bnn\nnqP333+fysvLqWHDhqo/BkREx44do1atWhGR+J7OmzdP7fXCw8Ppm2++qbJNEARKSEjQ+Horjqv8\noWrbtq3quXPnzpEgCPT333+rtjVp0oT++OMPtTHIAee2iHNbuty2myqpjIwMjBo1CgqFAgqFAh06\ndEDdunVx8+ZNuLq6YtiwYYiNjQUAbNmyBS+88AIA4MqVKzh58qTqOIVCgc2bN+PmzZs6r3nt2jW0\nadNG4/N+fn6q/2dnZ6NFixaqx4IgwM/PD1lZWQgICMDnn3+O6OhoeHp6YuzYscjOzgYArF27Fhcv\nXkT79u3Rs2dP7Nq1S+P1mjdvrvp//fr1ce/ePQDA9evX4evrW+W5Jk2aaDzPDz/8gLi4OPj7+yM8\nPBwnTpxQPadQKFC/fn3V45YtWyI7Oxu3b99GUVERunfvrnofhwwZgtu3b+v1Xqmr6638/unD09Oz\nymsEAA8PjyrbKt4Ta8K5zbltqdy2mwKjRYsWiI+PR15enuqnqKgIXl5eAICxY8ciNjYWx48fx4MH\nD9CvXz/VcX379q1yXEFBQY16YXX8/Pxw6dIljc9XThRvb29cuXJF9ZiIkJmZCR8fH1V8hw8fxpUr\nVyAIAhYsWAAACAgIwObNm3Hr1i0sWLAAzz77LO7fv2/Qe+Pt7Y1r166pHt+/f79KHXB1oaGh+Pnn\nn3Hr1i2MHDkSzz33nOq5ive1wpUrV+Dt7Y2mTZuifv36SElJUb2Pd+7cQX5+PgDt75WmhsHK2xs2\nbAgAVa5948YNbS/bZnBua8a5bVo2WWCUlJTgwYMHqp+ysjJMmzYNb7/9Nq5evQoAuHXrFnbu3Kk6\nZujQobhy5QqioqIQERGh2v7UU0/h4sWL2LhxI0pLS1FaWopTp06pGu1ISy+SyZMn45NPPsGZM2dA\nRLh06ZLq+tU999xz2LVrFw4cOIDS0lJ8+umnqFevHnr37o2LFy/iwIEDKC4uhrOzM+rVq4c6deoA\nADZu3Ihbt24BABo1agRBEODgoP7XqinWZ555Br/88guOHz+OkpISREdHa9y3tLQUmzZtwt27d1Gn\nTh24urqqYqkQFRWF0tJSHD58GLt27cKYMWMgCAKmTJmCOXPmqOLNysrC3r17AQCTJk3CunXrcODA\nAZSXlyMrKwupqakAxG9Ply9f1vg+A+K3KR8fH2zYsAFKpRIxMTE6j7FGnNuc21Lmtk0WGEOHDkWD\nBg1UP++99x5ee+01jBgxAoMGDYKbmxseffRRJCUlqY5xcnLC6NGjsX//fowbN0613cXFBXv37sWW\nLVvg4+MDLy8vvPXWWygpKQGgvavjs88+i3feeQfjxo2Dm5sbRo8ereq9Ul1gYCA2btyIWbNmwcPD\nA7t27cIvv/yCunXrori4GG+99RY8PDzg5eWF27dv46OPPgIA7NmzB506dYKrqyvmzp2LLVu2wNnZ\nWRVbZZUfV467Y8eO+OKLLxAREQFvb2+4urqiWbNmqvNUt3HjRrRq1QqNGjXCmjVrsGnTJtVzzZs3\nh0KhgLe3N8aPH4/Vq1cjMDAQgNgbJiAgAI888ggaNWqEgQMH4uLFiwCAHj16YN26dZg7dy4aN26M\n8PBw1R+g1157Ddu3b4e7uzvmzJmjNiZA7LXzn//8B02bNkVKSgr69Omj9vWqez+sBec257aUuS2Q\ntq8REiosLMSMGTPg7OyM8PDwKonOzOvevXtQKBS4dOkSWrZsqfdxiYmJGD9+PDIzM80YHWPG49yu\nHdneYfz444947rnnsGbNmiq318w8fvnlFxQVFaGwsBDz589Hly5dDPpA2Zv4+HgEBQWhbdu2WLp0\naY3nN23ahODgYHTp0gV9+vTBuXPnVM/5+/ujS5cu6Nq1K3r27GnJsO0S57bpWLTAmDhxIjw9PdG5\nc+cq29V9+LKyslQ9BarXIzLT27lzJ3x8fODj44PLly9jy5YtRp3HGqt5DKVUKjFz5kzEx8cjJSUF\nsbGxOH/+fJV9WrdujUOHDuHcuXN499138corr6ieEwQBiYmJSE5OrlJ1xMyDc9t0LFoldfjwYbi4\nuOCll17Cn3/+CUD88LVr1w779u2Dj48PevTogdjYWPz+++9QKBQYNmyYqpcHY3Jw/PhxLFq0CPHx\n8QCAJUuWAAAWLlyodv+8vDx07txZ1VunVatWOH36tNbunYzJkUXvMMLCwqBQKKpsS0pKQkBAAPz9\n/eHo6IiIiAjs2LEDo0ePxg8//IAZM2ZgxIgRlgyTMa0q3/0CgK+vL7KysjTuv3btWgwdOlT1WBAE\nDBgwAKGhofj666/NGitjplRX6gDUffhOnjyJBg0aICYmRuuxfIvILKH6TbgheZeQkICYmBgcPXpU\nte3o0aPw8vLCrVu3MHDgQAQFBSEsLMzoazBmDGMqlyRv9K7tB4PE6U1q/RMVFWWyc5n6fHwu6c6l\njo+PT5XeMpmZmVVGE1c4d+4cpkyZgp07d1a5s64YUOfh4YFRo0ZpbMeQ4/vB57KNcxlL8gJD3w+f\nJtHR0UhMTDRDZMyeJSYmIjo6Wu1zoaGhSEtLQ0ZGBkpKSrB169Ya1aZXr17F6NGjsXHjRgQEBKi2\nFxUVoaCgAIDYdXzv3r01OoEwJleSV0lV/vB5e3tj69atBjVwa/pQM1Yb4eHhCA8Px6JFi2o8V7du\nXaxYsQJPPvkklEolJk2ahPbt22P16tUAgKlTp+K9995DXl4epk+fDgBwdHREUlISbty4gdGjRwMQ\n1zp44YUXMGjQIMu9MMZqgywoIiKCvLy8yMnJiXx9fSkmJoaIiOLi4igwMJDatGlDixcv1vt8ACgq\nKqrKzI7GMsU5zHU+Ppflz5WQkEBRUVFk4Y+IiimvK7f3ls8l/bmMzS/ZjvTWhyAItaqPY0wXqXKM\nc5uZk7H5JXkbBmOMMetg9QUGN3ozc9DW6M2YveIqKca04CopZou4SooxxphZWX2BwVVSzBy4Soqx\nmrhKijEtuEqK2SKukmKMMWZWVl9gcJUUMweukmKsJq6SYkwLrpJitoirpBhjjJkVFxiMMcb0YvUF\nBrdhMHPgNgzGauI2DMa04DYMZou4DYMxxphZcYHBGGNML1xgMMYY0wsXGIwx65WYCKxZI3UUdsPq\nCwzuJcXMgXtJyZ8gAHjuOaB1a/H/zOy4lxRjWnAvKXlydyfk5QlQuJQgt8AJggDw26U/Y/OLCwzG\ntOACQ57U3VHw26U/7lbLGLMPxcWq/yoU/2wWhIcFyccfA7/+avm47AAXGIwxq+Le3BGK+vdBBOTm\nincWlQsOeHkBK1dKFp8t4yopG/T3TcIPK2/g4F9Nce68I5ydgdatgT/+AAYMANyOxKGDy1UMG6yE\nx8g+QHCw+nt8xlVSMqSpvcLdHcjLAxQKQi6aAOfOAb6+lg/QCnAbBgPl5mF55Bm8t6s7nnA6imHz\ng+DSpQ3c3ICsLODBAyAnByhMv4kzSWU4ltoEXsiGm1AA39ZO+Pj7Vgjs7Cz1y5AVLjDkR1cDtyAA\nNHUa0KIF8PbblgvMinCBYc/y85ETtRxTVobgsksX/LzqJlqNCdV511BcDFxMJTz4Mw2H1l3CsotD\ncOqUAE9PC8VtBbjAkBd3d/Hf3FzN+wgCQIkHgblzgTNnLBOYlTE2v+qaIRaLio6ORnh4OMLDw6UO\nRRK3bgH/N/cu1myfgwkvK7FxWSM0aNBCr2OdnYHOXQSgSyB6vBCIBx8CHToAs2cDCxYA9eqZOXgZ\nS0xM5PE9MpSXp7s3lEIBuI96HLkN/gZu3waaNrVMcHaA7zCsVEkJ8MUXwEcfAWPGAAsXAi1b1v68\nGRnA/PlAcrI4JmraK+Vo2cp++0bwHYa86DveQhAAKikFHB3NH5QV4m61doJILChatAD27weOHgW+\n+so0hQUA+PsD27eLsy08KChB78Bb+Ou706Y5OWO1sXmz3rsqFIC7pyPc3f+pxmK1x3cYVub91/Ow\nOU6BjRuB7t3Nf72v5/yFpSsaYNu/zqFr9NPmv6DM8B2GfLg73wPq1kVuoX51pRUFhT7VWPaGG71t\nHBEw4bFLSDxRD0l/NYRnkEL3QSay4eNsvPF2XTzR6Rbe29YeAW3tpwsuFxgyQQTBQQBduSreXhuA\npw2piaukbFhpKfDlC0dwIklAyukiixYWADD+TS+k/VWKDtn78UhwEfbts+jlGQNSU8V/DSwsmGlx\ngSFzRMBLj/0P3213QewPTmjYNVCSOFzbeeNff43F6hnnMG4ccOWKJGEwe3XokHHHVZpGhNWe1Xer\ntXWvPXUZ6cl3kHDSFQ27+kkbTNOmeOaTpvifJ/DCC0BcHODmJm1IzE4kJxt3nFIp/nv/PlC/vuni\nsVOyvcNIT0/H5MmTMWbMGKlDkcyBA8Cuc37Ys6+uZHcW6rz+OtCpE9CxI3DwoNTRMLvw5ZfGHdeg\nARR17sLdk78bm4JsC4xWrVrhm2++kToMSS1aBCz6yAmNHg+WOpQqHByAVavE7r2TJgFlZVJHxGxe\nLeY6y53xLvIKeDyGKZi9wJg4cSI8PT3RuXPnKtvj4+MRFBSEtm3bYunSpeYOw+ocOiTO/xQRIXUk\nmo0cCfg2LsB/ou9JHYrF6crfTZs2ITg4GF26dEGfPn1w7tw5vY9lJvboo1JHYDvIzA4dOkRnzpyh\nTp06qbaVlZVRmzZtKD09nUpKSig4OJhSUlJo/fr1NGfOHMrKylLt++yzz2o8twXCl0R2NlGLFkTb\nt0sdiW6Zr35ETR3z6PBBpdShmIW6HNOUv5UdO3aM7ty5Q0REu3fvpl69eul9rKbr2juj35KMDPHY\n8nJThmPVjM0vs99hhIWFQaGo2g00KSkJAQEB8Pf3h6OjIyIiIrBjxw6MHz8en332Gby9vZGbm4tp\n06bh7Nmz9vUt7PJlrFpFGDIEeOYZqYPRzffz+Vgf+CHC+jpg61apo7EMTflb2aOPPopGjRoBAHr1\n6oVr167pfSyryd292poXhqjoinv/vsnisVeStARlZWXBz++fHj++vr44efJklX3c3d2xatUqneeK\njo5W/d/qJyG8cAFHHpmPL4QdOHq8jtTR6KduXQzZMweng5/EkGm/IDTUCW3aSB2U8fSZdFCf/K1s\n7dq1GDp0qMHH2lRuG6usDLhwAXl5nYwffFfR/tGggcnCsjammkxTkgJDMOFiPZU/VFatrAxZY+fj\nWfoeG2PrIChI6oAM4OOD7jGvYu6Ez/H2m3Ox9QfrbWCs/od50aJFNfYxJH8TEhIQExODo0ePGnys\nzeR2bZw/L86CifNSR2LV9MlrfUjSS8rHxweZmZmqx5mZmfA1cmWs6Oho25iGeulSvH1zNqbMro8h\nQ6QOxggjRmD2uBwkJhDS0qQOpvYSExM1/sHWN3/PnTuHKVOmYOfOnapqWVPmvl04dQoIDZU6ClbB\nxG0paqWnp1dp9C4tLaXWrVtTeno6FRcXa2z408VC4ZtfcjLlNGlLjdyUdOuW1MHUzqxZRM89R1RU\nJHUkpqEux/TJ3ytXrlCbNm3o+PHjBh+r6bp2afp0os8/N77B+yF+O6syNr/M/jZGRESQl5cXOTk5\nka+vL8XExBARUVxcHAUGBlKbNm1o8eLFRp3bZj5UY8bQZ+NO0rhxUgdSe3l5RIMHE73xhtSRmIam\nHFOXv6tWraJVq1YREdGkSZPI3d2dQkJCKCQkhHr06KH1WH2va3dCQ0nhWkIKRe1Oo1BQrc9hS4zN\nL6ufrTYqKsrqGwQLckrQrrMjfv5ZQM+eUkdTe9nZQLduwM8/A716SR2NcSoaCRctWsSz1UqluBhQ\nKCDcLzLJbLOCANDRY0Dv3rU/mZXj6c2t2EcfASdPin9gbcW2beIo8NWrgbFjpY7GeDy9uYSuXwf+\n9S8I62JMV2C8uQCwp276Gtjt9ObW3uhdUCDm7yefSB2JaY0ZrcRv8/dgwQJCaanU0RhOW6M3sxBv\nbyAmxrTnPHPGtOezM3yHIbHvvgN+/BGwubFb5eXAY4+hf942PBnpgzfflDog4/AdhvRMtQCSIADk\n3gS4fbtWc1PZAru9w7BKpaXAvXsoLwc++wyYPFnqgMzAwQFYuRJrbo3GurVKvP661AExe6dQENzz\nLomNbMwoVl9gWGWV1Jo1wJQp+OUXoG5d4KmnpA7ITLp2RZvhHXBi6PvYsMH4NXCkwFVS8lCrKUGq\nyc0VkEcK4M8/TXNCO8RVUpZ29y4QGAjs3Ytn3w/GoEHAK69IHZQZZWUBXbrgu7dTEbOzqdWtn8FV\nUtIy9XrcggBQegbg72+6k1ohrpKyFosXA089hT8dgnH4sLynLzcJHx9g5kyMyVmFlBTgq6+kDohZ\nhbQ0cQUxc7DzwqI2+A7Dkq5cEQco/PknRkzzxhNPAHPmSB2UBZSUAI6OSLskoHdvcWnXHj2kDko/\nfIchkf/7PyA9HcKKL0x/h2HHb2sFu73DsKo2jA8+AKZNw6qd3vjjD2DaNKkDshAnJ0AQ0LateIcx\ncCCQlyd1UNpxG4bE/vwT7jH/MVn7BTMNvsOwpIQE3G0VglbdFDhyBOjQQeqApPHaa2JHle+/lzoS\n3fgOQyLdu0M487vJ7wbc3cV/c3NNe15rwyO9rcTKlcBvv9nWqG5D3b8PBAQAv/4KdO0qdTTacYEh\nAaUS7nXvAgoFcnNNP16Cq6XMUGDk6lEEOzg4oHHjxgZf1FSs7UNVVga0bAn88ovYlGG3iLD8CwHf\nfw/s3Wv5dW0MyW0uMCSQmgohqJ3Z/qgLAkBfrbKjOuGajM0vjQsoeXl5wdvbW+vBZWVlVeb2l0J0\ndLTVTD44eTLQqZOdFxb//S/w5puY9tMu7NwpICJCnHfK2dlyIeiT24WFhZgxY4aFImJVODmZ/xp7\n99p1gWEsjXcYISEhOHv2rNaD9dnHnKzpW1haGvDII2JHKRcXqaORkFIpNt6sXo2b7cMREQF07gws\nW2a52RoMyW2+w5CGOauN3BspgXsFyFVKVzsiNZNXST148AD16tXTerA++5iTVXyotm0DBgzAgDEK\nPPoo8P77UgckA2vXii3ee/YgO1ssSDdsAB5/3DKXNyS3ucCQhlnbGUpKIDg7gR4UW/bWVkZM3q22\n4gN1/Phx5Ofnq7bn5+erFq2XsrCwCpmZwNSpiP3BEWlpwLvvSh2QTIwfD6SkAL//Di8vYOZMYNMm\ny12ec9vOVVR52cJawhams5dUSEgIzpw5AwcHsWxRKpUIDQ1FcnKyRQLURvbfwubNAwQBL978FP36\nietDsIc++ww4dgzYtg3/+5+40NK5c4CXl+VC0Ce3+Q5DGubuyeTuVAA4OSP3ngXaS2TIrAP3Kj5Q\nAFCnTh0olUqDL2R3cnOBb7/FpVHz8csvQN++UgckM1OmiN/0ysrQurU4mC8uzvJhcG7LjyknHNQk\n9/zfyCu0z8KiNnQWGK1atcLy5ctRWlqKkpISLFu2DK1bt7ZEbHqR7UjvlSuBkSPxza9emDhRHHfA\nKnFxEeuh6ood9fr2hcUnJtSW2zzSWyJ//IG8PAsMrGvTxswXsE06q6Ru3ryJ2bNnIyEhAQDQv39/\nLFu2DM2aNbNIgNrI9ra9pARo0QJHPjmBUXP9cfq0OP6CaXbhgniXcemS5doh9cltrpKyLPeGDwCl\nErkPGpr9WvY8gI9HestNZibmfeaHJk2Ad96ROhj5IxJn7i0oAHbtks+CaFxgWJYgAPR/nwFz51rm\nWvb3FgMwYxtGamoq+vfvj44dOwIAzp07hw8++MDwCO3MAw8/bNsGDBkidSTWQRDEGqoLF4A//rDM\nNTm3ZapdO6kjYBroLDCmTJmCxYsXw+lhV7TOnTsjNjbW7IFZu507xby361HdhlAqUbeu2JZx/Lhl\nLsm5LVNcYMiWzgKjqKgIvXr1Uj0WBAGOjo5mDcoW/PorMGaM1FFYiXPngD59ACIMHCi+d5bAuS0z\nRUXiv5Zc4GjlSstdywboLDA8PDxw6dIl1ePt27fDy5Kd5a0QEbB/P9C/v9SRWIlOncQFMg4dwogR\nYpWUJdb/5tyWmYo69Tp1LHdNS9V/2grS4dKlS/TEE09Q/fr1ycvLi3r37k3p6em6DrMIABQVFUUJ\nCQlShyLaupXoyhW6cIHIz4+ovFzqgKzIihVEo0YREdF33xENHWr+S2rL7YSEBIqKiiI9PiJmIdV1\npWbJl61wLSFF3buWu6CMGJtfeveSunfvHogIrq6u5iy/DCKrniT37ol9Z5OT8eWvLXDqFLBundRB\nWZF794AWLYCzZ3HDqQU6dBAXWbJEF1ttuc29pCzLoj2XbtyA4NXcLntKma2X1Oeff478/Hw0bNgQ\nc+bMQbdu3bBnzx6jgrRpmzaJLbYtWuDAAeCJJ6QOyMq4uADjxgFr16J5cyAsDPjiC/NeknNbXiwx\nwrsKT0/x39u3LXhR66azwIiJiYGbmxv27t2L3NxcrF+/HgsXLrREbNZlzRpg2jSUlwMJCVxgGGXq\nVHGVKQCvvgr88IN5L8e5LS8WGeFdWcVgnwsXLHhR66ZxAaUKFbctu3btwvjx49GpUyezB2V1fv9d\nzPQBA/DHH4CHB+DjI3VQVqhzZ/EHQHg4kJoKXL5svlkcOLcZALGHHtOLzjuM7t27Y9CgQYiLi8Pg\nwYORn59fZcI2BvHuYsoUwMEBcXHAoEFSB2T9nJyAt98GXnzxn96Wpsa5LSM3b0pyWYUCcG8ik2kF\nrIDGRu/S0lI4OjqivLwcycnJaN26NRQKBXJycpCVlYUuXbpYOtYaZNMwmJ0N1KsHKBTo2hVYvlys\ng2e1U14OREYC166J66Cbau1vQ3KbG70tJDERQr9wSRqg7XGKEJPPJRUaGgofHx8MGTIEgwcPhr8l\nB9PoSW4fqtu3xeqT27cBHv9lGkolMHGiWGjs2iWWy7VlSG5zgWEhq1dDmDaVCwwLMXkvqdOnT+Pz\nzz8HEWHOnDkIDQ3F3LlzsXfvXhQXF9cqWFuVkCDeWXBhYTp16gAxMWLB8fPPpjkn57YMpaZKHQHT\ng97jMEpKSnD48GHEx8fj4MGD8PDwwK5du8wa3I4dO7Br1y7k5+dj0qRJGDhwYJXn5fYtbNo0IDBQ\nXGiP1dL8+WI35eHDAYhjWjZtAn77zfQz2WrLbb7DsAx3pwLA2Rm5BZZf1MjdXXyfc3Ptpy3D6PzS\nNbLv888/r7Hts88+o2vXrhk1UtAYeXl5NGnSpBrb9Qjfotq2JTp7VuoobMTatUQjR6oelpQQBQWJ\nm01Fn9zs5SrlAAAgAElEQVTWlGO7d++mdu3aUUBAAC1ZsqTG8+fPn6dHHnmEnJ2d6ZNPPqnyXMuW\nLalz584UEhJCPXr0UHt+ueW2uQFEdP68NBcfNsyiI8zlwNj80nlUSEhIjW3BwcEGXSQyMpKaNWtG\nnTp1qrJd14euwuuvv07Jyck1tkv6oSouJtq3T/Xw6lWipk2JlErpQrIp+flEjRoR/f23atNffxF5\nehKdOmWaS+iT2+pyrKysjNq0aUPp6elUUlJCwcHBlJKSUmWfv//+m06dOkXvvPNOjQLD39+fcnJy\ntMZmlwVGSYk0F3/tNS4w9KRxHEZsbCw2b96M9PR0DH9YLQAABQUFaNKkiUF3MZGRkZg1axZeeukl\n1TalUomZM2di37598PHxQY8ePTBixAicPn0aZ86cwRtvvAEvLy8sXLgQQ4YMQUhIiEHXNLv4eOCT\nT1QzDO7fD/TrB3CvTBNxdRWrozZvBl57DQDQoYO4GNX77wM7dhh/6trmdlJSEgICAlSN5REREdix\nYwfat2+v2sfDw0NrtS3ZUXWT3qRq/AsMhMK5EO7uDS07cNAKaSwwevfuDS8vL9y6dQvz589XJbir\nqyuCg4MNukhYWBgyMjKqbNP0oVu4cCHGjx8PAFi+fDn279+P/Px8XLp0CVOnTjXouma1fj1QqQDc\ns4dnpzW5CRPEtoyHBQYATJ4MfPQRcPYsYOx3iNrmdlZWFvz8/FSPfX19cfLkSb2vLwgCBgwYgDp1\n6mDq1KmYMmWK4S+CmU5gIHIffQpCYoLUkciexgKjZcuWaNmyJU6cOGGWC+vzoZs9ezZmz56t9TzR\n0dGq/4eHhyM8PNyUYaqXmwvs2wesXQsAuHsXiIvjqfVNrl8/8Vvn338DD9fZrl8fePNNsQz57Tdx\ngJ+htOV2YmIiEhMTtR4v1LLV/ejRo6oCa+DAgQgKCkKYmoE7kuS2PQoMBC5elDoKs9Inr/Whc2qQ\nH374AQsXLsTNmzdV38QEQUB+fn6tLlzbD12Fyh8qi/n+e2DwYKBRIwBAUpL4bdfd3fKh2DQHB/HN\nrWbWLLEL89SpYpdbY1NJn9xetGhRjeN8fHyQmZmpepyZmQlfX1+9r1ux5oaHhwdGjRqFpKQknQUG\nMyNfX5uvS67+hUNdXutD57v05ptvYufOncjPz0dBQQEKCgpqXVgAtf/QVYiOjjZJyWmQatVR8fHA\n449bNgR7VqeO2LRx8KA4jZextOV2YmKixj/YoaGhSEtLQ0ZGBkpKSrB161aMGDFC7b7V2yqKiopQ\nUFAAACgsLMTevXvR+eH8WUwiDg5Apb9FTAtdreK9e/c2qjW9uvT09Cq9pEpLS6l169aUnp5OxcXF\nanua6KJH+KZXXk4UE0NUWqra1KoV0Z9/Wj4UexcZSfTVV8Yfr09ua8qxuLg4CgwMpDZt2tDixYuJ\niGjVqlW0atUqIiLKzs4mX19fcnNzo8aNG5Ofnx8VFBTQ5cuXKTg4mIKDg6ljx46qY/W9ri1S1LlD\nisbSrzZmR2+5+RZQeu2113Djxg2MHDkSTg8rjAVBwOjRo/UulMaOHYuDBw8iJycHzZo1w3vvvYfI\nyEjs3r0bc+bMgVKpxKRJk/DWW28ZVNgJgoCoqChJ63fv3hVnpr1717IrSzJx5Pfs2eIdXocOhh+v\nLbcr6nwXLVrEA/fM6fZtCB5NQeVk+hGZBqqoUraHnlImn0uqwoQJE1QXqGydDJaTk8OHatcu4OOP\nxeoRZnlffQVs2AAcO2b4sfrkNo/0NrOjRyE81kc2cznZy7xSZisw5EwOH6oZM4CAAJ4OxOx27BDH\nZlRbmaq0FGjeXOxmW6nTnclwgWFmMTEQJk2UzR9pLjC009lLKjIyssaFAHG1MjmIjo6WtEoqJQV4\n5hlJLm1fcnKA776rUWA4OgKjRom9paKiDDulttw2VTdEpp37qxFQ1L8PoL60gRA9nAAxSNo4ZE7n\nHcb27dtVH6T79+/jp59+gre3N74w94LLerDot7CyMnGBhkod/4nEZYGTk3mFPbO7cwdo2RK4elXV\nnblCejoQGgqcO2fY70Gf3OY7DPMSBIC2/yCPb11Nm0LIuc13GNqOM7RKqry8HH369MHx48cNvpip\nWfRDtXs38Pnn4pDuh1JSgCFDgIwMydvr7MOoUcDTT4sjwKt5+WWgVy+xitBY6nKbCwzzEgSACotM\ntzpWbfTpA+HYUS4wtDB4tMrFixdx69Ytgy9kLhYbh7FlCzBsWJVNa9YAY8ZwYWExY8eKAzDUePll\nccqQ2qz0WTm3tY3DYCYmh8ICEEd8M6103mG4uLiobtsFQYCnpyeWLFmCZ2RwC2mxb2EPHgDe3sB/\n/yv+C3EFuOBg4K+/xEZXZgFFReL7n5oq1gVWExUFnDolTtOiD31ym+8wzEtWjcwffQTh7bfkE48Z\nma3R+969e0YFZFP27AG6dFEVFoD4bXbSJC4sLKpBA7FE8PBQ+/Q774hfEo8fBx59VPfpOLdZFe3a\nSR2B7OksMABx5btDhw5BEAT07du3ypTQUrNIL6ktW4CICNXD8nJx9bfz5813SaZB27Yan3JyElc9\n3LxZvwID0Jzb3EvKDnXoAIXTPbi7u9jF4D1j6KySWrhwIU6dOoUXXngBRIQtW7YgNDQUH330kaVi\n1Mhit+1jxwLLl6u+2f71FzByJJCWZv5LM8McOiTOiK5mzsIa9MltrpIyo/JyCHUcZFcFJKtqMjMx\nWy+pzp074+zZs6jzcN4LpVKJkJAQ/Pnnn8ZFakJSfah27hQbvH/91eKXZjoUForlem4uUK+e9n31\nyW0uMMzH3TEfqF8fufkSLZykARcYmunsJSUIAu7cuaN6fOfOHZNNTW6tsrOBhzNUM5lp2BAICgIO\nHNC9L+e2tPLK3JCbUotubczidLZhvPXWW+jWrRv69esHIsLBgwexZMkSS8QmW1xgyMCVK+IAvsaN\nazz14YfAK68AZ85obB8HwLktqbt3ATTiEa9WRq+Be9evX8epU6cgCAJ69uyJ5jLpGiTVbLUTJwI9\ne4oNrEwi48YBYWHA9Olqn16wQBwUHhur/TSacptnqzWzpCQIvXrKsuqHq6S0HKerwPjpp5/Qr18/\nNH74Te7OnTtITEzEyJEjjYvUhKT4UBUXiwt0JSUBrVpZ9NKssh9/BL78UlwqV43MTLFQz87WfAp9\ncpvbMMxkwwYIL42X3x/mggK4+9QD6jradE8ps7VhREdHqz5QANC4cWP7GAGrVIq3ECUlVTb//LO4\nHCsXFhIbPFgck3H7ttqnfX3FBvCcHM2nsNvcloNr16SOQL3bt5HbuA3y8qQORJ50FhjqSiGlUmmW\nYGTlyBHxNqLSZIMA8M03wOTJEsXE/tGgATBokDjtuRqCAPTvD2zbpvkUdpvbcmDgYmkW06IFIKOp\nj+RGZ4HRvXt3zJs3D5cvX8alS5cwd+5cdO/e3RKxSevHH4Fqqwr+73/iugsyqI1jgPj7+eknjU+/\n9po4X2R5ufrn7Ta3ZcDdHVAopI5CjTp1gNatpY5CtnQWGF988QUcHR3x/PPPIyIiAvXq1cPKlSst\nEZtezDL5IJHaAiM2VhzD5+xs2ssxIw0dCnTtqvHpvn3F39Xhw+qf15bbPPmgeeXlyXgp1MBAKBqW\nqJZsZf/gFffUOXUKGD9enPujUr/8l18GwsOBauvuMBl75RWgWzfje7Rxo7d5yLon0sKFgIsLhHf/\nJd8Ya8nkjd76fLuy2W9gFXcX1QZxXb0qVnEy6+HvLy6wVJld5zbTLTycx4dooPEOw9fXF/PmzdNa\nCq1ZswapqalmC04Xs30Ly88Xe0c1bVplc0CAuI6SlvnvmMxs2QJs3y7+VDAkt/kOwwxyciA0bSL7\nb++yvguqJZNPbz558mQUFBRoPfiVV14x+IJWwc2txqbycrEnoK+vBPEwo3XrJtYwVGbXuS0H//43\nAPm0gzL9cRuGnm7cEJfE+Ptvi1yOmQgR0KSJ2BylZs0lnfgOwwwGDICwf5/sv73zHUZNBi/Raq+4\n/ULGcnLEtb7VfAAEQRzxfeKEBHEx9SSsxma1wwWGnvbsAbiLvky5uwPnzgEaptx/+mlg2TLb/bZo\nVQoKtA+/Z7Kms8DIkfkv16TjMG7eBNQs21lcLE5bNGuWaS7DTEwQxFJBw6jvKVOAO3fEVRIr05bb\nPA7DTC5etI5eI3wXpJbOAuORRx7BmDFjEBcXJ8s61YolWk0iKkpcGamarVuBzp2BTp1McxlmBsOH\nA7t2qX2qbl1g1SrgjTdQZY4gbbkdHh7OBYY55OWJswzL3cWLUkcgSzobvcvLy7Fv3z7ExMTg1KlT\neO655xAZGYnAwEBLxaiRSRsGicQpAX79FejYscrmbt2AxYuBIUNMcylmBsXFQLNmwKVLGhfBmDFD\n/H1+9ZX4WJ/c5kZv85B9g3JaGtyDPIBGjeU7Ir0WjM4vMsD+/fvJy8uL3Nzc6PHHH6ejR48acrjJ\nGRi+dhcvEnl7E5WXV9l87BhRYCCRUmm6SzEzGTmSaOtWjU/n5RE1b070++81n9OU2ybNMQNIdV1L\nUCjEH1krLSVydiZb/TUYm186V9y7ffs2Nm3ahPXr18PT0xMrVqzA8OHD8ccff+DZZ59FRkaG4aWU\nHO3dK85+Wm10d2ws8MILgAN3D5C/9esBFxeNTzduLA4BePNN4LffgJwcO8ltmcnLk/ndBSDWY7Zq\nBVyQOhB50Vlg9O7dGy+++CJ27NgB30qj1kJDQzHNlpac27NHXMWtEqVSnB7b1HMbMjNxddW5y+TJ\n4gy2e/cCs2bZSW4z47RrxwVGdbpuQbaqucVXt00KeoSvv8mTif7+u8qmhASikBDTXYLJw48/EgUH\nE8XG6s5tk+aYAaS6riVYzUv7+WfridVAxuaXzkbvbt264cyZM1W2de3aFcnJyWYrxPRl7obBadPE\nyeuqTy3BrBsR8NhjQFZWN2RkaM9tbvQ2oawsoLAQQrtA+VdJPST7xnkjmXwuqd27dyMuLg7Xrl3D\n7NmzVScvKCiAo6Oj8ZFaibIycdLakyeljoSZWnz8bnh5xeHEiWt49dXZcHCwr9yWzPffw/2tV+S5\ncJIGCoU4LtQWe0oZQ2OB4e3tje7du2PHjh3o3r27qsBwc3PDZ599ZvbALly4gGXLliEnJwdPPvkk\nJk2aZPZrVpaWBjRqxGt3W6Xz54HmzTUu6ebt7Y2nnuqOnTt3oGnT7mjVyrK5bbcuXEBecUPQA6kD\n0V9ubo1+MPZNV51VSUmJUXVdpqJUKmnMmDFqn9MjfKPt2EE0dKjZTs/MKSKC6Ouvde727LMltHGj\n9n005dju3bupXbt2FBAQQEuWLKnx/Pnz5+mRRx4hZ2dn+uSTTww6Vtt1rdrjj1tlm4A1xqyLsfml\nsbPomDFjAIhtGJ07d67y06VLF70LpIkTJ8LT0xOdO3eusj0+Ph5BQUFo27Ytli5dqvbYX375BcOG\nDUNERITe1zOVtDTrmMGAqTF0KBAXp/Hpitw+eLAb5s0zPLeVSiVmzpyJ+Ph4pKSkIDY2FufPn6+y\nT5MmTfDFF19g/vz5Bh9rsy5wlyNrp7FKatmyZQDEP9q1ERkZiVmzZuGll15Sbav40Ozbtw8+Pj7o\n0aMHRowYgdOnT+PMmTN444034O3tjeHDh2P48OF4+umnMbra+toms3KluMJWpdHdgFhgVCvjmLUY\nPFic+KukBHByqvF0RW4vWPALDh4Eli837PRJSUkICAiAv78/ACAiIgI7duxA+/btVft4eHjAw8MD\nu6pNV6LPsTYpLw8oKpI6CsPt3AmF6xC4uztyOwa0zCXl7e0NQEx8Pz8/+Pv7o7i4GOfOnYOPAcsX\nhoWFQVGtLrnyh8bR0VH1oRk/fjw+++wzeHt74+DBg3jttdcwdepU9OvXz8iXpwOROOeHmj8qfIdh\nxTw8gKAg4MgRtU9X5HbXrh64ft3w3M7KyoKfn5/qsa+vL7KysvQKrTbHWrX8fGDCBKmjMNzFi8id\n+EaVOcjsmc6Be2FhYThy5Ajy8vLw5JNPokePHti6dSs2VZ/60wDqPjQnq3VH6tu3L/r27avzXJUn\niAsPDzdsIsK//gKcncW1V6vhAsPKVVRLPfGExl3mzAnDlStHcO3aP7m9fPlyPPbYY1pPLdSiFdSQ\nY2uV23LTsiXwxRfACqkDMVC7dsD+/VJHUWuJiYkmmdVbZ4FBRGjQoAHWrl2LGTNm4M0330RwcHCt\nLlqbD1x1tZpRVMN0IEVFwK1bvGCSVXvmGeDwYa271KlDcHBogA0bquZ25ZxatGhRjeN8fHyQmZmp\nepyZmVllpLg2hhzLs+XKQFCQTbS9VP/CoS6v9aHXDEnHjx/Hpk2bMGzYMADiLJ+1UZsPXHW1Wg9j\nzx7gySdrbF6wQOxOW6eOcadlMtCxozjyUgcvr+PYuLFmbmtbDyM0NBRpaWnIyMhASUkJtm7dihEj\nRqjdl6oNjjLkWCYDrVuL6+Qwka5uVImJiTR8+HBV979Lly7RrFmzDOqKlZ6eTp06dVI9Li0tpdat\nW1N6ejoVFxdTcHAwpaSkGHROolp2PSwqInJxEacwraS4mKhuXaKDB40/NbMOiYmJ1KzZcHr5Zc25\nrSnH4uLiKDAwkNq0aUOLFy8mIqJVq1bRqlWriIgoOzubfH19yc3NjRo3bkx+fn5UUFCg8djqapXb\nMmUVs9SqExxMCrdS64xdA2Pzy+xZGRERQV5eXuTk5ES+vr4UExNDRPp9aHQBQFFRUZSQkGD4wSUl\nRMeP19h86xZRkyZGhcOs0KhRRNu21dyekJBAUVFRPJeUCVntS9qzh+j6deuNXw1j80vnXFKpqan4\n5JNPkJGRgbKyMgBiG8SBAwfMeuejD3PMt3P5stiscfmySU/LZCg1NRXDhn2C+vUz0LSp+tzmuaRM\n4Pp14MwZCMOfsup5mWxpXimTzyVVYcyYMZg+fTomT56MOjKs1K9YotVUPUjy8wE3N5OcisncmDFj\n4OExHf37T8bIkVVz21S9ShiAQ4eA7dsBPCV1JKyWdN5hdO/eHb///rul4jGIOb6FJSYC0dG8BobN\n+PlncdBYZGSNp7p3744ePX5HcDAwfbr6w/kOwwTefRdwcIDw3iKr/obOdxh69JIaPnw4Vq5ciezs\nbOTm5qp+bBXfYdgYJydxJT41hg8fjtTUlfj7b/vIbcn89VeNmRSYddJ5h+Hv76923ER6errZgtKX\nIAiIiooyvErqwQOgXj21T23YIA7P2LDBNDEyiRUWijPXZmfXWL7V398fd+4IcHAQZyaukJ6erqqS\nWrRoEd9h1Fa7dnC/8RdQp65VT6/Bdxh6FBhyZtSLLi8HfHyAs2cBT88aT69cCaSkiP8yG/HEE8C8\necBTNevQ//1vcbxNVJT6Q7lKqpYePAAUCggP7lv3H9vlyyG8Ntu6X0MlZquSKiwsxPvvv48pU6YA\nANLS0vDrr78aHqFcJCcDjRurLSwA4O7dqt82mQ0YOBDYt6/G5sLCQhw79j5++slGcluOHjwQS2Vr\nd++e1BHIgs4CIzIyEk5OTjh27BgAceK2d955x+yBmU3FdCAacBuGDerfX+18QJGRkXB2dkJmpo3k\nthw1bgy89ZbUUdRehw5SRyALOguMy5cvY8GCBXB6OKNrw4YNzR6UIQyeGkRHgcF3GDaoe3dAzTT9\nly9fxpAhC+DgUDO3tU0NwuwQN9oD0KPAcHZ2xv3791WPL1++DGdnZ7MGZYiKcRh6uXcPOH1aXP9C\nA77DsEF16gAP15+ozNnZGYJwHxVTo1XO7fDwcC4w2D9at4YCuXB3t5FGDCPpHLgXHR2NwYMH49q1\naxg3bhyOHj2Kb7/91gKhmcHly8CIEYCWuyS+w7Af0dHRmD17MAoLbSC3mXnVqYPckP4QziZLHYmk\n9Ooldfv2bZw4cQIA0KtXL3h4eJg9MH2YoyfJhAnAjBlAz54mPS2TqdjY29i69QQmT1af29xLqvbc\n3cV/rblLLQDg/HkIHdrbRE8ps3Wr7d+/P/ZXazBUt00KRo/DYAzac5vHYZhAWhoQHw9h9iyb+CML\n2M5YDJPPJXX//n0UFRXh1q1bVUa/5ufny2pJSa5nZnpTKoG7d3G/fn2duV3xJcTYhWYYxCVyT54E\nMEvqSJiJaCwwVq9ejWXLluH69evo3r27arurqytmzpxpkeAYM6lNm4Bdu7D60Uc5ty3hjz+AkBDA\n+NWcZUehEKvYrL56zUg6q6SWL1+O2bNnWyoeg9jEbTuznMxMoFs3cQU1Bwe9cpvbMGohPBx45x0I\ngwbaRDVOBVuoljLr1CDHjh2rsh4GALz00ksGX8zU9H7RZWXAqlXAq6/WWL+b2ZnAQGDbNuDhuvS6\ncpsLDCMRiV/FU1MheDaz+j+wldlzgaGzW+2LL76I//3vfwgJCamyHoYcCgy9JSUB33wDcHUD69sX\nOHgQCA62jdyWq8xMoH59oFkzqSMxraVLASyQOgrJ6Cwwfv/9d6SkpKidsVYO9FpAScfobmZH+vYF\nfvoJmD1ba27zAkq15OoKrF0rdRSm5+UFhdM9uLu72GU7hs6R3p06dUJ2drYlYjGKXiO9ucBgFcLD\nAQcx7bXlNo/0riWFAhgyROooTC84GLlteiIvT+pApKGzDSM8PBxnz55Fz549VdMmCIKAnTt3WiRA\nbfSqh8vLA1q2BP7+W+MaGMw+6ZPb3IZROzYzaK9CSQnQqBHc6xcBEKz2dZmtDcPqv2UdOAD06cOF\nBavB6nPbCuTlWX8DcRVOTkC7dsj95ncIPUKljsbibH8BpdRU4PZtsdBgzEB8h1E7ttCjqIaXXwb6\n94fw8ktW+9pM3q3WxcVFY0O3IAjIz883+GKmZisfKmZZhuQ2Fxi1Y5MFRnEx4Oxs1a+Nl2hlzAy4\nwDDC5s1io8XMmVb9R1UXa35tZluilTGbdOoUcPiw1FHYpv37VT3RmG2x+t+qwSvuMQYAf/0FrFih\n8Wleca8WTp8GevSQOgpmBlwlxexTRgbQqxdw44bW6WK4SspARUWAh4dYJWXl9fy6WHOXYa6SYswQ\n/v7i1BWpqVJHYluSk4EOHQBnZ7i7i+P3bFJpKXL/e93uBvBxgcHsV9++AFdnmtbp00CoOD4hL886\nv33r5fhxYPRo1XTn9oKrpJj9WrdOnDYmNlbjLlwlZaDCQvGnWTObro7CvXuApydw5w4EJ0ere51m\nG+nNmM0aPBho3FjqKGxLw4bij61zcRGrNf/7XwBdpY7GYrhKitkvLy9g1Cipo7BJNt1+UaFHD7EK\nzo5wgcEYMzmbbr+oEBoKnDplV+0Ysi4wCgsL0aNHD+zatUvqUBhjrKrevQEHB+Tmwm56S8m60Tsq\nKgqurq5o3749hg0bVuN5q20YZFaDG70NcP++2FUZ1j1thjGs7fXKdhzGxIkT4enpic6dO1fZHh8f\nj6CgILRt2xZLly6tcdxvv/2GDh06wMPDw9whMmYwXfkLALNnz0bbtm0RHByM5ORk1XZ/f3906dIF\nXbt2Rc+ePS0VsnmVlwN+fsCtW1JHwszI7L2kIiMjMWvWrCrrJCuVSsycORP79u2Dj48PevTogREj\nRuD06dM4c+YM3njjDRw8eBCFhYVISUlB/fr1MXToUNkuE8us3OLFQFAQMHq0Xrtryt/27dur9omL\ni8OlS5eQlpaGkydPYvr06Thx4gQA8dtdYmIi3G2p4vvCBaBRI3GUN7NZZi8wwsLCkJGRUWVbUlIS\nAgIC4O/vDwCIiIjAjh07sHDhQowfPx4A8MEHHwAAvvvuO3h4eHBhwcynfn1xPIaeBYam/K1cYOzc\nuRMvv/wyAKBXr164c+cObt68CU9PTwCwvuomXY4eVa05Yxc9pKqpaPi29YZ+ScZhZGVlwc/PT/XY\n19cXJ0+eVLtvxYdOk8oTxIWHh+te35ux6sLCgLVrAYiTDuqazFKf/FW3T1ZWFjw9PSEIAgYMGIA6\ndepg6tSpmDJlitrrWFVuVyowbG6VPT3k5mqdkkxy+uS1PiQpMEx5t8AzirJaCwkBrl4FcnJq/GFe\ntGhRjd31zV9NdxFHjhyBt7c3bt26hYEDByIoKAhhYWE19rOq3D56FHj9damjkMaePUC7dlAo/GV7\nl6FPXutDkm61Pj4+yMzMVD3OzMyEr6+vUefi6c1ZrdWtCzzyCHDsmGqTtunN9cnf6vtcu3YNPj4+\nAABvb28AgIeHB0aNGoWkpCRTvRJpFBaKo7s7drTL6ij8+COwc6d9dK8lC0hPT6dOnTqpHpeWllLr\n1q0pPT2diouLKTg4mFJSUgw+r4XCZ/Zg7VqinTtrbFaXY/rk765du2jIkCFERHT8+HHq1asXEREV\nFhZSfn4+ERHdu3ePevfuTXv27NHrutbASsOune++I3rmGSKyntdvbH6ZvUpq7NixOHjwIHJycuDn\n54f33nsPkZGRWLFiBZ588kkolUpMmjSpSoOhIaKjo+Vfv8vkb+LEKg+11fnWrVtXbf6uXr0aADB1\n6lQMHToUcXFxCAgIQMOGDbFu3ToAwI0bNzD6YeN6WVkZXnjhBQwaNMh8r4uZ3xNPAPPmAeXlUCgc\nZFstZQqyHrini1UObmJWhQfuGcbaBrCZTLt2wJYtQNeuVvEeyHbgHmOM2bz+/YEDB6SOwuysfnpz\nrpJi5mCqboj2xC4bvCtMmiSukWHjuEqKMS24SkqH3buB7t1tf8EkA1jDWt/G5hcXGIxpwQWGFkTi\n/FEJCUDbtlxgVCL398Ju2zB4HAYzB23jMNhDqamAgwMQEGDf1VF2hO8wGNOC7zC0+L//EycdXLNG\n9t+oLU3u1VJ2e4fBGJPIr78Cw4dLHYUs2eqob77DYEwLvsPQ4M4doEUL4MYNuPs2ACDfb9MW9fHH\nQLNmwIQJsr7LsNs7DG7DYObAbRg6KJXAypVAgwb2sX63vvz8gO3bAfzzntjSsid8h8GYFnyHoZ2c\nvzC9/nUAAA2OSURBVEVLIi8PaNkSuHEDaCDeecmxfcdu7zAYY9Lhu4tqFApxXMq+fVJHYhZcYDDG\nmCmNHg1s2yZ1FGZh9QUGt2Ewc+A2DGa0554DjhwR23lsDLdhMKYFt2FUQ1RlLVI51s/LQlmZuDAX\n5NnOw20YjDHz+/FHIDISgJ1PNqhL3X/mdbWlMRlcYDDG9BcTA/TrJ8tvzcz8uEqKMS24SqqSrCyg\nc2fg2jUIDRtwVZQB5FbAGptfVr8eBmPMQtavB8aMUY0vYPrLza3S9GO1rL5KintJMXPgXlLVKJXA\n11+LCwUx/e3YAZw9K3UUJsNVUoxpwVVSD2VkAO++C2zYILvqFVn77DPg1Clg82ZZvW+8gBJjZsAF\nRk3cldYA+flAq1ZAcjLQooVs3jvuVssYMzvuSmsgNzdgwgRx7RCI7501T0bIdxiMacF3GFXJ5Ruy\nVcnOBjp1Av74A/D1lcV7yHcYjDEmR15eYmeBNWsAWPddBt9hMKaFXd9hEAH371fpRiuHb8dWqagI\ncHYG6tQBIP37aLd3GNytlpkDd6sF8P33wPPPqx5y+0UtNGigKiwA673L4DsMxrSw2zuMggKgfXtg\n61agT5+HMfHdhSlJ2c2Wu9UyZgZ2W2BMmQKUlwNr11aKiQsMU5Oq0OCpQRhjprFtG5CYCJw5o9rE\n1VEmlpcHNG6M3FwB7u7i+yuHAX26WH0bBmPMhPLzgZkzgdhYwNUVgPwmzrMJzz8PfPklgH/eV0GQ\nf7sGV0kxpoVdVkmlpQFt21aKhauiTO7yZeDxx4Fly4Bnn1VttlThzG0YjJmBXRYYlfDdhRmdPQsM\nGgRs3gwMGKDabIn33G671TLGzIMLCzMLCQF++AEYOxb4+WfVZjlXUXGBwZg9+/tvjU/l5XFhYXZh\nYcDu3cD161U25+b+Uw0op0JDtgVGYmIiwsLCMH36dBw8eFDqcBizLTduAJMnA0OGiN1nK3F3F7/d\ncq8oCwkNBWbMUPtU5bsNOdxxyLbAcHBwgKurK4qLi+Hr62v265l6tLgpz8fnku5cmsTHxyMoKAht\n27bF0qVL1e4ze/ZstG3bFsHBwUhOTjboWFOq8n5kZQFvvw107Ag0agTs3w84iH8GKgoKQPx2q+7u\nQq6/J5s8V3k5QKS620hIEM8lZcFh9gJj4sSJ8PT0ROfOnats1/WhCQsLQ1xcHJYsWYKoqChzh8kF\nBp9Lb0qlEjNnzkR8fDxSUlIQGxuL8+fPV9knLi4Oly5dQlpaGtasWYPp06frfaypqd6PDz4Q1+TO\nzwdOnwY+/RRo3BjAP3+ANBUUNc5lyrj4XOrFxYmj7d99Fzh8GIn79kleVWX2AiMyMhLx8fFVtmn6\n0GzYsAFz587F9evXITz8qtO4cWMUFxebO0zG9JaUlISAgAD4+/vD0dERERER2LFjR5V9du7ciZdf\nfhkA0KtXL9y5cwc3btzQ61iD3L0r/vGPjQUWLQJefBH49lv1+06YAFy7BqxYAffurVTVHBV3Fdxe\nITPDhgHffQcUFwPz5gEffwz07g1s3lyjqspSdx1mH+kdFhaGjIyMKtsqf2gAqD40CxcuxPjx4wEA\nP/30E/bs2YM7d+5g1qxZ5g6TMb1lZWXBz89P9djX1xcnT57UuU9WVhauX7+u81i9ffUV3Gc8jzyE\nAgj9Z/smAJFVd120CAD+qdpVKHhshewJAtCrl/gDiFWJgwYBTZsCqFnAu9cvgiA0qLJNUecucr/+\nEYislhDGIgtIT0+nTp06qR5v27aNJk+erHq8YcMGmjlzpsHnBcA//GP2n+q2b9+uM3+feuopOnLk\niOpx//796fTp03ody7nNP5b4MYYkc0lVVDfVFvFXJCYBHx8fZGZmqh5nZmbW6JhRfZ9r167B19cX\npaWlOo8FOLeZPEnSS0qfDxxjchUaGoq0tDRkZGSgpKQEW7duxYgRI6rsM2LECKxfvx4AcOLECTRu\n3Bienp56HcuYXElyh1H5Q+Pt7Y2tW7ciNjZWilAYM1jdunWxYsUKPPnkk1AqlZg0aRLat2+P1atX\nAwCmTp2KoUOHIi4uDgEBAWjYsCHWrVun9VjGrIJRFVkGiIiIIC8vL3JyciJfX1+KiYkhIqK4uDgK\nDAykNm3a0OLFi/U61/z58ykoKIi6dOlCo0aNojt37qjdb/fu3dSuXTsKCAigJUuWqN3n+++/pw4d\nOpCDgwP9/vvvGq/ZsmVL6ty5M4WEhFCPHj1qdS594srJyaEBAwZQ27ZtaeDAgZSXl2dwXPpcZ9as\nWRQQEEBdunShM2fOGB1zQkICubm5UUhICIWEhND777+v8VyRkZHUrFmzKu1Zxsal61z6xnX16lUK\nDw+nDh06UMeOHWnZsmW1istYnNv6xSXH3JZjXhOZJ7ct0uhtKnv37iWlUklERAsWLKAFCxbU2Kes\nrIzatGlD6enpVFJSQsHBwZSSklJjv/Pnz1NqaiqFh4dr/SD4+/tTTk6O1rj0OZe+cb3xxhu0dOlS\nIiJasmSJ2teoLS59rrNr1y4aMmQIERGdOHGCevXqZXTMCQkJNHz4cLXHV3fo0CE6c+aMxg+DvnHp\ncy5948rOzqbk5GQiIiooKKDAwECj36/a4NzWHZdcc1uOeU1kntyW7UhvdQYOHAiHh6NSe/XqhWvX\nrtXYR99+7kFBQQgMDNTruqSjAVKfc+kbV+X++y+//DJ+rjQpmT5xGTtG4ObNm0bHrOv9qRAWFgaF\nlvkm9I1Ln3PpG1fz5s0REhICAHBxcUH79u1xvdq8PobEZSzObd1xyTW35ZjXgHly26oKjMpiYmIw\ndOjQGts19X83liAIGDBgAEJDQ/H1118bfR5947p58yY8PT0BAJ6enhp/eZri0uc66vZR9wdKn3MJ\ngoBjx44hODgYQ4cORUpKitp49aFvXPowJq6MjAwkJyejV0W/dzPEpQ/ObdvKbanzGjBdbstuidaB\nAwfixo0bNbYvXrwYw4cPBwB8+OGHcHJywrhx42rsV7nL7sCBA3HhwgUUFRVVGaJf+Vy6HD16FF5e\nXggPD8fs2bOxZMkSNGjwz+AYfc+lT1wffvhhjWM0dUGuiOvWrVsYOHAggoKCEBYWpneX5erfUtQd\np8+5unXrhszMTDRo0AC7d+/GyJEjcfHiRb1iMDYufRga17179/Dss89i2bJlcHFxMUtcnNtVj7Gn\n3JYqrwHT5rbsCozffvtN6/Pffvst4uLisH//frXPV+6y+9tvv+Gjjz6Cg4MDFixYYFQ8Xl5eAMQ5\nYRYtWgQXFxe8/vrrBp9H37g8PT1x48YNNG/eHNnZ2WjWrJnWuDw8PDBq1CgkJSUhLCzM6DECPj4+\nWmPWdC7Xh8t4AsCQIUMwY8YM5Obmwt2IeQr0jUsfhsRVWlqKZ555Bi+++CJGjhxptrg4t+0zt6XK\na8D0uW1VVVLx8fH4z3/+gx07dqBevXpq9zGmn7umOsGioiIUFBQAAAoLC7F3794akyjqey594xox\nYgS+++47AMB3332n9pesLa7ajBEwJuabN2+qXnNSUhKIyKjCwpC49KFvXESESZMmoUOHDpgzZ47Z\n49KEc1t3XNaa21LkNWCm3NaruV0mAgICqEWLFqouZdOnTycioqysLBo6dKhqP3267P7444/k6+tL\n9erVI09PTxo8eHCNc12+fJmCg4MpODiYOnbsWKtz6RtXTk4O9e/fv0bXQ0PiUnedVatW0apVq1T7\nvPrqq9SmTRvq0qWL1p40us61YsUK6tixIwUHB9Ojjz5Kx48f13iuii7Wjo6O5OvrS2vXrjU6Ll3n\n0jeuw4cPkyAIFBwcrMqruLg4o+MyFue29ea2HPOayDy5bdVrejPGGLMcq6qSYowxJh0uMBhjjOmF\nCwzGGGN64QKDMcaYXrjAsDLqBt6YSnR0ND799FOznZ8xbTi35Y8LDCtjqsWnLH1uxnTh3JY/LjBs\nwOXLlzFkyBCEhobi8ccfR2pqKu7evataMx0QB0G1aNECSqVS7f7VLV++HB07dkRwcDDGjh1rwVfD\n2D84t2VG6ygNJjsuLi41tj3xxBOUlpZGROIUxU888QQRET399NOUkJBARERbtmyhKVOmaN0/Ojqa\nPv30UyIi8vb2/v927h5VdSgKw/Ab7IMOwMJeggj2wT5gIwHBGYj29oKlE7BUFKwMTsBCO0WdgROQ\nYLQIaG5xLjk/1yK3UCLneyDN3ovAhhU+QsKKwjCMoiiKfN9/3oFE/lJvp1/qZknJ/wmCgPV6Tb1e\nj9fCMATAdV2m0ym2bTOZTGi1WgRBwGq1elj/lWVZNBoNarXawxEOIs+m3k4fBcabu9/vZLNZttvt\nP3uO49DtdjmdTmw2G6rVKufzmVwu97AePucFLRYLlsslnufR6/U4HA5kMpmnnkXkK/V2+ugbxpsz\nTZNCocBsNgM+Hordbgd8/HVSqVRot9s4joNhGA/r9/v9t3tGUcTxeMS2bfr9Pr7vc7lcXnsw+fXU\n2+mjwHgz1+uVfD4fX4PBgNFoxHA4pFQqUSwW8Twvrnddl/F4jOu68drP+vl8Hu8ZhsHtdqPZbGJZ\nFuVymU6ng2maLz2n/D7q7fTT8EEREUlEbxgiIpKIAkNERBJRYIiISCIKDBERSUSBISIiiSgwREQk\nkT+tW9R/eaN3FgAAAABJRU5ErkJggg==\n" + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "alfa = 0.491212 \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 4.3.2 Extraction of rainflow cycles\n", + "-------------------------------------------\n", + "Min-max and rainflow cycle plots\n", + "---------------------------------" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "mM_rfc = tp.cycle_pairs(h=0.3)\n", + " \n", + "clf()\n", + "subplot(122), \n", + "mM.plot() \n", + "title('min-max cycle pairs')\n", + "subplot(121), \n", + "mM_rfc.plot()\n", + "title('Rainflow filtered cycles')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEVCAYAAAAVeRmFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl8VNXd/z+TjRCykn0PJiRASEIUTFGWqAQlIEQtLaIS\nXMC2ivXXuuDTurRWxOXx1VZ9Sm0taHlQQauggg+oxAUIWEFRUZElEJYAhkR2QuD7++P0zD1z5947\nM3furDnv12teyczcuffcme+933O+q42ICBKJRCKRaBAR6AFIJBKJJHiRSkIikUgkukglIZFIJBJd\npJKQSCQSiS5SSUgkEolEF6kkJBKJRKKLVBIC//u//4vLL7/c7e1/+9vfIj09HTk5Odi1axciIiJw\n7tw5n43vwIEDGDVqFBITE3HXXXfh0UcfxYwZMwAALS0tPj++EU1NTcjPz/fb8YqKivDee+/57Xjh\nyO7du5GQkICeHgW/YMECjBw50u/H/fnPf44//OEPfj+up0QFegBWU1RUhIMHDyIyMhJ9+vRBXV0d\nnn32WSQmJrr87HXXXYfrrrvOrePs3r0bTz31FFpbW5GamoqWlhYvR+6a5557DhkZGThy5IjLbWtr\na3HDDTfg5ptv9vm4AoHNZoPNZgv0MEKagoICHD16NNDD6LH85S9/CfQQ3CLsVhI2mw1vvfUWjh49\nis8//xxffPGFT7T17t27kZqaitTUVMv3rceuXbswcOBAt7b19gYaqBWJRCIBuru7Az0EO2GnJEQy\nMzMxduxYfPXVV/bX5s6di5KSEiQmJqK8vBxvvPGG/T31sjMiIgJ//etfUVpaipSUFNx+++0AgHff\nfRdjx47Fvn37kJCQgJtuusnpprxv3z5MnDgRqamp6N+/P/7+978DAE6dOoXevXvj8OHDAIBHHnkE\n0dHROHbsGADg/vvvx//7f//P6VymT5+OF198EY8//jgSExPx3nvv4aGHHsINN9zgsB0R4Te/+Q0+\n+ugj3H777UhISMAdd9wBAPjmm29QV1eH1NRUDBgwAEuWLHHY/89//nPU19cjPj4eTU1N2LdvH665\n5hpkZGTgvPPOw9NPP23f/uTJk5g+fTr69u2L8vJyfPLJJ4a/xVdffWU/dlZWFubOnYu2tjb06dPH\n/l0AwMaNG5GRkYGzZ88CAP72t79h0KBB9t/rs88+c9o3Edl/17S0NPz0pz9FR0eH/fu+/vrrkZaW\nhpSUFFx44YU4ePCg4VhDmaKiIjz55JOorKxEQkICbr75Zhw4cADjxo1DUlIS6urq0NnZCcDZRFlb\nW4sHHngAI0aMQGJiIi6//HK0t7frHqu2thb3338/Lr74YiQkJGDixIn4/vvvcd111yEpKQkXXngh\ndu3aZd/+l7/8JQoKCpCUlIShQ4fi448/tr83fvx43HXXXfbnU6ZM0V0Fnzt3DnPmzLFfx0OHDsWe\nPXtw2223OewDACZOnIg//vGPAIDW1lZcffXVyMjIQFpaGmbNmqW5f6PrROs7uO+++1BTU4OkpCQ0\nNDTYZQ8AJk+ejOzsbCQnJ2P06NHYsmWL/b3p06fj/vvvB8DMtXl5eXj88ceRnZ2Nm2++Ge3t7Zgw\nYQJSUlKQmpqKUaNGBcY0SGFGUVERvfvuu0RE1NraShUVFfS73/3O/v6SJUto//79RET0yiuvUJ8+\nfaitrY2IiObPn08jRoywb2uz2ejKK6+kH374gXbv3k3p6en0zjvvEBFRU1MT5eXl2bfduXMn2Ww2\nOnv2LBERjRw5km677TY6ffo0ffbZZ5Senk7vv/8+ERGNGjWKXnvtNSIiqquro5KSElqxYoX9c2+8\n8YbmuU2fPp3uv/9++/OHHnqIrr/+es3j19bW0vPPP2/f9tixY5SXl0cLFiygs2fP0qZNmygtLY22\nbNlCRESNjY2UlJREa9euJSKiEydO0Pnnn08PP/wwnTlzhnbs2EHnnXce/d///R8REd177700atQo\n6ujooNbWViovL6f8/HzNcR85coSysrLoqaeeotOnT9PRo0dpw4YNRERUX19Pf/nLX+zb3nnnnXTH\nHXcQEdHixYspNzeX/v3vfxMR0bZt22jXrl1ExH7n9957j4iI/vjHP9Lw4cNp79691NXVRbfeeitd\ne+21REQ0b948uvLKK+nkyZN07tw52rhxIx05ckRznOFAUVERDR8+nA4ePEh79+6ljIwMqq6ups8+\n+4xOnTpFl156qf16UMvM6NGjqaSkhL777js6efIk1dbW0uzZs3WPNXr0aOrfvz/t2LGDfvjhBxo0\naBCVlJTQe++9R93d3TRt2jS68cYb7dsvXLiQDh8+TGfPnqX//u//pqysLDp16hQREbW1tVFGRga9\n//77tHDhQiouLqZjx45pHvfxxx+niooK2rp1KxERbd68mdrb22nDhg2Uk5ND586dIyKiQ4cOUVxc\nHB08eJC6u7upsrKSfvWrX9GJEyfo1KlTtGbNGiJyvO5dXSda30Fubi599dVXdPz4cbrmmmvs1yTf\n97Fjx6irq4vuvPNOGjJkiP098XpevXo1RUVF0ezZs6mrq4tOnjxJs2fPpp/97GfU3d1N3d3d9PHH\nH+v+Fr4k7JREYWEhxcfHU0JCAtlsNmpoaLBfBFoMGTKEli5dSkTaSoILEhHRT37yE5o7dy4RsR9V\nT0ns3r2bIiMjHYT8vvvuo+nTpxMR0f3330933HEHdXd3U1ZWFv35z3+m2bNn08mTJ6l37950+PBh\nzbFOnz6dfvvb39qfP/jgg4ZK4u9//7t925dffplGjhzpsL+ZM2fabxiNjY3U2Nhof6+5uZkKCgoc\ntp8zZ479ohcVBhHRc8895/B9iCxatIjOP/98zfdefvlluvjii4mI7N/HJ598QkREY8eOpT//+c+a\nnxOVxMCBA+3/ExHt27ePoqOjqbu7m/7xj3/QRRddRJs3b9bcT7hRVFREixYtsj+/5ppr6Be/+IX9\n+dNPP00NDQ1EpC0zjzzyiH3b//mf/6ErrrhC91i1tbU0Z84c+/Nf//rXVF9fb3/+5ptvOtwU1aSk\npDj8Lq+99hrl5eVRWlqaw3WnpqysjJYtW6b53sCBA2nVqlX2cx0/fjwREa1du5bS09M17wXide/q\nOlFTW1tL9913n/35li1bKCYmxq6oRDo6Oshms9knKeL1vHr1aoqJiaHTp0/bt3/ggQdo0qRJtG3b\nNu0vwk+EnbnJZrNh6dKlOHLkCJqamvD+++/j3//+t/39F198EdXV1UhJSUFKSgq+/PJLwyV1VlaW\n/f+4uDi7WciIffv2oW/fvujTp4/9tYKCAuzduxcAMHr0aDQ1NWHjxo2oqKjAmDFj8MEHH2D9+vUo\nKSlBSkqKmVN3QjSB7dq1C+vXr7efd0pKChYtWoQDBw7Yt83Ly3PYft++fQ7bP/roo3ZTzb59+xyi\nmQoKCnTH0draivPOO0/zvUmTJmHLli1oaWnBqlWr7KYIANizZw+Ki4tdnmdLSwuuuuoq+zgHDRqE\nqKgoHDx4EDfccAMuv/xyTJkyBbm5ubj33nuDyt7rCzIzM+3/9+7d2+F5bGysoQyL8t67d2/7tj/7\n2c+QkJCAhIQEzJ07V/NYsbGxyMjI0D3Wk08+iUGDBiE5ORkpKSn44Ycf8P3339vfnzBhAs6ePYsB\nAwbgoosu0h1ja2urrlxMmzYNCxcuBAAsXLjQbo5tbW1FYWEhIiKMb3murhMt1NfBmTNn8P333+Ps\n2bOYPXs2SkpKkJSUhH79+gGAwzmLpKenIyYmxv787rvvRklJCcaOHYvi4mI89thjhmP3FWGnJERG\njRqFWbNm4d577wXABGDmzJl49tlncfjwYXR0dGDw4MEe2fnccQjn5OTg8OHDDhfI7t277Tfh4cOH\n49tvv8Xrr7+O2tpaDBw4ELt378by5ctRW1tryVjU7xUUFGD06NHo6OiwP44ePYpnn31W8zMFBQXo\n16+fw/ZHjhzBW2+9BQDIzs7G7t27Hc5Pj4KCAuzYsUPzvdjYWEyePBkLFy7EwoULMW3aNPt7+fn5\n2LZtm+5+xf2/8847DmM9ceIEsrOzERUVhQceeABfffUV1q5di7feegsvvviiy32GE57Itx7z5s3D\n0aNHcfToUcyePVtzGyN5/Oijj/DEE09gyZIl6OzsREdHB5KSkhzG9pvf/AaDBg3C/v378fLLL+vu\ny0gurr/+eixduhSff/45vvnmGzQ0NNg/s3v3bruvSw93rhM16usgOjoaaWlpWLRoEZYtW4b33nsP\nP/zwA3bu3AnA8fcQvzP19xcfH48nn3wS27dvx7Jly/DUU0/h/fffNxy/LwhrJQEAd955JzZs2ID1\n69fj+PHjsNlsSEtLw7lz5zB//nx8+eWXbu+LmHnO5Xb5+fm46KKLcN999+H06dPYvHkz/vGPf+D6\n668HwFYkF1xwAZ599lmMHj0aAHDRRRdh3rx59ud6xzd6LpKZmYnt27fbn0+YMAFbt27FwoULcebM\nGZw5cwaffPIJvvnmG819XXjhhUhISMDjjz+OkydP4uzZs/jyyy/tq7Kf/OQnePTRR9HZ2Yk9e/Y4\nOLXVTJgwAfv378ef/vQnnD59GkePHsWGDRvs70+bNg3z58/HsmXLHBzxt9xyC5588kls3LgRRIRt\n27ZpKqOf/exn+K//+i/7e4cOHcKyZcsAMIfgF198gbNnzyIhIQHR0dGIjIzUHWtPx1OFIm5v9Nmj\nR48iKioKaWlp6Orqwu9//3uHUO4PP/wQCxYswD//+U8sWLAAs2bNwr59+zT3dcstt+D+++/Htm3b\nQETYvHmzPfghLy8PQ4cOxbRp0/DjH/8YvXr1AgDU1NQgOzsbs2fPxokTJ3Dq1CmsXbvWad/jx483\nvE60zn/hwoX4+uuvceLECTzwwAOYPHkybDYbjh07hl69eqFv3744fvw4/uu//svps0bf2dtvv20/\nx8TERERGRgZEdsNeSaSlpaGxsRGPPfYYBg0ahF//+tcYPnw4srKy8OWXX2LEiBH2bdWx92rN7s77\nnJdeegktLS3IycnB1Vdfjd///ve49NJL7e+PHj0a3d3duPDCC+3Pjx07hlGjRumei9bx9cbzy1/+\nEq+++ir69u2LO++8E/Hx8Vi5ciVefvll5ObmIjs7G/fddx+6uro09xUREYG33noLn332Gc477zyk\np6dj5syZ9gv7wQcfRGFhIfr164crrrgC06ZN051JxsfHY9WqVXjzzTeRnZ2N0tJSNDU12d+/+OKL\nERERgQsuuMBh6f7jH/8Yv/nNbzB16lQkJibi6quvdogcEc914sSJGDt2LBITEzF8+HC7Empra8Pk\nyZORlJSEQYMG2fNHehLuyoyrbT3dt/j+FVdcgSuuuAKlpaUoKipC79697SbKI0eOoLGxEc8++yyy\ns7MxYsQI3Hzzzbjppps0j/mrX/0KP/nJTzB27FgkJSVhxowZOHXqlP39xsZGfPHFFw6/c0REBN58\n801s27YNBQUFyM/Px+LFi53GnZCQYHidaJ3/DTfcgOnTpyM7OxtdXV3485//DIBNfgoLC5Gbm4vB\ngwdj+PDhHv0W3333Herq6pCQkICLLroIt912m+Ek0lfYyIq1qETiJWPGjMHUqVN1bwwSibt89NFH\nuP766x3Cb33FJZdcghtuuCGs5dZvK4nW1lZccsklKC8vx+DBg+3aVs0dd9yB/v37o6qqCps2bfLX\n8CQB5JNPPsHGjRvx05/+NNBDMYWU7eDhzJkz+OMf/2gvV+MPwn6e7a8wqv3799OmTZuIiOjo0aNU\nWlrqFHv89ttv07hx44iIhWDW1NT4a3iSADFt2jRKSkqiF154IdBDMY2U7eBgy5Yt1KdPH7r44ovp\n6NGjfjmmOh8pHPFb7aasrCx7eF18fDwGDhyIffv2OZSZWLZsGRobGwEwR1NnZycOHDjgEGYnCS9e\neOGFQA/Ba6RsBwcDBw50K0TdSlavXu3X4wWCgDiuW1pasGnTJtTU1Di8vnfvXgfHZV5eHvbs2ePv\n4UkkppGyLQk3/F4F9tixY/jxj3+MP/3pT4iPj3d6n1T2Pa3oCln9U+Jr1HLoDt7KtpRria8xI9d+\nXUmcOXMG11xzDa6//np7kotIbm4uWltb7c/37NmD3NxczX3Rf2KM/fl48MEHe9Rxe+o5B1K2Q+m7\n9MV+Q2msobZfs/hNSRARbr75ZgwaNAh33nmn5jYTJ060Z8M2NzcjOTlZ2mwlQY+UbUk44zdz05o1\na7Bw4UJUVlaiuroaADBnzhx7luytt96K+vp6LF++HCUlJejTpw/mz5/vr+FJJKaRsi0JZ/ymJEaM\nGOFWI5tnnnnGD6Mxhyd1lcLhuIE8diDP2VOCXbZ99V36Yr+hNNZQ3K8ZQjLj2mazeWVjk0iMCJR8\nSbmW+BKz8hX2tZskEkl4M3MmUFsL1NcD/2m6J7EQqSQkEklIs3Ur8MEHwIoVTGFIrEUqCYlEEtLE\nxbG/w4YBzz0X2LGEI9InITFk5kw2U4uLAxYtApKTAz0i3yN9EsGLljx2drLXn3uuZ8inWczKl1QS\nEkNqa9lSHgAmTwb+U4I/rJFKwj+YmYD0RHm0Cum4lvgEuZSX+AozvgQpj/5HKgmJIYsWsRnbypVy\nKS+xFn7DT0gAOjrci0yS8uh/pLlJIlEhzU3+obMTKC0FDh1iz6X5yLdIc1MPR8aKS0KN5GRg6FD2\nvzQfBS9SSYQJ3sSKSwUjCRTSfBT8+L2fhMQ3eOPQ4woGYApDLvkl/iI5WcpbsCNXEmGCNzMyMw5E\niSQQyFWv/5GOa4l0IKqQjuvgReZJmEc6riWmkQ5ESagg8yT8j1xJSADI0gYiciURvEg5NY8syyGR\nWIRUEpJwRJqbJBJJ0CEdzaGPVBISicRnBKrXg1RO1iGVhEQi8Rm+cDS7owBkIyLrkEpCYgly5taz\n0fv9fZFR7Y4CkFFQ1iGVhMQS5MytZ6P3+/OMaisjkbgCSEsD9u3TnpjIch/WIZWExBLkzK1n48/f\nnyuAsjJgzRrtiYkvlFNPRSoJiSX05JnbTTfdhMzMTFRUVGi+39TUhKSkJFRXV6O6uhp/+MMf/DxC\n3+PP358rgMRE9lxOTHyLzJOQSFR4Kl8fffQR4uPjMW3aNHzxxRdO7zc1NeGpp57CsmXLLD1uOOBN\nD/Wenljn6Xcn8yQkkgAxcuRIpKSkGG7T027+7uKNLyuUTEq+COzwlx9QlgoPY7yZpUmsw2azYe3a\ntaiqqkJubi6efPJJDBo0SHPbhx56yP5/bW0tamtr/TPIAGHkywgn+fVFOX5XfqCmpiY0NTV5fyAK\nQUJ02H5n9GgigD0mTw70aEIHM/K1c+dOGjx4sOZ7R44coePHjxMR0fLly6l///6WHTfU6ehgstnR\n4fxeOMnvuHHsPIYN0z5XMxh9d1qYlS9pbgpTZs4EuHm8utq/jj2ZM+FIQkIC4v4z7Rs3bhzOnDmD\nw4cPB3hU7uPL39PIZBROEXO+cOz7y9wmlUSYsnUrwO9DhYX+XarLnAlHDhw4YPdJbNiwAUSEvn37\nBnhU7hOo39OKG2uwTFhCyX+iRvokwhRxFjZ/fuCOHeozQHe49tpr8cEHH+D7779Hfn4+fve73+HM\nmTMAgFtvvRWvvvoq/vKXvyAqKgpxcXF4+eWXAzxiz9BKXvOHj8CK1qayNa/3yBDYICZUwwNDPTRR\nlgp3hP+e+/ax5DXAuStcsDqZ6+vZCmjYMN/mcATr+YvIfhJhSKi3agyFC0cLqSS0MbrhBqus+mvC\nEqznLyLzJMKQUDfbSN9EeGHkI3BHVl35B3zhP/CXLyDUr1Uj5EoiiAl1s42/lvpWI1cSnuOOrGrN\ntsXV5pEj+uasYCcUrlVpbpIEHaFw4WghlYRvKCgAWluBpCTg889Z1J2oOLKygLa20JtUhAohYW6S\nhdCMsWq5LcP+JK4IhIwUFLC/P/wA3H03+1800zQ399wikcGMX1cSshCaMerleHKyOcdvKDjRgpme\nsJIIhIzk5wN79jiuJEJ1tRmKhMRKQhZCM0bt/DLr+A1nJ5rEGqyWEXdWJoWF7K+4krBytRksK+hw\nI6iS6Xp6IbRFixxnVWYvZPV+XBGqoapWYVkhtBDCUxlxhTtJa570fzAjkzJxzkeYqvjkBbIQmvt4\nWsDLLOFUSM0KAiVfoSzX7hSw80SezcikL4roERHNmMHGM26c769FX2JWvoIqTyLUC6FZjYzxlgQL\nrkw57tRZuuce4OBBYOpU1+agHTvY3+hoYPdu90xIvuqO19PzfYJKSYR6ITRvCKQ9tSe3HpW4h3ij\nHDjQWUbdmdCI+ygtNZZ1Hgl15gywfr17N2hfTap6+iTKrz6JcC+E5g2BtKcaFVLr6f4KCYPfKAGW\ny2BGRvk+EhKAQ4eUG7+R/yIpiTm6A3mDttp/E2rIZLogIVizk3tiOG1PCIH1lM5OtoJQJ7t5Mong\n4a4dHcC777KqsmVlTCGoP8u3feIJFgnVU2/QViIzrkMcMV78nntcX3j+muEHq/LyJVJJaKOV02Bm\nEuFOVVmJ9UglEUaoSxV8/bXzzdlfM/yemOwklYT7eDOJED87cCCwa5fvJj3SbBoiyXQS99Cy/+pt\n42tbrSytITHCm6CHRYuAfv2AmBjgzTd9G0FkZYRST0vakyuJIETP/qvepqfN8P2FXElYj3omz02q\nX3yhtNkFtOV95kymRLq6gPPPB5Ys8VzmrTSbhqqfTpqbwgwzSsDKJXVPXp5LJWEtPILphx/Y88mT\nWb4Ev9ECQGUlW1UkJwMtLY5yJ96UAX0TrBFWTqpC1U8nlYTE6xlOuNT29xapJKxFlMuUFJYoN3Uq\nu9FyCguBoiJg82YW/QQocsdvyiKBlEmzCsfVxMvXEzPT8mUqTzvAhOiwfY63ZQnEUghZWb4pcRAK\nBEq+wlWuuVympBC1tLDXOjocZeziixXZA4ji44nGjGHbdXQQTZpElJHB3ktLY9uHWpkMV6VG+PcB\nsPO1GrPyJR3XYYQrJ6Irh5us7S8xwqzDlsvljh1KJdjkZODyy4H0dJYw17s3e726GujVCzh2jOVS\nlJSwVceCBcC337L9REayVe6KFcD06cFxju7Ar6+0NBb+qz5GV5fyv81m7bG9wmJl5ReCcdihUATM\n1UzGXwUFg51AyVcwyrWI1YUgxf1NmqTIXt++jqsKgCg9nV1bjY1EUVHK6w0N3o9Db0xWF7vk15e4\nahKPMWYMe6262jfXoFn5Cm6p1CEYL6ZQqKSal8fGl5SkLPslzkgloY3anClOjKZN83ySlJ+vLY/8\nZpmYqJieRGXB/09ONnczNZrQeWKyNTsx1DuGrydpUkkEGF+VKTbCUyHVm8FYtf9wwVP5uvHGGykj\nI0O3BD4R0axZs6ikpIQqKytp48aNlhzXalz93uqbmDgxEm/e7soWVwLqz/DjtLSwv7m5bJvoaKZQ\nuILwZKIzYwaz+ffty3wj/LjR0YrvQ+scjTA7MQzUil0qiQATiB/eUyH1VJGFwurIF3gqXx9++CFt\n3LhRV0m8/fbbNG7cOCIiam5uppqaGq+O6yvl7cnvPWOGcrOtrlZm/2ZkKyXF8TPqFYqoTMyamcTj\naT20ztfV9xyIiaE3mL1vBlVnulDGqJKqr/A06zojQ3EU+mL/PZWRI0eipaVF9/1ly5ahsbERAFBT\nU4POzk4cOHAAmZmZpo7nq4rBnvzeW7cqoart7cwRGx3tWC1ACx7m+dVX7HlKCrBpk2NwhHh+0dGs\nXDgAREUB3d1sfPPnmzs3gFWhjY1llWgB5izXOl9X33NPqQ4rlUQI46mQtrSwC+Pdd927ufSUi8DX\n7N27F/n5+fbneXl52LNnj6aScKctr6+UN/+9e/cGGhqM4/XFMcTEKDk1H3zAIo7eeMP5M+qkurw8\nlnGt3r9YUvzoUfZ/dDTw6afAww+bk8dFi1ikVHs72+ell7IIIiIWOeXqHLW+50BMDD3Bsra8Fq9o\n/EKIDjtg8GVzWlpoLY8DhRn5MmrLO2HCBPr444/tzy+77DL69NNPTR/X16ZNd8xO4hi42UXPFMTl\nT/QFqE1MWvvmJiwxv0K9T9EU5Oo1T01i4RbtZ/a+GZJ3W6kkPEO86PPyPBf6nubAtlpJ3HrrrfTS\nSy/Zn5eVlVFbW5slx/UFntraOzqIMjP1wzfV/oCYGKKaGtfyZHSTVjvNx41zDMzo189ZMTU0uL7p\nh7OsSyURRugJqhkBnjFDiTsXL2BP9tXTHNhWKwnRcb1u3TqvHde+xswMWvyM2vHMb9SVlSwfgisU\nMbPYU9nmiiwhQdmXUQa3DNaQSiKs0BNUMwIsfkY0A3iyr1CL4vAWT+VrypQplJ2dTdHR0ZSXl0fP\nP/88zZs3j+bNm2ff5rbbbqPi4mKqrKzUNDWZOW6g0buxi7IlJr5xhSAmyzU0sP3w0FZ3ZVttkho2\nTAmZFU1g1dXsuGrlpfWcKLxlXSqJMEJPUM0IsBX7CjfbrCsCJV+hJtdaJh/xBi0mwYk+CHVmcXa2\nsp1WgpzRKkNPNrVeV0+M1LXKpk1jK5CsLP8km/rbtCWVRBhhJPj9+nlW3MzVRWQmUzbckUpCwZ3s\nZNHkw2VNz/E8Y4bzjVj0G4wf7zwGUYm4yo9wZ7y8QCAP5BAVnT9NTZ6clxVIJdFD8GX9nHCzwZpF\nKgkFI/nQMvm4KjOhnr13dLiuWSQqEVfVUY3G29jIFEFysrJNr17K2D2NfvKWmBhlHPX1vj+eWfmS\neRIhhtUx8jJhTmKEkXzwPAHeX4HnV2zfzqq9JiY65lnMnMn6RXDa2oAbbwRyc1mS54EDwIQJzp+7\n4AKW21NdzXIaxL4L6emOvbGNxsvzhDjDhrEud3ffrWzrq7wgPuYdO4CCAnaOvXsrlV9jYqw9nqVY\nrKz8QogO2xKs9g+o92elnTRUwwkDJV/BKNdmaxm5CrwQVwauPudJzSij8Wo5s/2B2jHPH9HR7G9F\nhfRJWE4wXkzhgpXmp1A1ZfV0JeGJctdKVuOPQYMcJx88qikykv1NTGR+CX7zttkcX9dDrGbMZczf\nARj8vPMDOydPAAAgAElEQVTzXfsIxeuAKwbRj+MPfwSRVBJhiz9n43o5FWYJ1XDCnq4k3FXu6hly\nQ4NyoweIYmO19ymGwPKbdmyso4KJimLKJDqaaPNmx+OKORDuJMj5Aq3VjxjhpaU8U1LYuRj5cXyJ\nVBJhilWzcXfKGIjHSk11XzHpKbJQDZ3t6UrCXeWuVcmVz5QjIhxv7uI+tW6Q6vLd4s23d29z43MX\nM30x+Bi4klRHeInfTWwsu57MliS3CqkkQghPVgdWXRBa/XPVkSb84hXj290poRyqZiU9erqScOcG\nJq46eW+HGTOIhg5lCkIoVeWwz8ZGJQT22msVOeIylJRE9KMfOSoJ9UpCb3xmV93u9sUoK2PjS0tT\nVgQ8gU+t+NT1rILh+pBKIoTw5KZqdMF6clGIS/yMDG1B5i0keZMXvQ526vGHqllJj56uJNxBK5Nf\nS67FZj9jxjiaisQbsmg2En0UXNm4KlWTn+/cxMid1bPaxGpkBhJNa3l5ju+pr9OODmVixj8X6OtD\nKokQwqqbqifKRu1U5AIt1rvhY3HVwU49/lA1K+khlYRrtFrhinJRUsLeU5uOMjKUbfhkJDKSqLbW\n8QarThp1p1QNf/Csba1kNfWqQV0ixEiWefJdXJx7GdmNjSwPIyaGfQ+jR0sl4TdC6WLSwqqbqqel\nNbQUgtZY1Jmp6ggOM5nfoYRUEq7RmkhMm8ZuvGPGaHeTA1hGNZc3dRE+ozplrsrL8Igpfgwi7SQ8\nrSxxd6+hlhamHEUzmbs+G2lu8jOhdDGZwV0zkrvKhi/5U1LYTM6oNr9oM66p0RfycPNDiEgl4Rqt\nm7YoEzzKiTttuTlH6wYPOIa9qluj9u/P3o+JYb4AUV5bWtiEhZt0xJwDvnqOjGT7GzPG2YcQH8+q\n0npSq8lI9o1Cgq2IGPQGqSTCCF+W3lDvUx3GKNqJe/dmf3klT/GGEG5+CBGpJFxjtAIVZ+njxxvX\nD+MKhMueui/EpEnOvgB1EIZepeOODkd5FmVfHXbrSa6CKPuNjfpBHA0NbHzjx/s3eU8Ps/IV4btc\nbolZfFV6A1D6+c6cCdTWAq+9prSTTEkBqqqUY1dWsv+7u1mryZUrlXIFixYB/fqxcgJTp7LSDJLw\ngstIfb3z78tLcoglN44cAbKygPh49lp0NLBhA1BcrPTDFvc7dSqTR4B95tAhYMUK4JNP2GvDhrEy\nHNHR7HlcHPDxx4776u5W5Dstje2Djzc5GRg6VNlW7GWdnMzKYnCI3P9eRNl/803WsnXFCmDgQGWs\n8fHsPL7/Hjh3Tr9FakhgsbLyCyE6bLfRmnm5265Rb3+TJimOOSLn1UVUFHtNqya/uFoQj+nKwR2K\nzJjRM1cSWrKkt6J1ta24OtCaxYsOZe6jUJtmxA6K3BfAw2xF/0NBATMXxcQ4rjh4Z7q4OCbbERFE\nF1zg6F/jY+ZmIE+afWn5GwDmoFY764Pl+jArXyF5tw01JWFF1rTWBeupWUqM8+af7dvXsTGMXs0c\nrT7FWo5wbwl0vSf2vfQ8JaFVnVXPpKgld1rJcuLNvLqaObZFUxHAqp/y8uG8KqrepERtzomMdKyk\nyh9anem0Hjzk25VSNDrf6molYkvvER0deFMTUQgoiRtvvJEyMjJ0WzwSEc2aNYtKSkqosrKSNm7c\nqLtdqCkJK3wMWhesp34BcaaVk8PGIl5MRs3p1TOnpCQlochoFuYpgXaIs++05ykJdc6MXrE8tVNZ\nK0pO7QuIimKOZ60Z9vjxjr95XBy76fbty0JkxSgpMeFTnNiISoMHZugls/FHnz6OGdDid6AXQRUV\n5ewA5+erVn7imNTJgIEi6JXEhx9+SBs3bnSrD3Bzc7NuH2Ai8ycbqFmqt05erUYtRJ6H0mrFefOx\niY1htI7P48n79HGecRJZd3P3ZckFd/bX0dEzlYReiLTIjBmON3qxB4L6exZ/R71wWD6bF7d1tQLg\ns38jZREby3IlxLGKPSTUylD8DvQc7HoOcHEbvqKormaKgZvIgoWgVxJExs3ib731Vnr55Zftz8vK\nyqitrU1zW7MnG6hZqrd5EVaNWyvOW5wRuXN8dSE2LXODNzd3qxPzzHx3PVFJELn+7tWrSaOe6eK+\n+OQkMpLdrPmNvbraMeRavQLgUVL8Zq+V36MO0xZLyoir3tpa5XlEhLI/rVpNRr2v1SsorVIdwWBa\n0iLklcSECRNozZo19ueXXXYZ/fvf/9bc1uzJhmrYpnrc3q6IPL1xiscX6+qI5qlgzbo285v3VCXh\nCvFGWVmpb6pRh4XyyYl4Q8/LY9uJJlAuP5MmERUWsu2zsoxvvvy4ffqwCYy4P3HVy0NRc3Ic9+eu\nr6+jgznJe/Vix+CmKvF4sbHBJ/8iZuUrqDrTsfNQsNlsuts+9NBD9v9ra2tRW1vrcv+LFvmu85S7\niF21xO5bRqjHvXUrC7sDWNjd1197dj6ehtiKx586lb2WkgJs2qQcl4dEBhvu/OZNTU1oamry67iC\nBT151Ho9PR1ITQWOH2fho1OnKu+J3/PAgazrHABMnw688QbQ2spCUwEmdytXsi52Yvj1Z58BRUUs\njLS4GFi/nr13wQXA6NHa48rIYNsfP87eP3WK/c3JYX+PHweSktj2+/axEO///m/g4EE2fh6yKl4L\nO3awv0lJwBNPsP+Tk1nY6+7dwOnTrFPekCHAiRPKd3nqFJCZycZXWGjFrxMkWKurjHFlbnrppZfs\nz31hbgoGrHRiu7MfrVWH2Vm/nm/E3eO6814wECj5CsRx1bWMjGoluVtmQqyHVFjIQl5TUtjnCwuV\nUi98Fp6czEygYjQUNwmJj/R0pSc1wEJfRR8GN2PFx7OZvrhyEX0KeoUFiZhsij6UmBhl1ZCf7zge\nbkZTP9TF/4IFs/IVNEpCdFyvW7fOJ47rYMAKk5c7TkaOeGHz2PFx41ipA25Ldde55omC0zuu3g0o\nmOhJSoLLo7o8vFE0ndhDQR0hRKQ4laurnR3RWjd/ddZ0ZCQrOS5uI5qOxIfYv0Ltj+DKQN3DwqjS\nq17+Q329s0ISFRZ/uFv8LxAEvZKYMmUKZWdnU3R0NOXl5dHzzz9P8+bNo3nz5tm3ue2226i4uJgq\nKyvp008/1d1XKCsJq2z3jY1KMTWjfelFjoiRH+7OfDxRcHrHDYXS4mbka8WKFVRWVkYlJSU0d+5c\np/dXr15NiYmJNGTIEBoyZAg9/PDDlhzXW7g8qm+cWnLKX2tpce67oK6npE7I1Huo+y/wTnR6n3O1\n2hAfWVnOPSxaWoyvQTHcVdxXTo5zm1X1o1ev4FUQRCGgJKwklJWEVbgzG1ebh8SbM58FqTuIGZmC\nPFFw4rahVlrcU/nq7u6m4uJi2rlzJ3V1dVFVVRVt2bLFYZvVq1fTlVdeaelxrcTT30Ss06TuE6EO\nK9UyyyQmOtYzUh+fPxeVgvgQk+i0wmD5SqJvX8fwV9GkZvQ9tLQoEym+OuDvaYXTlpcHrzxzpJLo\nAWhVmNSajWtlR/MZVXo6S1JSt1vk+MIU5I1SCIT/wlP5Wrt2LV1++eX2548++ig9+uijDtusXr2a\nJkyYYOlx/YFWk57sbOc8BCPzJ1co3NYfHc2i5LTCTvPymK+BJ61pJeDx6CKuINQ3bZuNqKrK+XOi\nzIs5PjNmsGKWUVGspAhfDUyZwpQR7wPBx8gVVHw8UV2dY7mbYMasfAVVdJPEGTGa48gRYM0a9vqk\nScDkydpRO2L0E6BEbjQ0sAJoIsnJjhFO27ezv2Jkh7e4G/mkFVEjnsvMmcEZQbV3717k5+fbn+fl\n5WE9D835DzabDWvXrkVVVRVyc3Px5JNPYtCgQU77MhO150vU3//Bg8D+/Y7bJCWxaKWHH9aWRx75\n9MQTwCWXAO3tQHOzss/Fi1mhPB4RxXn3XWDsWOCjj1gxPR4JNWIEsHAhUFrK5Lmzk71/7hwr+EcE\nHDig7KeykkUmHT/O9gmwY51/PlBQAGzeDJw8yV5vb2cRVlFRTA67utj583MXr6tjx4I3qg+wMGrP\nYmXlF0J02KZQ19QBlGZAerNrsa6MuKTXatCSlua4j0AW7XNVEyhYVxKvvvoq3XLLLfbn//znP+n2\n22932ObIkSN0/PhxIiJavnw59e/f3+vjeoqZVZn6+xd9BaIz2cjkKbYvzcx09C+MGcNWuFp2ft5L\nQjQtVVYqCXDcjKVuIBQf79w/ZcYM9j8/TmqqcSa4euXCcz3E1yMjA99tzhPMyldI3m3DSUm4unDF\ni5Q7BF3dyI3KC4gNWrT24e5N2RdmIK1ji+fiL9OTp/K1bt06B3PTnDlzNJ3XIkVFRdTe3u7VcT3F\njClRy1fA+yQYmTw5YsVXbmrS8h2onxcUMDlX+xsiIhwnOXl5jqYnLWUzebJ+1JI4rsxMff/G5MlK\nfxWt90IBqSRCFFcXrtYN35vZtfpiUe/DXf9BIHwX/gqd9VS+zpw5Q+eddx7t3LmTTp8+rem4bmtr\no3PnzhER0fr166mwsNDr43qK1asy/nupM6xFRL8YX7kCyixeDEnlj1693KvimpSkBEKoFY3YKKux\n0TF3Q+8RG0s0YoSySuCv88oCWgok0N3mPEEqiRDFzIXrjSOYHy81lT1chdDqwZfefCnuD/xlejIj\nX8uXL6fS0lIqLi6mOXPmEBE5hHg/88wzVF5eTlVVVTR8+HBat26dJcf1BCujytzpK6Luehgfr5TE\nEMNkp01zXgFw02pFBVuNqJUAl2Gt2krJyfqlN7RyG8TH+PGO5qvISKJrrnFeEQ0fHhzd5jzBrHzZ\n/vPhkMJmsyEEh61JZydzisXFAS0tnpXrABydvRkZxvuYORPYsoU5p8+eVZzYqanAhReyz9xzD9vf\njh3MqZeYqL2vESMUJ/rkyc7OOzPlR1zBvytfl1UJlHyFklzX1ipO3Kws5gjm5Tb4byNuw5k0iZXp\n0NsXwPazZAlw993st77nHia3330HHD7MnNMcLnudnawEiM3GZHbXLiZ76enMKd7RwbrFJSSw8hlR\nUWw/Ypc7Pr6mJsVJDrB9qAM+8vJYqZFQwrR8Waam/EiIDtsQs6YUdVkFo32I2+p1z3K39IKrWX2w\nZ1UbESj5CiW51vKV6YW+iqYbrV7SYtZ3bCwzSXFHd0eH4yxeXAnEx7NyHrzsB9/elZzzB3eIc9MX\nNx2JeR0VFSxkXPxcZGRwJ83pYVa+dD918uRJp9cOHTpk6iBWE0oXkxo956urm64YRy5GNvHPRUQo\nS/ZBg7RzJ7hdtrpauZBE27C4P24m0BuPnumCj5NfaMGaVW2EVBKu4UEQRlF2XEZ4mW4t+/2MGcxh\nrJfFPHmyY3STOstaq3S9VrY2l3N10Abv+SDKcksLy7AeP569JprTbLbgaSLkKZYricGDB9PatWvt\nz1999VUqKSkxdRCrCaWLSY3eDNsTp634ea3M1NhY4883NCiJdaNHOyYD8Yufl2n2dMYkHkfsUxwq\n9NQe1+6gDmd1N1zaSLaNoo54y1O9rGstpZGQwHwV6izv2FglMoorJL1EVH6OOTksbJavRpKTQ3MF\nwbFcSWzevJmGDh1Kd911F1177bU0duxYam1tNT1AKwn2i8kIo7r7RvAKlGLUhvgZsdCZeqaj1XLS\nyByk1e9YLyvV6PxCTUEQ9dwe1+6gvqFb0eNcr0ZTTg5TEEbmIqNHTo5+S1F+nfD8CS7Xffs6NzES\nH5MmWfp1+h3LlQQR0b/+9S/q06cPZWVl0XfffWfqAL4g2C8mI8RZlSd2e3HWpjVD37yZCbvWUlg8\nDhd0rZu52lTEH1q5FbwooNp8Fux1mVzRU3tcu4O6O5s7XQ1d0dHByoeLyoBPZIxu8uKDrwz4BEqs\ntcT3oZZfgPk39Mxc6kdycujKNMdyJXHTTTfRqFGjaMeOHfTOO+9QWVkZPf3006YHaCXBfjG5i9mq\nqp4Iq9oXoVdQjUi7TalW32GxHHIoO6i16OiQSkKPjg42yfCmVhGfVOTnK/4MUb5ycpSVq1ZeQnS0\nY+4FLxEeEUE0eDCTW3GiJBbsEyc/eqXHtR59+oS2mYljuZJ46qmn7Mk/RESdnZ100003mTqI1QT7\nxeQu7s66PWn2o0bti+D7c+U81yr3nJTkPIZQNy9pIZWEe5jJgNfyQWiZrdR5CVwhqB3JWopEnash\nNj0aP54pOnXEEuCc+CdOmMIBn5ibgpVQu5jM4E6ykno7LSccjwxJSGDhgqNHO4YRiiGJekpr2jT9\n3hVGUS5aYxMvWrOJfL5GKglj+O8qZjG7WkWqTZnc/BMZyWRh/HjHRlh61V/1St7zB+9Kx+VKrZT4\nOMUaUmrTlWiCCuVoJjWWK4lvv/2WrrnmGhowYAAVFRVRUVER9evXz/QArSRULiZvEIWb14zRym5W\nm3vEm7B6ZqSVtTppkusZoSuTkt777rTAVM/6tMJ81fi6hpNUEs7oTVrcXUWqo97Efg18tu6Ok5r7\n43g5EL0ifTzgQvSjpKYy5dC3r+MKxOi4mZl++HL9hOVK4qKLLqJVq1ZRRUUFtbS00IMPPki//e1v\nTQ/QSoL5YrIKcbb0ox/p36TV5h69kMKEBOfcCK1IJ62mLK5MSnrvq18Xo6zE43PcTeTztR9EKgln\ntKoRV1e775/gssArGLvyCYg3cT6zj4tjPR70lJWW7PTvb+ycLi/Xd5AHcytSM1iuJKqrq4mIHHpS\n89cCTTBfTFYhmn7Emy0vk8xv5GpTkDhzqqhwNAnwpu/qqBS9PsdaY3E1VqPXxRsNd1CKuJvI52s/\niFQSzuj5q8rK2O8VG8vCR10l1und2OPjHfMhuJIQ8yDq67WVlZZfgsuGVlST+IiJ0fZF8BDZcMJy\nJTF8+HDq7u6mhoYGevrpp+m1116j0tJS0wO0kmC+mHyBUdis+nlHh1LKWa1g9LKjx4xhYYjqXApX\neGr2cXVzFyNRzCglq5BKwhm971zrJsxXo42Njsl306Y5V2ONjHROltNaZURFsX2I5cm5nIhVZJOT\nHQtXuiropx5LOK4gOJYriQ0bNtDRo0eptbWVpk+fTldffbVm5cpAEMwXk6/RawKj14hIdCzzsENu\n8xdnUKK/QnRmGzmaxQgUrZo8akIlh0IqCfdR59SIs3qj9/hDlMHoaMfyMlqP1FQlwk6c5OTnO+c9\nTJpknByn9eBNisIRs/KlWwX2k08+wZw5c9DS0oLu7m4QESIiIrB582bPqwhaTDBUy/RFlVN3UFdC\n5c/37dOvyqpVjVNk2DDWgvLdd9n/AwcqVTTFlqnqffftq1TRFKt7+vq78fX+ZRVY1/DfwGZj8nHm\nDHs9Olr5PyODtfwEWAXWY8cc95GSAlxwAZO7lBTWjlTV9RWRkcDw4cDHHzvuY/Jkx3aiWpVazdC7\nN3DihPf7CUYsrwLbv39/Wrp0KW3fvp127txpfwQDBsP2G4FIIjMy74h+BT7j1ws75H/F9qZ6Ji3R\nqac2Q/Flvvi6uoeAL74b6bgOPFoyMmyY8jrPyObJd2L3OL6C4FnRfKWrZRqKilJ6Q+TkKPIrhsLy\nek2erBj0HuES7qqFWfnS/dRFF11kejC+JhgupkAkkWmFu3Kl0dLiaDJKT3e0/4rVLltanE1QXPGo\n6zy1tDj6OERcZW3zjl5GWNF32WqkknCNniPbVRCDlr/JVWtRXgJGnS/U0eFYBdbdEhtGpqZwxqx8\n6ZqbVq5ciVdeeQVjxoxBTEyMfbly9dVXm1rqWEkwLMvdbYDjrWlE/PzmzcDevcw09PnnQGOjstzu\n1481Sjl8GOjTBzh+XNmHuhnMgAHAtm2s8ZCIegmv1SBG73z46199BXz/PTMfbNoEFBYan192NmtY\nw4+XkaHsPz1dMXuJx/J18yFpbnKNmd9gwAD2W0dHA2PGMDlrbwfOnWMNgBITmXmzuhr48ktmtoqL\nYw2HHnkEeO01Jt8xMUBsLPvb3s5u8QC7Lk6dYp9vbmbHARTzF8DMV2q559TXA2+/bf47CXbMyleU\n3hsvvPACvv32W3R3dyMiIsL+ejAoiWAgOdm5G5sWW7cqN92BA4Gvv/bsxiZ+PjWV/f3hB9a1Ky6O\nPR82jF0wO3ey5/wiSEgARo0CFi5kx+Q38q1blQuLM2wY219zM3uemAj86U/G4yktBYYOZTdw8fW8\nPOCyy5gSc6Ucu7qU/202x/2IduaZM5Xv293vXuI7jH4DvYlEW5vS8e1f/3L87QFg5Ej2md69gT17\nmAI4/3x289+6lSkIgCmVI0ecj8v3nZrKJjyinw4ALrmE+RvUfg+Ayfv//q/759+j0FtilJaWOtRu\nCiYMhh10qEshe2pDF5f1Yvifemmvl3zXr5/r5COexaqVDa02B/HjiJEqGRnOY3PXb8A/l5rKxic2\nK+LvJST4t4RHoOQrlOTaCL3fnv+2ERHOuQmiX0ud3KYOzxabEGmZmNSlNUQTrJbfIyEhfCOaRMzK\nl+6npk+fTl9++aXpAfmSULqYxHLFZmzooiIwqpMkJtWJN2xRMfBxiElzkZGKs05dClrLic1tyuqL\nfNIk/QQ9oxu8VpIVV1odHa5bsvoCqSS8Iy+P/V7qMjLXXut4887JYQly6qxtdS6FeGOvr2eTEm98\nD+pHsIdkW4XlSqKsrIyioqKof//+NHjwYBo8eDBVVFSYHqCVhNrF5El+gKv6ReJNW2+VIN6wxTyK\nH/2I3eg3b3ZMYOKOQXUiHpH+SkhMYNJKvlPf4LXKfYirFPVKhBOIAAGpJLxDryCluve0evbO5UGM\nVKqoYAly/HlDg361VjOPsWP9+c0EFsuVhBj2KkNg/Yer+kXiDF28eMTVili6g8/81SsKPlsTs0u1\nIo30VkJaCkWNq3If6jLmWqukQCTgSSXhHXqrSL7C4I+YGKUysVZfiYICx9BYbhYSJyjePMrLe84q\ngsgHSiKYCZeLSQtX9YvUM3S+jRhaqGUTVq8Ixo9XwmI5Zvtv68E/5+4qIVgaGEkl4R16ZkItn5ho\nSlJPRoz6unsa7qou/aFVOyzcMStfEZAEFYsWsciMzz9nf8XQVYD9P3Qo+7+6GmhoYNsUFrL3GhpY\nGCrAMlQ7Oli44qJFLGoEYKGBGzawSI9bbmHvA47RUnFxLFO7vp69tnix5+GmPAJmyRLHc5k5k+37\nzBkW9spfF4//3HOefnOB5Z133sGAAQPQv39/PPbYY5rb3HHHHejfvz+qqqqwadMmP4/QfyQnsxBV\ngEUmRUWx3/vbb9lrNhv7GxfHsqkB9ptfcgn73HffMXnhIaxJSexvfDywdi0wYQK71XMi3LiLiWGv\nFRXsGvFXlYSQx2Jl5ReCfdiuEsRcNQoS39MzAWnN7MWoELFGPp/J6Tn8uG9jzBjFfCTWZRLtx2L7\nSV6bnxdv4+NsbDQ+B6tXLFbjqXx1d3dTcXEx7dy5k7q6uqiqqoq2bNnisM3bb79N48aNIyKi5uZm\nqqmp8fq4wYy4ahBXFTEx7L2cHCXjmv/m6m509fVKAp5WLxQzj564guCYla+QlMpgv5jMNunRes8T\nE4wYFcIVguij0GquUl2t7WhUOwe5c1svO1YMiRVDFNXnkJWlb34KFjyVr7Vr19Lll19uf/7oo4/S\no48+6rDNrbfeSi+//LL9eVlZGbW1tXl1XH9gtsGTVui2aPLp3ds5019dALCwUCkuyZ3ZahnWC4HV\nMzn1hFBXPczKl24yncQ8arOJOrnIyKyifm/qVP1tOWKxNYCZoV5/nSXcPfccM0GJBf7Ky5l5KiaG\nJRG9+abyOW5mEpfwcXGswJo4vqQkJXlJXbyNJ0klJQFPPAH8/OfKe21tQE0NyxCPiWHn588Cib5g\n7969yM/Ptz/Py8vDelXGltY2e/bsQWZmpsN2Dz30kP3/2tpa1NbW+mTM7iImN4oJja5YtIglwv2n\nWANSU1lyHOfkSSXRbeZMlunf3a28HxXFkuHEbOm8POD0acdCfqLZyeg1gJmc7r675yRiNjU1oamp\nyfsdWays/EKwD9uo2Q5/Xc+son7PKDeCo24NqVf8jz9SU7VNP5MmOYcp9urlWPRMrMGjV7xNnBHy\n2v58ZcMT48TVS0yM58lyvmxh6ql8vfrqq3TLLbfYn//zn/+k22+/3WGbCRMm0Mcff2x/ftlll9Gn\nn37q1XH9gTchyFpFANWzfHXJe71HVBSTOXUOhSePpKTgXLn6C7PyJR3XPoA7bPnsWL06UL9v9Nnk\nZKCggM26Vqxgsy5Acf7W1ysOvoQEVh9HTUaGMqOz2diMju+Ljy0tjdVc4hPgyEg2izt9Gnj4Yefx\nPfIIc3ifPg38/e/M0bhtG/sbH69s397OSkH37s3GefQoe759u7JNVxd7jZ+bO/AZrvidBIrc3Fy0\ntrban7e2tiIvL89wmz179iA3N9dvYzQLD6RQB1C4gyj3zc1sP6NGsdf69GFyefgwUFTEAinS0vT3\n1d3N9iPWJPOEPn1YMEgor1gDhsXKypAVK1ZQWVkZlZSU0Ny5c53eX716NSUmJtKQIUNoyJAh9PDD\nD2vux8/D9hpvHbJaszn1CsAoM1nLj8AdiNxZrVeyQ28GqW44JM7s1b201Znf0dFsdWJUhtzMd2IV\nnsrXmTNn6LzzzqOdO3fS6dOnXTqu161bF/aOayJnuZ8xg8mB6FcQ/8/JYbKYman4ELTamJp55OQE\n9rsIBszKl9+k0p0IkNWrV9OVV17pcl/hdjG5QsvkpNehjj/XymbmuRcpKY71nSZPds7PcNXkXnRs\nq/sTp6Upmd3qzG+12Y2brLwpV2I1ZuRr+fLlVFpaSsXFxTRnzhwiIpo3bx7NmzfPvs1tt91GxcXF\nVFlZ6WRqMnvcUEI9WRk2THFI86TOGTMUJSFOaPj/3FzlSZ6EzdazHdacoFcS7kSArF69miZMmOBy\nX+F+MWnhyq9h5AfhZTrEhDuxYcuYMY69Jvg2RnZ/rnjUCkK8eMWyIS0tysrBnYJ9vvQ5uCJQ8hXu\ncprJ+u4AAB3ESURBVM1lrrpayaYePVoJhyXSXvVyf1ZKCtHQoZ6vIsK5kZAnBL2SWLJkiUvnXlNT\nE/Xt25cqKytp3Lhx9NVXX2nuK9wuJr0bothfmjvs3DWvGJljtGZrvEf1jBlK2Q5xtaA2YWllfkdG\nEo0YoW1i4ishdXisHu6G/vpCmYSzkjD7fVnxOaOqAFzW1WGwkZGs/AzvPZ2f775y4M5uCcOsfPkt\nBNbG4zMNOP/889Ha2oq4uDisWLECDQ0N2Lp1q+a2wRYq6A16YYZbtwL79yvb5eW570BctEi/KczW\nrcCBA46vrV3LHNELF7LwRBGt8Fue+b1iBVBZyZzea9eysFd+XB6+m5bGHNi834XePvn58+ZFAHPG\n86xxrfM2G6IpYlmoYAhg9vuy4nPDhgG9erGMaZ59zbP7Fy9WQqoBFmjRp4/y2/Nt1T0ojLj8ctdN\nryRuYLGy0mXdunUO5qY5c+ZoOq9FioqKqL293el1Pw7bL+jN+rVKd3uL2J5U/Zg82dnWO3686zLf\nnpQBT0piSVJ6Ib3iDNOdVYcvHNiBki9/HNfs9+Xt58Qij+Lvqw6HFh9ia1JPHdc2W88Od9XCrHz5\n7WpwJwKkra3N3uho/fr1VFhYqLmvcFMSejdbdyqt6iEu88UyGeoLkvsT+MWvVhL85uxJKRE1/EaR\nkuLom+D+Eq1ttZosefLdeUM4KwlvizV6+turizzywAhRafTurX2j96YkeG2t6a8obAl6JUHkOgLk\nmWeeofLycqqqqqLhw4fTunXrNPcTbkrCF6iT4vj/YuOhzEzHCCQi59mYlkPRKMQ2Nlap56TnVBcT\norgvhCNuK/7vT0d2OCsJq3HXdyQmYYpKIy1NCZUWH0lJyjbqiYu6oqv6kZgoVxFahISSsIpQvJis\nxJ0bphi9JM7M1MXS1C1K1RdcejrL4hbbR+pldKvr6ujdNPjF74kJzZ9lxKWScA2XGbHdrCc3Zq40\n1AEUXEHw4n/q4AibzdEMqfWQzmptpJIIU7QUgqsbJk9ayspiy25RQRAZ93EQH3Fxzq+pZ/5EygUv\nNkEyiiwxY/LwZ4c6qST04fIorga1SsG4i7ifzExmfhTNo542GBIqn0hUSCURRoiKQatCq6sbplaO\nhLgdv0nz6rB8NijaiTMynC/QlBTjm4F6e3dm/O6akfxZRlwqCX20EuLcMQfqvZ+bq5iQRo92nrQU\nFkoFYRVSSYQRWoXR1K1DjW6YRtnX4nPRMZiX5+wo7uhQji+uRPSYNk0xOYmmJKM8EO7IVJu+9Hp8\n+wOpJBzRyt5XZ+SbLY+vDqTIzFSOER3t2v8gPiTGSCURRog3eTEByV1cVaHVmw1qlf+YNo3ZhbUy\npI2aCYmVZsU6TxkZ2uPiqxRXPb79gVQSjqh7kWvJo6vVrdb7euHYqanavU+MHpde6vOvIeQxK1+2\n/3w4pLDZbAjBYbtNZ6dzIpy6J4Un1Szr61nS27BhLBlv6lT2vLqaJbnl57O+EhkZwEsvKQlLaWms\nBn9HB3s+eTI7Lh/HkSNKT4DJk1lPiRUrWALc0aPK6+++q+yDv7Z4sTKulBRg0yaW+MRf4/0q+Jj9\nWb0zUPIVrHKdnw/s2cN+k88/d0xQ43IZHc2S3xYs0P6tuEzHxbHf89QpVtHVk+Q4PUpLWfViWeHV\nGNPyZZma8iMhOmyv0Fquu2PPF53Y3FwkrjTE/Rq1iNRycoumsMZGdpzevR2LBHZ0sNo8/DMVFYpj\nUmyXylGHSgYilDFQ8hWscq3lF+N4GnWmFyThzkPL9DRypAx3dRez8iU704UIWt3s1KUSxFk+X21s\n3arM9nlXruRk9hg4UOkWVl3tWKqjTx8204uPZ/tbsoR9ho8jOpqV78jIYO81NirH4WU9cnLYZ/r1\nY13GAKC4GPi//2Md6gBg0iTHGSDvVwH0nA5iwU5iIvvrTidFVytevj3Auh+eO8f+t9nYbZ//1eLs\nWefX/v1vuYLwNbLpUIiQns4eSUnKa+oLVKsRj16r1K1b2Y2at4csLHRsH3nxxex4x46x1pJ3362M\nIzqafe6HH5T3+HEiI5V9NDcz81Hv3soY5s93NDG4UdJLEmCMGg+p33PVDCo9nbUyjYpSFERsLJO/\n6GhH+XFFRITSJEviQyxe0fiFEB22V2gt69UO6rw89j5PRtLahqNVF0qdCc23SUtTnNnqaBRuPuIm\nLf6+GE6rdnZqJdMFsjS4mkDJVzjItZ4DWyu/QtxOjHLjD3VFWPVDlgD3DLPyFZJSGQ4Xk6e4k0xm\nZDtWo9XwR7x5T5um3Phrapz9EKICEBVYRgbbr1HdJa2IKX9mVLtCKgnzaE1K1KHOXMa4P6qsTN8H\noRXlFBEhs6rNYFa+pLkpRHCn17CR7Vhk5kygoYGZfebPZ/ubOZP5ErKygNdfB3btYj6Gtjb2P99v\nczPbhj+fP9/RznzwICvzvGSJ43jFntzbtwOHDjn2tdYzi0lCC63+7Vu3KmXAk5OZaSkuDvj0U1Y2\nXOx3LnL2rGIO5dhswGefyRLg/kSGwIYI7oTAaoXOalFbqzi809NZXwh1OOu6dUrY40cfAQ8/zC7O\ngwdZeGtEBHvv00/Z35wcpmS0wiTVx8zKYspHDG91d+z+QIbAeo8or2fOsAlBRAQLiDh50tH/pUZ0\naItERQHbtkkFYRYZAhuGuCrPYRatGv/qzG6x8Bqv16RlN46NZdu7Gp+3CYL+JFDyFU5yrS4N06+f\ncwirWp569XL2WfBHdLQ0MXmLWfmS5qYgRowU4UtyM+YY0dTT2amYrn70I/Z+QgJbxqemKtFTYgQS\nn3ycPu2871OngBtvdG3qEs1lhYXOJglJeCGaDxcsAAoKlBDWyEgmi/X1LKKJv3bmDHD4sPb+Vq+W\nK4iAYbGy8gshOmy30KqT4+3sW88prFWKmW/DC68lJCgzOL1kO+6ADObVgScESr7CSa7VvUB4+Y3o\naCUqyZPEury8gJ5OWGBWvqRPIsgQbfeTJjEnsLd2enVZjnvucbYXq8tgTJjg6KNYvJitNNQzvcRE\n5th2d3xq34o4Fk/LjfgK6ZOwlpwcpVd7ejr7vZOTFbl0hc3G+qPLlYR3SJ9EmOCLvglGBf8KCtgK\nYfRox3BYrXHwlY1oW66v92wsRsUGAx36ygmUfIWaXLub26Iu4ifm+eitTnk3ushImQ9hFWblK7Sk\n8j+E2sXkCUZmG72S354moIkKQHQ49+un7E/LvMXHxm/snnSW0zp2R4d/mwm5iyfy1d7eTmPGjKH+\n/ftTXV0ddeicRGFhIVVUVNCQIUNo2LBhXh83GNBT8Gq5FPuMcJlRd7bTemRkSGe1lUgl0QMwmoWL\nN3hXCkRURHoKw51+xWZu6urPBqMvwxP5uvvuu+mxxx4jIqK5c+fSvffeq7ldUVERtbe3W3bcYEBP\nwavlVCtxU9zGqB1psKwuwwGpJHoARrNw8QYfG+vYPH7SJP196ikMfjGXlbFQxbQ0oilTWKhs377a\n/SXUuFr5BFMpDhFP5KusrIza2tqIiGj//v1UVlamuV1RURF9//33lh03GHBV8kXdO0L8rbXCsNUP\nMytViT5SSfQAjGbh/KJLSHC+2LT6Uruz/xkzHP0PouJxZ5anLisuKjL182CaMXoiX8nJyfb/z507\n5/BcpF+/fjRkyBC64IIL6LnnntM97oMPPmh/rF692qNxBwtaciTmRPCSLIWFSl/0igpH+brkEqkg\nvGX16tUO8mT2vimjm8IEnrHc0cGilTiVlSxaypOoIR6BtHmzY7Mgkepq4P33jaOT1NErGRksY5uj\nlXkdDKjlq66uDm28trnAI488gsbGRnQIX1Lfvn1xWCPYf//+/cjOzsahQ4dQV1eHp59+GiNHjjQ8\nbigjRrGJ2fxRUUq2dXo6K88CsDIxv/89UFPDKrtWVARm3OGMWfmS/STCBF4zp7OTJbd1dbHwWV6b\nyRPEPhWAUuO/uhrIznbcr7qnxeLFjt3KeFlxAOjVi322q4vt6/XXWZnxYCjFYcSqVat038vMzERb\nWxuysrKwf/9+ZGRkaG6XnZ0NAEhPT8dVV12FDRs2OCmJUMOoVIwoF7zWV0oKKwvOw2G5ggCAt95i\nsrtvX3DLQk9EZlyHGcnJ7Ob79tvs7z33OGZbuwPPlk1NZY/Ro1nOxvvvK/vlF7JRM6R332U3BoAp\nhYICJZO7sDA8Mq8nTpyIF154AQDwwgsvoKGhwWmbEydO4Oh/+rkeP34cK1euREUYTJWNekeIctHc\nzHJtduwAzjtPe1/d3UBTk3YPCkmAscwA5kdCdNgBwUweArcpu+Mz0HJequs09evH9sXDHYMp3FUL\nT+Srvb2dLrvsMqcQ2L1791L9f5JItm/fTlVVVVRVVUXl5eU0Z84cr48bDGj1L+G408dE/aisDG65\nCHXMypf0SYQ56mxrT2btWp81U402O1tpVxoXx1YViYnBk2GtRmZcu8eIEc5Z+a7ko7MTGDwY2LvX\n8fVLLwVeey045SFckBnXEk3UNXSMQk7V72vNBs2sTMTKnmLyVDBFNIkESr5CTa61Ql1dyceMGdqN\nhIJVFsIJs/IlHddhDndoA47OxPPPZz4Cccan9z5nwAClGm1KCnMy1tc7zxjVs8nzz2f+ichIpfmM\nbC4U+ixa5NwDxFXzqK1bnRsJVVdLWQhmpLmpByGaj2JiHE0FycnAq6+ykNfqanax8/f79WMKY80a\nJXyRRynxz3NFBDgWKezdG6iqYmGN/Cfr3Tu4o1ikuck8es2j+MThq6+A779nryUmAiNHAgsXBq8s\nhBNm5UtGN/UgxJ4O6v4PW7cqOREFBY7v5+Swmz5XEHFxwPDhjp8XEVcfJ0+y6BYum3FxwNdfy5tC\nuJKczB4NDUpEHQ+N/uADpiBiYoDx41n14LfekrIQ7Egl0YMQ+w+re2arm8RoKZTKSqYwtmwBiopY\nMhRvUiSyaJHSTIZTXq58VpZ8Dm/UobFvvqmYGQG2Ao2Lk8ohVJBKogcycyab6R07prymVhpaCuWD\nD1hUSmEh0NLCkqHefdc5tj05meVWiJSUKJ+VBDfqToaefCY/n2XqA4qvQexyCEh/VKghlUQY4uoi\n10qCuuceVjJj6lTnz4gKg7NjB/ublAQ88YTzMXJzmVkBYDeLBQu8PSuJvzBKknP1mT17FLNlYSGT\nmd692fP4eGZmCqYSLBLXSCURhri6yI2ypN25McycqZgPfviBldZQ09KizCDVMfGS4MZVhJIWPOot\nKkr57Pz57P+iIvb32DFpZgpFpJIIQ1xd5GrTkjufEdm6lRVtA1gorNb2ovP64EFZbiGU0JIPV3Az\nYnc3kJentMmtrQW+/Za9J81MoYkMgQ1D9MIQPf2MXvYsD6VNSQE2bdL2M3R2AgMHBmeVV1fIEFjP\n0crOF0Oh8/KAL74IHRkIR0Ii43rFihVUVlZGJSUlNHfuXM1tZs2aRSUlJVRZWUkbN27U3MbPww55\nPGnuI26rV7vJ3W5ywdh1zh0CJV+hLNfq37qsjCgqSukVEWoyEI6YlS+/SWV3dzcVFxfTzp07qaur\ni6qqqmjLli0O27z99ts0btw4IiJqbm6mmpoazX2F8sWkha87tHlSSkPdKEivIF+odJkzg1QS3iM2\nGcrJCfRoJETm5ctvPokNGzagpKQERUVFiI6OxpQpU7B06VKHbZYtW4bGxkYAQE1NDTo7O3HgwAF/\nDTFgmIkm8QRP/A3qEs/9+rEoJXXUk3rMvj4HSWjB82Ti4oC1awM7Fol3+K120969e5Gfn29/npeX\nh/Xr17vcZs+ePcjMzHTa30MPPWT/v7a2FrW1tZaP2V+YiSbxBLHGjlEnOa1tDx8Gdu5k7/HMWa0x\nT53q23PwJU1NTWhqagr0MEIe0Yf1/vvMT/HxxzI3JtTxm5Kw2WxubUcqx4re50QlEepoFUqzEr0i\nf+JNX29bHuqqjmJSj9nX5+BL1JOM3/3ud4EbTAjz5ptKSfiYGKC1NbDjkViD38xNubm5aBWkprW1\nFXl5eYbb7NmzB7m5uf4aYsDQSlbzFWZMTzExQGmpo8lJPWZ/noMkOBH7ofM6X5LQx29KYujQofju\nu+/Q0tKCrq4uvPLKK5g4caLDNhMnTsSLL74IAGhubkZycrKmqUliHk9i4Pm2w4axKq7S3yAxgmdW\nA0pSnST08dtPGRUVhWeeeQaXX345zp49i5tvvhkDBw7EX//6VwDArbfeivr6eixfvhwlJSXo06cP\n5vOUTYlliOYkEa2cCL5tfT3bJhT9DRLrEWUlI4Nl18fFsZLwH3wgy7CEGzKZTgLAMfFJ3R9i+nRg\n+XIWsdKvX3C3HrUCmUxnjCgr6ems0CPAikZGR4emX6onYFa+5KJQAsDRVxEXx24EfFXBK74CrFkQ\nANx4I/D664EYqcSfaK0wRVlJSmKVgNPSmIzwsvKS8EHWbpIAcPRVtLQ45jzwm0JkpLJ9CEx4JRag\nlf8iysqSJez/sjLWuVD6rcIPaW7yEr36RqFMfj4r+ZyUBHz+Ofs7cyYr1Mdtzu+/Hx7nqoU0Nylo\n1WTyZjtJ4DArX1JJeImRLd9TgkXhjBjh2P+an5OZwoGhiFQSCu7+5j1FNkIZ2eM6QFiZLR0spS3U\n/a85MhfCmSVLlqC8vByRkZHYuHGj7nbvvPMOBgwYgP79++Oxxx7z4wi9w93fXMpG+CKVhJeYqb2v\nhy/Lc3jSkjI9Xb9/tcSRiooKvP766xg1apTuNmfPnsXtt9+Od955B1u2bMFLL72Er7/+2o+jlEjM\nI5WEl1g5g7JS4ajxZJWya5d+/2qJIwMGDEBpaanhNu4Ut5RIghUZAhtE6CW6WYGZchzx8azUQmen\nNCN4gzvFLTnhVLhSElisKlwplUQPwZMCfIsWsVpN4mrCV8orFKirq0Mbr1wnMGfOHFx55ZUuP+9u\ncUsgvApXSgKLVYUrpZLoIXiySklOBoYOVUIae3opjlWrVnn1eXeKW0okwYr0SUjsiM7tv/zFd/6R\ncEUvvNCd4pYSSbAilYTEjujcvvtuGdLoDq+//jry8/PR3NyM8ePHY9y4cQCAffv2Yfz48QAci1sO\nGjQIP/3pTzFw4MBADlsicRuZTCexI7NmGTKZThKOyIxridfIrFmGVBKScEQqCYnEIqSSkIQjsixH\niONJRrREIpH4C6kkgoRgqdskkUgkIlJJBAm+rNskkUgkZpE+iSBBOo2DB+mTkIQj0nEtkViEVBKS\ncEQ6riUSiURiOVJJSCQSiUQXqSQkEolEootUEhKJRCLRRSoJiUQikegilYREIpFIdJFKQiKRSCS6\nSCUhkUgkEl2kkpBIJBKJLlJJSCQSiUQXqSQkEolEootUEhJJD0H2LJGYQSoJiaSHIHuWSMwglYRE\n0kOQPUskZpClwiUSFeFaKlz2LOnZBHWp8MOHD6Ourg6lpaUYO3YsOnUMokVFRaisrER1dTUuvPBC\nfwzNI5qamnrUcQN57ECesycsWbIE5eXliIyMxMaNG3W3C6Rs8+8yORlYvNg6BeGL38hXv7vcr3n8\noiTmzp2Luro6bN26FZdddhnmzp2ruZ3NZkNTUxM2bdqEDRs2+GNoHtETb5g98Zw9oaKiAq+//jpG\njRpluF0gZTuUbmShNNZQ3K8Z/KIkli1bhsbGRgBAY2Mj3njjDd1tpRlJEkoMGDAApaWlbm0rZVsS\nivhFSRw4cACZmZkAgMzMTBw4cEBzO5vNhjFjxmDo0KH429/+5o+hSSR+Qcq2JGQhixgzZgwNHjzY\n6bF06VJKTk522DYlJUVzH/v27SMiooMHD1JVVRV9+OGHmtsBkA/58OnDHdletmyZfZva2lr69NNP\nda8Pd2Q70OcsH+H/MEMULGLVqlW672VmZqKtrQ1ZWVnYv38/MjIyNLfLzs4GAKSnp+Oqq67Chg0b\nMHLkSKftSC7bJX7ESLbdxR3ZlnItCUb8Ym6aOHEiXnjhBQDACy+8gIaGBqdtTpw4gaNHjwIAjh8/\njpUrV6KiosIfw5NILEHvJi9lWxLK+EVJzJ49G6tWrUJpaSnef/99zJ49GwCwb98+jB8/HgDQ1taG\nkSNHYsiQIaipqcGECRMwduxYfwxPIjHN66+/jvz8fDQ3N2P8+PEYN24cACnbkjDClJHKj9x11100\nYMAAqqyspKuuuoo6Ozs1t1uxYgWVlZVRSUkJzZ0715JjL168mAYNGkQRERGG9ubCwkKqqKigIUOG\n0LBhw/x2XF+cc3t7O40ZM4b69+9PdXV11NHRobmdVefszjnMmjWLSkpKqLKykjZu3Gj6WJ4ee/Xq\n1ZSYmEhDhgyhIUOG0MMPP2zZsYl8J9u+kFtfyaTV8uYrefKFrNx4442UkZFBgwcP1t3G07G62qeZ\ncQa9kli5ciWdPXuWiIjuvfdeuvfee5226e7upuLiYtq5cyd1dXVRVVUVbdmyxetjf/311/Ttt9+6\ndEoWFRVRe3u718fz5Li+Oue7776bHnvsMSIimjt3rub3TWTNObtzDm+//TaNGzeOiIiam5uppqbG\nq2N6cuzVq1fTlVdeacnxtPCVbPtCbn0lk1bKm6/kyVey8uGHH9LGjRt1b+hmxupqn2bGGfS1m+rq\n6hARwYZZU1ODPXv2OG2zYcMGlJSUoKioCNHR0ZgyZQqWLl3q9bEDFQPvznF9dc7+zGlx5xzE8dTU\n1KCzs1M3hNrqYwO+dSb7SrZ9Ibe+kkkr5c1X8uQrWRk5ciRSUlJ03zczVlf7NDPOoFcSIv/4xz9Q\nX1/v9PrevXuRn59vf56Xl4e9e/f6bVyBiIH31Tn7M6fFnXPQ2kbrZuqLY9tsNqxduxZVVVWor6/H\nli1bvD6uHoGQbavl1sxYrZQ3X8lToGTFF7JvZpyWhcB6Q11dHdra2pxenzNnDq688koAwCOPPIKY\nmBhMnTrVaTubzebTY7tizZo1yM7OxqFDh1BXV4cBAwZohu5aeVxfnPMjjzzidAy945g5ZzXunoN6\n5uPNuXuyj/PPPx+tra2Ii4vDihUr0NDQgK1bt3p0HF/Jti/k9rnnnsOpU6dM79PTsVotb76SJ3/J\nihZWy76ZcQaFknAVh75gwQIsX74c7733nub7ubm5aG1ttT9vbW1FXl6eJcd2B3fzO6w8rq/O2eqc\nFiPcOQf1Nnv27EFubq5HxzF77ISEBPv/48aNwy9+8QscPnwYffv2dfs4vpLtp59+2u0x6KH+DePj\n4/HrX//a9P7MjNVKefOVPPlLVlwd1wrZNzPOoDc3vfPOO3jiiSewdOlSxMbGam4zdOhQfPfdd2hp\naUFXVxdeeeUVTJw40dJx6NnxfB0Dr3dcX52zP3Na3DmHiRMn4sUXXwQANDc3Izk52W6e8AZ3jn3g\nwAH7979hwwYQkVcXvRp/yLYv5NZKmbRS3nwlT4GSFV/IvqlxeuTmDgAlJSVUUFBgD9n6+c9/TkRE\ne/fupfr6evt2y5cvp9LSUiouLqY5c+ZYcux//etflJeXR7GxsZSZmUlXXHGF07G3b99OVVVVVFVV\nReXl5ZYc253jEvnmnNvb2+myyy5zCkn01TlrncO8efNo3rx59m1uu+02Ki4upsrKSsNoHauP/cwz\nz1B5eTlVVVXR8OHDad26dZYdm8h3su0LufWVTFotb76SJ1/IypQpUyg7O5uio6MpLy+Pnn/+ea/H\n6mqfZsYZkk2HJBKJROIfgt7cJJFIJJLAIZWERCKRSHSRSkIikUgkukglIZFIJBJdpJLoAbz55pt4\n7LHHAj0MicRypGz7HhndJJFIJBJd5EoixGlpacGAAQNw4403oqysDNdddx1WrlyJiy++GKWlpfjk\nk0+wYMECzJo1CwAwffp0/PKXv8TFF1+M4uJivPbaawE+A4lEGynbwYFUEmHA9u3bcdddd+Gbb77B\nt99+i1deeQVr1qzBk08+iTlz5jjVe2lra8OaNWvw1ltv2RtASSTBiJTtwBMUtZsk3tGvXz+Ul5cD\nAMrLyzFmzBgAwODBg9HS0uKwrc1ms5c+GDhwoCVltyUSXyFlO/DIlUQY0KtXL/v/ERERiImJsf/f\n3d3ttD1/H/BtvwSJxFukbAceqSQkEolEootUEmGA2i6rVXNefE3vf4kk2JCyHXhkCKxEIpFIdJEr\nCYlEIpHoIpWERCKRSHSRSkIikUgkukglIZFIJBJdpJKQSCQSiS5SSUgkEolEl/8PR+csKToxSkAA\nAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Min-max and rainflow cycle distributions\n", + "-------------------------------------------" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.misc as wm\n", + "ampmM_sea = mM.amplitudes()\n", + "ampRFC_sea = mM_rfc.amplitudes()\n", + "clf()\n", + "subplot(121) \n", + "wm.plot_histgrm(ampmM_sea,25)\n", + "ylim = gca().get_ylim()\n", + "title('min-max amplitude distribution')\n", + "subplot(122)\n", + "wm.plot_histgrm(ampRFC_sea,25)\n", + "gca().set_ylim(ylim)\n", + "title('Rainflow amplitude distribution')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4U2W+B/Dv6aIsTVe6QFNIoS0lBdpqhYKWBqFsaocR\nplCxlE3vdUaujN5RGUAKii0z4EUddRwvQhWFiijlsnSYEYK4QFUWpR2mHehGN5a20Ard3/sH4UzT\nJm3aJF2/n+fJ8yQ5J7/3zTm/k99Z3iSSEEKAiIj6PJuu7gAREXUPLAhERASABYGIiHRYEIiICAAL\nAhER6bAgEBERACsWhPz8fCgUCnBUq3GLFi3CmjVrAADHjx9HYGCgxWJrtVr4+PhYJNb27dsREREh\nP1YoFMjNzbVI7MTERDzxxBMAgNzcXNjY2KCxsdEisTszBz/66CNMnz7d5PlXr14Nd3d3DBkyBHl5\neRZ9311NpVLhyJEjAIBXX31VXr+WkJCQgLi4OIvEsub2N2vWLHz44YcAWm4/5mpvrrWH1QrC0KFD\nUVlZCUmSrNVEjydJkrx8IiIicP78eXla042qu6msrIRKpWp1HlML0sqVK/Hee+9ZpF/Nl1l7c1Cl\nUmHAgAFQKBTw8vJCXFwcbty4YdJrFyxYgL/+9a8mzZufn4/XXnsN58+fR1FRUa/baWq6vH//+9/L\n69cSBd+SnyetbX/GmFqQDh48aJHCZWiZtSfX2ounjLqYsQ8DSZJ63QdFcw0NDRaNZ+4ykyQJ+/fv\nR2VlJc6ePYuffvoJr7zyigV7eFt+fj7c3Nzg5uZm8dg9QXfKa0v3RQhhlffXWcusXQVBpVJh06ZN\nGDt2LBQKBZYuXYrS0lLMnDkTTk5OiIqKQkVFBYCWlU2j0eCll17CAw88AEdHR0yfPh3Xrl0z2pZG\no8GaNWtw//33Q6FQIDo6GlevXsWCBQvg5OSEcePGIS8vT57/mWeewdChQ+Hk5ISwsDB89dVX8rSH\nHnoI//3f/y0/nj9/PpYuXWqw3fT0dEyYMAEuLi4YMmQIli9fjrq6un8vMBsbvPPOO/D394ejoyNe\neuklXLhwARMmTICzszPmz58vz6/VaqFUKpGYmAh3d3f4+vri448/Nthu0z3quLg45Ofn45FHHoFC\nocCmTZsM7nGrVCp88cUXAIBbt25h0aJFcHV1RVBQEL777ju9eYuKijBnzhx4eHhg+PDhePPNN40u\n+2vXriE6OhpOTk4YP348Lly4oDfdxsYGFy9eBHB7TygoKAiOjo5QKpV47bXXcPPmTcycORNFRUVQ\nKBRwdHREcXExEhISMHfuXMTFxcHJyQnbt283uMe1detWeHt7Y8iQIdi8ebP8fNNDfFOWWfMcLCoq\nQnR0NNzc3ODv74///d//lWMlJCTg8uXLSEpKgqOjI6ZMmYLg4GBkZGTI8yQlJcHPzw+Ojo4ICgrC\n3r175WnNTwvY2Njg3XffRUBAAFxcXPD0008DAP7+979j2rRp8rJZsmRJi71eY/2srq5G//79UVZW\nBgDYsGED7O3tUVVVBQBYs2YNfvvb3xpcp9u2bYNarYajoyNGjBiBv/zlL3rLUalU4o9//CM8PDww\nZMgQ7N27FwcPHkRAQADc3NyQlJSkt6zmzp2L+fPnw9HREffeey9+/PFHg+02Xb+TJk0CADg7O8PR\n0REnTpxosf6br7OcnBxERkbC0dER06ZNw9WrV/XinzhxAhMnToSLiwtCQkJw7Ngxg/0AgNOnT+Oe\ne+6Bo6Mj5s+fj+rqar1l0HT72rhxI5RKJRwdHREYGIgjR44gLS0NiYmJSElJgUKhQGhoKIDbn1Wr\nV6/G/fffDwcHB1y8eBEajQZbt26V4wkhsHz5cjg7O2PUqFF6R7JNt2NTllnzXPvmm29w3333wdnZ\nGePGjcO3334rT2vv5y5EO6hUKjFhwgRx+fJlUVhYKDw8PERoaKg4c+aMqK6uFg8++KBYt26dEEKI\nnJwcIUmSaGhoEEIIERkZKfz8/ER2dra4deuW0Gg04sUXXzTaVmRkpPD39xcXL14U169fF2q1Wvj5\n+YkvvvhC1NfXi4ULF4rFixfL8+/YsUOUlZWJhoYGsXnzZuHl5SWqq6uFEEKUlJQIDw8PceTIEbFj\nxw4xYsQIUVVVZbDdH374QZw8eVI0NDSI3NxcMWrUKLFlyxZ5uiRJYvbs2aKyslJkZGSIu+66S0ye\nPFnk5OTI/UxOThZCCHH06FFhZ2cnnnvuOVFbWyuOHTsmBg4cKLKysoQQQixatEisXr1anlepVOot\n6y+++EJ+3Hx683leeOEFMWnSJFFeXi4KCgpEUFCQ8PHxEUII0dDQIO655x7x8ssvi7q6OnHx4kUx\nfPhw8de//tXgMpg3b56YN2+euHnzpjh37pzw9vYWEREResvgwoULQgghvLy8xFdffSWEEKKiokKc\nOnVKCCGEVqtt0d+1a9cKe3t7kZqaKoQQ4tatWyIhIUE8/vjjQoh/58xjjz0mbt68KX766Sfh7u4u\n/v73v8vLa82aNUaXSfNl1jwHIyIixG9+8xtRU1Mjzpw5I9zd3cWRI0fkvkmSJBITE0VjY6P4zW9+\nIwYMGCDnsxBC7N69WxQXFwshhEhJSREDBw4UJSUlQgghtm3bJh544AG9ZfTII4+I69evi/z8fOHu\n7i7S0tIMLpv29HPSpEliz549QgghoqKihJ+fnzh06JD8ur179xpcpwcOHBAXL14UQghx7NgxMWDA\nAHld3cnTl19+WdTX14v33ntPuLm5iccee0xUVVWJjIwM0b9/f5Gbm6u3Hvfs2SPq6+vFpk2bhK+v\nr6ivr2+xHpqu39zcXL332Xy6oWURHh4ubz9ffvmlUCgUIi4uTgghxKVLl4Sbm5v8/v/2t78JNzc3\nceXKlRbvv6amRgwdOlRs2bJF1NfXi08//VTY29vL+dQ0l86fPy98fHzkdZ2Xlyfne0JCgtz+HZGR\nkWLYsGEiMzNTNDQ0iLq6OqHRaMTWrVuFELdzw87OTm47JSVFODk5ifLy8hbLy5Rl1jTXrl27Jpyd\nncWOHTtEQ0OD2Llzp3BxcRFlZWVy39rzudvuU0bLly+XL4ZFRERgwoQJCA4Oxt13341f/vKXOH36\ntMHXSZKExYsXw8/PD/369UNMTAzOnDljtJ078/v6+sLR0REzZ85EQEAAHnzwQdja2uJXv/qVXlsL\nFiyAi4sLbGxs8Oyzz6KmpgZZWVkAAE9PT7zzzjtYuHAhVqxYgQ8++AADBw402O4999yDcePGwcbG\nBsOGDcOTTz7ZYq/j+eefh4ODA9RqNcaMGYOZM2dCpVLJ/Wy+DF5++WXY29tj0qRJeOihh5CSkmLS\nsm6P3bt3Y9WqVXB2doZSqcQzzzwjH2Z+9913uHr1KlavXg07Ozv4+vpi2bJl2LVrV4s4DQ0N+Oyz\nz7B+/Xr0798fQUFBiI+PN3rIetdddyEjIwM3btyAk5OTvNdkbP6JEyciOjoaANCvXz+D861duxb9\n+/fH6NGjsXjxYuzcuVOeZixuWwoKCvDNN99g48aNuOuuuxAcHIxly5bhgw8+kOe5++67sWHDBjg5\nOeHtt99GdXU1Vq9eLU+fO3cuvLy8AAAxMTHw9/fHyZMnjbb54osvwtHRET4+Ppg8ebKc7629h7b6\nGRkZiWPHjqGhoQE//fQT/uu//gvHjh1DdXU1vv/+e3mPsrlZs2bB19cXwO29zmnTpuH48ePydHt7\ne6xatQq2traYN28eysrKsGLFCgwcOBBqtRpqtRpnz56V5w8LC8Ojjz4KW1tbPPvss6iursaJEyda\ntNv0vRp6360ti/z8fHz//ffy9hMREYFHHnlEnr5jxw7MmjULM2bMAABMnToVYWFhOHjwYItYJ06c\nQH19PZ555hnY2tpizpw5uO+++wy2a2tri5qaGmRkZKCurg5Dhw7F8OHD5f4277MkSVi0aBFGjRoF\nGxsb2NnZtYjp4eEhtx0TE4ORI0fiwIEDBttva5k1deDAAYwcORILFiyAjY0N5s+fj8DAQOzbt0/u\nW3s+d9tdEDw9PeX7/fv313vcr18/+fDVkDsb053X3pn3P//zP6FQKKBQKPQOTZvH9vDwMNrWpk2b\noFar4ezsDBcXF1y/fl3v8PLhhx9GQ0MDAgMDMXHiRKN9zMrKwsMPP4zBgwfDyckJq1atanGI1Z5l\n4OLigv79+8uPhw0bhuLiYqPtd1RRUZHeIe/QoUPl+3l5eSgqKoKLi4t8S0xMxOXLl1vEuXLlCurr\n643Gam7Pnj04ePAgVCoVNBqNwQ+FppRKZZvvpXnbRUVFbb6mLUVFRXB1ddXbERg6dCgKCwvlx7a2\ntkhNTcWNGzewc+dONDY2Ij09XZ7+wQcfIDQ0VF6G586da/Xwu2m+DxgwoNVtw9R+RkZGQqvV4tSp\nUxgzZgymTp2KY8eO4eTJk/Dz84OLi4vBuIcOHUJ4eDjc3Nzg4uKCgwcP6vXdzc1NPnV1J1+b53nT\n/jddj5IkQalUWmQ9NXUnZ5tvP3c+JPPy8rB79269vP76669RUlJiMJa3t7fec8OGDTPYrp+fH7Zs\n2YKEhAR4enoiNja2zW22rQEUhtq2VF433z6bxzb2uWuI2ReVO7rH1tSf//xnVFZWorKyEi+++KLB\neVobXXD8+HH88Y9/xO7du1FRUYHy8nI4OTnp9W3VqlVQq9UoLi42uGd8x1NPPQW1Wo1//etfuH79\nOjZs2NCuURHN+1leXo6bN2/Kj/Py8jBkyJA231fz5wcOHKgXp6GhAVeuXJEfDx48GPn5+fLjpvd9\nfHzg6+uL8vJy+Xbjxg3s37+/Rbvu7u6ws7MzGqu5sLAw7N27F1euXMHs2bMRExNj9H01HdVh7H02\nby8/P1/emJovg+Ybfms5MmTIEJSVleltDPn5+UYL1Pjx4wHcHgUF3F5vTz75JN566y2UlZWhvLwc\no0ePblf+mzJCpq1+TpgwAf/85z/x+eefQ6PRYNSoUcjPz8fBgweh0WgMxqypqcGcOXPw/PPP4/Ll\nyygvL8esWbPM2nYLCgrk+42Njbh06ZJeXhti6P07ODgYXaeDBw82uP3ciTN06FDExcXp5XVlZSWe\nf/75Fu0MHjxYr/jfiWVMbGwsjh8/Lrf3wgsvGH0PrT1/h6G27yyvgQMH4ueff5anNV0GbcX19vZu\n8T7y8vJaFCBTdeooo/YmoKmHTpWVlbCzs8OgQYNQW1uL9evX6w0X/PLLL7F9+3Z8+OGH2L59O5Yv\nX260OldVVUGhUGDAgAE4f/483nnnHbP7uXbtWtTV1eH48eM4cOAAfvWrX8nzGntfnp6eehdzAwIC\nUF1djYMHD6Kurg6vvPIKampq5OkxMTFITExERUUFLl26pHfReNy4cVAoFPjDH/6AW7duoaGhAefO\nncP333/fol1bW1s8+uijSEhIwK1bt5CZmYnk5GSDfayrq8NHH32E69evw9bWFgqFAra2tnL/r127\nprceTD1l8Morr+DWrVvIyMjA9u3bMW/ePABASEgIDh48iPLycpSUlGDLli2tLrOmfHx8MHHiRKxc\nuRI1NTX48ccf8f777+Pxxx83OP8d6enpOHnyJH7++WdIkoRBgwahsbER27Ztw7lz51p9bfP3aUr+\nt9XPAQMG4N5778Vbb72FyMhIALdPw/35z3+WHzdXW1uL2tpaDBo0CDY2Njh06BAOHz5sct8N+eGH\nH/D555+jvr4eW7ZsQb9+/RAeHt7qa9zd3WFjY6O3jkJCQvDll1+ioKAA169fR2Jiojxt2LBhCAsL\nk7efr776Sm8n5vHHH8f//d//4fDhw2hoaEB1dTW0Wm2LD1/g9jKys7PDG2+8gbq6Onz22WctBl7c\nkZWVhSNHjqCmpgZ33303+vXrJ+e1l5cXcnNzW6zLttbt5cuX5bZ3796N8+fPY9asWfIy2LVrF+rr\n6/H9999jz549ciEwtMyamjlzJrKysrBz507U19cjJSUF58+fx8MPP2xy35oyuyA0rWDN9wBb2xs0\ntLfYnthNp8+YMQMzZsxAQEAAVCoV+vfvLx9G3bhxA/Hx8XjrrbcwePBgPPDAA1i6dCmWLFlisM1N\nmzbh448/hqOjI5588knMnz+/1ffUVj+9vLzkEUtxcXHyyBND8za9v3LlSrzyyitwcXHBa6+9Jp/X\nXrZsGZRKJRwcHPQOU9euXYthw4bB19cXM2bMwMKFC+V4tra22L9/P86cOYPhw4fD3d0dTz75pNEx\n9n/6059QVVUFLy8vLFmypMVImKb3d+zYAV9fXzg5OeEvf/kLPvroIwBAYGAgYmNjMXz4cLi6uqK4\nuNjoOmweOzIyEn5+fpg6dSp+97vfYerUqQBujyQKDg6GSqXCjBkzWqyb5suseV937tyJ3NxcDBky\nBI8++ijWr1+PBx98sMV8d9jY2GDhwoXYuHEj1Go1nnvuOUyYMAFeXl44d+4cHnjggVbfR1vvs/l0\nU/oJ3D5tVF9fj3HjxsmPq6qqjF4/UCgUeOONNxATEwNXV1fs3LkTv/jFL4y2b2x5NJ32i1/8Aikp\nKXB1dcVHH32Ezz77TP7QNPa+BwwYgFWrVuH++++Hi4sL0tPTMXXqVMybNw9jx47Ffffdh0ceeUSv\n7Y8//hgnT56Eq6sr1q9fj/j4eHmaUqlEamoqXn31VXh4eGDo0KHYvHmzwSN6e3t7fPbZZ9i+fTvc\n3NzwySefYM6cOQbfc01NDVauXAl3d3cMHjwYV69elQvVnZ05Nzc3hIWFmby8wsPDkZ2dDXd3d6xZ\nswZ79uyRT++9/PLLuHDhAlxcXJCQkIAFCxbIr226zFxdXXHy5Em9Zerm5ob9+/dj8+bNGDRoEDZt\n2oT9+/fD1dXVYN/a+tyVhCXO+ZBBWq0WcXFxeofXRD3dunXr8K9//Uv+Ji71Hq0eIVRXV2P8+PEI\nCQmBWq2Wz6eWlZUhKioKAQEBmDZtmvzdA+D2TxH4+/sjMDDQ7MNSImthbncc9yF7r1YLQr9+/XD0\n6FGcOXMGP/74I44ePYqvvvoKSUlJiIqKQlZWFqZMmSKPDMrMzERKSgoyMzORlpaGX//6173m91k6\nij/d0T0xtzvOlNO91DO1eQ1hwIABAG5fmGpoaICLiwv27dsnn8uLj4+Xv7GZmpqK2NhY2NvbQ6VS\nwc/PT2/YXl+j0WhaHaFDXYu53TFr167V+/4G9R5tFoTGxkaEhITA09MTkydPRlBQEEpLS+Uxyp6e\nnigtLQVwe0xs02F8SqXS4BV/ou6AuU2kr+VX6pqxsbHBmTNncP36dUyfPh1Hjx7Vm97mVes2RuUQ\nWYMp57ktndvMa+oM1ryGY/KwUycnJzz00EP44Ycf4OnpKX95ori4WP4Gsbe3t96ImkuXLhn9gsSd\ncdmWvK1du7ZHxGRc6/a1vSyZ2z1l2fe0uD2pr9aMa22tFoSrV6/Koyxu3bqFv/3tbwgNDUV0dLT8\nZaXk5GTMnj0bABAdHY1du3ahtrYWOTk5yM7OlsdKE3UnzG2illo9ZVRcXIz4+Hg0NjaisbERcXFx\nmDJlCkJDQxETE4OtW7dCpVLhk08+AQCo1WrExMRArVbDzs4Ob7/9Ng+jqVtibhMZILqAtZo9evRo\nj4jJuNaLKYT18qur2u1J69RacXtSX60Z19q53SXfVO4L/wZGXaer8ot5TdZm7RzjX2gSEREAFgQi\nItJhQSAiIgAsCEREpMOCQEREALqwIEhSy1uT/3QgIqJO1uZvGVmLoZFT/J4PEVHX4SkjIiICwIJA\nREQ6LAhERASABYGIiHRYEIiICAALAhER6bAgEBERABYEIiLSYUEgIiIALAhERKTDgkBERABYEIiI\nSIcFgYiIALAgEBGRDgsCEREBYEEgIiIdFgQiIgLAgkBERDosCEREBIAFgYiIdFotCAUFBZg8eTKC\ngoIwevRovPHGGwCAhIQEKJVKhIaGIjQ0FIcOHZJfk5iYCH9/fwQGBuLw4cPW7T1RBzG3iVqShBDC\n2MSSkhKUlJQgJCQEVVVVuPfee7F371588sknUCgUePbZZ/Xmz8zMxGOPPYbvvvsOhYWFmDp1KrKy\nsmBjo193JEmCoWYlCTDeGyLTGMuvpqyR26a0S2QOa+dYq0cIXl5eCAkJAQA4ODhg1KhRKCwsBACD\nnUpNTUVsbCzs7e2hUqng5+eH9PR0K3SbyDzMbaKWTL6GkJubi9OnTyM8PBwA8OabbyI4OBhLly5F\nRUUFAKCoqAhKpVJ+jVKplDcyou6KuU10m50pM1VVVWHu3Ll4/fXX4eDggKeeegovvfQSAGDNmjV4\n7rnnsHXrVoOvlSTJ4PMJCQnyfY1GA41G076eE+lotVpotdoOvdbSuc28JksyJ7c7RLShtrZWTJs2\nTfzP//yPwek5OTli9OjRQgghEhMTRWJiojxt+vTp4sSJEy1eY6zZtntD1DYT0loIYfncNrVdoo6y\ndo61espICIGlS5dCrVZjxYoV8vPFxcXy/c8//xxjxowBAERHR2PXrl2ora1FTk4OsrOzMW7cOCuU\nMSLzMLeJWmr1lNHXX3+NHTt2YOzYsQgNDQUAvPrqq9i5cyfOnDkDSZLg6+uLd999FwCgVqsRExMD\ntVoNOzs7vP3220ZPGRF1JeY2UUutDju1WqMcdkpW1FXDPznslKytS4edEhFR38GCQEREAFgQiIhI\nhwWBiIgAsCAQEZEOCwIREQFgQSAiIh0WBCIiAsCCQEREOiwIREQEgAWBiIh0WBCIiAgACwIREemw\nIBAREQAWBCIi0mFBICIiACwIRESkw4JAREQAWBCIiEiHBYGIiACwIBARkQ4LAhERAWBBICIiHRYE\nIiICwIJAREQ6LAhERASABYGIiHRYEIiICAALAhER6bRaEAoKCjB58mQEBQVh9OjReOONNwAAZWVl\niIqKQkBAAKZNm4aKigr5NYmJifD390dgYCAOHz5s3d4TdRBzm8gA0Yri4mJx+vRpIYQQlZWVIiAg\nQGRmZorf/e53YuPGjUIIIZKSksQLL7wghBAiIyNDBAcHi9raWpGTkyNGjBghGhoaWsQ11mzrvSEy\nTRtpLYSwTm6b0i6ROaydY60eIXh5eSEkJAQA4ODggFGjRqGwsBD79u1DfHw8ACA+Ph579+4FAKSm\npiI2Nhb29vZQqVTw8/NDenq6FcsZUccwt4lasjN1xtzcXJw+fRrjx49HaWkpPD09AQCenp4oLS0F\nABQVFSE8PFx+jVKpRGFhocF4CQkJ8n2NRgONRtOB7hMBWq0WWq22w6+3ZG4zr8mSzM3t9jKpIFRV\nVWHOnDl4/fXXoVAo9KZJkgRJkoy+1ti0phsOkTmaf/CuW7fO5NdaOreZ12RJ5uR2R7Q5yqiurg5z\n5sxBXFwcZs+eDeD2nlNJSQkAoLi4GB4eHgAAb29vFBQUyK+9dOkSvL29rdFvIrMxt4n0tVoQhBBY\nunQp1Go1VqxYIT8fHR2N5ORkAEBycrK8MUVHR2PXrl2ora1FTk4OsrOzMW7cOCt2n6hjmNtEBrR2\nxfn48eNCkiQRHBwsQkJCREhIiDh06JC4du2amDJlivD39xdRUVGivLxcfs2GDRvEiBEjxMiRI0Va\nWprBuMaa5SANsoQ20loIYZ3cNqVdInNYO8ckXSOdSpIkGGpWkoDO7w31Nsbyq7e2S32HtXOM31Qm\nIiIALAhERKTDgkBERABYEIiISIcFgYiIALAgEBGRDgsCEREBYEEgIiIdFgQiIgLAgkBERDosCERE\nBIAFgYiIdFgQiIgIAAsCERHpsCAQEREAFgQiItJhQSAiIgAsCEREpMOCQEREAFgQiIhIhwWBiIgA\nsCAQEZEOCwIREQFgQSAiIh0WBCIiAsCCQEREOiwIREQEgAWBiIh02iwIS5YsgaenJ8aMGSM/l5CQ\nAKVSidDQUISGhuLQoUPytMTERPj7+yMwMBCHDx+2Tq+JzMS8JmpJEkKI1mY4fvw4HBwcsHDhQvz0\n008AgHXr1kGhUODZZ5/VmzczMxOPPfYYvvvuOxQWFmLq1KnIysqCjY1+3ZEkCYaalSSg9d4Qtc1Y\nfjXVmXlNZCnWzrE2jxAiIiLg4uLS4nlDnUpNTUVsbCzs7e2hUqng5+eH9PR0y/SUyIKY10Qt2XX0\nhW+++SY++OADhIWFYfPmzXB2dkZRURHCw8PleZRKJQoLCw2+PiEhQb6v0Wig0Wg62hXq47RaLbRa\nrUViMa+pO7FkbptEmCAnJ0eMHj1aflxaWioaGxtFY2OjWLVqlViyZIkQQoinn35a7NixQ55v6dKl\nYs+ePS3iGWvWtN4Qtc7EtO60vCayFGvnWIdGGXl4eECSJEiShGXLlsmHz97e3igoKJDnu3TpEry9\nvc2vWkSdgHlNfV2HCkJxcbF8//PPP5dHakRHR2PXrl2ora1FTk4OsrOzMW7cOMv0lMjKmNfU17V5\nDSE2NhbHjh3D1atX4ePjg3Xr1kGr1eLMmTOQJAm+vr549913AQBqtRoxMTFQq9Wws7PD22+/DUmS\nrP4miNqLeU3UUpvDTq3SKIedkhV11fBPDjsla+vyYadERNQ3sCAQERGAblgQJKnlzdW1q3tFRNT7\ndfiLadZi6PQYr98REVlftztCICKirsGCQEREAFgQiIhIhwWBiIgAsCAQEZEOCwIREQFgQSAiIh0W\nBCIiAsCCQEREOiwIREQEgAWBiIh0WBCIiAgACwIREemwIBAREQAWBCIi0mFBICIiACwIRESkw4JA\nREQAWBCIiEiHBYGIiACwIBARkQ4LAhERAWBBICIiHRYEIiICYEJBWLJkCTw9PTFmzBj5ubKyMkRF\nRSEgIADTpk1DRUWFPC0xMRH+/v4IDAzE4cOHrdNrIjMxr4laarMgLF68GGlpaXrPJSUlISoqCllZ\nWZgyZQqSkpIAAJmZmUhJSUFmZibS0tLw61//Go2NjdbpOZEZmNdELbVZECIiIuDi4qL33L59+xAf\nHw8AiI+Px969ewEAqampiI2Nhb29PVQqFfz8/JCenm6FbhOZh3lN1JJdR15UWloKT09PAICnpydK\nS0sBAEXKToxdAAALYklEQVRFRQgPD5fnUyqVKCwsNBgjISFBvq/RaKDRaDrSFSJotVpotVqz4zCv\nqbuxVG6bqkMFoSlJkiBJUqvTDWm64RCZo/kH77p168yOybym7sAaud2aDo0y8vT0RElJCQCguLgY\nHh4eAABvb28UFBTI8126dAne3t4W6CYgSS1vrq4WCU0EoGvymqg76VBBiI6ORnJyMgAgOTkZs2fP\nlp/ftWsXamtrkZOTg+zsbIwbN84iHRWi5a283CKhiQB0TV4TdSuiDfPnzxeDBw8W9vb2QqlUivff\nf19cu3ZNTJkyRfj7+4uoqChRXl4uz79hwwYxYsQIMXLkSJGWlmYwprFmjfWmvc9T32ZCWndqXhNZ\nirVzTNI10qkkSYKhZiXp9p6/uc9T32Ysv3pru9R3WDvH+E1lIiICwIJAREQ6LAhERASABYGIiHRY\nEIiICAALAhER6bAgEBERABYEIiLSYUEgIiIALAhERKTDgkBERABYEIiISIcFgYiIALAgEBGRDgsC\nEREBYEEgIiIdFgTc/m9m/mczEfV1dl3dge6gvNz4P7IREfUVPEIgIiIAvaAg8FQPEZFl9PhTRjzV\nQ0RkGT3+CIGIiCyDBYGIiACwIBARkQ4LAhERAWBBICIiHRYEIiICwIJAREQ6Zn0PQaVSwdHREba2\ntrC3t0d6ejrKysowb9485OXlQaVS4ZNPPoGzs7Ol+msWV9fbP1NB1JqeltdElmLWEYIkSdBqtTh9\n+jTS09MBAElJSYiKikJWVhamTJmCpKQki3TUEu78ZlHzG1FTPS2viSzF7FNGotkn6r59+xAfHw8A\niI+Px969e81tgqjTMa+pLzL7CGHq1KkICwvDe++9BwAoLS2Fp6cnAMDT0xOlpaXm97IL8beS+p6+\nkNdEhph1DeHrr7/G4MGDceXKFURFRSEwMFBvuiRJkIz8sFBCQoJ8X6PRQKPRmNMVq+FvJXV/Wq0W\nWq3WYvH6Ql5Tz2Dp3G6LJJofG3fQunXr4ODggPfeew9arRZeXl4oLi7G5MmTcf78ef1GJanFIfnt\n541/APeE56l7MJZfHWGJvCayFGvnWIdPGd28eROVlZUAgJ9//hmHDx/GmDFjEB0djeTkZABAcnIy\nZs+ebZmeEnUC5jX1ZR0+QsjJycEvf/lLAEB9fT0WLFiAlStXoqysDDExMcjPzzc6PK83HCEY4uIC\nlJUZnkadx5y9KGvkNZGlWDvHLHbKqF2NdkJBMIanknq/rvpgZkEga7N2jvX4P8gxhheDiYjahz9d\nQUREAFgQiIhIhwWBiIgAsCAQ9XqurvzGPZmm115UJqLb7vyoY3McZEHN8QiBqBcxdDRg7ut5JNF3\n8AiBqBcxdDTQnqJg7PWGYvCLmL0PjxCIqE2G/kfEGn82xesdXYsFoQfhxkLdXXtOORma19ifWPGf\nDjsHTxn1ILw4SN2Nodwz9ZSTsXmp6/AIoRO0d8/e2PxElmZujpn6d7T869qegUcInaC1PXtT95zu\nzE9kSdxDp6Z4hNDFrLnnxGsOPQ+HfVJX4hFCL8ZrDj2PucNGiczBgmBh3HjJGphXpi0DfjfCPCwI\nFsY9crIGU/+QqTfnmqH32pfef2fgNQQiIgLAI4Reg3tGRGQuFoRegqeqiMhcPGVERL0Kh1p3HI8Q\niKhX4dFyx/EIgWT8IhtR38YjhD6KP5lBfQ2/x9A2FoQ+qr0f/PyDFOrp+D2GtrEgkEl45EDU+/Ea\nAhERAWBBICLqkN44CMMqBSEtLQ2BgYHw9/fHxo0brdGEQVqttkfE7E1xzfvjH22P2oC6Kq8BbY+K\na50ctEZMw301Nadb+7tPa22H1mbxgtDQ0ICnn34aaWlpyMzMxM6dO/GPf/zD0s0YxILQ+XHb8/+3\nzTegtWu1Peb/crsyr1kQgM7sq7Gcbs+/y02erO2RRw0WLwjp6enw8/ODSqWCvb095s+fj9TUVEs3\nQ91ce/8C1BJ/MWrNjY55Te35I6u1a9suKO25dVZBsfgoo8LCQvj4+MiPlUolTp48aelmqJtr76ik\n7v4Xo8xrMpcpw16NPd9pI/qEhX366adi2bJl8uMPP/xQPP3003rzAOCNN6vemNe89dabNVn8CMHb\n2xsFBQXy44KCAiiVSr15hCX/OJioEzCvqS+w+DWEsLAwZGdnIzc3F7W1tUhJSUF0dLSlmyHqVMxr\n6gssfoRgZ2eHP/3pT5g+fToaGhqwdOlSjBo1ytLNEHUq5jX1CdY8H3Xo0CExcuRI4efnJ5KSkgzO\ns3z5cuHn5yfGjh0rTp06ZXbMHTt2iLFjx4oxY8aIiRMnirNnz1qsr0IIkZ6eLmxtbcWePXssFvfo\n0aMiJCREBAUFicjISLNjXrlyRUyfPl0EBweLoKAgsW3btjZjLl68WHh4eIjRo0cbnae968qUuB1d\nX6b0V4j2ry9TWCOvTYnbnXLbGnltSlzm9r9ZI7etVhDq6+vFiBEjRE5OjqitrRXBwcEiMzNTb54D\nBw6ImTNnCiGEOHHihBg/frzZMb/55htRUVEhhLidXG3FNDXunfkmT54sHnroIfHpp59aJG55eblQ\nq9WioKBACHE74c2NuXbtWvHiiy/K8VxdXUVdXV2rcb/88ktx6tQpo0nY3nVlatyOrC9T4grR/vVl\nCmvktalxu0tuWyOvTY3L3L7NGrkthBBW++kKU8Zt79u3D/Hx8QCA8ePHo6KiAqWlpWbFnDBhApyc\nnOSYly5dskhfAeDNN9/E3Llz4e7u3mZMU+N+/PHHmDNnjnyBctCgQWbHHDx4MG7cuAEAuHHjBtzc\n3GBn1/rZwYiICLi4uBid3t51ZWrcjqwvU+IC7V9fprBGXpsat7vktjXy2tS4zO3brJHbgBV/y8jQ\nuO3CwsI252ltoZkSs6mtW7di1qxZFutramoqnnrqKQCAZMLAYFPiZmdno6ysDJMnT0ZYWBg+/PBD\ns2M+8cQTyMjIwJAhQxAcHIzXX3+9zb525L2YmuCmMnV9maIj68vUuJbOa1PjNtWVuW2NvDY1LnPb\nerkNWPHnr03tpGg2VK+117XnjR89ehTvv/8+vv766zbnNSXuihUrkJSUBEmSIG6farNI3Lq6Opw6\ndQpffPEFbt68iQkTJiA8PBz+/v4djvnqq68iJCQEWq0WFy5cQFRUFM6ePQuFQtHma1vTnnXVXu1Z\nX6boyPoyhTXyuj1xga7PbWvktalxmdvWy23AigXBlHHbzee5dOkSvL29zYoJAD/++COeeOIJpKWl\ntXnoZWrcH374AfPnzwcAXL16FYcOHYK9vX2rQw9Nievj44NBgwahf//+6N+/PyZNmoSzZ88a3XBM\nifnNN99g1apVAIARI0bA19cX//znPxEWFtbaYmhVe9dVe7R3fZmiI+vLFNbIa1PjAt0jt62R16bG\nZW5bL7cBWG+UUV1dnRg+fLjIyckRNTU1bV58+/bbb9u86GJKzLy8PDFixAjx7bffWrSvTS1atMik\nK/umxP3HP/4hpkyZIurr68XPP/8sRo8eLTIyMsyK+dvf/lYkJCQIIYQoKSkR3t7e4tq1a232Nycn\nx6QLb6asK1PjdmR9mRK3KVPXlymskdemxu0uuW2NvDY1LnNbnyVzWwgrfFP5DmPjtt99910AwH/8\nx39g1qxZOHjwIPz8/DBw4EBs27bN7Jjr169HeXm5fH7N3t4e6enpZse11jIIDAzEjBkzMHbsWNjY\n2OCJJ56AWq02K+bvf/97LF68GMHBwWhsbMQf/vAHuLbx61ixsbE4duwYrl69Ch8fH6xbtw51dXVy\nzPauK1PjdmR9mRLXWqyR16bG7S65bY28NjUuc9t6uQ0AkhD8vj0REfEf04iISIcFgYiIALAgEBGR\nDgsCEREBYEEgIiIdFgQiIgIA/D/Pv8fbekijgAAAAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#!#! Section 4.3.3 Simulation of rainflow cycles\n", + "#!#! Simulation of cycles in a Markov model\n", + "n=41; param_m=[-1, 1, n]; param_D=[1, n, n];\n", + "u_markov=levels(param_m);\n", + "G_markov=mktestmat(param_m,[-0.2, 0.2],0.15,1);\n", + "T_markov=5000;\n", + "#xxD_markov=mctpsim({G_markov [,]},T_markov);\n", + "#xx_markov=[(1:T_markov)' u_markov(xxD_markov)'];\n", + "#clf\n", + "#plot(xx_markov(1:50,1),xx_markov(1:50,2))\n", + "#title('Markov chain of turning points')\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 5'),pause(pstate)\n", + "#\n", + "#\n", + "##!#! Rainflow cycles in a transformed Gaussian model\n", + "##!#! Hermite transformed wave data and rainflow filtered turning points, h = 0.2.\n", + "#me = mean(xx_sea(:,2));\n", + "#sa = std(xx_sea(:,2));\n", + "#Hm0_sea = 4*sa;\n", + "#Tp_sea = 1/max(lc_sea(:,2));\n", + "#spec = jonswap([],[Hm0_sea Tp_sea]);\n", + "#\n", + "#[sk, ku] = spec2skew(spec);\n", + "#spec.tr = hermitetr([],[sa sk ku me]);\n", + "#param_h = [-1.5 2 51];\n", + "#spec_norm = spec;\n", + "#spec_norm.S = spec_norm.S/sa^2;\n", + "#xx_herm = spec2sdat(spec_norm,[2^15 1],0.1);\n", + "##! ????? PJ, JR 11-Apr-2001\n", + "##! NOTE, in the simulation program spec2sdat\n", + "##!the spectrum must be normalized to variance 1 \n", + "##! ?????\n", + "#h = 0.2;\n", + "#[dtp,u_herm,xx_herm_1]=dat2dtp(param_h,xx_herm,h);\n", + "#clf\n", + "#plot(xx_herm(:,1),xx_herm(:,2),'k','LineWidth',2); hold on;\n", + "#plot(xx_herm_1(:,1),xx_herm_1(:,2),'k--','Linewidth',2);\n", + "#axis([0 50 -1 1]), hold off;\n", + "#title('Rainflow filtered wave data')\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 6'),pause(pstate)\n", + "#\n", + "##!#! Rainflow cycles and rainflow filtered rainflow cycles in the transformed Gaussian process.\n", + "#tp_herm=dat2tp(xx_herm);\n", + "#RFC_herm=tp2rfc(tp_herm);\n", + "#mM_herm=tp2mm(tp_herm);\n", + "#h=0.2;\n", + "#[dtp,u,tp_herm_1]=dat2dtp(param_h,xx_herm,h);\n", + "#RFC_herm_1 = tp2rfc(tp_herm_1);\n", + "#clf\n", + "#subplot(121), ccplot(RFC_herm)\n", + "#title('h=0')\n", + "#subplot(122), ccplot(RFC_herm_1)\n", + "#title('h=0.2')\n", + "#if (printing==1), print -deps ../bilder/fatigue_8.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 7'),pause(pstate)\n", + "#\n", + "##!#! Section 4.3.4 Calculating the rainflow matrix\n", + "#\n", + "#\n", + "#Grfc_markov=mctp2rfm({G_markov []});\n", + "#clf\n", + "#subplot(121), cmatplot(u_markov,u_markov,G_markov), axis('square')\n", + "#subplot(122), cmatplot(u_markov,u_markov,Grfc_markov), axis('square')\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 8'),pause(pstate)\n", + "#\n", + "##!#! \n", + "#clf\n", + "#cmatplot(u_markov,u_markov,{G_markov Grfc_markov},3) \n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 9'),pause(pstate)\t\n", + "#\n", + "##!#! Min-max-matrix and theoretical rainflow matrix for test Markov sequence.\n", + "#cmatplot(u_markov,u_markov,{G_markov Grfc_markov},4)\n", + "#subplot(121), axis('square'), title('min2max transition matrix')\n", + "#subplot(122), axis('square'), title('Rainflow matrix')\n", + "#if (printing==1), print -deps ../bilder/fatigue_9.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 10'),pause(pstate)\n", + "#\n", + "##!#! Observed and theoretical rainflow matrix for test Markov sequence.\n", + "#n=length(u_markov);\n", + "#Frfc_markov=dtp2rfm(xxD_markov,n);\n", + "#clf\n", + "#cmatplot(u_markov,u_markov,{Frfc_markov Grfc_markov*T_markov/2},3) \n", + "#subplot(121), axis('square'), title('Observed rainflow matrix')\n", + "#subplot(122), axis('square'), title('Theoretical rainflow matrix')\n", + "#if (printing==1), print -deps ../bilder/fatigue_10.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 11'),pause(pstate)\n", + "#\n", + "##!#! Smoothed observed and calculated rainflow matrix for test Markov sequence.\n", + "#tp_markov=dat2tp(xx_markov);\n", + "#RFC_markov=tp2rfc(tp_markov);\n", + "#h=1;\n", + "#Frfc_markov_smooth=cc2cmat(param_m,RFC_markov,[],1,h);\n", + "#clf\n", + "#cmatplot(u_markov,u_markov,{Frfc_markov_smooth Grfc_markov*T_markov/2},4)\n", + "#subplot(121), axis('square'), title('Smoothed observed rainflow matrix')\n", + "#subplot(122), axis('square'), title('Theoretical rainflow matrix')\n", + "#if (printing==1), print -deps ../bilder/fatigue_11.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 12'),pause(pstate)\n", + "#\n", + "##!#! Rainflow matrix from spectrum\n", + "#clf\n", + "##!GmM3_herm=spec2mmtpdf(spec,[],'Mm',[],[],2);\n", + "#GmM3_herm=spec2cmat(spec,[],'Mm',[],param_h,2);\n", + "#pdfplot(GmM3_herm)\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 13'),pause(pstate)\n", + "#\n", + "#\n", + "##!#! Min-max matrix and theoretical rainflow matrix for Hermite-transformed Gaussian waves.\n", + "#Grfc_herm=mctp2rfm({GmM3_herm.f []});\n", + "#u_herm=levels(param_h);\n", + "#clf\n", + "#cmatplot(u_herm,u_herm,{GmM3_herm.f Grfc_herm},4)\n", + "#subplot(121), axis('square'), title('min-max matrix')\n", + "#subplot(122), axis('square'), title('Theoretical rainflow matrix')\n", + "#if (printing==1), print -deps ../bilder/fatigue_12.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 14'),pause(pstate)\n", + "#\n", + "##!#!\n", + "#clf\n", + "#Grfc_direct_herm=spec2cmat(spec,[],'rfc',[],[],2);\n", + "#subplot(121), pdfplot(GmM3_herm), axis('square'), hold on\n", + "#subplot(122), pdfplot(Grfc_direct_herm), axis('square'), hold off\n", + "#if (printing==1), print -deps ../bilder/fig_mmrfcjfr.eps\n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 15'),pause(pstate)\n", + "#\n", + "#\n", + "##!#! Observed smoothed and theoretical min-max matrix, \n", + "##!#! (and observed smoothed and theoretical rainflow matrix for Hermite-transformed Gaussian waves).\n", + "#tp_herm=dat2tp(xx_herm);\n", + "#RFC_herm=tp2rfc(tp_herm);\n", + "#mM_herm=tp2mm(tp_herm);\n", + "#h=0.2;\n", + "#FmM_herm_smooth=cc2cmat(param_h,mM_herm,[],1,h);\n", + "#Frfc_herm_smooth=cc2cmat(param_h,RFC_herm,[],1,h);\n", + "#T_herm=xx_herm(end,1)-xx_herm(1,1);\n", + "#clf\n", + "#cmatplot(u_herm,u_herm,{FmM_herm_smooth GmM3_herm.f*length(mM_herm) ; ...\n", + "# Frfc_herm_smooth Grfc_herm*length(RFC_herm)},4)\n", + "#subplot(221), axis('square'), title('Observed smoothed min-max matrix')\n", + "#subplot(222), axis('square'), title('Theoretical min-max matrix')\n", + "#subplot(223), axis('square'), title('Observed smoothed rainflow matrix')\n", + "#subplot(224), axis('square'), title('Theoretical rainflow matrix')\n", + "#if (printing==1), print -deps ../bilder/fatigue_13.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 16'),pause(pstate)\n", + "# \n", + "##!#! Section 4.3.5 Simulation from crossings and rainflow structure\n", + "#\n", + "##!#! Crossing spectrum (smooth curve) and obtained spectrum (wiggled curve)\n", + "##!#! for simulated process with irregularity factor 0.25.\n", + "#clf\n", + "#cross_herm=dat2lc(xx_herm);\n", + "#alpha1=0.25;\n", + "#alpha2=0.75;\n", + "#xx_herm_sim1=lc2sdat(cross_herm,500,alpha1);\n", + "#cross_herm_sim1=dat2lc(xx_herm_sim1);\n", + "#subplot(211)\n", + "#plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))\n", + "#hold on\n", + "#stairs(cross_herm_sim1(:,1),...\n", + "# cross_herm_sim1(:,2)/max(cross_herm_sim1(:,2)))\n", + "#hold off\n", + "#title('Crossing intensity, \\alpha = 0.25')\n", + "#subplot(212)\n", + "#plot(xx_herm_sim1(:,1),xx_herm_sim1(:,2))\n", + "#title('Simulated load, \\alpha = 0.25')\n", + "#if (printing==1), print -deps ../bilder/fatigue_14_25.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 16'),pause(pstate)\n", + "#\n", + "##!#! Crossing spectrum (smooth curve) and obtained spectrum (wiggled curve)\n", + "##!#! for simulated process with irregularity factor 0.75.\n", + "#xx_herm_sim2=lc2sdat(cross_herm,500,alpha2);\n", + "#cross_herm_sim2=dat2lc(xx_herm_sim2);\n", + "#subplot(211)\n", + "#plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))\n", + "#hold on\n", + "#stairs(cross_herm_sim2(:,1),...\n", + "# cross_herm_sim2(:,2)/max(cross_herm_sim2(:,2)))\n", + "#hold off\n", + "#title('Crossing intensity, \\alpha = 0.75')\n", + "#subplot(212)\n", + "#plot(xx_herm_sim2(:,1),xx_herm_sim2(:,2))\n", + "#title('Simulated load, \\alpha = 0.75')\n", + "#if (printing==1), print -deps ../bilder/fatigue_14_75.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 17'),pause(pstate)\n", + "#\n", + "##!#! Section 4.4 Fatigue damage and fatigue life distribution\n", + "##!#! Section 4.4.1 Introduction\n", + "#beta=3.2; gam=5.5E-10; T_sea=xx_sea(end,1)-xx_sea(1,1);\n", + "#d_beta=cc2dam(RFC_sea,beta)/T_sea;\n", + "#time_fail=1/gam/d_beta/3600 #!in hours of the specific storm\n", + "#disp('Block 18'),pause(pstate)\n", + "#\n", + "##!#! Section 4.4.2 Level crossings\n", + "##!#! Crossing intensity as calculated from the Markov matrix (solid curve) and from the observed rainflow matrix (dashed curve).\n", + "#clf\n", + "#mu_markov=cmat2lc(param_m,Grfc_markov);\n", + "#muObs_markov=cmat2lc(param_m,Frfc_markov/(T_markov/2));\n", + "#clf\n", + "#plot(mu_markov(:,1),mu_markov(:,2),muObs_markov(:,1),muObs_markov(:,2),'--')\n", + "#title('Theoretical and observed crossing intensity ')\n", + "#if (printing==1), print -deps ../bilder/fatigue_15.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 19'),pause(pstate)\n", + "#\n", + "##!#! Section 4.4.3 Damage\n", + "##!#! Distribution of damage from different RFC cycles, from calculated theoretical and from observed rainflow matrix.\n", + "#beta = 4;\n", + "#Dam_markov = cmat2dam(param_m,Grfc_markov,beta)\n", + "#DamObs1_markov = cc2dam(RFC_markov,beta)/(T_markov/2)\n", + "#DamObs2_markov = cmat2dam(param_m,Frfc_markov,beta)/(T_markov/2)\n", + "#disp('Block 20'),pause(pstate)\n", + "#\n", + "#Dmat_markov = cmat2dmat(param_m,Grfc_markov,beta);\n", + "#DmatObs_markov = cmat2dmat(param_m,Frfc_markov,beta)/(T_markov/2); \n", + "#clf\n", + "#subplot(121), cmatplot(u_markov,u_markov,Dmat_markov,4)\n", + "#title('Theoretical damage matrix') \n", + "#subplot(122), cmatplot(u_markov,u_markov,DmatObs_markov,4)\n", + "#title('Observed damage matrix') \n", + "#if (printing==1), print -deps ../bilder/fatigue_16.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 21'),pause(pstate)\n", + "#\n", + "#\n", + "##!#!\n", + "##!Damplus_markov = lc2dplus(mu_markov,beta)\n", + "#pause(pstate)\n", + "#\n", + "##!#! Section 4.4.4 Estimation of S-N curve\n", + "#\n", + "##!#! Load SN-data and plot in log-log scale.\n", + "#SN = load('sn.dat');\n", + "#s = SN(:,1);\n", + "#N = SN(:,2);\n", + "#clf\n", + "#loglog(N,s,'o'), axis([0 14e5 10 30])\n", + "##!if (printing==1), print -deps ../bilder/fatigue_?.eps end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 22'),pause(pstate)\n", + "#\n", + "#\n", + "##!#! Check of S-N-model on normal probability paper.\n", + "#\n", + "#normplot(reshape(log(N),8,5))\n", + "#if (printing==1), print -deps ../bilder/fatigue_17.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 23'),pause(pstate)\n", + "#\n", + "##!#! Estimation of S-N-model on linear scale.\n", + "#clf\n", + "#[e0,beta0,s20] = snplot(s,N,12);\n", + "#title('S-N-data with estimated N(s)','FontSize',20)\n", + "#set(gca,'FontSize',20)\n", + "#if (printing==1), print -deps ../bilder/fatigue_18a.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 24'),pause(pstate)\n", + "#\n", + "##!#! Estimation of S-N-model on log-log scale.\n", + "#clf\n", + "#[e0,beta0,s20] = snplot(s,N,14);\n", + "#title('S-N-data with estimated N(s)','FontSize',20)\n", + "#set(gca,'FontSize',20)\n", + "#if (printing==1), print -deps ../bilder/fatigue_18b.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 25'),pause(pstate)\n", + "#\n", + "##!#! Section 4.4.5 From S-N curve to fatigue life distribution\n", + "##!#! Damage intensity as function of $\\beta$\n", + "#beta = 3:0.1:8;\n", + "#DRFC = cc2dam(RFC_sea,beta);\n", + "#dRFC = DRFC/T_sea;\n", + "#plot(beta,dRFC), axis([3 8 0 0.25])\n", + "#title('Damage intensity as function of \\beta')\n", + "#if (printing==1), print -deps ../bilder/fatigue_19.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 26'),pause(pstate)\n", + "#\n", + "##!#! Fatigue life distribution with sea load.\n", + "#dam0 = cc2dam(RFC_sea,beta0)/T_sea;\n", + "#[t0,F0] = ftf(e0,dam0,s20,0.5,1);\n", + "#[t1,F1] = ftf(e0,dam0,s20,0,1);\n", + "#[t2,F2] = ftf(e0,dam0,s20,5,1);\n", + "#plot(t0,F0,t1,F1,t2,F2)\n", + "#title('Fatigue life distribution function')\n", + "#if (printing==1), print -deps ../bilder/fatigue_20.eps \n", + "#end\n", + "#wafostamp([],'(ER)')\n", + "#disp('Block 27, last block')" + ], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 5.ipynb b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 5.ipynb new file mode 100644 index 0000000..f598c9d --- /dev/null +++ b/pywafo/src/wafo/doc/tutorial_scripts/WAFO Chapter 5.ipynb @@ -0,0 +1,485 @@ +{ + "metadata": { + "name": "WAFO Chapter 5" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Chapter 5 Extreme value analysis\n", + "=================================\n", + "Section 5.1 Weibull and Gumbel papers\n", + "--------------------------------------\n", + "Significant wave-height data on Weibull paper,\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "import wafo.data as wd\n", + "import wafo.stats as ws\n", + "import matplotlib.pyplot as plt\n", + "Hs = wd.atlantic()\n", + "wei = ws.weibull_min.fit2(Hs)\n", + "tmp = ws.probplot(Hs, wei.par, dist='weibull_min', plot=plt)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HXDDuIiooogst1ZRfRa1oipqiVqKGmqEmo\nWVmW1S+9uSTaNdu71tUWr5lpLpm54r4gllopimsuKAnuiuygMJzfH0cGUAzQYQaYz/Px8CGcOTPn\nM5RvvvM53/M9GkVRFIQQQpgNrakLEEIIYVwS/EIIYWYk+IUQwsxI8AshhJmR4BdCCDMjwS+EEGZG\ngl9UC1qtlrNnzz7Qc5s2bcr27dtLfGz37t20adOm2L47duwA4L333uP5559/oGOWR3R0NO7u7hV+\nHGE+JPiFyTRt2hR7e3scHR1p0KABERERZGZmGr0OjUaDRqMp8bEuXbrw559/Ftu3wKRJk5g3bx4A\nCQkJaLVa8vPzH6iG7777DgsLCxwdHalVqxb+/v5ERUWV+3Wee+45pk6d+kA1CPMhwS9MRqPRsH79\netLT04mNjWX//v38+9//vme/vLw8E1T3YB7meshHH32U9PR0UlJSGDVqFM888wwpKSkGrE4IlQS/\nqBRcXV3p3bs3x44dA9TWzdy5c2nZsiWtW7cGYN68ebRs2ZK6devSr18/Ll26VOw1oqKiaN68Oc7O\nzkyYMEEfwvHx8Tz++OPUq1cPZ2dnhg8fTmpqarHn/v7773h5eVGnTh1GjhzJrVu3gL9vs0RGRvLs\ns88CEBgYCEDt2rWpWbMmMTEx1K1bl6NHj+r3v3r1Kg4ODty4caPE1yuoV6PREBERQXZ2dontqxMn\nThAUFISTkxPe3t6sW7cOgG+++YYlS5bw4Ycf4ujoSL9+/e734xZmToJfmFRB2CUmJrJx40b8/f31\nj61Zs4Y//viD48ePs2PHDiZNmsSKFSu4dOkSTZo0YciQIcVea/Xq1Rw4cIDY2FjWrFnDt99+q39s\n8uTJXLp0iRMnTpCYmEhkZGSxGpYsWcKWLVuIj4/n1KlTJX7yuFvRts/u3bsBSE1NJS0tjcDAQIYM\nGcLixYv1+yxdupQePXpQt27dv33dvLw8/ve//+Ho6EjLli2LPZabm0tISAi9e/fm2rVrfPHFFwwb\nNoxTp04xZswYhg0bxsSJE0lPT2fNmjWlvgdhniT4hckoikL//v1xcnKiS5cuBAUFMWnSJP3jb7/9\nNrVr18bGxoYffviBUaNG0bZtW6ytrZk1axZ79+7l/Pnz+v0nTpxI7dq1cXd3Z/z48SxduhSA5s2b\n0717d6ysrKhXrx6vv/46u3bt0j9Po9Hwyiuv0KhRI5ycnJg8ebL+uaXVX9LXBUaMGFHsdRYtWqT/\nhFCSffv24eTkRMOGDVm+fDmrVq3C0dHxnn0yMzP517/+haWlJd26daNPnz764yiK8lDtJmEeLE1d\ngDBfGo2GNWvW8Pjjj5f4eNEWy6VLl2jfvr3+ewcHB+rWrcuFCxdo3LjxPfs3btyYixcvAnDlyhVe\ne+01fvnlF9LT08nPz6dOnTr3PVbR5z6Mjh07YmdnR3R0NA0aNCA+Pp6+ffved/9HHnlE/8nhfi5e\nvHhP66lJkyb6eu93klqIomTELyqtoiHm6upKQkKC/vvMzExu3LhBo0aN9NuKjv7Pnz+vf2zSpElY\nWFhw9OhRUlNTWbRo0T2zb+5+rqur6wPXWlR4eDiLFy9m0aJFDBo0CGtr63K97t1cXV1JTEwsNqr/\n66+/9O9Vgl+UhQS/qBLCwsJYsGABcXFx3Lp1i0mTJvHII4/oR/sAH3/8MSkpKSQmJvL5558zePBg\nADIyMnBwcKBmzZpcuHCBjz76qNhrK4rCnDlzuHDhAsnJycycOfOe8welcXZ2RqvVEh8fX2z78OHD\n+fnnn/nhhx8YMWLEA777Qh07dsTe3p4PP/yQ3NxcoqOjWb9+vb5eFxeXB76eQZgPCX5RKd09cu3e\nvTvvvvsuAwYMwNXVlXPnzrFs2bJi+/Tr14+AgAD8/f3p06cPI0eOBGDatGnExsZSq1YtQkJCGDBg\nQLHX12g0DBs2jJ49e9K8eXNatmzJlClT7ltL0e0Fj9nb2zN58mQeffRRnJyc+P333wG1hdSuXTu0\nWi2PPfbY377fvxutFzxmbW3NunXr2LhxI87OzrzyyissWrSIVq1aATBq1CiOHz+Ok5MToaGh9309\nYd40ciMWISrWqFGjaNSoETNmzDB1KUIAFTDiHzlyJC4uLvj4+Nzz2CeffIJWqyU5OdnQhxWiUkpI\nSODnn39m1KhRpi5FCD2DB39ERASbNm26Z3tiYiJbt26lSZMmhj6kEJXS1KlT8fHxYcKECfL/vahU\nKqTVk5CQQEhICEeOHNFvGzRoEFOnTqVfv34cOHDgnul0QgghjMMoJ3fXrFmDm5sbvr6+xjicEEKI\nv1HhF3BlZWXx3nvvsXXrVv22+33IkDnIQgjxYMrTvKnwEX98fDwJCQn4+fnRrFkzkpKSCAgI4OrV\nqyXuX3DJeVX8M23aNJPXIPWbvg5zq13qN/2f8qrwEb+Pjw9XrlzRf9+sWTPp8QshhAkZfMQfFhZG\n586dOXXqFO7u7ixYsKDY49LOEUII0zL4iL+0VQ2r8+XkQUFBpi7hoUj9plOVawepv6qpVFfuajSa\nB+pXCSGEOStvdspaPUIIYWYk+IUQwsxI8AshhJmR4BdCCDMjwS+EEGZGgl8IIYzgQa+yrQgS/EII\nUcEuZ1ym//L+rDi+wtSlABL8QghRoZYfXU7br9riU9+H/m36m7ocQC7gEkKICnEt8xovb3iZo1eP\n8rzzeDbNP8+tW5bY2OTx6qs9eeqpQIMdq7zZWeGLtAkhhLlZdWIVYzeMZbjvcMJsn+et16OJj5+p\nfzw+fjKAQcO/PGTEL4QQBnIz+ybjNo7jtwu/8V2/73i08aP06jWFLVv+fc++vXpNZdOmdw1yXBnx\nCyHEHVFRMXz++ZYyt1jKu39RG05vYMy6MYR6hHLohUM4WDsAcOtWyTGbk2NR/jdkIBL8QohqKSoq\nhtde21zmFkt59y+QmpPKG1veYMe5HSx6ehHdmnUr9riNTV6Jz7O11ZX9zRiYzOoRQlRLn3++pViI\nA8THz+SLL7YaZH+AbWe34fuVL5ZaSw6/ePie0Ad49dWeNG8+udi25s0nMW5ccFnfisHJiF8IUS2V\nt8VSnv0zbmcwYesE1p9az7yQefRq0eu+dRR8Wvjii6nk5Fhga6tj3LjeJjuxCxL8QohqqrwtlrLu\nH/NXDBFrIghsEsjhlw5T27Z2qbU89VSgSYP+btLqEUJUS+VtsZS2f1ZuFq9vfp2wlWH8p9d/WNBv\nQZlCvzKS6ZxCiGorKiqGL77YWqTFElzqrJ6S9t+XtI/w1eEENAzgiye+oK59XSO+i9KVNzsl+IUQ\n4j5u5d1iWvQ0FsYt5L9P/JcBngNMXVKJZB6/EEIYwIGLBwhfHU7req2JezGO+g71TV2SwUjwCyFE\nEbd1t5m5eyZf7f+Kz3p9Rph3GBqNxtRlGZQEvxBC3HH4ymHCV4fTyLERB184iKujq6lLqhAVMqtn\n5MiRuLi44OPjo9/21ltv4eHhgZ+fH6GhoaSmplbEoYUQotzy8vOYGTOT7t9359V/vsq6sHXVNvSh\ngoI/IiKCTZs2FdvWs2dPjh07RlxcHK1atWLWrFkVcWghhCiXE9dO0Hl+Z3b9tYsDYw4Q4R9R7Vo7\nd6uQ4O/SpQtOTk7FtgUHB6PVqofr2LEjSUlJFXFoIYQoE12+jo/3fEzgd4GM9B/J5uGbaVyrsanL\nMgqT9Pi//fZbwsLCSnwsMjJS/3VQUBBBQUHGKUoIYTZO3zhNxJoILLWW/Db6N/7h9A9Tl1Qu0dHR\nREdHP/DzK2wef0JCAiEhIRw5cqTY9pkzZxIbG8vKlSvvLUbm8QshKlC+ks+c3+cwfdd0pgZOZVzH\ncWg1VX8Bg0o9j/+7775jw4YNbN++3ZiHFUIIElISGLlmJDl5OewZtYdWdVuZuiSTMVrwb9q0iY8+\n+ohdu3Zha2trrMMKIaqxstw4RVEU5sXOY/KOyUzoPIE3Or2BhdZ0N0GpDCok+MPCwti1axfXr1/H\n3d2d6dOnM2vWLG7fvk1wsLrgUadOnZg7d25FHF4IYQbKcuOUpLQkRq8dzY3sG+x6bheezp4mqbWy\nkbV6hBBV0t/dy3bjxhksjFvIhK0TeLXjq0x8dCJWFlYmqNI4KnWPXwghDOV+N05Jzc+i37J+/JX6\nF1uf3YpfAz8jV1b5Vf3T2UIIs3TvjVMU8F5GbIev8Wvgxx/P/yGhfx8S/EKIKqnYjVPsr8GgZ7Dq\n8Qrv+33Ku93exdrC2rQFVmLS6hFCVEkFJ3Cn/DCI40034Xrdh08fX8rTIaa7iXlVIcEvhKjU7jdl\nMzk7maW3viGzUxw7+2+ms3tnU5daZUjwCyEqrftN2fwjZS//u/IFAzwHcOjFQ9hb2ZuwyqpHgl8I\nUWl9/vmWYqGPTSrx3pf48OgcNrywmqCmQSarrSqTk7tCiEqr2JTNf2yFl3xBZ02731+S0H8IEvxC\niErLxiYPrDPgqZeg3yhYNw/Wf0UNK2lWPAwJfiFEpdUtoj6W49zBMge+PAzxPWnefBLjxsnMnYch\nSzYIISqdrNwsJm2fxIrjKxjtMo7fFmWSk2OBra2OceOC71mIzdyVNzsl+IUQJlHSNE2AGd9+y5EW\n66mV2YBPg2cR1i/ExJVWfrJWjxCiUioa9GlpSVy6VJPLlz/VPx53LJyM9sfJbJEE674m+8QApm6a\nTE3LWjLCNzAZ8QshKty98/GnAEVW1nTdD/2fgOtdIWouZNbXP9Sr11Q2bXrXqPVWNTLiF0JUGgWj\n/D/+OMPNm8uKPHIneixuQ+C7EPANbAqEoysATbHXyMkx75umVAQJfiGEQRWE/YUL1zh7VkN29ldA\n5F175YFLHDwdDqnu8NUhyJjD3aEPYGurM0LV5kWCXwjx0EoO+6LtnCJLKGvz4NEr8Ehn2DoHDoUD\nGho0uAi8Uazvr07d7G28N2ImpMcvhCiXoiF/+XIKNWpYcfVqjRLCPpLCkX4MsBnqDVdH+dlOOO+t\njXutejg6OuunaQJ88cVWmbpZTtLjF0JUmMKTtL2AzcDX3LhRNOyLRkqRUb7mUei0DB5tj/0+Xx6z\n78Crs++9MTogQW8EEvxCiDIrXDRtClAwQ+c+YU9PYDLUeQ76Pwf5VjTeHM7c94ZIuJuYBL8Q4r7u\nbuvk5BTcsLyUsGcmaB6Df66Ert40PNUJn+zHePW9kkf5wrgk+IUQ94iKimHq1O85ccKKnJwwCto6\n6kgf7hv2qKFu0+ApLEMPY2UHH/zzW8Z8MMyI1YvSyMldIUQxhX18DWrvvmgP/85JWgp6/DP12+3s\n5tC8RUPy254mqfWvTAmazBud3sBCK/PwK5rJT+6OHDmSqKgo6tevz5EjRwBITk5m8ODB/PXXXzRt\n2pQff/yR2rVrG/rQQggDKOzjR97ZUjQmCto0W7G3P4a9/RAaNmyIq2sNhrwwiKWZ80jOTmZv/z14\nOnsatW5RdgZfljkiIoJNmzYV2/b+++8THBzMqVOn6N69O++//76hDyuEMJDCm5/k3fV3gUDgXbp0\n8eHatWXExX3KkPebM+HMWLo07sLeUXsl9Cs5gwd/ly5dcHJyKrZt7dq1hIeHAxAeHs7q1asNfVgh\nhAFERcVw9OiJO98V9O4L/i5UsCb+pfRL9F3Wl//s+w9bn93KlMApWGrl1GFlZ5T/QleuXMHFxQUA\nFxcXrly5ct99IyMj9V8HBQURFBRUwdUJYd4KZu78+edJkpJqkp//MoUnawG2YmV1FFvbATRt2hhX\n1xq88kov0hpfoO3Xg3gh4AVWPrMSawtrE74L8xIdHU10dPQDP79CTu4mJCQQEhKi7/E7OTlx8+ZN\n/eN16tQhOTn53mLk5K4QRnPvzJ05wPI7j8YAWwEL6tX7k+++G6ufhnk18ypjo8Zy4voJFvZfSHvX\n9qZ5A0LP5Cd3S+Li4sLly5dp0KABly5don79+qU/SQhhcPeO7htSOHPHo8iegRScyPXyitSH/srj\nK3ll4yuM8BvB4tDF2FraGvkdCEMwyj13+/bty8KFCwFYuHAh/fv3N8ZhhRBFREbOZdCgJWzZ0pPz\n57Xk58+ncOxnyb0ncVW2tjqSs5MZunIob29/m5+f+ZkPenwgoV+FGTz4w8LC6Ny5MydPnsTd3Z0F\nCxbwr3/9i61bt9KqVSt27NjBv/71L0MfVghxH1FRMbRrN5oZM7bdWUhtC4Wj+6Izd+49iWtn9wId\nn3XA50sf6jvU59CLh+jk3slotYuKIRdwCVGNFb8Yy5LCFTPzUFs8d1+Q1YuC3r5trTjajL9CqtNl\nFvRbQNemXU3xFkQZVMoevxDCNKZOXU58/BwKwx6Kj+4LZ+5AHI6Of9K0aWOsPa5yvu0eHvEN5aPg\nLdSwrmH02kXFMUqPXwhhfJGRc4mLK5hNVzTse1I4up8K7MDO7hTTpj3JhWvf0fm9bK4+spsfnlnM\nl099KaFfDcmIX4hqpmCa5qFDyShKwRW0RcN+K3AdrfYj3N0b0qaNC+PGvYyDVz5+X/kR1DSIIy8d\noZZtLZO9B1GxpMcvRDVyb0//cQoXU1Pn5mu18bRt68SMGYN56qlAsnKzeHv72/x0/Ce+7vM1fVr1\nMeVbEA9AevxCmKGCUX5c3EXy8zdQ2NMvWFRtKqCuktm2rQMHDswBYE/iHp5b/RwdGnXgyEtHqGNX\nx/jFC6MrV/DrdDoyMzOpWbNmRdUjhCinyMi5zJoVze3bjoDzna13n8BVfwHY2b3AjBnPkpOXwzs7\n32HR4UXMeXIOoR6hJqldmEapJ3fDwsJIS0sjMzMTHx8fPDw8+PDDD41RmxCiFJGRc3n33a3cvt0K\naAi433nk7hO4kdjZDWbCBD9c/O0J+CaAszfPcvjFwxL6ZqjU4D9+/Dg1a9Zk9erVPPHEEyQkJLBo\n0SJj1CaEuI+oqBiaNx/A9OlbyM/3Q/3wbknhKD+QghO5Wm087dpdY8nyMei6XuKpJU8xNXAqKwat\nwNnB+W+OIqqrUls9eXl55Obmsnr1al5++WWsrKzQaDTGqE0IUYKoqBhGj17I5cuWgA/Fl1oouaf/\nbdQYwleH07hWYw69cIiGjg2NW7SoVEod8b/wwgs0bdqUjIwMAgMDSUhIoFYtmeYlhKl8/vkWLl9u\niLrsQkEv/9KdPwWj/XeBSFxcU/F8MZ/gRcG8/sjrrBmyRkJflH86p6Io6HQ6LC0NPyFIpnMKUbqg\noEh27YLC0C/o5S9CDX8NtrYONOuoIfepg/yjYRPm952PW0030xUtKlR5s7PUEf/ly5cZNWoUvXv3\nBuDEiRP6lTaFEMYVFRVDbOwh7g39rUAjtFprpk7rxfRt7bj21DbeevwNNg3bJKEviil1xN+7d28i\nIiKYOXMmhw8fJjc3F39/f44ePWr4YmTEL0QxBfPzT526RGZmKlAfKLi1aQOKLqpmbX2UMW97ccB9\nKzaWNizot4CmtZuaqHJhTAYf8V+/fp3BgwdjYaGeKLKysqqQNo8QolDBrJ0+ff7DwYMKmZkNgEaA\nJzAfCAeuAl8C56nheIjwL11Zaj+HMO8wto/YLqEv7qvUBK9RowY3btzQf79v3z45uStEBYqKimH4\n8HmkpFgCLYs8UvSfa+Edsqh9DovwbhzjGntH7aVl3aLPEeJepQb/J598QkhICGfPnqVz585cu3aN\nn376yRi1CWF2oqJiGDToQ7Kz23LvP8+775ClQPuvodtUGlxrS8xzm7DQWhipUlGVlWlWT25uLidP\nngSgdevWWFlZVUwx0uMXZqxw6QVQWzp3B31PYCHQAGq+CP1GgW0K9XZ78N3Ho/T3xRXmp7zZWWrw\nL1y4sNiLFly8NWLEiIco8z7FSPALMzV06ESWLj0JeANngBYUBn2BBuq2tu9A8G/wWwv+cdGfz//z\nvIS+mTN48L/yyiv6sM/JyWH79u20a9euQto9EvzCHBWGfts7W5IAhcJZO3fm59e4CSFn0DrdptXx\nnnz8fy9L4AugAoL/bikpKQwePJjNmzeXu7hSi5HgF2YmKiqGvn0/Ij8/gMLWTsFIXwtkAFbgcxSH\n0DO80XU8UwKnYG1hbaqSRSVU4evx29vbc+7cufI+TQhxl4ITufn59Si8IGsh6kVZ4cBWcMhBE7KE\neq0VNozZQXvX9qYsWVQTpQZ/SEiI/uv8/HyOHz/OM888U6FFCVGdRUXF8Oqrszl7Nh2oB2RTeBVu\nOGpr50vwSMAiJI6n//E0i0bNx9bS1oRVi+qk1FZPdHS0/mtLS0uaNGmCu7v7/Z/wMMVIq0dUc4Ur\na2bc2dIScAUOA0OBrWB3C55cimPrTDa/GEUn904mq1dUDRXe438Ys2bNYvHixWi1Wnx8fFiwYAE2\nNjaFxUjwi2quXbuXOXjQCfXDdgIwEnWk3wiIgVbXoM+vtM7zIfbjXdhb2ZuwWlFVGKzHX6NGjfuu\nu6/RaEhLSytXYQkJCcybN48TJ05gY2PD4MGDWbZsGeHh4eV6HSGqqqioGI4dS0a9PWIeaovnzqwc\n23XQ+09o/Bd2G/z588Re0xUqqr37Bn9GRsb9HnogNWvWxMrKiqysLCwsLMjKyqJRo0YGPYYQldnU\nqcu5fTufwhO5x4EXofnT0Hc5nOqD9ht/JkzsYNpCRbVX5lk9V69eJScnR/9948aNy3WgOnXq8Oab\nb9K4cWPs7Ozo1asXPXr0uGe/yMhI/ddBQUEEBQWV6zhCVEaRkXM5dCgZqI26Zv5msB4DPcdCi+9h\nTXvsLl1gwsReREaONXG1orKLjo4udv61vErt8a9du5Y333yTixcvUr9+ff766y88PDw4duxYuQ4U\nHx9PSEgIu3fvplatWgwaNIiBAwcybNiwwmKkxy+qocjIuUyfvoHCC7R6QtMPoN8uONcQNnelnZeG\nAwfmmbJMUYUZfFnmKVOmsHfvXlq1asW5c+fYvn07HTt2LHdh+/fvp3PnztStWxdLS0tCQ0PZs2dP\nuV9HiKokMnIuM2ZsBOoCPcEqEZ54E0LjYMNyWHuaBk6OzJjxrKlLFWak1OC3srKiXr165Ofno9Pp\n6NatG/v37y/3gdq0acO+ffvIzs5GURS2bduGp6fnAxUtRGUWFRVDu3ajsbJ6lOnTN6ModYBb4G4J\nL24H2xT48p9w+ke02if53/+elqUXhFGV2uN3cnIiPT2dLl26MGzYMOrXr0+NGjXKfSA/Pz9GjBhB\n+/bt0Wq1tGvXjjFjxjxQ0UJUVpGRc/n3v3eg0+UDdQB/sDwG3U6Cby+I+h7+fPrO3pNo29ZaQl8Y\n3X17/CtWrCAkJASdToetrS35+fn88MMPpKWlMWzYMOrWrWv4YqTHL6qwqKgYQkM/5fZtb+A0YAuu\nFvD0KrhaG6I6QVZzwALQYWFxnDVrXpPgFw/NYBdw9e/fn19//ZXevXsTFhZGr1699LdfrCgS/KIq\n69VrClu2JALNwCIeusZCu0uwyQ+ONkMN/AzAGkvLFCZPlhk8wjAMeuVuamoqq1atYtmyZRw6dIj+\n/fsTFhZG165dDVLsPcVI8IsqzMVlBFev3oYGNaD/T5BaC9b1h4wBqOvvZAA67OyyWLFigoz0hcFU\n2JIN169fZ+XKlcyZM4fk5GSSkpIeuMj7FiPBL6ogta//HTqlLjx2FToehy2eEPcPoCbqWjxqe8fB\n4TTLl4+V0BcGVSHLMt+8eZOff/6Z5cuXk5yczKBBgx64QCGqE/UmKnHgbAtP74csG/i6H6Q5AvHA\nDeAqWq0NzZo5MHu2hL4wvfuO+NPT0/VtntjYWPr27UtYWBhBQUH3XcPnoYuREb+oQoYOncjSZUeg\n8wXofBK2d4fYCcBiCnr5UIN27W7LxVmiQhlsxN+sWTN69erF2LFj6dmzJ9bWcscfIaBIa6e2PYw8\nDnkWMK8HpExAXWmzMOS12pHMmPGcqUoVokT3HfFnZWVhb2/cJWFlxC8qs6ioGIYNm0pqmg10TILA\nsxDtCX+0ACWIYmvqYwHEERbWiiVLPjBl2cIMVOr1+EsjwS8qK7WXHwtOedDvGGg1sLo9JD8FrAOa\nAL5ADGALXCMwsD67di0wZdnCTBh8rR4hzFlk5Fy02gCWLj0K7ZNh9F442QQWBEJyQ+ACEAKcAqIA\nHRrNFaZNe0pCX1RaMuIXogT6Pr7ODmpZQN8/wTYXVrWH6zWBrkA04IhM1xSmZrBWT9GbrN/9ohqN\nhrVr1z5EmfcpRoJfVAJdu0YQE3MRsAD/C9DjJOxrBb+2hvxuFG/tRAFWgAVOTjoWLXpDQl8YncFm\n9bz55psArFq1isuXLzN8+HAURWHp0qW4uLg8fKVCVEJDh04kJuYKONpAyEFwzICFXeGqO5CMegI3\nBPgJSATssbTMYvLknrL8gqgySm31BAQEcODAgVK3GaQYGfELE1JvmLIefG5Cr0OwvznENIH8pyhs\n66QCtwF7II2wMB+ZtSNMzuAnd7OysoiPj9d/f/bsWbKysh6sOiEqqaioGGZ8shIGH4Mux+CHxyB6\nLORnAgeBIOAy6v1yrXBwSGf9+n9J6IsqqdQR/6ZNmxgzZgzNmjUDICEhgW+++YZevXoZvhgZ8QsT\ncenWlavtf4NDzWBna9DdorCP/wNQC3AAMmWULyqdCpnHn5OTw8mTJwH1Tlo2NjYPXuHfFSPBL4zs\nRtYNQucPJubUb7C6LSSFobZ18oAUwA418NMJC/OVwBeVksGDPzMzk08//ZTz588zb948Tp8+zcmT\nJ+nTp89DF3tPMRL8wojWnVzHi1EvkvKLA1nrfSE3C/AHGlF0to5Gk8a6dVNlto6otAze44+IiMDa\n2lp/Y3RXV1cmT5784BUKYWIpOSk8t/o5hn4/goufO5C1ygdya6NecXsauAR0AHwAeOcduSeuqF5K\nXZY5Pj6eH3/8kWXLlgHg4OBQ4UUJUVE2n9nMM4uHkPaHBWwLgNvWqG2dEcBC1Fk7cRSdtSPTNEV1\nU2rw29haoGvTAAAgAElEQVTYkJ2drf8+Pj6+wnr8QlSU9FvpDPrfULbEb0FZ0xrOuqFOz9QA6air\naoZTuMDaCWxscqSnL6qlUoM/MjKS3r17k5SUxNChQ/n111/57rvvjFCaEIax89xOQv73NJlHbWFz\nV7hlg3rC1hb1RikNUadqFoS+DnDAy6umyWoWoiL9bfDn5+dz8+ZNVq5cyb59+wCYPXs2zs7ORilO\niIeReTuTIfNHEBW/HmWtN5x2RQ18gExAQb1ZShrq6L+QVpvCjBnjjVqvEMbyQFfuVlgxMqtHGMiv\n53+l99chZJywhI1+kOOEOpch884enqi9/JqoPf5bqLN4rNFoMnjnnT7S2xdVhsFn9QQHB/Pxxx+T\nmJhIcnKy/s+DSElJYeDAgXh4eODp6an/FCGEoWTnZvN/W/6PoLk9yPi5CazqCDl1UYM9E3WEn466\n7o4f6rLKN1H/KWhp3tyOdev+JaEvqrVSR/xNmzYt8R67586dK/fBwsPD6dq1KyNHjiQvL4/MzExq\n1apVWIyM+MVD+OzHr/m/X14n/7IVRHWArDoUjvJ1qCP7mkA+cAX1atwaQDqBgQ1k/XxRZVXaO3Cl\npqbi7+/P2bNn71+MBL94ALfybjFi/mh+PLMcNraAY01RAz4bNeStgSzUPn4a6iJrDqhr7txi+fKJ\nMk9fVGkGW5a5gKGu3D137hzOzs5EREQQFxdHQEAAs2fPvue+vpGRkfqvg4KCCAoKKtdxhHk5dPkQ\nvb56iqsnb8P6LpBhT8GaOoWjfBvUpReu3/m7HuoSDJ4yXVNUSdHR0URHRz/w80sd8T/zzDMEBATw\n/fffc+zYMTIzM+ncuTNxcXHlOtD+/fvp1KkTe/bsoUOHDowfP56aNWsyY8aMwmJkxC/KKFeXS893\nnyY6azNsbg6HPVHHMQWtHRnlC/Nh8JO78fHxTJw4EWtra+DBr9x1c3PDzc2NDh06ADBw4EBiY2Mf\n6LWEeZv700JsXq5N9Jk98NVjcLgl6ug+AzX0PVEvzCoY5VugjvLzCAtrSUZGlIS+MGtGu3K3QYMG\nuLu7c+rUKVq1asW2bdvw8vIq9+sI87V2/U4GfhJObodL8EdriG2KurSCFnVUn4Ea+MlAc+AP1FG+\nNba2afz00yQJfCEoQ6tny5YtzJw5k+PHjxMcHKy/crdbt27lPlhcXByjR4/m9u3bNG/enAULFsis\nHlEmHZ4IZX+jrZBnDWt8IKU+auCn3/n7CdTllK+gntStizpjJ0OWUxbVXoXM6rl+/bp+zv0jjzxC\nvXr1HrzCvytGgl/cZVrkf5mxeRZ0uQbRLWG/Jyga1JaOFnWUrwAtUZdUjkFdiuEaXl7WHD26ymS1\nC2EsBgv+AwcO3DN/X1EU/bZ27do9RJn3KUaCXxQREj6G9RY/AlpY0wGSa6FeiJWLOqpXUENeg9rq\nKZyX7+VlK6EvzIbBgj8oKAiNRkN2djYHDhzA19cXgMOHD9O+fXv27t1rmIqLFiPBL4B8JZ+Q6UPZ\nkP0z7G4J+zxByUE9gQvqKN+ewsBXgNqAA1ptJlOnynILwrwYbFZPdHQ0O3fuxNXVldjYWA4cOMCB\nAwc4ePAgrq6uBilWiLst+HkFViOd2HBhI3z7OOz1ASUTtbWTgXpBVgPUEX8q6ii/ERqNwrRp3dDp\nNkjoC1GKUmf1/Pnnn/j4+Oi/9/b25sSJExValDA/iqLQb/qzrMtaDmeawh5vyL9N4YVYOqA+cA11\nlK+O8CGdadO6SdgLUQ6lBr+vry+jR49m+PDhKIrCkiVL8PPzM0ZtwkxcTL9IhxlduJh+DVY9Alfr\no15wlYXaxql35+/zFJ2tExhYg127VpisbiGqqlJn9eTk5DB37lx2794NQGBgIC+99BK2traGL0Z6\n/GZFURR+OPID4UtGkv+bG8T4Qb4VahsnE3VUn406wrdGDXy58laIuxl0OmdeXh7BwcHs3LnTIMWV\nWowEv9n4v8j3+eTP96FODqxuB5caoo7ydUAO6ofRgjtg3abgHrheXjYyW0eIuxh0kTZLS0u0Wi0p\nKSnUrl37oYsTAsC5qy/X/3kCrteHnzqCrhaFo/w81Nk6dVBP5lqg9vJTadw4j6NHN5isbiGqi1J7\n/A4ODvj4+BAcHKxfp0ej0fD5559XeHGiemnT7ilONv8FfHWwtD1ccEJt32Si9vOtUAP/GoX9fHvU\nlTTl6lshDKXU4A8NDSU0NLTYR4mSbswixP107RpBzJXt0OcyHGmktnbyLO48moE62s9BDfoM1F8G\nLkA6zs6XuXp1t2kKF6KaKvXkbnZ2NmfOnEGj0dCiRYsKOamrL0Z6/NVKVFQMfQa+CL2vQeMsWO0D\n5xujjvDzUVs6LsClO1/fQA1/RyCdxo3z+OuvraYqX4gqw2AXcOXm5jJhwgTc3d0JDw9nxIgRuLm5\n8dZbb5Gbm2uQYkX1FRk5lz7jR8JL5+C2PXzZ607op6O2da6j3uvWEmiIejFWPdTRfhrTpoVI6AtR\nQe474h8/fjwZGRl89tlnODo6ApCWlsabb76Jvb09s2fPNnwxMuKv8ry9n+bY6ZPQKw2aJ6tr7JxT\n2zbqqD4TdZ18DXAVdX6+C4Vz8+Xet0KUl8Gmc7Zo0YJTp06h1Rb/UKDT6WjdujVnzpx5uEpLKkaC\nv0qKjJzLjBnzUZRb0CwX+p6Hsw1gS1u4lYMa8jbAZaARauDnUfTq27AwPzl5K8QDMth0Tq1We0/o\nA1hYWJS4XZifyMi5TJ/+FWADVhYQnA6tr8K6dnCmDuoJ2yzUefjed551FnV+fl3ACienXBYtkhuk\nCGFM9w1+Dw8PFi5cSHh4eLHtixYtok2bNhVemKi8oqJi6NdvPDqdBeAKjVOg/xFIdFZ7+Tk6Cqdo\nuqGO8GNR19ppDmTg5WXJ0aM/m+w9CGHO7tvqSUpKIjQ0FDs7OwICAgB1jf6srCxWrVqFm5ub4YuR\nVk+l17VrBDExhwFnsMyHxxPAJxHWt4OTBVfa5qDOya8JXEBt8zgCVlhYpLFmzTsywhfCgAy6ZIOi\nKOzYsYNjx46h0Wjw9PSke/fuBim0xGIk+CutqKgYQkLGoSjOgBU0ugX998MVB9jgCVk2qAGfhPpB\nshHFr7xNx9k5Q+bkC1EBKuTWi8YiwV85NWkSzPnzyUB9sLCBoJPgfxY2esAxB9QeviVqH/86ah/f\nApmtI4RxSPALgyg2UwcXwBoa5MHTv8FNO1jXWG3jY486PfMaMjVTCNMw6CJtwjzVr9+Fa9dyUK/v\ncwetDXQ5Df88A5ubw2FH1HvdFgR+FuqJWzXww8L+IVMzhajEZMQv9NQTt3+gzsS5sx5T/Xzo/xtk\nWsHaxpBujdq/v4A6F7/gatsMWUhNCBORVo94IOooPxN9q0arQOdT0OlP2NYMDtYGnFBn7KRTdIQv\na+oIYVoGW6unouh0Ovz9/QkJCTH2ocV91KrVkWvXClbEdIS6V2DkNvjHRfimGxysCbijrqdT0POX\nNXWEqKqM3uOfPXs2np6epKenG/vQ4i5Dh05k6dIo1FB3BI0CHY9AlzMQ7Qr7nUFpjHoC9zTgSsEo\n38srj6NHN5uweiHEgzLqiD8pKYkNGzYwevRoaemYiLf302g0fmg03ixduhV96Dtdgee2g8c1+J8/\n/OEBigL8jtreaQWAl1ceirJRbn8oRBVm1BH/66+/zkcffURaWtp994mMjNR/HRQURFBQUMUXZgYK\nR/d2qDcur6c+oKkB7Y9B0GnYXR9+6wVKMuqFWDJTR4jKKDo6mujo6Ad+vtFO7q5fv56NGzcyZ84c\noqOj+eSTT1i3bl3xYuTkboWoVasjaWn56MMeAEeolQn9fgPrW7C6M1zPBlJQZ+2ogS9X2wpR+VXa\nk7t79uxh7dq1NGvWjLCwMHbs2MGIESOMdXizNHToRDQab9LS6qCGvuOdPzWg3QkYsxXOusC3neD6\nLdQPgE1Qe/qphIX5SugLUQ2ZZDrnrl27+Pjjj2XEX0HU5ZLnorZ07szUASAdHHOg71GokQ2r3OHq\nY6jLLFxGna7pgDpbpx+RkWNNUr8QonyqzJW7csN2wyvex3e/s9URdbG0fPA9A73+gt/rw25/yL8N\n/Iba2nEDMqhZ8zypqb+ZpH4hhHHIBVzVROEyC3VRr7otMsp3uAYh8eCUD6sbw6WCDp89BaN8rTaT\nqVP7yChfiCpIrtw1M4XLLBSM8GugBn8GoIDXDXgiDg42gOhaoKtDwdr4VlYZrFo1RdbGF6KKk+A3\nE4WBb0fhiVvQB779dXjyDDRQYJUfXLiN9PCFqJ4k+Ku54n38gumZBX18BUiD1legTxIccYYdtSDP\nnYLpmTVrJksPX4hqptJO5xQPJyoqBkvLdixdugO1rVN0emY6kAK2l+HpM9DrIqxoAlvcIK8xauin\nM21aiIS+EEJG/FWBOj1zIVDnzpYiJ24ByIIWGeo0zRM1YZs75BbeEEWWSxaieqsy0zlF2ai9/ETU\n2To17mwtEvg26dDzJjS/BKtawLkmFNzjVpZZEEKUREb8lVTxm5vXQr2HbUEfP0v908wO+v0O8Q6w\nxQNuOQFW2Npm8dNPk2S2jhBmQkb81YC399McO3YedRlke9SbmetQ19HJBatGEHwaWl+HdW3gTBMK\nA/8tCXwhxN+SEX8loy6oVjDCdwSyUUf6OsAeGl+B/sfhvBNsags59jIfXwgzJyP+KszePoDs7Pqo\no/yC1k42oAPLuvD4H+BzFdb7wMl/oM7U6SHz8YUQ5SIj/kqgcFG1OzdFIRv1Rub5QBo0soOn98Hl\n2rChA2Tdlvn4Qgg9GfFXMeqsnT8pDP0M1DteZYFFQwg6Bf5JsMEbjrdAve2hLUePSugLIR6MjPhN\nSA39K3e+U+fcq8son4WGltB/LyTbw/p2kFkDC4s01qx5R3r5QohiZMRfRTRpEsz585aoUzXzUefm\nNwCtFgLToMNR2OwJh1sCmYSFtZQ5+UIIg5ARv5FFRcXQr994dLqCG6TcOXmLDdTXwtPRkGEBaztC\neh52dlfJyjpg0pqFEJWbjPgrMbW1c5rCu2JlAragvQCdddDpMGxrBQfbABkS+kKICiGLtBlBwQJr\nMTEFtzcsCP0sqJcJI09Bs1PwTSc46EHBCVwJfSFERZARfwVTWzuT0OkaoJ7A1QJpoMmCRy7DY2dh\nZyvY3xywAdIIC/OTfr4QosJIj78CqfPzf0a96XlN1H5+PtSxhn47QNHAmtZwsw4FC6sFBjZg164F\npixbCFHFyHr8lcTQoROZPn05UBt1pJ8Jmtvwz9MwOgpOtIKFreGmE+qVumlMmxYioS+qpBdeeIEa\nNWqwc+fOYts//fRTvLy88PPzo0ePHpw/f77Mr3nu3Dk6duxIy5YtGTJkCLm5uSXuN3HiRHx8fPDx\n8eHHH3/Ub9+xYwcBAQH4+Pjw3HPPodPp9I9FR0fj7++Pt7c3QUFB+u0jR47ExcUFHx+fMtdZJSmV\nSCUr54GFhU1Q4AkF+igwWP261gsKI+oojKqjUPcxBZ5UYJACvRUvr/6mLlmIcsvPz1d0Op3y7rvv\nKkOGDFGOHj2qeHh4KIcPH9bvs3PnTiU7O1tRFEX58ssvlcGDB5f59QcNGqQsX75cURRFefHFF5Uv\nv/zynn3Wr1+vBAcHKzqdTsnMzFQ6dOigpKenKzqdTnF3d1dOnz6tKIqivPPOO8r8+fMVRVGUmzdv\nKp6enkpiYqKiKIpy7do1/evFxMQosbGxire3dzl/GqZV3uyUEb8BRUXF4ODQiaVLj6G2dhzUP+3O\nwJiFEO8D37aGG44UHeUfPbrKpHULUVYJCQm0bt2a8PBwfHx8WLx4MSdOnGDJkiV4eXmxdu1ann/+\neS5cuABAUFAQtra2AHTs2JGkpKQyHUdRFHbu3MnAgQMBCA8PZ/Xq1ffsd+LECQIDA9Fqtdjb2+Pr\n68vGjRu5ceMG1tbWtGjRAoAePXqwcuVKAJYsWcKAAQNwc3MDoF69evrX69KlC05OTg/406k65OSu\ngURGzmXGjB9RlDqoN01JBsds6JsADsmw0Auu2gP1gXS8vPI4enSTSWsW4kGcOXOGRYsW8c9//hOA\nESNG6B9r0aIF+/btK/F58+fP58knnwQgPT2dwMB7r0DXaDQsWbKEevXqUbt2bbRadWzaqFEj/S+T\novz8/Jg+fTpvvvkmmZmZ7Ny5Ey8vL5ydncnLy+PAgQMEBATw008/6X/pnD59mtzcXLp160Z6ejqv\nvfYazz777MP9UKoYowZ/YmIiI0aM4OrVq2g0GsaMGcOrr75qzBIMLioqhlGjZnLlii3qNM26QDb4\nXoZecfC7D+z+EfJ3oq64GScncEWV1qRJE33ol9XixYuJjY3ls88+A8DR0ZGDBw/ed//r16+X6XWD\ng4P5448/6Ny5M87OznTq1En/y2LZsmW8/vrr3Lp1i549e+q35+bmEhsby/bt28nKyqJTp0488sgj\ntGzZslzvqSozavBbWVnx2Wef0bZtWzIyMggICCA4OBgPDw9jlmEwUVExDB/+H1JSrAF/4E+okQx9\n4sApHRY9BpdvAR9TcMNzCX1R1Tk4OJRr/23btvHee+8RExODlZUVoI74u3TpgkajuWf/pUuX0rp1\na1JSUsjPz0er1ZKUlESjRo1KfP1JkyYxadIkAIYNG0br1q0BeOSRR4iJiQFgy5YtnD59GgB3d3fq\n1auHnZ0ddnZ2BAYGEhcXJ8FfURo0aECDBg0AqFGjBh4eHly8eLHKBv/UqctJSbFCHenngddpeOI0\nxDaCFd1AZ4W68Jo1Wm0yU6eGyNr5wqwcPHiQF198kc2bNxfrpTs6OnLo0KG/fW63bt1YsWIFgwcP\nZuHChfTv3/+effLz87l58yZ169bl8OHDHD58mJ49ewJw7do1nJ2duXXrFh9++CFTpkwBoF+/frzy\nyivodDpu3brFb7/9xhtvvGHAd135mazHn5CQwMGDB+nYsWOx7ZGRkfqvg4KCik21qkyiomI4cSID\nsAP7VHjqV6h/EpZ2hwu9gCjACrDAwSGN5csnyqqaolooaZR+PxMmTCAzM1N/krZJkyYlnqQtyQcf\nfMCQIUOYMmUK7dq1Y9SoUQAcOHCAr776innz5nH79m39uYJatWrxww8/6Fs6H330EevXryc/P5+x\nY8fqs6RNmzb07t0bX19ftFotzz//PJ6engCEhYWxa9cubty4gbu7OzNmzCAiIqLM79dYoqOjiY6O\nfuDnm+QCroyMDIKCgpgyZUqx3+JV6QKuXr2msGUL0CYanjoIR3xgx7uQ9wlqL1+9ICsszFeuwhVC\nVKhKv0hbbm4uAwYMYPjw4SV+dKsqbt2yBE1X8PkOVnSE882AGOARQIeDw2mWL39bRvlCiErHqPP4\nFUVh1KhReHp6Mn78eGMe2uBsbPJA6QYrlsD5OkACcAg4QvPm51m+fKyEvhCiUjJqq+eXX34hMDAQ\nX19ffZ9w1qxZ9O7dWy2mCrV6oqJieO21zcTHz9Rva958ErNn95bAF0IYVXmzUxZpewhRUTF88cVW\ncnIssLXVMW5csIS+EMLoJPiFEMLMyOqcQggh/pYEvxBCmBkJfiGEMDMS/EIIYWYk+IUQwsxI8Ash\nhJmR4BdCCDMjwS+EEGZGgl8IIcyMBL8QQpgZCX4hhDAzEvxCCGFmJPiFEMLMSPALIYSZkeAXQggz\nI8EvhBBmRoJfCCHMjAS/EEKYGQl+IYQwMxL8QghhZiT4hRDCzBg1+Ddt2kSbNm1o2bIlH3zwgTEP\nbRTR0dGmLuGhSP2mU5VrB6m/qjFa8Ot0Ol555RU2bdrE8ePHWbp0KSdOnDDW4Y2iqv/PI/WbTlWu\nHaT+qsZowf/777/TokULmjZtipWVFUOGDGHNmjXGOrwQQog7jBb8Fy5cwN3dXf+9m5sbFy5cMNbh\nhRBC3KFRFEUxxoFWrlzJpk2bmDdvHgCLFy/mt99+44svvigsRqMxRilCCFHtlCfKLSuwjmIaNWpE\nYmKi/vvExETc3NyK7WOk30FCCGHWjNbqad++PadPnyYhIYHbt2+zfPly+vbta6zDCyGEuMNoI35L\nS0v++9//0qtXL3Q6HaNGjcLDw8NYhxdCCHGHUefxP/HEE5w8eZIzZ87w9ttvF3usKs/xT0xMpFu3\nbnh5eeHt7c3nn39u6pLKTafT4e/vT0hIiKlLKbeUlBQGDhyIh4cHnp6e7Nu3z9QllcusWbPw8vLC\nx8eHoUOHcuvWLVOX9LdGjhyJi4sLPj4++m3JyckEBwfTqlUrevbsSUpKigkr/Hsl1f/WW2/h4eGB\nn58foaGhpKammrDC+yup9gKffPIJWq2W5OTkUl+nUly5W9Xn+FtZWfHZZ59x7Ngx9u3bx5w5c6pU\n/QCzZ8/G09OzSp5gf+2113jyySc5ceIEhw8frlKfJBMSEpg3bx6xsbEcOXIEnU7HsmXLTF3W34qI\niGDTpk3Ftr3//vsEBwdz6tQpunfvzvvvv2+i6kpXUv09e/bk2LFjxMXF0apVK2bNmmWi6v5eSbWD\nOvjcunUrTZo0KdPrVIrgr+pz/Bs0aEDbtm0BqFGjBh4eHly8eNHEVZVdUlISGzZsYPTo0VXuBHtq\naiq7d+9m5MiRgNpSrFWrlomrKruaNWtiZWVFVlYWeXl5ZGVl0ahRI1OX9be6dOmCk5NTsW1r164l\nPDwcgPDwcFavXm2K0sqkpPqDg4PRatU47NixI0lJSaYorVQl1Q7wxhtv8OGHH5b5dSpF8FenOf4J\nCQkcPHiQjh07mrqUMnv99df56KOP9P/jVyXnzp3D2dmZiIgI2rVrx/PPP09WVpapyyqzOnXq8Oab\nb9K4cWNcXV2pXbs2PXr0MHVZ5XblyhVcXFwAcHFx4cqVKyau6MF9++23PPnkk6Yuo8zWrFmDm5sb\nvr6+ZX5OpfiXXhXbCyXJyMhg4MCBzJ49mxo1api6nDJZv3499evXx9/fv8qN9gHy8vKIjY1l7Nix\nxMbG4uDgUKnbDHeLj4/nP//5DwkJCVy8eJGMjAx++OEHU5f1UDQaTZX9Nz1z5kysra0ZOnSoqUsp\nk6ysLN577z2mT5+u31aWf8eVIvjLMse/ssvNzWXAgAEMHz6c/v37m7qcMtuzZw9r166lWbNmhIWF\nsWPHDkaMGGHqssrMzc0NNzc3OnToAMDAgQOJjY01cVVlt3//fjp37kzdunWxtLQkNDSUPXv2mLqs\ncnNxceHy5csAXLp0ifr165u4ovL77rvv2LBhQ5X6xRsfH09CQgJ+fn40a9aMpKQkAgICuHr16t8+\nr1IEf1Wf468oCqNGjcLT05Px48ebupxyee+990hMTOTcuXMsW7aMxx9/nO+//97UZZVZgwYNcHd3\n59SpUwBs27YNLy8vE1dVdm3atGHfvn1kZ2ejKArbtm3D09PT1GWVW9++fVm4cCEACxcurFKDH1Bn\nFX700UesWbMGW1tbU5dTZj4+Ply5coVz585x7tw53NzciI2NLf0Xr1JJbNiwQWnVqpXSvHlz5b33\n3jN1OeWye/duRaPRKH5+fkrbtm2Vtm3bKhs3bjR1WeUWHR2thISEmLqMcjt06JDSvn17xdfXV3n6\n6aeVlJQUU5dULh988IHi6empeHt7KyNGjFBu375t6pL+1pAhQ5SGDRsqVlZWipubm/Ltt98qN27c\nULp37660bNlSCQ4OVm7evGnqMu/r7vrnz5+vtGjRQmncuLH+3+9LL71k6jJLVFC7tbW1/mdfVLNm\nzZQbN26U+jpGW6tHCCFE5VApWj1CCCGMR4JfCCHMjAS/EEKYGQl+IYQwMxL8olpJSkqiX79+tGrV\nihYtWjB+/Hhyc3MNeoxdu3axd+9e/fdff/01ixcvBuC5555j5cqVBj2eEIYmwS+qDUVRCA0NJTQ0\nlFOnTnHq1CkyMjKYPHmyQY+zc+fOYhdZvfDCCwwfPhyo2letCvMhwS+qjR07dmBnZ6dfLEyr1fLZ\nZ5/x7bff8uWXXzJu3Dj9vn369GHXrl0AjB07lg4dOuDt7U1kZKR+n6ZNmxIZGUlAQAC+vr6cPHmS\nhIQEvv76az777DP8/f355ZdfiIyM5JNPPtE/r2CG9IEDBwgKCqJ9+/b07t1bf2Xr559/jpeXF35+\nfoSFhVX0j0WIexjtRixCVLRjx44REBBQbJujoyONGzdGp9MV2150ZD5z5kycnJzQ6XT06NGDo0eP\n4u3tjUajwdnZmQMHDvDll1/y8ccfM2/ePF588UUcHR154403ANi+fXuxUb5GoyE3N5dx48axbt06\n6taty/Lly5k8eTLz58/ngw8+ICEhASsrK9LS0ir4pyLEvST4RbXxdy2Wv+vzL1++nHnz5pGXl8el\nS5c4fvw43t7eAISGhgLQrl07fv75Z/1z7r7usej3iqJw8uRJjh07pl9pU6fT4erqCoCvry9Dhw6l\nf//+VW5pA1E9SPCLasPT05Offvqp2La0tDQSExNxdnbmzJkz+u05OTmAuqzzJ598wv79+6lVqxYR\nERH6xwBsbGwAsLCwIC8v777HLumXjpeXV4kLrkVFRRETE8O6deuYOXMmR44cwcLConxvVoiHID1+\nUW10796drKwsFi1aBKij7DfffJOhQ4fSrFkzDh06hKIoJCYm8vvvvwOQnp6Og4MDNWvW5MqVK2zc\nuLHU4zg6OpKenl5sW9ERv0ajoXXr1ly7dk1/G8jc3FyOHz+OoiicP3+eoKAg3n//fVJTU8nMzDTU\nj0CIMpERv6hWVq1axcsvv8y7777LtWvX6NmzJ3PnzsXKyopmzZrh6emJh4eH/lyAr68v/v7+tGnT\nBnd3dx577LESX7foOYGQkBAGDhzI2rVr9fdXvnvEb2VlxU8//cSrr75KamoqeXl5vP7667Rq1Ypn\nn32W1NRUFEXhtddeo2bNmhX4ExHiXrJIm6i29u7dy/PPP8+KFSuq1H14hahoEvxCCGFmpMcvhBBm\nRu0E/XgAAAAkSURBVIJfCCHMjAS/EEKYGQl+IYQwMxL8QghhZiT4hRDCzPw/3iVcVcwfBiIAAAAA\nSUVORK5CYII=\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Significant wave-height data on Gumbel paper," + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "gum = ws.gumbel_r.fit2(Hs)\n", + "tmp = ws.probplot(Hs, gum.par, dist='gumbel_r', plot=plt)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "c:\\pab\\workspace\\pywafo_svn\\pywafo\\src\\wafo\\stats\\estimation.py:722: RuntimeWarning: invalid value encountered in sqrt\n", + " self.par_lower = self.par - zcrit * sqrt(pvar)\n", + "c:\\pab\\workspace\\pywafo_svn\\pywafo\\src\\wafo\\stats\\estimation.py:723: RuntimeWarning: invalid value encountered in sqrt\n", + " self.par_upper = self.par + zcrit * sqrt(pvar)\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVHX7x/H3sMkiIiLigqLhhmwqmraI5F6JC5qFmrvZ\n8rT6pE9aT2S5lPkz9ckW03LPMldQMxfESlNBCZdEERLcNxbZGc7vjyMDCIToMAPM/bquLpkz58y5\n8coPX+7zPd+jURRFQQghhMkwM3YBQgghDEuCXwghTIwEvxBCmBgJfiGEMDES/EIIYWIk+IUQwsRI\n8IsawczMjHPnzt3Xsc2bN2f37t2lvrd//37atm1bbN89e/YAMGvWLCZOnHhf56yI8PBwmjZtWunn\nEaZDgl8YTfPmzbG1tcXe3p6GDRsyduxY0tPTDV6HRqNBo9GU+l63bt3466+/iu1bYNq0aSxZsgSA\nhIQEzMzMyM/Pv68avvvuO8zNzbG3t8fBwYEOHToQFhZW4c8ZM2YM77333n3VIEyHBL8wGo1GQ2ho\nKGlpaURFRXHkyBE++uijEvvl5eUZobr78yD3Qz722GOkpaWRnJzM+PHjGTZsGMnJyXqsTgiVBL+o\nEho3bky/fv04ceIEoLZuFi9eTKtWrWjTpg0AS5YsoVWrVjg5OTFw4EAuXbpU7DPCwsJwd3fH2dmZ\nKVOm6EI4Li6OHj16UL9+fZydnRk5ciQpKSnFjj106BCenp7Uq1ePcePGkZ2dDfxzmyUkJITnn38e\nAH9/fwDq1q1LnTp1iIiIwMnJiePHj+v2v3r1KnZ2dty4caPUzyuoV6PRMHbsWDIzM0ttX506dYqA\ngAAcHR3x8vJi69atAHz99desWbOGTz75BHt7ewYOHFjWX7cwcRL8wqgKwi4xMZHt27fToUMH3Xub\nN2/m8OHDnDx5kj179jBt2jR+/PFHLl26hJubG88991yxz9q0aRORkZFERUWxefNmli1bpntv+vTp\nXLp0iVOnTpGYmEhISEixGtasWcPOnTuJi4sjNja21N887la07bN//34AUlJSSE1Nxd/fn+eee45V\nq1bp9lm7di29evXCycnpHz83Ly+Pb775Bnt7e1q1alXsvdzcXAIDA+nXrx/Xrl1j0aJFjBgxgtjY\nWF544QVGjBjB1KlTSUtLY/PmzeV+D8I0SfALo1EUhUGDBuHo6Ei3bt0ICAhg2rRpuvffeecd6tat\nS61atVi9ejXjx4+nffv2WFlZMXv2bA4cOMD58+d1+0+dOpW6devStGlT3njjDdauXQuAu7s7PXv2\nxNLSkvr16/Pmm2+yb98+3XEajYZ//etfNGnSBEdHR6ZPn647trz6S/u6wKhRo4p9zsqVK3W/IZTm\n4MGDODo60qhRI9atW8fGjRuxt7cvsU96ejr/+c9/sLCw4IknnqB///668yiK8kDtJmEaLIxdgDBd\nGo2GzZs306NHj1LfL9piuXTpEp06ddK9trOzw8nJiQsXLtCsWbMS+zdr1oyLFy8CcOXKFV5//XV+\n/fVX0tLSyM/Pp169emWeq+ixD6JLly7Y2NgQHh5Ow4YNiYuLY8CAAWXu37VrV91vDmW5ePFiidaT\nm5ubrt6yLlILUZSM+EWVVTTEGjduTEJCgu51eno6N27coEmTJrptRUf/58+f1703bdo0zM3NOX78\nOCkpKaxcubLE7Ju7j23cuPF911rU6NGjWbVqFStXruSZZ57BysqqQp97t8aNG5OYmFhsVP/333/r\nvlcJfnEvJPhFtRAcHMy3335LdHQ02dnZTJs2ja5du+pG+wCffvopycnJJCYmsnDhQp599lkAbt++\njZ2dHXXq1OHChQvMnTu32GcrisLnn3/OhQsXuHnzJjNnzixx/aA8zs7OmJmZERcXV2z7yJEj2bBh\nA6tXr2bUqFH3+d0X6tKlC7a2tnzyySfk5uYSHh5OaGiorl4XF5f7vp9BmA4JflEl3T1y7dmzJx9+\n+CFDhgyhcePGxMfH8/333xfbZ+DAgfj5+dGhQwf69+/PuHHjAHj//feJiorCwcGBwMBAhgwZUuzz\nNRoNI0aMoE+fPri7u9OqVSvefffdMmspur3gPVtbW6ZPn85jjz2Go6Mjhw4dAtQWUseOHTEzM+Px\nxx//x+/3n0brBe9ZWVmxdetWtm/fjrOzM//6179YuXIlrVu3BmD8+PGcPHkSR0dHgoKCyvw8Ydo0\n8iAWISrX+PHjadKkCTNmzDB2KUIAlTDiHzduHC4uLnh7exfbvmjRIjw8PPDy8mLq1Kn6Pq0QVVJC\nQgIbNmxg/Pjxxi5FCB29B//YsWPZsWNHsW179+5ly5Yt/Pnnnxw/fpx///vf+j6tEFXOe++9h7e3\nN1OmTMHNzc3Y5QihUymtnoSEBAIDA4mJiQFg2LBhvPjii2VO2xNCCGE4Brm4e+bMGSIiIujatSsB\nAQEcOXLEEKcVQghRCoPcwJWXl8etW7c4ePAghw8fZtiwYaVOOZM5yEIIcX8q0rwxyIjf1dVVN7Ws\nc+fOmJmZ/eNCVVX9v/fff9/oNUidUmd1rVHq1P9/FWWQ4B80aJDu4RWxsbHk5OSUu1CVEEKIyqH3\nVk9wcDD79u3jxo0bNG3alBkzZjBu3DjGjRuHt7c3VlZWrFixQt+nFUIIcY/0HvxlrWq4cuVKfZ/K\naAICAoxdwj2ROvWrOtRZHWoEqdPYqtSduxqN5r76VUIIYcoqmp2yVo8QQpgYCX4hhDAxEvxCCGFi\nJPiFEMLESPALIYSJkeAXQggTI8EvhBAmRoJfCCFMjAS/EEKYGAl+IYQwMRL8QghhYiT4hRCiHGnZ\naWw9vdXYZeiNBL8QQvyDA4kH6PBVB8LOhNWYRSQN8uhFIYSobnK1uXwY8SFfR37Nl/2/ZFDbQcYu\nSW8k+IUQ4i6xN2IZuWEkTrZOHJ10lEb2jYxdkl5Jq0cIIe5QFIWvI7/msWWPMab9GLYN31bjQh9k\nxC+EEABcTb/K+C3juZh2kYgxEXg4exi7pEojI34hhMkLjQ3F90tfvBt4c2D8gRod+lAJwT9u3Dhc\nXFzw9vYu8d68efMwMzPj5s2b+j6tEEJUWHpOOi+Gvsir21/lh6E/MKvnLKzMrYxdVqXTe/CPHTuW\nHTt2lNiemJjIL7/8gpubm75PKYQQFXb4wmE6ft2RzLxMjk06Rje3bsYuyWD0HvzdunXD0dGxxPa3\n3nqLTz75RN+nE0KICsnLz+OjiI/ov7Y/Hz7xIcsHLcfB2sHYZRmUQS7ubt68GVdXV3x8fAxxOiGE\nKFXczTie3/g8dlZ2RL0QRZM6TYxdklFUevBnZGQwa9YsfvnlF922f7r7LSQkRPd1QEAAAQEBlVid\nEMIUKIrCd8e+Y8quKUzvNp3XuryGmab6zm0JDw8nPDz8vo/XKJVwD3JCQgKBgYHExMQQExNDr169\nsLW1BSApKYkmTZpw6NAhGjRoULwYjabG3BIthKgarmdcZ1LoJM7cOMPqoNV4u5SceFLdVTQ7K33E\n7+3tzZUrV3SvW7RoQWRkJPXq1avsUwshTNzPZ39m/JbxBHsHsyZoDbUsahm7pCpB77/rBAcH8+ij\njxIbG0vTpk359ttvi72v0Wj0fUohhCgmMzeT17a/xsStE1kxeAVze8+V0C+iUlo990taPUKIB3X0\n0lFGbBiBb0NfFj+1GEebkrMMa5oq1+oRQghD0OZr+fT3T5l3YB6f9fuM4d7DjV1SlSXBL4So9v5O\n/ptRm0ahQcPhiYdxqys3iv6T6jufSQhh8hRFYdWfq+i8pDNPt3qa3aN2S+jfAxnxCyGqpVuZt3gp\n7CVirsaw8/mdtG/Y3tglVRsy4hdCVDt74vfg+6UvLrVdODLxiIR+BcmIXwhRbWTnZTN9z3S+P/49\nywYuo497H2OXVC1J8AshqoWYKzGM2DCCVk6tiH4xGidbJ2OXVG1J8AshqrR8JZ/PDn7G7F9nM7f3\nXEb7jjbojaBhYREsXLiT7GwLatXK47XX+vD00/4GO39lkOAXQlRZSalJjN40mqy8LP6Y8AcPOT5k\n0POHhUXw+us/Exc3U7ctLm46QLUOf7m4K4Sokn448QN+X/vRo3kP9o3ZZ/DQB1i4cGex0AeIi5vJ\nokW/lHFE9SAjfiGEUZTVQknJSuHV7a/yx4U/CBseRqfGne75WH3Lzi49IrOyzPV+LkOS4BdCGFxZ\nLZQTaX/yxZV5PNnySaJeiMLOyu6ejwX9t19q1cordbu1tVav5zE0afUIIQyuRAvFPIe45vn8N+Yd\n/vfk/1j89OJSQ7/UY6m89strr/XB3X16sW3u7tN49dXeej+XIcmIXwhhcMVaKPVPwZARkOpKx0Mv\n8vTMp+/92CIqo/1S8BvEokXvkZVljrW1lldf7VetL+yCBL8QwgjUFooCD38O3T+A3bMgagJ1+v73\nHo8tqbLaL08/7V/tg/5uEvxCCIMb+aIf+91akqnUh6W/w81Wd1oo/co99rXX+hAXN71Yu+dejxUq\neRCLEMKgNp7ayEthL9HT4UmubWhETqbVnRZK73seWYeFRbBo0S9F2i/3fmxNVNHslOAXQhhEWnYa\nb/z8BvsS9rFy8EoeafqIsUuqMSqanTKrRwhR6Q4kHqD9V+3RoOHopKMS+kZWKcE/btw4XFxc8Pb2\n1m17++238fDwwNfXl6CgIFJSUirj1EKIKiRXm8t/9/6XwesGM6/PPL4Z8A32teyNXZbJq5TgHzt2\nLDt27Ci2rU+fPpw4cYLo6Ghat27N7NmzK+PUQogqIvZGLI8te4zDFw9zdNJRBrUdZOySxB2VEvzd\nunXD0bH4k+179+6NmZl6ui5dupCUlFQZpxZCGJmiKHwd+TWPLXuMMe3HsG34NhrZNzJ2WaIIo0zn\nXLZsGcHBwaW+FxISovs6ICCAgIAAwxQlhHhgV9OvMn7LeC6mXSRiTAQezh7GLqlGCg8PJzw8/L6P\nr7RZPQkJCQQGBhITE1Ns+8yZM4mKiuKnn34qWYzM6hGi2gqNDeWFrS8wpv0YQgJCsDK3MnZJJqOi\n2WnQEf93333Htm3b2L17tyFPK4SoROk56UzeOZmf435m3dB1pB5XCHxqRo16cElNY7Dg37FjB3Pn\nzmXfvn1YW1sb6rRCiEp0+MJhRm4cSVfXrhybdIxfd0fXyAeX1DSV0uoJDg5m3759XL9+HRcXFz74\n4ANmz55NTk4O9erVA+CRRx5h8eLFxYuRVo8Q1UJefh5zfp3DokOLWPTkIoZ5DgOgb9932bnzoxL7\n9+37Hjt2fGjoMk1GlWj1rF27tsS2cePGVcaphBAGFnczjuc3Po+dlR1RL0TRpE4T3Xs19cElNY3c\nuSuEuCeKorDs6DK6Lu3KMM9h/Dzy52KhDzX3wSU1jazOKYQo1/WM60wKncTZm2fZO3ovXg28St1P\nVs6sHiT4hRD/6OezPzNuyziGew9nTdAaalnUKvOZtzX1wSU1jazOKYQoVWZuJlN3TWXTX5v4btB3\n9GjRAyj9mbfu7tNZsKCvBLyRyOqcQogHdvTSUfy+9uNaxjWiX4zWhT4Y9pm3onJIq0cIoaPN1/Lp\n758y78A8Puv3GcO9h5fYR2buVH8S/EIIAP5O/ptRm0ahQcPhiYdxq+tW6n4yc6f6k1aPECZOURRW\n/bmKzks683Srp9k9aneZoQ/qzB139+nFtqkzd3pXdqlCT+TirhAm7FbmLV4Ke4mYqzG86PwWod/E\nF5upA5Q6e0eeeVu1VIk7d4UQVd+e+D2M2TSGwR6DGVZrPFPeDC920fbPP8cDDly+/H+6bUXX3ZGg\nr75kxC+EicnKyyL4m9FsP7+d1qcG0ijDjWvXbnH06Od37fkuIOvuVAcy4hdClCosLIKZ36wiqvlP\n5F5xIH9TPDGZTsQA1tajSzlCZu/UVBL8QtRQRe+uTUlNJM75LGm+J+GXR+HYFkCj2zcrq2kpnyCz\nd2qqCgW/VqslPT2dOnXqVFY9QogHUBD2Fy5c49w5DZmZX0KdJBjUDSwawzd/wK0VFA19VR+srV8i\nK+sL3ZaGDS8CbxXr8cu6OzVDucEfHBzMV199hbm5OZ07dyYlJYXXX3+dKVOmGKI+IUQZiob85cvJ\n1K5tydWrtdWwL+jPe/4AT/0LDnrBbzsh34LSR/L+tGu3EmfnomvsjAFk3Z2aqNyLu76+vkRHR7N6\n9WqioqKYM2cOHTt2LPEsXb0UIxd3hbgnhevl9AV+BmZS7GJsrf/AUxegySHYsBoubip8j4gix6jc\n3aexYIGEenWl94u7eXl55ObmsmnTJl555RUsLS3RaO7+NVEIUZnuHt1nZ2u5fXs9atgXBPidf85u\nETD4SzgzHL6Kglw7IAOYfmdfNdxtbJ6lZcvGNG5cW0byJqbc4J80aRLNmzfHx8cHf39/EhIScHBw\nMERtQpi8sLAI3ntvBadOWZKVFYw6Uv8KCLmzR5F/wubZEPAOtF8OW96BM6mA3Z03/WnY8DsaN34F\ne3vnO22bVyTsTVSF5/ErioJWq8XCQv8TgqTVI0ShwnaOBrVNU3Re/bvFtzmfhKBBkAJs/RXSGwAR\n2Nh8XmRUL3fX1lR6X5b58uXLjB8/nn791Cv5p06dYvny5WXuP27cOFxcXPD29tZtu3nzJr1796Z1\n69b06dOH5OTkey5QCFNVuPxxwSCr6GCrD2rrpjc83BfGdIfDb8P3S7DJfxVv7zfp2/cXfvzxFf78\ncz47dnwooS90yg3+MWPG0KdPHy5evAhAq1atmD9/fpn7jx07lh07dhTbNmfOHHr37k1sbCw9e/Zk\nzpw5D1i2EDVf4fLHeXf9CeAPtTvBiPGYtT+E44aH8c49Sd++uyTsRbnKDf7r16/z7LPPYm6u3q1n\naWn5j22ebt264ejoWGzbli1bGD1avTNw9OjRbNq06UFqFqLGCwuL4PjxU3deFYzuC/4EPDbAiy/h\nmNGIDf1/4ubZMAl7cc/KbdTXrl2bGzdu6F4fPHiwwhd3r1y5gouLCwAuLi5cuXKlzH1DQkJ0XwcE\nBBAQEFChcwlR3RRcwE1IuE1OTib5+ZlotS3IyXmFwpk4AL9gYXcMTb/maFok0yF+MO+NHytBb4LC\nw8MJDw+/7+PLvbgbGRnJq6++yokTJ/D09OTatWusX78eX1/fMo9JSEggMDBQN9ff0dGRW7du6d6v\nV68eN2/eLFmMXNwVJqIg7GNjL5Gebg20BQrm5BdczAV1zv0vgDkOXr9iM+IU/T2fYn7f+dS2qm2c\n4kWVo/d5/H5+fuzbt4/Tp08D0KZNGywtLStUlIuLC5cvX6Zhw4ZcunSJBg0aVOh4IWqKgsA/fjyN\n3NyWQMM77xTM0JlJ4VRNAH8wewS6f0hG14N8N2gVg9oOMnDVoqYpN/iXL19e7KdJVFQUAKNGjbrn\nkwwYMIDly5czdepUli9fzqBB8j+uMD0hIYv55JM/ycxsiBr4H1E85O++mAs4xULQSMhw4rGYCRL6\nQi/KDf7Dhw/r7tTNyspi9+7ddOzYsczgDw4OZt++fVy/fp2mTZsyY8YM/vOf/zBs2DCWLl1K8+bN\n+eGHH/T7XQhRxYWFRfDJJ/vIzFxH8bDPK+XrPsA08HODHu9C+Ac8dDORfy940lDlihquwjdwJScn\n8+yzz/Lzzz/rvxjp8YsaqmPHVzh61Bk19N+9s/Uj1B7+ctTfAO70+O1ehwGDwf4cVmEP4+XiyowZ\nz8pFXFEmvd/AdTdbW1vi4+MrepgQJiksLIKOHScQHX2L4iP6S6gzdvyB0cBVNJp5WHruRPOSG85K\nLr3Pj2XDV5OJjPxcQl/oVbmtnsDAQN3X+fn5nDx5kmHDhlVqUULUBMV7+lA4D79geuZKYAC1a9vj\n7mFH4zFwKvc6KwbtpJtbN2OULExEua2eonNFLSwscHNzo2nT0p7Wo4dipNUjaoCwsAhee20B585p\ngU2o7Z0eqFM1+1IwPVOj+ZP//rcXT0/szMiNI+nq2pWF/RbiYC2LIIqK0ft0TrmBSoh7Uxj4CmAJ\nFKxXlUfBUsgFoQ9a2nd0xPyJG/Rf259FTy5imKf8Ji0Mo8zgr127dpnr7ms0GlJTUyutKCGqm5CQ\nxcyeHU5OjgXQCvWfVtGefvG18Jv5vkTmc38Qcf48US9E0aROE2OULUxUhWf1VCZp9Yjqpnhbx4vi\nc/H7UPikK/UOXI3ZWZoGXiG5cxQf9AzhtS6vYaap8BwLIYrRe6unwNWrV8nKytK9btasWcUqE6KG\nCQuLYMKE5Vy+bEHxtg4Uhn5f4D3AHI1dFG3+fQGrhgphQb/i1cDLCFULcQ/TObds2UKrVq1o0aIF\n3bt3p3nz5jz5pNxIIsTChTu5fLkR4IEa+AWj/EvcfSHXos0uav/7N/o/1ptDEw5J6AujKjf43333\nXQ4cOEDr1q2Jj49n9+7ddOnSxRC1CVGlqevlF/Tyiwa+Oi8fvgDLE9R5bh2Oo8+wafQG5vaeSy2L\nWsYrWgjuIfgtLS2pX78++fn5aLVannjiCY4cOWKI2oSokgpuytq//xDFe/lFAp9kXDvdpumHUTw1\ntD2n3/iLHi16GLFqIQqV2+N3dHQkLS2Nbt26MWLECBo0aEDt2rIcrDAdBRdwExJukZ+fDbgAjkAj\nSrZ1mmBZKwb//2j50+4PPuv3GcO9hxuveCFKUeasnh9//JHAwEC0Wi3W1tbk5+ezevVqUlNTGTFi\nBE5OTvovRmb1iComJGQxH320Fa3WHrAHbqNO14TCtXZW3tluhV2TyzR/8zL1nRxZPmg5bnXdjFO4\nMCkVzc4yg3/QoEH89ttv9OvXj+DgYPr27at7/GJlkeAXVcnw4VNZu/Y0UIvCsC/6S3JIka8V8FmN\nZf9JfPTU+0x+ZDLmZpX770WIAnoLfoCUlBQ2btzI999/z7Fjxxg0aBDBwcF0795dL8WWKEaCX1QB\nYWERjB8/kytXbID2QALQ/M67RZdRvvOULOtb0P8laBDDI5ce5fcNSwxYrRB6Dv6irl+/zk8//cTn\nn3/OzZs3SUpKuu8iyyxGgl8YmTrKPwPkAn6oQX+GwhF/H9RllAEaQoseMGgMnBqCS4yWpV89Iytp\nCoOrlGWZb926xYYNG1i3bh03b97kmWeeue8ChaiqQkIWs3ZtLNAOcKJwxk4uEEux6ZoW+dBnLQzu\nj+V2dzpezZXQF9VGmSP+tLQ0XZsnKiqKAQMGEBwcTEBAQJlr+DxwMTLiF0ZUp04QaWk+d16dAl6h\ncMbOQuAWoECDPDRD/8Qhz4nFT31G8MDAMj5RCMPQW6unfv369O3bl+DgYPr06YOVlZXeiiyzGAl+\nYQQhIYuZNWsVubmuQOs7WxsDfwLD0a2oqTlGh5dSSWwew9zecxntO7rSBkFCVITe1uo5f/48tra2\neilKiKoqJGQxH3ywFXVuvobCHr4C+ACLAWuok4jLpLPYtm3KH4P/4CHHh4xXtBAPyKCrc86ePZtV\nq1ZhZmaGt7c33377LbVqFd6+LiN+YUhhYREMHPgxWm1t1PV2GlA4yi+Ym5+Lw2MX4Mm/eLvbv5n6\n+FQszO55bUMhDKLSn7l7vxISEliyZAlRUVHExMSg1Wr5/vvvDXV6IYopWFlTvTHLBvVC7ssUjvJz\noVY2tZ8/jMtzN9k19hem+0+X0Bc1gsH+L65Tpw6WlpZkZGRgbm5ORkYGTZrIwyeEcRSurHkGyKT4\nw1JeBrcIGPw0/q168sOE1dhZ2RmzXCH0qszgL/qQ9bt/jdBoNGzZsqVCJ6pXrx6TJ0+mWbNm2NjY\n0LdvX3r16lViv5CQEN3XAQEB8uhHoXdhYRHs3XsSdXTfHdgKrAGGg/k0eCICfCPxT3masJfXG7VW\nIUoTHh5e7HnoFVVmj7/gQzdu3Mjly5cZOXIkiqKwdu1aXFxc+Oyzzyp0ori4OAIDA9m/fz8ODg48\n88wzDB06lBEjRhQWIz1+UcnCwiIYNuxTMjK0QAfUu28XA+vBOQ+CYiDVin+3fou5IVONW6wQ90jv\nd+76+fkRGRlZ7rbyrFu3jl9++YVvvvkGgJUrV3Lw4EE+//zzwmIk+EUlCAuL4L33VnDy5Dmys81Q\nb86qi9rXbwh8BA//D7rPwDy8LZv++xH9+1fOsiRCVAa9X9zNyMggLi5O9/rcuXNkZGRUuLC2bdty\n8OBBMjMzURSFXbt20a5duwp/jhAVERYWwbPPLubo0ZtkZ9dCDXwbwBkYDbUTYGRj8JkBS/vgq20r\noS9qvHIv7s6fP58nnniCFi1aAOrsnK+//rrCJ/L19WXUqFF06tQJMzMzOnbsyAsvvFDxioWogNde\n+4b09JaoF3EtUefq37mY67EAnv4NjrwIEdMxYxIzZjxv1HqFMIR7mseflZXF6dOnAXXkXnTuvV6L\nkVaP0DNz86Hk53uhrrAJYAFWV6DfGWh+Gzb0hiQ3IJrg4NasWfOx8YoV4j7pvdWTnp7O3Llz+d//\n/oevry/nz58nNDT0gYoUorKFhCzGwuLhO0/MykMd5WdC047w4j5QsuFLH0jKBA5J6AuTUu6If9iw\nYfj5+bFixQpOnDhBeno6jz76KNHR0fovRkb8Qg/UpZWjAXPUpRcagdkN6H4c/C5C6HT4K+vO+zLS\nF9Wf3tbqKRAXF8cPP/ygu8vWzk5uZBFVV/fuY4mIuAo4oF7EfRictkJQJGRo4UtPuP0bYIeNTQ5T\npvQlJORl4xYthIGVG/y1atUiMzNT9zouLq7SevxC3K+QkMXMmLEURWmEOmMHIAP8zKHHrxDeGg57\nAdnY2FwlI2ObEasVwrjKDf6QkBD69etHUlISw4cP57fffuO7774zQGlC3Bt1lH8RdYVNJyAT7LJg\nwDmw3wvfHoLrHnf2nsCUKfKwFGHa/rHHn5+fz48//kjPnj05ePAgAF26dMHZ2bmsQx6sGOnxiwpQ\n78KdSkaGI2CPOlUTaO0Igd/CsXYQPga0vwPWwDX8/Ruwb9+3RqtZiMpgkDt3K4sEv7gXISGL+eij\n79BqawF1UEPfGiyvQN8EcL8EG8fB+WOofX5bNJrb/Pe/gdLPFzWS3oP/P//5D/Xr1+fZZ58tdmG3\nXr1691+xxAqNAAAgAElEQVRlWcVI8ItyqG2dcxSO8J2AG9A4C4ZEQqI9bPeH7Oaos3a0WFv/xfr1\nr8rzcEWNpffgb968eamPl4uPj694deUVI8Ev/oEa+ldQA70ekA1mWnj8BDwcB9v84WRH4DBgB1hh\nZ5fFunVTJfRFjab34DckCX5RlsLQr1O40fEqBCVATjps6ghp2aitHTsgjeBgH5mfL0xCpdy5++GH\nHzJx4kQAzpw5I3fuCoMKCVlcJPTTgdvQ4SJM+BVOuMCq9yDN7M771tjZpRMa+o6EvhBlkDt3RZVn\nazuAzExbIB1sFQj8AxxzYUMPuJqB2vpRR/n+/g1l1o4wOXof8cfFxTF16lSsrKwAuXNXGFZIyGIy\nM2sB6eB+C17cDTcdYYkHXL2FuuJmLRwdcwgNfUdCX4h7IHfuiipL7etfAgsz6H0a2l6CDZ0goQ5q\n4FsBqbz//pMyTVOICpA7d0WVExYWQVDQZHJy6kMjLQT9Dpfrwhc9IEuheOgPkNAXooLuaVbP9evX\ndXfudu3alfr161dOMdLjN3khIYv54IO1oLGDRy/Co6dhx1SIOQ5kI6EvREl6m84ZGRlZYv6+oii6\nbR07dnyAMssoRoLfpKmtnSSomw+D/wRFgY3ekPIo0Bf4BfVC7ilsbK6RkbHHuAULUUXobVnmyZMn\no9FoyMzMJDIyEh8fHwD+/PNPOnXqxIEDBx68WiHucHPrzfnz5uCTDH1j4Pfm8HsLUGxQH5toRsGd\nuJDHlClDjVmuENVambN6wsPD2bt3L40bNyYqKorIyEgiIyM5evQojRs3NmSNogYbPnwqGo0P56/l\nw9AT8PhfsPJh+M1NHfFjAeQD0cBfQCT+/nWkxSPEAyh3Oudff/2Ft7e37rWXlxenTp26r5MlJycz\ndOhQPDw8aNeune66gTBNDRp0Y+3ag9DCGl48ALet4OuOcNkadS2efOACkAHUApIJDvaWKZtCPKBy\nZ/X4+PgwYcIERo4ciaIorFmzBl9f3/s62euvv85TTz3F+vXrycvLIz09/b4+R1Rvai//MFg0hj5x\n4HUJNntBXH3U5+PWAW7f+boeYIm1dRrr10+TNXeE0INyZ/VkZWWxePFi9u/fD4C/vz8vvfQS1tbW\nFTpRSkoKHTp04Ny5c2UXIxd3azwvr8GcOHEZGpjDkONwwx62toFMc9TVNusAqRS9G9fT05rjxzca\ns2whqjS9PnM3Ly+PJ598kr179/LWW289UGHx8fE4OzszduxYoqOj8fPzY8GCBdja2hbbLyQkRPd1\nQEAAAQEBD3ReUXV4eQ3mxMlMeCQZHj8Hv7SBY82AXNTWTipqa8cBsAVSCQ72lTV3hLhLeHg44eHh\n9318uSP+nj178tNPP1G3bt37PgnAkSNHeOSRR/j999/p3Lkzb7zxBnXq1GHGjBmFxciIv8YJC4tg\nxIj3SEm5AXXqwaDTYKGFjV5wqxaQhfqM3FTU1o66nDKk8f77g+QirhD3QK8jflDX5vH29qZ37966\ndXo0Gg0LFy6sUGGurq64urrSuXNnAIYOHcqcOXMq9BmielHbOheBfPC0gKcOwcFm8NtDkN8ISAMU\n4DzqCN8esMTRUcvKle9KP1+ISlJu8AcFBREUFFTsJ0ppD2YpT8OGDWnatCmxsbG0bt2aXbt24enp\nWfGKRbVga+tHZqYj1KoDT52EJqmwujNcNANSgKaoQX8D9SHplpibp7J589sS+EJUsnJbPZmZmZw9\nexaNRkPLli0rfFG3qOjoaCZMmEBOTg7u7u58++23ODg4FBYjrZ5qLywsgv79XwaaglsGDD4CZxrB\nzocgNw9ogXpDVjrQAKgN3JYLuEI8AL0t2ZCbm8v06dNZtmwZzZo1A+D8+fOMHTuWWbNmYWlpqZ+K\nixYjwV+tqaE/GczrwRN/g28CbPGCM85AQ+Acaj/fEXW6phVwA39/Z5mbL8QD0Fvwv/HGG9y+fZv5\n8+djb28PQGpqKpMnT8bW1pYFCxbop+KixUjwV2sWFr3Q1suGoOOQYgVbW0K6OZAJtEe9eHsC9QHp\n6khfHo8oxIPTW/C3bNmS2NhYzMyK39yr1Wpp06YNZ8+efbBKSytGgr9aUlfU/BwetoDuf8HuVhBV\nD3WaZhPgGmpfvxHS2hFC//Q2q8fMzKxE6AOYm5uXul2YJi+vwZw4fw5GXgXrPFjaBW46od6AdRWI\nR+3lN0AN/DyOH99uzJKFMHllJriHhwfLly8vsX3lypW0bdu2UosS1YOtrR8n8hNg0l+Q1ACW+cDN\nHKA+6iqaZkBjwAaN5gahoe/IKF+IKqDMVk9SUhJBQUHY2Njg5+cHqGv0Z2RksHHjRlxdXfVfjLR6\nqgUvr8GcOPMXPJkGbsmwoQskWaEuqmaPevdt3Ttfp6HRXCQ/P9qYJQtRo+mtxw/qg1f27NnDiRMn\n0Gg0tGvXjp49e+ql0FKLkeCv8iwsfNA2zoXBf0N8Q/i5JeSYA9ao7Z1U1JU07VCnbCYTGjpT5uYL\nUYn0GvyGJsFfdXXvPpaIXw9B92zwS4TQTvCXA5CMehG3PXAduEXBHbgaTTJbt4ZI6AtRyST4hV7p\nllB2yoegi5BhA5s7we081Jk6CuqiatdQL+Cq7R0bm6tkZEQasXIhTIfe1+oRpktddiEf/IAeZyHc\nCw43QJ2PX7BufhaFoV8bSKNZszz+/ltCX4iqSuZlihLCwiLQaLzINHOA4AvgdwG+7QGHXVBH+deB\n5qgzd7JR19qpDaTy/vuB/P33L0arXQhRPmn1CB31RqwvATNobQ6BJ+FYcwhvBloz1FG+A5CEejdu\nYwpuyFJH+RL4QhiD9PhFhYWFRRAY+CqKYg6W9tA3HtxvqGvmn6+HuoJmHmrPJ4HCB6dYArcIDf1A\nLuAKYUQS/KJC1DXz4wEXdenkoOOQ6ATbW0J2wcNRGqC2eNJRl2BQR/l16twkJeUP4xUvhAAqnp3S\n4zdRISGL0Wi8OHEiBcxcwD8Jgo/C7tawyQOy01EfdF4LuHjnKFcKLuC+/36ghL4Q1ZSM+E2QOsr/\nG3ABRy0ERUEOsMkb0hTUJZObo/byNajLKNuhPgO3vaymKUQVIyN+UabCUX4G0AA6XIMJ++CEM6xq\nCWkpqHfeNgf+Rr0bt/6dP68TGjpdQl+IGkBG/CZAfUDKK+gWTbO1hMAocEyFDW3gqoI6sncCLqNO\n0yxo68iMHSGqOrm4K4pRQ/9V1CdgmUHL2zDgMMQ0gj11QasBHkId4edQdIqmrJkvRPUgwS901Hn5\nPwLWYGEDvWOgbRJsbAEJ1qhTMnO4e7aOLLcgRPVS5Xv8Wq2WDh06EBgYaOhTm5Tu3cfywQdfAY7Q\nKA8m7QTbdPjCAxLsKJyimUfR0A8O9pHQF6KGM/haPQsWLKBdu3akpaUZ+tQmQ11jpz5oGsFjp+CR\nc7CjGcTYok7PtELt5Rc+CtHG5pwEvhAmwqAj/qSkJLZt28aECROkpaNnw4dPRaPxUtfYyawPdc1h\nTCS0vARft4SYuqhBnw6kUTT0/f0bSugLYUIMOuJ/8803mTt3LqmpqWXuExISovs6ICCAgICAyi+s\nmlNH+HmoD0JpBD43oe8x+L0F/O4BigVwDrhE0baOPP9WiOopPDyc8PDw+z7eYBd3Q0ND2b59O59/\n/jnh4eHMmzePrVu3Fi9GLu5WiHrxdjHQVN1gkwNPx0KDZNjQAi5rgIdRV9PMovBRiInk5x83VtlC\nCD2rsrN6pk2bxsqVK7GwsCArK4vU1FSGDBnCihUrCouR4L9nDg5dSE3NQjf9ssVVGHQYTjWAXS6Q\nl486L/8i6ihfQl+ImqrKBn9R+/bt49NPP5UR/31wc+vN+fOXUG+w0oCFLfSMAs9LsNkb4qxRR/dO\n3P1ULCurS2RnHzNe8UKISlHlp3MW0Gg0xjp1tWVm5sX58zdQWzv24KKFiTvBIQW+cIe4HKAt6hIL\nlyj6VCxPT2sJfSEEIDdwVQvqompn0PXyNbWh63F4PA52NoHopqhLLty4c0RTCi7gOjvf5urV/cYo\nWwhhINVmxC/KV7io2t/oRvl1zOH5PeBxAb55CKL9gIw7/zUFPADw96+NomyX0BdClCAj/ipo+PCp\nrF0bhnqjlcudrfbgGQtPnYKDzvCbK+TXRb14Ww95IpYQpqtaXNwtiwQ/NGjQjWvXCi7OagB7qJUL\nTx2CJjdgQ3O46IX6CMR8Ch90LouqCWGqJPirMfVGrAZ3XtUGNOD2NwyOgTNOsNMPcpOAbNQfDOoo\n39LyNhs3viujfCFMlAR/NdS9+1giIg5TeFFWA+ap8EQs+CbBlqZwpgfyoHMhRGkk+KuRwjtvbVCf\ndKXOt8f5tvo4xBRL2Po4pF9HXWOn8OEoMltHCFFAgr+aUEf5x1EDH9TQT4WHT0HARdjVFKJaAVeA\nuhSM8jWaZLZuDZFRvhBCR4K/GlDn5WfdeWV/549rMDAarPNgQ1u4mYM627bw4q2/f0P27fvWKDUL\nIaquimanwdfjN2WF0zTvzMkHIA08LsPTp+DIQxBRD/JzKL5scm327fvRWGULIWoYGfEbiLrGzm0K\n2zbpYJUDT8aAWzJs6ANJ5sAtpK0jhKgIuXO3ilHvvm3P+fMWgCO60G96CV7cD/k28KUfJJ1HXVzN\nGcijWbM08vP3SOgLIfRORvyVSO3l3wRs0bV2zFKh+1/gdwlCPeGvOzdpyZx8IcR9khF/FVAwyj9x\nIhuogxrqt8HpCow/AI3T4ctH4a+6QEPUVTTz8Pd3ICdnp4S+EKJSycVdPVIv3u5CvSjbGDX0AVKg\n09/wxBkI94LD9VEXVXNA/W0gleBgX9as+dg4hQshTIq0evQgLCyCYcOmkpHhgPpLlDlgB6SDXTYM\nPAq182CDB1zPpmhrx84um3XrpsooXwhx36TVY0BhYRG4uw+hf/8PychwRB3B10EX+q1vwIv74IoT\nLPWD69aovwk4Adm8/34vbt8Ok9AXRjVp0iRq167N3r17i23/v//7Pzw9PfH19aVXr16cP3/+nj8z\nPj6eLl260KpVK5577jlyc3NL3W/q1Kl4e3vj7e3NDz/8oNu+Z88e/Pz88Pb2ZsyYMWi1Wt174eHh\ndOjQAS8vLwICAop9nlarpUOHDgQGBt5zraZIgv8+hYQsZuDAhZw7p0VdFrkO6tIL6WCZAv0T4clo\n+LEL7HYCrRb1B4Iljo5aQkPfJSTkZWN+C8KEKYpCfn4+H330Eampqfzxxx+88sorxMTE6Pbp2LEj\nkZGRREdHM3ToUKZMmXLPnz916lQmT57MmTNncHR0ZOnSpSX2CQsL4+jRo0RHR/PHH3/w6aefcvv2\nbfLz8xkzZgzr1q0jJiYGNzc3li9fDkBycjKvvPIKW7du5fjx46xfv77YZy5YsIB27drJE/7KIcF/\nD8LCIujYcQK1az+NuXkvNJrH+eCDMLTatqij/DuBTyY0ua2O8i0y4MuJcN4C9QdDPaytcwkNfYOb\nNzfJKF8YXEJCAm3atGH06NF4e3uzatUqTp06xZo1a/D09GTLli1MnDiRCxcuABAQEIC1tTUAXbp0\nISkp6Z7OoygKe/fuZejQoQCMHj2aTZs2ldjv1KlT+Pv7Y2Zmhq2tLT4+Pmzfvp0bN25gZWVFy5Yt\nAejVqxc//fQTAGvWrGHIkCG4uroCUL9+fd3nJSUlsW3bNiZMmFAtW8aGJBd3yxESspjZs8PJybFH\nnYED6iMOHVD/+rIBBczaQrdN0DkRtvnCSQsgFnUtnjT8/euzb99PRvkehChw9uxZVq5cycMPPwzA\nqFGjdO+1bNmSgwcPlnrc0qVLeeqppwBIS0vD37/kwEWj0bBmzRrq169P3bp1MTNTx5VNmjTR/TAp\nytfXlw8++IDJkyeTnp7O3r178fT0xNnZmby8PCIjI/Hz82P9+vW6HzpnzpwhNzeXJ554grS0NF5/\n/XWef/55AN58803mzp1LamrqA/wNmQaDBn9iYiKjRo3i6tWraDQaXnjhBV577TVDllCqsLAIFi7c\nSXa2BampSUAtcnLyiIuLJSvLAfC664g81MDPA2qD43kICoccG/jKC9Js1e1Y4e5uw4IF/5IRvqgS\n3NzcdKF/r1atWkVUVBTz588HwN7enqNHj5a5//Xr1+/pc3v37s3hw4d59NFHcXZ25pFHHtH9sPj+\n++958803yc7Opk+fPrrtubm5REVFsXv3bjIyMnjkkUfo2rUrp0+fpkGDBnTo0IHw8PAKfX+myKDB\nb2lpyfz582nfvj23b9/Gz8+P3r174+HhYcgyigkLi+D1138mLm4mEAH8DPQFlqPOry+ttmzUYL8I\nHc5AryOwvzX80QwUOyCN4OB2Mj1TVDl2dnYV2n/Xrl3MmjWLiIgILC0tAXXE361bt1L76GvXrqVN\nmzYkJyeTn5+PmZkZSUlJNGnSpNTPnzZtGtOmTQNgxIgRtGnTBoCuXbsSEREBwM6dOzlz5gwATZs2\npX79+tjY2GBjY4O/vz/R0dFERUWxZcsWtm3bRlZWFqmpqYwaNYoVK1ZU6Ps1GYoRDRw4UNm1a5fu\ntaHKCQ3dp/TpM13p3v19xclpmALKnf+mF/lzugLvF/m66H/jFWyHKzzrpvBiPYUG/goMUCBIcXcf\npYSG7jPI9yFERcTHxyteXl73vH9UVJTi7u6unD17tsLneuaZZ5Tvv/9eURRFmTRpkvLFF1+U2Eer\n1SrXr19XFEVRoqOjFS8vL0Wr1SqKoihXr15VFEVRsrKylJ49eyp79+5VFEVRTp06pfTs2VPJy8tT\n0tPTFS8vL+XEiRPFPjc8PFzp379/hWuuziqanUbr8SckJHD06FG6dOlSbHtISIju64CAgBLTtR5U\n8RE+QEiRdy3u+jMP6IM6+i+iZRIM+BVi3GH9w6C1wcIimenTe8pMHVGlVWS2y5QpU0hPT9ddpHVz\ncyv1Im1pPv74Y5577jneffddOnbsyPjx4wGIjIzkyy+/ZMmSJeTk5OiuFTg4OLB69WpdS2fu3LmE\nhoaSn5/Pyy+/rMuBtm3b0q9fP3x8fDAzM2PixIm0a9fugb7P6ig8PPyBWlpGuYHr9u3bBAQE8O67\n7zJo0KDCYgxwA1ffvu+yc+dHRba8C3x019fv3nndh8LWz0qwTIJeMdD2Omxsh9l5V2xt7Wndui4z\nZjwrfXwhhFFU+fX4c3NzGTJkCCNHjiwW+oaSnX33t9wHmA7MLPJ1QY+/IPR/gUZmEPQbXvVbEzE1\nBsf/czRk2UIIoTcGDX5FURg/fjzt2rXjjTfeMOSpdWrVyrtrizpKr1//OTw925KWdhVYR3a2BefP\nHyOfv8jvGk9up794o+2/mTtqhsFrFkIIfTJoq+fXX3/F398fHx8fXQ9u9uzZ9OvXTy3GAK2ekj1+\ncHefxoIF/Uq0ahKSExi1cRRmGjNWDF5BM4dmlVqbEELcD3nm7j0IC4tg0aJfyMoyx9pay6uv9i4W\n+oqisOrPVby18y2mPDqFtx55C3Mz80qvSwgh7ocE/wO6mXmTl8Je4vjV46wOWk37hu2NWo8QQpRH\nVud8ALvP7cb3S18a1W7EkYlHJPSFEDWSrNUDZOVlMW33NH448QPLBi6jj3sfY5ckhBCVxuSD/88r\nfzJiwwjaOLUh+sVonGydjF2SEEJUKpNt9eQr+fzfgf+j54qe/PuRf/PjMz9K6AshTILJjviH/DCE\na+nX+GPCHzzk+JCxyxFCCIMx2Vk90Zej8WzgiYWZyf7sE0LUEDKdUwghTIxM5xRCCPGPJPiFEMLE\nSPALIYSJkeAXQggTI8EvhBAmRoJfCCFMjAS/EEKYGAl+IYQwMRL8QghhYiT4hRDCxBg0+Hfs2EHb\ntm1p1aoVH3/8sSFPrVfh4eHGLuGeSJ36VR3qrA41gtRpbAYLfq1Wy7/+9S927NjByZMnWbt2LadO\nnTLU6fWquvzPIHXqV3WoszrUCFKnsRks+A8dOkTLli1p3rw5lpaWPPfcc2zevNlQpxdCCHGHwYL/\nwoULNG3aVPfa1dWVCxcuGOr0Qggh7jDYssw//fQTO3bsYMmSJQCsWrWKP/74g0WLFhUWo9EYohQh\nhKhxKhLlBnsKSZMmTUhMTNS9TkxMxNXVtdg+sha/EEJUPoO1ejp16sSZM2dISEggJyeHdevWMWDA\nAEOdXgghxB0GG/FbWFjwv//9j759+6LVahk/fjweHh6GOr0QQog7DDqP/8knn+T06dOcPXuWd955\np9h71WGOf2JiIk888QSenp54eXmxcOFCY5dUJq1WS4cOHQgMDDR2KWVKTk5m6NCheHh40K5dOw4e\nPGjskko1e/ZsPD098fb2Zvjw4WRnZxu7JADGjRuHi4sL3t7eum03b96kd+/etG7dmj59+pCcnGzE\nClWl1fn222/j4eGBr68vQUFBpKSkGLFCVWl1Fpg3bx5mZmbcvHnTCJUVKqvGRYsW4eHhgZeXF1On\nTi3/g5QqIC8vT3F3d1fi4+OVnJwcxdfXVzl58qSxyyrh0qVLytGjRxVFUZS0tDSldevWVbJORVGU\nefPmKcOHD1cCAwONXUqZRo0apSxdulRRFEXJzc1VkpOTjVxRSfHx8UqLFi2UrKwsRVEUZdiwYcp3\n331n5KpUERERSlRUlOLl5aXb9vbbbysff/yxoiiKMmfOHGXq1KnGKk+ntDp37typaLVaRVEUZerU\nqVW2TkVRlPPnzyt9+/ZVmjdvrty4ccNI1alKq3HPnj1Kr169lJycHEVRFOXq1avlfk6VWLKhuszx\nb9iwIe3btwegdu3aeHh4cPHiRSNXVVJSUhLbtm1jwoQJVfaCeUpKCvv372fcuHGA2gp0cHAwclUl\n1alTB0tLSzIyMsjLyyMjI4MmTZoYuywAunXrhqOjY7FtW7ZsYfTo0QCMHj2aTZs2GaO0Ykqrs3fv\n3piZqfHTpUsXkpKSjFFaMaXVCfDWW2/xySefGKGikkqr8YsvvuCdd97B0tISAGdn53I/p0oEf3Wc\n45+QkMDRo0fp0qWLsUsp4c0332Tu3Lm6f1hVUXx8PM7OzowdO5aOHTsyceJEMjIyjF1WCfXq1WPy\n5Mk0a9aMxo0bU7duXXr16mXsssp05coVXFxcAHBxceHKlStGrqh8y5Yt46mnnjJ2GaXavHkzrq6u\n+Pj4GLuUMp05c4aIiAi6du1KQEAAR44cKfeYKpEM1W3+/u3btxk6dCgLFiygdu3axi6nmNDQUBo0\naECHDh2q7GgfIC8vj6ioKF5++WWioqKws7Njzpw5xi6rhLi4OD777DMSEhK4ePEit2/fZvXq1cYu\n655oNJoq/29r5syZWFlZMXz4cGOXUkJGRgazZs3igw8+0G2riv+m8vLyuHXrFgcPHmTu3LkMGzas\n3GOqRPDfyxz/qiI3N5chQ4YwcuRIBg0aZOxySvj999/ZsmULLVq0IDg4mD179jBq1Chjl1WCq6sr\nrq6udO7cGYChQ4cSFRVl5KpKOnLkCI8++ihOTk5YWFgQFBTE77//buyyyuTi4sLly5cBuHTpEg0a\nNDByRWX77rvv2LZtW5X9QRoXF0dCQgK+vr60aNGCpKQk/Pz8uHr1qrFLK8bV1ZWgoCAAOnfujJmZ\nGTdu3PjHY6pE8FeXOf6KojB+/HjatWvHG2+8YexySjVr1iwSExOJj4/n+++/p0ePHqxYscLYZZXQ\nsGFDmjZtSmxsLAC7du3C09PTyFWV1LZtWw4ePEhmZiaKorBr1y7atWtn7LLKNGDAAJYvXw7A8uXL\nq+TgBNRZfHPnzmXz5s1YW1sbu5xSeXt7c+XKFeLj44mPj8fV1ZWoqKgq98N00KBB7NmzB4DY2Fhy\ncnJwcnL654Mq48rz/di2bZvSunVrxd3dXZk1a5axyynV/v37FY1Go/j6+irt27dX2rdvr2zfvt3Y\nZZUpPDy8Ss/qOXbsmNKpUyfFx8dHGTx4cJWc1aMoivLxxx8r7dq1U7y8vJRRo0bpZk8Y23PPPac0\natRIsbS0VFxdXZVly5YpN27cUHr27Km0atVK6d27t3Lr1i1jl1mizqVLlyotW7ZUmjVrpvt39NJL\nLxm7TF2dVlZWur/Polq0aGH0WT2l1ZiTk6OMHDlS8fLyUjp27Kjs3bu33M8x2Fo9QgghqoYq0eoR\nQghhOBL8QghhYiT4hRDCxEjwCyGEiZHgFzVKUlISAwcOpHXr1rRs2ZI33niD3NxcvZ5j3759HDhw\nQPf6q6++YtWqVQCMGTOGn376Sa/nE0LfJPhFjaEoCkFBQQQFBREbG0tsbCy3b99m+vTpej3P3r17\ni93ENWnSJEaOHAlUj7tlhZDgFzXGnj17sLGx0S1SZmZmxvz581m2bBlffPEFr776qm7f/v37s2/f\nPgBefvllOnfujJeXFyEhIbp9mjdvTkhICH5+fvj4+HD69GkSEhL46quvmD9/Ph06dODXX38lJCSE\nefPm6Y4rmCEdGRlJQEAAnTp1ol+/fro7ahcuXIinpye+vr4EBwdX9l+LECUY7EEsQlS2EydO4Ofn\nV2ybvb09zZo1Q6vVFttedGQ+c+ZMHB0d0Wq19OrVi+PHj+Pl5YVGo8HZ2ZnIyEi++OILPv30U5Ys\nWcKLL76Ivb09b731FgC7d+8uNsrXaDTk5uby6quvsnXrVpycnFi3bh3Tp09n6dKlfPzxxyQkJGBp\naUlqamol/60IUZIEv6gx/qnF8k99/nXr1rFkyRLy8vK4dOkSJ0+exMvLC0C3BkrHjh3ZsGGD7pi7\n73ss+lpRFE6fPs2JEyd0K3lqtVoaN24MgI+PD8OHD2fQoEFVdkkFUbNJ8Isao127dqxfv77YttTU\nVBITE3F2dubs2bO67VlZWYC6PPS8efM4cuQIDg4OjB07VvceQK1atQAwNzcnLy+vzHOX9kPH09Oz\n1AXdwsLCiIiIYOvWrcycOZOYmBjMzc0r9s0K8QCkxy9qjJ49e5KRkcHKlSsBdZQ9efJkhg8fTosW\nLTP62XgAAAEqSURBVDh27BiKopCYmMihQ4cASEtLw87Ojjp16nDlyhW2b99e7nns7e1JS0srtq3o\niF+j0dCmTRuuXbume5xkbm4uJ0+eRFEUzp8/T0BAAHPmzCElJYX09HR9/RUIcU9kxC9qlI0bN/LK\nK6/w4Ycfcu3aNfr06cPixYuxtLSkRYsWtGvXDg8PD921AB8fHzp06EDbtm1p2rQpjz/+eKmfW/Sa\nQGBgIEOHDmXLli265y7fPeK3tLRk/fr1vPbaa6SkpJCXl8ebb75J69atef7550lJSUFRFF5//XXq\n1KlTiX8jQpQki7SJGuvAgQNMnDiRH3/8EQ8PD2OXI0SVIcEvhBAmRnr8QghhYiT4hRDCxEjwCyGE\niZHgF0IIEyPBL4QQJkaCXwghTMz/A2nM+6pk09GHAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Significant wave-height data on Normal probability paper,\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "tmp = ws.probplot(np.log(Hs), plot=plt)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HXsO+IgpCIS4jKDmphi4qaUipqZilqmtLN\nW1etbvdmiSZW2m27/bTStD3Npby5omapiLlkAuaCuRDE4r6A7Mtwfn8cGUFAUAcGmM/z8eCRc+bM\nzAe89+2Xz/l+v0ejKIqCEEIIo2Ji6AKEEEI0PAl/IYQwQhL+QghhhCT8hRDCCEn4CyGEEZLwF0II\nIyThL5odExMT/vzzz9t6bYcOHdi2bVu1z+3atYuuXbtWOnf79u0AzJs3j7/97W+39Zm3IjY2Fg8P\nj3r/HNH8SfiLRqFDhw7Y2Nhgb2+Pm5sbEydOJC8vr8Hr0Gg0aDSaap/r1asXf/zxR6Vzy82YMYNP\nP/0UgNTUVExMTCgrK7utGr766itMTU2xt7fH0dGR4OBgYmJibvl9nnrqKWbNmnVbNYjmT8JfNAoa\njYaNGzeSk5NDQkICBw4c4M0336xyXmlpqQGquz13sn7ygQceICcnh6ysLCIjI3niiSfIysrSY3XC\n2En4i0anTZs2PPzwwxw9ehRQ2zgLFy7Ey8uLLl26APDpp5/i5eVFq1atGDZsGGfOnKn0HjExMXh6\neuLi4sLLL7+sC+Lk5GT69euHs7MzLi4ujBs3juzs7Eqv3b9/P76+vrRs2ZJJkyZRVFQE3LzlEh0d\nzZNPPglA7969AWjRogUODg7ExcXRqlUrjhw5ojv//Pnz2NracunSpWrfr7xejUbDxIkTKSgoqLaV\ndezYMUJDQ3FycsLPz48NGzYAsGTJEpYvX84777yDvb09w4YNq+nHLYyUhL9oNMoDLz09nc2bNxMc\nHKx7bt26dfz2228kJSWxfft2ZsyYwffff8+ZM2do3749o0ePrvRea9euJT4+noSEBNatW8cXX3yh\ney4qKoozZ85w7Ngx0tPTiY6OrlTD8uXL2bp1K8nJyZw4caLa30BuVLEFtGvXLgCys7O5evUqvXv3\nZvTo0Sxbtkx3zooVK3jooYdo1arVTd+3tLSUzz77DHt7e7y8vCo9V1JSQnh4OA8//DAXLlzgww8/\nZOzYsZw4cYJnnnmGsWPHMn36dHJycli3bl2t34MwLhL+olFQFIXhw4fj5OREr169CA0NZcaMGbrn\nX331VVq0aIGlpSXffvstkZGRBAUFYWFhwVtvvcXevXtJS0vTnT99+nRatGiBh4cHL7zwAitWrADA\n09OT/v37Y25ujrOzMy+++CI7d+7UvU6j0TBlyhTc3d1xcnIiKipK99ra6q/uz+XGjx9f6X2WLl2q\n+02hOvv27cPJyYm77rqLVatWsWbNGuzt7auck5eXxyuvvIKZmRl9+/ZlyJAhus9RFOWOWk+ieTMz\ndAFCgBq669ato1+/ftU+X7HdcubMGXr06KF7bGtrS6tWrcjMzKRdu3ZVzm/Xrh2nT58G4Ny5czz/\n/PP88ssv5OTkUFZWRsuWLWv8rIqvvRMhISFYW1sTGxuLm5sbycnJDB06tMbze/bsqfsNoianT5+u\n0oZq3769rt6aLlwLATLyF01ExSBr06YNqampusd5eXlcunQJd3d33bGKvwWkpaXpnpsxYwampqYc\nOXKE7Oxsli5dWmVWzo2vbdOmzW3XWtGECRNYtmwZS5cu5fHHH8fCwuKW3vdGbdq0IT09vdLo/q+/\n/tJ9rxL+4mYk/EWTExERwZdffsnvv/9OUVERM2bMoGfPnrpRP8B7771HVlYW6enpLFiwgFGjRgGQ\nm5uLra0tDg4OZGZm8u6771Z6b0VR+Pjjj8nMzOTy5cvMnTu3yvWE2ri4uGBiYkJycnKl4+PGjeOH\nH37g22+/Zfz48bf53V8XEhKCjY0N77zzDiUlJcTGxrJx40Zdva6urre93kE0fxL+otG7cQTbv39/\n3njjDR577DHatGlDSkoKK1eurHTOsGHD6N69O8HBwQwZMoRJkyYBMHv2bBISEnB0dCQ8PJzHHnus\n0vtrNBrGjh3LwIED8fT0xMvLi5kzZ9ZYS8Xj5c/Z2NgQFRXFAw88gJOTE/v37wfUdlK3bt0wMTHh\nwQcfvOn3e7NRe/lzFhYWbNiwgc2bN+Pi4sKUKVNYunQpnTt3BiAyMpKkpCScnJwYMWJEje8njJNG\nbuYiRMOJjIzE3d2d119/3dClCCOn95F/YWEhISEhBAUF4ePjw6uvvlrtedOmTcPLy4vAwEASExP1\nXYYQjU5qaio//PADkZGRhi5FCP2Hv5WVFTt27ODgwYMcOnSIHTt28Msvv1Q6Z9OmTZw6dYqTJ0+y\nZMkSnn32WX2XIUSjMmvWLPz9/Xn55Zdp3769ocsRon56/jY2NgAUFxej1WqrTKVbv349EyZMANSL\nVllZWZw7d64+ShGiUXjjjTfIycmp8TdhIRpavYR/WVkZQUFBuLq60rdvX3x8fCo9n5mZWWl+ctu2\nbcnIyKiPUoQQQlSjXhZ5mZiYcPDgQbKzswkLCyM2NpbQ0NBK59x4nbm62Q0yT1kIIW5PbXN56nWq\np6OjI4MHD+bAgQOVjru7u5Oenq57nJGRUWmBTkXlS9Qb89fs2bMNXkNzqbMp1Ch1Sp2N/asu9B7+\nFy9e1G09W1BQwE8//VRpgy6AoUOH8s033wDq/iQtWrTA1dVV36UIIYSogd7bPmfOnGHChAmUlZVR\nVlbGk08+Sf/+/Vm8eDEAkydPZtCgQWzatIlOnTpha2vLl19+qe8yhBBC3ITew9/f35+EhIQqxydP\nnlzp8UcffaTvjzaYG69nNFZNoc6mUCNInfomdTa8Rr3CV6PR1Ll/JYQQQlWX7JS9fYQQwghJ+Ash\nhBGS8BdCCCMk4S+EEEZIwl8IIYyQhL8QQhghCX8hhDBCEv5CCGGEJPyFEMIISfgLIYQRkvAXQggj\nJOEvhBBGSMJfCCGMkIS/EEIYIQl/IYQwQhL+QghRR4qikHQhydBl6IWEvxBC1EHG1QwGLR/EMxue\noUwpM3Q5d0zCXwghbkJRFL4++DXdFnfjvrb3sWPCDkw0TT869X4PXyGEaC7O5Jxh8sbJpGal8uO4\nHwm+K9jQJelN0//nSwgh9ExRFJYfXk7Q4iAC3QI58MyBZhX8ICN/IYSo5HzeeZ6NeZY/Lv7BxoiN\n3ON+j6FLqhcy8hdCiGtWJ60mYFEAXi29iH8mvtkGP8jIXwghuJh/kSmbppB4NpE1o9Zwn8d9hi6p\n3snIXwhh1Nb+sZaARQG4O7hzcPJBowh+kJG/EMJIXSm4wrQt09ibvpdVI1fRq32vm54fExPHggVb\nKSoyw9KylGnTBjJ4cO8Gqlb/NIqiKIYuoiYajYZGXJ4QogmoLrTxymHyxskEW4eQv94TbYHNTQM9\nJiaO55//keTkubpjnp5RzJ8f1ij/AahLdsrIXwjRbFUJbcts9rbujY3PeZ7vMJ3PZ12oFOjJyVEA\nVQJ9wYKtlc5Tz53Lhx/OapThXxd67/mnp6fTt29ffH198fPzY8GCBVXOiY2NxdHRkeDgYIKDg3nz\nzTf1XYYQQlQObc+t8Jw/OVfux2/Xk8R+dbGGQP+pyvsUFVU/Ti4sNNV7zQ1F7yN/c3NzPvjgA4KC\ngsjNzaV79+4MGDAAb2/vSuf16dOH9evX6/vjhRBCp6jIDCxyYOC/wGszrPsc/hxAaZ9oSmt4TXWB\nbmlZ/dlWVlo9Vtuw9D7yd3NzIygoCAA7Ozu8vb05ffp0lfOkly+EqG+5Lqfg2QAwKYWFh+HPAYAa\n2rcS6NOmDcTTM6rSMU/PGUydOkD/RTeQeu35p6amkpiYSEhISKXjGo2GPXv2EBgYiLu7O++99x4+\nPj71WYoQwojkFufyys+vkBq8FbctfTm763Pdc2poPwyoPf7KF3GvP1dReV//ww9nUVhoipWVlqlT\nH26y/X6ox/DPzc1l5MiRzJ8/Hzs7u0rPdevWjfT0dGxsbNi8eTPDhw/nxIkT1b5PdHS07s+hoaGE\nhobWV8lCiGbgnZUfEf37LByutCcg7Ul69/Nkn03NoV3XQB88uHejDfvY2FhiY2Nv6TX1MtWzpKSE\nIUOG8Mgjj/DCCy/Uen7Hjh2Jj4+nZcuWlYuTqZ5CiDrKL8lnzGdPsTF1M9p1y+D4MKBxT8msL3XJ\nTr33/BVFITIyEh8fnxqD/9y5c7rC9u/fj6IoVYJfCCHqam/6XoIXB/Pr0aNoP0zVBT/UPIPH2Om9\n7bN7926WLVtGQEAAwcHqFqjz5s0jLS0NgMmTJ7N69WoWLVqEmZkZNjY2rFy5Ut9lCCGMQGFpIWM/\nm8jG9A10OjGIom3WUNCq6nlNeEpmfZEVvkKIJum3zN94bNnjXD5uRd53cZDXGpgJVF03FBY2iy1b\n3mjwGg3FIG0fIYSoT0WlRURtj2LIiiG0+D2YvC+PXQt+gIFA85qSWV9kewchRKNWvjdPZuYFMkpT\nKBqUiGW+DR6/DyLtmAJoKpytXtR1coogIKBLs5iSWV8k/IUQjVJMTByzZn3DsWPmFBY/Dr2i4d4/\n4MdnKDykkM081DbPjXpz770/sWVLdMMW3MRI20cI0WjExMTRrdvT2NkNJjz8GxIT3Sh0fBb+Ngba\n2sEniXBIA8y79gpp89wuGfkLIQyqfIR/4sQZ8vKsgK6AG5hEw4MDoedi+Pl+SFyL2uKpGFvl7ZxZ\nODqm07Onh7R56kjCXwjRoCqGfUFBEWVlDoA34HbtjDfB5R8w/D4ovARL4iF7Cdd7+zfuydMb6E3P\nnsY1o+dOSdtHCNFgYmLiePrpr0lMVMjLC6KsrCfgA8wFzEBjAve/C099BQlPw9IvIXsxlds70urR\nBxn5CyEazKxZqzh79q5rj94Eoq8/2eocDN8ApV7w6ReQdQiYjDri/wlz8yNYWT1Ghw7tMDfPBf6B\nvb2LzOi5TRL+Qoh6Vd7mSUr6k6IiV8ClwrOloFEg5APovQJiveG3+0AZBdwFzMLCIgU/P0def/0l\nCXg9kvAXQuhd5cBvATihhr4nlXr2Tr4w/EXQmMNnB+DyaWApGs0wbG3t6Ny5Ba+//oyEfj2Q7R2E\nEHoVHb2Qt96KpbjYHsgFvK49Ywb0A75WR/s9TkPfA7BrNOwrQMPFCoE/SgL/DsgN3IUQDWrMmOms\nWHEc8Lt2pGLElAK9ocUZGPYimBfAF8GYXjlLYLCrtHUamIS/EOKOxcTEERk5l3PnrIGgCs9UnJY5\nALoPgn6/wZ5/w95/Ym35D75fN1ZC3wAk/IUQt6W8r3/48DFKS1sDFqjBXzHwBwJfg0MuDFsO1hbw\n1WNwIR8Li9G8/HI/CX4DkZ6/EOKWRUcv5M03t6PVlgEK4AtkAG3RBT4ArhBUBgPmw6/t4JdOWFnY\n4+PTSvr69Uh6/kIIvYuJieOtt7ai1foBJ1FX5wIUoAb/j8AEsP8Ewj8DhyIsVvXBz9mT19dL4DcW\nEv5CiFsya9YqiosdUePDmuttnj7AciACAv4LYT/Bbx48oQxh1V/vGapcUQPZ3kEIUavo6IVYW/dF\no7mXxMRLQBFq6JeP9s8AmWDbAUaPhQd2wrJuRNw1jFXLJfgbI+n5CyFqdH0Wj4brO2oGAmdRe/1X\ngNbAGPCdA4/shsQOuB7z5fMlz0uLx0Ck5y+EuG3qnP0TqLN4bK4dtaLyBd1WYHMEBo+C1nlY/nAv\nrzw5muifnzNEyeIWSPgLIapQg/8o6tTNjArPFHJ9D/2l4H0MBiXAYTf+9+Q3jPhIdtZsKiT8hRCV\nqMF/GHUvHjPUvn45eyAKrP8Jg/KgzXn4biTdXCwZES7B35RI+AshdPr0mUhc3AXAgesXdfsAG66d\noUDnv2BIR0jygU9GYGuRyuuLnjZUyeI2yQVfIQRQHvznAWfgMuCKelHXDXAHqxXw8HFolwPrgjFJ\nb0PHjrbMnx8pF3YbGbngK4Sok+johdeC3wW1r28BXEVt85yHTr9AeAIcd+FVp1eZl/qiIcsVeiAj\nfyGMXExMHOHhb6Eorqj9fXt00zgtcyHsONx9Edb5Mnv8U0RHy0yexq4u2SmLvIQwUtHRCzEzu5ch\nQ95AUexQg78P6ogfuLsQnt0NiiWaT3pJ8DczMvIXwgip/f0/UUf5tkA+8AhwCCy6wID/g87nYX13\nnC47s3TpP6Wv34RIz18IUYXa3z+HOqOnJerK3VLgEHSwgmGzINUNFvXG0bKQy1lrDVqvqB96b/uk\np6fTt29ffH198fPzY8GCBdWeN23aNLy8vAgMDCQxMVHfZQghqjFmzHTmzFmPGvy2qNM5C8D8GXjk\nJxixBDaHwLoeUKjw7bdvGLZgUW/0PvI3Nzfngw8+ICgoiNzcXLp3786AAQPw9vbWnbNp0yZOnTrF\nyZMn+fXXX3n22WfZt2+fvksRQlRwvdXjCuRdO+oKHidh+BOQGQKLHoUCO+B3IiKCpdXTjOk9/N3c\n3HBzcwPAzs4Ob29vTp8+XSn8169fz4QJEwAICQkhKyuLc+fO4erqqu9yhBCUB395q0cDWIDZeeh3\nHPwzICYQ/rBC3crhKhER/ixf/rZBaxb165bCX6vVkpeXh4ODQ53OT01NJTExkZCQkErHMzMz8fDw\n0D1u27YtGRkZ1YZ/dHS07s+hoaGEhobeSslCGDV1q4bNgDvgeO1ob3D/Hzx6EM5ZwqJgyG8JmOHk\nVMjSpa/IiL+JiY2NJTY29pZeU2v4R0REsHjxYkxNTbnnnnvIzs7m+eef5+WXX77p63Jzcxk5ciTz\n58/Hzs6uyvM3XonWaDTVvk/F8BdC1E109ELmzPkEcEK9taIdkAemWghNh+DfYLMXHG2HuqDrChs3\n/ltCv4m6cWA8Z86cWl9T6wXfpKQkHBwcWLt2LY888gipqaksXbr0pq8pKSnhscceY9y4cQwfPrzK\n8+7u7qSnp+seZ2Rk4O7uXmuxQoja+fk9ypw5S1FD3wHdPj13tYTJO8F5BSw6CUcTgLWAAxER3ST4\njUyt4V9aWkpJSQlr164lPDwcc3PzGkfpoI7oIyMj8fHx4YUXXqj2nKFDh/LNN98AsG/fPlq0aCH9\nfiHuUHT0QjSaII4eLUId8V+b0WOaA32PwrjVsKsfrHKBvKeAx4FHiIhoJf19I1Rr22fy5Ml06NCB\ngIAAevfuTWpqKo6OjjWev3v3bpYtW0ZAQADBwcEAzJs3j7S0NN37DRo0iE2bNtGpUydsbW358ssv\n9fTtCGGc1N7+PuAu1NAvA/LALRuG/6Eu2v2kH+QEAaaAFkhi9uxwWbVrpG55ha+iKGi1WszM6n99\nmKzwFaJ2MTFxDBnyFtdvqF4AJiXwYB6E/Ao/3QcHQ4DdqBd9bdFocnntNQn+5qou2Vlr+J89e5ao\nqCgyMzPZsmULSUlJ7N27l8jISL0WW21xEv5C1Oquu57g7FlQu7hXoXUxDN8H+U6wPhyuHgBaoV70\nzSUiIkDaPM2cXjZ2e+qppxg4cCCnT58GwMvLiw8++EA/FQoh7khMTBxnz2qBPDDJgQdPwYRdcKAz\nLHODqylABwB8fUtRlM0S/AKoQ/hfvHiRUaNGYWpqCqgreBui5SOEqFlMTBwtWvRhyJDZQCk4X4BJ\nu+DuLFhyLyS0QL0Jiw2QxezZ4Rw5ssawRYtGpdYUt7Oz49KlS7rH+/btu+kFXyFE/VLn8H8NmIDm\nLuh5DHr9CTs6wQFHUMxQ9+0xx9a2kFWrZso0TlFFrT3/+Ph4pk6dytGjR/H19eXChQusXr2awMDA\n+i9Oev5CVOLn9yhHj+YC5tAyD4YfhrJWsM4LrtgAxaij/av07u3Kzp0yk84Y6eWCL6iLto4fPw5A\nly5dMDc310+FtZDwF0Klzuj5B3AXaOzg3hTokwQ728H+x0FpC8QBVsAl4ByKst+gNQvD0ct+/l9/\n/XWlN0pISABg/PjxeihRCFEbdQ7/z0BbcFJg2E4wLYPPe8KlnsAJ1Ln7XVHn7+cQEdHXkCWLJqDW\nkf+UKVN0K3oLCwvZtm0b3bp1Y/Xq1fVfnIz8hRFTQz8GaAMaE+h+Afodhl/awd67QCkF/FBvyJKE\n2ue/iotLDufP7zJk6cLA9Nb2qSgrK4tRo0bx448/3lFxdSHhL4yVugXzEcBZXZc1LAEsi2BNF7jo\niLqK9wKQC7SmfA5/795u0ucX9XMbRxsbG1JSUm67KCHEzakXdQuBVtDtAvQ/DHvbw577oCwVNfhz\nUQPfFcihXbss/vrrJwNWLZqaWsM/PDxc9+eysjKSkpJ44okn6rUoIYyRGvonATdwsILweLDLh68D\n4bwJ6tbLdwNHUVfs2qD292XFrrh1tbZ9Kt4gwMzMjPbt21e6EUt9kraPMAbXe/vWQCsIvAgDD8H+\n9rCrDZRpAGcgE2gB2AM5ODhcJjv7VwNWLhqreun5NyQJf9HctW7diwsXCgFnsCuE8OPgmAtrfeFs\nKeoIX4O6LacjaqsnB19fK1mxK2p0R+FvZ2dX4779Go2Gq1ev3nmFtZDwF82ZjU13CgpaAwr4Z0HY\nQYhvC3HuoO0EpAPnUX8jcEJ24xR1JSN/IRopR8cQrl5tCbbmMDgBnLNhrT+c7gL8gXrPXSfUC7sW\nwCV8fc1ltC/qRC+7epY7f/48aWlpui8hxK0bM2Y6Go2fGvw+WfDsj3DZApb0hdMlqHMwugIpQAZQ\nCpynd28XCX6hV7WO/NevX89LL73E6dOnad26NX/99Rfe3t4cPXq0/ouTkb9oRtTZPBlg4wCDToLb\nZVjbETKsgCDgIvAn0IbyefvS2xe3Qy8j/5kzZ7J37146d+5MSkoK27ZtIyQkRG9FCmEMWrfupc7d\n76qFZ/fAVVP4JAgy3FFX5v4GFAKdAXBxOYuibJbgF/Wm1vA3NzfH2dmZsrIytFotffv25cCBAw1R\nmxDNgqVlEBdyLeDRJBh4Ar4PhK1BUOoG5KPuxFk+2lfn7cv2DKK+1brIy8nJiZycHHr16sXYsWNp\n3bo1dnZ2DVGbEE2abtGWlyWE74FjrrDoPijJQ523fxF1/NUKMAcusnHjHNl7XzSIGnv+33//PeHh\n4Wi1WqysrCgrK+Pbb7/l6tWrjB07llatWtV/cdLzF02Quv3yc2BpDg9fgA5XYJ0fpJoCJahhX4i6\nWMsWyAOuMnv2KJnCKfTijqZ6Dh8+nN27d/Pwww8TERFBWFiY7laODUXCXzQ16qKtfPA0gaFH4EQb\n+OluKM5H3ZOnAMii4tx9yGH27KES/EJv7nief3Z2NmvWrGHlypUcPHiQ4cOHExERQZ8+ffRebLXF\nSfiLJqJ9+wGkpZ0BC2cYmAxel2DdPfCneg9dda6+NWp/35ry0JfZPKI+6HWR18WLF/nf//7Hxx9/\nzOXLl8nIyNBLkTcj4S+aAjOzALRaS+iogWFH4c/W8KMnFJmj3lnLFHXOvha11y/bL4v6pbdFXleu\nXOGHH35g1apVXL58mccff1wvBQrRlMXExKHR+KE1dYVB5+HRIxDjB+u7QlEe6gVdZ9TQtwLcAGs0\nmkts3PiqBL8wqBpH/jk5ObqWT0JCAkOHDiUiIoLQ0NAa9/zRe3Ey8heNUHT0QubM+QQwgXaWMPwo\npDnDlk5QqEXt67dFHe0XUHHRVrt2pbLvvqh3d9T2cXZ2JiwsjIiICAYOHIiFhUW9FHkzEv6iMYmJ\niSM8fCqKYgrmjtAvBfzOwUZvOO6KuhVDLuq+PJmAJeqMHnNMTLJZv362TOMUDeKOwj8/Px8bG5t6\nKayuJPxFY6HO2U8B3MAjSx3tn3aCTV5QYIJ6UTcISAUuod5hS3r7wjDuqOd/J8E/adIkXF1d8ff3\nr/b52NhYHB0dCQ4OJjg4mDfffPO2P0uI+hQdvRCNxo+jR6+CWWsYkAKjDsK2LvA/XyhwADqg3mRl\nP+q6SU8AfH1LUZTNEvyiUbrle/jWxcSJE5k6dSrjx4+v8Zw+ffqwfv36+vh4IfRCnbOfB3hAm0J4\n9De4YAOL7oc8BfUG6sGoF3bNgC5ADqamxyktPWTAyoWoXZ23dL4VvXr1wsnJ6abnSDtHNFbls3gu\nXLAFUxfolwpj9sDOu+G7uyEvC3WFbgfgINdX6+ZgYXFGgl80CTWO/CveuP3G/pFGo7mjUbtGo2HP\nnj0EBgbi7u7Oe++9h4+PT7XnRkdH6/4cGhpKaGjobX+uELVRe/tpgAfcVQLDf4MrVvBJd8gtRt2D\nxwE4i7r9cnlvP+dab3+z4YoXRis2NrbS/dbrosYLvuVvtGbNGs6ePcu4ceNQFIUVK1bg6urK//3f\n/930jVNTUwkPD+fw4cNVnsvJycHU1BQbGxs2b97M888/z4kTJ6oWJxd8RQO5fhN1VzA1g14ZcM8p\n+LELHGqBOmWzPfDXtVdcX6wVERHA8uVvG6hyIarSywrf7t27Ex8fX+uxG90s/G/UsWNH4uPjadmy\nZeXiJPxFPevTZyJxcb+hbr/gCq7FMDwBcs1gfXvIKQPuRr2X7lXgLmTOvmjs9LLCNz8/n+TkZN3j\nP//8k/z8/Dsq7Ny5c7rC9u/fj6IoVYJfiPrWunUv4uKOAB5g4qKO9sf/AvvbwreekGMLtAZOof5f\nxQOwxsTkMhs3virBL5q0Wmf7fPDBB/Tt25eOHTsC6oh+yZIlN31NREQEO3fu5OLFi3h4eDBnzhxK\nSkoAmDx5MqtXr2bRokWYmZlhY2PDypUr9fCtCFF3uhuoYwcuitrbLzSBJcGQDddX6OZTcbTfu7cz\nO3f+YLjChdCTOm3sVlhYyPHjxwHo2rUrlpaW9V4YSNtH1A9LyyCKi+8CjR3cfxwe+AO2dYb4llzv\n7VdeoavRZLFhQ7Ss0BVNgl56/nl5efz3v/8lLS2NTz/9lJMnT3L8+HGGDBmi12KrLU7CX+iZLvhb\nAcP3QakJrGuvLtCV3r5oJvTS8584cSIWFhbs2bMHgDZt2hAVFaWfCoVoIH36TESj8aO4xA16noHI\nbXDYAb7pCFmtUadvnqBib9/U9Ir09kWzVWv4JycnM336dN3Gbra2tvVelBD6EB29EBOT7mg0fsTF\n/Q4tW8JuxOSsAAAf7klEQVRT8eDzF3zmC/u9QTFHnbNfhNrndwFKmD37IUpLf5Y2j2i2ar3ga2lp\nSUFBge5xcnJyg/X8hbgd1+fsWwMmoGkL96RB6FGIuxt+7QJKIerKXBPULZfVO2v17m3Hzp3fG7B6\nIRpGreEfHR3Nww8/TEZGBmPGjGH37t189dVXDVCaELdOXaGbgdq6AVoUwLAEMNPC5yFwqRXqAq2L\nqNN6yu+je5XZs4fJfXSF0bjpBd+ysjK+//57+vfvz759+wAICQnBxcWlYYqTC76ijtQbrCxBvVAL\nYAfdU6DfYdjTAfZ0BMWa68FfeT+eoqKDhilciHpQbyt8G4qEv6gLtc0TBzgCDuCQD8N+BetiWOMP\nF0yBHKA7Nwa/qWmmbMQmmh29hP8rr7yCs7Mzo0aNqnSxtyFW5Er4i9q0bz+AtDRT1N69DQSfgIf+\ngH1tYbcTlJmgzts/jzqf053yKZwuLrmcP7/LcMULUU/0Ev4dOnSo9p69KSkpd1ZdHUj4i+pERy/k\nzTe/QqvNR71Y6wj2hRD+K9jnwdoOcM4D0KCGfilqb19dsGVrW8SqVdNlJo9otvQS/oYk4S9upG7E\n9se1Ry0AawhIhrA/4DdX2OUN2iLUUb411y/o5jB79lC5oCuMgqzwFc2KGvxn0C1PsTODIfvBKQfW\nesIZJ9TAL772XzX0fX2tOHJkjaHKFqLByQpf0SzExMRhaXkPcXFnUVs3tuB3Gf7+I5y3giX3wZk2\nqPvyXELdk8cGyCEiIkCCX4hq1DrPPzk5me+++06386as8BUN5XpvX4M6RdMebC7D4KPQOgdW3AeZ\nCmr7Jxd1da462m/XLku2ZRDiJmSFr2iU1BbPn6jBbgbYgXcyDDoMh5xhjS+UeqFO3fwL9R+H66N9\nubOWEDcnK3xFoxETE8fYsbPIzs5CncXjAFiAdSkM2g1trsB3vpDuClwG4lHvodsBda992ZpBiLqq\n02yfixcv6lb49uzZE2dn53ovDOSCrzFRV+h+w/V+vT1gAl2SYchhOOIC272hxBR1y2VHym+cLhd0\nhajsjmb7xMfHV5nfryiK7li3bt30VOZNipPwNwqVZ/GYAtZglQUPH4N2F2FdZ/jrLtR5+0VUnMnT\nu7cbO3d+abjihWiE7ij8Q0ND0Wg0FBQUEB8fT0BAAACHDh2iR48e7N27V/8V31ichH+zp67Q1aD2\n9gFMoFMyhB+G463g545Q7AZcAEqunSfz9oW4mTua6hkbG8uOHTto06YNCQkJxMfHEx8fT2JiIm3a\ntNF7scK4lE/fTEszR23xFIHlFRi6B4YcgbUBsCkAihUgDbUV5A4oRETcjaJskeAX4g7U2vP38fEh\nKSmp1mP1QUb+zZPa31+J2rN3APLg7nMw9BAkO8FWXygyR1o8QtyeumRnrbN9AgICePrppxk3bhyK\norB8+XICAwP1VqQwHtdn81ijXrC1BYtsGHAIOl+B9fdCsgb1gq4p6tYMNlhYFPDqq+Ey0hdCj2od\n+RcWFrJw4UJ27VJ3P+zduzfPPvssVlZW9V+cjPybjeujfVt0M3k6pMGwJEi1gh/vhUIL1K0ZbICr\n+PpayiweIW7DHe/tU1payoABA9ixY4fei6sLCf+mLzp6IfPmLaOkxAEwB6zBPA8eSgLvi7DxfjgR\nBOwAWlG+3bIs1BLi9t1x28fMzAwTExOysrJo0aLFzU4Vogr1Jiu/o7Z4ro3222XAsETIdIBFw6Gg\nDZAE3A1clW0ZhGggtfb8bW1t8ff3Z8CAAbp9fTQaDQsWLKj34kTTpQb/YdTgV8AsH/odA/9MiAmC\nP9qhTt+8jNoKyr62WGuTIcsWwmjUGv4jRoxgxIgRlX6NqO7mLkKUUxdtXUCdyWMF7n/Cowlw1g4W\n3Q/5zkAZYEF5f19m8gjRsGq94FtQUMCpU6fQaDR06tSpQS70lpOef9NyfRdOZ8AFzC5AaAoE/Qmb\nA+FoB9SZPDmUz/YxMclj1qwhMpNHCD26owu+JSUlREVF8cUXX9CuXTsA0tLSmDhxIvPmzcPc3Fz/\nFd9YnIR/k3B9CqcV6i+T9tDmMgzfB5esYaMv5JWP9q/P5und21VG+0LUgzta4fvvf/+by5cvk5KS\nQkJCAgkJCfz5559kZWXxr3/966ZvOmnSJFxdXfH396/xnGnTpuHl5UVgYCCJiYm1fCuisYqJieOJ\nJ94jO9sOaAGmLaFvAozdBbu6war7IQ8gE8gHLLGwyGP27CES/EIYUI0j/06dOnHixAlMTCr/+6DV\naunSpQunTp2q8U137dqFnZ0d48eP5/Dhw1We37RpEx999BGbNm3i119/5fnnn9ftGlqpOBn5N2rq\n3P01QEvAGtwuw/A4yLaGDT0gtzXq+CIXtb9/idmzB0mLR4h6dkdTPU1MTKoEP4CpqWm1xyvq1asX\nqampNT6/fv16JkyYAEBISAhZWVmcO3cOV1fXm76vaDwqTeM0sYQH4yHkJGx9An4vALTAWdS5/RZo\nNBd47TXp7QvRWNQY/t7e3nz99de6kC63dOlSunbtekcfmpmZiYeHh+5x27ZtycjIqDb8o6OjdX8O\nDQ0lNDT0jj5b3Dk1+I8AjtD6KgzfDvlusPg+uGoD9ARiUIPfFCenYpYufYXBg3sbtG4hmqvY2Fhi\nY2Nv6TU1hv/HH3/MiBEj+OKLL+jevTug7vGfn5/PmjV3vuT+xl9Japo+WjH8heHppnGatIL7j8J9\nSbDNGxLuAQKB1UA6YIOZWT5RUQNltC9EPbtxYDxnzpxaX1Nj+Ldt25Zff/2V7du3c/ToUTQaDYMH\nD6Z///53XKi7uzvp6em6xxkZGbi7u9/x+4r6ERMTx7Rp8/nzz3TABZzNYHgMFJvBkq8h+0fgErAF\naA1cJSLibtmeQYhG7KaLvDQaDf3799dL4Fc0dOhQPvroI0aPHs2+ffto0aKF9PsboZiYOCIj53Lu\nnAK0AE1r6HkOeh2CHY/CgSxQtgMTgJ9Qd+L8nYgIfwl+IRq5Ot3D91ZFRESwc+dOLl68iKurK3Pm\nzKGkpASAyZMnAzBlyhS2bNmCra0tX375ZbW3hZTZPoaj9vUTUbdesICWrWD4anWq/rpQuOKFenOV\n1ah77tug0eTy2muy9bIQhnbHu3oamoR/w7s+2rcGLEHTFe7dDH2OwM6usH8SKHGoG7W1QR3ta7G1\nPcmqVc/JRV0hGgEJf1Fn1/v6Cuq9cruD02EYdgBM8mDd43DJHzgEBFB5No+WpUv/KcEvRCMh4S/q\nRN2TZztarSngBZp06H4e+m2HXyJh7xlQzNXncAfiACvgIhERvtLfF6KRkfAXtYqJiWPEiP9SXOwH\nmIFjFgxbAZYtYU1buOgJjAEWAFdQe/sW3H23HfPnR8poX4hGSMJfVCsmJo5Zs77hxIkz5OVpAVeg\nA3Q7AP1jYe8A2NMaysahhn4x6p48hbz66iNyQVeIRk7CX1QRHb2Qt96KpbjY/tqRUnC4AkOPgo0Z\nrPWF895UbO9oNBcZPVraO0I0FRL+Qqd8tH/w4GUUxefaUQUCD8PAn2C/N+waCGWDgKWom7GV4Olp\nK+0dIZoYCX8BqMH//PM/kpysQbeuzy4HwjeCoxbW+sHZVlTcgdPMLIuoqDBp8QjRBEn4CwC6dfsH\niYkfA9FACfgfhbCfIT4Y4raBdh/XR/sW2NtfZcWKF2W0L0QTdUdbOoumLSYmjgULtvLHH8dJS7v2\n12ybDUPiodVhWN4fTjsDc4C5gBr0bm4v8tln0uYRormTkX8zUB70mZkXOHs2CxOTfC5dak1Z2QTg\nY8ALfAJh0N/hYBeInQOl3wFngHw0GltsbR3o3LkFr78+SoJfiCZO2j7NVMWw/+uvdIqLPSguHgv8\nCIShBv4qYCbYFMOgeHD7HdZuhIxi4CdMTJIJCnKSsBeiGZK2TzN0/eJtGGrYuwBvAjNR2zczAW/1\n5K6nYHAMHH4G1r4CpTGoe/FAUJAt8fEfG+A7EEI0BhL+TcyCBVtJTi4P+bmoF3Hh+l+lGVjnwCPj\noO1W+P4tSDsDDLj2BdbWk3n99ScbuHIhRGMi4d9ElLd6fv0149qR8r+60sr/9ToG4dvhWAdYtAJK\n4lBbQbMAU6ytj/Hyy32k1SOEkbv5ndiFQcXExBEWNhM/v8k8/vhytm59k+zstteeLQ/9gUAUWN0H\nwwJhUBz8EAab34eSX4CLmJi8S/v25wgL0/L99/+QufuiTiZPnoydnR07duyodPy///0vvr6+BAYG\n8tBDD5GWllbn90xJSSEkJAQvLy9Gjx6tu8/HjaZPn46/vz/+/v589913uuPbt2+ne/fu+Pv789RT\nT6HVagF47733CA4OJjg4GH9/f8zMzMjKygJg/vz5+Pv74+fnx/z582/1x9B8KY1YIy/vjm3cuFMZ\nODBK6dNntjJwYJSyceNO3TFf32cUa+vJCigKRF37r6LATgVmVPivouD5rsKLDopJeHvFrmW40r79\nWMXZeZTi7/+CEhY2U9m4caehv1XRRJSVlSlarVZ54403lNGjRytHjhxRvL29lUOHDunO2bFjh1JQ\nUKAoiqIsWrRIGTVqVJ3f//HHH1dWrVqlKIqi/P3vf1cWLVpU5ZyNGzcqAwYMULRarZKXl6fcc889\nSk5OjqLVahUPDw/l5MmTiqIoymuvvaZ8/vnnVV6/YcMGpX///oqiKMrhw4cVPz8/paCgQCktLVUe\neugh5dSpU3X/gTRRdcnORp2uzSX8awp5T88ZFUJdUdzcJilubi9WE/izK52nBv9MxdpxkGI58m7F\n/N/2SvcnxkjIi9uSkpKidO7cWRk/frzi6+urfP3118qYMWOUsrIyRVEU5eTJk0pISIiSkZFR5bUJ\nCQnKAw88UKfPKSsrU5ydnRWtVqsoiqLs3btXCQsLq3Leu+++q7zxxhu6x5GRkcp3332nnD9/XvH0\n9NQdj4uLUwYNGlTl9REREcpnn32mKIqifPfdd0pkZKTuuTfeeEN555136lRvU1aX7JSefz27Pjtn\nru5YcnIUDg5ZJCdXnm1z9uxdqDN3oPLlmFIq6w0dS1FGfci4+0by/sD3cbRyrI/yhZE4deoUS5cu\n5d577wVg/Pjxuuc6derEvn37qn3d559/zqBBgwDIycmhd++q15I0Gg3Lly/H2dmZFi1aYGKidpvd\n3d3JzMyscn5gYCBz5szhpZdeIi8vjx07duDr64uLiwulpaXEx8fTvXt3Vq9eTXp6eqXX5ufn8+OP\nP7Jw4UIA/P39mTlzJpcvX8bKyoqYmBjd92jsJPzr2fXZOdclJ8/FyWlCNWfXFPjX+vrMBYtceOgV\nTH2/4RX/mcwe+rL+ixZGp3379rccisuWLSMhIYEPPvgAAHt7exITE2s8/+LFi3V63wEDBvDbb79x\n//334+Liwn333af7B2PlypW8+OKLFBUVMXDgQExNTSu9dsOGDTz44IO0aNECgK5duzJ9+nQGDhyI\nra0twcHBuvcydhL+9ayoqKYfcVE1x2oI/GtbL1h49YNhCTjnt+e/D6xg1LDBeq1VGC9bW9tbOv/n\nn39m3rx5xMXFYW5uDqgj/169eqHRaKqcv2LFCrp06UJWVhZlZWWYmJiQkZGBu7t7te8/Y8YMZsyY\nAcDYsWPp0qULAD179iQuLg6ArVu3cvLkyUqvW7lyJREREZWOTZo0iUmTJunet127drf0vTZbDdB+\num2Ntbzqevg1GTgw6oZ+vfrVrdvT1fT8J1bo+au9fWvrJxTfoH8o7Sffq7Sc20pZ98e6BvxOhTFI\nSUlR/Pz86nx+QkKC4unpeVsXTh9//HFl5cqViqIoyuTJk6u94KvVapWLFy8qiqIov//+u+Ln56e7\nTnD+/HlFURSlsLBQ6d+/v7Jjxw7d67KyspSWLVsq+fn5ld7v3LlziqIoyl9//aV07dpVyc7OvuW6\nm5q6ZKeM/G9RTT18oNq589OmDSQ5OarS+Z6eM3SLrD78cBaFhaZYWWmZOvWpKscemtiHJef/j/vb\n9ODDRzbRyqZVPX53wlhVN1qvycsvv0xeXh4jR44E1JbR2rVr6/Tat99+m9GjRzNz5ky6detGZGQk\nAPHx8XzyySd8+umnFBcX664dODo68u233+paNe+++y4bN26krKyM5557jtDQUN17r127lrCwMKyt\nrSt95siRI7l06RLm5uYsXLgQBweHOn+vzZns7XOLwsJmsnXrm9Ucn8WWLW9U+5qYmDg+/PCnCiE/\noNZFVoWlhby24zW++f0bPh70MY/5PKaX+oUQzZ/s7VMPaurhFxaaVnsc1N8IbmVF7f7M/UxYOwFf\nF18OPXuI1ratb7lOIYS4GQn/W2RpeeO0S5WVlfaO37uotIjX417ns4TPmP/wfEb5jrqlX8eFEKKu\nZM7TLZo2bSCenlGVjnl6zmDq1AF39L4JZxLo8WkPjpw/wu9//53RfqMl+IUQ9UZ6/rfhdnr4NSnW\nFjNv1zwW/raQ9we+z7iAcRL6Qog7IjdzaeQOnTvEhLUTuMvuLj4N/xR3h+rnPAshxK2oS3bWS9tn\ny5YtdO3aFS8vL95+++0qz8fGxuLo6Kjbhe/NN6vOnmnOSstKmRs3l/7f9GfqvVOJGRMjwS+EaFB6\nv+Cr1WqZMmUKP//8M+7u7txzzz0MHToUb2/vSuf16dOH9evX6/vjG72kC0lMWDsBJysn4p+Jp52j\nrDYUQjQ8vY/89+/fT6dOnejQoQPm5uaMHj2adevWVTmvObdzqqMt0/LO7nfo/WVvng5+mh/H/SjB\nL4QwGL2Hf2ZmJh4eHrrHbdu2rbJzn0ajYc+ePQQGBjJo0CCSkpL0XUajcvzicR788kE2n9rMb3/7\njck9JstFXSGEQem97VOXUOvWrRvp6enY2NiwefNmhg8fzokTJ6o9Nzo6Wvfn0NDQSsu5GzttmZYF\nvy5g7q65RIdG89w9z2Gikdm1Qgj9io2NJTY29pZeo/fZPvv27SM6OpotW7YA8NZbb2FiYsL06dNr\nfE3Hjh2Jj4+nZcuWlYtrwrN9Tl0+xcR1EwH4ctiXdGrZycAVCSGMhUFm+/To0YOTJ0+SmppKcXEx\nq1atYujQoZXOOXfunK6w/fv3oyhKleBvqsqUMj7a/xE9P+vJiK4jiJ0QK8EvhGh09N72MTMz46OP\nPiIsLAytVktkZCTe3t4sXrwYUG8KvXr1ahYtWoSZmRk2NjasXLlS32UYRGpWKpPWTaKgtIDdk3bT\nxbmLoUsSQohqySIvPVAUhSXxS4jaHsXLD7zMS/e9hKlJzRu9CSFEfZJdPRtAenY6kesjuVJ4hbiJ\ncfi4+Bi6JCGEqJVMPblNiqLwReIXdFvSjT7t+7A3cq8EvxCiyZCR/2366uBXfLj/Q7aN30aAa4Ch\nyxFCiFsiPf/bVFRahEajwcLUwtClCCFEJbKrpxBCGCGD7eophBCicZPwF0IIIyThL4QQRkjCXwgh\njJCEvxBCGCEJfyGEMEIS/kIIYYQk/IUQwghJ+AshhBGS8BdCCCMk4S+EEEZIwl8IIYyQhL8QQhgh\nCX8hhDBCEv5CCGGEJPyFEMIISfgLIYQRkvAXQggjJOEvhBBGSMJfCCGMkIS/EEIYIQl/IYQwQhL+\nQghhhOol/Lds2ULXrl3x8vLi7bffrvacadOm4eXlRWBgIImJifVRRoOJjY01dAl10hTqbAo1gtSp\nb1Jnw9N7+Gu1WqZMmcKWLVtISkpixYoVHDt2rNI5mzZt4tSpU5w8eZIlS5bw7LPP6ruMBtVU/gfR\nFOpsCjWC1KlvUmfD03v479+/n06dOtGhQwfMzc0ZPXo069atq3TO+vXrmTBhAgAhISFkZWVx7tw5\nfZcihBCiBnoP/8zMTDw8PHSP27ZtS2ZmZq3nZGRk6LsUIYQQNVH0bPXq1crTTz+te7x06VJlypQp\nlc4ZMmSI8ssvv+ge9+/fX4mPj6/yXoB8yZd8yZd83cZXbczQM3d3d9LT03WP09PTadu27U3PycjI\nwN3dvcp7qfkvhBBC3/Te9unRowcnT54kNTWV4uJiVq1axdChQyudM3ToUL755hsA9u3bR4sWLXB1\nddV3KUIIIWqg95G/mZkZH330EWFhYWi1WiIjI/H29mbx4sUATJ48mUGDBrFp0yY6deqEra0tX375\npb7LEEIIcTO3391vOO+9956i0WiUS5cuGbqUas2cOVMJCAhQAgMDlX79+ilpaWmGLqla//rXv5Su\nXbsqAQEByqOPPqpkZWUZuqRqfffdd4qPj49iYmJS7bUgQ9u8ebPSpUsXpVOnTsp//vMfQ5dTrYkT\nJyqtW7dW/Pz8DF3KTaWlpSmhoaGKj4+P4uvrq8yfP9/QJVVRUFCg3HvvvUpgYKDi7e2tvPLKK4Yu\n6aZKS0uVoKAgZciQITc9r9GHf1pamhIWFqZ06NCh0Yb/1atXdX9esGCBEhkZacBqarZ161ZFq9Uq\niqIo06dPV6ZPn27giqp37Ngx5fjx40poaGijC//S0lLF09NTSUlJUYqLi5XAwEAlKSnJ0GVVERcX\npyQkJDT68D9z5oySmJioKIqi5OTkKJ07d26UP8+8vDxFURSlpKRECQkJUXbt2mXgimr2/vvvK2PG\njFHCw8Nvel6j397hn//8J++8846hy7gpe3t73Z9zc3NxdnY2YDU1GzBgACYm6l95SEhIo51e27Vr\nVzp37mzoMqpVl3UsjUGvXr1wcnIydBm1cnNzIygoCAA7Ozu8vb05ffq0gauqysbGBoDi4mK0Wi0t\nW7Y0cEXVy8jIYNOmTTz99NO1Tphp1OG/bt062rZtS0BAgKFLqVVUVBTt2rXj66+/5pVXXjF0ObX6\n4osvGDRokKHLaHLqso5F3J7U1FQSExMJCQkxdClVlJWVERQUhKurK3379sXHx8fQJVXrxRdf5N13\n39UN8m5G7xd8b9WAAQM4e/ZsleNz587lrbfeYuvWrbpjtf1LVp9qqnPevHmEh4czd+5c5s6dy3/+\n8x9efPFFg13Erq1OUH+2FhYWjBkzpqHL06lLnY2RRqMxdAnNUm5uLiNHjmT+/PnY2dkZupwqTExM\nOHjwINnZ2YSFhREbG0toaKihy6pk48aNtG7dmuDg4DptQ2Hw8P/pp5+qPX7kyBFSUlIIDAwE1F9n\nunfvzv79+2ndunVDlgjUXOeNxowZY9ARdW11fvXVV2zatIlt27Y1UEXVq+vPs7GpyzoWcWtKSkp4\n7LHHGDduHMOHDzd0OTfl6OjI4MGDOXDgQKML/z179rB+/Xo2bdpEYWEhV69eZfz48bpp9VU0yBUI\nPWjMF3xPnDih+/OCBQuUcePGGbCamm3evFnx8fFRLly4YOhS6iQ0NFQ5cOCAocuopKSkRLn77ruV\nlJQUpaioqNFe8FUURUlJSWn0F3zLysqUJ598UnnhhRcMXUqNLly4oFy5ckVRFEXJz89XevXqpfz8\n888GrurmYmNja53t06h7/hU15l+3X331Vfz9/QkKCiI2Npb333/f0CVVa+rUqeTm5jJgwACCg4N5\n7rnnDF1StdasWYOHhwf79u1j8ODBPPLII4YuSafiOhYfHx9GjRqFt7e3ocuqIiIigvvvv58TJ07g\n4eHRaNfS7N69m2XLlrFjxw6Cg4MJDg5my5Ythi6rkjNnztCvXz+CgoIICQkhPDyc/v37G7qsWtWW\nmRpFkT0UhBDC2DSZkb8QQgj9kfAXQggjJOEvhBBGSMJfCCGMkIS/aNYyMjIYNmwYnTt3plOnTrzw\nwguUlJTo9TN27tzJ3r17dY8XL17MsmXLAHjqqaf43//+p9fPE0IfJPxFs6UoCiNGjGDEiBGcOHGC\nEydOkJubS1RUlF4/Z8eOHezZs0f3ePLkyYwbNw5Qp9s15mnKwnhJ+Itma/v27VhbWzNhwgRAXaL/\nwQcf8MUXX7Bo0SKmTp2qO3fIkCHs3LkTgOeee4577rkHPz8/oqOjded06NCB6OhounfvTkBAAMeP\nHyc1NZXFixfzwQcfEBwczC+//EJ0dHSltR7ls6nj4+MJDQ2lR48ePPzww7rtLRYsWICvry+BgYFE\nRETU949FCKARbO8gRH05evQo3bt3r3TM3t6edu3aodVqKx2vOEKfO3cuTk5OaLVaHnroIY4cOYKf\nnx8ajQYXFxfi4+NZtGgR7733Hp9++il///vfsbe355///CcA27ZtqzTa12g0lJSUMHXqVDZs2ECr\nVq1YtWoVUVFRfP7557z99tukpqZibm7O1atX6/mnIoRKwl80Wzdrt9ys779q1So+/fRTSktLOXPm\nDElJSfj5+QEwYsQIALp168YPP/yge82NayUrPlYUhePHj3P06FEeeughALRaLW3atAEgICCAMWPG\nMHz48Ea/t41oPiT8RbPl4+PD6tWrKx27evUq6enpuLi4cOrUKd3xwsJCAFJSUnj//fc5cOAAjo6O\nTJw4UfccgKWlJQCmpqaUlpbW+NnV/cPj6+tb6dpAuZiYGOLi4tiwYQNz587l8OHDmJqa3to3K8Qt\nkp6/aLb69+9Pfn4+S5cuBdTR9ksvvcSYMWPo2LEjBw8eRFEU0tPT2b9/PwA5OTnY2tri4ODAuXPn\n2Lx5c62fY29vT05OTqVjFUf+Go2GLl26cOHCBfbt2weov3kkJSWhKAppaWmEhobyn//8h+zsbPLy\n8vT1IxCiRjLyF83amjVr+Mc//sEbb7zBhQsXGDhwIAsXLsTc3JyOHTvi4+ODt7e37tpAQEAAwcHB\ndO3aFQ8PDx588MFq37fiNYLw8HBGjhzJ+vXrWbBgge75iszNzVm9ejXTpk0jOzub0tJSXnzxRTp3\n7syTTz5JdnY2iqLw/PPP4+DgUI8/ESFUsrGbMBp79+7lb3/7G99//32j3IlTiIYk4S+EEEZIev5C\nCGGEJPyFEMIISfgLIYQRkvAXQggjJOEvhBBGSMJfCCGM0P8DZ2+WTkqxxJsAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Return values in the Gumbel distribution" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "clf()\n", + "T=np.r_[1:100001]\n", + "#sT=gum.par[1] - gum.par[0]*log(-log(1-1./T));\n", + "sT = gum.isf(1./T)\n", + "semilogx(T,sT), hold\n", + "N=np.r_[1:len(Hs)+1]; \n", + "Nmax=max(N);\n", + "plot(Nmax/N,sort(Hs)[::-1],'.')\n", + "title('Return values in the Gumbel model')\n", + "xlabel('Return period')\n", + "ylabel('Return value') \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "pyout", + "prompt_number": 6, + "text": [ + "" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEeCAYAAACHXhKxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVdX+x/H3ETRBUFAUBxJQM2cxp7JUytTMItMwtZwq\nzcrK2zWt/HXFbrcy61aaDZZTg6VZzmmWiUOmljmVpjmbiiMIqKjA+v2xrwdQkPEMcD6v5+GRs8/e\ne33P8rC/e6+191o2Y4xBREQ8VilXByAiIq6lRCAi4uGUCEREPJwSgYiIh1MiEBHxcEoEIiIeTolA\nnComJoa+ffs6tcxGjRqxcuXKItlXbGws1157bZHsyxUiIyOZPHmy07ctjPzUuSu+XyWBEoGbCAsL\nw9fXF39/f6pWrUrfvn1JTEzM07au+gMtCJvN5vQyf//9d9q1a1egbUuVKsWePXuKOKIMR44cYdCg\nQdSoUQN/f39q167NwIED2bFjh0PKs9lsBf4/KMy2zuLu8bkrJQI3YbPZWLhwIUlJSWzevJmtW7fy\n8ssv53nbwkhLSyvU9vlRHJ9fdFTMJ0+epE2bNqSkpLB69WqSkpL47bffaN++Pd9//71DyizpiuP3\nyx0oEbih4OBgOnXqxB9//GFftnbtWtq0aUNgYCARERGsWLECgFGjRrFq1SqGDh2Kv78/Tz31FPv2\n7aNUqVKkp6fbt8981TBt2jRuvvlmnnnmGYKCgoiJiWHgwIE88cQT3HXXXZQvX54bb7wxxzPhLl26\nMHHixCzLmjZtyty5cwF4+umnqVmzJhUqVKBFixasXr062/1kd8kfFhbGsmXLAOuP+rXXXqNOnToE\nBQVx//33Ex8fD0BKSgoPPvggQUFBBAYG0qpVK44dO5ZtOWFhYfz444+A1XTQs2dP+vfvT/ny5WnU\nqBEbNmzIdrtLVxFNmzbF39+fr776yv7ef//7X4KDg6levTrTpk2zLz9//jzDhw8nNDSUqlWr8thj\nj5GSkpLt/t966y0CAgL49NNPCQ8PB6BChQoMGDCAoUOHXrWOMn+e6Oho+vbtS/ny5WnSpAl//fUX\nr776KsHBwYSGhl6RVHbt2kXr1q2pUKEC3bp1s9cp5Pw9y01+4zh8+DBRUVFUqlSJ6667jo8//tj+\n3rlz5xgwYAAVK1akYcOG/PLLL1nKOnz4MD169KBKlSrUqlWLCRMm5ClGyZkSgRu5dDbz999/s2TJ\nElq3bg3AoUOHuOuuu/jXv/5FfHw8b7zxBj169ODkyZP85z//oW3btkycOJGkpCTGjx+f7b4vv6xf\nv349tWvX5tixY4waNQpjDDNnziQmJob4+Hjq1KnDqFGjst1Xnz59+OKLL+yvt23bxoEDB+jatSsA\nrVq1YvPmzcTHx9OnTx+io6O5cOFCnuogc5zjx49n/vz5rFy5kiNHjhAYGMgTTzwBwPTp00lMTOTv\nv//m1KlTfPjhh/j4+OS4z8wWLFhA7969OX36NFFRUfaD7uUu9Sts2bKFpKQkoqOjAYiLiyMxMZHD\nhw8zefJknnjiCU6fPg3Ac889x65du9i8eTO7du3i0KFDvPTSS9nu/4cffuDee+/NU71c7fMsXLiQ\nfv36ER8fT7NmzejYsSNgHTBffPFFHn30Ufu6xhg++eQTpk6dypEjR/D29uapp54Crv49y4v8xNGr\nVy9q1qzJkSNHmD17Ni+88ALLly8HYMyYMezdu5c9e/bw3XffMX36dPtnTk9P5+6776ZZs2YcPnyY\nZcuW8fbbb7N06dJ816NkYsQthIaGGj8/P+Pv729sNpvp1q2bSUtLM8YY89prr5m+fftmWb9z585m\n+vTpxhhjIiMjzccff2x/b+/evcZms9m3v7TO5MmTjTHGTJ061dSsWTPL/gYMGGAGDRpkf/3tt9+a\nevXqZRtrYmKiKVeunDlw4IAxxpgXXnjBPPzwwzl+tsDAQLNlyxZjjDGjR482Dz74oDHGmOXLl5uQ\nkJAs64aFhZlly5YZY4ypX7++/XdjjDl8+LApXbq0SU1NNVOmTDFt2rSx7/dqMu9z9OjRpmPHjvb3\n/vjjD+Pj45Pjtjabzezevdv+evny5cbHxydL3VapUsWsW7fOpKenm3LlymVZf82aNSY8PDzbfdep\nU8d8+OGH9tfz5s0zAQEBxt/f33Tq1Mle3tXqaPTo0fZ1jTFm/vz5xs/Pz6SnpxtjrP8rm81mTp8+\nbYyxvgfPP/+8ff1t27aZMmXKmLS0tDx9zy59hy6XnzgOHDhgvLy8THJysn39559/3gwYMMAYY0yt\nWrXMd999Z39v0qRJ9jpYu3btFd/dV155xQwcONAex6Xvl+SdrgjchM1mY968eSQmJhIbG8uPP/7I\nr7/+CsD+/fv56quvCAwMtP/89NNPxMXFZdk+P7K7CyM4ONj+u4+PD8nJydlu6+/vT9euXe1XBV9+\n+SUPPPCA/f033niDBg0aEBAQQGBgIKdPn+bEiRP5ig9g37593HvvvfbP3KBBA7y9vTl27Bh9+/al\nc+fO9OrVixo1ajBy5EhSU1PztN/Mn9PX15eUlJQszWi5qVSpEqVKZfzp+Pr6kpyczPHjxzl79izN\nmze3x9ylS5ccP3ulSpU4fPiw/XVUVBTx8fG89dZbeb6CAqhSpYr9dx8fH4KCguzfh0tXSZn/LzP/\n39esWZOLFy9y4sSJPH3PiiKOw4cPU7FiRcqVK5cljkt1cfjw4StivGT//v0cPnw4S4yvvvpqjs2C\nkjdKBG6oXbt2PPnkk4wcORKw/hD69u1LfHy8/ScpKYkRI0YAVyaBS39gZ8+etS+7/I+5sB3MvXv3\n5osvvuDnn38mJSWFW2+9FYBVq1Yxbtw4vvrqKxISEoiPj6dChQrZduKVK1cuS4xpaWkcP37c/rpm\nzZosWbIky+c+e/Ys1apVw9vbm3/961/88ccfrFmzhoULF/LJJ58U6jMVVlBQED4+Pmzbts0eb0JC\nQo53f3Xo0IG5c+deUTeZX+dWRwVx4MCBLL+XLl2aypUr5/o9u5r8fJ+qV6/OqVOnsiSnAwcOUKNG\nDQCqVat2RYyXXHvttYSHh2eJMTExkYULF+Y7DsmgROCmhg0bxvr161m3bh0PPvggCxYsYOnSpaSl\npZGSkkJsbCyHDh0CrDPc3bt327etXLkyNWrU4NNPPyUtLY0pU6ZkeT872R2or+bOO+9k//79jB49\nml69etmXJyUl4e3tTVBQEBcuXOCll17K8UBYt25dUlJS+Pbbb7l48SIvv/wy58+ft78/ZMgQXnjh\nBfuB4Pjx48yfPx+wOlG3bt1KWloa/v7+lC5dGi8vr3x9hry4vG6vplSpUgwaNIhhw4bZD9aHDh3K\nsf36mWeeIT4+nr59+7Jnzx6MMSQlJbFp0yb7AS23OsovYwyfffYZ27dv5+zZs/zrX/8iOjoam82W\n6/fs0vY57Tevrr32Wtq0acPzzz/P+fPn2bJlC1OmTOHBBx8EoGfPnrz66qskJCTw999/Z+kMbtWq\nFf7+/rz++uucO3eOtLQ0fv/9d/vVc36/x2JRInBTQUFB9O/fn7FjxxISEsK8efN45ZVXqFKlCjVr\n1uTNN9+0f+mffvppZs+eTcWKFRk2bBgAH330EePGjSMoKIht27Zx88032/ed3f3gOS3LSZkyZeje\nvTvLli2jT58+9uV33HEHd9xxB3Xr1iUsLAwfH58sl/aZy6lQoQLvvfcejzzyCCEhIfj5+WVpEnj6\n6aeJioqiU6dOlC9fnptuuon169cD1hVOdHQ0FSpUoEGDBkRGRubpQaL8fs6YmBj69+9PYGAgs2fP\nzvVe+rFjx1KnTh1uvPFGKlSoQMeOHdm5c2e261aqVIm1a9dStmxZbrnlFsqXL0+zZs04c+YM77//\nfp7qKC+fJ/Nrm81Gv379GDBgANWqVePChQv2Gwxy+55dra7yG8cXX3zBvn37qF69Ot27d+ell17i\ntttuA2D06NGEhoYSHh7OHXfcQb9+/ezbenl5sXDhQjZt2kStWrWoXLkygwcPtp9sFIdnHdyRzSiF\nioh4tCK/Ijh48CC33norDRs2pFGjRvazjZiYGEJCQmjWrBnNmjVjyZIlRV20iIgUQJFfEcTFxREX\nF0dERATJyck0b96cuXPnMmvWLPz9/XnmmWeKsjgRESkk76LeYdWqValatSoAfn5+1K9f397ZpFYo\nERH349DO4n379rFx40ZuvPFGACZMmEDTpk15+OGHSUhIcGTRIiKSV456Ui0pKck0b97czJkzxxhj\nzNGjR016erpJT083o0aNMg899NAV2wD60Y9+9KOfAvwUhkOuCC5evEiPHj148MEH6datG2A9dXjp\n1q5HHnnEfhvg5YwxRfozevToIl03p3Xyuvxqr3P6XXVRsuoiL8ucVRf53Z/qwj3rorC8YmJiYgq9\nl0yMMQwcOJDQ0FAy7/rIkSP4+/sDMHXqVFJTU+nRo0eWbceMGUMRhwNYozUW5bo5rZPX5Vd7fen3\n2NhYIiMjc40lv1QXOZdd2HXzUxd5WeasushPPeR1fdVF7usUZV0U+thpitiqVauMzWYzTZs2NRER\nESYiIsJ8++23pm/fvqZx48amSZMm5p577jFxcXFXbOuAcIqt0aNHuzoEt6G6yKC6yKC6yFDYY2eR\n3zV0yy23ZDuAV5cuXYq6qBLNEWfAxZXqIoPqIoPqoui41ZPFNputSNq7REQ8SWGPnRprSETEwykR\niIh4OCUCEREPp0QgIuLhlAhERDycEoGIiIdTIhAR8XBKBCIiHk6JQETEwykRiIh4OCUCEREPp0Qg\nIuLhlAhERDycEoGIiIdTIhAR8XBKBCIiHk6JQETEwykRiIh4OCUCEREPp0QgIuLhlAhERDycEoGI\niIdTIhAR8XBKBCIiHk6JQETEwykRiIh4OCUCEZFiLCGh8PtQIhARKYb274d//ANq1Sr8vpQIRESK\nkY0b4YEH4IYbwNsbtmwp/D6VCERE3Jwx8N13cPvtcPfd0KwZ7NkD48ZBSEjh9+9d+F2IiIgjXLwI\nX34Jb7xhJYPhw6FXLyhTpmjLUSIQEXEziYkwaRK88w5cfz2MHQudO4PN5pjylAhERNzEoUPWwX/y\nZOvAP2+e1RfgaOojEBFxsa1boX9/aNwYLlyADRtgxgznJAFQIhARcQlj4McfoUsX6+y/Xj3YvRve\nfhvCwpwbS5EngoMHD3LrrbfSsGFDGjVqxPjx4wE4deoUHTt2pG7dunTq1ImEongKQkSkmElNhS++\ngBYt4Ikn4L77YO9eeP55CAx0TUw2Y4wpyh3GxcURFxdHREQEycnJNG/enLlz5zJ16lSCgoIYMWIE\nY8eOJT4+ntdeey1rMDYbRRyOiIhbSE622v7fegtCQ607gLp2hVJFcDpe2GNnkV8RVK1alYiICAD8\n/PyoX78+hw4dYv78+fTv3x+A/v37M3fu3KIuWkTE7cTFwahREB4Oq1fDzJmwYoX1PEBRJIGi4NC7\nhvbt28fGjRtp3bo1R48eJTg4GIDg4GCOHj2a7TYxMTH23yMjI4mMjHRkiCIiDvHnn9b9/19/DX36\nwNq1ULt20ew7NjaW2NjYotkZDmgauiQ5OZn27dvz4osv0q1bNwIDA4mPj7e/X7FiRU6dOpU1GDUN\niUgxZox11j9uHKxbZ/UBPP44BAU5ttzCHjsdckVw8eJFevToQd++fenWrRtgXQXExcVRtWpVjhw5\nQpUqVRxRtIiI06WlwZw51hXAyZPwz39aTUA+Pq6OLG+KvIXKGMPDDz9MgwYNGDZsmH15VFQU06dP\nB2D69On2BCEiUlydPQvvvWc9/fvmmzBihNUkNGRI8UkC4ICmodWrV9OuXTuaNGmC7X/PQ7/66qu0\natWKnj17cuDAAcLCwpg1axYBAQFZg1HTkIgUA8ePw8SJ8P77cNNN8OyzcPPNrounsMdOh/URFIQS\ngYi4s127rDP/L7+E6GirCej6610dlRvePioiUtKsXQs9elhn/0FBVvPPpEnukQSKggadExHJRno6\nLFhg3QF06BA88wx88gmUK+fqyIqeEoGISCYpKfDpp1YTkL+/1f7fvbs1G1hJVYI/mohI3p06Zd0B\n9O670Lw5fPABtG/vuDkA3In6CETEo+3dC089BXXqWNM/LlsGixZBZKRnJAFQIhARD/Xrr9a0jy1b\ngq8v/P47TJkCDRu6OjLnU9OQiHgMY2DxYqsDePduGDYMPvrI6gvwZEoEIlLiXbhgzfj1xhtWp++z\nz0LPnlC6tKsjcw9KBCJSYiUkwIcfwvjxVpPPW2/B7bd7Ttt/XikRiEiJc/CgNeXjtGlw553w7bfQ\ntKmro3Jf6iwWkRJj82bo2xf+NzcWmzZZzwQoCVydEoGIFGvGwPffQ6dO1tl/o0ZWR/Cbb8K117o6\nuuJBTUMiUixdvAizZlkdwBcvWnMA9+kDZcq4OrLiR4lARIqVpCTrls+337amfvzPf6BLF3UAF4YS\ngYgUC4cPW3f/fPyxdefPN99AixaujqpkUB+BiLi1P/6AgQOttv+zZ+GXX6z5AJQEio6uCETE7RgD\nK1ZYTwD/9hsMHQp//QWVKrk6spJJiUBE3EZqKnz9tdUBnJRkzQD29ddQtqyrIyvZNFWliLjcmTPW\ngG9vvQU1alhDQNx1F5RS43WeFPbYqSsCEXGZo0et8f8/+ADatbPGA7rxRldH5XmUb0XE6XbsgMGD\noX59OHkS1qyxmoCUBFxDVwQi4jQ//WR1AK9ZA48/biWEypVdHZUoEYiIQ6Wlwbx5VgfwsWPWJPAz\nZliTwYh7UCIQEYc4dw6mT4f//hcqVrQ6gLt1Ay8vV0cml1MiEJEideKENQn8xInQujVMngy33KIh\nINyZOotFpEjs3g1PPAHXXQcHDkBsLMyfD23bKgm4OyUCESmUdesgOtq64ycgALZvt8YDql/f1ZFJ\nXqlpSETyLT0dFi2y7gA6cAD+8Q+YOhX8/FwdmRSEEoGI5FlKCnz+uXUHkK+v1QF8333WhPBSfOm/\nT0RyFR8P778PEyZY00BOnAi33qq2/5Iiz30EZ8+edWQcIuKG9u+HYcOsCWB27IClS2HxYrjtNiWB\nkiTXRLBmzRoaNGjA9ddfD8CmTZt4/PHHHR6YiLjOb79B795www3W1I9btljPBDRu7OrIxBFyTQTD\nhg1jyZIlBAUFARAREcGKFSscHpiIOJcxsGQJdOgA99xjTfyydy+8/jqEhLg6OnGkPPUR1KxZM+tG\n6hkSKTEuXLBm/HrjDev1s8/C/fdrEnhPkusRvWbNmvz0008AXLhwgfHjx1NfNwiLFHunT8OkSfDO\nO9Y9/+PGQadOavv3RLk2Db3//vtMnDiRQ4cOUaNGDTZu3MjEiROvus1DDz1EcHAwjTM1KMbExBAS\nEkKzZs1o1qwZS5YsKXz0IpJvf/9tnfXXqgWbNsGCBfD999C5s5KAp3LIDGWrVq3Cz8+Pfv36sXXr\nVgDGjBmDv78/zzzzTM7BaIYyEYfZssVq/lm4EPr3t+4GCg11dVRSFBw+Q9nAgQOvKBBgypQpOW7T\ntm1b9u3bd8VyHeRFnMsY+PFHq9lnyxZ46imrKSgw0NWRiTvJNRF07drVfvA/d+4cc+bMoXr16gUq\nbMKECXzyySe0aNGCN998k4CAgALtR0SuLjUVvvrKSgApKTB8uDUnwDXXuDoycUf5bhpKT0/n5ptv\n5ueff77qevv27ePuu++2Nw0dO3aMyv+biujFF1/kyJEjTJ48OWswNhujR4+2v46MjCQyMjI/4Yl4\ntKQka9jnt9+GsDArAdx5pyaBL2liY2OJjY21vx4zZkyhWlzynQj+/PNP7rrrLnbt2nXV9S5PBHl5\nT30EIgVz5AiMHw8ffWQ99Tt8OLRq5eqoxFkc3kfg5+dnbxqy2WwEBwczduzYfBd05MgRqlWrBsCc\nOXOy3FEkIgWzfbvVAfzNN/DAA9aQ0LVruzoqKW5yTQTJycn53mnv3r1ZsWIFJ06c4Nprr2XMmDHE\nxsayadMmbDYb4eHhfPjhhwUKWMTTGQMrV1oJ4JdfrMlg/voL/vfwv0i+5dg0tGHDBvuVQHZuuOGG\nog9GTUMiOUpLs878x42DhAT45z+hXz/w8XF1ZOJqhT125pgIIiMjr5oIli9fXuBCcwxGiUDkCmfP\nWpO+/Pe/EBxsPQwWFaVJ4CWDwxKBKygRiGQ4dgzefRc++ABuvtlKAG3auDoqcUcO7ywG2Lp1K9u3\nbyclJcW+rF+/fgUuVERy9tdf8OabMGsW9OwJq1bB/0aBF3GIXBNBTEwMK1as4I8//qBr164sXryY\nW265RYlApIj9/LPV/r96NQwZAn/+CVWquDoq8QS5PmYye/ZsfvjhB6pVq8bUqVPZvHkzCQkJzohN\npMRLT4e5c62mnwcesJ4B2LsXXnpJSUCcJ9crAh8fH7y8vPD29ub06dNUqVKFgwcPOiM2kRIrJQU+\n+cRqAqpQwWr/795dHcDiGrkmghYtWhAfH8+gQYNo0aIF5cqVo416rEQK5ORJeO89a/L3Fi2s+QDa\ntdPwz+Ja+bpraO/evSQmJtK0aVPHBKO7hqSE2rvXuv3z88/h3nutZwAaNHB1VFJSFPbYmWsfwd13\n382MGTM4c+YM4eHhDksCIiXRL79Y0z62bAl+fvDHH9agcEoC4k5yTQT//Oc/WbVqFQ0aNKBHjx7M\nnj07y22kIpJVejosWgSRkXDffXDjjdYVwauvwv+G2xJxK3luGkpNTWX58uV89NFHLFmyhMTExKIP\nRk1DUoydP281/bz5pjXx+7PPQnQ0lC7t6sikpHPKA2Xnzp1j/vz5zJo1i99++43+/fsXuECRkiYh\nwXr6d/x4aNzYmgGsQwd1AEvxkWsi6NmzJ+vWreOOO+5g6NChtG/fnlKa5UKEAwesCWCmTYO77oLF\ni0FdaFIc5do0tGTJEm6//Xa8vfN08VC4YNQ0JMXApk3WE8BLlsDAgfD003DttXnbdvCCwew8uRPf\n0r7M6DGDgLKarlUKT4POiTiBMfD991YC2LbNOvg/+qj1MFh+RE6LZMX+FQBEN4hmVvQsB0QrnsYp\nfQQiJUV+zsgHLxjMjhM7OX3Cl7RZMzDnAhg+HPr0sTqDC8K3tC8ALau3ZNLdkwq2E5EipisC8Sh5\nPSNPSoJm70SyO81a95bAaFY+OavQHcAJKQkMXjCYSXdPUrOQFBmnXBEcOnSIffv2kZaWhjEGm81G\nu3btClyoiKvkdkYeF2fd/TNpEpQe4Av+1roL+k4qkruAAsoGqDlI3E6uVwQjR45k5syZNGjQAK9M\nI2ItWLCg6IPRFYE4WE5n5H/+mTEJfJ8+8I9/QKUaOnuX4sHhncV169Zl69atXHPNNQUuJM/BKBGI\nk/30E7z+OqxdC48/bk0Er0ngpbhxeNNQ7dq1uXDhglMSgYgzpKXB/PnWHUBHj8Lw4fDFF+Dr6+rI\nRFwjT/MRRERE0KFDB3sysNlsjB8/3uHBiRSlc+cy5gAICIARI6yRQDUHgHi6XBPBPffcQ1RUFLb/\n9ZRd6iwWKS5OnbLmAHj3XWsOgI8+0hwAIpldNRGkpqYydepUYmNjnRSOSNHZt8+aA+Czz6BbN1i2\nDBo2dHVUIu7nqonA29sbLy8vEhISCAjQXRPi3i49LJZ6zpfg1TOIXRLAI4/A1q1Qo4aroxNxX7k2\nDZUrV47GjRvTsWNHypUrB6iPQNyPMbBu1062JFoPgDWpP5i978+ifHkXByZSDOSaCLp370737t2z\nLFMfgbiLixdh5kzrDqA9N/lCNWherSU/9JtE+bKujk6keNAQE1IsJSVZnb5vvw116liTwNwYmcCj\nC/UAmHgehz9QFh4enm2he/bsKXChOQajRCC5OHIEurw3mD/idhIU4MuM7jO49SYd9MWzOfyBsl9+\n+cX+e0pKCrNnz+bkyZMFLlCkILZvt4aAmDMHfB/fSWrICuKA9/8ezK1o7B6Rwsh1qrGgoCD7T0hI\nCMOGDWPRokXOiE08nDGwahVERVkTwYeGws6d0KS+hnIWKUq5XhFs2LDB3jmcnp7Or7/+SlpamsMD\nE8+Vlgbz5lljAJ04YQ0BMXMm+PhY78/oMUODwYkUoVz7CCIjI+2JwNvbm7CwMIYPH871119f9MGo\nj8CjXD5JzDOLR7B6+04O7fOl/rYZBPYcwcXymtZRJDcO7yzes2cPtWrVyrJs79692XYiF5YSQcl2\n+YG/25fd7JPENCSanYeOcbFGxqQxx84c07SOInlQ2GNnrn0E9913X56WieRk8ILBRE6LZPa22azY\nv4LFuxYzeMFguGi19XvFtSTi4CRubJ617V/TOoo4R459BNu3b2fbtm0kJCTwzTff2AebS0xMJCUl\nxZkxihvLfJZf2bcy+0/vZ0/8HmpWqEn5a8ozo8cMdp7caT+zB2hQoSWpcyaxeTlc/8hg5oyYRP3w\nABJSsrb9qy9AxDlybBqaN28ec+bMYcGCBURFRdmX+/v706tXL9q0aZPjTh966CEWLVpElSpV2Lp1\nKwCnTp3i/vvvZ//+/YSFhTFr1qwrxi9S01Dxk3kO4Mq+lTl+9niW96MbRJN8IZnFuxZT27cZCftr\ncs3iafzzCWscIA0BIVJ4Du8jWLNmzVUP+tlZtWoVfn5+9OvXz54IRowYQVBQECNGjGDs2LHEx8fz\n2muvZQ1GicCtDV4wmIU7F5KSmoJvaV/CAsLYcXIHJ86eoGX1llS4pgI/7P2BCtdU4PT507Ss3pKF\n9y/l66/huZ8GE7JxEs8NC6BXLyhd2tWfRqTkcHgfQaVKlejQoQMN/zd+75YtW3j55Zevuk3btm0J\nDAzMsmz+/Pn0798fgP79+zN37tyCxiwusvPkTo4kHyE+JZ5DSYf46eBPnDh7ghD/EJb2XcpXPb8i\nukE0m4dsptt10USdXkrzhgHM/syasP33XwPo21dJQMTd5JoIBg0axCuvvEKZMmUAaNy4MV988UW+\nCzp69CjBwcEABAcHc/To0XzvQ1zrUuctQPkyVptOy+ot2fr4VgLKBhBQNoDxbWfx4euhrHrKOvDP\nnWvNA9DBlMeMAAATsElEQVS5syaCEXFXuT5QdvbsWVq3bm1/bbPZKF3IUzqbzZbjCKYxMTH23yMj\nI4mMjCxUWZJ/lzqAL3X6Hjh9gJoVauJT2oeudbri7eXNO3e8w7PfP2vvyP3rL2sIiFmzoE8fWL8e\nLrvrWESKSGxsbJFOGJZrIqhcuTK7du2yv549ezbVqlXLd0HBwcHExcVRtWpVjhw5QpUqVbJdL3Mi\nEOe4vO0/6XwSiRcSATiYeDDLv5nv558VPYtffoGxY2HFCnjsMdixA3L4rxWRInL5SfKYMWMKtb9c\nE8G7777L4MGD2bFjB9WrVyc8PJzPP/883wVFRUUxffp0Ro4cyfTp0+nWrVuBApaiNXjBYGb9MYvT\n508DEJ8Sb3/Pu5Q3qempWTp/J909CWNg6VIrAezaBc88A9OmgZ+fiz6EiBRKnucjSE5OxhiDn58f\ns2bN4v77789x3d69e7NixQpOnDhBcHAwL730Evfccw89e/bkwIEDun3UDVy6Cjh+5jipJtW+vHyZ\n8iReSCSwbCArBqzg3yv/zbiO43j2+2d5r8skls4P4PXXrfGARoxAdwCJuAGH3T6anJzMhx9+yO7d\nu2nUqBFDhgxh3rx5jBo1ijp16jB//vwCF5pjMEoEDnep/X/L0S1Zzv5LlypNx1odea/re1na/gHO\nnoUpU+DNN6FmTSsB3HmnOn9F3IXDEkH37t0pX748N910E0uXLuXgwYOULVuW8ePHExERUeACrxqM\nEoFDXd4MdEmFayqwechmQgNCsyw/eRLefRcmToSbb4aRI+HGG50ZsYjkhcMSQZMmTdiyZQsAaWlp\nVKtWjf379+NzaSxgB1AiKFqZO4HPp54nJTWFdNIBCCgbwM0hN+Pt5c20btOyDOGwf7919v/ZZ9C9\nuzUMdL16rvoUIpIbh81Q5uXlleX3GjVqODQJSNG51Pzz898/cyHtwhXv27Cx6dFNV1wBbNlizQGw\neDE88gj8/jtUr+6sqEXEVXK8IvDy8sLXN+MBonPnztkTwaXB54o8GF0RFIlqb1YjLjku2/e8bF5s\nfHQjjYMbA9YsYCtWWHcAbd4MTz8NQ4ZAhQrOjFhECsNhVwSahaz4uvwqIOCaABb2WUiv2b1Y/dBq\nQgNCSUuDuXOtBHD6NDz7rPX6mmtcFLSIuEyebx91Bl0R5E+9d+sRlxxH0oUkynmX40zqGcp5lyMl\nLYWL6RdpUqUJ4YHhWfoAUlLg009h3DioWNHqAI6KgkwtgSJSzDh89FFnUiLIm0sJ4PK7fzLz8fbh\n8D8P2xNAQgJ88AGMHw8REVYCaNdOt4CKlAQOaxoS95OXBADW4HDbHt9GQNkA4uLg7bfho4+se/+X\nLIEmTZwUsIgUC0oEbi7zDGA7Tu7Idp16QfVITElkVvQsez9Aenwoj78AX35pDQK3YQOEhTk3dhEp\nHpQI3NyCnQtyvAOoYeWG1KlYJ0sfwJLOB/m/J+Hbb+HRR2H7dvjf6N8iItlSInBDl5qASnuV5sTZ\nE/blXniRRhplvctyW9htfN7jc3sCWLsWXn0V1q2zbgF9913dAioieaNE4IZ2ntyJ4cqOn6ByQZQu\nVdp+C6gx8P33VgLYvdsaA+jLL0HP/YlIfigRuKHskoBvaV/WPbKO0IBQ0tPhm2/glVesAeGeew56\n99YooCJSMEoEbiJzp3BmbWu2ZW/8XlY/tJrq5UKZNs16CMzfH/7v/6xnAErlOuGoiEjOlAjcxJSN\nU0gz1tPcpShlHxyukk8llty/ksmTrYfArrvOav+/7TY9AyAiRUOJwIVKjSmVbTPQpSTQpHIzGu6a\nSng4tGkDs2dDq1bOjlJESjolAhfKLgkAVCpbhaDk9hz49yQOdgpg+XJo0MDJwYmIx1AicKKA1wJI\nvpBMKVspNgzekOW9spQlhRS8TFkuTlxPh7tDefZnPQQmIo6nsYacyDYmo1G/jK0MqaSSbqxmoFLp\nZTHJQQw0q/n38FDNAyAieaaxhtxY5juBZvSYkeW9VJNKKZuX1R+QXoq+59YzdkRjPQUsIk6nKwIH\nynwFcEvILaz+e3XGmwbKf76Fsw+0ZlmvdbSr19gFEYpISaArgmLi8iTwgG0xE9Y3JjDwrOuCEhEB\n9ChSEbCNsdl/Zv8xO/uVDPjPXQzAV90W89noOwgMdGKQIiI50BVBEYueHY1peNklmoF7vN/js1V3\n4OdXcpq+RKRk0BWBA2zdCvfeC/4r3gPgrdvfY+7/PYafn4sDExHJhjqLi0DmTuHyyc3w+fQ3Ro6E\nIUM0EqiIOJ46i50o85AQi/ss5o7r7rhinUS/jRzahc7+RaTYUNNQPmQeEqLLjC4cOACDBkHmkSJK\nUUpJQESKFSWCgjLQrBlUrgxkGgV05cCVLgtJRKQg1DRUCNu3Q5Uq0PXAatpNa8fKASu5uebNrg5L\nRCRf1Fl8qexMHb7/bv9v/i/y/+yvk5Phv/+F0em2LGf/ZrTbVJ2IeLDCHjvVNJSNF1e8CMDFi/DB\nB1C3Lvz5J1mSQMvqLV0TnIhIEVMiyMGcOdC4MXz1FSxYADNmQJMqTQAIDwhnad+lLo5QRKRoqGno\nUtljMrf5QJM5hrFjoXPnjCkhE1ISGLxgMJPunkRA2QCXxCkicrnCHjtLdCKo92494pLjKO1Vml8H\n/UpoQGjOZY/JOgFw6v8ZvLyKLBQREYdRH8FV7Di5g9PnT3Pi7Akavdso23XOnYOYGLh81kglARHx\nFE6/fTQsLIzy5cvj5eVF6dKlWb9+vVPKTU5LvmLZokXw1FPW8wBkmg5gWtQ0p8QkIuIOnJ4IbDYb\nsbGxVKxY0dlF2+3bB8OGwbZt8N57Vj/A9I3TGDB/ANOiptG/WX+XxSYi4mwuaRpyVbfE+fPwn/9A\nixbQsqU1SmjnztZ7/Zv1x4w2SgIi4nFcckVw++234+XlxaOPPsqgQYOyvB8TE2P/PTIyksjIyCIr\nu3FjaNAAfv0VwsKKbLciIk4VGxtLbGxske3P6XcNHTlyhGrVqnH8+HE6duzIhAkTaNu2rRVMEd81\ndPktoQtbGrp2LbLdi4i4hWJ311C1atUAqFy5Mvfee6/DOovT0y9bYENJQEQkG05NBGfPniUpKQmA\nM2fOsHTpUho3bpxlHdsYG4/MfaTQZdlsua8jIiJOTgRHjx6lbdu2RERE0Lp1a+666y46dep0xXqT\nN08udFmXJ4JSJfuRCRGRAnNqZ3F4eDibNm1yWnk2bPbJZDYNcV65IiLFSYk+Td48ZDM+3j5sGbKF\nxsGNc99ARMQDleiJaRoHN+bsqLOuDkNExK2V6CsCERHJnRKBiIiHUyIQEfFwSgQiIh5OiUBExMMp\nEYiIeDglAhERD6dEICLi4ZQIREQ8nBKBiIiHUyIQEfFwSgQiIh5OiUBExMMpEYiIeDglAhERD6dE\nICLi4ZQIREQ8nBKBiIiHUyIQEfFwSgQiIh7OLRNB25ptXR2CiIjHcLtEULdiXeb3nu/qMEREPIbN\nGGNcHcQlNpuN+HPxBJQNcHUoIiLFhs1mozCHcrdLBG4UjohIsVDYY6fbNQ2JiIhzKRGIiHg4JQIR\nEQ+nRCAi4uGUCEREPJwSgYiIh1MiEBHxcEoEIiIeTolARMTDOTURLFmyhHr16nHdddcxduxYZxZd\n7MTGxro6BLehusigusiguig6TksEaWlpDB06lCVLlrBt2za++OILtm/f7qziix19yTOoLjKoLjKo\nLoqO0xLB+vXrqVOnDmFhYZQuXZpevXoxb948h5ebny9LXtbNaZ28Lr/aa0d/sVUXOZdd2HXzUxd5\nWeasusjvvlUX+Vu/uNSF0xLBoUOHuPbaa+2vQ0JCOHTokMPL1cEv57ILu67qIvd13O0PPi+xFHZ9\n1UXu67hbXTht9NGvv/6aJUuW8NFHHwHw2WefsW7dOiZMmJARjM3mjFBEREqcwhzKvYswjquqUaMG\nBw8etL8+ePAgISEhWdbRENQiIs7ntKahFi1a8Ndff7Fv3z4uXLjAzJkziYqKclbxIiKSA6ddEXh7\ne/Puu+/SuXNn0tLSePjhh6lfv76zihcRkRy41QxlIiLifHqyWETEw7l1Ijhz5gz9+/dn8ODBzJgx\nw9XhuNTevXt55JFHiI6OdnUoLjdv3jwGDx5Mr169+P77710djkv9+eefPPbYY/Ts2ZPJkye7OhyX\nO3PmDC1btmTRokWuDsWlYmNjadu2LY899hgrVqzIdX23TgTffPMNPXv2ZNKkScyfP9/V4bhUeHg4\nH3/8savDcAv33HMPkyZN4oMPPmDmzJmuDsel6tWrx/vvv8+XX37Jd9995+pwXO7111/n/vvvd3UY\nLleqVCn8/f05f/78FXdnZru+E2LK4qGHHiI4OJjGjRtnWZ7dOESZH0Lz8vJydqgOl5+6KOkKUhcv\nv/wyQ4cOdWaYTpHfuliwYAFdu3alV69ezg7V4fJTF99//z0NGjSgcuXKrgjV4fJTF23btuXbb7/l\ntddeY/To0bnv3DjZypUrzW+//WYaNWpkX5aammpq165t9u7day5cuGCaNm1qtm3bZj799FOzcOFC\nY4wxvXr1cnaoDpefurjkvvvuc0WoDpefukhPTzcjRowwP/zwgwsjdpyCfC+MMSYqKsrZoTpcfupi\n1KhRZtiwYaZTp07mnnvuMenp6S6MvOgV5Htx/vz5PB0znHb76CVt27Zl3759WZZlHocIsI9D9NRT\nTzF06FAWLVpUIp85yE9dBAcH88ILL7Bp0ybGjh3LyJEjnR+wA+WnLn744QeWLVtGYmIiu3bt4tFH\nH3V+wA6Un7o4duwY33zzDSkpKdx6663OD9bB8lMXL7/8MgDTp0+ncuXKJW6kgvzUxZ9//sl3331H\nQkICTz75ZK77dnoiyE524xCtW7cOX19fpkyZ4sLInC+nuqhYsSIffPCBCyNzvpzqYsKECXn6cpck\nOdVF+/btad++vQsjc76c6uKS/v37uyIsl8ipLp577jnuvffePO/HLTqLS1rmLgzVRQbVRQbVRQbV\nRYaiqgu3SAR5GYfIU6guMqguMqguMqguMhRVXbhFItA4RBlUFxlUFxlUFxlUFxmKrC4c0r19Fb16\n9TLVqlUzZcqUMSEhIWbKlCnGGGO+/fZbU7duXVO7dm3zyiuvODssl1BdZFBdZFBdZFBdZHBkXWis\nIRERD+cWTUMiIuI6SgQiIh5OiUBExMMpEYiIeDglAhERD6dEICLi4ZQIREQ8nBKBFAteXl40a9aM\nJk2a0L17d5KTk6+6/rx589i+fbuTosu/DRs28PTTT+drm7CwME6dOuWgiMSTKRFIseDr68vGjRvZ\nsmUL5cuX58MPP7zq+nPmzGHbtm35KiM1NbUwIearnObNm/POO+/kazsNtiaOokQgxc5NN93E7t27\nAdi9ezddunShRYsWtGvXjh07drBmzRoWLFjAs88+yw033MCePXuIjIxkw4YNAJw4cYLw8HAApk2b\nRlRUFB06dOD2229n+vTpdO/enS5dulC3bt0c530ICwtj5MiRNGnShNatW9vjOX78OPfddx+tWrWi\nVatWrFmzBoCYmBj69u3LLbfcQr9+/VixYgV33303AKdOnaJbt240bdqUm266ia1btwJw8uRJOnXq\nRKNGjRg0aBAaBEAcpsgGwhBxID8/P2OMNSNT9+7dzcSJE40xxtx2223mr7/+MsYYs3btWnPbbbcZ\nY4wZMGCA+frrr+3bR0ZGmg0bNhhjjDl+/LgJCwszxhgzdepUExISYuLj4+2va9WqZRITE01KSooJ\nDQ01f//99xXxhIWF2cd1+eSTT8xdd91ljDGmd+/eZvXq1cYYY/bv32/q169vjDFm9OjRpkWLFiYl\nJcUYY8zy5cvt2wwdOtS89NJLxhhjfvzxRxMREWGMMebJJ580//73v40xxixatMjYbDZz8uTJwlSj\nSLbcYmIakdycO3eOZs2acejQIcLCwhgyZAjJycn8/PPPREdH29e7cOGC/XeTxzPojh07EhAQAFjN\nLx06dMDf3x+ABg0asG/fPmrUqHHFdr179wasWaH+8Y9/APDDDz9k6ZtISkrizJkz2Gw2oqKiuOaa\na67Yz08//cQ333wDwK233srJkydJSkpi1apVzJkzB4A777yTwMDAPH0ekfxSIpBiwcfHh40bN3Lu\n3Dk6d+7MvHnzuP322wkICGDjxo3ZbpO5Td3b25v09HQAUlJSsqxXrly5LK8zH6y9vLxIS0vLNb5L\nZRljWLduHWXKlLliHV9f3xy3zylp5TWZiRSG+gikWPHx8WH8+PGMGjUKPz8/wsPDmT17NmAdNLds\n2QKAv78/iYmJ9u3CwsL49ddfAezrZye7A29OB+OZM2fa/23Tpg0AnTp1Yvz48fZ1Nm/enOtnatu2\nLZ9//jkAsbGxVK5cGX9/f9q1a8eMGTMAWLx4MfHx8bnuS6QglAikWMh8dh8REUGdOnWYNWsWn3/+\nOZMnTyYiIoJGjRoxf/58wGquGTduHM2bN2fv3r0MHz6c999/nxtuuIGTJ0/a92ez2bLs+/LXl5ed\nWXx8PE2bNmXChAm89dZbAIwfP55ff/2Vpk2b0rBhwyx3N+VUTkxMDBs2bKBp06a88MILTJ8+HYDR\no0ezcuVKGjVqxJw5cwgNDS1w/YlcjeYjECmA8PBwNmzYQMWKFV0dikih6YpApAB0T7+UJLoiEBHx\ncLoiEBHxcEoEIiIeTolARMTDKRGIiHg4JQIREQ+nRCAi4uH+Hzkkm7p23/ocAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 5.2 Generalized Pareto and Extreme Value distributions\n", + "----------------------------------------------------------\n", + "Section 5.2.1 Generalized Extreme Value distribution\n", + "-------------------------------------------------\n", + "\n", + "Empirical distribution of significant wave-height with estimated Generalized Extreme Value distribution" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "gev = ws.genextreme.fit2(Hs)\n", + "gev.plotesf()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAETCAYAAAAoF0GbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18zfX/x/HHmW1KxkbMxbCFuTZiFMNUiKKSuSzX+qav\nRCnfviXzLaRUqu+3+ikXUZZ8uxiyWb5Zrr4oRr6GhU0z1xdTM9mFz++PTztMnF04Z+ec7Xm/3c5t\nfc7nc87ndXbLee39el9ZDMMwEBERuQ4PZwcgIiKuTYlCRERsUqIQERGblChERMQmJQoREbFJiUJE\nRGxSopAyzcfHh5SUlOueHzt2LK+88soN3SM+Pp46derc0HvcKFeIQdyXEoW4nMDAQCpUqICPj4/1\nMX78eIfc67fffiMwMPC6599//31efPFFh9w7T3R0NK1ataJy5cpUq1aNu+++25q8IiMj8fLyyve7\nmD17tkPjGT58OFOmTHHoPcS9eDo7AJGrWSwWVq5cyV133eXUOC5duoSHh2P/ltq/fz/Dhg3jq6++\nomvXrmRkZBAXF0e5cuUA83cxaNAgFi1a5NA4RGxRi0LcysKFC+nYsSNPP/00fn5+NGjQgE2bNrFg\nwQLq1q2Lv79/vi/V4cOH8/jjj9O9e3cqVapEeHg4v/zyi/W8h4cHBw8etF47duxYevXqRcWKFVm7\ndu2f/rq+8q//Bg0asHr1agAWLFhA06ZNqVSpEvXr12fu3LmF+jw7duwgKCiIrl27AlCxYkX69u1r\nLRMZhkFhF08IDAzk1VdfpVmzZlSpUoWRI0dy8eLFa167Z88ewsPD8fPzo3nz5qxYsQKAuXPnsmTJ\nEl577TV8fHx44IEHCnVvKd2UKMQl2fpy3Lp1KyEhIZw5c4ZBgwbRv39/tm/fzoEDB/jkk08YN24c\nmZmZ1uuXLFnCSy+9xKlTp2jVqhVDhgy57ntHRUUxZcoUMjIyCAsLw2KxYLFYrPcdNmwYb7zxBufO\nnWPdunXWspW/vz/ffPMNv/76KwsWLGDixIkkJCQU+DnbtGnD3r17efrpp4mPjycjI6OQv6FrW7Jk\nCXFxcRw4cICkpKRr9q9kZ2fTu3dv7r33Xk6ePMm7777LkCFDSEpK4rHHHmPIkCFMnjyZ3377jejo\n6BuKR0oHJQpxOYZh8OCDD+Ln52d9zJs3z3o+KCiIYcOGYbFY6N+/P0eOHOGll17Cy8uLbt264e3t\nzf79+63X33///YSFheHt7c306dP573//S1pa2jXv/eCDD3LnnXcCUL58+Xzn5s2bx6hRo7j77rsB\nqFWrFo0aNQKgV69eBAUFAdC5c2e6d+/O+vXrC/ysQUFBxMfHk5aWRv/+/alWrRojRozg/Pnz1ms+\n//xz6++hSpUqHDt27JrvZbFYGDduHLVr18bPz48XXniBqKioP123efNmzp8/z9/+9jc8PT3p2rUr\n999/v/XaorRipGxQohCXY7FYiI6O5uzZs9bHqFGjrOf9/f2t/33zzTcDUK1atXzP5f1lbrFYCAgI\nsJ675ZZbqFKlCkeOHLnmfW2NDDp8+DD169e/5rmYmBjuuOMOqlatip+fH6tWreL06dOF+rzt27dn\n6dKlnDhxgvXr17Nu3TqmT59uPT9gwADr7+HMmTPUqFHjuu91Zfx169a95uc8cuTInz5nvXr1rNfm\ntaBE8ihRSKlmGAapqanW44yMDM6cOUOtWrWK/F516tTJ11LJc/HiRR5++GGee+45Tpw4wdmzZ+nV\nq1ex/ipv27YtDz30ELt37873GQrryv6XX3755Zqfs1atWqSmpuZ730OHDlG7dm1AiUL+TIlCXJI9\nSx+rVq1i48aNZGVlMWXKFO68807rl2JB97yyDDNq1CgWLFjAd999x6VLl0hLS2Pfvn1kZWWRlZXF\nrbfeioeHBzExMcTFxRUqto0bN/LRRx9x8uRJAPbu3cuKFSu44447ivw5DcPgvffeIy0tjTNnzjB9\n+nQGDhz4p+vat29PhQoVeO2118jOziY+Pp6VK1dar/X397d28IuAEoW4qN69e+ebO/Dwww8D5Otc\nzmPrL2CLxcLgwYOZNm0aVatWJSEhgU8++eSar73ee+c9Fxoaau2o9vX1tY6g8vHx4Z133qF///5U\nqVKFqKioP40Wul6Mvr6+LF++nBYtWuDj40PPnj3p27cvzz333HVjKuizdu/enfr169OwYcN8c0Dy\n3sfb25sVK1YQExNDtWrVGDduHIsXLyY4OBgwE2JiYiJ+fn707du3UPeW0s3iqhsXnT9/nieeeILy\n5csTHh7O4MGDnR2SuKERI0YQEBDAyy+/7OxQHC4oKIh58+Y5ff6JlD4u26L48ssv6d+/P3PnzmX5\n8uXODkfclIv+HSTiVko0UYwcORJ/f39atGiR7/nY2FgaN25Mw4YNmTVrFgBpaWnWkRl5s1RFiqoo\npRsRubYSLT2tX7+eihUrMnToUHbt2gVAbm4ujRo1Ys2aNdSuXZvQ0FCioqLYtm0bfn5+3HfffQwa\nNOia48FFRMTxSrRF0alTJ/z8/PI9t3XrVho0aEBgYCBeXl4MHDiQ6Oho+vbtyxdffMETTzxBnz59\nSjJMERG5gtMXBbyyxAQQEBDAli1bqFChAvPnz7f5WpUURESKpyjFJKd3Zt/ol33eOHd3ePTsaQAG\nlSubP2HqHz+v9bhEFU7RjF3cz3Im8Cb/5Ali6c5hanEGX74jnLd4imEsIJi9eHle4qefSu7zTJ06\n1em/U8Xv/DjKYvzuHLthFL23wemJonbt2vlmzqampuZbcqE0WbIEIiJg507o1QtuuQVq1oQNG+DW\nW81rqlc3j8HCGaqym+aspDdzmMg4/sW9rCaANBqxjxn8ncME0J044uhOak4Nklo+zATLHFpafsJi\nMfDzg0OHnPmpRcTdOT1RtG3blp9//pmUlBSysrJYunRpkfokIiMjiY+Pd1yAduTrC59/DvXqwTff\nwKRJcOQIdOwIJ0+CYcDx4+bxhg3g4QHvvXf5tZ5XFApPUp01dOMNJjGEJQRyiFB+4Ev60oQ9fMVD\npFKHWemPMT4wmoqWDCwWiI11zmcXEeeLj48nMjKy6C80StDAgQONmjVrGt7e3kZAQIAxf/58wzAM\nY9WqVUZwcLBRv359Y8aMGYV+vxIO3+7Wrl1b5NecPWsYYWGGAYbRooX509PT/Jn/cckIZq8xgTeN\nOO4xzuFjfMUDxgCijFv4zXrdhg0lG78rUfzO5c7xu3PshlH0706XnZldGBaLpVj1ttImPR3694e1\nayEnB8qVg9zc/NdUJp0H+ZoBLKUDm1hNDxYxlFjuJRdPYmLg3nudE7+IlKyifncqUZRShw5Bq1Zm\nErk6cVThNA/zBSOZTwCHmc9I5jOSQwRSsSL8739meUxESqeifnc6vY/iRrlTH0VJqlcPzp41C0yn\nTkG3bmbCADhDVT7kMe5kMz2JoRK/8iNtWU13wjNWEBR4CYsFPv7YuZ9BROyruH0UalGUQbGx0LNn\n/ufK8zsP8wUTmENlzjGHCXzMMDK5RWUpkVJGpScptPR06N07bzhuHoOObORp3qQz6/iQMbzFRE5S\nnTvugJgYcwSWiLivMld6kuLz9YX1683y1E8/gZcXgIWNhPEwX9KeLVTmHHtpzGyeIWXzUfz8oFkz\nM8mISNng9olCfRT20aIFZGVBSsrlFsNB6vNX3qMFu/Akh900423Gcy7xMFWraiKfiLtRH4XY3fvv\nwxNPXD725xiTmM1I5vMxw5jOC7yx8FaGDXNejCJSdCo9id2MHWuWpfL6MI5Tg2eZTVMS8SaLvTTm\n5+GvcIvlvGZ9i5RiShRSoI4dzYSRt5vocWowjn9xB5tpzv/4mYY8zvv07pmNxQIWC2zc6NyYRcR+\nVHqSIrnW0Nrb2cZrPEcNjjGBOayhG2C2RDp2dEKQImJTmSs9qTO7ZN1779WjpGA7bbiHNfydGXzA\n43zNA9RnP2Fh8MYbzo1XRC5TZ7Y4Rd46U/HxkJ1tTtybwBwmMZuPGM10XiADH83BEHEhZa5FIc7l\n6wtxcebQ2oUL4SI3MYu/0ZKfqMlR9tGIwXzK5s3m3hh/bJUuIm5ELQqxq/R06Nz5ckJoz2Y+4HFO\nUo0neI/9NKRSJbN0pYUHRZxDLQpxKl9fMwnExJjHW7iDtvxIDD35L3cyhX/w+68XCQzUyCgRd6FE\nIQ6R1+m9cCHk4slbPM3tbOd2trOTEMJZS1iYOalPRFyb2ycKjXpybcOGmS0MT09IpS4P8TWTmcVC\nhrOQYbz4xGmNjBIpIRr1JC7vyjkYt5DBK7xIfz5nHP/kQMu+fP+9RkWJlAQtMy4uLT0dunaFHTvM\n4w5sZD4j2UkI4/gnZz2rs327uUihiDiGOrPFpfn6QkICzJ5tHm+iI63YQTJB/ERL+uVE0bKlwb//\n7dw4ReQytSjEaT7+GIYPv3zclh9YwAj204CxvM/vvjXZsUPDaEXsTS0KcRvDhpn7X1Svbh7/SCht\n2MZPtGQnIdyfvpjAQEOT9EScTC0KcQmHDkFg4OXjViSwiKEkEcxf+D8+iblV+3aL2EmZa1FoeGzp\nUK+e2bq49VbzeAetCeUHDnIbP9GSf/ZcSevW2oJV5EZoeKyUGlcvZd6JdXzMMNZwD8+Ve5MdB3zU\nbyFyA8pci0JKn3vvNVsXVaqYx+vpTAg7sWDwY24rhgRuIDRUrQuRkqJEIS6pXj04fRqWLTOPf6MS\nY/iIibzF5/Sn34+T8fe7iLe3VqQVcTQlCnFp/fpdXmAQYAV9CGEnwSSxlXY0zN5Ny5ZKFiKOpEQh\nLi9vgcG8hHGKavTlS95hPPGE8zjv07Klga8vdOumkpSIvakzW9zKoUNwxx1w7Jh5HMw+ljCYwwQw\ninmcxhw2pf26Ra5PndlSqtWrB0ePmivSWiyQRCPu5L/spTE7aMXdrAEgLAw6dVLrQsQe1KIQt5W3\nX/e6dXDpEnTOXsNChhPFIF5gOtl4Y7HAzp1aZFDkSlo9VsqkQ4egYUOolH2KeYwigMMMZglJNALM\nFoiShYipzJWeNDNbwCxJnTgBt3e7lQf5mg8ZwwbCGMVHgEFIiMpQIpqZLfKHXbugZUtoQiJRDOJn\nGjKGD/Go4seBA9ocSaTMtShErtaihTmzew9Nac8W0qjNdm6n4ZnNVKlibpyk1oVI4SlRSKlUr545\nRPYiNzGBt5nIW0TzAJOM1/g+/hJ+fuaaUiJSMJWepFTbuNEcKgtQh1+IYhC/UomhLOIU1TTfQsok\nlZ5ErtCxo1mGqlEDsvzrEk48CbQmgdaEs1bzLUQKQS0KKVPyljDvRhwLGc6HjOEfvMQlyql1IWWG\n5lGIFODOO2HzZvDnGJ/wCJ7kMIRPOUJtJQspE1R6EilATMwfiweWr0EPVvMt3dhGG3qyirAwqFrV\nnMAnIia1KKRMy+vsDmM9nzKEz+nP35lBNt5qXUippRaFSBF07GgOo91AJ1qTQCP2sZ5OBJJMWJi5\nh7daF1LWKVFImZc3Msq7RlX6sJwoBrGF9jzMvzl9GoKClCykbFPpSeQKeR3dbfmBpQzgG+5jErPJ\ntpQnOdmcyCfi7spc6UmLAoo9xcTAAw/ATq9Qbmc7tUljA2EEGgcJDNSWq+LetCigiB0dOgTBwZCV\nZTCed3iB6fyF/+NrHqJjR/N8vXpQqRIsWaKFBsW9aB6FiJ2kp5vJ4uRJCGUrSxlANA/wHK+Rjbf1\nOi8v+PlnlaXEfZS50pOIo/j6QlKSOedim0c7bmc7DT1T2EAYt3mkWK/LzobAQKhS5Y/5GVoOREoZ\nJQoRG3x9IS4OTp+GbhF+NP/5K/aEDOTHcu3oQ3S+a8+ehTVr4LbboFcvJQwpPVR6EimG377dTOYD\nA/ksqy/P5r6arxSVp1cv+OYbJwQnUgD1UYiUlDNnyB4ynINbTtDj7FIO8edOCu3VLa5IfRQiJaVK\nFbxWRdPo7/34uUo7+nqv+NPoJ+3VLaWBWhQi9rBpEwwcyLmeA7h17gxy8LKeslhg5061LMR1qEUh\n4gwdOkBCApUPJ7KxXBcCSLWeMgxo2VIjosR9KVGI2EvVqrBiBQ2ffZBtHqHcR/6e7DVrzHkZShbi\nblR6EnGEDRvI6jeIOccH8wKv5CtFVa8O+/ZpNrc4j0pPIq4gLAzvXduZeM9PxFu6UpvD1lMnTkD9\n+pprIe5DiULEUapVw2v1NzR99j5+pC33EmM9deaMuQChv7+WMBfXp9KTSAn4bdU6zt03mEUMJdLy\nD7INT+u58uXh2DGVoqTkqPQk4oJ8enXG+HE7Hcv/yNnWd1GbNOu5ixcvtyweewzCw1WWEtdis0Vx\n4sQJli1bxrp160hJScFisVCvXj06d+5MREQE1atXL8lY/0QtCnE7ly7BzJmc/sc/GZy1kDh6WE8F\nBEBOjtm6AHV6i+PYbQmPUaNGceDAAXr27Em7du2oWbMmhmFw9OhRtm7dSmxsLA0aNOCjjz6yW/BX\nSk5OZvr06Zw7d45ly5ZdO3glCnFTGSvjuRgxhLlZI5hyKZLyFTxJTITbbzf7L/JovShxBLslip9+\n+omWLVvafHFhrrlRERERShRSOh0/zoWHh7Dzh2wC1kcR0K4W3bqZ8y3yeHvD8eNqVYh92a2P4soE\ncOHCBfbt22fzmusZOXIk/v7+tLhq/YLY2FgaN25Mw4YNmTVrVqEDFik1/P25+fvV3PHiPQQ80AZW\nr2bZMnPJjzxZWdCokforxLkK7Mxevnw5rVq1okcPs5aakJBAnz59Cn2DESNGEBsbm++53Nxcxo0b\nR2xsLImJiURFRbFnzx4WL17MxIkTOXLkSBE/hoibKlcOpkyBqCgYORLf11+ga+ecfJecOAFNmihZ\niPMUmCgiIyPZsmULfn5+ALRu3ZqDBw8W+gadOnWyvjbP1q1badCgAYGBgXh5eTFw4ECio6N59NFH\neeutt6hVqxZnzpzh8ccfZ8eOHWpxSOkXHg4JCfDDD6zOuouQqofznT52THMuxHk8C7rAy8sL36sK\npB4eNzaqNi0tjTp16liPAwIC2LJlS75rqlSpwgcffFDge0VGRlr/Ozw8nPDw8BuKTcRpqleH2Fg8\nX32V7W+35ZU7FvBeck+OHzdP55Wh7rrLvDQlBSpUgCVL1IchtsXHxxMfH1/s1xeYKJo1a8ann35K\nTk4OP//8M++88w4dOnQo9g3B7EixlysThYjb8/CAv/8dj7AwXhoyhOcGDaHqv14mM9sLDw9zzkVM\nDFSrBidPmi+pVcscLVWpkpKGXNvVf0RPmzatSK8vsGnw7rvvsnv3bsqXL8+gQYOoVKkSc+bMKXKg\nV6pduzapqZeXYU5NTSUgIOCG3lOkVOncGbZv56Y9OzjdMpzQGql07myeCg01N0TKc+ECbNxoJpDh\nw50SrZR2RglITk42mjdvbj3Ozs42brvtNiM5Odm4ePGiERISYiQmJhb5fQFj6tSpxtq1a+0YrYgL\nyc01jJkzDcPf3/jts5VGRIRhnD1rPmrUMAwwjHLlzJ9gGN7ehpGS4uygxVWtXbvWmDp1qlHUr/4C\n13r64YcfmDFjBikpKeTkmKMxLBYLP/30U6ES0aBBg/j+++85ffo01atX5x//+AcjRowgJiaGCRMm\nkJuby6hRo3j++eeLnOQ0j0LKjA0bYPBgGDgQpk8HLy/S080lP06ehCvLz1o7Sgpitwl3eYKDg5k9\nezbNmzfP14kdGBhY7CDtRYlCypRTp2DYMDh7Fj77DOrWBcxhs/7+Zmd3nqAgsySVlWX2XyxbpsQh\nl9k9UXTs2JGNGzfecGCOoEQhZc6lS/DGGzB7Nnz0EfTuDZjDZhs1Mju7Q0PNGd1X/rOtUQP27FGy\nEJPdE0VcXBxLly7lnnvuwdvb23qTvn373likdmCxWJg6daqGxUrZs2kTDBoE/frBzJng7W0tRc2d\na1apYmLyv8TbG5KSoF4954Qszpc3THbatGn2TRRDhgxh3759NGvWLF/pacGCBcWP1k7UopAy7fRp\nc5jTiROwdClcUQ5OTzdPbd6MdR4GqP9CTHZvUTRq1Ii9e/fade6DvShRSJlnGPDmm/Daa2ZT4oEH\n8p2+Vv9FtWrQtq3mXJRldt+4qEOHDiQmJt5QUCLiIBYLPPMMREfDU0/BhAn5soKvr1luKl/ePPbx\nMUdJaRtWKYoCWxSNGzfmwIEDBAUFUf6P/9uKMjzWkdSiELnCmTMwYgQcPWqWooKCrKfy+i/Ons2/\njLlKUWVTUb87C1zC4+qVX11NZGSkOrNFAKpUga+/hrffhvbt4YMP4I9BJ76+8Pnnfy5FXbxo9mV8\n/bXzwpaSU9w1nwpsUQCsX7+e/fv3M2LECE6ePElGRgZBV/y14ixqUYhcx9atMGCAOXz29dcv154w\ny01XToO67z5YubLkQxTnsXtndmRkJNu2bWPfvn0kJSWRlpZG//79XWJuhRKFiA3p6TByJPzyi1mK\nql/feqpKFbMMBWYLY+9elZ/KErt3Zn/11VdER0dzyy23AOaCfr/99lvxIxSRkuHrC198AUOHwh13\nmMniD23aXL7s+HHtoie2FZgoypcvn2/+xPnz5x0akIjYkcUC48dDbCy8+CKMGQOZmSxbZk7Ay3Pi\nhNnZneexx8y9lHr1UgKRQiSKiIgI/vKXv5Cens7cuXO5++67GT16dEnEViiRkZE3tCGHSJnQpg1s\n3w6//w5t2+Kbusu6bDlA69bmNIw8K1bA999r6fLSJj4+vlh7+NjsozAMg9TUVPbu3UtcXBwAPXr0\noFu3bsUO1J7URyFSDIsWwTPPkPn8ywz+/i9YPCwsWJC/j6JqVXO0LcCtt5rrR2mCXulh185swzBo\n0aIF//vf/+wSnL0pUYgU07595pLl9evDhx/CVfvad+tmzreoWBEyMszntLBg6WHXzmyLxUKbNm3Y\nunXrDQcmIi6kUSNzIajatc2606ZN+U4vWwYREWYfeJ5jx6BJE/VZlEWFWutp//791KtXzzrySTOz\nRUqR5cvNTu6nnoLJk6FcOeup9HQzORw7dvnyiAhz8p64L7vPzI6Li/vTG7rSAoGamS1yg/r0MXc3\nGjIEvvsOFi+GmjUBs8y0Z8/lZOHjY86/SE9XCcodOWxm9qOPPsrixYsLfM4Z1KIQsaPcXHjlFXPp\njwUL4N57rafS080+iosXzeMHHtCyH+7M7hPuru7IzsnJYdu2bUWPTERcW7lyMHWquc3qmDHw7LPW\nRaF8feGPyjNg7p6nORZlx3UTxYwZM/Dx8WHXrl34+PhYH9WrV6dPnz4lGaOIlKQuXSAhwRwZFRYG\nBw8CZnUKzJFQp06ZcyyCg5UwyoICS0/PP/88M2fOLKl4ikSlJxEHMgx4912zHPX226T3HJRvqXIf\nH8hbzUebIbkXu5ee6l+xkBiYpadp06YVPTIRcS95y3+sXg2Rkfg+M4rPF5y3Dp1t39687MrNkK5c\nBkRKjwITxX/+8x969erFkSNH+N///sedd97Jr7/+WhKxiYgraN0atm2DnBxz+Y/kBD7/nD8ljFtv\nhSNHVIoqjQq1H8Vnn33GuHHjuOWWW/j0008JCwsridgKpNKTSAlbssTcbvX55815Fx4e1t3zjhwx\nO7nB3Fyvbl2oUEHlKFdk99JTUlIS77zzDn379qVu3bp88sknLrWCrBYFFClBgwfDli3mjLteveDY\nMevueZUqmZeEhkKtWpcXFdRsbtdR3EUBMQrQqFEj49tvvzUMwzByc3ON2bNnG02aNCnoZSWiEOGL\niCNkZxvGlCmGUaOGYaxcaRiGYZw9axgREebPnj0Nw+wNNx8REU6OV/Ip6ndngaWnc+fOUbly5XzP\nJSUlERwcXPSsZGcqPYk42fr18Mgj5gy8116Dm24CzBZErVpw4QJUrgw7d0K9ek6OVazsXnq6cOEC\no0aN4t4/ZmkmJiayfv364kcoIqVHp06wY4e5vke7drB7N2D2SeTNuzh3zpy7J+6rwEQxfPhwunfv\nzpEjRwBo2LAhb731lsMDExE34ednbrM6caK5Ld5774FhWPssrlwfStxTgYni1KlTDBgwgHJ/rCjp\n5eWFp2eBawmKSFliscCIEeawp/nz4cEHiXr3FNWqmZPy1qxRp7Y7KzBRVKxYkdOnT1uPN2/e/Kc+\nCxERwFzTY9MmaNyYyl1aMTpwjfXUsWOakOeuCuzM3rZtG08++SS7d++mWbNmnDx5kn//+9+EhISU\nVIzXpc5sERe2Zg2Xhg1nzonB/C3nFSpU9lantouw61aoebKzs9m3bx9gbmTk5eVV/AjtSIlCxMWd\nOsX6RqO4+Uwag1lCq4hgbXrkAuw+6glg69at7Ny5k23bthEVFcWiRYuKHaC9acKdiAu79VZmtvua\njxjNJktH2mz/kF49DfVVOElxJ9wV2KJ45JFHOHjwIK1atbJ2aAO8++67Rb6ZvalFIeL68pb48Nq/\nh2cShpBKHVb0/pCPlld3dmhllt1LT02aNCExMdGltj/No0Qh4j569YI1MVnMrTmVocbHeHz0Idx3\nH2AmkqQkrQ1VUuxeemrevDlHjx69oaBERJYsgQcjvHkwcSYeSz+Dv/4VnngCMjNJSrq8NpRGRrme\nAidEnDx5kqZNm9KuXTvKly8PmNlo+fLlDg9OREqPvMUDAejc2VzX48knoXVrWt76Kd/TNt/kPLUq\nXEeBpae8juIrmyoWi4UuXbo4PLiCqPQkUgosXcqlJ8fz6vnxvJQ5mVw8iYhAo6McyCHDY1NSUti/\nfz/33HMPmZmZ5OTkUClvfr4TKVGIlBKHD7O+wXA8Ll7gCZ/FLN91m+ZbOJDd+yjmzp1LREQEf/nL\nXwA4fPgwDz30UPEjFBG5WkAAf28Tx7/px5rf2rMyYqG5Qrm4hAITxb/+9S82bNhgbUEEBwdz4sQJ\nhwcmImWLT2UP5jCR8c2+4/Hzb7L9tn706XhaW6u6gAITRfny5a2d2AA5OTkuOVRWRNzbkiXmHtzv\nb2hBuW1b+TknkPc2hZAbs1ojoZyswETRpUsXpk+fTmZmJt9++y0RERH07t27JGITkTIkb1SUry9w\n00183OIKS/hCAAASK0lEQVQNhvExH3uPYbHfeHMXJHGKAjuzc3NzmTdvHnFxcQD06NGD0aNHu0Sr\nQp3ZIqXX8OGwahV0bHqWpVUex3vvLvj0U2jd2tmhuT2HjHpyVUoUIqVXeLg5CQ8gop/B5w98am6O\nNGmS+bhiSSEpmqJ+dxY44a5FixZ/etPKlSsTGhrKiy++SNWqVYsXqZ1ERkYSHh5OeHi4U+MQEfuq\nUMH8GRoKcz+0gO8j5tarQ4eaTY1Fi7RmeRHFx8cXaxHVAlsUzz77LJ6engwePBjDMPjss8/IzMyk\nRo0abNy4kRUrVhQ35humFoVI6ZWebu67XasWVKp0xRpQubkwe7b5eP11GDbM3GFPCs3upafWrVuT\nkJBwzedatGjBrl27ihepHShRiJRu+cpPV8/W3rkTHn0UbrsN5s6F6lqNtrDsPuEuNzeXLVu2WI+3\nbt3KpUuXALR3tog4VL7y09yrToaEwA8/QOPG5n9/9VWJx1dWFNii+OGHHxgxYgQZGRkA+Pj4MG/e\nPJo1a8bKlSsZMGBAiQR6LWpRiJRueXtZVKgAKSk2liHfuNEsQXXsCO+8A5UrOyNct+GwUU/pf0yN\n9HWhJR2VKETKBpslqDwZGfDss2ZH9/z5cPfdJRmiW7Fb6WnhwoXk5ORYj319ffMliaysLBYsWFDM\nMEVECs9mCSpPxYrw/vvwf/9nti6eegoyM0ssxtLsup0MGRkZhIaG0rhxY9q2bUvNmjUxDINjx47x\n448/snfvXsaMGVOSsYpIGbVkyeUS1IMPFrAT3r33wk8/wbhx5rCpRYugXbsSj7k0sVl6MgyDjRs3\nsmHDBn755RcA6tWrR1hYGB06dHD67GyVnkTKlkKVoK70+efm5kiPPw4vvgheXo4O0S1oZraIlFq9\nepnbpYaGQlxcIXfBO3oURo+GY8fM1kWzZg6P09XZfXisiIiryFthttBJAqBmTVi5EsaONZsks2aZ\nk/ak0NSiEBG389hjkJRUQF/FtaSkwMiR5kq0CxdCo0YOjNJ1qUUhIqVeUpLZVxETQ9H2qggMhDVr\n4JFHICwM5syBPyYQy/UV2KLYvXs369atIyUlBYvFQmBgIJ06daKZC9T51KIQKZuK1Vdxtf37YcQI\nc52oBQugfn27x+mq7NaiWLx4Me3atWPSpEkcO3aM2267jcDAQI4ePcqkSZMIDQ3lk08+sUvQIiJF\nUay+iqs1aADx8eZ42/bt4b331Lq4juvOozh79iz/+c9/8PHxueb5X3/9lYULFzoqLhGR68rbDQ9u\noL8CzD0tnn7abKIMGwZffmnO6q5b1yFxu6tidWZnZWXh7e3tiHiKRKUnESny3Irryckxly1/8014\n9VWz07uULl9u987sLl26kJycbD3eunUrbdu2LV50RRAdHc1jjz3GwIED+fbbbx1+PxFxT4Va3qMw\nPD3h+efhu+/gX/+Cnj3hj4nGZV2BLYrVq1fz1FNP8eSTT5KWlkZMTAzz5s3j9ttvL5EA09PTmTRp\nEh999NGfzqlFISJ5K8zOnXsD/RVXy842WxdvvQUvv2zewKP0DBJ1yMzstWvX0q1bN6pVq0ZCQgI1\natQo9A1GjhzJN998Q/Xq1fNtchQbG8uECRPIzc1l9OjRTJ48+ZqvnzRpEo888gitWrX6c/BKFCLi\nSImJZgmqQgX48MNSMzLK7qWnl19+mSeffJL169cTGRlJly5dWLlyZaFvMGLECGJjY/M9l5uby7hx\n44iNjSUxMZGoqCj27NnD4sWLmThxIkeOHMEwDCZPnkzPnj2vmSRERMD8Yz883OyP/mM3BPtp2tTc\n6+L++82RUW+/XTZndRsFeOqpp4zMzEzrcUpKinHPPfcU9LJ8kpOTjebNm1uPN23aZPTo0cN6PHPm\nTGPmzJn5XvP2228bbdq0MR5//HHjgw8+uOb7FiJ8ESnlunQxDDAfEREOvFFSkmF07mwYHToYxp49\nDryR4xX1u7PAvUznzJmT77hevXrExcXdUHJKS0ujTp061uOAgIB8260CjB8/nvHjxxf4XpGRkdb/\nDg8PJzw8/IZiExH3YrfO7II0bAhr15p7XoSFmZskPfOM2Qnu4uLj44mPjy/266/7CUeOHMnYsWMJ\nDQ390zmLxcKWLVv44IMPirV5kT2XJ78yUYhI2ZO3V4VdO7Ovx8MD/vpXuO8+GDMGli0zZ3W3aOHg\nG9+Yq/+InjZtWpFef91EMXHiRF5//XU2b95Mo0aN8m1ctG/fPjp06MCkSZOKFXTt2rVJTU21Hqem\nphIQEFCs9xKRsu3KyXclJjDQnBY+fz7cdZe5SdLzz4MLzC9zhAJHPV28eJGEhAQOHTqExWKhXr16\nhISEcNNNNxX6JikpKfTu3ds66iknJ4dGjRrxn//8h1q1atGuXTuioqJo0qRJ0YLXqCcRcbbDh82N\nkVJTzcTRpo2zIypQkb87r9d5cejQoRvpK7EaOHCgUbNmTcPb29sICAgw5s+fbxiGYaxatcoIDg42\n6tevb8yYMaNY7w0YU6dONdauXWuXWEWk9Bozxuz47tnTMM6etfObX7pkGJ98YhjVqxvG888bxoUL\ndr6Bfaxdu9aYOnVqkTuzr9uiaN26NQkJCQA8/PDDfPHFF3bIY/alFoWIFJbdlvqw5fhxsw9j926z\ndXHnnQ64yY1zyH4UBw8eLHZAIiKuoERGR/n7w7//bc7m7tvXXHAwM9NBNys5pWdOuoiIDXZZmryw\n+vWDXbvgxAlo2dJcztyNXbf0VK5cOSr8kYIvXLjAzTfffPlFFgu//vpryURog8ViYerUqZo/ISKu\na8UKc7/uPn3M/bqvs3VDScibTzFt2jT7r/XkqtRHISJuIT0dJk0yt2GdOxe6d3dqOA5ZFNBVKVGI\niFuJizNnB959N7zxRgnUwK7NIZ3ZIiJiB927m30XN90EzZubZSk34PaJIjIy8obWMBERuZpDV6T1\n8TE3Rvr0U5g4EYYMgVOn7HyTa4uPjy/WskcqPYmIXKVE5lyAOXR2yhRzSNY775g3KwEqPYmI3KAS\nW5G2QgWzr+LLL83M5KJ/+KpFISJyFYdsr+pCNOpJRERsKnOlJ3Vmi4gUjjqzRUSkUMpci0JERBxL\niUJERGxSohARKWEOndDnAEoUIiIlLCnJnDYRE2MmDVfn9olCo55ExN2U2IS+q2jUk4iIm3D2hD5N\nuBMREZs0PFZEROxKiUJERGxSohAREZuUKERExCa3TxQaHisiUjgaHisiIoWiUU8iImJXShQiImKT\nEoWISAnTooAiImKTFgUUERGbnLUoYHFp1JOISAnTooAlSIlCRKToytzwWE24ExEpHE24ExGRQilz\nLQoREXEsJQoREbFJiUJERGxSohAREZuUKERExCYlChERsUmJQkREbFKiEBERm5QoRETEJiUKERGx\nSYlCRERscvtEoUUBRUQKR4sCiohIoWhRQBERsSslChERsUmJQkTEyR57DMLDoVcvc5tUV6NEISLi\nZElJ8P33EBNjJg1Xo0QhIuJkFSqYP0NDYe5c58ZyLRr1JCLiZOnpZkti7lzw9XX8/Yr63alEISJS\nxmh4rIiI2JUShYiI2KREISIiNilRiIiITUoUIiJikxKFiIjYpEQhIiI2KVGIiIhNShQiImKTyyaK\nvXv3MnbsWPr378+8efOcHY6ISJnlsomicePGvP/++3z22WesXr3a2eE4hLtv4ar4nUvxO487x14c\nDk8UI0eOxN/fnxYtWuR7PjY2lsaNG9OwYUNmzZp1zdeuWLGC++67j4EDBzo6TKdw9//ZFL9zKX7n\ncefYi8PhiWLEiBHExsbmey43N5dx48YRGxtLYmIiUVFR7Nmzh8WLFzNx4kSOHDkCQO/evYmJieHj\njz92dJgiInIdno6+QadOnUhJScn33NatW2nQoAGBgYEADBw4kOjoaP72t7/x6KOPAvD999/z5Zdf\n8vvvv9O1a1dHhykiItdjlIDk5GSjefPm1uNly5YZo0ePth4vXrzYGDduXJHfF9BDDz300KMYj6Jw\neIviWiwWi13ex9BeFCIiDueUUU+1a9cmNTXVepyamkpAQIAzQhERkQI4JVG0bduWn3/+mZSUFLKy\nsli6dCl9+vRxRigiIlIAhyeKQYMG0aFDB5KSkqhTpw4LFizA09OTf/7zn/To0YOmTZsyYMAAmjRp\nUqT3LczwWleVmppK165dadasGc2bN+edd95xdkhFlpubS+vWrendu7ezQymy9PR0+vXrR5MmTWja\ntCmbN292dkhFMnPmTJo1a0aLFi0YPHgwFy9edHZINl1riPyZM2fo1q0bwcHBdO/enfT0dCdGaNu1\n4n/22Wdp0qQJISEh9O3bl3PnzjkxQtuuN0UB4I033sDDw4MzZ87YfpMi9yC7gJycHKN+/fpGcnKy\nkZWVZYSEhBiJiYnODqvQjh49aiQkJBiGYRi//fabERwc7FbxG4ZhvPHGG8bgwYON3r17OzuUIhs6\ndKgxb948wzAMIzs720hPT3dyRIWXnJxsBAUFGb///rthGIbRv39/Y+HChU6OyrZ169YZ27dvzzeg\n5dlnnzVmzZplGIZhvPrqq8bkyZOdFV6BrhV/XFyckZubaxiGYUyePNnt4jcMw/jll1+MHj16GIGB\ngcbp06dtvofLzsy25crhtV5eXtbhte6iRo0atGrVCoCKFSvSpEkT69wRd3D48GFWrVrF6NGj3W5A\nwblz51i/fj0jR44EwNPTk8qVKzs5qsKrVKkSXl5eZGZmkpOTQ2ZmJrVr13Z2WDZ16tQJPz+/fM8t\nX76cYcOGATBs2DC+/vprZ4RWKNeKv1u3bnh4mF+f7du35/Dhw84IrVCuFT/A008/zWuvvVao93DL\nRJGWlkadOnWsxwEBAaSlpTkxouJLSUkhISGB9u3bOzuUQps4cSKvv/669R+KO0lOTqZatWqMGDGC\n22+/nTFjxpCZmenssAqtSpUqPPPMM9StW5datWrh6+vLPffc4+ywiuz48eP4+/sD4O/vz/Hjx50c\nUfHNnz+fXr16OTuMIomOjiYgIICWLVsW6nr3+5eO/YbXOltGRgb9+vXj7bffpmLFis4Op1BWrlxJ\n9erVad26tdu1JgBycnLYvn07TzzxBNu3b+eWW27h1VdfdXZYhXbgwAHmzJlDSkoKR44cISMjg08/\n/dTZYd0Qi8Xitv+mp0+fjre3N4MHD3Z2KIWWmZnJjBkzmDZtmvW5gv4tu2WiKA3Da7Ozs3n44Yd5\n5JFHePDBB50dTqFt2rSJ5cuXExQUxKBBg/juu+8YOnSos8MqtICAAAICAggNDQWgX79+bN++3clR\nFd6PP/5Ihw4dqFq1Kp6envTt25dNmzY5O6wi8/f359ixYwAcPXqU6tWrOzmiolu4cCGrVq1yu0R9\n4MABUlJSCAkJISgoiMOHD9OmTRtOnDhx3de4ZaJw9+G1hmEwatQomjZtyoQJE5wdTpHMmDGD1NRU\nkpOT+eyzz7jrrrtYtGiRs8MqtBo1alCnTh2SkpIAWLNmDc2aNXNyVIXXuHFjNm/ezIULFzAMgzVr\n1tC0aVNnh1Vkffr0sa7h9vHHH7vVH0tgjrp8/fXXiY6O5qabbnJ2OEXSokULjh8/TnJyMsnJyQQE\nBLB9+3bbydpBHe0Ot2rVKiM4ONioX7++MWPGDGeHUyTr1683LBaLERISYrRq1cpo1aqVERMT4+yw\niiw+Pt4tRz3t2LHDaNu2rdGyZUvjoYcecqtRT4ZhGLNmzTKaNm1qNG/e3Bg6dKiRlZXl7JBsGjhw\noFGzZk3Dy8vLCAgIMObPn2+cPn3auPvuu42GDRsa3bp1M86ePevsMK/r6vjnzZtnNGjQwKhbt671\n3+/YsWOdHeZ15cXv7e1t/f1fKSgoqMBRTxbDcMNCs4iIlBi3LD2JiEjJUaIQERGblChERMQmJQoR\nEbFJiULEjn744QdCQkK4ePEi58+fp3nz5iQmJjo7LJEbolFPInY2ZcoUfv/9dy5cuECdOnWYPHmy\ns0MSuSFKFCJ2lp2dTdu2bbn55pv573//67bLU4jkUelJxM5OnTrF+fPnycjI4MKFC84OR+SGqUUh\nYmd9+vRh8ODBHDx4kKNHj/Luu+86OySRG+Lp7ABESpNFixZRvnx5Bg4cyKVLl+jQoQPx8fGEh4c7\nOzSRYlOLQkREbFIfhYiI2KREISIiNilRiIiITUoUIiJikxKFiIjYpEQhIiI2/T/WoNvWzRmZxgAA\nAABJRU5ErkJggg==\n" + } + ], + "prompt_number": 7 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.kdetools as wk\n", + "wk.TKDE(Hs, L2=0.5)(output='plot').plot('g--')\n", + "plt.hold(True)\n", + "gev.plotepdf() " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAETCAYAAAAoF0GbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18zfX/x/HH2ZUNwzDDzhiGzdVMY7nKKhflyxIqFJJK\nupSUfL8Vvl0Kfb+VLtSXRIpvX/1MYiGGxoxGZGSx2QVzuTXbsJ3t/fvjo1Ozi7PZOedztr3ut9tu\ndnY+n/d5Tjmv83lffQxKKYUQQghRBie9AwghhHBsUiiEEEKUSwqFEEKIckmhEEIIUS4pFEIIIcol\nhUIIIUS5pFAIUUU7d+4kMDDQLq81Z84cxo8fb5fXEuIPUihEjeHv70/dunVp0KABXl5e9O3bl8WL\nF2PrpUL9+/fn6NGjxXJs3brVJq9lMBgqfKwtc4jaRQqFqDEMBgPr168nOzublJQUXnzxRebNm8fk\nyZPtnsNWxaky7doyh6hdpFCIGsnT05Phw4ezevVqPv/8cw4fPgzA1atXmTFjBq1bt6Z58+ZMnTqV\nK1euABAdHY3RaOSdd97Bx8eHli1bsmzZMnObGzZsoHPnzjRo0ACj0cjChQvN5/n5+QEwfvx4UlJS\nGD58OJ6ensyfP59hw4axaNGiYvm6detGZGRkidzJyck4OTnx6aef4uvrS8uWLc2vU5p169bRuXNn\nvLy8uPXWW81XNtfnWLBgwY3/ZQqhhKgh/P391Q8//FDi561atVIff/yxUkqpadOmqbvuuktlZmaq\nS5cuqeHDh6tZs2YppZTatm2bcnFxUbNnz1Ymk0lt2LBB1a1bV2VlZSmllGrevLn68ccflVJKZWVl\nqfj4ePN5RqOxzBz//e9/VVhYmPnxgQMHVJMmTVRBQUGJrElJScpgMKhx48apvLw8dejQIeXt7a22\nbNmilFJq9uzZ6oEHHlBKKfXrr7+qevXqqS1btiiTyaTefvttFRAQYG63rL8PISpLrihEjdeyZUsu\nXryIUopPP/2Ud955h0aNGlG/fn1mzZrFqlWrzMe6urryyiuv4OzszJ133kn9+vX59ddfAXBzc+Pw\n4cNkZ2fTsGFDQkJCKvT6w4cP59ixYxw/fhyAFStWMGbMGFxcXMo8Z/bs2Xh4eNClSxcmTZrEV199\nVeKY1atXM2zYMG6//XacnZ2ZMWMGly9fZteuXZX56xHCIikUosZLS0ujcePGnD9/nry8PG666Sa8\nvLzw8vLizjvv5Pz58+ZjmzRpgpPTn/8s6tatS05ODgBr1qxhw4YN+Pv7Ex4eTmxsbIVe393dnXvv\nvZcVK1aglGLVqlUWZy790ZUF0KpVK06dOlXimFOnTtGqVSvzY4PBgJ+fH+np6RXKJURFSaEQNdre\nvXs5deoU/fr1o0mTJnh4eJCQkEBmZiaZmZlkZWWRnZ1dobZCQ0NZu3Yt586dY8SIEdx7772lHlfa\nzKSJEyeycuVKtmzZQt26dQkLCyv3tVJSUop97+vrW+IYX19fTp48aX6slCI1NdV8bGVmSAlRHikU\nokZR12b5ZGdns379esaOHcv48ePp3LkzTk5OPPLII0ybNo1z584BkJ6ezqZNmyy2W1BQwMqVK/n9\n999xdnbG09MTZ2fnUo/18fExdzP9oXfv3hgMBmbMmMGECRMsvt5rr73G5cuXOXz4MMuWLeO+++4r\nccw999zDd999x9atWykoKGDhwoW4u7vTp0+fMnMIcSOkUIgaZfjw4TRo0IBWrVrx5ptv8txzz/HZ\nZ5+Zn583bx4BAQHcfPPNNGzYkEGDBnHs2DHz8+V9Cv/iiy9o06YNDRs25JNPPmHlypWlnjdr1ixe\ne+01vLy8eOedd8w/nzBhAocOHeKBBx6w+HsMGDCAgIAABg4cyPPPP8/AgQPNr/PHa3Xs2JEvvviC\np556Cm9vb7777ju+/fZb89hHWTmEqCyDUjLRWgh7WLFiBZ9++ik7duwo85jk5GTatm2LyWQqNlYi\nhJ5s+n9iVFQUgYGBtG/fnnnz5pV4PjIykuDgYEJCQrjpppuKrSK1dK4Q1UleXh4ffPABjz76qN5R\nhKg8W827NZlMql27diopKUnl5+er4OBglZCQUOyYnJwc8/cHDx5U7dq1q/C5QlQXUVFRql69emrE\niBGqsLCw3GOTkpKUk5OTxeOEsKeyJ3JXUVxcHAEBAfj7+wMwZswYIiMjCQoKMh9Tr1498/c5OTk0\nbdq0wucKUV0MGTLEPMXWEn9/fwoLC22cSIjKsVnXU3p6erG54EajsdT53WvXriUoKIg777yT9957\nr1LnCiGEsD2bXVFUdA73iBEjGDFiBDt37mT8+PHFduG01msIIYQoTlViHpPNrih8fX1JTU01P05N\nTcVoNJZ5fP/+/TGZTFy8eBGj0Vjhc5VSDv81e/Zs3TNITslZXTNKTut/VZbNCkVoaCiJiYkkJyeT\nn5/P6tWriYiIKHbM8ePHzaHj4+MBbQuFipwrhBDCPmzW9eTi4sKiRYsYMmQIhYWFTJ48maCgIBYv\nXgzAlClTWLNmDcuXL8fV1ZX69eubN2cr61whhBD2V60X3FWXG7NER0cTHh6udwyLJKd1VYec1SEj\nSE5rq+x7pxQKIYSoZSr73il7BAghhCiXFAohhBDlkkIhhBCiXFIohBBClEsKhRBCiHJJoRBCCFEu\nKRRCCCHKJYVCCCFEuaRQCCGEKJcUCiGEEOWSQiGEEKJcUiiEEEKUSwqFEEKIckmhEEIIUS4pFEII\nIcolhUIIIUS5pFAIIYQolxQKIYQQ5ZJCIYQQolxSKIQQQpRLCoUQQohySaEQQghRLikUQgghyiWF\nQgghRLmkUAghhCiXFAohhBDlkkJRm5lM8PnncMcdEBgIt9wCc+bA+fN6JxNCOBCbFoqoqCgCAwNp\n37498+bNK/H8ypUrCQ4Oplu3bvTt25eDBw+an/P396dbt26EhITQq1cvW8asnVJS4OabYelSePRR\n+OYbeOUVOH1aKxpffql3QiGEo1A2YjKZVLt27VRSUpLKz89XwcHBKiEhodgxu3btUllZWUoppTZu\n3KjCwsLMz/n7+6sLFy6U+xo2jF+znTyplNGo1Pz5ShUVlXz+wAGl2rZVatas0p8XQlRrlX3vtNkV\nRVxcHAEBAfj7++Pq6sqYMWOIjIwsdkzv3r1p2LAhAGFhYaSlpV1fxGwVr/bKzoY774Tp02HGDDAY\nSh4THAxxcbBhA8yebf+MQgiHYrNCkZ6ejp+fn/mx0WgkPT29zOOXLFnC0KFDzY8NBgMDBw4kNDSU\nTz/91FYxa58ZM7Qup2efLf+4Jk1gyxZYuVK6oYSo5Vxs1bChtE+qZdi2bRtLly4lJibG/LOYmBha\ntGjBuXPnGDRoEIGBgfTv37/EuXPmzDF/Hx4eTnh4eFVi12zffw+bNsFfxoLK1bQp/N//we23Q5cu\n0K2bbfMJIWwiOjqa6OjoGz7foGzUvxMbG8ucOXOIiooC4M0338TJyYmZM2cWO+7gwYOMHDmSqKgo\nAgICSm1r7ty51K9fn+eee654eINBuqcqymTS3uwXLoS//a1y5y5dCu+/r3VHubraJp8Qwm4q+95p\ns66n0NBQEhMTSU5OJj8/n9WrVxMREVHsmJSUFEaOHMkXX3xRrEjk5eVx6dIlAHJzc9m0aRNdu3a1\nVdTaYckS8PWFv3TvVdikSdCiBbzxhvVzCSEcns26nlxcXFi0aBFDhgyhsLCQyZMnExQUxOLFiwGY\nMmUK//znP8nMzGTq1KkAuLq6EhcXR0ZGBiNHjgTAZDJx//33M3jwYFtFrflMJnjrLfjqq1IHrzcf\n38z6xPWcyz1HY4/G9PXry4jAEXi4emgHGAzwySfQvTuMHQsdOtj5FxBC6MlmXU/2IF1PFbRqFXz4\nIezYUerTK35ewemc0xgbGDmTc4ao41EcyDjA9ge3E9g08M8D334bdu6Eb7+1U3AhhC1U9r1TCkVN\npxSEhmrTXK/r+ivP4bOHCWwaiLOT858/vHoVOnfWio5c4QlRbTnMGIVwELt2waVLMGxYpU7r3Kxz\n8SIBUKeONhg+fToUFloxpBDCkckVRU03ebI2pnBttpmpyISLU+lDU40bQ2amdV/eywsuXrRum0KI\nqpGup1rCFm/qoPVUlSU3P5d6bvW0hXhPPAGHD4NL+fMhDIby2xRC2J90PdUSmZnaG3C5X58tQ/1t\nmPnxgpiFDFw+iKIiVerxlgz9cihrEtZoC/B8fLRZVEKIGk+uKKqpCn1Sv/VWePJJGDWK83nn6bio\nI7GTY2nfpP0NtbknbQ8RqyKIfzQe35+OabvOHj0Kzs5lniNXFEI4HrmiEJozZ2D/fvMCu3kx87i3\n871lFomKCDOG8VjoYzwT9YxWhJo107YnF0LUaFIoaqq1a7VdYj08OJd7jiXxS3ip/0tVbvbFvi8S\nfzqeH078oG0wOH++XDIIUcNJoaip/vc/GD0agPzCfN4Z8g6+DXyr3KyHqwfvDHmHp6Oepmj4MMjK\n0hbhCSFqLBmjqKbK7fu/cAHattXuVle3rnXa/AulFIfOHqKbTzdYvBjWry9ztbaMUQjheGSMQmg3\nHLrttkoVicowGAxakQCYMEHbVTYhwSavJYTQnxSKmigqShufsAcPD5g6VduGXAhRI0nXUzVVZpdO\nYSE0bw7x8fCXOwxWqU1LTp3S9oBKToZrt7atcptCCJuRrqfa7qeftMVwfn7k5OfY5zVbtoRBg2D5\ncvu8nhDCrqRQ1DQbN8Idd6CUImRxCAnnbDt2kFeQx+s7Xkc9/ri2q6xcPghR40ihqGmujU/En45H\nKUVQ0yCbvpyHiwerDq9is/GqtkJ761abvp4Qwv6kUNQkFy5os4/69eObo98wqtMoDKXc0c6aDAYD\n02+ezjux/9I2CvzgA5u+nhDC/qRQ1CTR0dCvH9SpwzdHvmFU0Ci7vOzYrmP56fRPnBjaR8uQlmaX\n1xVC2IcUippk+3YYMIAj546Qk59DaMtQu7ysu4s7E4Mn8kniV3DffbBsmV1eVwhhH1IoapLoaBgw\ngPRL6Twe+jhOBvv95330pkdZ/vNyCh+aBEuWQFGR3V5bCGFbso6imiqxPuHCBWjTRvvT1dU6bVbS\n2dyzNKvrDT16aJsFDhwo6yiEcECyjqK22rkT+vS54SJhDc3qNdOqzcMPw3/+o1sOIYR1SaGoKa6N\nTziEceO0abrnz+udRAhhBVIoagpHKhReXjB8OHzxhd5JhBBWIGMU1VSxvv+sLG1fpwsXwM3NOm1W\n1fbt8MQTGA7/ImMUQjgYGaOojWJioFcvfsk6xpL4JXqnYd+pfRzq6AX5+XpHEUJYgYveAYQV7N4N\nffqwJmENOQV22giwHDEpMew7vY8VkyfDi3qnEUJUVbldTwUFBWzatIkdO3aQnJyMwWCgdevW3HLL\nLQwZMgQXF33rjHQ9XXswcCBMn85t5xbwfJ/nubP9jd2LwlpdT+dyz9H+/fak3bsHz3YdUbl5NruJ\nkhCi8qzW9fTqq6/Ss2dP1q9fT2BgIA899BATJ06kY8eOfPvtt4SGhvLaa69ZJbSogsJC2LuX/NAQ\n9p7aS2+/3nonwrueNwP8B/D177u0H6xdq28gIUTVqDJERkaqoqKisp5WhYWFKjIyssznlVJq48aN\nqmPHjiogIEC99dZbJZ7/4osvVLdu3VTXrl1Vnz591M8//1zhc69dCZX7+jWZ+Vc/dEip9u3V7tTd\nKvijYOu0aQVrEtaoAZ8N0NocPNh6DQshqqyy750VPjo3N7dSDZtMJtWuXTuVlJSk8vPzVXBwsEpI\nSCh2zK5du1RWVpZSSisMYWFhFT5XKSkUSimlPvlEqfHj1ds/vq2e+O4J67RpBVcKrqimbzfV2vTy\nUio11XqNCyGqpLLvnRZnPe3atYtOnTrRsWNHAA4cOMDjjz9u8UolLi6OgIAA/P39cXV1ZcyYMURG\nRhY7pnfv3jS8duvMsLAw0q7tOlqRc8U1sbFw881EdIzgqV5P6Z3GrI5LHb659xvtwejRsqZCiGrM\n4mj0tGnTiIqK4q677gKge/fubN++3WLD6enp+P3lns1Go5E9e/aUefySJUsYOnRopc+dM2eO+fvw\n8HDCw8MtZqtRYmPhySfp2LSj3klK6N+6v/bNgw/C5Mkwc6Y2Yi6EsKvo6Giio6Nv+PwKTVtq1apV\n8ZMqMNupMjfM2bZtG0uXLiUmJqbS5/61UNQ6WVlw8iR07ap3kvL17q0NusfFQViY3mmEqHWu/xA9\nd+7cSp1vseupVatW5jfw/Px8FixYQFCQ5dtr+vr6kpqaan6cmpqK0WgscdzBgwd55JFHWLduHV5e\nXpU6t9aLi9N2atV5mrJFBgNMnAiff653EiHEjbA0iHH27Fk1duxY5e3trZo2barGjRunzp8/b3Hw\no6CgQLVt21YlJSWpq1evljogffLkSdWuXTu1e/fuSp+rlAxmq9dfV2r6dOu2aWXmNk+eVKpxY6Uu\nX7b+iwghKqWy750WP4p6e3vz5ZdfVroAubi4sGjRIoYMGUJhYSGTJ08mKCiIxYsXAzBlyhT++c9/\nkpmZydSpUwFwdXUlLi6uzHPFdX76CUbZ53anVVFQWEBmE3eade8O334L99yjdyQhRCVY3BTwxIkT\nvP/++yQnJ2MymbSTDAbWrVtnl4DlqfUrs/3bcOrrpdx94EX2PFz2RIFKtWnlv06DARbv+4StSVtZ\ndflvsGoVfPeddV9ECFEplX3vtHhFMWLECB5++GGGDx+Ok5OT+UWEA7hwgWjXdIwNHHv8ZlTQKJ7f\n/DzZj/6LBk8/DRkZ0Ly53rGEEBVksVC4u7vz9NNP2yOLqKyQEHamxdDPr5/eScrVpG4TbvW/lTUn\no5h0992wciU895zesYQQFWSx62nFihUcP36cIUOGUKdOHfPPe/ToYfNwltT6rqdnp9MlYBPLRiwj\ntGWoddq0QdeTUvC/hP/x4d4P2eo/G558Eg4elDUVQujE6l1Phw8fZsWKFWzbts3c9QTa2gehr0ud\nO5By9j90b95d7ygWDeswjCnrp5Aa4Y9fTg7s369N7RVCODyLheLrr78mKSkJtyrcOU3Yxi9+bvSp\n0wcXJwdfRwG4u7gzZ8Acfi+4hN/EibBsmRQKIaoJi11PI0aMYPHixfj4+NgrU4XV2q6nzEwMjb1Q\npkJMBmW1QmHLrqdiTpzQVminp1fp1q1CiBtj9a6nzMxMAgMD6dmzp3mMwlGmx9Za8fHA7eDsXD1v\nUdi2LXTqpE2TvftuvdMIISyw+D7zx54gf61AMj1WZz/9BNyud4qq+WNLDykUQjg8i11PAMnJyfz2\n228MHDiQvLw8TCYTDRo0sEe+ctXarqf77sPw39X26SayVZuXLoGfHyQmgre3dV9UCFEuq90K9Q+f\nfPIJ99xzD1OmTAEgLS2Nu+VToL7i4/VOUHWenjB8ONzA9jBCCPuyWCg++OADfvzxR/MVRIcOHTh7\n9qzNg4ky5ORog8BAfmG+zmFuzObjm3n8u8e1+1TIjrJCODyLhaJOnTrFFtqZTCYZo9DT4cOowEAA\nLl29pHOYGxPcPJgvD31JTt+ecP68tvhOCOGwLBaKAQMG8Prrr5OXl8fmzZu55557GD58uD2yidIc\nOsSFdi0AbWuM6qhZvWb0a9WP//s1EsaPl6sKIRycxUIxb948vL296dq1K4sXL2bo0KG89tpr9sgm\nSnPoEEeaO+udosoe6PYAXxz6Qpv9tHIlFBToHUkIUYZyp8eaTCa6dOnC0aNHefTRR+2VSZTn0CGi\nb76qd4oqu6vjXUz9biqnW3jSom1b+P57GDZM71hCiFKUe0Xh4uJCx44dOXnypL3yCAvUL7/wtdNR\nvWNUmYerB2O6jCEuPU4b1F62TO9IQogyWFxwd/HiRTp37kyvXr2oV68eICuzdXPmDJhM9Op5N4f0\nzmIFHw79UJsY0TwLXngBLl6Exo31jiWEuI7FBXfbt28vsTDDYDAwYMAAmwariFq34G7LFnj1Vdi+\n3b6L4+zR5tix0L8/PP64dQMIIUqw+oK77777jvDw8GJfGzZsqFJIcYMOHYKuXfVOYRt/7CgrhHA4\nFgvF5s2bS/xMCoVOanKhGDQI0tIgIUHvJEKI65RZKD766CO6du3Kr7/+SteuXc1f/v7+dOvWzZ4Z\nxR9qcqFwdpY1FUI4qDLHKH7//XcyMzOZNWsWb731lrk/y9PTkyZNHGOhV60aoygshAYN4PRpaNCg\nRo1RJGUmsfboWp5tOES7skhJ0QqHEMImrDZG0bBhQ/z9/XnooYdo3bo1/v7++Pv706RJEz6XT332\nd+IEOY3qcvByst5JrK6ReyPmbp/LBX8f8PWFUro7hRD6sThG8c9//pOpU6eSm5tLRkYGw4cPl6mx\nejh0iJ+a5JNXkKd3Eqvz8vBiWIdhrDi44s/7VAghHIbF6bFFRUUsXLiQxYsXYzAYmDt3LuPGjbNX\nvnLVpq6nyy/PYtHOhTzzQw5uzm7VquvJ2ry8tCUXQogbY/XpsZmZmezdu5d27drh5uZGSkpKrXlz\ndiRZe3dyJSgAN+fqd49ppSx/FRUp2r/XgV0pu1Gj70F9+FGZx2Zm6v0bCVG7WCwUvXv3ZsiQIXz/\n/ffs3buX9PR0+vbta49s4i9cDh/Bq+ctesewGYPBwMM9HmbZz8vg4YfhP//RO5IQ4hqLXU8nT56k\ndevWxX62Y8cObrlF/zetWtP1dPkyVxvWZ+fB9QwMvBPQeRW1jdrMyc/BgIF6Lh7Qti188w306GGX\nnELUJlbvemratCmvvvoqjzzyCACJiYlkZ2dXqPGoqCgCAwNp37498+bNK/H80aNH6d27N+7u7ixc\nuLDYc3+s1wgJCaFXr14Ver0aKyGB/LatuLltf72T2FR9t/rUc6sHTk4webJcVQjhICwWikmTJuHm\n5sauXbsAaNmyJf/4xz8sNlxYWMiTTz5JVFQUCQkJfPXVVxw5cqTYMU2aNOH9999nxowZJc43GAxE\nR0ezf/9+4uLiKvr71EyHDuF5Ux/qu9XXO4n9TJoEq1ZBXs2b5SVEdWOxUBw/fpyZM2fi5qYNov6x\ng6wlcXFxBAQE4O/vj6urK2PGjCEyMrLYMd7e3oSGhuLq6lpqG7WiW6kiavKK7LIYjdCnD3z9td5J\nhKj1LG4zXqdOHS5fvmx+fPz48WL30C5Leno6fn5+5sdGo5E9e/ZUOJjBYGDgwIE4OzszZcoUc9fX\n9ebMmWP+/o9NC2ucQ4fgmWf0TmF/Dz8MCxdqayuEEDcsOjqa6OjoGz7fYqGYM2cOd9xxB2lpaYwb\nN46YmBiWVWCXT0MVJ9DHxMTQokULzp07x6BBgwgMDKR//5J99H8tFDVWLbyiWPXLKoYOHESDqVPh\nyBEICtI7khDV1vUfoufOnVup8y0WisGDB9OjRw9iY2MBeO+992jatKnFhn19fUlNTTU/Tk1NxWg0\nVjhYixYtAK176u677yYuLq7UQlHjnT+v9dP/5eqsNvjmyDdcvHyRxx98EJYsgQUL9I4kRK1lcYwC\n4OrVq3h5eeHp6UlCQgI7duyweE5oaCiJiYkkJyeTn5/P6tWriYiIKPXY68ci8vLyuHTpEgC5ubls\n2rSJrrXsE/Uf1q15k7RWXrZZ4uzAHu/5OB/u/RD10EOwfDlcrf73CReiurJ4RTFz5kxWr15Np06d\ncP7Ljp6W1lG4uLiwaNEihgwZQmFhIZMnTyYoKIjFixcDMGXKFDIyMujZsyfZ2dk4OTnx7rvvkpCQ\nwNmzZxk5ciQAJpOJ+++/n8GDB1fl96y2zu3ZSl5gO71j2N2A1gMoUkXsdDvNLV26wLp1cM89escS\nolayuOCuQ4cOHDp0qEID2PZW0xfcKaX4ondd/jb67zSe8XKx5/ReHGePNt/f8z4xqTGsKrhL637a\nsqXKbQohbLDgrl27duTn51cplLgxxy4co3NGEY176X9/cj1MCJ7A98e/J2NwH/jlF/j1V70jCVEr\nWex68vDwoHv37tx+++3mqwqDwcB7771n83C13fakbYw/q2rdjKc/NHRvSPTEaJp6+WortT/6CP79\nb71jCVHrWCwUERERREREmKe7KqWqPPVVVEzSz9EUedbT9tWupYKbB2vfTJkCISHw+utAxRZ9CiGs\nw2KhePDBB8nLyyMlJYXAwEB7ZBLXvOE9FhWSpXcMx9CqFfTvD19+CZS++FIIYRsWxyjWrVtHSEgI\nd9xxBwD79+8vc5qrsC7DL7/g1K2b3jEcx+OPwwcf6J1CiFrHYqGYM2cOe/bsweta90dISAgnTpyw\neTBBrVyRXa6BAyE3V+8UQtQ6FguFq6srjRo1Kn6SU4XW6YmqkkJhln01m60no7WrCiGEXVl8x+/c\nuTMrV67EZDKRmJjIU089RZ8+feyRrXa7ehVOnJA9jq7JvprN6P+OJnusthCTs2f1DSRELWKxULz/\n/vscPnyYOnXqMHbsWBo0aMC/ZYqiTWVfzSZlzyZo0wYccKGjHowNjAxqN4jPktdqP1iyRN9AQtQi\nFldmO7KaujJ79S+rOfXR2zx7PgBWry71GEdbRW2PNnel7mLC/03g+DO/ofxaaVdcLhYn7gkhrlPZ\n906L/8qGDx9erFGDwUCDBg3o2bMnU6ZMwd3d/cbTilJtP7mdSdkNZXziOr2NvfHyuLamxN8f1qyB\n++7TNZMQtYHFrqc2bdpQv359Hn30UR555BE8PT3x9PTk2LFjZd5MSFTNjpM7aH/qqhSK6xgMBp4J\nu3YDp+nT4Z13ZNMnIezAYtdTaGgo+/btK/VnnTt35vDhwzYNWJ6a2PV0Pu887d5rR9YHDTBs3w5t\n25Z6nKN3E9mqzfzCfOq4uKFMhdCxo7YFuUyuEKJSrL4pYG5uLidPnjQ/PnnyJLnX5rL/cR9tYT0/\npvzIoMY9MWRlad0rohg352v/zzk7a7eHfecdfQMJUQtYHKNYuHAh/fv3p+21T7YnTpzgww8/JDc3\nlwkTJtg8YG3jbHDmYbfe0DkHZL1K+SZNgrlzISlJmyEmhLCJCs16unLlCkePHgWgY8eOeHh42DxY\nRdTEriexfxk4AAAd8klEQVRA2yU1Ph4+/bTMQ6pDN5Fd2pw5E/Lz4V//su6LCFGDWa3rKTo62vy9\nu7s73bt3p3v37sWKxLZt224spSifrMiuuKeegs8/h99/1zuJEDVWmV1P69ev54UXXmDgwIGEhobS\nokULioqKyMjIYN++fWzZsoVbb72VW2+91Z55a4dDh2D0aL1TOLy07DQynDIIvfNObQHe9Ol6RxKi\nRiq36+nSpUtERkYSExNjHtBu3bo1/fr146677qJ+/fp2C1qaGtn1pJR2/4nERPD2LvOwatlNZOU2\nNyRu4O8//J39of/BMHIk/PYbyAQLISyq7HunrMx2NKmp0LMnZGSUe1h1e1O3RZtKKbp93I2Fgxcy\n+LH5cP/98OCD1n0xIWogq0+PFfaRV5DHK9tekfGJSjAYDMzoPYP5u+bDrFnw1ltQWKh3LCFqHCkU\nDiI2LZYtJ7ZIoaiksV3HcuTcEeIDG0LDhrB2rd6RhKhxpFA4iB0nd3BL61ukUFSSm7Mbz978LPN3\nL9CuKt58U7b1EMLKLI5RZGVlsXv3bpKTkzEYDPj7+9O7d28aNmxor4xlqkljFLd9fhsz+sxg6OhZ\n2gye0NByj69u4wm2bPPS1Utk5GTQ3qudVmT//W8YNMi6LypEDWK1weydO3cyf/58kpOTCQkJoWXL\nliilOH36NPv378ff358XXniBfv36WS18ZdWUQnHVdJUmbzch/alkGjbzgwsXoG7dcs+prm/qNm9z\nxQqt0P5lHZAQojirFYrp06czdepU2rdvX+qJx44d4+OPP+YdHffaqS6FonFjyMy0frvV/k3dFm0W\nFGh3BfzPfyA83LovLEQNIdNjHZClN8szOWc4nnmcPj+e1O6x8L//VbnNG1Fj2ly+/M+rCoPBui8u\nRA1g9emxDzzwAFlZWebHycnJ3HbbbTeWTpTKp74Pffz6aAPZ3brpHaf6GzdOW4eydaveSYSoESwW\niv79+xMWFsZ3333HJ598wuDBg3n22Wcr1HhUVBSBgYG0b9+eefPmlXj+6NGj9O7dG3d3dxYuXFip\nc2ukgwelUFTRyayTLD/8JcyeDa+8IjOghLAGVQE7duxQLi4uqnnz5urUqVMVOUWZTCbVrl07lZSU\npPLz81VwcLBKSEgodszZs2fV3r171T/+8Q+1YMGCSp17rcusQln0VuGYfn5KHT9u3TYroSa0mZ6d\nrrze8lKns9KUCgpSKirK+gGEqOYq+95p8YpixYoVPPTQQyxfvpwHH3yQoUOHcuDAAYsFKC4ujoCA\nAPz9/XF1dWXMmDFERkYWO8bb25vQ0FBcXV0rfW6Nk5mpfcnNiqqkpWdLxgePZ17sApgzB15+Wa4q\nhKgiizcuWrNmDTExMTRr1oyxY8dy99138+CDD1osFunp6fj5+ZkfG41G9uzZU6FQlTl3zpw55u/D\nw8MJr64zXf5YaCc3K6qyv/f7O50+7MQzDz+F/2tX4LvvYNgwvWMJoZvo6Ohit46oLIuFYu11WyL0\n6tWrQm/4hirMNqnMuX8tFNVNkSqi60dd2T15Nw0OHpQV2VbiU9+Hp3o9xcvbZ7Ni7lztqmLoUCnC\nota6/kP03LlzK3V+mf9y5syZw5kzZ0p9rk6dOpw+fZrZs2eX2bCvry+pqanmx6mpqRiNxgqFqsq5\n1cnhs4cpKCygQZ0GMpBtZc/1fo7dqbs5N6gvuLvDypV6RxKi2irziiI0NJQxY8aQn59Pjx49aNGi\nBUopMjIyiI+Pp06dOsyYMaPMhkNDQ0lMTCQ5OZmWLVuyevVqvvrqq1KPVdf1IVfm3Ops+8nt2v5O\noHU9jR+vb6AaxLOOJ0eeOIKrsyssWABjx2o3g3KQ2/gKUZ1YXHCXmppKTEwMKSkpgHbjor59+1bo\nE/7GjRuZNm0ahYWFTJ48mVmzZrF48WIApkyZQkZGBj179iQ7OxsnJyc8PT1JSEigfv36pZ5bInw1\nX3B379f3MrzDcMZ3vV/b+TQ1FRo1qlKbtshZI9ocPVrbP+vFF60bRohqyGors8ePH8+KFSv497//\nzbRp06wW0Jqqc6FQStF8YXPiHo6j9QUT3HYbXLuL4I22aYucNabNxETo3RuOHCn3zoFC1AZWW5n9\n008/cerUKZYuXcrFixdLfImqSfk9hfpu9WndqLU2PiED2ZViMFTyq0N7DBfOY2jmXerzjRvr/RsJ\n4bjKHKN47LHHuP322zlx4gQ33XRTsecMBgMnTpywebiarHWj1vz65K/aAxnIrrTKXlEopbiSkYZH\n1xCIiYGOHYs9L1tCCVE2i2MUjz32GB9//LG98lRKde56KmbUKLjnHhgzxnpt3oCa3ObifYvZlbaL\nz491hl27StwJzxY5hXBUVt8U0FGLRI0imwHa3Liu4/jhxA/EjLhJ+/uOitI7khDVhmwzbgflflrN\nzdUGV7OzwcXi+seKtXmDanqbXx/+mleiX+HnVm/iNv15rWC4u9sspxCOyupXFMLGDh2CwMBKFQlx\nY0Z3Gk0n707MrrsHunSB+fP1jiREtSCFQgeJFxK5dPWS9mD/fujRQ99AtYTBYODDoR+ydP9SDv/j\nEXj3XUhK0juWEA5PCoUOJq+bTGxarPYgPh5CQvQNVIv41Pdh8/jNdAgZBM89B888o3ckIRyeFAo7\nyy/MJ/50PGHGMO0HckVhd918umlbe0yfDr/+CuvW6R1JCIcmhcLO9p/eT7vG7bSNAAsKICFBZjzp\npU4d+PhjeOIJvZMI4dCkUNjZrtRd9PXrqz1ISNBuVFSvnq6ZarVbb9W2IBdClEkKhZ3tSttFH78+\n2oP4eOl2cgBZ//y79s2WLfoGEcJBSaGwM2MDI/1a9dMeyEC2Q5iw9Sntm0cegZwcfcMI4YBkwZ0d\nlLmYq18/ePVVrfvDWm1WQW1t80TmCdo1bkvGqDvwadEe3n/feo0L4YBkwV11UVgIP/8M3bvrnaTW\na+vVFoDbuv9M4f+tkS4oIa4jhUIviYna1h1eXnonEdeMu+VJpt/bCDVpEshW+kKYSaHQi6yfcDiz\n+s8iJawjJ27vAY89Jps/CXGNFAq9yEC2w3EyOPG/e/5Hu49XawvxPvlE70hCOAQpFHZy6Mwh1iSs\n+fMHP/0kVxQOyNnJWdtR9uuv4aWXtIIuRC0nhcJO1h5dy570PdqDwkLYtw969dI3lChbhw6waJF2\nQ6msLL3TCKErKRR2Umyh3ZEj4OMDTZroG0qU77774M474aGHZLxC1GpSKOwkNi2W3sbe2oM9eyAs\nTN9AokJOzXmOXw/8wOX5b+odRQjdSKGwk6Z1m+JT30d7IIWi2mjRxJ//zh7F5dfncHmz3D5V1E5S\nKOzE3O0EUiiqEYPBwD8m/IdPn7uVK6PvIv/IYb0jCWF3soWHHRgMsDd9H6EtQ7W9hHx8tAVddepU\nqU1H3xqjJrVpKjLxyWM9ufvb32h28DjO3s2sG0AIO5ItPBxUaMtQ7ZuffoKuXatUJIT9uTi58NCH\nu9l5U1Oy/zYQrl7VO5IQdiOFwt6k26nacndxZ3RkIl5+7eHRR2UmlKg1XPQOUOvs2QOjRumdQpTC\nYKjIUS7AtYWTy8s/0stLtowSNYNNryiioqIIDAykffv2zJs3r9Rjnn76adq3b09wcDD79+83/9zf\n359u3boREhJCr5q0ME2uKByWUpX4OnUa1dof9Z8lZR6Tman3bySEddjsiqKwsJAnn3ySLVu24Ovr\nS8+ePYmIiCAoKMh8zIYNG/jtt99ITExkz549TJ06ldjYWEAbbImOjqZx48a2imh/yclgMkHbtnon\nEVXVogVs3gzh4ZwoOIv7/RNp6dlS71RC2ITNriji4uIICAjA398fV1dXxowZQ2RkZLFj1q1bx8SJ\nEwEICwsjKyuLM2fOmJ+vDjOaynPFdIW+S/v++YPoaAgPr2gfh3B07dtDVBQ+/3iTl54N5tCZQ3on\nEsImbFYo0tPT8fPzMz82Go2kp6dX+BiDwcDAgQMJDQ3l008/tVVMm9p3ah9XTX+ZHfNHoRA1R9eu\n1Nu4hQ//L5/X/96PVb+s0juREFZns64nQwU/NZd11fDjjz/SsmVLzp07x6BBgwgMDKR///4ljpsz\nZ475+/DwcMId6I04JiWGfq368dMfP4iOhpkzdUwkbKJXL9zXR7EiYhhPG6YRMyqGhYMXAm56JxMC\ngOjoaKKjo2/4fJsVCl9fX1JTU82PU1NTMRqN5R6TlpaGr68vAC1bav293t7e3H333cTFxVksFI4m\nJjWG8d3G8y5o4xOXL0NgoM6phE307o3r95v5YOid/MtjN3s67QFK/v8qhB6u/xA9d+7cSp1vs66n\n0NBQEhMTSU5OJj8/n9WrVxMREVHsmIiICJYv1+YYxsbG0qhRI3x8fMjLy+PSpUsA5ObmsmnTJrp2\n7WqrqDZRpIrYlbqLvq2ujVHI+ETN16MHTlt+YPo3p+n/Q6LeaYSwGptdUbi4uLBo0SKGDBlCYWEh\nkydPJigoiMWLFwMwZcoUhg4dyoYNGwgICKBevXp89tlnAGRkZDBy5EgATCYT999/P4MHD7ZVVJtI\nvJCIZx3PP2fCyPhE7dClC4Zt22DQIODa9uTy4UBUc7LXk40opci6koWXh5e2j1Brf9i4Ef4yPbgq\nasoeSjW2zbQ0DH5G1JTHtBsgubiw+pfVDPAfQPP6za34QkJUnuz15CAMBgNeHl5//kDGJ2qXP8bj\nUlJg2DDIzubnMz/T+cPOvLjlRc7nndc3nxCVIIXCXmR8onZat05bYNmvH2+0eZgDUw6QdSWLjos6\n8vK2l6VgiGpBup7swGAA9eFHMHWqddt09O4XadPqZP8oYQ3S9eRo/viPIQPZtVKx/Z9idqGMfqiX\nXkaZClEKiopUpfaYkv2jhB6kUNjAqUunKCwq1B4kJGh/yviE6NNHux9JTAzccQdkZJS5MHX1L6s5\nl3vOzgGFKJ0UChsYvGIw+zOu7YS7caP2p4xPCIBmzWDTJujdG7p3h+v2PwMoLCpk04lNdFjUgbFr\nxrI9eXu16GIVNZeMUVjZmZwzBH4QyPnnz+Ps5Ay3345h6w/Vpk9d2rRjm7t2wQMPwO23w4IF0LBh\nsaczL2ey4uAKFv+0mPzCfKaFTePJsCfkfkmiymSMQmfRydH0b9VfKxJZWbB3r96RhKPq0wcOHNAq\nSpcusHZtsae9PLx4Ouxpfpn6CytHrqSFZwudgoraTgqFlW1L3sZtbW7THnz7rQxii/I1aACffAJf\nfKFtGDlqFJw6VewQg8FAL99ejAwaWWoT53LPOdyVtahZpFBY2dakrdzqf6v2YPVquO8+fQOJ6mHA\nAPj5Z+jUCYKD4YMPtJtcVcATG56g46KOvLHzDVJ+T7FxUFEbyRiFFV0xXeGer+8hckwkTplZ0KaN\ntpVDA8+a0acubdqnzV9+gWeegbQ0eP117Srj2mQIa8+JkHUZtVNl3zulUNjKkiXajKf//c+x3oSk\nzerRplLarVZffBGcneGtt7SJERbavGK6wre/fsv3x7/n0+GfWrwvjC1+b+H4pFA4ikGD4NFH4Z57\nHO9NSNqsPm0WFcHXX8NLL4G/P4Ytm6vUZpEqwsnwZ4+zFIraSWY9OYKzZ7XZTn/7m95JRHXn5KSN\ncyUkwOjR2s/uvRcO3dj9ud/Z/Q69l/Tm430fk3lZlnmLipFCYQvffANDh0LdunonETWFqytMmaJ9\nf9NNMGSItrp7y5ZKXRJMu3kaL/V/ia1JW/F/1x+A9cfWU1BYYIPQoqaQridbuHpVW0Ph4wM4cLeG\ntFl927x6Fb78Uluo5+ICzz6rXWlU4sNJ5uVMGtf1os+Svnw49EOCmwdbN6xwWDJGoQOlFC9te4m/\n9/s79dzqlXi+2r0JSZvVp02lICpKuzlSbCyMHQuPPKJNsdUpo3B8Mkahg59O/8R/D/+Xuq7S1STs\nzGCAO++E776D/fuhaVPtRklhYdpCvgsXbrjphHMJTFw7kdi0WIf4QCb0I1cUVjBj0ww8XD149dZX\nS32+2n5alTarZ5uFhdpVxrJl2gaE/frBmDFw113aSvDr2rM2WZvh+OSKws6KVBGrD69mTOcxekcR\nQuPsrM24+/prbdHe/fdr3/v5aYv3Vq4s9k5u6R4YhUVFRCV+T8RXd9F4XhO+O7ZB7plRy8gVRRVt\nPr6Z5zc/z4HHDpR5TI36tCptVt82MzO1jQfXroVt26BTJwx7YlE/xmhdVS4uFptI+T2Fuq51aVq3\nqW0yCruQwWw7u+9/9xHeOpypPcu+zanDvWFIm9Lm1asQE4Ph9ttQ3UMgORluu02bdjt4MLRuXal+\nKaUUxzOPE9A4QApFNSCFws7O5Z6jrmvdUmc7/cGh3zCkzVrdprm9jAxty5Dvv9fWZri4QN++2lbo\nfftqs6hcXctsJ+X3FHp92osg7yCiH9zG5YIruLu4Wy+osCopFA6oOrxhSJu1s81S21MKTpzQbtm6\na5f2Z3IyhIZqXyEh0KMHtG+vjYdck1+Yz7pf13FP59E0mdeUUZ1G8WiPR7mp5U3WCyysQgqFA6oO\nbxjSZu1ss8LtZWXBnj0QH//n19mz2pVGcDAEBZm/DL4tSc48yapfVtG6UWvGdJGJHo5GCoUDqg5v\nGNJm7WyzyoPjBw7AwYNw5Ij5y3DuLCrs5j+LR6dOEBCgjXt4eACw79Q+2nm1w8vDy3q/jKgwKRQO\nqDq8YUibtbNNm2Xc+WOx4sHx45CSAo0agb8/ca7n+NEplVxfbxp27E6r4P50Df0bbXw7F9vdVtiG\nFIoqatzYNvPAHf0NQ9qsnW3aNWNRkTZonpwMyckUnjjOxaPx5CUewTU1nSZnc3DzqI/B21tbYf6X\nP7M93ajf0h+nZj7Fn2vUSNthV1SKQxWKqKgopk2bRmFhIQ8//DAzZ84scczTTz/Nxo0bqVu3LsuW\nLSMkJKTC59qiUJT3D+eK6Qqj/jsKYwMjH//tYyzdFObPNqNRKtx6IbHVP3DJad02HT+nQ2VUCrKz\n4fx5OHfO/GfhubPU+3sQVwsjrJrTFivIo6OjCQ8Pt26jNlDZ907LK2xuUGFhIU8++SRbtmzB19eX\nnj17EhERQVBQkPmYDRs28Ntvv5GYmMiePXuYOnUqsbGxFTrX3pKzkhn/f+Np6dmS9+98v8JFQhMN\nhNsmmFVFIzmtKRrHzxmNLTLe2NYgBqDhta921z03h6umOzh96TQXLl/g4uWLZF/NZmTAcG0/q78U\nlvwzp1iy+W3qZuVSP/sKjS7l453nhM9lAz6XnbWB+M6dzRnzC/N5b897NHJvRCP3RjSs05BG7o3w\n8vAioHFApX6D6lIoKstmhSIuLo6AgAD8/f0BGDNmDJGRkcXe7NetW8fEiRMBCAsLIysri4yMDJKS\nkiyea08vbH6BpfuXMqPPDF7o+4L0oQphgS26s9yc3WjdqDWtG7Uu/mTz5trXNW7A1Kem/SWLIic/\nh+yr2eDZskTbBYUFZORkcPT8UbKuZJm/DAYDex/ZW+L436/8zsS1E/Hy8MLLXftq5N6I5vWblzgW\ntG1+sq9mU9e1Lq5OrpX8kOkYbFYo0tPT8fPzMz82Go3s2bPH4jHp6emcOnXK4rl/NTt6NvtO7aNI\nFaGUQqFQSvHaba/Ry7dXieNnbJpBbFqsdvy1YxWKfw35F9CnxPH9WvXjmbBn8G3gW5m/AiGEAzAY\nDHjW8cSzjmepz9dzq8eCwQsq3F4dlzpMDJ5I5pVMMi9nknU1i18v/ErixUQa07jE8Rk5GQR9EERu\nfi4AHq4euDm70aphK/ZP2X9jv5Sd2axQVLRqVnWMobzX2czmSrXVl77X2qxSpFIZDHNt0KbVm5Sc\nVm/T8XNWh4xam9Uj59y55efMIQeAi1zE8Fj1uLqwWaHw9fUlNTXV/Dg1NRWj0VjuMWlpaRiNRgoK\nCiyeC1UvMkIIISyzWWd7aGgoiYmJJCcnk5+fz+rVq4mIKD5rISIiguXLlwMQGxtLo0aN8PHxqdC5\nQggh7MNmVxQuLi4sWrSIIUOGUFhYyOTJkwkKCmLx4sUATJkyhaFDh7JhwwYCAgKoV68en332Wbnn\nCiGE0IGqpjZu3Kg6duyoAgIC1FtvvaV3nFKlpKSo8PBw1alTJ9W5c2f17rvv6h2pTCaTSXXv3l0N\nGzZM7yhlyszMVKNGjVKBgYEqKChI7d69W+9IpXrjjTdUp06dVJcuXdTYsWPVlStX9I6klFJq0qRJ\nqlmzZqpLly7mn124cEENHDhQtW/fXg0aNEhlZmbqmFBTWs4ZM2aowMBA1a1bN3X33XerrKwsHRNq\nSsv5hwULFiiDwaAuXLigQ7I/lZXxvffeU4GBgapz587qhRdesNhOtSwUJpNJtWvXTiUlJan8/HwV\nHBysEhIS9I5VwunTp9X+/fuVUkpdunRJdejQwSFzKqXUwoUL1bhx49Tw4cP1jlKmCRMmqCVLliil\nlCooKHCIN4vrJSUlqTZt2piLw7333quWLVumcyrNjh07VHx8fLE3jeeff17NmzdPKaXUW2+9pWbO\nnKlXPLPScm7atEkVFhYqpZSaOXOmw+ZUSvuAOGTIEOXv7697oSgt49atW9XAgQNVfn6+Ukqps2fP\nWmynWi4I+OsaDVdXV/M6C0fTvHlzunfvDkD9+vUJCgri1KlTOqcqKS0tjQ0bNvDwww877ASB33//\nnZ07d/LQQw8BWvdkw4YNdU5VUoMGDXB1dSUvLw+TyUReXh6+vo4xrbp///54eRXfhO+va5kmTpzI\n2rVr9YhWTGk5Bw0ahNO1rTrCwsJIS0vTI1oxpeUEmD59Om+//bYOiUoqLeNHH33ErFmzcL12fxFv\nb2+L7VTLQlHW+gtHlpyczP79+wkLC9M7SgnPPvss8+fPN/9DdERJSUl4e3szadIkevTowSOPPEJe\nXp7esUpo3Lgxzz33HK1ataJly5Y0atSIgQMH6h2rTGfOnMHHxwcAHx8fzpw5o3Miy5YuXcrQoUP1\njlGqyMhIjEYj3bp10ztKmRITE9mxYwc333wz4eHh7Nu3z+I5jvvOUI7qtrIxJyeH0aNH8+6771K/\nfn294xSzfv16mjVrRkhIiMNeTQCYTCbi4+N5/PHHiY+Pp169erz11lt6xyrh+PHj/Pvf/yY5OZlT\np06Rk5PDypUr9Y5VIQaDweH/bb3++uu4ubkxbtw4vaOUkJeXxxtvvFFsHYUj/psymUxkZmYSGxvL\n/Pnzuffeey2eUy0LRUXWaDiKgoICRo0axQMPPMCIESP0jlPCrl27WLduHW3atGHs2LFs3bqVCRMm\n6B2rBKPRiNFopGfPngCMHj2a+Ph4nVOVtG/fPvr06UOTJk1wcXFh5MiR7Nq1S+9YZfLx8SEjIwOA\n06dP06xZM50TlW3ZsmVs2LDBYQvv8ePHSU5OJjg4mDZt2pCWlsZNN93E2bNn9Y5WjNFoZOTIkQD0\n7NkTJycnLly4UO451bJQVJd1FkopJk+eTKdOnZg2bZrlE3TwxhtvkJqaSlJSEqtWreK2224zr21x\nJM2bN8fPz49jx44BsGXLFjp37qxzqpICAwOJjY3l8uXLKKXYsmULnTp10jtWmSIiIvj8888B+Pzz\nzx3ywwxou0nPnz+fyMhI3N0d817cXbt25cyZMyQlJZGUlITRaCQ+Pt7hiu+IESPYunUrAMeOHSM/\nP58mTZqUf5ItRtrtYcOGDapDhw6qXbt26o033tA7Tql27typDAaDCg4OVt27d1fdu3dXGzdu1DtW\nmaKjox161tOBAwdUaGioQ02RLM28efPM02MnTJhgnl2itzFjxqgWLVooV1dXZTQa1dKlS9WFCxfU\n7bff7lDTY6/PuWTJEhUQEKBatWpl/nc0depUvWOac7q5uZn/Pv+qTZs2us96Ki1jfn6+euCBB1SX\nLl1Ujx491LZt2yy2U61vXCSEEML2qmXXkxBCCPuRQiGEEKJcUiiEEEKUSwqFEEKIckmhEMKK9u7d\nS3BwMFevXiU3N5cuXbqQkJCgdywhqkRmPQlhZS+//DJXrlzh8uXL+Pn5MXPmTL0jCVElUiiEsLKC\nggJCQ0Px8PBg9+7dDr8thhCWSNeTEFZ2/vx5cnNzycnJ4fLly3rHEaLK5IpCCCuLiIhg3LhxnDhx\ngtOnT/P+++/rHUmIKrHZrVCFqI2WL19OnTp1GDNmDEVFRfTp04fo6GjCw8P1jibEDZMrCiGEEOWS\nMQohhBDlkkIhhBCiXFIohBBClEsKhRBCiHJJoRBCCFEuKRRCCCHK9f/4ObCr/uswAAAAAABJRU5E\nrkJggg==\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Analysis of yura87 wave data. \n", + " Wave data interpolated (spline) and organized in 5-minute intervals\n", + "Normalized to mean 0 and std = 1 to get stationary conditions. \n", + "maximum level over each 5-minute interval analysed by GEV" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import scipy.interpolate as si\n", + "xn = wd.yura87()\n", + "XI = np.r_[0:len(xn):0.25]\n", + "N = len(XI); \n", + "N = N-np.mod(N,4*60*5); \n", + "YI = si.UnivariateSpline(xn[:,0].ravel(),xn[:,1].ravel(),k=3,s=0)(XI[:N])\n", + "YI = np.reshape(YI, (4*60*5, N/(4*60*5))); # Each column holds 5 minutes of interpolated data.\n", + "Y5 = (YI-YI.mean(axis=0))/(YI.std(axis=0))\n", + "Y5M = Y5.max(axis=0)\n", + "Y5gev = ws.genextreme.fit2(Y5M,method='mps')\n", + "Y5gev.plotesf()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAETCAYAAAAlCTHcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HXKEvuoCEqKHjdFVRyS9PESktLc0lDTU1x\n7Wplu5WJld72zVZL7WaJact1SYhccKGUUkoTlTJRXHLHXUE4vz9OzE8UZVhmg/fz8ZiHzJwz53zm\nG82H724xDMNAREQkH2WcHYCIiLgHJQwREbGJEoaIiNhECUNERGyihCEiIjZRwhAREZsoYUipVqlS\nJVJTU696fNy4cbz44otFukd8fDy1a9cu0jWKyhViEPenhCEuJzg4mPLly1OpUiXr48EHH7TLvU6d\nOkVwcPBVj3/wwQc8++yzdrl3jkWLFtGyZUuqVKmCn58ft956qzWJRUVF4enpmassXnvtNbvGc//9\n9zN58mS73kPck4ezAxC5nMViYenSpdxyyy1OjSM7O5syZez7N9Wff/7JsGHD+Pbbb+nSpQunT58m\nLi6OsmXLAmZZDBw4kM8++8yucYjYQjUMcSuffvopN910E4888gi+vr7Ur1+fH3/8kTlz5lCnTh38\n/f1zfbnef//9jB07lm7dulG5cmXCw8PZs2eP9XiZMmX466+/rOeOGzeOHj16ULFiRVatWnXFX9uX\n1gbq16/P999/D8CcOXNo2rQplStXpl69esycOdOmz/Prr79St25dunTpAkDFihXp27evtfnIMAxs\nXYwhODiYl156iWbNmlG1alVGjBjBhQsX8jx327ZthIeH4+vrS0hICEuWLAFg5syZzJs3j1deeYVK\nlSpx991323RvKR2UMMQlXetLMjExkRYtWnDs2DEGDhzIgAED2LRpEzt37uTzzz9n/PjxnD171nr+\nvHnzeO655zhy5AgtW7Zk8ODBV712dHQ0kydP5vTp03Ts2BGLxYLFYrHed9iwYbz++uucOHGCNWvW\nWJuz/P39+e677zh58iRz5sxh4sSJJCUl5fs5W7Vqxfbt23nkkUeIj4/n9OnTNpZQ3ubNm0dcXBw7\nd+4kJSUlz/6XzMxMevbsyR133MHhw4eZMWMGgwcPJiUlhdGjRzN48GCefPJJTp06xaJFi4oUj5Qs\nShjicgzDoHfv3vj6+lofs2bNsh6vW7cuw4YNw2KxMGDAAPbv389zzz2Hp6cnXbt2xcvLiz///NN6\n/l133UXHjh3x8vJi2rRp/PTTT+zbty/Pe/fu3Zv27dsD4O3tnevYrFmziIyM5NZbbwWgVq1aNGrU\nCIAePXpQt25dAG6++Wa6devG2rVr8/2sdevWJT4+nn379jFgwAD8/PwYPnw4Z86csZ6zYMECazlU\nrVqVv//+O89rWSwWxo8fT0BAAL6+vjzzzDNER0dfcd769es5c+YMTz31FB4eHnTp0oW77rrLem5B\najVSuihhiMuxWCwsWrSI48ePWx+RkZHW4/7+/tafy5UrB4Cfn1+u13L+UrdYLAQGBlqPVahQgapV\nq7J///4873utkUR79+6lXr16eR6LiYnhxhtvpFq1avj6+rJs2TKOHj1q0+dt164dX375JYcOHWLt\n2rWsWbOGadOmWY/fe++91nI4duwYNWrUuOq1Lo2/Tp06eX7O/fv3X/E5g4KCrOfm1KhELqeEISWa\nYRikpaVZn58+fZpjx45Rq1atAl+rdu3auWouOS5cuEC/fv144oknOHToEMePH6dHjx6F+iu9devW\n9OnTh61bt+b6DLa6tH9mz549eX7OWrVqkZaWluu6u3fvJiAgAFDCkKtTwhCXVJxNIsuWLSMhIYGM\njAwmT55M+/btrV+O+d3z0uaZyMhI5syZw8qVK8nOzmbfvn3s2LGDjIwMMjIyuP766ylTpgwxMTHE\nxcXZFFtCQgKffPIJhw8fBmD79u0sWbKEG2+8scCf0zAM3n//ffbt28exY8eYNm0aERERV5zXrl07\nypcvzyuvvEJmZibx8fEsXbrUeq6/v791IIDIpZQwxCX17Nkz19yDfv36AeTqhM5xrb+ILRYLgwYN\nYurUqVSrVo2kpCQ+//zzPN97tWvnvNamTRtrh7aPj491xFWlSpV45513GDBgAFWrViU6OvqK0UVX\ni9HHx4fFixcTGhpKpUqV6N69O3379uWJJ564akz5fdZu3bpRr149GjRokGsOSc51vLy8WLJkCTEx\nMfj5+TF+/Hjmzp1Lw4YNATMxJicn4+vrS9++fW26t5QOFlfdQOnMmTM88MADeHt7Ex4ezqBBg5wd\nkrih4cOHExgYyAsvvODsUOyubt26zJo1y+nzV6TkctkaxjfffMOAAQOYOXMmixcvdnY44qZc9O8h\nEbfk0IQxYsQI/P39CQ0NzfV6bGwsjRs3pkGDBrz88ssA7Nu3zzqSI2fWq0hBFaRJR0SuzaFNUmvX\nrqVixYoMHTqULVu2AJCVlUWjRo1Yvnw5AQEBtGnThujoaDZu3Iivry933nknAwcOzHM8uYiIOI5D\naxidOnXC19c312uJiYnUr1+f4OBgPD09iYiIYNGiRfTt25evv/6aBx54gF69ejkyTBERyYPTFx+8\ntOkJIDAwkA0bNlC+fHlmz559zfeqqUFEpHAK07jk9E7von7p54yTd+aje3cDMKhSxfy3Vq0p3Hab\n+fPlDw8yqMVebvP5md58wyO8xnuM43tLN1KpwykqsJ62fEwkE3ibjqzhOs4CBj4+BqmphYtxypQp\nTi8nxVRyYnLVuBSTbY/CcnoNIyAgINdM3LS0tFxLObiDefNg9Gh49VV4/HH417/gqadg8GDYtAma\nNwdPT/jlFzh40JOANgFQJYD/LW8NQFgY7NkDR49CFdIJ4XdC2UIoW7iPz2nGVrbSjB/TO/B4cAdW\n05nzlf3ZvBmCgpz84UWk1HB6wmjdujV//PEHqamp1KpViy+//LJAHdxRUVGEh4cTHh5uvyDz4eMD\nCxaYPy9YAFFR5mvffZf7vPR0M7HkrHx9//1gscCcOXDiBHTsCPPn+zBgQEcqhHRkdjxkZMB1nKM1\nv9CenxjMF3zEGFJPBjM/uBtxdONHbmL5uuu46SYHfmgRcTvx8fHEx8cX/gKGA0VERBg1a9Y0vLy8\njMDAQGP27NmGYRjGsmXLjIYNGxr16tUzpk+fbvP1HBy+zVatWlUs10lNNYzrrzcMMAxPT/NfMIyy\nZBrtSTCmMMVIoL1xkorGt9xtDOG/hg/HDF9f8732iKk4KSbbuGJMhuGacSkm2xT2u9NlZ3rbwmKx\nFKk9zp2kp0PPnrBunVkrufRj+3KMu1hKX77hFlbyE+35mn4sr9yPVZurqdlKRHIp7HenEoYb2r0b\nbrwRLlyA48dzH6vAaboTwz18xR3EsoJb+brCUI6160H01174+DgnZhFxHaU2YUyZMsXpfRjOlJ5u\n9oWcPAnx8blrHpU5wT18xVA+oynJzCeCsA/H0nFMM2eFKyJOlNOHMXXq1NKZMNw4/GKXng59+piJ\n43LB7GI4cxjJJ/xVtgGrm4zj3yv64lPdy+FxiohzldoahhuHbzdbtkCbNlC5splEMjP//5gHmfTm\nf4zjA5qSzGceI5hz3QMcuS6QX37RMF2R0kAJQ/K0ezc0aJA7aeRoxHbG8QFDmMtS7uI1HmN/teZs\n3KjEIVKSFfa70+kzvYsqKiqqaOOKS7igIDh0CMLDzdFVnTqZ/wLsoDEP8zb12EkyTYnlDr44ejuR\nwcvx9THYvdupoYtIMYuPjycqKqrQ71cNoxTasgXatoWbb4aVK+HiRfN1Ly4wiHk8xmtcwJsXmMxa\n37vZmFRGNQ6REkRNUlIoOcmjdWtzjgeAhWzuYilTmIoHF3mByXxDXzw8y7BxI1y2nYmIuBklDCmy\nhARzeZL/Z3An3zGFqVzHeV5gMl9xD1jKsHYtWopExE0pYUixyJkUmJVlrm+VkQFg0J0YpjCVCpzh\nGaaxmF74+FioUAGCg80RWfPmoYmBIm6g1CaM0j5xz57S080VdxMT4dgxyM42axzTeZpTVOIpXmId\nnXK9x9MTNVuJuChN3HPf8N1KejrUq2cmjjJkMYh5PM9z7CjbjCeyprOF5tZzLRbzPNU2RFxTqR1W\nK47h4wM7d0KPHlC9RlkOdRvCEz230/aZrsTRjc8YQjC7AHN5kqpVwcvL7FQXkZJBNQwpsj1bTzE7\n5HUmMINPGMk0nuEUlQGzicrsBxERV6EahjhNnWaV6LouihB+x4/D7KARI/mYMmSRmQnt25tNWiLi\n3lTDkGKze7c5LLf63o28yUSqcIKJvMkqbsHTE/74Q0uOiLiCUlvD0NIgriMoCNLS4J11rejMap7n\nOT5hJN/Sm6DMPwgONpcmUW1DxDm0NIj7hl+i5UwC9OY8D/E2j/MqsxnB8zzHGSri6wtJSapxiDhD\nqa1hiGu66SZITQXfGtfxCk8Swu/4c5BtNKE/Czh+3CA4WKOoRNyJahhidznrVV24ADcZa3mPf3OI\n6kxgBttpwubNmugn4kiqYYjLCg2Fc+fgt98gwdKJG9jEYnqxhpt5iSdp3/w0Xbqob0PE1SlhiMOE\nhv4zA7yaBzN4kFC2UJMDbKMJfvELqOprKHGIuDA1SYnDpafDgAHwww/m846YzVQH8ecB3me3ZwMN\nwRWxo1LbJKVhte7Hxwfi4sxOcW9vWIfZTBVDd36iPU9kvkiD4AwtLSJSzDSs1n3DF/5/RdyYGHMN\nqjrs5l3GU4+djOEj1tGJ8HD49lstZihSXErt8uZuHL5cImcfDosFjhw26HnxG97mIWLozpO8zHGq\nUrUqbNqkpiqRoiq1TVJSMgQFwYEDsH8/bNxk4Rv60YytnOc6ttKMgczj2DGDtm2dHalI6aUahrik\n3buhQwc4fBjCMjcwk9EcxJ9xfMD/NtfTvA2RIlCTlJRIu3ebW8B6kMlDvM1TvMTrPMoc30cJbeVF\nQIDZeV6+vLaIFbGVEoaUWFu2QPN/NvQLIpX3+Dd12EMks9hYpi3Z2eYxPz9ISVHSEMmP+jCkxAoN\nhc2boVw5qN0xmLtYynSeZplHL14zHqUcZwGz+WrwYCcHK1KCKWGIWwgNhbNnYckSuPtuC+d7D8Rz\n2xZqe/7NFkLpwkoAli3T3A0Re1GTlLi13bvh38Hf8T7jiKMbj/EaJ/DB1xdatYKFC9VEJXK5Utsk\npZnepVtQELyXeich/M4FvNlKM3rzLcePw/Ll0KiR1qYSyaGZ3u4bvhSjLVugZUu4KXsNHzOKzTRn\nAjM4SA3KlIEqVVTjEMlRamsYImD2cRw9ClXvvpnbrv+NP2jAZpozjE/JzjasNQ5/f+jaVbUOkcJQ\nDUNKnPR0uP9+OL02iVeORXKE6xnNTHYTbD2nWjVzUyfN3ZDSSPMwRC6Tng6RQzO564836LXjVZ43\nJvMu48mmrPWc6tVhxw4lDSldlDBEruHkzzvYetMoyMxkVJnZbM1uYj1msUDVqrBxoxY2lNJBfRgi\n11C5TSOa/B3P1rAhJJTtxCSm40EmYC6rfvQo1K2r/g2Ra1ENQ0qdk5tT2XnbaMoeP8LQi7P5jZa5\njnt5mUuMqLYhJZVqGCI2qtw8mLCD31P/rQnEe3XjxbLP4cUF6/GMDLO2sXu3E4MUcUGqYUjptn8/\nmSPHcWDdnww6N5uEi+2sh7y94e+/1SEuJY9qGCKFUasWnt/9jzozJ7Pa925e4XHrYoYXLpjzNlTT\nEDEpYYhYLBARQdmtW7ih+l5+owWdWAOYzVMdOjg5PhEXoYQhksPPj1Y7ovmq7atEM5B3+TcVOcXh\nw6pliEAJSBhafFCKk48PTNrQm7E3/U45zrGFUMIz49QJLiWCFh903/DFhaWnm/0X4RnfM5PRLOc2\nnvZ6nR0HfdQJLm5Pnd4ixcjHx5yL8YPldkLZwgW82ZgRwnu3LwZg9GgID4cePTTRT0oP1TBErmH3\nbnNOhmHAzaxmfoVIavZqy92pb7P4Jz/A3Evc29uc6Fe5shY0FNenGoaIHQQFwa23mj+fCutMuZTN\nUKsWczaGMoAvqVTR4PBh2LsXEhIgJgaaNFGtQ0om1TBE8pGebjZBzZz5/zWHUz+s50S/Eey+riH3\nHP6Ac1VqcuLE/7/n7rvhf/9zTrwi+dFqtSKOduEC5599kQszPiJz2isETBpGRqYFAE9P6NxZO/yJ\na1LCEHGWpCQYMYKf0/zpd3QmadSxHqpRA7ZtU9IQ16I+DBFnCQuDxERCxnUiydKKsXyAhWzAXItq\n8GAnxydSTFTDEClGJ9cnc6DHCA4cv46RfMJO6msRQ3E5qmGIuIDKNzal0eEEVpTvxXpuZCJvkHkh\nSyOnpERQwhApbmXLMjL5EW72Wk8vFpPATfj+nUzDhproJ+5NTVIidpKeDk0bZ9Pr4EymWZ7lDWMi\nr/AEtet6UqcOlC+vSX7iHBolJeKCcuZweBzYw9B1o6lb/iD/aTCH//5mbgur7WDFGZQwRFxYejqM\nHmUw55bPyHz4cd7NGM0LTCYDbypUgNatVeMQx1HCEHETJ7YfYHXTcdQz/uAB79lsr9KOQ4fMY5oh\nLo5Q2O9Oj2sdPHToEAsXLmTNmjWkpqZisVgICgri5ptvpn///lSvXr3QAYuUVlUa16TFX9/ycqsF\nrCx7NzOODOZpXuAc5bl40dnRiVzdVWsYkZGR7Ny5k+7du9O2bVtq1qyJYRgcOHCAxMREYmNjqV+/\nPp988oldAtu1axfTpk3jxIkTLFy4MO/gVcMQd3f4MF8FPETLzEQimcUO/85s365mKbGvYm+S2rx5\nM82bN7/mm205p6j69++vhCElWteuUG75Yt7nARbTizU9Xmb+d5WcHZaUYMU+ce/SRHDu3Dl27Nhx\nzXOuZsSIEfj7+xMaGprr9djYWBo3bkyDBg14+eWXCxKzSImycCF879WLEH7Hmwu89n0Ijzf/XnM2\nxOXkO3Fv8eLFtGzZkttvvx2ApKQkevXqZfMNhg8fTmxsbK7XsrKyGD9+PLGxsSQnJxMdHc22bduY\nO3cuEydOZP/+/QX8GCLuy8cHbr4ZTuDDe2GzeL3Rx/x7yxjuiRnBjY2OK2mIy8g3YURFRbFhwwZ8\nfX0BCAsL46+//rL5Bp06dbK+N0diYiL169cnODgYT09PIiIiWLRoEUOGDOHNN9+kVq1aHDt2jLFj\nx/Lrr7+qBiIl3sKF0L8/rFwJO4K6EcoWzlKeFYdCmHnnImeHJwLkM0oKwNPTE5/LeuDKlCnaiiL7\n9u2jdu3a1ueBgYFs2LAh1zlVq1blww8/zPdaUVFR1p/Dw8MJDw8vUmwizuDjAwsWmD/PmwdNmlRi\nwt/vsrTcAD5JiiSjXzReH84w94MVKaD4+Hji4+OLfJ18E0azZs344osvuHjxIn/88QfvvPMOHTp0\nKNJNLRZLkd5/qUsThkhJ4ONj7qHRsCF8f/hmGvIb83+fQuegUN4Ofov1QfcyL9qikVRis8v/mJ46\ndWqhrpNvVWHGjBls3boVb29vBg4cSOXKlXnrrbcKdbMcAQEBpKWlWZ+npaURGBhYpGuKlCQ+Pubs\nb4CQNuW5ecOrPNl4MX23vcjo2D6EN9yvvg1xPMMBdu3aZYSEhFifZ2ZmGv/617+MXbt2GRcuXDBa\ntGhhJCcnF/i6gDFlyhRj1apVxRitiGs4ftww+vc3/zUMw+je3TC8OG9MZbJxED/jocqzjePHsp0b\npLiVVatWGVOmTDEK+9Wf79IgP//8M9OnTyc1NZWL/0xDtVgsbN682aaENHDgQFavXs3Ro0epXr06\nzz//PMOHDycmJoaHH36YrKwsIiMjmTRpUoGTneZhSGmSng5NmpibMTXnN+YwnDL+frTcMFOrF0qB\n2G0tqYYNG/Laa68REhKSq7M7ODi4wDcrbkoYUtpcmjR8K2byqv9rDE9/gzLPT4WxY6GIA1KkdLBb\nwrjppptISEgodGD2pIQhpVF6utkhfviw+byD7zY+MUbQoKkXHp9+Ag0aODdAcXl2WXwQYMqUKURG\nRnLbbbfh5eVlvVnfvn0LHqUdREVFaTitlCo5HeIxMeDhAT8eb0II65h5cgaR7dvDpEnw8MNQtqyz\nQxUXU9ThtfnWMAYPHsyOHTto1qxZriapOXPmFPqmxUU1DCmtcjZmWr4cjh83X+vdG759bSeMHAln\nz8LHH4Od13oT92S3JqlGjRqxffv2Yp07UVyUMKS069rVTBoVK8KNN5ozxn0qZ8OsWfDMMxAZCc89\nB+XKOTtUcSHFvvhgjg4dOpCcnFyooETEvhYuNCd/nz5tJo7Ro2H02DKEfzGKwaGbyUjZBaGh5kGR\nIsq3htG4cWN27txJ3bp18fb2Nt9UgGG19qQahgj06GH2Z7RpA3FxZtPU6tXmsf79YcGw7+CBByA8\nHF5/Ha6/3qnxivPZrdP78pVmXY06vaW0mzfPrFnMnGl2iJcvb77epo35Gj53wtatZtNUSAi88goM\nGcLoMRZSUrSXeGli905vgLVr1/Lnn38yfPhwDh8+zOnTp6lbt26hb1pcVMMQuVJOh3hOAsll40YY\nNQqqVmXwqQ+Zl1gf+KcmssDxsYpz2K3TOyoqio0bN7Jjxw5SUlLYt28fAwYMcIm5GUoYIoVw8SK8\n/TYnJv2H/2Q+xupWj9IoxJPUVNU2Sgu7dXp/++23LFq0iAoVKgDmwoGnTp0qeIQi4ho8PODRR7H8\n/DP31ljNunOtKLd5A6tXm30ho0c7O0BxVfkmDG9v71zzL86cOWPXgETEMSq3qEvY/mWUnfw005J7\n8w4TCL/hpNnvcYnRo83+cm0ZK/kmjP79+zNmzBjS09OZOXMmt956KyNHjnREbDaJiooqlo1BREol\niwUiIii7bStN655jxcFm+MT/L9cpKSmo9lFCxMfHF2kPoWv2YRiGQVpaGtu3bycuLg6A22+/na5d\nuxb6hsVJfRgixWz1ajMrNGsGM2ZAQIB12O7110OjRlC5svo53J1dOr0NwyA0NJTff/+9SMHZixKG\niB2cPw//+Q+8/z5MnUp6xFhGjy3D/v2QM9ZFo6rcm106vS0WC61atSIxMbHQgYmIm7nuOpg61axt\nzJuHz10dWfDc71SubB5u08YcTaV+jdLHprWk/vzzT4KCgqwjpTTTW6SUyM42FzF89lnODx1NZOqz\nvDer3JWzyVXbcCt2m+kdFxd3xYVdaSFCzfQWsaMyZWDMGOjVi+seeogvfguFxPfZubMbAFWqwKuv\nOjlGsZndZ3oPGTKEuXPn5vuaM6iGIeJgy5bB+PEsP9WWoUfe4AC1VMNwQ3abuHd5h/fFixfZuHFj\ngW8kIiVAjx7w++8cqVKP32jBo97vcuJYlvoxSomrJozp06dTqVIltmzZQqVKlayP6tWr06tXL0fG\nKCKupHx57vhlGn18V9PzwkKmrWjHS/f84uyoxAHybZKaNGkS//nPfxwVT4GoSUrEecz5GQZT6n7G\nc2eepMyA/vDii2bHhrg0uzVJ1atXL9fzixcvMnXq1ALfSERKlurVwc/PQkK9YZz6aStcuABNm8KX\nX4L+kCuR8k0YK1asoEePHuzfv5/ff/+d9u3bc/LkSUfEJiIuLDUVDh82N/Mb9VQ1cz31BQtg2jS4\n4w74809nhyjFLN9htdHR0cyfP5/mzZtToUIFvvjiCzp27OiI2ETEhV2xURPATTeZe268/ba5yfiD\nD8ITT5iTAcXt5VvDSElJ4Z133qFv377UqVOHzz//3KVWrNXigyLOMW+eOWkvLs5cV8q6qu3dnqSP\nfAw2bYKkJHNPcRffubO0sOvig2Du6f3uu+9y2223kZ2dzZtvvsmsWbNITk4u9E2Lizq9RVxHePhV\nZn8vW2bWNFq0gDffhDp1nBWi/MNuO+6dOHGCKpeNekhJSaFhw4YFvllxU8IQcR05q9q2afP/tQ6r\n8+fh5ZfNFXAfewweeQS8vJwWa2lnt1FS586dIzIykjvuuAOA5ORk1q5dW/AIRaREu2oTVQ9IP38d\nTJkCiYmwbh00bw4rVjg7ZCmgfGsYd9xxB8OHD2fatGls3ryZzMxMwsLCXGLJc9UwRFzXVZuoDAMW\nL4aHHjI7xl9/HQICnBVmqWS3GsaRI0e49957KVu2LACenp54eOQ7uEpESrk8R1GBucvf3XdDcjLU\nr2/2bbzxBmRmOiVOsV2+CaNixYocPXrU+nz9+vVX9GmIiFzOnNh3jYnf5cubM8N//NEcRXXDDbBm\njUNjlILJt0lq48aNTJgwga1bt9KsWTMOHz7MV199RYsWLRwV41WpSUrEdV21SSovhgFff212hnfu\nbK6ZXqOGI8Islew2SgogMzOTHTt2AOaGSp6engWP0A6UMERc1zVHTV3N6dPwwgswezY8+yw88AC4\nyPdNSWLXhJGQkEBqaioXL160bp40dOjQgkdZzCwWC1OmTNEGSiIuKD3dHCk1c6aNyeJSyclmp/j+\n/eas8dtus0uMpU3OBkpTp061T8K47777+Ouvv2jZsqW14xtgxowZBY+2mKmGIVIyjB4NKSlmt8a8\nef8kGMOARYvMZqoWLczRVP/6l7NDLRHsVsNo0qQJycnJLrUtaw4lDJGS4Zr9HefPm6Oo3ngDxo6F\nSZOgQgVnhFli2G1YbUhICAcOHChUUCIitrjqEFwwFy58+mn49VfYtQsaN4boaC2h7gT51jDCw8P5\n9ddfadu2Ld7e3uabLBYWL17skACvRTUMkZKhQP0dCQnm2lTly8M770BYmENiLEns1iSVsxLspTew\nWCx07ty54FEWMyUMkZIpzz6NS2VlmSOpJk+GXr3MPTj8/JwSqzuyW5NUeHg4wcHBZGZmEh4eTtu2\nbQlTRhcRO0pJMfs0YmLM5HGFsmVh1CjYvt3sz2ja1BxNpdnidpVvwpg5cyb9+/dnzJgxAOzdu5c+\nffrYPTARKb2u2adxKR8fc8n01avhu++gZUv44QeHxFga5dsk1aJFCxITE7nxxhtJSkoCIDQ0lC1b\ntjgkwGtRk5RIyVSoORw5ixo+8oi5Gq6G4V6V3ZqkvL29rZ3dQK7JeyIi9uDjYw6tLdCEv5xFDbdu\nNasmbdsykoLMAAARn0lEQVTCM8+Ys8elWOSbMDp37sy0adM4e/YsP/zwA/3796dnz56OiE1EpOBy\nhuH+9hvs3g1Nmpg95zb8RZ1rD490+4fqbvJtksrKymLWrFnExcUBcPvttzNy5EiXqGWoSUpE8pUz\nDLdcOXMY7g03XPXUAi2Y6MbsupaUq1LCEBGbZGXBnDnmgobXGIZbqAUT3ZDd+jBCQ0Np3rw5oaGh\n1kfHjh2ZOHFirn0ynCUqKso6V0REJE9ly8LIkbmH4b711hXDcC/fZrakiY+PJyoqqtDvz7eG8fjj\nj+Ph4cGgQYMwDIP58+dz9uxZatSoQUJCAkuWLCn0zYtKNQwRKZRt2+DhhyEtzZy/0bWrsyNyKLs1\nSYWFhVmH017+mrOH1yphiEihXToMNzTUXNywlAzDtVuTVFZWFhs2bLA+T0xMJDs7G0B7e4uI+7p0\nGG67duYw3KefLtAw3NI2qirfGsbPP//M8OHDOf1PIVaqVIlZs2bRrFkzli5dyr333uuQQPOiGoaI\nFJt9++Cpp2DlSnOv8aFDzb6Pa3DXUVV2HyWV/k/69HGhniAlDBEpdomJZjPVmTNmM1WXLlc91V1H\nVRV7k9Snn37KxYsXrc99fHxyJYuMjAzmzJlT4BuKiLi0tm1h7VqzeSoy0my2SknJ89SSPqrqclft\nhDh9+jRt2rShcePGtG7dmpo1a2IYBn///Te//PIL27dvZ9SoUY6MVUTEMSwWMxP07GlO9uvQAe67\nD557DqpWtZ6Ws4RJaXHNJinDMEhISGDdunXs2bMHgKCgIDp27EiHDh2cPttbTVIi4hCHDkFUFHz1\nlbk+1bhx4OXl7KgKTTO9RUTsbetWeOwx2LkTXnvNrIG4wDJJBaWEISLiKLGx8Oij4O9vLqNeyE3l\n8t1Z0E7sNg9DREQuc8cd5mq4AwaYQ6WGDjVXxi2gfHcWdDFKGCIiheHhAWPHmt/6wcHmKriPPw7H\nj9t8CZt3FnQR+TZJbd26lTVr1pCamorFYiE4OJhOnTrRrFkzR8V4VWqSEhGXceCA2TH+zTfmBMB/\n/9vcm+MaCrWzYDEo9j6MuXPnMmPGDKpVq0bbtm2pVasWhmFw4MABEhMTOXLkCA899BD33XdfkYMv\nLCUMEXE5yckwaZLZZDVtGgwcCGVcqzGnsN+dV52Hcfz4cVasWEGlSpXyPH7y5Ek+/fTTAt9QRKRE\na9oUFi2CNWvMJqrXX4dXX4Vbb3V2ZEVWqFFSGRkZeLnAGGTVMETEpRmGOXdj0iRo0ABefhmaN3d2\nVPYbJdW5c2d27dplfZ6YmEjr1q0LfKOCWrRoEaNHjyYiIoIffvjB7vcTESl2OTPGk5PN0VRdu8L9\n95v7cLihfGsY33//PQ899BATJkxg3759xMTEMGvWLG64xr64xSk9PZ3HHnuMTz755IpjqmGIiFs5\neRJeeQU++ABGjTI7x52wCFWhvzsNG6xcudIoW7asUaNGDePAgQO2vMVq+PDhRvXq1Y2QkJBcr8fE\nxBiNGjUy6tevb7z00ktXff+jjz5qJCUl5XnMxvBFRFzL3r2GMWKEYfj5GcabbxrG+fMOvX1hvzvz\nbZJ64YUXmDBhAmvXriUqKorOnTuzdOlSmxPS8OHDiY2NzfVaVlYW48ePJzY2luTkZKKjo9m2bRtz\n585l4sSJ7N+/H8MwePLJJ+nevTstW7YsaB4UEXFdAQEwaxZRN6/kpxeWc8C3CWc+iYZ/NqdzVfkm\njKNHj/Lzzz/Tvn17xowZQ1xcHG+//bbNN+jUqRO+vr65XktMTKR+/foEBwfj6elJREQEixYtYsiQ\nIbz55pvUqlWLGTNmsGLFCr766is++uijgn8yEREXF38khA7HljLo3Cz+fuJ1c2n1VaucHdZV5bvH\n6ltvvZXreVBQEHFxcUW66b59+6hdu7b1eWBgYK5tYAEefPBBHnzwwXyvFRUVZf05PDyc8PDwIsUm\nIuIoOTO9z7TpQrXYRIhbYO7B0aSJOaIqJKRY7hMfH098fHyRr3PVhDFixAjGjRtHmzZtrjhmsVjY\nsGEDH374YaE2USrOZdEvTRgiIu5k3rxLZ3qXgYgI6NPH7BS/5RZzNdznnzebsIrg8j+mp06dWqjr\nXDVhTJw4kVdffZX169fTqFGjXBso7dixgw4dOvDYY48V6qYBAQGkXTKsLC0tjcDAwEJdS0TEXeW5\nAZO3Nzz8sDn89qWXzHkbY8fCE09AlSrOCNMq32G1Fy5cICkpid27d2OxWAgKCqJFixZcl88aKZdK\nTU2lZ8+ebNmyBYCLFy/SqFEjVqxYQa1atWjbti3R0dE0adKkYMFrWK2IlHR79pg7/cXEmBMAx40z\nk0oRFPuw2t27dxdq2NXlIiIijJo1axpeXl5GYGCgMXv2bMMwDGPZsmVGw4YNjXr16hnTp08v1LUB\nY8qUKcaqVauKJVYREZf122+GceedhhEUZBj//a9hXLxY4EusWrXKmDJlSqGH1V61hhEWFkZSUhIA\n/fr14+uvvy5CPrMP1TBEpNRZu9ac8HfyJMyeba6NXkDFvvjgpf76668CX1hEROygUydYtw6WLoVq\n1Rx6a5sShoiIuBCLxRxB5WBXTRibN2+2Lm1+7ty5XMucWywWTp48af/obBAVFaX5FyIiNijqfIxC\nLW/uKtSHISJScHZb3lxERASUMERE3MLo0RAebm6rkZ7unBjcPmFERUUVyxopIiKuLCUFVq825++N\nHl24a8THxxdpOSX1YYiIuIEePcxk0aYNxMUVbd+lwn53KmGIiLiB9PRLFyos2rWUMERExCYaJSUi\nInbl9glDnd4iIrZRp7f7hi8i4hRqkhIREbtSwhAREZsoYYiIiE2UMERExCZunzA0SkpExDYaJeW+\n4YuIOIVGSYmIiF0pYYiIiE2UMERExCZKGCIiYhMlDBERsYnbJwwNqxURsY2G1bpv+CIiTqFhtSIi\nYldKGCIibmj0aAgPN/f6Tk93zD2VMERE3FBKCqxeDTExZvJwBCUMERE3VL68+W+bNjBzpmPuqU5v\nERE3lJ5u1ixmzgQfn4K9t7DfnUoYIiKljEZJiYiIXbl9wtDEPRER22jinvuGLyLiFGqSEhERu1LC\nEBERmyhhiIiITZQwRETEJkoYIiJiEyUMERGxiRKGiIjYRAlDRERsooQhIiI2UcIQERGbKGGIiIhN\n3D5haPFBERHbaPFB9w1fRMQptPigiIjYlRKGiIjYRAlDRERsooQhIiI2UcIQERGbKGGIiIhNlDBE\nRMQmShgiImITJQwREbGJEoaIiNhECUNERGyihCEiIjZRwhAREZsoYYiIiE2UMERExCZKGCIiYhOX\nTRjbt29n3LhxDBgwgFmzZjk7HBGRUs9lE0bjxo354IMPmD9/Pt9//72zwykQV9wyVjHZRjHZzhXj\nUkz2ZfeEMWLECPz9/QkNDc31emxsLI0bN6ZBgwa8/PLLeb53yZIl3HnnnURERNg7zGLlir8gisk2\nisl2rhiXYrIvuyeM4cOHExsbm+u1rKwsxo8fT2xsLMnJyURHR7Nt2zbmzp3LxIkT2b9/PwA9e/Yk\nJiaG//73v/YOU0RE8uFh7xt06tSJ1NTUXK8lJiZSv359goODAYiIiGDRokU89dRTDBkyBIDVq1fz\nzTffcP78ebp06WLvMEVEJD+GA+zatcsICQmxPl+4cKExcuRI6/O5c+ca48ePL/B1AT300EMPPQrx\nKAy71zDyYrFYiuU6Zs4QERFHcMooqYCAANLS0qzP09LSCAwMdEYoIiJiI6ckjNatW/PHH3+QmppK\nRkYGX375Jb169XJGKCIiYiO7J4yBAwfSoUMHUlJSqF27NnPmzMHDw4N3332X22+/naZNm3LvvffS\npEmTPN+flpZGly5daNasGSEhIbzzzjtXnBMfH0+VKlUICwsjLCyMF1980a6f6fz587Rr146WLVvS\ntGlTJk2alOd5Dz74IA0aNKBFixYkJSXZNSZb43J0WeXIysoiLCyMnj175nnc0WWVX0zOKKfg4GCa\nN29OWFgYbdu2zfMcR5dTfjE56/cpPT2de+65hyZNmtC0aVPWr19/xTmOLqv8YnJ0We3YscN6r7Cw\nMKpUqZLn92eByqlQPR8OdODAASMpKckwDMM4deqU0bBhQyM5OTnXOatWrTJ69uzp0LjOnDljGIZh\nZGZmGu3atTPWrl2b6/h3331ndO/e3TAMw1i/fr3Rrl07l4jLGWVlGIbx+uuvG4MGDcrz3s4qq2vF\n5IxyCg4ONo4ePXrV484op/xictbv09ChQ41Zs2YZhmH+rqenp+c67oyyyi8mZ5WVYRhGVlaWUaNG\nDWPPnj25Xi9oObnsTO8cNWrUoGXLlgBUrFiRJk2aWOdpXMpwcAd4+fLlAcjIyCArK4uqVavmOr54\n8WKGDRsGQLt27UhPT+fgwYNOjwscX1Z79+5l2bJljBw5Ms97O6Os8osJnDOo4lr3dNbvVH7l4Ohy\nOnHiBGvXrmXEiBEAeHh4UKVKlVznOLqsbIkJnDdQZ/ny5dSrV4/atWvner2g5eTyCeNSqampJCUl\n0a5du1yvWywWfvzxR1q0aEGPHj1ITk62eyzZ2dm0bNkSf39/unTpQtOmTXMd37dvX67/OIGBgezd\nu9fpcTmjrCZOnMirr75KmTJ5/7o5o6zyi8kZ5WSxWLjtttto3bo1H3/88RXHnVFO+cXkjHLatWsX\nfn5+DB8+nBtuuIFRo0Zx9uzZXOc4uqxsickZZZVj/vz5DBo06IrXC1pObpMwTp8+zT333MPbb79N\nxYoVcx274YYbSEtL47fffmPChAn07t3b7vGUKVOGX3/9lb1797JmzZo8p/9f/tdEcQ0nLkpcji6r\npUuXUr16dcLCwq7515Ujy8qWmJzxO5WQkEBSUhIxMTG89957rF279opzHP07lV9MziinixcvsmnT\nJh544AE2bdpEhQoVeOmll644z5FlZUtMzigrMFsblixZQv/+/fM8XpBycouEkZmZSb9+/bjvvvvy\nLORKlSpZm2K6d+9OZmYmx44dc0hsVapU4c477+SXX37J9frlQ4f37t1LQECAQ2K6VlyOLqsff/yR\nxYsXU7duXQYOHMjKlSsZOnRornMcXVa2xOSM36maNWsC4OfnR58+fUhMTMx13Bm/U/nF5IxyCgwM\nJDAwkDZt2gBwzz33sGnTplznOLqsbInJWd9TMTExtGrVCj8/vyuOFbScXD5hGIZBZGQkTZs25eGH\nH87znIMHD1qzZGJiIoZh5Nl2X1yOHDlCeno6AOfOneOHH34gLCws1zm9evXis88+A2D9+vX4+Pjg\n7+9vt5hsjcvRZTV9+nTS0tLYtWsX8+fP55ZbbrGWSw5Hl5UtMTm6nM6ePcupU6cAOHPmDHFxcVcs\n2OnocrIlJkeXE5j9mrVr1yYlJQUw2+ebNWuW6xxHl5UtMTmjrACio6MZOHBgnscKWk5OmeldEAkJ\nCXz++efWoX1g/g+/Z88eAMaMGcNXX33FBx98gIeHB+XLl2f+/Pl2jenAgQMMGzaM7OxssrOzGTJk\nCLfeeisfffSRNaYePXqwbNky6tevT4UKFZgzZ45dY7I1LkeX1eVyqrvOLqv8YnJ0OR08eJA+ffoA\nZvPG4MGD6datm1PLyZaYnPX7NGPGDAYPHkxGRgb16tVj9uzZTv+dyi8mZ5TVmTNnWL58ea7+p6KU\nk8VwVre9iIi4FZdvkhIREdeghCEiIjZRwhAREZsoYYiIiE2UMESK0c8//0yLFi24cOECZ86cISQk\nxKEzekXsSaOkRIrZ5MmTOX/+POfOnaN27do8+eSTzg5JpFgoYYgUs8zMTFq3bk25cuX46aefHLIk\njIgjqElKpJgdOXKEM2fOcPr0ac6dO+fscESKjWoYIsWsV69eDBo0iL/++osDBw4wY8YMZ4ckUixc\nfmkQEXfy2Wef4e3tTUREBNnZ2XTo0IH4+HjCw8OdHZpIkamGISIiNlEfhoiI2EQJQ0REbKKEISIi\nNlHCEBERmyhhiIiITZQwRETEJv8HnYF4liaW+BgAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Section 5.2.2 Generalized Pareto distribution\n", + "-------------------------------------------\n", + "Exceedances of significant wave-height data over level 3." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "gpd3 = ws.genpareto.fit2(Hs[Hs>3],floc=3)\n", + "gpd3.plotesf()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAETCAYAAAAoF0GbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVGX7+PHPKKCiKKiICgjkhguKCm7pE2ouWbgvSG64\nVT7aL30s/VYqlva4tmilWbinmZWhpmSauC/5gGnuG4goaiIIorJ4fn+cGEXZmeHMDNf79ZrXAzNn\nzlzH77e5uO/rvq+jUxRFQQghhMhBKa0DEEIIYdokUQghhMiVJAohhBC5kkQhhBAiV5IohBBC5EoS\nhRBCiFxJohAlmp2dHVFRUTm+/sYbbzBz5swifUZ4eDiurq5FOkdRmUIMwnxJohAmx93dHVtbW+zs\n7PSPN9980yiflZSUhLu7e46vL168mPfff98on50pNDQUb29vKlWqhKOjI506ddInr+DgYKytrbP8\nW8yfP9+o8QwfPpypU6ca9TOEebHSOgAhnqbT6diyZQsdO3bUNI5Hjx5RqpRx/5a6cOECw4YNY+PG\njXTo0IHk5GS2b99O6dKlAfXfYtCgQaxatcqocQiRGxlRCLOyYsUKnn/+eSZOnIiDgwN16tThwIED\nLF++nFq1auHk5JTlS3X48OG8/vrrdOnShYoVK+Ln58eVK1f0r5cqVYpLly7pj33jjTfo3r07FSpU\nYNeuXc/8df3kX/916tTh119/BWD58uU0bNiQihUrUrt2bZYuXZqv6zl27BgeHh506NABgAoVKtCn\nTx/9NJGiKOS3eYK7uzuzZ8+mUaNGVK5cmREjRvDw4cNsjz19+jR+fn44ODjQuHFjNm/eDMDSpUtZ\nu3Ytc+fOxc7Ojp49e+brs4Vlk0QhTFJuX45HjhyhadOmxMfHM2jQIAYMGEBERAQXL15kzZo1jBs3\njpSUFP3xa9euZdq0afz99994e3vz6quv5njudevWMXXqVJKTk2nXrh06nQ6dTqf/3GHDhrFgwQIS\nExPZs2ePftrKycmJX375hbt377J8+XImTJhAZGRkntfZokULzpw5w8SJEwkPDyc5OTmf/0LZW7t2\nLdu3b+fixYucO3cu2/pKWloa/v7+dOvWjVu3brFo0SJeffVVzp07x5gxY3j11VeZPHkySUlJhIaG\nFikeYRkkUQiToygKvXr1wsHBQf8ICQnRv+7h4cGwYcPQ6XQMGDCAa9euMW3aNKytrencuTM2NjZc\nuHBBf/wrr7xCu3btsLGxYdasWRw8eJDY2NhsP7tXr160adMGgDJlymR5LSQkhJEjR9KpUycAatas\nSf369QHo3r07Hh4eAPzrX/+iS5cu7N27N89r9fDwIDw8nNjYWAYMGICjoyNBQUHcu3dPf8z333+v\n/3eoXLkycXFx2Z5Lp9Mxbtw4nJ2dcXBw4L333mPdunXPHHfo0CHu3bvHlClTsLKyokOHDrzyyiv6\nYwsyihElgyQKYXJ0Oh2hoaHcuXNH/xg5cqT+dScnJ/3P5cqVA8DR0THLc5l/met0OlxcXPSvlS9f\nnsqVK3Pt2rVsPze3lUFXr16ldu3a2b62bds2WrduTZUqVXBwcGDr1q3cvn07X9fbqlUr1q9fz82b\nN9m7dy979uxh1qxZ+tcHDhyo/3eIj4+nevXqOZ7ryfhr1aqV7XVeu3btmet0c3PTH5s5ghIikyQK\nYdEURSEmJkb/e3JyMvHx8dSsWbPA53J1dc0yUsn08OFD+vbtyzvvvMPNmze5c+cO3bt3L9Rf5T4+\nPvTu3ZuTJ09muYb8erL+cuXKlWyvs2bNmsTExGQ5b3R0NM7OzoAkCvEsSRTCJBly6mPr1q3s37+f\n1NRUpk6dSps2bfRfinl95pPTMCNHjmT58uX8/vvvPHr0iNjYWM6ePUtqaiqpqalUrVqVUqVKsW3b\nNrZv356v2Pbv388333zDrVu3ADhz5gybN2+mdevWBb5ORVH48ssviY2NJT4+nlmzZhEQEPDMca1a\ntcLW1pa5c+eSlpZGeHg4W7Zs0R/r5OSkL/ALAZIohIny9/fPsnegb9++AFmKy5ly+wtYp9MRGBjI\njBkzqFKlCpGRkaxZsybb9+Z07sznfH199YVqe3t7/QoqOzs7Fi5cyIABA6hcuTLr1q17ZrVQTjHa\n29uzadMmvLy8sLOz46WXXqJPnz688847OcaU17V26dKF2rVrU7du3Sx7QDLPY2Njw+bNm9m2bRuO\njo6MGzeO1atXU69ePUBNiKdOncLBwYE+ffrk67OFZdOZ6o2L7t27x9ixYylTpgx+fn4EBgZqHZIw\nQ0FBQbi4uPDhhx9qHYrReXh4EBISovn+E2F5THZE8dNPPzFgwACWLl3Kpk2btA5HmCkT/TtICLNS\nrIlixIgRODk54eXlleX5sLAwPD09qVu3LnPmzAEgNjZWvzIjc5eqEAVVkKkbIUT2inXqae/evVSo\nUIGhQ4dy4sQJADIyMqhfvz47duzA2dkZX19f1q1bx//+9z8cHBx4+eWXGTRoULbrwYUQQhhfsY4o\n2rdvj4ODQ5bnjhw5Qp06dXB3d8fa2pqAgABCQ0Pp06cPP/74I2PHjqVHjx7FGaYQQognaN4U8Mkp\nJgAXFxcOHz6Mra0ty5Yty/W9MqUghBCFU5DJJM2L2UX9ss9c514cD51OARQq8zcTmc9Z6vInXrzB\nF9iRCCjPPPbtK/znTZ8+vVivr7gfcn3m/bDk67Pka1OUglcbNE8Uzs7OWXbOxsTEZGm5YEoyW/fE\nU4XPSv8HT84wgU/wI5xo3PiKMTQjIst72rUDnQ7s7CA6WoOghRCiiDRPFD4+Ppw/f56oqChSU1NZ\nv359gWoSwcHBhIeHGy/AJzz/PCiK+khPhz+Pl2KvdScG8j0NOE0U7vxEHw7TkiCWYcvjxm7JyeDu\nriaNpk0hIaFYQhZCCL3w8HCCg4ML/kalGAUEBCg1atRQbGxsFBcXF2XZsmWKoijK1q1blXr16im1\na9dWPvroo3yfr5jDz1VUlKJUrqwopUhXXuIXJRR/5W8qK58xXmnIX8rjFPP4Ubq0ohw/nvM5d+3a\nVWzxa0Guz7xZ8vVZ8rUpSsG/O012Z3Z+6HS6Qs23GVt0NLRsCWVvXmEk3zCKbzhLfT5nHKH0JCOb\nNQQODhAZCW5uGgQshChRCvrdKYnCyBISoNfLaVQ7sJHxLMKdKJbwOl8zmltUy/Y927ZBt27FHKgQ\nosQo6Hen5jWKoirOGkVh2NtD+H5rvlcGcG/bXvzZjDtRnKU+KxmKL0eeec9LL0kdQwhheIWtUciI\nQgMJCdC3QzzNji3j33zBLRxZxHi+ZwCpZL2r2oYN0K+fRoEKISySTD2ZmYTbGXzQeitdL3yON8f4\nhlEs4XWu8uyd1qysICICnmqVJYQQBVLipp7MnX2V0nx83p8K+37lX+zBjiT+pCkb6Ed79qBu3FOl\np0OTJuoS2ypVZF+GEKJ4mH2iMPUaRX49/zycVepTc8NC3IhmFx34hlEcxYdXWYM1qVmOj49X92Xs\n369NvEII8yM1CgsTHQ2+LR7R8vZWJvAJnpzhC/7NV7xGPFWyHNuwoZow7O01ClYIYVZk6slCuLnB\nzb9LsUV5hTpROxlUcSt1Oc8F6rCY16nPGf2xp06p+zAqVZLpKCGE4UmiMANubrAnsSlBynK2f3aG\nOKoTjh+/0J0X+Y3MOsbdu+p0lJUV/HO7DyGEKDKZejJDCQnQ9YUHNDq+lgl8AsCnvMW3vMpDyuqP\nq1gRjh+X3d5CiKxK3NSTpRSzC8LeHg7/WZYJx0fQvPRxJvAJffiJaNwIZjpVuQU8HmG0aSOb94QQ\nUswu0aKjoXlzcIxX2573ZwPrGMTHTOQStfXHyeY9IQSUwBGFUKeWbt+GDcc9GWf1FQ04zR0cOERr\n1jOAFhwFoH9/WLlS42CFEGZHRhQWaP9+9YZJFUhiJCFM4BMuUpu5vMOvdKVJEx27d8tyWiFKKmnh\nIfROnFB3cluRxgC+5x3mokNhHm/zHQGkYy3tzYUogSRRiCyio9VOtImJAApd2M47zKUu5/mUt/ia\n0dzT2XH5siQLIUqKElejKImrngrCzU1d8bRiBYCO7XTlRXbSm4205AiXeI5pSjDN3W/j4CAb9oSw\nZLLqSeQpOhpat4a0NLX4DVCH80xmDr3ZyDJG8DET+WFfDZ5/XttYhRDGU+JGFCL/3Nzg+nX4+2/1\nLnoAF6jLaL7Bm2PYkMpJGvFnu7F46KKk4aAQApBEUWJ16wZRUVC1qvr7VVx5i8/w5AyJVOIoLbjQ\nbhh7vz6T63mEEJZPEkUJ5uYGt27Bvn2Pn7tFNd7lv9TmIuepS/0x/+Jnm/5c2xqpXaBCCE1JohA8\n/7w6uqhZU20oCJCIPbN4n+e4xJ60Nigvv8J26+7E/SjzUUKUNFLMFllER0PdumrB+0lleMAwVjKF\n2VygDnbzg2n9H6l4C2GOSlwxW5bHGpabG9y8CX5+WZ9/SFmW8hr1Oct6BuI0aTB/OHQmKUxGGEKY\nC1keK4wisx3I06xJZSireI9ZXC5dhwUVgvnyz+dl054QZkB2ZguDi45Wk0VCAiQnZ33tyYRxnrpU\n/3I6Td6QKSkhTJkkCmE00dHQsqW6Uurpf/YsIwyrujT8bjrV+0rCEMIUlbgahSg+bm5w4wbEx0Pn\nzlC2rHoXPYA0bAhhFPU5y9r0AdzvN5gbTbvAgQPaBi2EKDIZUYgiiY4GHx91t/eTMkcY00t9SJUX\nGmO7YCY0a6ZNkEKILGREIYpV5qa948ehTJnHz2eOMOo8Ose7u7vx6KXuMGAAnJGd3kKYG0kUwiC8\nvODBA/V2q09KpQyfPRpP5dsXuPNcc2jfHoKC1B1+QgizIIlCGFS/furo4mmJ6eWpPGcKHVzOs26v\nC4+at4Bx49QuhUIIkyaJQhicl1fW/lFPCj9mT+DFD6l+5zSxf9tA48YwefLjvudCCJNj9olCdmab\npuefV0cWOl32r9+iGi7rP2bXp3+qGzTq14eZM+HeveINVIgSRHZmC5OUkKDWsPfuBW9vOHTo2WN8\nfKCJ7QUWV30fm0N7Yfp0GDHicYdCIYRByYY7YbISEqB3b8hpAGhtDdE//EGNT96BuDiYPRt69Mh5\nWCKEKBRJFMLkhYXBSy9l/5q1Ndy8oWB/cJtau6hUCebNgzZtijdIISyYJAphFk6cgFat1L0XCQnP\nvl65MkT8kYHbntUwbRr4+sJHH6m1DCFEkciGO2EWvLwgJQWOHcv+9fh4cK9dmv11h8PZs2pWadcO\n3nhDnZYSQhQbSRRCU25u6uqosmXVaaentWsHVVzKET3wHXVXt62tuqR25ky4f7/4AxaiBJJEITTn\n5aV+558/D9WrP/t6fDy4u0P7XlVImLoA/vhDzS6enrBu3bOtbIUQBiU1CmFycrpZEqhda7dv/+eX\nvXthwgSwsYFPPlGnp4QQeZJitrAI0dHQunX25Qhra/jf/9SRCI8ewerV8N576v1b//tfcHUt7nCF\nMCtSzBYWwc1NbQOVXd+otDR1856rK1SvWYoqE4fhX/cMD2o+p7Yynzbt2VvxCSEKTUYUwuS1b59z\n76gn6XTgVekK+1/4Pyoc3Q2zZsGQIVBK/h4S4kkyohAWZ/Nm6N9fTRblyj2uX1SqlPU4RYHjCbWw\nC/2WNrE/cGTkEs46tCJp+8HiD1oIC2L2iUKaAlo+e3v4/nu10WBKyuPE8eef0LMnODk9+55DtKZV\nxgE+uPsWSS/1JzVwuOy/ECWeNAUUJVZCArz6qrp578EDdTntkyqQxLRSMxldehllgt+l3Nvjst+0\nIUQJIaueRIkWHQ1t26q3Z01Ly/pafc7wbdX/R4tqV2HhQujUSZsghdCYJAohUBNG/frw8GHW562t\nFO6sCKX8+xPU/lHz50OtWtoEKYRGpJgtBOry2rg4tYbxpLR0HXZDevHX96egYUNo3lxdHfV0RhFC\n6EmiEBbL3h5+/lntRPskRQGvluXovD+Yuzv/gMOHoWlT2LVLm0CFMHGSKITFi4iAmjWfvf/Rjh1Q\n1deDzvc3kTxtDgwbBkOHws2b2gQqhImSRCEsnpsbxMaqy2mf3nuXlqYmjNoTepJw4BRUq6Z2p126\nVG0PIoSQYrYoWRIS1CJ3doMGV1d47jlomH6chWmvY1UaWLxYnZYSwoJIMVuIXNjbq/dB6tkTHB2z\nvhYbC7t3w+L9TXC5vI+UgUFqu9pJk6R3lCjRJFGIEiezyH3u3ON9d7a2ULHi42Nu3CpF/+2j4a+/\n1OFHw4bqm4QogSRRiBLL3l69WZKLC5w6BT4+WV/ftg0cG1Uj+sNVLGiykiuBk9lXvR+JZ6UViChZ\npEYhxD8SEtRa9tM7ul1cID0d7sQ9YBofMFr3DeUXzsb230HPLqUSwgzIzmwhiiA6Wu1Om5Ki9oyy\ntVVHG82bP+4h1ZRjLNONpEFbB8qtWqpWwIUwI1LMFqII3NwgJkbde5E5JeXmpiaKTH/iTUvlMPOO\nd4WWLWHBAnXIIYSFkhGFEPmQkADDh0No6OPnSpWCft4XeDdqDI3ckrBa/o0spRVmQaaehDCiKlWe\nbWMOCou8lzEu9v/gtddg6lSwsdEiPCHyxWKmni5fvsyoUaPo37+/1qEIoRcRAWXKqD+XLp35rI7/\nnBrJ1S3H1Jti+Pqq/yuEhTDZROHh4cE333yjdRhCZJHZlbZ/f/Ve3plSU8GzY0387m5igTKRu607\ns8z9A/y7pZGQoF28QhiC0RPFiBEjcHJywsvLK8vzYWFheHp6UrduXebMmWPsMIQwmMxbs27c+HiG\nydYWvLxg9x4dk04Mo335SGpEHyT419a8WP0v2rWD7t2RpCHMUp6J4uTJkyxevJjJkyczZcoUlixZ\nwsmTJ/P9AUFBQYSFhWV5LiMjg3HjxhEWFsapU6dYt24dp0+fZvXq1UyYMIFr164V/EqEKGb29uru\n7szVUQ4O6vO+vlCtuQvd2cqXjGXbww603/9ftm9Lp0EDSRbC/OSYKFavXk3Lli2ZNGkScXFxPPfc\nc7i7u3P9+nUmTZqEr68va9asyfMD2rdvj0Pmf0H/OHLkCHXq1MHd3R1ra2sCAgIIDQ1lyJAhfPLJ\nJ9SsWZP4+Hhef/11jh07JiMOYbIyl9O6ucHateqU1PbtsGEDVK+uYxkj6Wh3lE7sZD/PYx93Gicn\ndb+GEObCKqcX7ty5w86dO7Gzs8v29bt377JixYpCfWhsbCyurq76311cXDh8+HCWYypXrsySJUvy\nPFdwcLD+Zz8/P/z8/AoVkxBFlTkllen0aRgzBubNc6N1q9/oeeMr9vAv5qROxrPeRK7fKIW9vXbx\nipIjPDyc8PDwQr+/WJbHRkVF4e/vz4kTJwD48ccfCQsL4+uvvwZgzZo1HD58mEWLFhXovLI8VpiL\nhARwcoKaqZdZxVDSsGaq60oupbmSmqpu6NuwAUkcolgYfHlsTEwMvXv3xtHREUdHR/r27cvVq1eL\nFKSzszMxMTFZPsPFxaVI5xTClGXWM66X8cCPcM44v8iWuBb8K2498fHqzZOkfiFMVZ6JIigoiB49\nenDt2jWuXbuGv78/QUFBRfpQHx8fzp8/T1RUFKmpqaxfv54ePXoU6lzBwcFFGlIJUVwyl9b27V+a\nwL/eJdjnFz5gGisZih13iYtTmxI6OkoNQxhHeHh4lun6fFPy0KRJk3w9l5OAgAClRo0aio2NjeLi\n4qIsW7ZMURRF2bp1q1KvXj2ldu3aykcffZTv8z0pH+ELYbLu3FGUAS8nKyvLjVEu4qG0L7VPAUUB\nRSlTRn1dCGMo6HdnnjWKjh07EhQURGBgIIqi8N1337F8+XJ27txZqIxmSFKjEJYgIQGWvhzKsIOv\nsVQZzQdMIx1rPDygVi11j8batVK/EIZj8F5PUVFRjB8/nkOHDgHQtm1bFi1aRK1atYoWqQFIohCW\nJOZoHKdaBmGvxDPXaw03KtZl/371NRsbtcbh5qZtjMIyGLyYHRsby+bNm7l16xa3bt0iNDQ0SyFa\na1KjEJbC1ac6rW5v5a9mQ9hwrS39E78B1P+YU1Ohfn0pdouiKWyNIs8RRbNmzYiMjMzzOS3IiEJY\nrJMnyRgYyMbT9Rn1aCmJqPNOPXvKrbtF0RX0uzPHDXcHDx7kwIED3Lp1i48//lh/0qSkJB49elT0\nSIUQOWvUiNJHD9Pl9beJWNmcQNZymNZyfyShiRynnlJTU0lKSiIjI4OkpCSSk5NJTk6mYsWK/PDD\nD8UZoxAlU9myVFyxiGnlPyaUnrzDHP73xyOZfhLFLs+pp+joaNzc3Lh37x7ly5cvrrjyRaaeREnQ\nuTOc3XGFb3mVe5RnQtU1HDxfVVZBiUIzSjG7YcOGeHp6AnDs2DHGjh1b+AgNTIrZwtJt2AA3bGrR\ngV0cpwlhf7dgbt+svdHGjAE/P2llLnJntGJ2y5Yt+eGHH+jZs6e+gN2oUaMCtRo3FhlRiJKic2e1\nzQfABI+fmZ80hlLTp8G//w06HTVqqLu+QQreIm9GuRXq03smrKxyrIELIYxgwwY1AfTqBdMielHq\n0EEICYHAQEhOJjX18bHHjsnoQhhWnomiVq1a7P9n109qairz58+nQYMGRg9MCPGYvb06Sti48Z8d\n2rVrw4EDUKEC+PrSq94pAJo1U2+ktHs3bNsmjQaFYeSZKJYsWcIXX3xBbGwszs7OREZG8sUXXxRH\nbEKI3JQrB19/DZMn8/X5F/i01Tp+/x0qVnx8SFycJAtRdLnWKNLT0xk2bBjffvttccaUbzqdjunT\np8sNi4T480/o1w+6dCFh2sc08C6jr1kAVK+u3khJVkqVbJk3MJoxY4Zhez21a9eOnTt3UqZMmSIH\naWhSzBbiCYmJMGIExMSQGLIBzy5uWZJF//5Z78AnSi6DNwUcMmQIZ86coUePHtja2uo/ZOLEiUWL\n1AAkUQjxFEWBTz6BuXNJXrScasNe4v59qFRJHXRIU0EBBmzhkal27drUrl2bR48ekZycjKIo6HS6\nIgUphDASnQ4mToSWLakQEMDCqmMYE/M+iYml6NBB2paLwimWe2Ybi4wohMhFXBynGvThdEINFjZf\nSUa5Cvq25Y6O4OMjCaOkMvg+ips3bzJp0iS6d+9Ohw4d6NChAx07dixSkIYkO7OFyEH16tQ8swt7\nDwd+f9CGelaXALCzg1u31OWz9erJfouSxGg7szt37szAgQOZP38+X331FStWrMDR0ZG5c+cWNlaD\nkRGFEPmgKPDFFzz6cCYzPb9lr00nduxQE0ZSknqIFLpLFoMXs5s3b05ERARNmjTh+PHjAPj4+HD0\n6NGiRWoAkiiEKIBdu2DQIFImvMvwo+O5k6Bjxw6oWlW9KVLFijIVVVIYvJhtY2MDQPXq1dmyZQs1\na9bkzp07hY9QCKGNDh3g4EFse/Xi+xbHSPh8MWPGl+HaNfS1izFj1ERx7pwUvcVjeY4oNm/eTPv2\n7YmJiWH8+PHcvXuX4OBgevToUVwx5khGFEIUQnIyDB8OV6/Cxo10H1mDbdvA1xe2b1f7Se3erR4q\nG/Usk8GnnkyZJAohCklRYOZM+Ppr7q7dzKiFTVm6VE0I3burhe5MUr+wPAZf9XTx4kX8/f2pWrUq\njo6O9OzZk0uXLhUpSCGExnQ6mDoV5s2jYu8X+X7YL/pRw9q1ahspUDfqzZunXZjCNOSZKAIDAxkw\nYADXr1/n2rVr9O/fn0GDBhVHbEIIYxs4EDZtgtGjYeFCUBTs7aF5c/XlxER1SkqW0JZseSaK+/fv\nM2TIEKytrbG2tmbw4ME8ePCgOGLLF9lHIUQRtWmjVrO/+grGj4f0dH0H2if3XIwZo22YouiMto9i\n8uTJ2Nvb60cR69ev586dO7zzzjsAVK5cueDRGojUKIQwoMREtSBRujQJX61nzKSKHDgAsbHSK8rS\nGLyY7e7unmNvJ51Op2m9QhKFEAaWlqaOKvbvhy1baPeqm37prBS1LYesehJCFE1mB9qPP6Zb2mZ+\nvdlMRhQWxiiJ4sCBA0RFRZGenq5/bujQoYWL0IAkUQhhRD/8wJ3AsQxMW8NvdJERhQUxeKIYPHgw\nly5dwtvbm9KlS+ufX7RoUeGjNBBJFEIY16TW+5h0uB+zKswmsulwafNhIQyeKBo0aMCpU6dM8h4U\nkiiEMK6EBAgOOMPb4d1Z/HAEs3iP/v11MrIwcwbfcNe4cWOuX79epKCEEObJ3h4+DfPknecP0I8f\nWFftLZYuefTMcWPGgJ+f7LewVHmOKPz8/Dh27BgtW7bU3zdbp9OxadOmYgkwNzKiEKJ4JCTAW8MT\n+OaGP1Z13GHZMrC21r/u5/e4P5TUMkyfwbvHZm7OePLEpjQNFRwcjJ+fH35+flqHIoTFsreHFT/b\nQ8qvMGAA9OmjZoN/en3Y2qrHVa0K166pIwupZZie8PDwQm1Qzteqp6ioKC5cuMCLL75ISkoK6enp\nVMzcuqkhGVEIoYG0NAgKgitX1PYf9vYkJKjTT0+2LJeRhekyeI1i6dKl9O/fn9deew2Aq1ev0rt3\n78JHKIQwb9bWsGoVeHurc05xcdjbq0khOlo9RJoJWpY8E8UXX3zBvn379COIevXqcfPmTaMHJoQw\nYaVKwWefqVNQ7dvD5cvA4w15iYnw9tsaxicMKs8aRZkyZfRFbID09HSTqlEIITSi08G0aVC5spos\nwsKoWLExoHacXbpUnY6Su+WZvzwTxQsvvMCsWbNISUnht99+48svv8Tf3784YhNCmINx49Rk0akT\n61f/zMgKbfQ3QTp37vFqqDFjpGZhrvIsZmdkZBASEsL27dsB6Nq1K6NGjTKJUYUUs4UwIVu3wrBh\nsGYNdO0KPL5bXuZtVmVEYRqkKaAQQjv79ql1i+XL4eWXSUhQb4JUsybS/sOEGDxReHl5PXPSSpUq\n4evry/vvv0+VKlUKH20RSaIQwgQdPgz+/vD119Czp2zGM0EG33DXrVs3rKysCAwMRFEUvvvuO1JS\nUnBycmL48OFs3ry5SAELISxMq1bqNNTLL0NGBra2fYDHBW5hfvIcUTRr1ozIyMhsn/Py8uLEiRNG\nDTA3MqIfJ5C7AAATWUlEQVQQwoRFRED37tybvQivD/rL9JMJMfiGu4yMDA4fPqz//ciRIzx6pDYF\ns7LKc0AihCipmjeHX3+l/JTxDC+7jv375d7b5irPb/qQkBCCgoJITk4GwM7OjpCQEO7du8eUKVOM\nHqAQwow1bQq//cY43y6cI4NzvoNl+skM5XvVU8I/vYPtTWjMqNPpmD59ujQFFMLE3T10ivQOnfmx\nxUd8azVMNuBpJLMp4IwZMwyz6mnFihUMHjw4x+ml1NRUvv32W4KCggoXsQFIjUIIM3LmDLeavsiU\n1BksY6SsgNKQwVY9JScn4+vri6enJz4+PtSoUQNFUYiLi+Po0aOcOXOG0aNHGyRoIUQJ4OnJu61/\nZ8aejrh42DBh6RCtIxL5lOvUk6Io7N+/n3379nHlyhUA3NzcaNeuHW3bttV8d7aMKIQwLwkJMCPg\nNAuOdeTrxgtZl95fpqE0IDuzhRCm788/ifftwtC0EH7hFZmGKmYGXx4rhBAG17QpH/hsZhkjGFtv\nh6yEMnEyohBCaCIhAT7uvZfgE30otfEntVW5KBYyohBCmAV7e/hgV3s+bbWOO5368lbbI/yzCl+Y\nmDxHFCdPnmTPnj1ERUWh0+lwd3enffv2NGrUqLhizJGMKIQwf35+UGH3FkIYyfzO25m3vanWIVk8\ng40oVq9eTcuWLZk0aRJxcXE899xzuLu7c/36dSZNmoSvry9r1qwxSNBCiJLL1hZ+4RU+rf05c453\ng7NntQ5JPCXHfRR37txh586d2NnZZfv63bt3WbFihbHiEkKUEGvXqv2fJi/tT6mNydCtGxw8CNWr\nax2a+EehitmpqanY2NgYI54CkaknISzLmDHQ6reZvBD/E1X/2o29a/Z/qIqiMXgx+4UXXuDy5cv6\n348cOYKPj0/hohNCiFycOwejot5jx92WRPn2g9RUrUMS5KN77LvvvstLL73E+PHjiY2NZdu2bTLl\nJIQwCltbAB0rfT5nZNU+MHo0rFgBGneBKOnyNfW0a9cuOnfujKOjI5GRkVQ3kblDmXoSwrIkJKjT\nT0uXgr1NCnTsCJ06waxZWodmUQx+K9QPP/yQ9evXs3fvXo4fP84LL7zAggULeOWVV4oUqBBCPM3e\n/slWHrawZQu0bQvOzjB2rJahlWh5Jorbt2/zxx9/UK5cOdq0aUO3bt0YNWqUJAohhMGNGaPWKfSN\nAqtWhbAwaNcOataEXr20DrFEKtSqJ0VRjN45NjQ0lF9++YW7d+8ycuRIOnfu/MwxMvUkhGXx84Pd\nu9WfszQK/N//4KWX4Oef1RGGKBKDrXoaMWIEf/zxR44fcvjwYaPetKhnz54sXbqUJUuWsH79eqN9\njhDCdKjFbPD1JWujwBYtYNUq6NMHzpzRJLaSLMcRxYkTJ5g3bx6HDh2ifv36WW5cdPbsWdq2bcuk\nSZNo3Lhxrh8wYsQIfvnlF6pVq8aJEyf0z4eFhfHWW2+RkZHBqFGjmDx5crbvnzRpEoMHD8bb2/vZ\n4GVEIYRFyVLMzu7+FCtWwIwZcOAA1KhR3OFZDIPfj+Lhw4dERkYSHR2NTqfDzc2Npk2bUrZs2Xx9\nwN69e6lQoQJDhw7VJ4qMjAzq16/Pjh07cHZ2xtfXl3Xr1nH06FEiIiJ4++23qVGjBlOmTKFLly50\n6tTJIBcrhLAAM2fCjz+qc1QVK2odjVkyWKK4cuUKtWrVMkhQUVFR+Pv76xPFwYMHmTFjBmFhYQDM\nnj0bgClTpujfs3DhQlatWoWvry/e3t689tprzwYviUKIkkdR4I034OJF+OUXMIEuEebGYMtje/bs\nSWRkJAB9+/blxx9/LHp0/4iNjcXV1VX/u4uLC4cPH85yzJtvvsmbb76Z57mCg4P1P/v5+eHn52eo\nMIUQpking88/51idvtyoNYrPmq1k7Tqd3Eo1F+Hh4YSHhxf6/XkujwW4dOlSoT8gO4ZcMfVkohBC\nlBBWVkx2XcfMfS/QKGw+Y8a8LbdSzcXTf0TPmDGjQO/PV6IwNGdnZ2JiYvS/x8TE4OLiokUoQggz\nVdrOlj78RKR1S8oO8gaeXUIvDCPH5bHHjx/Hzs4OOzs7Tpw4of/Zzs6OikUsIPn4+HD+/HmioqJI\nTU1l/fr19OjRo0jnFEKULGvXQpv+rpTZ+B0VXh8MBp75EI/lmCgyMjJISkoiKSmJ9PR0/c9JSUnc\nvXs33x8waNAg2rZty7lz53B1dWX58uVYWVnx+eef07VrVxo2bMjAgQNp0KBBoS4gODi4SHNvQgjz\nlNnuw+7lF+D996F3b7h3T+uwTFp4eHihpusLtTPbVMiqJyEEoK6EGj4cHj6Edeuk22weDH4/CiGE\nMHk6HSxZAhcuwPz5WkdjcWREIYSwHDEx0LKl2u4jm/5wQlXiRhRSoxBC6Lm6qlNPQ4bAE3fmzDRm\njNp4sHt3tV1ISSM1CiGEyLRwIYSEqD2hypfXP51jd9oSpsSNKIQQ4hnjx4O3N4wapRa6/5Fjd1qR\nKxlRCCEs0/370L49BATApElAPrrTlhAGvxWqqQsODpYeT0KIZ5UrBz/9BK1aqaOLF1986larJU9h\nez7JiEIIYdnCw9VRxcGD4OGhdTQmQWoUQgjxJD8/+L//U3dup6RoHY1ZkhGFEMLyZe7cTkuDb78t\n8Tu3ZUQhhBBPy9y5ffYsfPyx1tGYHbNPFLLhTgiRL+XKwcaNMGcO/PlnsX2sKW3ykw13QgiRHyEh\n6uji4EGwMv7CT1Pc5CdTT0IIkZsRI6BiRfjss2L5OEvY5CcjCiFEyXPhArRuDYcPQ+3aRv0oU9zk\nV9DvTkkUQoiSad48CAuDHTtK3CoomXoSQoj8mDABEhNhxQqtIzF5Zp8oZNWTEKJQrKzgm29g8mSI\ni9M6mmIhq56EEKIw3n0Xzp+HDRu0jqTYyNSTEEIUxNSp6r6Kn3/WOhKTJSMKIYTYswcCA+Gvv0xn\naZIRyaonIYQojNdfh0ePzHezQwFIohBCiMJITITGjWH1anU7tQWTGoUQQhRGpUrwxRcwerR6dzyh\nZ/aJQpbHCiEMpkcPaN4cZsww2CmlKaDGZOpJCGFwN26Al5e6a7t58yKfTpoCCiGEpXFygrlzYdQo\nSE8v8uksoSmgJAohhHjasGFQtapBbnK0dq06kti+3XxX3srUkxBCZOfyZXUYcPAg1K2rdTQGJVNP\nQghhCB4e8N57ajW6hP9BKolCCCFy8uabcO+e2jywBJOpJyGEyM3x49Cpk9oPqmZNraMxCNmZLYQQ\nhjZ1Kpw8CT/9pHUkBlHiahSy4U4IYXTvvw+nT8OPP2odSZHIhjshhDCm/fthwAC1w6yDg9bRFIlM\nPQkhhLGMG6f2gQoJ0TqSIpFEIYQQxpKUBI0awfLlaoHbTJW4GoUQQhQbOztYvFjdW5GSonU0xUZG\nFEIIUVCBgeDsDPPmaR1JocjUkxBCGNutW2qH2S1bwMdH62gKTKaehBDC2BwdYf58GDkS0tK0jsbo\nJFEIIURhvPqqWU8/FYRMPQkhRGFFR0OLFuoei/r1tY4m32TqSQghioubG0ybpt5n+9EjraMxGkkU\nQghRFP/+t1qnMNfb1+WDTD0JIURRnTyp3hw7MhJcXLSOJk8lbupJmgIKITTXqJHa3mPs2Hzd5GjM\nGDWvdO8OCQnGDy+TNAUUQggtpaZC8+ZqS/KBA3M91M8Pdu9Wf+7fH77/3vjhPanEjSiEEMIk2NjA\n11/DW2/B7du5Hmprq/6vr695lDZkRCGEEIb0//4fJCbCihU5HpKQoE4/LV0K9vbFF1omaeEhhBBa\nSk6Gxo3VLNCli9bRZEumnoQQQksVKsBXX8Frr6lJwwLIiEIIIYxh6FCoUgU++UTrSJ4hU09CCGEK\nbt9Wl82GhkKrVlpHk4VMPQkhhCnIHE2MGqUunTVjkiiEEMJYAgLUflAmOP1UEDL1JIQQxnT2LLRr\nB+fOgYOD1tEAMvUkhBCmpX596NnTrO9bISMKIYQwtpgY8PZWmwdWr651NLLqSQghTNLEiWpR+/PP\ntY5EEoUQQpikW7fA0xOOHgUPD01DkRqFEEKYIkdHGD8epk/XOpICkxGFEEIUl7t3oW5d2LlT7Qel\nERlRCCGEqapYESZPhvff1zqSAjHZEcWZM2f47LPPuH37Nl27dmXkyJHPHCMjCiGE2XnwQB1VbNgA\nrVtrEoLFjCg8PT1ZvHgx3333Hb/++qvW4WjC0m/xKtdn3iz5+ox6bWXLwvLlaosPM2H0RDFixAic\nnJzw8vLK8nxYWBienp7UrVuXOXPmZPvezZs38/LLLxMQEGDsME2SJf+HCHJ95s6Sr8/o1/bii+qo\nwkwYPVEEBQURFhaW5bmMjAzGjRtHWFgYp06dYt26dZw+fZrVq1czYcIErl27BoC/vz/btm1j5cqV\nxg5TCCFEDqyM/QHt27cnKioqy3NHjhyhTp06uLu7AxAQEEBoaChTpkxhyJAhAOzevZuffvqJBw8e\n0KFDB2OHKYQQIidKMbh8+bLSuHFj/e8bNmxQRo0apf999erVyrhx4wp8XkAe8pCHPORRiEdBGH1E\nkR2dTmeQ8yiy4kkIIYxOk1VPzs7OxMTE6H+PiYnBxcVFi1CEEELkQZNE4ePjw/nz54mKiiI1NZX1\n69fTo0cPLUIRQgiRB6MnikGDBtG2bVvOnTuHq6sry5cvx8rKis8//5yuXbvSsGFDBg4cSIMGDfJ9\nzpiYGDp06ECjRo1o3LgxCxcuNOIVaCcjI4NmzZrh7++vdSgGlZCQQL9+/WjQoAENGzbk0KFDWodk\nUP/9739p1KgRXl5eBAYG8vDhQ61DKpLslrjHx8fTuXNn6tWrR5cuXUhISNAwwqLJ7vrefvttGjRo\nQNOmTenTpw+JiYkaRlg0OW1RAFiwYAGlSpUiPj4+95MUuIJsAq5fv65ERkYqiqIoSUlJSr169ZRT\np05pHJXhLViwQAkMDFT8/f21DsWghg4dqoSEhCiKoihpaWlKQkKCxhEZzuXLlxUPDw/lwYMHiqIo\nyoABA5QVK1ZoHFXR7NmzR4mIiMiyIOXtt99W5syZoyiKosyePVuZPHmyVuEVWXbXt337diUjI0NR\nFEWZPHmyxV2foijKlStXlK5duyru7u7K7du3cz2Hye7Mzk316tXx9vYGoEKFCjRo0EC/98JSXL16\nla1btzJq1CiLKtonJiayd+9eRowYAYCVlRWVKlXSOCrDqVixItbW1qSkpJCenk5KSgrOzs5ah1Uk\n7du3x+GpW3hu2rSJYcOGATBs2DB+/vlnLUIziOyur3PnzpQqpX49tmrViqtXr2oRmkFkd30AEydO\nZO7cufk6h1kmiidFRUURGRlJq1attA7FoCZMmMC8efP0/89qKS5fvoyjoyNBQUE0b96c0aNHk5KS\nonVYBlO5cmX+85//UKtWLWrWrIm9vT0vvvii1mEZ3I0bN3BycgLAycmJGzduaByR8Sxbtozu3btr\nHYZBhYaG4uLiQpMmTfJ1vFl/CyUnJ9OvXz8+++wzKlSooHU4BrNlyxaqVatGs2bNLGo0AZCenk5E\nRARjx44lIiKC8uXLM3v2bK3DMpiLFy/y6aefEhUVxbVr10hOTubbb7/VOiyj0ul0BlvybmpmzZqF\njY0NgYGBWodiMCkpKXz00UfMmDFD/1xe3zNmmyjS0tLo27cvgwcPplevXlqHY1AHDhxg06ZNeHh4\nMGjQIH7//XeGDh2qdVgG4eLigouLC76+vgD069ePiIgIjaMynKNHj9K2bVuqVKmClZUVffr04cCB\nA1qHZXBOTk7ExcUBcP36dapVq6ZxRIa3YsUKtm7danGJ/uLFi0RFRdG0aVM8PDy4evUqLVq04ObN\nmzm+xywThaIojBw5koYNG/LWW29pHY7BffTRR8TExHD58mW+++47OnbsyKpVq7QOyyCqV6+Oq6sr\n586dA2DHjh00atRI46gMx9PTk0OHDnH//n0URWHHjh00bNhQ67AMrkePHvoebCtXrrS4P9bCwsKY\nN28eoaGhlC1bVutwDMrLy4sbN25w+fJlLl++jIuLCxEREbkneyMV2o1q7969ik6nU5o2bap4e3sr\n3t7eyrZt27QOyyjCw8MtbtXTsWPHFB8fH6VJkyZK7969LWrVk6Ioypw5c5SGDRsqjRs3VoYOHaqk\npqZqHVKRBAQEKDVq1FCsra0VFxcXZdmyZcrt27eVTp06KXXr1lU6d+6s3LlzR+swC+3p6wsJCVHq\n1Kmj1KpVS//98sYbb2gdZqFlXp+NjY3+/35P8vDwyHPVk8neuEgIIYRpMMupJyGEEMVHEoUQQohc\nSaIQQgiRK0kUQgghciWJQggD+uOPP2jatCkPHz7k3r17NG7cmFOnTmkdlhBFIquehDCwqVOn8uDB\nA+7fv4+rqyuTJ0/WOiQhikQShRAGlpaWho+PD+XKlePgwYMW295ClBwy9SSEgf3999/cu3eP5ORk\n7t+/r3U4QhSZjCiEMLAePXoQGBjIpUuXuH79OosWLdI6JCGKxErrAISwJKtWraJMmTIEBATw6NEj\n2rZtS3h4OH5+flqHJkShyYhCCCFErqRGIYQQIleSKIQQQuRKEoUQQohcSaIQQgiRK0kUQgghciWJ\nQgghRK7+P5JGatzzLvuCAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exceedances of significant wave-height data over level 7," + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "gpd7 = ws.genpareto.fit2(Hs[Hs>7],floc=7)\n", + "gpd7.plotesf()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAETCAYAAAAoF0GbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX6//HXUcEVBZVQQcVUJIXUAk2TxBS3ArdBcQ81\nS39q02I638bEykpbprSmxsml3DMt1ATJFPfcnUwzzUQRNTdIERXF+/fHPTKScNgOHJb38/E4D+Gc\n+9z3dTPTuc7nc30Wi2EYBiIiIlkoY+8ARESkaFOiEBERq5QoRETEKiUKERGxSolCRESsUqIQERGr\nlCikVHNyciIuLi7L10eNGsUbb7yRr2vExsZSt27dfJ0jv4pCDFJ8KVFIkePp6UmlSpVwcnJKf4wb\nN65ArnXlyhU8PT2zfP2TTz7h73//e4Fc+47IyEhatGhBtWrVcHV1pWPHjunJKyIiAgcHhwx/i3ff\nfbdA43nqqaeYNGlSgV5Dipdy9g5A5M8sFgurV6/m8ccft2sct2/fpkyZgv0u9euvvzJ06FC+/vpr\nOnToQHJyMjExMZQtWxYw/xb9+/fniy++KNA4RKxRi0KKlXnz5vHoo4/ywgsv4OLiQqNGjdi2bRtz\n586lXr16uLm5ZfhQfeqpp3j22Wfp3LkzVatWJTAwkJMnT6a/XqZMGX777bf0Y0eNGkX37t2pUqUK\nGzZsuOfb9d3f/hs1asTatWsBmDt3Lk2bNqVq1ao0bNiQWbNm5eh+9u/fT4MGDejQoQMAVapUoXfv\n3undRIZhkNPFEzw9PXn77bdp1qwZ1atXZ9iwYdy4cSPTY3/++WcCAwNxcXHBx8eHVatWATBr1iwW\nLVrE9OnTcXJyokePHjm6tpRsShRSJFn7cNy5cyfNmzfn0qVL9O/fn759+7J3716OHTvGggULGDNm\nDCkpKenHL1q0iFdffZULFy7QokULBg4cmOW5Fy9ezKRJk0hOTqZdu3ZYLBYsFkv6dYcOHcp7773H\nH3/8waZNm9K7rdzc3Pj222+5fPkyc+fO5fnnn2ffvn3Z3ufDDz/M4cOHeeGFF4iNjSU5OTmHf6HM\nLVq0iJiYGI4dO8aRI0cyra/cvHmT4OBgunbtyvnz55k5cyYDBw7kyJEjjBw5koEDBzJhwgSuXLlC\nZGRkvuKRkkGJQoocwzDo2bMnLi4u6Y/Zs2env96gQQOGDh2KxWKhb9++nD59mldffRUHBweCgoJw\ndHTk119/TT/+ySefpF27djg6OjJ16lS2b99OQkJCptfu2bMnbdq0AaB8+fIZXps9ezbDhw+nY8eO\nANSpU4cmTZoA0L17dxo0aADAY489RufOndm8eXO299qgQQNiY2NJSEigb9++uLq6Eh4eztWrV9OP\n+fLLL9P/DtWrV+fs2bOZnstisTBmzBjc3d1xcXHhlVdeYfHixfcc98MPP3D16lUmTpxIuXLl6NCh\nA08++WT6sblpxUjpoEQhRY7FYiEyMpLExMT0x/Dhw9Nfd3NzS/+5YsWKALi6umZ47s43c4vFgoeH\nR/prlStXpnr16pw+fTrT61obGXTq1CkaNmyY6WtRUVE88sgj1KhRAxcXF9asWcPFixdzdL+tW7dm\n6dKlnDt3js2bN7Np0yamTp2a/nq/fv3S/w6XLl2iVq1aWZ7r7vjr1auX6X2ePn36nvusX79++rF3\nWlAidyhRSIlmGAbx8fHpvycnJ3Pp0iXq1KmT63PVrVs3Q0vljhs3btCnTx9efvllzp07R2JiIt27\nd8/Tt3I/Pz969erFwYMHM9xDTt1dfzl58mSm91mnTh3i4+MznPfEiRO4u7sDShRyLyUKKZJs2fWx\nZs0atm7dSmpqKpMmTaJNmzbpH4rZXfPubpjhw4czd+5c1q9fz+3bt0lISOCXX34hNTWV1NRUatas\nSZkyZYiKiiImJiZHsW3dupXPPvuM8+fPA3D48GFWrVrFI488kuv7NAyDf/7znyQkJHDp0iWmTp1K\nWFjYPce1bt2aSpUqMX36dG7evElsbCyrV69OP9bNzS29wC8CShRSRAUHB2eYO9CnTx+ADMXlO6x9\nA7ZYLAwYMIApU6ZQo0YN9u3bx4IFCzJ9b1bnvvOcv79/eqHa2dk5fQSVk5MTM2bMoG/fvlSvXp3F\nixffM1ooqxidnZ1ZuXIlvr6+ODk50a1bN3r37s3LL7+cZUzZ3Wvnzp1p2LAhjRs3zjAH5M55HB0d\nWbVqFVFRUbi6ujJmzBjmz5+Pl5cXYCbEQ4cO4eLiQu/evXN0bSnZLEV146KrV68yevRoypcvT2Bg\nIAMGDLB3SFIMhYeH4+Hhweuvv27vUApcgwYNmD17tt3nn0jJU2RbFCtWrKBv377MmjWLlStX2jsc\nKaaK6PcgkWKlUBPFsGHDcHNzw9fXN8Pz0dHReHt707hxY6ZNmwZAQkJC+siMO7NURXIrN103IpK5\nQu162rx5M1WqVGHIkCEcOHAAgLS0NJo0acK6detwd3fH39+fxYsXs2fPHlxcXHjiiSfo379/puPB\nRUSk4BVqiyIgIAAXF5cMz+3cuZNGjRrh6emJg4MDYWFhREZG0rt3b5YvX87o0aMJCQkpzDBFROQu\ndl8U8O4uJgAPDw927NhBpUqVmDNnjtX3qktBRCRvctOZZPdidn4/7P39DWrUMLCQRgv28iLvsIau\n/IETu3iY6WUmcHbBdxgpKelj4ovLY/LkyXaPQfen+yuN91eS780wcl9tsHuicHd3zzBzNj4+PsOS\nC9mJiYE9e8CxfBn205L3eIl+TlHU5AIv8D4pt8tzdFAEVyrdx0aHjsxu9BZXNuyGtLSCuB0RkRLH\n7onCz8+Po0ePEhcXR2pqKkuXLs1VTeKDDyI4fjyWs2ehRw/o2RMOHACLoyObeYzXykwhgC24k8C7\nt/5K8rGzxHccSlrN+yA0FGbNguPHC/AORUSKhtjYWCIiInL/RqMQhYWFGbVr1zYcHR0NDw8PY86c\nOYZhGMaaNWsMLy8vo2HDhsabb76Z4/NZCz8uzjA8PAwjMNAw4N7Hw7VPGca8ecb2RgONiw5uxvGy\nDY3ltUYZr7VcYSTGJeX7Xm1hw4YN9g6hQOn+ireSfH8l+d4Mw/pnZ2aK7MzsnLBYLNn2tyUlwVNP\nwa1b8N13kJoKlSrBoUNQvz4EBsLGjQYP8iNBfEcQ3/GoZRsVWj1IuW6doUsX8PcHzeUQkRIiJ5+d\nGY4v6YnibidOQLt2sGWLmSQAuneHqKiMx1XgGkEVttDpdgwd09bi7ZRA2aCOZtLo3Bm0Sb2IFGO5\n/ey0e40ivyIiIoiNjc3RsfXrQ3z8/5IEwKJFZqmievX/Pef1YEU2OgbxXOo7+KT9SOuKB8yMsm4d\ntGwJTZvC888zom40tapdw9XVTEIiIkVZXmsUpapFYc2JE9C2rZkHFiyAxo3hwoWM3VSAOVpq715Y\nu5ZtEWvxTdvPNtoSU6Yrmyp1I658E3bvsWRIRiIiRYm6nmwks26qP3N1hdQLf9Dd8Xs6G9F0vBlN\nGmWJpit9ZnXlvv4doUqVAolPRCSvlCgK0d3JxM8PLlwwaMohuhFFN0s0bcrswOHRVjiEdDe7rry9\nQbPJRcTOSl2imDx5MoGBgQQGBto1lhMnwNMz43OVSab/fetpdyWKjje+paxjWaoP6Eb5Xt3h8cfN\nfi0RkUISGxtLbGwsU6ZMKV2JoiiF36EDxMaavU3JyeaoWkdH2LoVwKAZBwkpu4buljU8ZOzBoUM7\nHHo8YbY27r/fztGLSGlR6kY9FSVff22OoPrpJ/PfmBioWvXOqxZOVPHhrbSXCbgVS520eGYmD4M9\ne7js04a4yk356v6XufLtRrh50563ISKSgVoUBezOhD+LxWxlrFtnPt+yJaxfD87O0KH9bZI37eFJ\nVjPYeTX3W45Dly7MPvsEkand2HeyBvXrm0ln0SLzPSIieVXqahTFKfy7k8bcuf/7wL8z6c/f32yF\nOKechjVr2DJxFQ9e3MB/aM4qgllFML5/8cbZxcKRI3DsGEogIpJrpS5RFJVidn4kJcHIkeb6hHd/\n2HfvDhuirvFkpQ10SFlNH8dV1HQvz/KbIXxyKpgttOMWDgDUqgU//6xkISJZUzG7BLqTQN55B8aP\nh1n/MnCO28/8fqvwPrqKRpZjrDG6sZIQounKzYrVeOghtTBExLpS16IoxuHn2Z0E8v6LCXzYeTUd\nLkfSji38wCNE0oOVhNAmtC5ffmkeP3IkHDlijsZVAhERJYpSJikJHngArpxNpleltQSlRNKj7LdU\n9m1AuT49oUcPAsf4sHGTOdHP1RXKl1dtQ6Q0U6Iohe7povr4Js4/bYFvvoHISM6cK8uiaz2JqdiT\nddfacpv/LZkeGmomCrU4REoPJQrJyDC4suU/RD/7DS1PfoNT8hmiHUJYerMXfzzckW/XladnT9i4\n0Tzc0REeewyWLVPCECmpSt2Eu9wsM14qWSw4BbQg9GAENeP383q37QRPeID3a7zJ5l9r4TyqP53/\nWEZlkgFzY6d168wWCpj/BgaaI7CSkux3GyKSf1pmXHLv7FmIjOTmlyu4vmE7640OLKcPJ3yDidzk\ngrPznR0AzcNdXc3FD9U9JVK8qetJ8uSPuETm9FlN2zPLaZW8HkvbtvCXvxC2pAdLv3fFyQmuXDGP\nVfeUSPGmRCH5l5wMa9bAV19hrF3LTxX8WF/9L7x1uBe/Uyv9sB49zHq5iBQvShRiW9euwdq1pC5c\nRsryNfzHeJBlhLKcPhhutTl8WK0KkeJGiUIKTNLZ64z1/o7Of3zJk6zmAL6sqdKXeP8+fLyithKG\nSDGhRCEF6s4Ev0tnb9CtTAx9bptJ41TNFvi+EQZ9+kDNmvYOU0Ss0PBYKVDOzubigz1Cy7OpWjBD\nmE9tzvDOjefYOGUDRsOG0K0bfP45/PGHvcMVkbtoeKwUuqAgc87FnR39AAb1usr8fqthyRJzw40O\nHSAsDIKDoXLl9Pdq/SkR+1HXkxSaO0uHJCaaCSN9P407H/p//GEOi1qyBLZtM1saYWHQtSuBXSuk\nz8/QEukihUuJQgpdVvtpZHDhAixfbiaN/ftZVzmEdxP6s45OpFGO0FD48ku1NEQKgxKFFH2nT5Py\nxTJ+fnUxHjePE3tfX7rPH4BT0CMEdrCktzQaNIB69ZQ0RGxNiUKKjaQkmDTgGNNbLqLi8oVw8yaL\nLQOYcmwgVf29cXSErVvNY9U9JWI7ShRSPBkG7NvH9TkLSZm9mKredZhzfSCvHu6fPhtca02J2IYS\nhRR/aWmwYQOpcxaQsiSS7cYjLK8wiMXXe5JCZbUuRPJJiUJKlKTTKXzeO5JHfp2P18XtRNKDLxiC\n618CWbqsjIrfInmgRCElUlISPOZ1lo7nF/NspS9oXP0iZYYMZvB3Q1iwqwmARk6J5JBmZkuJ5OwM\nm47UIiH0edwS9lHm29WQmsqHPwayjTa8Wf9f/Psdc2elI0fMPTSiov63AZOIaGa2lFJJF27xSa8Y\nXqw5D8cNMdC1K5OOPcWbu4N42L8sTZtCXJxaFyJ3U9eTlF6XLsHSpdz6bC6XDyVQ6dkhjNgazsJd\nXoC6pkTuUKIQATh4EObO5dLMBRxKbcQGz2GM3dwXZ48qGbZ3vZM87lASkdKg1NUoRDLVrBm8+y5l\nTsWzre14Jnp/g7NvXRgxgodubAcM/P3NZUfupvqGyL2UKKREc3Z14OWtPXCIWgmHDkGjRrxzfign\nq/qwsec/cL51IcPxlSqZ/9asCadPQ/fu5ogrkdJMXU9S+hgGbN4M//43rFoFXbvC009Dhw4kXTbn\nZpw+reVDpORSjUIkNxITYeFCM2kkJ8Pw4RAeTvfhtYmK+t9hf65liBRnqlGI5IaLC4wZA/v3m0ug\nx8VB06Z8U7Y3YS5rsXAbf3+zSyowUF1RUjqpRSHyZ1euwKJF3Prnv7h4LImqL45kwHfhfLPdDVBX\nlBR/alGI5JeTEzzzDOX278Ftw1IqJvzKF7u8WUI/AtnA2bOGRkRJqaIWhUgOJJ34g+m+8xl45RPK\nljH4vtGzDIoZQrX6alZI8aNitkgBSUoCr8YG3hc2M5p/8qTDWqqE94WxY8HHx97hieRYqet60qKA\nUlicncHP38JmHuN9/yW80utn5qx156JfZ2627wjffGPupSFSRGlRQJFCkJRkztieNQt69jRncTuQ\nyjutl/OcZQacPQujR5vDbKtXt3e4IpkqdS0KkcLk7GzOp3B2/t8s7hb+jgyN7g/bt5svHjgADRvC\nM8/ATz9ZPd/IkRp2K0WfEoVIHi1aZE7Ei4m5a6isvz988YU5ftbdHTp3hscfz7JbSmtLSXGgrieR\ngpSaCsuXw4wZcOYM/L//l6Fbqnt3M0nUrAlNmkDVqlq1VgqeRj2JFFW7dsHMmeb6UqGhMHYsSXV9\n71lbSsuFSEFTjUKkqLq7W8rDA7p0wblXB74ctJJqTrcBc65fYqLqFVK0qEUhYi+pqfDVV/D++6Ql\nXeZvv/+Vj5Kf4hqV1KqQAqWuJ5HixjBgyxa2/+U9Gp7bxso6zxIaO4Zqje+zd2RSQqnrSaS4sVgg\nIIAHfvmGqV23MLjLOaq1agLPPmsOi/ovDaUVe1GiECkinJ3hwygvys/5FH75Be67Dx59FHr1gm3b\nNJRW7EZdTyJF2dWrMG8evP8+hy658X9JL7OtRghe3mU0lFbyTDUKkZIoLY2r81dw5oXplLuezJRr\nL7OQgfQMdVTRW3JNiUKkJDMM/tZ6PY/vehtfx1+oOuVFKo0dAZUr2zsyKUaUKERKuKQkeOgh6FB1\nN+Fn36Lt7S2UGTfWnPXt4mLv8KQY0KgnkRLO2Rnq1YM5//Ej4PflvPjQBjh6FBo1gokT4dw5e4co\nJYwShUgxdGflWn9/mLykKXz+OezZY+737e0Nf/0rJCTYN0gpMYpsojh+/DgjRowgNDTU3qGIFDmZ\nrVw78k1PAg9+zKAWP3H9Vlnw9YVRoyAuzq6xSvFXZBNFgwYN+Oyzz+wdhkiRdPe+GHfcmWexcEMd\nhpx7z5yL4eICDz8MTz8Nv/1mv4ClWCvwRDFs2DDc3Nzw9fXN8Hx0dDTe3t40btyYadOmFXQYIiXe\n3d1Rs2YBrq7w5ptm/aJWLfOFYcPg2DG7xinFT7ajng4ePMimTZuIi4vDYrHg6elJQEAAzZo1y9EF\nNm/eTJUqVRgyZAgHDhwAIC0tjSZNmrBu3Trc3d3x9/dn8eLF7N69m7179zJ+/Hjq1KkDQGhoKMuW\nLcs8eI16Ekl39zatmU7CS0yEDz6Ajz+GkBCYNAkaNCj0OMX+bDbqaf78+bRq1YqXXnqJs2fPcv/9\n9+Pp6cmZM2d46aWX8Pf3Z8GCBdleICAgAJc/DdnbuXMnjRo1wtPTEwcHB8LCwoiMjGTw4MH84x//\noE6dOly6dIlnn32W/fv3q8UhkgOZdUdlWB/K4gJTppgtDA8P8PMzDzhxwm4xS/FQLqsXEhMT+f77\n73Fycsr09cuXLzNv3rw8XTQhIYG6deum/+7h4cGOHTsyHFO9enU+/fTTbM8VERGR/nNgYCCBgYF5\nikmkJLpTtwAzJ3z5JWbd4rXX4Lnn4P33zUkZ/frB//2fmUCkxImNjSU2NjbP788yUYwbN87qG6tW\nrZrtMVmxWCx5el9m7k4UIpLRPXWLu9WoAVOnmkNp33kHmjc3i94TJ2oBqRLmz1+ip0yZkqv3Z1vM\njo+Pp1evXri6uuLq6kqfPn04depUrgO9m7u7O/Hx8Rmu4aFvMiI2l+kw2j8vV+7qCtOnw48/wsWL\n4OVltjRu3LBn6FKEZJsowsPDCQkJ4fTp05w+fZrg4GDCw8PzdVE/Pz+OHj1KXFwcqampLF26lJCQ\nkDydKyIiIl9NKpGSzNow2nuWK3d3h3//G2JjzUeTJrBwIdy+XchRS0GJjY3NWy+MkY0HH3wwR89l\nJSwszKhdu7bh6OhoeHh4GHPmzDEMwzDWrFljeHl5GQ0bNjTefPPNHJ/vbjkIX0T+pFs3wwDD8Pc3\njMREKwdu2mQYrVsbRsuWhhETU2jxScHL7WdntsNjH3/8ccLDwxkwYACGYbBkyRLmzp3L999/n6eM\nZksaHiuSe9kOo72bYcDy5Wah29MTpk2Dli0LI0wpQDZfPTYuLo6xY8fyww8/ANC2bVtmzpxJvXr1\n8hepDShRiBSSmzfNbqnXX4dOneCNN6B+fXtHJXlk89VjExISWLVqFefPn+f8+fNERkZmKETbm2oU\nIvmX7X7cDg4werRZ4Lj/fnNI7YsvwqVLhR2q5ENeaxTZtihatmzJvn37sn3OHtSiELGNwMD/zbcI\nDSX7XfPOnjUn7331FYwfD2PHQsWKBR2m2EhuPzuznEexfft2tm3bxvnz53n//ffTT3rlyhVuaxSE\nSIlidb5FZmrVgk8+Medg/O1v8NFH5iS+wYOhbNkCjVUKX5ZdT6mpqVy5coW0tDSuXLlCcnIyycnJ\nVK1ala+++qowYxSRApbZfIscadIEVqyAJUvgs8/MQndUlFkElxIj266nEydOUL9+fa5evUrlIrYv\nr7qeRIoQw4DISHNmd5065iQ+Pz97RyWZKJBidtOmTfH29gZg//79jB49Ou8R2piK2SL5l20xOycs\nFujZE376CcLCzBVq+/fXPhhFSIEVs1u1asVXX31Fjx490gvYzZo14+DBg3kK1JbUohCxjVwXs3Pi\n6lVzKZAPP4SBAyEiwlyQUOzO5i0K4J45E+XKZVkDF5FiKNfF7JyoXNnc8+LQIXPdqGbNzGKIvtwV\nO9kminr16rF161bALHC/++67PPDAAwUemIgUnjwXs3Pivvvg00/Novf06dC5s7knhhQb2XY9Xbhw\ngXHjxrFu3ToMw6Bz587MmDGDGjVqFFaMWVLXk0gxc+uW2RX11lswbhxMmADly9s7qlLHpkt43Lp1\ni6FDh7Jw4UKbBGdrFouFyZMna8MikeLm5Elz46RDh8z5GI8/bu+ISoU7GxhNmTLFtms9tWvXju+/\n/57yRTDrq0UhUjyMHGmu/lGpktnNld69tXKlOav7scfgvffMbiopcDZfFHDw4MEcPnyYkJAQKv23\n4mWxWHjhhRfyF6kNKFGIFA9WR1UlJ5vLgXz+ubnj3vDhUCZH42wkj2w+6qlhw4Y88cQT3L59m+Tk\nZK5cucKVK1fyFaSIlC5WR1VVqWJuxfrddzBnDrRrBwcOFHqMkrVsWxRFmVoUIsVDjvfAuH3bXM58\n0iR46imYPNkcZis2ZfOup3PnzjF9+nQOHTrEtWvX0i+yfv36/EVqAypmi5RQv/9uLmO+ZYu54OCT\nT9o7ohKhwIrZQUFB9OvXj3fffZd//etfzJs3D1dXV6ZPn57voPNLLQqREu7772HUKPDxgRkzwMPD\n3hGVCDavUVy8eJERI0bg6OhI+/btmTt3bpFoTYhIKdCxI/z4Izz4ILRoAf/4hzkXQwpVtonC0dER\ngFq1arF69Wr27t1LYmJigQcmIgJAhQrmOlHbtsHq1WZFfOfOew6zycKGkqlsu55WrVpFQEAA8fHx\njB07lsuXLxMREUFISEhhxZgldT2JlDKGYU7EeOkl6N3bHE773+p4gSxsWELZvJhdlClRiJRSiYnm\nznorV5or1PbrR/cnLERFmQ2OAlmzqgSxeY3i2LFjBAcHU7NmTVxdXenRowe/aX15EbEnFxdzocHl\ny+HNN6FrV5a88WvBLWxYymWbKAYMGEDfvn05c+YMp0+fJjQ0lP79+xdGbCIi1rVpA3v2QFAQVTs/\nwpct3sS56m17R1XiZJsorl27xuDBg3FwcMDBwYFBgwZx/fr1wogtR7TDnUgp5+Bg1iz27jWbEz16\nwOXL9o6qSCqwHe4mTJiAs7Nzeiti6dKlJCYm8vLLLwNQvXr13EdrI6pRiEgGN2/CX/8KGzaY+3c3\nbmzviIokmxezPT09sVgsWV7MnvUKJQoRydSsWeYyIPPnmxslSQYa9SQiArB5M/TrB+PHm62MLL7w\nlkYFkii2bdtGXFwct+6aETlkyJC8RWhDShQiYtWJE9CzJzRvbo6SqlDB3hHlS5b7euSSzRPFoEGD\n+O2332jRogVly5ZNf37mzJl5i9CGlChEJFtXr0J4uLmr3ooVUKeOvSPKM1tNKsztZ2e57A7Ys2cP\nhw4dyrJOISJSpFWuDEuXmvMtWrc25160amXvqPLE6r4eBSjb4bE+Pj6cOXOmMGIRESkYFgu88gp8\n/LG5ZPn8+faOKE8WLcIukwqz7XoKDAxk//79tGrVKn3fbIvFwsqVKwslQGvU9SQiuXbwoDnXomdP\nePttKJdtx0qJY/OupzuTM+4+cVHqhoqIiNDGRSKSc82amavP9utnti4WLzaXBCkF7mxclFs5GvUU\nFxfHr7/+SqdOnUhJSeHWrVtUrVo1L3HalFoUIpJnt26ZQ2e//dZcXNDb294RFRqbLwo4a9YsQkND\neeaZZwA4deoUvXr1ynuEIiJFQbly5kZIf/sbPPaYmTAkU9kmio8//pgtW7aktyC8vLw4d+5cgQcm\nIlIowsPN5T5GjjRrFuqluEe2iaJ8+fLpRWyAW7duFakahYhIvrVpAzt2mENnBw6ElBR7R1SkZJso\n2rdvz9SpU0lJSeG7774jNDSU4ODgwohNRKTweHjApk1QpgwEBEB8vL0jKjKyLWanpaUxe/ZsYmJi\nAOjSpQsjRowoEq0KFbNFxOYMA957z6xffPklPPqovSOyOS0KKCJiC1FRMHSoOaN7xAh7R2NTNk8U\nvr6+95y0WrVq+Pv78/e//50aNWrkPdp8UqIQkQL1yy8QEgJdupitDAcHe0dkk4UBbZ4oxo8fT7ly\n5RgwYACGYbBkyRJSUlKoVasWW7duZdWqVbmP0kaUKESkwCUlwYABcOOG2RVlxy/HYJuFAW0+M3vd\nunXs27cv/fcHH3yQli1bsm/fPnx9fXMfoYhIceLsDKtWwf/9n7mY4DffgB0/++yxMGC2o57S0tLY\nsWNH+u87d+7k9m1z8/JypXCNFBEphcqWhWnT4LXX4PHHzWRhJ/ZYGDDbrqddu3YRHh5OcnIyAE5O\nTsyePZuNt9vCAAAPC0lEQVRmzZqxevVq+vXrVyiBZkZdTyJS6Hbvhl694Omn4e9/N4fTFjMFNuop\nKSkJAOfCXNs2GxaLhcmTJ2tRQBEpXGfOQJ8+5iZI8+ZBlSr2jihH7iwKOGXKFNskinnz5jFo0KAs\nu5dSU1NZuHAh4eHheYvYBtSiEBG7uXEDRo2CPXvMJUA8Pe0dUY7ZrJidnJyMv78/3t7e+Pn5Ubt2\nbQzD4OzZs+zevZvDhw/z9NNP2yRoEZFip3x5mD0bZswwlwBZsgTat7d3VAXCateTYRhs3bqVLVu2\ncPLkSQDq169Pu3btaNu2rd1nZ6tFISJFwrp1MGgQTJ5stjKKOM3MFhGxh2PHzJ3z2rUzWxmOjvaO\nKEs2349CRERyoGFD2L7dLHR36gQlaDsGJQoREVtxcoKvvzZrFa1awf799o7IJtT1JCJSEJYtg9Gj\n4eOPoW9fe0eTgc1rFAcPHmTTpk3ExcVhsVjw9PQkICCAZs2a5TvY/FKiEJEibf9+6NnTLHS/9lqR\nmZxns0Qxf/58Zs6cSY0aNWjVqhV16tTBMAzOnDnDzp07uXDhAs899xyDBg2yWfC5pUQhIkXeuXPw\nl7+Y620sWAD/3Vbanmw2jyIxMZHvv/8eJyenTF+/fPky8+bNy3WAIiKlyn33mcNnx40z51tERkKj\nRvaOKlfyVKNITU3FsQgM/VKLQkSKlU8/hYgIs2XRqZPdwrD58Nj27dtz/Pjx9N937tyJn59f3qIT\nESnNnn0Wli6FwYPhgw/MbVeLgWxbFGvXruW5555j7NixJCQkEBUVxezZs3nooYcKK8YsqUUhIsVS\nXJw5Oe+hh8xWRvnyhXr5ApmZvWHDBoKCgnB1dWXfvn3UqlUrX0HaihKFiBRbV6/CU0/BqVOwYgXU\nrl1ol7Z519Prr7/O2LFj2bx5MxEREbRv357Vq1fnK0gRkVKvcmVzH9Pu3c3Jebt22TuiLGWbKC5e\nvMiuXbto06YNzzzzDDExMXz44YeFEZuISMlmscCkSTBzppkwFiywd0SZytOoJ8MwCnzl2MjISL79\n9lsuX77M8OHDCQoKuucYdT2JSInx009m3aJ3b3j7bXP71QJis66nYcOGsSuLppDFYmHHjh0FumlR\njx49mDVrFp9++ilLly4tsOuIiBQJPj6wcyfs3QtPPgn/3VU0L0aOhMBAs5GSj9OkyzJRPP/888yc\nORMvLy+Cg4MZOXIkTz/9NMHBwXh5efHJJ5/w4osvZnuBYcOG4ebmhq+vb4bno6Oj8fb2pnHjxkyb\nNi3L97/xxhuMGTMmF7ckIlJM1agBa9eClxe0bg2//JKn0xw5Ahs3QlSUmTTyK9uupxs3brBv3z5O\nnDiBxWKhfv36NG/enAoVKuToAps3b6ZKlSoMGTKEAwcOAJCWlkaTJk1Yt24d7u7u+Pv7s3jxYnbv\n3s3evXsZP348tWvXZuLEiXTu3JmOHTtmHry6nkSkpJo9G/72N3NP7u7dc/XW7t3NJOHvDzEx5uoh\nd7PZ8NiTJ09Sr169XAWXlbi4OIKDg9MTxfbt25kyZQrR0dEAvP322wBMnDgx/T0zZszgiy++wN/f\nnxYtWvDMM8/cG7wShYiUZNu2QWgoPPccjB9vFr9zICnJbEnMmnVvkgAbrvXUo0cP9u3bB0CfPn1Y\nvnx5jk+anYSEBOrWrZv+u4eHBzt27MhwzLhx4xg3bly254qIiEj/OTAwkMDAQFuFKSJiX23bwg8/\nQK9e8J//wGefQcWK2b7N2dkceXtHbGwssbGxeQ4jy0Rxt99++y3PF8iMLUdM3Z0oRERKnLp1YfNm\nGD4cAgLgm2/AwyNXp/jzl+gpU6bk6v12WRzd3d2d+Pj49N/j4+PxyOWNi4iUGhUrwsKF0KcPPPaY\nOZu7EGXZovjxxx/Tlxi/du1ahuXGLRYLly9fzvNF/fz8OHr0KHFxcdSpU4elS5eyePHiPJ9PRKTE\ns1jM4na5chAUBJs2gatroVw6y0SRlpZmkwv079+fjRs3cvHiRerWrctrr71GeHg4H330EV26dCEt\nLY3hw4fzwAMP5On8ERERqk2ISOkxfrxZre7WDdavz9VGSHmtVWjPbBGR4sYwYMwYczZ3dHSOCtx3\nK5DVY4sqJQoRKbVu34ahQ+HSJfj6a8jFZnJKFCIipcXNm+Z+3HeK3TlcH8rmy4wXdREREfkaHywi\nUmw5OJg75p07B6NHZ7tjXmxsbJ6mFKhFISJS3F25Yu7B3b49TJuW7QzuUteiEBEp9ZyczMWdoqLM\nJcptLEczs0VEpIirXt1cATAgAKpVM7uibKTYJwrNoxAR+a/ateG778zZ21WrwqBBGV7WPAoRETEd\nOgSvvmquDFjm3gqDhseKiIhVKmaLiIhNKVGIiIhVxT5RaMKdiEjOaMKdiIjkiGoUIiJiU0oUIiJi\nlRKFiIhYpUQhIiJWFftEoVFPIiI5o1FPIiKSIxr1JCIiNqVEISIiVilRiIiIVUoUIiJilRKFiIhY\nVewThYbHiojkjIbHiohIjmh4rIiI2JQShYiIWKVEISIiVilRiIiIVUoUIiJilRKFiIhYpUQhIiJW\nFftEoQl3IiI5owl3IiKSI5pwJyIiNqVEISIiVilRiIiIVUoUIiJilRKFiIhYpUQhIiJWKVGIiIhV\nShQiImKVEoWIiFilRCEiIlYpUYiIiFXFPlFoUUARkZzRooAiIpIjWhRQRERsSolCRESsUqIQERGr\nlChERMQqJQoREbFKiUJERKxSohAREauUKERExColChERsUqJQkRErFKiEBERq5QoRETEKiUKERGx\nSolCRESsUqIQERGrlChERMSqIpsoDh8+zKhRo+jbty+zZ8+2dzgiIqVWkU0U3t7efPLJJyxZsoS1\na9faOxy7KOlbvOr+ireSfH8l+d7yosATxbBhw3Bzc8PX1zfD89HR0Xh7e9O4cWOmTZuW6XtXrVrF\nE088QVhYWEGHWSSV9P+z6v6Kt5J8fyX53vKiwBNFeHg40dHRGZ5LS0tjzJgxREdHc+jQIRYvXszP\nP//M/Pnzef755zl9+jQAwcHBREVF8fnnnxd0mCIikoVyBX2BgIAA4uLiMjy3c+dOGjVqhKenJwBh\nYWFERkYyceJEBg8eDMDGjRtZsWIF169fp0OHDgUdpoiIZMUoBMePHzd8fHzSf1+2bJkxYsSI9N/n\nz59vjBkzJtfnBfTQQw899MjDIzcKvEWRGYvFYpPzmLlCREQKkl1GPbm7uxMfH5/+e3x8PB4eHvYI\nRUREsmGXROHn58fRo0eJi4sjNTWVpUuXEhISYo9QREQkGwWeKPr370/btm05cuQIdevWZe7cuZQr\nV46PPvqILl260LRpU/r168cDDzyQ43P+8ssvtGzZMv1RrVo1ZsyYUYB3UfjeeustmjVrhq+vLwMG\nDODGjRv2DslmPvzwQ3x9ffHx8eHDDz+0dzj5ltkQ8EuXLhEUFISXlxedO3cmKSnJjhHmT2b3t2zZ\nMpo1a0bZsmXZu3evHaPLv8zub/z48TzwwAM0b96c3r1788cff9gxwvzJ7P4mTZpE8+bNadGiBR07\ndszQw5OpXFeQi5i0tDSjVq1axsmTJ+0dis0cP37caNCggXH9+nXDMAyjb9++xrx58+wclW0cOHDA\n8PHxMa5du2bcunXL6NSpk/Hrr7/aO6x82bRpk7F3794MAzbGjx9vTJs2zTAMw3j77beNCRMm2Cu8\nfMvs/n7++Wfjl19+MQIDA409e/bYMbr8y+z+YmJijLS0NMMwDGPChAkl7n+/y5cvp/88Y8YMY/jw\n4VbPUWRnZufUunXraNiwIXXr1rV3KDZTtWpVHBwcSElJ4datW6SkpODu7m7vsGzi8OHDtG7dmgoV\nKlC2bFnat2/PihUr7B1WvgQEBODi4pLhuZUrVzJ06FAAhg4dyjfffGOP0Gwis/vz9vbGy8vLThHZ\nVmb3FxQURJky5sdj69atOXXqlD1Cs4nM7s/JySn95+TkZGrWrGn1HMU+USxZsoQBAwbYOwybql69\nOi+++CL16tWjTp06ODs706lTJ3uHZRM+Pj5s3ryZS5cukZKSwrffflus/yPMyu+//46bmxsAbm5u\n/P7773aOSPJqzpw5dO/e3d5h2Nwrr7xCvXr1+Pzzz5k4caLVY4t1okhNTWXVqlWEhobaOxSbOnbs\nGB988AFxcXGcPn2a5ORkFi5caO+wbMLb25sJEybQuXNnunXrRsuWLdO/uZVUFovFZkPCpXBNnToV\nR0fHEvdlFMx7O3nyJE899RTPP/+81WOL9X+hUVFRPPzww7i6uto7FJvavXs3bdu2pUaNGpQrV47e\nvXuzbds2e4dlM8OGDWP37t1s3LgRZ2dnmjRpYu+QbM7NzY2zZ88CcObMGe677z47RyS5NW/ePNas\nWVNivqRlZcCAAezatcvqMcU6USxevJj+/fvbOwyb8/b25ocffuDatWsYhsG6deto2rSpvcOymXPn\nzgFw8uRJvv766xL5bS0kJCR9jbLPP/+cnj172jmigmOUwImv0dHRvPPOO0RGRlKhQgV7h2NzR48e\nTf85MjKSli1bWn9DARXaC1xycrJRo0aNDNX7kmTatGlG06ZNDR8fH2PIkCFGamqqvUOymYCAAKNp\n06ZG8+bNjfXr19s7nHwLCwszateubTg4OBgeHh7GnDlzjIsXLxodO3Y0GjdubAQFBRmJiYn2DjPP\n/nx/s2fPNr7++mvDw8PDqFChguHm5mZ07drV3mHmWWb316hRI6NevXpGixYtjBYtWhijRo2yd5h5\nltn99enTx/Dx8TGaN29u9O7d2/j999+tnsNiGCXw64CIiNhMse56EhGRgqdEISIiVilRiIiIVUoU\nIiJilRKFiA3t2rWL5s2bc+PGDa5evYqPjw+HDh2yd1gi+aJRTyI2NmnSJK5fv861a9eoW7cuEyZM\nsHdIIvmiRCFiYzdv3sTPz4+KFSuyfft2Ld8hxZ66nkRs7MKFC1y9epXk5GSuXbtm73BE8k0tChEb\nCwkJYcCAAfz222+cOXOGmTNn2jskkXwpZ+8AREqSL774gvLlyxMWFsbt27dp27YtsbGxBAYG2js0\nkTxTi0JERKxSjUJERKxSohAREauUKERExColChERsUqJQkRErFKiEBERq/4/K87f205XjukAAAAA\nSUVORK5CYII=\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulates 100 values from the GEV distribution with parameters (0.3, 1, 2), then estimates the\n", + "parameters using two different methods and plots the estimated distribution functions together\n", + "with the empirical distribution.\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "Rgev = ws.genextreme.rvs(0.3,1,2,size=100)\n", + "gp = ws.genextreme.fit2(Rgev,method='mps');\n", + "gm = ws.genextreme.fit2(Rgev,method='ml');\n", + "\n", + "gp.plotesf()\n", + "plt.hold(True)\n", + "gm.plotesf('r--')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAETCAYAAADd6corAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HXIEsiKGi4AYKJilti7qaJmUve9Jam4pZ7\naVcru7f9mljX1luWdqvrzaWstF+rS4o7pVaiRqXikguKoLmgKLiwnd8fJ0YQFJCBmYH38/GYh8yZ\nM3M+M/WYz3y3z9diGIaBiIhILi72DkBERByPkoOIiOSj5CAiIvkoOYiISD5KDiIiko+Sg4iI5KPk\nIBWat7c38fHx13x84sSJ/Otf/yrRNaKjowkMDCzRa5SUI8QgzkXJQRxOcHAwnp6eeHt7W2+PPPJI\nqVzr/PnzBAcHX/Px9957j3/+85+lcu0cS5YsISwsjGrVquHn50f37t2tCSsyMhI3N7c8n8W///3v\nUo1n1KhRTJ06tVSvIY7P1d4BiFzNYrGwfPly7rzzTrvGkZ2djYtL6f5+2r9/PyNHjuTrr7+mW7du\npKamsnr1aipVqgSYn8WQIUP46KOPSjUOkaup5SBOZcGCBdx+++08/vjj+Pr6EhISwg8//MD8+fOp\nV68etWrVyvNFOmrUKCZMmEDPnj2pWrUq4eHhHDlyxPq4i4sLBw8etJ47ceJE+vTpg5eXFxs2bMj3\nKzr3r/yQkBBWrVoFwPz582natClVq1alQYMGzJkzp0jv55dffqF+/fp069YNAC8vL/r372/tAjIM\ng6IWMQgODuaVV16hWbNmVK9enTFjxnD58uUCz929ezfh4eH4+vrSvHlzli1bBsCcOXP49NNPee21\n1/D29uavf/1rka4t5Y+Sgzik630hxsTE0LJlS5KTkxkyZAiDBg3i559/5sCBA3z88cdMmjSJCxcu\nWM//9NNPef755zl16hRhYWEMGzbsmq+9aNEipk6dSmpqKp07d8ZisWCxWKzXHTlyJG+88QYpKSl8\n//331i6pWrVq8e2333Lu3Dnmz5/PlClTiI2NLfR9tm7dmj179vD4448THR1NampqET+hgn366aes\nXr2aAwcOsG/fvgLHSzIyMujbty+9e/fm5MmTzJ49m2HDhrFv3z4efPBBhg0bxlNPPcX58+dZsmRJ\nieIR56XkIA7HMAzuvfdefH19rbe5c+daH69fvz4jR47EYrEwaNAgkpKSeP7553Fzc6NHjx64u7uz\nf/9+6/n33HMPnTt3xt3dnRkzZvDjjz+SmJhY4LXvvfdeOnbsCICHh0eex+bOncvYsWPp3r07AHXr\n1qVx48YA9OnTh/r16wNwxx130LNnTzZu3Fjoe61fvz7R0dEkJiYyaNAg/Pz8GD16NGlpadZz/u//\n/s/6OVSvXp3jx48X+FoWi4VJkybh7++Pr68vzz33HIsWLcp33k8//URaWhpPP/00rq6udOvWjXvu\nucd6bnFaK1J+KTmIw7FYLCxZsoQzZ85Yb2PHjrU+XqtWLevflStXBsDPzy/PsZxf4BaLhYCAAOtj\nVapUoXr16iQlJRV43evN6Dl69CgNGjQo8LGVK1fSoUMHatSoga+vLytWrOD06dNFer/t27fns88+\n48SJE2zcuJHvv/+eGTNmWB8fPHiw9XNITk6mdu3a13yt3PHXq1evwPeZlJSU730GBQVZz81pKUnF\npuQg5ZphGCQkJFjvp6amkpycTN26dYv9WoGBgXlaJDkuX77MgAEDePLJJzlx4gRnzpyhT58+N/Tr\nu02bNtx3333s2rUrz3soqtzjKUeOHCnwfdatW5eEhIQ8r3v48GH8/f0BJQcxKTmIQ7Jlt8aKFSvY\nvHkz6enpTJ06lY4dO1q/CAu7Zu4ulrFjxzJ//nzWr19PdnY2iYmJ7N27l/T0dNLT07n55ptxcXFh\n5cqVrF69ukixbd68mQ8++ICTJ08CsGfPHpYtW0aHDh2K/T4Nw+Ddd98lMTGR5ORkZsyYQURERL7z\n2rdvj6enJ6+99hoZGRlER0ezfPly67m1atWyDtJLxaXkIA6pb9++eeb2DxgwACDPAHGO6/3StVgs\nDB06lOnTp1OjRg1iY2P5+OOPC3zutV4751jbtm2tg80+Pj7WmU/e3t7MmjWLQYMGUb16dRYtWpRv\nls+1YvTx8WHp0qW0aNECb29v7r77bvr378+TTz55zZgKe689e/akQYMGNGzYMM8ajZzXcXd3Z9my\nZaxcuRI/Pz8mTZrEwoULadSoEWAmwbi4OHx9fenfv3+Rri3lj8VRN/tJS0vj4YcfxsPDg/DwcIYO\nHWrvkMQJjR49moCAAF588UV7h1Lq6tevz9y5c+2+PkTKB4dtOXz11VcMGjSIOXPmsHTpUnuHI07K\nQX/7iDi8Mk0OY8aMoVatWrRo0SLP8aioKEJDQ2nYsCGvvvoqAImJidYZFTmrRUWKqzjdMiJyRZl2\nK23cuBEvLy8eeOABduzYAUBWVhaNGzdm7dq1+Pv707ZtWxYtWsT27dvx9fXlL3/5C0OGDClwvraI\niJSOMm05dOnSBV9f3zzHYmJiCAkJITg4GDc3NyIiIliyZAn9+/fnyy+/5OGHH6Zfv35lGaaISIVn\n98J7ubuPAAICAtiyZQuenp7Mmzfvus9Vd4GIyI0prNPI7smhpF/wud+gnx+cOgWenhAXB0FBJY2u\n5Pz8DE6dsuDtmcXO75Pp1MOTE2fc8L4pg18+jaPjiBAS08zWVGufA2x7YBakppq3tDReiGrH6axq\nzOJR62v2cVvFt4EPw7lzcPo0GAaRFguRFgsYBheMmwgkgXTcaeBxlKjxX1H7Fk+oVg1WrICaNaF2\nbfD3h8BA835YWJ64Q0Ph+HFwc4Nt2xzjsyyqyMhIIiMj7R2GQ9BncYU+iyuK8r1r9+Tg7++fZwVr\nQkJCnnIHxbFtG3TuDJs2Oc6X2bZtlj9jqkS9ID82x+bE6E5gUFsuVwbSzIT25S8NIOjtPM+f/WfC\ny+HpCe/G9YKgA1cOZmTAP/8JEyfC+fM06ViH5LQaAPx6uQn3fXQvP47+H5w8CTt3wvnzZvK5dAnS\n06FSJahXD6pXhxo1oHp1XA+9QFZ6bRYwgpjGXgQNdTfPueUWqF+f0PFd+P13MAywWKBKFfDwcL5E\nIiIFs3tyaNOmDb///jvx8fHUrVuXzz77rFiDz5GRkYSHhxMeHk5QEOTKMw7h6piuvl9YQst5fPFi\niIi4xnlublC5MvxZIfTCnwkHzMOLf2sGQW8VHGB2NqSkQHKyeTt9GpKTMZa5kZHuxhqXXrwSPA9W\nHzNbKmlp4OKCb/YmsrPbA2aCOH8e3M6fZmnwNI5Rl2TPQCLn1aN2mwAICDAzh4jYVXR0NNHR0UU7\n2ShDERERRp06dQx3d3cjICDAmDdvnmEYhrFixQqjUaNGRoMGDYyXXnqpyK9XxuE7tA0bNlj/jo83\njNq1DaNOHfPvGxEfbxgBAQU8PzvbMM6eNQJ8zxtmWjAMC1kGGEY1zhiP8JbxGv8wPmGIsZOmxh/U\nNPbQ2PC1JBv1PRKNkKrHjcNRuwwjNdUw0tIMY9cuw7hw4Ybfd0FyfxYVnT6LK/RZXFGU706HXSFd\nFBaLRYuc7OTwYejQwexSungRzp7N+3jlygZ71iXRsacXSalVgSt9nPe4rqRmVhL7jVuYy3gCOMpZ\nfDlUqQEtetbBa0BvyFWFVURsqyjfnUoOUmKHD1/p+rr/fjNh/Pij2f3lV8CYSVwctGxpkJJiJgwX\nsgjgKI3YR3+XJUysNMccJG/cOO/N3R1+/50RM0JZezSUP4ya+PhaiI3VOIdIcVSI5DBt2jTrmIM4\nntyJI/eYydVJA3LNMgvMNgdm9u7Ne9uxA06d4tes5gRgDtzspDkf8gALLGPw8VGiELmenDGH6dOn\nl//k4MThV2i5u6U+//w6g+1XS0sjKCCLI2e9qckJmrOTVLyIwRwcdyUdV7Lx877Ilv/9Rp2qF6BN\nGzMbiQhQQVoOThy+3KCcxPLHH+aQeI5KZJHFlTpcE3iXMcwnlD1UruaOa6tboXt3MxOFhDj1Wg6R\nklBykHItJ0lkZYGrq7ls48wZ87HKlcHN1eDceQsWsomo/DWf1n4Cjhwxp/x260bIJ9M5cPHKTmkW\nC2zcCLffbp/3I1JWivLd6bAlu4sqMjKy6PN2pVwJCoJjx+DECUhKgthYc+F3nTqweze4e5gD3pU9\nXXh59wA4eNBc/LdoEbRqRfVsc/e1SmQCsMLoTVrnHpydPBW+/97MNpirxX18zJ6pw4ft815FbCE6\nOrrIq8TVcpByK2cw/FpjGTmPJx3NJhsXfEmmM5sYxwf081xnrjxv0ICae77jJDUBs3Vx6JC6oMS5\nqVtJpAg2bzaTBPw5Yyr2MkEnt8HatbBiBdVjVnCGGtbzg+texsPLnUO/Z5KBGz4+aJaUOBUlB5Ei\nul4ro0Z1g+QzZhdVQ5f9bKlyJ2PSZrMg+wGiCSeK3qx16cVBbsEwULIQh6fkIGIDuafd/vgjBNXN\noH7N86SezaIHa4hgEZ34kWSq8x/+xiweJSDAnE2VkaGBbnE8GpAWsYGcge+kpD9bA25uRP9SHdfa\nfkTXGUrYbx9zu9dvRLCYX2lJM3ayrftTZmbAnG57xx3maxU0uK0BbykrGpAWKWPW1gUGP83bSb1f\nluP77ATO4osHl9h7z98J6hJE038NZfd5syR9QIC5ENzHxyyMC2b1dOPPkobqnpLSom4lETvavBnC\n78gi5umvaPXd2xATQ0pGZXbThCVu9/O37wYT0DEwzyZVlSqZ5c9zuLiYM3CVIMSWlBxEHMnFixz9\naC1vP3qIf2U/i4dxGZ55hiO9xnF7RD02bTIrfVxdc8piMfdg0ipusRUlBxFHlZ4Oq1fDN9+YtwYN\nICKCIx0H0/6+uhw/XvDTfH3V1SQlp+Qg4gwyMmD9erN07ZIlUL8+K36ty3+yJrCKXmRdtWFj7drm\nALnIjdJsJRFn4OYGvXrB/PnmlKgpU+gcepI3eZyL7tV4kymEstt6+uXLdoxVnJpmK4mUB2fPwqxZ\nXHhvASnHL/IUr7KQBwC4+WaNQciNU7eSSDlxk+UiFuASHuQ0+GtXT+fYaXe7xiXOqUJ0K4lUBOs2\nVSbdpTK59+JOTs7mj8GT4O23zbrlIjakloOIE7FY8t7v4bmR1Zl3mXf++leYORP8/cs+MHEqajmI\nlDObNuW9v/ZiFw7vvgAvvww//ACBgdCiBURF2SdAKTfUchBxMi4uebdHzTO1detWePxx+PVXs6DT\nY4+ZW6Ne3eSQCq1CtBw0lVUqGh+fvPfzfO+3bUvoyY1UdzlD0+/e5fTfpsKtt8K8eZoDK5rKKlKe\nHT4M9eubrYfKlc0tUXNPac1dyM/FYnD4ww0EfPKa2Zq4/Xb4z3+gVi37BC8OQVNZRcqp621OlFPI\nL0elSuDlBY3YzUaPnnicTIRu3WDOHLNsh1Q4FaJbSaQiCgoyy30XtAhu2zZzXALMSq/Z2WZLYmtK\nE4JdEswSHYcOQcOG0KUL7NtXtsGLU1ByEClngoLMMt8BARAXl/exP/6AkCl98Uk+SC/vTVw+8odZ\nCnbMGNi/3z4Bi0NSchAph3K3LHIPYBuGmThSUmD1uU54Ht3HkY2HoV49c7ei4cNh7177BS4OQ2MO\nIuXc4cNwyy1m95KnJ3h4wJkzVx7P2ZGOlBR6hhzgwumLZLl58Nnq6tTreovd4pbSozEHEcnXzRQb\nm3dMwrqwrlo1YjJuY7NxO53TN5AYPozBbl9Rt8Yl7W1dAanlIFIBXWu2U85MJ+/KmYzJ/h9PXn6R\nNfTgqyrDWXK0bf5FFuKU1HIQkQJda7bTtm1mC2PHbldmZ0ykMXtJoi5fpvczaza9/roW01UQTt9y\nmDZtGuHh4YSHh9s7HJFypWpVOH/e/LtD7XgGpC/i03P34JN9ioXvnMN/Qj+V5XAy0dHRREdHM336\ndC2CE5Ebk9PF5OlpjlW0bHll5fVfXFexvMO/4M03CR3RluPHzQ3ttAGRc1C3kojcsJwuprg48wvf\nzc087ukJ/9l7F4waBX/9K5UP7CQlxUwkt9yCBq/LCbUcRKRIChzE3ruXw0168ajxFku4FzB7mmrU\nUCvCkam2koiUuuOL1nN26MPspglP8ir7aQSY02UPHlSCcETqVhKRUld7yJ1U3vsrh71b8BOdeIj3\nsZBNdrbZ0hDnpOQgIiUW1MiDx869wOXV39Gfr6jFH3hxHq/T8Rw+kGnv8OQGqFtJRGwq934TAL4k\n4+3jyve/VFUXk4PQmIOI2MWVPSUMwFwL0dF7Bz+caAg33WTP0ASNOYiIneRMg/X1NRNDtZsu823o\n4xAWRvug4/j4mAlE014dl5KDiNhcTnmO2Ng/y3FsPIvv+aPg58eZI2et6yI6dLB3pHItSg4iUmpy\nkkRgm1qwfTuEhbGWnoSzAQCvjGQ7RyjXouQgImXD0xNmz+Zxr//xCcN43eUpthjtYOpUSE8nNBR1\nNzkQp08OkZGRREdH2zsMESmiN3b24p46P/PgqHSq/7IBfvkFOnTgbFKatbupfn0lidIQHR1NZGRk\nkc7VbCURsS/DgHnz6Dk+iDXGXeSe4WTdpU5sSlNZRcRpHPn+EBPuOsApozpbM28DwNfXHNTW+gjb\n0lRWEXEa9e6oz4qEFiwb/hk1OAWYe12rBId9KDmIiONYtYpaGz7jdq9fAahCKudSDI0/2IG6lUTE\nsXz1FVkPTuCJzJdZn9qOX7NaABp/sCV1K4mI8+nfn0rfbeDNm19mvPtHuJBFFVKxpJxV66EMKTmI\niONp1gy2bGFMq58Zzwek4UXCeR8GhO2/UtFPSpW6lUTEcWVkULuOhT9Ou+JT+RL7691JjY6N4d13\nCW1VWXtX3yB1K4mIc3NzY8t2VwIC4JfdN1Fj22q4eBG6dCE56ZJ10ZxmNNmeWg4i4lwMA2bOpMc/\nWrLW6I7FAl5e4OGhFkRRqeUgIuXPiRNQqxbzP3HnXpclBLsncf68WhC2puQgIs4lNRWmTSNgZxRf\n72tOUOZ+AKp4GmzaZOfYyhElBxFxLg0awI8/wvr1EBnJhzFN6ekRzaFOwwi6Oc16mqq8loySg4g4\nHz8/WLcOzpyh3tSRrDoehp+/O4SHw/HjgPmPBqxvnJKDiDgnT0/4+muzOt9nn8H8+dC3L3TsCHFx\nuLldOW3TJrUkiuu6s5VOnDjB559/zvfff098fDwWi4WgoCDuuOMOBg4cSM2aNcsy1nw0W0lEyM4G\ni8W8AXz0ETzxBEff+oKOT3Zh0yZzBpOPj9mSAJXiKFHJ7rFjx3LgwAHuvvtu2rVrR506dTAMg2PH\njhETE0NUVBQhISF88MEHpRL8oUOHmDFjBikpKXz++ecFB6/kICIFWb8eIiJg5kwYNgwwWwynTpkt\nibi4ij3ltUTJ4bfffuPWW2+97pOLck5JDRw4UMlBRIpv1y7o3RuefBImT+bwYXPswcPDTBIVeWV1\nidY55P7Sv3jxInv37r3uOdcyZswYatWqRYsWLfIcj4qKIjQ0lIYNG/Lqq68W+joiIkWWkGA2FTZu\nhFmzYPp0guoZJCSYiUED1YUrdEB66dKlhIWF0atXLwBiY2Pp169fkS8wevRooqKi8hzLyspi0qRJ\nREVFERcXx6JFi9i9ezcLFy5kypQpJCUlFfNtiIjk8s030LWr2UzYtMm8/9hjkJ2db6BaClZocoiM\njGTLli34+voC0KpVKw4ePFjkC3Tp0sX63BwxMTGEhIQQHByMm5sbERERLFmyhBEjRjBz5kzq1q1L\ncnIyEyZM4JdfflHLQkSKZ/JkGDEC7rwTXFxgwwb4+WcYNYptP2USEAB16kDLlpq9dC2uhZ3g5uaG\nj49PnmMuLiWbAZuYmEhgYKD1fkBAAFu2bMlzTvXq1Xn//fcLfa3IyEjr3+Hh4YSHh5coNhEpJ559\nFi5dgh49zOSwahXcdx9Bzwwl4eAn+Pi5WWcvde5cvmcvRUdHEx0dXaznFJocmjVrxieffEJmZia/\n//47s2bNolOnTjcaI2AOhthK7uQgIpLH9OlmuY2774boaFi6FAYNgvvvx8PtK6BSheheuvqH8/Tp\n0wt9TqFNgNmzZ7Nr1y48PDwYMmQIVatW5a233ipRoP7+/iTkStMJCQkEBASU6DVFRPKxWOCNN+C5\n58zxBw8P+OILcHWl/YUNuFgMPDzsHaRjKpOS3fHx8fTt25cdO3YAkJmZSePGjVm3bh1169alXbt2\nLFq0iCZNmhTrdS0WC9OmTVN3kogUT0YGYVX28WtGM6DiLIrL6V6aPn36ja9zyLF161Zeeukl4uPj\nyczMNJ9ksfDbb78VKZghQ4bw3Xffcfr0aWrWrMkLL7zA6NGjWblyJY899hhZWVmMHTuWZ555pohv\nL1fwWucgIjeopl82J0+5EFppH1G7gwlq6G7vkMpMiRbB5WjUqBH//ve/ad68eZ6B6ODgYJsEWRJK\nDiJyow4fhi63Z7G9yQj8ql6GxYuxznMt52ySHG6//XY2b95s08BsRclBRG7IwYNmiY1x4+DyZe6v\nsZ7f04M5Vi2Urdss5X7VdFG+OwudrTRt2jTGjh3LXXfdhbu7u/WF+/fvb5soSygyMlJjDiJSPO7u\n8MILUKUKDBnCeteenEmrBKegc2eDhATbzah0JMWZ0lpoy2HYsGHs3buXZs2a5elWmj9/fomCtAW1\nHETkhu3YAd27w1df4XdfZ06dghaWnax6dDl1Zj5t7+hKlU26lRo3bsyePXtsujbBVpQcRKREVq2C\nkSNJ/GwTHYaHsPnrE9Qbcru5wvqRR+wdXakpUeG9HJ06dSIuLs5mQYmIOIxevSAyEv8H/0LCnjTq\ntakJa9bA66/DwoX2js6uCm05hIaGcuDAAerXr4/Hn6tFijOVtTSp5SAiNvHDD5C78kNcHKNu3c6G\nm+7mQuWby11pb5sMSF9dUdXRaEBaRErs6pJATZuyunIAx1KrQlr5qb1k0wFpgI0bN7J//35Gjx7N\nyZMnSU1NpX79+iWNs8TUchCR0pKzc1wYsSz5zod6d9j/O89WbDLmEBkZyWuvvcbLL78MQHp6OsOH\nD7dNhCIiDmrbNrOsxrcv/ky9B++G5GR7h1SmCu1W+vrrr4mNjaV169aAWTTv/PnzpR6YiIjd7NpF\nUO3aJCTUAMbC2d3Qv785u6mCVOortOXg4eGRZ31DWlpaqQYkImJ3n3wCERE0a5yJjw/U/PB1TtwU\nAOPHQwXpyi40OQwcOJCHHnqIs2fPMmfOHLp37864cePKIrYiiYyMLPYmFiIi1/XCCwA8FP8MKSlw\n8pSFtjsWwM6d5p7UTio6OrrIe+Bcd0DaMAwSEhLYs2cPq1evBqBXr1706NHDJoGWlAakRaTUnD5N\nQs3bmJz9Nms87yUuDoKyD0GHDuaeEF262DvCG1biFdKGYdCiRQt27txp8+BsQclBRErTsW9+wnXA\nX7m8cSsBneqZB6OiYOxYc8S6Th37BniDSjxbyWKx0Lp1a2JiYmwamIiIM6hzbwf83nyWgDM7rhzs\n3RsmTICBAyEjw37BlbIi1Vbav38/QUFBVKlSxXySVkiLSAUTGgrHj5tbPmyLySZocj8ICYESbpts\nDzZZIb169ep8L+JIRfi0QlpEysLx45CSYv7d+Q4XEn5bCG3aQPv2MGSIfYMrIpuukB4xYgQLrypA\nVdAxe1DLQUTKSs6KaU9PzMHpIODXX+Guu8yNg1q0sHeIRWaTFdJXD0ZnZmayffv2kkUmIuJkclZM\nWxMDQMuWMHOmuUAup1lRTlwzObz00kt4e3uzY8cOvL29rbeaNWvSr1+/soxRRMTugoLM4ntBPy6G\nP6f2AzB8uFn6+4EHIDvbfgHaWKHdSs8884y1rpKjUbeSiJS5NWvMvad37ICqVc1j6enQtSv07QvP\nPmvf+IrAJt1KDRo0yHM/MzOT6dOnlywyERFn1aOHOc7wdK6tRN3dzYVx77yTt1XhxApNDuvWraNP\nnz4kJSWxc+dOOnbsyLlz58oiNhERx/TGG7B0KXz33ZVj/v7w6adm91I52PyhSPs5LF68mEmTJlGl\nShU++eQTOnfuXBaxFUrdSiJiN0uXwt//bs5Y8vS0Hu7pF0vyGTjiG8bWbRaH3EHOJt1K+/btY9as\nWfTv35969erx8ccfO1RlVhXeExG76NfPHIw+dSrP4a0ZYWzPasXJUxYc5He0lc0K74G5h/Q777zD\nXXfdRXZ2NjNnzmTu3LnExcXZItYSUctBRBxNznqIlpZfWbK3CUEN3e0dUj4lLrwHkJKSQrVq1fIc\n27dvH40aNSp5hCWk5CAijubwYXPP6Z8b3I/fwG7wt7/ZO6R8bNKtdPHiRcaOHUvv3r0BiIuLY+PG\njbaJUESknMlZD+H3xjMwYwY4UDd8cRSaHEaNGkXPnj1JSkoCoGHDhsycObPUAxMRcWqtW8Ptt5vT\nW51Qocnh1KlTDB48mEqVKgHg5uaGq2uh9fpERCqWixdh6lTIzLxy7MUX4d//hrNn7RfXDSo0OXh5\neXH69Gnr/Z9++infGISISIV3002wZYuZDHKEhpqrpnMfcxKFDkhv376dyZMns2vXLpo1a8bJkyf5\n4osvaNmyZVnFeE0akBYRhxIfb5bx/vFHaNjQPHb4MLRqBbt3Q61adg0vh01mKwFkZGSwd+9ewNz8\nx83NzTYRlpCSg4g4nNdfJ3p6NPe6fmtuDLQNgt54BFxcHGZjIJslh82bNxMfH09mZqZ1o58HHnjA\nNlGWgMViYdq0adrsR0QcR3o6hyo3YWj2x/xERwICIGHbH9C0KcTGQr16dgstZ7Of6dOnlzw5DB8+\nnIMHDxIWFmYdlAaYPXu2baItAbUcRMQRPeM1i2NpVfncc9SV/R+ee87cTm7uXHuHZ5uWQ5MmTYiL\ni3OorUFzKDmIiCPKWQi3aVOujYHOnIFGjcyDjRvbNT6bLIJr3rw5x44ds1lQIiLlnXVjoNxF93x9\n4fHH4fnn7RZXcRS6YOHkyZM0bdqUdu3a4eHhAZhZZ+nSpaUenIhIufLII+YspthYcwaTAyu0Wymn\n4mnuZogWxeRUAAARM0lEQVTFYqFr166lHlxh1K0kIk7nnXdgxQrzZic2m60UHx/P/v37ueuuu7hw\n4QKZmZlUzdkez46UHETE6Vy+bI45LFwIXbrYJQSbjDnMmTOHgQMH8tBDDwFw9OhR7rvvPttEKCJS\nnqWmmns+ZGdfOebhAZGR5l7TDvzjttDk8J///IdNmzZZWwqNGjXixIkTpR6YiIjT8/KCXbtg/fq8\nx0eMgNOnYdUq+8RVBIUmBw8PD+tANJBnIZyIiBRizBiYPz/vsUqVzKJ8zz6bt1XhQApNDl27dmXG\njBlcuHCBNWvWMHDgQPr27VsWsYmIOL+hQ+Hbb/NXZu3f3yyp8eWX9omrEIUOSGdlZTF37lxWr14N\nQK9evRg3bpxDtB40IC0iTmHQILjzTpgwIe/xVavg0Udh504ow60QbDZbyVEpOYiIIwoNNStlWAvv\n7Y6CmTPzjzEYBnTrBiNHwujRZRafTZJDixYt8r1QtWrVaNu2Lf/85z+pUaOGbaK9ASq8JyKOyMcH\nUlLMvwMCICE+C7KywN09/8mbN5tdT/v2mTOZSpFNC+898cQTuLq6MnToUAzDYPHixVy4cIHatWuz\nefNmli1bZtPgi0MtBxFxRH5+cOoUeHpypfDe9dxzD/Tsaa6gLgM2aTm0atWK2NjYAo+1aNGCHTt2\nlDzSG6TkICKOqMDCe9fzyy/Quzfs329Ofy1lNlkEl5WVxZYtW6z3Y2JiyP5z6pX2khYRya/AwnvX\nExZmjj3MmlWqcRVHoS2HrVu3Mnr0aFJTUwHw9vZm7ty5NGvWjOXLlzN48OAyCbQgajmISLmxbx90\n6mT+W716qV7KprOVzv45R9fHx6fkkdmIkoOIOJ0PPzS7kAraT3r8eLj5Znj55VINoUTdSgsWLCAz\nM9N638fHJ09iSE9PZ/7Vq/5EROT6oqPNonsFef55mDPHnAdrZ9ccNEhNTaVt27aEhobSpk0b6tSp\ng2EYHD9+nG3btrFnzx7Gjx9flrGKiDi/MWPMxXB//ztcvZg4MNBc8/Cvf5mlve3out1KhmGwefNm\nNm3axJEjRwAICgqic+fOdOrUye6rpNWtJCJOxzDM7UI//hjat8//+MmT5iq6bdugfv1SCUErpEVE\nHNGMGeZ0pvffL/jx55+HI0dgwYJSubySg4iIIzp6FG691fzX0zP/4ykp5nai0dHQtKnNL2+TdQ4i\nImJjAQHmHg833VTw49WqwRNPwNSpZRtXLmo5iIg4ogsXzNbDN99A27Y2fWmbdCvt2rWL77//nvj4\neCwWC8HBwXTp0oVmzZrZNNgboeQgIuXae++ZycHGO8aVKDksXLiQ2bNnU6NGDdq1a0fdunUxDINj\nx44RExPDqVOnePTRRxk+fLhNgy4OJQcRKdfS06FJE5g7F2xYeboo353XXOdw5swZ1q1bh7e3d4GP\nnzt3jgWlNJIuIiKYJb6nTze3E928Of+6iFJ0Q2MO6enpuBdUl7yMqeUgIk4vKQkuXYJbbin48aws\naNkSXnnFLO1tAzaZrdS1a1cOHTpkvR8TE0ObNm1KHl0hlixZwoMPPkhERARr1qwp9euJiNjF55+b\n6xqupVIlc8X0c8/BnxWxy0KhLYdVq1bx6KOPMnnyZBITE1m5ciVz587ltttuK5MAz549yz/+8Q8+\n+OCDfI+p5SAiTu/UKQgJMTeBqFat4HMMAzp0gClTICKixJcs0nenUQTr1683KlWqZNSuXds4duxY\nUZ5iNXr0aKNmzZpG8+bN8xxfuXKl0bhxYyMkJMR45ZVXrvn8v//970ZsbGyBjxUxfBERxzZggGH8\n97/XP2ftWsMICTGM9PQSX64o352Fdiu9+OKLTJ48mY0bNxIZGUnXrl1Zvnx5kTPU6NGjiYqKynMs\nKyuLSZMmERUVRVxcHIsWLWL37t0sXLiQKVOmkJSUhGEYPPXUU9x9992EhYUV+XoiIk5nzBiYN+/6\n53TvDvXqlVpJjasVmhxOnz7N1q1b6dixIw899BCrV6/m7bffLvIFunTpgq+vb55jMTExhISEEBwc\njJubGxERESxZsoQRI0Ywc+ZM6taty+zZs1m3bh1ffPEF//3vf4v/zkREnEXPnmatpbi46583Ywa8\n8II5gH2V0FDw8TH3rz58uOQhFbrP51tvvZXnflBQEKtXry7RRRMTEwkMDLTeDwgIyLMVKcAjjzzC\nI0XYbDsyMtL6d3h4OOE2nAssIlImXF3NInxVqlz/vA4doHVrc3HclCl5Hjp+3CzJBOb+1QkJVx6L\njo4mOjq6eCFd64ExY8YwceJE2hawbNtisbBlyxbef//9G9rwx5alvnMnBxERp9W3b9HOe/FFuOsu\nGDcOcq1Dc3Mz//X0hE2b8j7l6h/O06dPL/Qy10wOU6ZM4fXXX+enn36icePGeTb72bt3L506deIf\n//hH0d7MVfz9/UnIldYSEhIICAi4odcSEalQWrSAHj1g5sw8U2C3bTNbDJs2QVBQyS9T6FTWy5cv\nExsby+HDh7FYLAQFBdGyZUtuulY1wQLEx8fTt29fduzYAUBmZiaNGzdm3bp11K1bl3bt2rFo0SKa\nNGlSvOA1lVVEKqIDB8yNgvbuhRo1iv30Ei2Cy9n5zcPDgw4dOjB48GAGDRpE+/bti5UYhgwZQqdO\nndi3bx+BgYHMnz8fV1dX3nnnHXr16kXTpk0ZPHhwsRNDjsjIyGL3pYmIOLUGDWDgQHj11WI9LTo6\nushd8ddsObRq1YrY2FgABgwYwJdfflmsIMqCWg4iUi6lpoKX1/XPSUw0u5h27AB//2K9vM02+zl4\n8GCxLiwiIjdo+3bo2NFcFX09/v4wdqxZWqMUaCc4ERFHctttcPGiOcJcmKeeMmszHThg8zCumRx+\n++03vL298fb2ZseOHda/vb29qVq1qs0DuVEacxCRcsVigVGjoCjLBG6+GR55BIo4jmCTMQdnoDEH\nESmXEhIgLAyOHoXKla9/7vnzZuG+tWvNMYgisNmYg4iIlKHAQGjTxtwitDDe3mb30tSpNg1ByUFE\nxBE9+ihkZhbt3IkTzYHsq8oQlUShtZUcXWRkpGoqiUj506dP0c+tXNlcLf3cc2b30jUUp8aSxhxE\nRMqDjAzYsMEsrVFI/bqifHcqOYiIVDAakBYRkRui5CAiIvk4fXLQIjgRKdcyM6FTpys7+ZSAFsGJ\niJQn/fvD3XfD+PE2eTmNOYiIlAdjxsC8eWV6SSUHERFH17s3xMfD7t1ldkklBxERR+fqCg88AAsW\nlNkllRxERJzB6NHw5wZsZcHpk4NmK4lIhRAaCqtXl+glNFtJRESuSbOVRETkhig5iIhIPkoOIiKS\nj5KDiIizmT0bfv21VC+h5CAi4mzOnIH//a9UL+H0yUFTWUWkwhk5EhYvhkuXivU0TWUVESnvevSA\nceNg8OBiP1VTWUVEyqtSLsanloOIiDO6eBECA2HXLqhVq1hP1R7SIiLlWXIyVK9e7KcpOYiISD4a\ncxARkRui5CAiIvkoOYiISD5Onxy0CE5EKrw9e+CHHwo9TYvgREQqkqVL4bXXYNOmIp2u2UoiIhVB\nRoa55uG776Bx40JP12wlEZGKwM0NRoyA+fNt9pKuNnslERGxnwkTzLEHG1G3kohIBaNuJRERuSFK\nDiIiko+Sg4iI5KPkICIi+Sg5iIhIPkoOIiKSj5KDiIjk4/TJQYX3RESKRoX3RETkmrQITkREboiS\ng4iI5KPkICIi+Sg5iIhIPkoOIiKSj5KDiIjko+QgIiL5KDmIiEg+Sg4iIpKPkoOIiOSj5CAiIvko\nOYiISD5KDiIiko+Sg4iI5KPkICIi+Sg5iIhIPg6bHPbs2cPEiRMZNGgQc+fOtXc4IiIVisMmh9DQ\nUN577z0WL17MqlWr7B2Ow9NWqVfos7hCn8UV+iyKp9STw5gxY6hVqxYtWrTIczwqKorQ0FAaNmzI\nq6++WuBzly1bxl/+8hciIiJKO0ynp//xr9BncYU+iyv0WRRPqSeH0aNHExUVledYVlYWkyZNIioq\niri4OBYtWsTu3btZuHAhU6ZMISkpCYC+ffuycuVKPvzww9IOU0REcnEt7Qt06dKF+Pj4PMdiYmII\nCQkhODgYgIiICJYsWcLTTz/NiBEjAPjuu+/46quvuHTpEt26dSvtMEVEJDejDBw6dMho3ry59f7n\nn39ujBs3znp/4cKFxqRJk4r9uoBuuummm243cCtMqbccCmKxWGzyOmZ+EBERW7PLbCV/f38SEhKs\n9xMSEggICLBHKCIiUgC7JIc2bdrw+++/Ex8fT3p6Op999hn9+vWzRygiIlKAUk8OQ4YMoVOnTuzb\nt4/AwEDmz5+Pq6sr77zzDr169aJp06YMHjyYJk2alOg6b7zxBi4uLiQnJ9socufzxBNP0KRJE1q2\nbEn//v1JSUmxd0hlrihTpCuChIQEunXrRrNmzWjevDmzZs2yd0h2l5WVRatWrejbt6+9Q7Grs2fP\ncv/999OkSROaNm3KTz/9VOB5FqMcdNwnJCQwfvx49u7dy/bt26levbq9Q7KLNWvW0L17d1xcXHj6\n6acBeOWVV+wcVdnJysqicePGrF27Fn9/f9q2bcuiRYtK/MPDGR0/fpzjx48TFhZGamoqrVu35ptv\nvqmQn0WON998k+3bt3P+/HmWLl1q73DsZuTIkXTt2pUxY8aQmZlJWloa1apVy3eew66QLo7HH3+c\n1157zd5h2F2PHj1wcTH/k7Zv356jR4/aOaKylXuKtJubm3WKdEVUu3ZtwsLCAPDy8qJJkybW9UMV\n0dGjR1mxYgXjxo2r0BNZUlJS2LhxI2PGjAHA1dW1wMQA5SA5LFmyhICAAG699VZ7h+JQ5s2bR58+\nfewdRplKTEwkMDDQej8gIIDExEQ7RuQY4uPjiY2NpX379vYOxW6mTJnC66+/bv3xVFEdOnQIPz8/\nRo8ezW233cb48eO5cOFCgec6xSfVo0cPWrRoke+2dOlSXn75ZaZPn249t7z/KrjWZ7Fs2TLrOTNm\nzMDd3Z2hQ4faMdKyZ6sp0uVJamoq999/P2+//TZeXl72Dsculi9fTs2aNWnVqlW5/34oTGZmJj//\n/DMPP/wwP//8M1WqVLlm17Nd1jkU15o1awo8vnPnTg4dOkTLli0Bs+nYunVrYmJiqFmzZlmGWGau\n9VnkWLBgAStWrGDdunVlFJHj0BTpvDIyMhgwYADDhw/n3nvvtXc4dvPDDz+wdOlSVqxYwaVLlzh3\n7hwPPPAAH330kb1DK3MBAQEEBATQtm1bAO6///5rj0sWe1myAwsODjZOnz5t7zDsZuXKlUbTpk2N\nkydP2jsUu8jIyDBuueUW49ChQ8bly5eNli1bGnFxcfYOyy6ys7ONESNGGI899pi9Q3Eo0dHRxj33\n3GPvMOyqS5cuxt69ew3DMIxp06YZTz75ZIHnOUXLoagqerfC5MmTSU9Pp0ePHgB07NiRd999185R\nlZ3cU6SzsrIYO3ZshZ2ds3nzZj7++GNuvfVWWrVqBcDLL79M79697RyZ/VX074nZs2czbNgw0tPT\nadCgAfPnzy/wvHIxlVVERGzLKQakRUSkbCk5iIhIPkoOIiKSj5KDiIjko+QgYkNbt26lZcuWXL58\nmbS0NJo3b05cXJy9wxIpNs1WErGxqVOncunSJS5evEhgYCBPPfWUvUMSKTYlBxEby8jIoE2bNlSu\nXJkff/yxws+rF+ekbiURGzt16hRpaWmkpqZy8eJFe4cjckPUchCxsX79+jF06FAOHjzIsWPHmD17\ntr1DEim2clU+Q8TePvroIzw8PIiIiCA7O5tOnToRHR1NeHi4vUMTKRa1HEREJB+NOYiISD5KDiIi\nko+Sg4iI5KPkICIi+Sg5iIhIPkoOIiKSz/8D/hHrWSnoToQAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 17 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly for the GPD distribution" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "Rgpd = ws.genpareto.rvs(0.4,size=100);\n", + "gmps = ws.genpareto.fit2(Rgpd, method='mps')\n", + "gml = ws.genpareto.fit2(Rgpd, method='ml')\n", + "gmps.plotesf()\n", + "plt.hold(True)\n", + "gml.plotesf('r--')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAETCAYAAADH1SqlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1WX+PvD7IGguKIsIsgiEC4IIGKipKGpqIWBqKVhq\nqM1UPzNrNG2+lViZaTWVNM1MhVpaak0LgkJuoeRGBo6OeyKI4AYuLCogPL8/njkHSPSwnMPncw73\n67rOJWfhfG5QefPsGiGEABER0T1YKB2AiIjUj8WCiIj0YrEgIiK9WCyIiEgvFgsiItKLxYKIiPRi\nsaAWzdraGtnZ2Xd9/tlnn8Vbb73VpGukpqbCzc2tSe/RVGrIQKaNxYJUx8PDA+3atYO1tbXuNmfO\nHKNcq7i4GB4eHnd9/h//+AdeffVVo1xbKyEhAQEBAejUqRMcHBwwcuRIXQGLjY2FlZVVre/Fe++9\nZ9Q8Tz31FF577TWjXoNMj6XSAYj+SKPRICkpCSNGjFA0R1VVFSwsjPv71O+//47p06fjhx9+wPDh\nw1FSUoItW7agVatWAOT3Ijo6Gl9++aVRcxDpw5YFmZTVq1dj8ODBeOmll2Bra4vu3btjz549WLVq\nFbp16wZHR8daP1ifeuopPPPMMxg9ejQ6duyI0NBQnD17Vve8hYUFsrKydK999tlnERYWhg4dOuDn\nn3++47fsmq2A7t2746effgIArFq1Cj4+PujYsSO8vLzw6aef1uvrOXjwIDw9PTF8+HAAQIcOHTBh\nwgRdl5EQAvXdZMHDwwPvvPMOfH19YWdnhxkzZqCsrKzO1x47dgyhoaGwtbVFnz59kJiYCAD49NNP\n8fXXX2P58uWwtrbGuHHj6nVtMn8sFqRK9/oBmZ6eDn9/f1y5cgXR0dGYNGkSMjIycPr0aaxduxaz\nZ8/GjRs3dK//+uuv8frrr6OgoAABAQF44okn7vre69atw2uvvYaSkhIMGTIEGo0GGo1Gd93p06fj\n/fffx/Xr17Fr1y5dF5ajoyM2bdqEoqIirFq1Ci+++CIyMzP1fp0PPPAAjh8/jpdeegmpqakoKSmp\n53eobl9//TW2bNmC06dP4+TJk3WOt1RUVCAiIgIPP/wwLl++jLi4ODzxxBM4efIk/vSnP+GJJ57A\nggULUFxcjISEhCblIfPBYkGqI4TAo48+CltbW90tPj5e97ynpyemT58OjUaDSZMmIT8/H6+//jqs\nrKwwatQotG7dGr///rvu9eHh4RgyZAhat26NJUuWYO/evcjLy6vz2o8++igefPBBAECbNm1qPRcf\nH4+ZM2di5MiRAABnZ2f06tULABAWFgZPT08AwNChQzF69GikpaXp/Vo9PT2RmpqKvLw8TJo0CQ4O\nDoiJiUFpaanuNd98843u+2BnZ4cLFy7U+V4ajQazZ8+Gi4sLbG1t8X//939Yt27dHa/bt28fSktL\nsXDhQlhaWmL48OEIDw/XvbYhrRlqOVgsSHU0Gg0SEhJw9epV3W3mzJm65x0dHXUft23bFgDg4OBQ\n6zHtb+gajQaurq6659q3bw87Ozvk5+fXed17zRg6d+4cvLy86nwuOTkZAwcOhL29PWxtbbF582YU\nFhbW6+sdMGAANmzYgEuXLiEtLQ27du3CkiVLdM9PnjxZ9324cuUKnJyc7vpeNfN369atzq8zPz//\njq/T3d1d91ptS4qoJhYLMmtCCOTm5urul5SU4MqVK3B2dm7we7m5udVqsWiVlZVh4sSJePnll3Hp\n0iVcvXoVYWFhjfrtPCgoCOPHj8eRI0dqfQ31VXM85uzZs3V+nc7OzsjNza31vjk5OXBxcQHAYkF1\nY7EgVTJkN8jmzZuxe/dulJeX47XXXsODDz6o+8Go75o1u2RmzpyJVatWYceOHaiqqkJeXh5OnDiB\n8vJylJeXo3PnzrCwsEBycjK2bNlSr2y7d+/G559/jsuXLwMAjh8/jsTERAwcOLDBX6cQAp988gny\n8vJw5coVLFmyBFFRUXe8bsCAAWjXrh2WL1+OiooKpKamIikpSfdaR0dH3aA/kRaLBalSRERErbUF\nEydOBIBaA85a9/pNWKPRYMqUKVi8eDHs7e2RmZmJtWvX1vm5d3tv7WPBwcG6wWsbGxvdzCpra2us\nWLECkyZNgp2dHdatW3fHLKK7ZbSxscHGjRvh5+cHa2trPPLII5gwYQJefvnlu2bS97WOHj0aXl5e\n6NGjR601Itr3ad26NRITE5GcnAwHBwfMnj0ba9asQc+ePQHIonj06FHY2tpiwoQJ9bo2mT+NWg8/\nKi0txXPPPYc2bdogNDQUU6ZMUToSmaCYmBi4urrizTffVDqK0Xl6eiI+Pl7x9SlknlTbsvj+++8x\nadIkfPrpp9i4caPScchEqfR3ISKT06zFYsaMGXB0dISfn1+tx1NSUuDt7Y0ePXpg2bJlAIC8vDzd\njA3talaihmpINw4R3V2zdkOlpaWhQ4cOmDZtGg4fPgwAqKysRK9evbBt2za4uLggODgY69atw2+/\n/QZbW1uMHTsW0dHRdc4XJyKi5tGsLYuQkBDY2trWeiw9PR3du3eHh4cHrKysEBUVhYSEBEyYMAHf\nffcdnnvuOURGRjZnTCIi+gPFNxKs2d0EAK6urti/fz/atWuHlStX3vNz2b1ARNQ4De1UUnyAu6k/\n8MOQBEAAELo58Wq7LVq0SPEMzMmczMmM2ltjKN6ycHFxqbXCNjc3t9b2DPpcxQoA7QGEYvduYPBg\nw2ckIjIHqampSE1NbdTnKt6yCAoKwqlTp5CdnY3y8nJs2LChQWMUM+AGIBQAMGSIcTISEZmD0NBQ\nxMbGNupzm7VYREdHY9CgQTh58iTc3NywatUqWFpa4uOPP8aYMWPg4+ODyZMno3fv3vV+Tx8cNWJi\nwwgNDVU6Qr0wp2Exp2GZQk5TyNhYql3BXR8ajQaDMRK78Sq0rQvT/WqIiIxL2w21ePHiBo9dmHyx\nAKoAVA+Sm+5XQ0TUPDQaTYOLheJjFkREpH6Kz4ZqusWQXVChysYgIlK5psyGYjcUEVELw24oADk5\nSicgIjI/ZlAsNHgX83AfbgIAAgIUjkNEZIZMfsyidetYdCpPQF88jnQMwLVrSiciIlKnFj1mkZ0t\nsNVjFjLQD//AcwA4bkFEdC8tcszC3R04gAcQhAO6x3bvVjAQEZEZMvliAQC/Ihj9ka67zz2iiIgM\ny+THLGJjY3G6/RB4lp6BNYpQjI5KRyIiUqUWPWYhhEBODvBnj2TswjDcRDsAHLcgIrqbxoxZmEWx\nkB8LcHEeEZF+LXKA+264OI+IyHDMqGVR+7nOnYHLlxUIRUSkci26ZfHLL4A8i1sqKFAsChGR2TGL\n2VChoaFmfUIVEZEhtPjZUFqhmp8xEysxDWsAANnZctEeERFVa9GzoQDASXMBx9AbnVGAKrSCkxNw\n/ryCAYmIVKhFj1kAQLmtE87BFQ/gNwBAWZnCgYiIzIRZFYvMTGAbHsJobAEA7kBLRGQgZlUs3N2B\nnzBaVyxsbRUORERkJsyqWADAToSiB06hDW6hVSul0xARmQezmzp7C23hinOoQivcvq1sNiIiNeHU\n2VqP1fgYVagSZtd4IiJqkhY/G+qPWqOce0QRERmA2RULG5vqj8twHwYOVC4LEZG5MLticfBg7ftV\ntyuVCUJEZEbMrlhot/fQoAqP4xvYlF1QNhARkRkwu2KhJaBBLGIx7OZPSkchIjJ5Zlks5IwoDdYj\nCkG39yLnv8VKRyIiMmlmWSy0g9wbMBkRSMLEkIvKBiIiMnFmWSwyM+WfJ9EL59EVP9jPVDYQEZGJ\nM/liERsbe8eKRHf36sV5X2A6fj9tAZw+3fzhiIhUJDU1FbGxsY36XLNbwa1lYQEIAdihEMOwE5/8\nv6Nw+vjVZk5IRKQ+Lf7wo5rs7ICrV6vvj7PYiB/LwgBLk98Oi4ioSbjdRw2ZmbJ1oXVR44S8+BTl\nAhERmTCzbVkAQE4O4Okpu6MA2SWVkW3Pc7mJqEVjN1QdHByAgoLq+z0cr+PkhU5GTkZEpF7shqrD\ngQPVHzvjHH58YLFyYYiITJTZtyyA6plRqzEdt9EKMwveBeztmyEhEZH6sGWhx8eYjTBNChAXp3QU\nIiKT0iJaFjWn0e5v9SB82p5Bh4tZQLt2Rk5IRKQ+bFncRWZm9YrutypfQV6pDfDZZ8qGIiIyIapt\nWZw5cwZLlizB9evX8e2339b5moZUR+2sKA2qcMzCF11tbqBj/kmgTRtDxiYiUj2zall4enri888/\nN9j7HTggWxcCFni66l+YW/IWEB9vsPcnIjJnRi8WM2bMgKOjI/z8/Go9npKSAm9vb/To0QPLli0z\ndgy4u1dPgErDUGy9bxyuvBEH3Lhh9GsTEZk6oxeLmJgYpKTU3majsrISs2fPRkpKCo4ePYp169bh\n2LFjWLNmDV588UXk5+cbJYu2dQEA54o64vHr8cDf/26UaxERmROjF4uQkBDY2trWeiw9PR3du3eH\nh4cHrKysEBUVhYSEBEydOhUffPABnJ2dceXKFTzzzDM4ePCgwVoeNVsXGg1wuFUARi0IRM7hIoO8\nPxGRuVJkC9a8vDy4ubnp7ru6umL//v21XmNnZ4d//vOfet+r5t7soaGhCA0NvefrDxwAhgwBrl8H\nLhe3wzY8hOjBh7GnyO+en0dEZKpSU1PvOPenoRQpFhptX5ABNPQgD3d3IDdXzo4qLgb82pxAStVo\n4NyvgKurwXIREanFH3+RXry44dseKTIbysXFBbm5ubr7ubm5cG3mH9QHDsja4Gd/HkWllgi5/xxy\ncpo1AhGRyVCkWAQFBeHUqVPIzs5GeXk5NmzYgMjIyEa9V13HqtaHtoWxqTQUvyIIoRVbERZ8qVEZ\niIhMgaqPVY2OjsbOnTtRWFiILl264I033kBMTAySk5Mxd+5cVFZWYubMmXjllVca/N6NWVjyRw4O\nQPuCbGSgHzT3e8L2xH6epkdEZo3nWTRCTg7g5QXEtnoDIRU/o8eiKDgv+rOBEhIRqY9ZreCur8Z2\nQ2m5uwMdOgBvlb+MzuIS3ogVwIULhgtIRKQSqu6GMiZDtCyA6n2jOratwImnlsLp0iHg22+rV/AR\nEZkRdkM1Uk6OXHvRpg1wpaAK/iW/YO37F+HywuMGSElEpC7shmok7cyoggLg6nULpFYOxeyXrIC8\nPMOEJCJSAXZDGYi2O6pdO+D3Py9D1yM7gJQUdkcRkVlpkS0LQ9Iu1Dt6FOi67CXg3DmgHluOEBGZ\nO7Ys/sDbW06Gsra8iTOWPWB5owjIyAC6dzfodYiIlNIiWxaGGLOo6cIFucngucK2iKr6CrCwAKKi\ngLIyg12DiEgJHLMwoJrjFkePAu5x84CvvwZCQ4GvvuL4BRGZvBbZsjC0muMW7u4AliyRH+zcCbz+\nutLxiIgUwZaFHt7eQFl+IT6/9QQCHfNg98ZLQEyMUa9JRGRMjfnZqXfHvCNHjmDXrl3Izs6GRqOB\nh4cHQkJC4Ovr2+ighhQbG1uvQ48a68IF4HqxPR5CCrrfLsKphT0ANzfgoYeMcj0iImNpyiFId21Z\nrFmzBnFxcbC3t0f//v3h7OwMIQTOnz+P9PR0FBQU4IUXXsCTTz7ZlOxN0hwtizvGMHJ2AY89BuzY\nAfTpY9RrExEZg0FbFlevXsX27dthbW1d5/NFRUVYvXp1gy5mirTHsP7yy//GMNyHAh98AISHA3v3\nAl27Kh2RiMjoOGbRWG++CXz/vawi7dsrk4GIqBGMMhsqNzcX48ePh4ODAxwcHDBx4kScO3eu0SHN\nRkCAXOH9+ONAZaXSaYiIjEpvsYiJiUFkZCTy8/ORn5+PiIgIxHA2kOyGeuQR4NdfgRdeqPWUtzdg\nYyPHO3iuNxGZA73F4vLly4iJiYGVlRWsrKzw1FNP4dIl9ZxVbegV3PWm0QDx8YCfn1y09+GHuqe0\nq8ALCuR4BxGRGhh1BfeIESMQExODKVOmQAiB9evXY9WqVdi+fXujLmhIio5ZaBUVAQ8+KPc4//JL\n4NFH75xB5a5sRCKimoxy+FF2djaef/557Nu3DwAwaNAgxMXFoVu3bo1PaiCqKBYAkJ8PTJoEHD8O\nJCcjp0tw7RlUREQqYpRisXv3bgwePFjvY0pQTbHQ2rgReOYZYM8ewMND6TRERHUySrEIDAxEZmam\n3seUoLpiAQArVsgzMHbvBmxtlU5DRHQHgy7K27t3L/bs2YPLly/jb3/7m+6Ni4uLUVVV1bSk5mzO\nHDkF6qGH5Cl7Dg5KJyIiarK7zoYqLy9HcXExKisrUVxcjJKSEpSUlKBjx47497//3ZwZTY73pvfg\n898NmOSYirN7uCaFiEyf3m6onJwcuLu7o7S0FO1VtlJZo9Fg0aJFRt1IsDFsbIBe1/fjRzyK9y3m\n471j4UDPnkrHIqIWTruR4OLFiw0/ZrFnzx7MmjULxcXFyM3NxcGDB/Hpp5/ik08+aVJoQ1DlmAWq\nNx+c0CYJ31hOQas2VsD27XLVNxGRwoyy3cfcuXORkpKCzp07AwACAgKwc+fOxiVsIbQHKP3tRDha\nbUmR24EMHSrn0hIRmaB6nZT3xzUVlpZ6j8Fo0dzd5Ro9d3cAgwbJInHffcDDDwOjRskZU2fOKB2T\niKje9P7U79atG3bv3g1ADnqvWLECvXv3Nnows9Knj9xDSgggIwNITATeekv2V0VEyNvAgUCrVkon\nJSKqk94xi4KCAsyZMwfbtm2DEAKjR4/GihUrYG9v31wZ70qtYxb1UlUFpKfLwhEfD9y6JTcnHDcO\nGD0a6NRJ6YREZKYMvijv9u3bmD59Or766qsmhzMGky4WWrduAUuXAj/+CJw6BXTsCFy7BgQHyxP5\nwsMBLy+lUxKRGTHKCu4hQ4Zg+/btaNOmTZPCGYNZFIuaLl6UC/k2bpRjGoGBwKZNgJ2dLBoREXLT\nQo4ZEVETGKVYTJ06FcePH0dkZCTatWunu9BLL73U+KQGYmrFwttbbl9uZSVnTNVrk8GqKvnixEQg\nKUmuDh8xQh669PDD7K4iogYz6HYfWl5eXvDy8kJVVRVKSkoghIBGo2l0SEOLjY1V3aK8u9GecwHI\ncy5yc+vxSRYWQP/+8vbmm8C77wKvvy7Xbdy4AfTtC0RHA5GRQPfuRs1PRKZNuyivMXgGdzMy2DkX\nZWVAWhqQkAD88ANw9aqcmqudXRUeDgwezO4qIqqTUbqhLl26hOXLl+Po0aO4efOm7kI7duxofFID\nMbVikZMD45xzcfq03GPkzBnZXZWYCGRny26qiAj5J3fAJaL/McoK7ieeeALe3t7IyspCbGwsPDw8\nEBQU1OiQLVmtxXqG5OUF2NsDQUHA4sVyLcfhw0BICPDss4Cjozz+9e23gZMnDXxxImoJ9LYs+vXr\nh4yMDPTt2xeHDh0CAAQFBeHAgQPNEvBeTK1l0eyEAI4dk9Ny16+XJ/lZWMjpuVOnylbH4MFyxJ2I\nWgyjDHC3bt0aAODk5ISkpCQ4Ozvj6tWrjUtIzUujAXx85O2vf5XnhW/dKsc7OnYE5s0DsrKAMWOq\nu6vs7JROTUQqpLdlkZiYiJCQEOTm5uL5559HUVERYmNjERkZ2VwZ74otCwPIz5drORIT5QwrFxe5\nGHDaNKBXL1lwiMisGGWAW81YLAwsLQ1YtAjYuxe4fRvo0EGe+Pf008Dw4eyuIjITRhngPn36NCIi\nItC5c2c4ODhg3LhxyMrKanRIUrGQEGDHDqCkRBaOxx8H9uyRg+RdugCTJwNr1wKFhUonJaJmprdl\nMWDAAMyePRtRUVEAgA0bNiAuLg779+9vloD3wpZFMxFCrijcvFl2V+3YAfj7y61Hpk6Vu+qyu4rI\nZBilG6rmLCgtf39//Oc//2l4QgNjsVDIrVuyYMyYAVy+LFcZDhkiu6vCw4H/TYogInUySrFYsGAB\nbGxsEB0dDUC2LK5evYqXX34ZAGCn4OwZFgsVyMkBPv8c+Pe/5a65Go3cZj0yEggLA/53wiIRqYdR\nioWHh8dd94LSaDRGHb9ISEjApk2bUFRUhJkzZ2LUqFF3XJ/FQkVu3ZJjHbm5ctPD7dtlF5X2gCcf\nH3ZXEamA2c6GunbtGubNm4fPP/+81uMsFip36xawc6cc59iwQQ6cP/AA8NRTwJNPyv2siKjZGa1Y\n7NmzB9nZ2bh9+7busWnTptX7IjNmzMCmTZvQpUsXHD58WPd4SkoK5s6di8rKSsyaNQsLFiyo8/Pn\nzZuHJ598EgEBAbXDs1iYjpISYPVqOZsqMxOoqAA8PWXheOYZuQkiETULoxSLJ598EllZWQgICECr\nGmdEx8XF1fsiaWlp6NChA6ZNm6YrFpWVlejVqxe2bdsGFxcXBAcHY926dThw4AAyMjIwf/58dO3a\nFQsXLsTo0aMxcuTIO8OzWJgmIWR31d//LmdZHTwI+PpWH/DE2VVERmWU7T5+++03HD16tElnWISE\nhCA7O7vWY+np6ejevTs8PDwAAFFRUUhISMDChQsxdepUAMCKFSuwfft2FBUV4ffff8ef//znRmcg\nFdFogKFD5Q2QW67v3CnHOSIjZTHx8JDbjzz3nNyahIj0atQBa/Wkt1j06dMH58+fh7Ozs+GuCiAv\nLw9ubm66+66urnes3ZgzZw7mzJlzz/eJjY3VfWwqhyDRH7RpA4weLW8ffQQcOQLMnw8sWQK88grQ\ntat8bs4coF8/pdMSqdbdDlhryqFHWnqLxeXLl+Hj44P+/fvrzuHWaDTYuHFjky5sqNP2ahYLMgMa\njeyGSk6W948fBz78UC4IXLNGbsMeGSm7rPr2ZXcVUQ3aHXnatZPn5mj98RfpxYsXN/i99RYL7Q/j\nmn1chvhB7+Ligtwa54rm5ubC1dW1ye9LZsbbG/jnP+XH2hMCExOB8eOBykpZNEaMkEXE4AeFEJmW\nAweMdMAa6rE3VGhoKDw8PFBRUYHQ0FD0798fgYGBTb5wUFAQTp06hezsbJSXl2PDhg2N2sk2Nja2\nyc0rMhFt2siNDT/6SJ4OmJwMdOsGxMbKMQ5bW9nq2LxZFhKiFkbfAWupqamN740RevzrX/8SQUFB\n4v777xdCCHHixAkxYsQIfZ9WS1RUlOjatato3bq1cHV1FStXrhRCCLF582bRs2dP4eXlJd5+++0G\nvaeQzZwGfw6Zqfx8If76VyF69RLCwkIIS0shJkwQIjNTiKoqpdMRqUpjfnbqnTrr7++P9PR0DBw4\nEJmZmQAAPz+/WusllMKps1Sn8nLgu++AbdvkLKuysuppucOHA23bKp2QSFFG2aK8TZs2uoFtALh9\n+7bBBqcNgd1QdIfWrYHoaCA+Xu5XtXUrcP/9wDvvyPPIXVzkduwrVwLFxUqnJWo2TemG0tuymD9/\nPmxsbPDll1/i448/xieffAIfHx8sWbKkURc0JLYsqMGuXAFWrQK++go4fBioqpIdvOPGAUuXcgsS\nahGMsoK7srIS8fHx2LJlCwBgzJgxmDVrlipaFywW1CQVFbKr6l//kt1VbdtWb3o4YoScf0hkhsx2\nI8G70Wg0WLRoERfjkWGcPCmn5SYmAhkZwLBhwODB8ojZKVNkVxaRCdMuzlu8eLHhi4Wfn98dVahT\np04IDg7Gq6++Cnt7+8alNgC2LMhorl4FUlKAr78GtmyR3VWdOgFjxgDTp8tCUmMsj8iUGKVlMX/+\nfFhaWmLKlCkQQmD9+vW4ceMGnJycsHv3biQmJjYpdFOwWFCzuH1bLgZcuVKu7SgqkqvMY2Plug92\nV5GJMUqxCAwM1E2Z/eNjSk+hZbEgRZw6JbuqkpLkktmQEDnOER4uN0Hs2hWw1Ls5ApFijDJ1trKy\nstYGf+np6aiqqgIAWKrgPwSnzlKz69EDeOkleQ752bPAtGlyfwV/f3mztpYbH37xBXDpktJpiXSM\nOnX2119/RUxMDEpKSgAA1tbWiI+Ph6+vL5KSkjB58uRGXdgQ2LIgVbl9G9i7V45z/PijHPcQQm5J\nkpoq13cQqYBRZ0Ndu3YNAGBjY9PwZEbCYkGq9vvvsmisXw+cOCG7q8LD5a1bN6XTUQtm0G6o1atX\n1zpG1cbGplahKC8vx6pVqxoRk6iF6N4dmDdPjmucOwfExAD79skzOQICgKefln++/Tbwn//IVgiR\nSt110KGkpATBwcHw9vZGUFAQunbtCiEELly4gAMHDuD48eN4+umnmzNrnWJjY7nOgtSvUyfg8cfl\nrbJSFo0ffpBdVW+9Jbciad1atjpiYuTUXCIDa8ohSPfshhJCYPfu3fjll19w9uxZAIC7uzuGDBmC\nQYMGKb6Km91QZBaysuTsqg0bgN9+k2d4/OlPsnDwjA4ygha5gtuE4xPdqahILgJMSpLncjg5VU/L\nzcsD2rcHQkO5cy41CYsFkTmprAT275eFIzERyM6WxaKoSA6WR0YCYWGAp6fSScnEsFgQmbPsbFk4\nvv8e2LMHsLMDSkrkFuwDBiidjkxIiywW3EiQWqTiYlkkNm6U3VVdulR3Vw0cKF9z4QLXdlAtRt1I\n8MiRI9i1axeys7Oh0Wjg4eGBkJAQ+Pr6Nim0IbBlQQS5yWF6evUWJPn5wJAhcvt1T09ZQMLCZBFR\nwa4LpDyDtizWrFmDuLg42Nvbo3///nB2doYQAufPn0d6ejoKCgrwwgsv4MknnzRI+MZgsSCqQ04O\nsGkTkJAgtyHp0kWe3VFSArz8MvDXvyqdkBTWmJ+dd/014+rVq9i+fTusra3rfL6oqAirV69u0MWI\nqBm4uwPPPSdvJSWyhZGYKLus4uOB69dllxVbGtQAjRqzKC8vR+vWrY2Rp0HYsiBqgKoquZpce8DT\nuXPAI4/IwrF/P1BYKLurRo8GVLStDxmeUQa4hw0bhtWrV8Pzf9Pz0tPTMWvWLBw6dKjxSQ2ExYKo\nCXJz5RhHUpI8VtbFRbY0cnLkliRhYXJLEgUPOCPjMEqx+Omnn/DCCy/g+eefR15eHpKTkxEfH49+\n/fo1KawhsFgQGUhpqeyu0q7psLICHBzkAU9hYeyuMjNGmzr7888/Y9SoUXBwcEBmZiacnJwaHdKQ\nOHWWyAgEAH2kAAAQXElEQVSqquS2I9rCkZMDPPyw7K56+GF5MuAnn8gurJ49AYW3/aH6M+rU2Tff\nfBMbNmzAZ599hkOHDuFvf/sb3n//fYSHhzcptCGwZUHUDM6dk7OrEhOBXbuAvn3l6vIzZ+SK8rAw\neeM2JCbDKC2LuXPnYunSpWj7v38EOTk5mDVrFrZu3dr4pAbCYkHUzG7cALZvrx4kb9NGns1x/bo8\nQfDf/1Y6IdVDs63gFkIovuMswGJBpCghgIyM6u6q06dl11R4uPzT1la+7vJluUW7CmZQkmTQw49m\nzJiBX3/99a4X2r9/P2JiYhqWkIjMh0YDPPAAsGiRnJJ75AgwfLg8GdDdXXZLvfeeHCTv0gWYOFGu\n88jPVzo5NcJdWxaHDx/Gu+++i3379qFXr161Dj86ceIEBg0ahHnz5qFPnz7NnVmHLQsilbp5E9ix\no3oLktat5WB4eTlw8KAsJl99Bfj4KJ20RTJKN1RZWRkyMzORk5MDjUYDd3d3+Pv747777mtSWENg\nsSAyAULIAqEtHKdOyXUc0dHA+PFcx6EAgxaLs2fPopvKD5VnsSAyQefPy9lVSUnAzz8D/v5ynCMi\nAnB1lTOrRo2Sf/brB1jctbecGsmgxSIwMBCZmZkAgIkTJ+K7775rekIDY7EgMnE3bwKpqdWzq1q3\nlsWjVSvg8GF5RvkjjwCPPSYLChmEQQe4a8rKympUICKie2rbVhaDTz4Bzp6VBzv16yc/vnhRDqAL\nIQfQSVEm376LjY1Famqq0jGIqKk0GtmqePVVubHhsWOyRVFcDHzwgTyjY9kyOetK+1vxL7/I3XRL\nSpTNbiJSU1MRGxvbqM+9azdUq1at0K5dOwDAzZs3dYvyANmEKSoqatQFDYndUEQtxK1bsrtKu6aj\nVSs5xtG5s3w8PR148EFg7Fg51tGjh9KJVa1FHqtqwvGJqDGEkOMZ2sJx7Jhc09Gtmxzj2LEDWLMG\nGDFC6aSqxWJBRC3PpUvyHPLERLlzro+PHAwfNw7w9a290eHFi4Cjo3JZVYLFgohatrIyeTaHdnaV\nRlM9LXfAAMDbG7Czq978cMgQuR17C8NiQUSkJYQcDNd2Vx05IrumfH3lGMjOncDJk8CUKXI2VgvC\nYkFEdDeXLwPJybJwbN0K9O4txzq8vYFp01rUuRwsFkRE9VFeLs/m0HZXVVZWd1eFhgL33QesXCnH\nQMaOBcaMkTOvzASLBRFRQwkhZ1Rp9646dEh2V4WEyOfS0uS2JD4+cpxj+nQ588qEsVgQETVVQYHs\nrkpKArZskbvlPvII0LUrcOKEHOMIClI6ZZOwWBARGVJ5uWxZaAfJy8qqu6tGjJDdVVrx8XLG1R+n\n66oQiwURkbEIARw/Xl04Dh6Uhz1FRAAPPwwsXSp3062qkt1VY8fKgtK+vdLJ72BWxeL48eP46KOP\nUFhYiDFjxmDmzJl3vIbFgogUc+VK9eyqn34CuneXrQ4/PyArSz5XWCiLisqYVbHQqqqqQlRUFL75\n5ps7nmOxICJVqKiQmxpqWx03blSfRT56tNxdt6aiIrkdu0KHyBlti/KmmDFjBhwdHeHn51fr8ZSU\nFHh7e6NHjx5YtmxZnZ+bmJiIsWPHIioqytgxiYgaz8pKdkm9/75c6Ld9u9zM8IMP5PYikZHAp59W\nnz/+ww/yXPLISOCf/5Rbsquc0VsWaWlp6NChA6ZNm4bDhw8DACorK9GrVy9s27YNLi4uCA4Oxrp1\n63DgwAFkZGRg/vz5cHZ21r3HuHHjkJCQcGd4tiyISO2uXJHdVImJQEoKcP/9stUxdKjcq2rzZvm4\nkxPw4YfAyJFGj6Tabqjs7GxEREToisXevXuxePFipKSkAADeeecdAMDChQt1n7Nz5058//33uHXr\nFnr37o25c+feGZ7FgohMSUUFsGdP9ZqO4uLqbdVtbWUhcXMzeozG/Oy0NFKWe8rLy4NbjW+Iq6sr\n9u/fX+s1w4YNw7Bhw/S+V82DPEJDQxEaGmqomEREhmVlBQwbJm/vvQecOiULx4oV8jTAoUPl7Kqx\nY+V55FoTJ1YvCuzfX57n0QCpqalNPiROkZbFd999h5SUFHz22WcAgLVr12L//v2Ii4tr0PuyZUFE\nZuPaNdkdlZQkZ1K5u1cXjhs35HObNwPnz8vtR8LCgOjoRq3pUOUAd11cXFyQm5uru5+bmwvXmlWU\niKilsbEBoqKAtWvlWMaHHwI3b8rtRaKj5cryN9+Us66GDgX27WvWxX+KFIugoCCcOnUK2dnZKC8v\nx4YNGxAZGdmo9+IZ3ERkdiwtZUFYvlzuW5WWBvTpA8TFAcHBwI8/yl1za/zSXR9GOYPbUKKjo7Fz\n504UFhaiS5cueOONNxATE4Pk5GTMnTsXlZWVmDlzJl555ZUGvze7oYioxbl+Xc6uSkqS3VKurrK7\nKiJC7lllob8NoNrZUMai0WiwaNEiDmwTUctUWQns3Vu9GLCwEFi2THZd1UE70L148eKWVyxMOD4R\nkWFlZck9rLy87vmyFtmyMOH4RESKMJnZUEREZFpMvlhwNhQRUf2oejaUMbEbioio4dgNRURERmHy\nxYLdUERE9cNuKCIiqjd2QxERkVGwWBARkV4sFkREpJfJFwsOcBMR1Q8HuImIqN44wE1EREbBYkFE\nRHqxWBARkV4mXyw4wE1EVD8c4CYionrjADcRERkFiwUREenFYkFERHqxWBARkV4sFkREpJfJFwtO\nnSUiqh9OnSUionrj1FkiIjIKFgsiItKLxYKIiPRisSAiIr1YLIiISC8WCyIi0ovFgoiI9GKxICIi\nvUy+WHAFNxFR/XAFNxER1RtXcBMRkVGwWBARkV4sFkREpBeLBRER6cViQUREerFYEBGRXiwWRESk\nF4sFERHpxWJBRER6sVgQEZFeqi4WpaWlCA4OxqZNm5SOQkTUoqm6WCxfvhyTJ09WOkaTmcpGh8xp\nWMxpWKaQ0xQyNpbRi8WMGTPg6OgIPz+/Wo+npKTA29sbPXr0wLJly+74vK1bt8LHxwcODg7Gjmh0\npvIPiDkNizkNyxRymkLGxrI09gViYmLw/PPPY9q0abrHKisrMXv2bGzbtg0uLi4IDg5GZGQkDhw4\ngIyMDMyfPx87d+5EaWkpjh49irZt2yIsLAwajcbYcYmIqA5GLxYhISHIzs6u9Vh6ejq6d+8ODw8P\nAEBUVBQSEhKwcOFCTJ06FQDw1ltvAQC++OILODg4sFAQESlJNIMzZ86IPn366O5/++23YtasWbr7\na9asEbNnz27w+wLgjTfeeOOtEbeGMnrLoi6GaiUIHnxERNQsFJkN5eLigtzcXN393NxcuLq6KhGF\niIjqQZFiERQUhFOnTiE7Oxvl5eXYsGEDIiMjlYhCRET1YPRiER0djUGDBuHkyZNwc3PDqlWrYGlp\niY8//hhjxoyBj48PJk+ejN69ezfoffVNvVVKXVOFr1y5glGjRqFnz54YPXo0rl27pmBCKTc3F8OH\nD4evry/69OmDFStWAFBX1lu3bmHAgAEICAiAj48PXnnlFdVlrKmyshKBgYGIiIgAoM6cHh4e6Nu3\nLwIDA9G/f38A6sx57do1PPbYY+jduzd8fHywf/9+1eU8ceIEAgMDdbdOnTphxYoVqssJAEuXLoWv\nry/8/PwwZcoUlJWVNTxng0c5VOD27dvCy8tLnDlzRpSXlwt/f39x9OhRpWMJIYTYtWuXyMjIqDWg\nP3/+fLFs2TIhhBDvvPOOWLBggVLxdM6fPy8yMzOFEEIUFxeLnj17iqNHj6oua2lpqRBCiIqKCjFg\nwACRlpamuoxa77//vpgyZYqIiIgQQqjz793Dw0MUFhbWekyNOadNmybi4+OFEPLv/tq1a6rMqVVZ\nWSmcnJzE2bNnVZfzzJkzwtPTU9y6dUsIIcSkSZPE6tWrG5zTJIvFnj17xJgxY3T3ly5dKpYuXapg\notr+OPurV69e4sKFC0II+UO6V69eSkW7q3HjxomtW7eqNmtpaakICgoS//3vf1WZMTc3V4wcOVLs\n2LFDhIeHCyHU+ffu4eEhCgoKaj2mtpzXrl0Tnp6edzyutpw1/fTTT2LIkCFCCPXlLCwsFD179hRX\nrlwRFRUVIjw8XGzZsqXBOVW93cfd5OXlwc3NTXff1dUVeXl5Cia6t4sXL8LR0REA4OjoiIsXLyqc\nqLbs7GxkZmZiwIABqstaVVWFgIAAODo66rrN1JYRAF588UW8++67sLCo/i+lxpwajQYPPfQQgoKC\n8NlnnwFQX84zZ87AwcEBMTEx6NevH55++mmUlpaqLmdN69evR3R0NAD1fT/t7Ozwl7/8Bd26dYOz\nszNsbGwwatSoBuc0yWJhygv0NBqNqvKXlJRg4sSJ+Oijj2BtbV3rOTVktbCwwMGDB3Hu3Dns2rUL\nP//8c63n1ZAxKSkJXbp0QWBg4F2nc6shJwDs3r0bmZmZSE5Oxt///nekpaXVel4NOW/fvo2MjAw8\n99xzyMjIQPv27fHOO+/Ueo0acmqVl5cjMTERjz/++B3PqSHn6dOn8eGHHyI7Oxv5+fkoKSnB2rVr\na72mPjlNsliY2tRbR0dHXLhwAQBw/vx5dOnSReFEUkVFBSZOnIipU6fi0UcfBaDerJ06dcLYsWPx\n22+/qS7jnj17sHHjRnh6eiI6Oho7duzA1KlTVZcTALp27QoAcHBwwPjx45Genq66nK6urnB1dUVw\ncDAA4LHHHkNGRgacnJxUlVMrOTkZDzzwgG4fO7V9Pw8cOIBBgwbB3t4elpaWmDBhAvbu3dvg76dJ\nFgtTm3obGRmJL774AoDcvkT7g1lJQgjMnDkTPj4+mDt3ru5xNWUtKCjQzdC4efMmtm7disDAQFVl\nBIC3334bubm5OHPmDNavX48RI0ZgzZo1qst548YNFBcXA5Db/2/ZsgV+fn6qy+nk5AQ3NzecPHkS\nALBt2zb4+voiIiJCVTm11q1bp+uCAtT1fwgAvL29sW/fPty8eRNCCGzbtg0+Pj4N/34afXTFSDZv\n3ix69uwpvLy8xNtvv610HJ2oqCjRtWtXYWVlJVxdXcXKlStFYWGhGDlypOjRo4cYNWqUuHr1qtIx\nRVpamtBoNMLf318EBASIgIAAkZycrKqshw4dEoGBgcLf31/4+fmJ5cuXCyGEqjL+UWpqqm42lNpy\nZmVlCX9/f+Hv7y98fX11/2/UllMIIQ4ePCiCgoJE3759xfjx48W1a9dUmbOkpETY29uLoqIi3WNq\nzLls2TLh4+Mj+vTpI6ZNmybKy8sbnFMjBPfMICKiezPJbigiImpeLBZERKQXiwUREenFYkFERHqx\nWBAZ0K+//gp/f3+UlZWhtLQUffr0wdGjR5WORdRknA1FZGCvvfYabt26hZs3b8LNzQ0LFixQOhJR\nk7FYEBlYRUUFgoKC0LZtW+zdu1fx7R6IDIHdUEQGVlBQgNLSUpSUlODmzZtKxyEyCLYsiAwsMjIS\nU6ZMQVZWFs6fP4+4uDilIxE1maXSAYjMyZdffok2bdogKioKVVVVGDRoEFJTUxEaGqp0NKImYcuC\niIj04pgFERHpxWJBRER6sVgQEZFeLBZERKQXiwUREenFYkFERHr9fwMyrBr+QY5EAAAAAElFTkSu\nQmCC\n" + } + ], + "prompt_number": 18 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Return values for the GEV distribution" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "T = logspace(1,5,10);\n", + "sT = Y5gev.isf(1./T);\n", + "\n", + "\n", + "clf\n", + "semilogx(T,sT,T,sTlo,'r',T,sTup,'r'), hold\n", + "N=1:length(Y5M); Nmax=max(N);\n", + "plot(Nmax./N,sort(Y5M,'descend'),'.')\n", + "title('Return values in the GEV model')\n", + "xlabel('Return priod')\n", + "ylabel('Return value') \n", + "grid on " + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import wafo.stats as ws\n", + "R = ws.genpareto.rvs(-0.5,size=100);\n", + "phat = ws.genpareto.fit2(R[R>.5], -.5, scale=1, floc=0.5)\n", + "phat.plotfitsummary()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEfCAYAAABSy/GnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFFfXwH8LIkpERUQFAUFQEQExgsSCgr0A+pFYsKNi\n9I01GpMYE1ATW6JvonljexUjNowmL/YYC/YuauwaQeyKgIIo9X5/bJiAlF1gYRed3/PsA7tz59wz\nM2fmzC3nXIUQQiAjIyMjI6MCPW0rICMjIyNTPpAdhoyMjIyMWsgOQ0ZGRkZGLWSHISMjIyOjFrLD\nkJGRkZFRC9lhyMjIyMiohewwdBBjY2NiYmIK3D569Gi+/vrrEtURGRmJlZVViWSUFF3QQab8cejQ\nIRwcHMqkrpCQEAYNGlQmdZUHZIehJjY2NhgZGWFsbCx9xo0bVyp1JSUlYWNjU+D2xYsXM23atFKp\nO5uIiAhcXV2pVq0aZmZmdOjQQXJiISEhGBgY5DoX3333XanqM3ToUL788stSrUOmaGTfE1WrVsXE\nxITWrVuzdOlSSju0y9PTk6tXr+bSY9++faVSl0KhULtsaeqhK1TQtgLlBYVCwbZt22jfvr1W9cjK\nykJPr3T9/M2bNxkyZAi//fYb3t7eJCcns3v3bvT19QHluQgICGD16tWlqoeMbpPznkhKSiIyMpLx\n48dz4sQJVq5cWaZ6lJaTKorc0tRDV5BbGBpg1apVtG7dmo8//hgTExPs7e05evQooaGhWFtbU7t2\n7VwP16FDhzJq1Cg6d+5M1apV8fLyIjY2Vtqup6fHrVu3pLKjR4+me/fuVKlShf379+d5287ZGrC3\nt+f3338HIDQ0FEdHR6pWrYqdnR3Lli1T63jOnTuHra0t3t7eAFSpUgV/f3+p+0gIofaNYWNjw5w5\nc2jSpAk1atRg2LBhpKam5lv2ypUreHl5YWJigpOTE1u3bgVg2bJlrFu3jnnz5mFsbEzPnj3Vqlum\n7DA2NsbX15fw8HB+/vlnLl26BEBqaiqTJ0+mXr161KlTh9GjR/Pq1StA2SVpaWnJggULqF27NhYW\nFqxatUqSuWPHDpo0aULVqlWxtLRk/vz50n7Ztjho0CBiY2Px9fXF2NiYb7/9Fh8fH3788cdc+rm4\nuBAREZFH75iYGPT09Fi+fDl169bFwsJCqic/tmzZQpMmTTAxMcHb21tq6byuR2m3uLWGkFELGxsb\nsWfPnny3hYaGigoVKohVq1aJrKwsMW3aNFG3bl0xZswYkZaWJnbv3i2MjY3FixcvhBBCDBkyRBgb\nG4tDhw6J1NRUMX78eNGmTRtJnkKhEH/99ZdUtlq1auLo0aNCCCFevXolhg4dKr788kshhBAnTpwQ\n1apVk3S7d++euHr1qhBCiO3bt4tbt24JIYQ4cOCAMDIyEmfPnhVCCLF//35haWmZ7/HcunVLVKpU\nSUycOFHs379fJCUl5doeHBwsBg4cqNZ5q1evnnB2dhZ3794V8fHxonXr1mLatGl5dEhLSxN2dnZi\n9uzZIj09Xezbt08YGxuLa9euCSFErmOW0Q1sbGzE3r178/xubW0tlixZIoQQYsKECaJnz54iISFB\nJCUlCV9fX/H5558LIZTXv0KFCiI4OFhkZGSIHTt2CCMjI5GYmCiEEKJOnTri8OHDQgghEhMTC7Td\n1/XYuHGj8PDwkL6fO3dOmJqaivT09Dy6RkdHC4VCIfr37y9SUlLEn3/+KczMzKT7KaetX7t2Tbzz\nzjtiz549IiMjQ8ybN0/Y29tLcgs6H28ScgtDTYQQ9OrVCxMTE+mzYsUKabutrS1DhgxBoVDQp08f\n7t+/z1dffYWBgQGdOnWiYsWK3Lx5Uyrv4+NDmzZtqFixIt988w3Hjh3j3r17+dbdq1cvWrZsCYCh\noWGubStWrGD48OF06NABAAsLCxo1agRA9+7dsbW1BaBt27Z07tyZQ4cOqTxWW1tbIiMjuXfvHn36\n9MHMzIzAwEBevHghldm4caN0HmrUqMHDhw/zlaVQKBgzZgx169bFxMSEL774gvXr1+cpd/z4cV68\neMFnn31GhQoV8Pb2xsfHRyoritCqkdEuFhYWxMfHI4Rg+fLlLFiwgOrVq1OlShU+//xzNmzYIJU1\nMDDgq6++Ql9fn27dulGlShWuXbsGQMWKFbl06RLPnz+nWrVqNGvWTK36fX19uX79On/99RcAYWFh\n9OvXjwoVCu6BDw4OpnLlyjg5OREYGJivjYaHh+Pj40OHDh3Q19dn8uTJvHz5kqNHjxbl9JRrZIeh\nJgqFgoiICBISEqTP8OHDpe21a9eW/q9cuTIAZmZmuX5LTk6WZFlaWkrb3nnnHWrUqMH9+/fzrbew\nmUR3797Fzs4u3207d+7kvffew9TUFBMTE3bs2MHTp0/VOl4PDw/Cw8N5/Pgxhw4d4uDBg3zzzTfS\n9r59+0rnIT4+njp16hQoK6f+1tbW+R7n/fv38xxnvXr1pLJFGXyU0S53796lRo0axMXFkZKSQvPm\nzaWXi27duhEXFyeVNTU1zTUmZ2RkJN0nmzdvZseOHdjY2ODl5cXx48fVqr9SpUr06dOHsLAwhBBs\n2LBB5UwndW3U2tpa+p59bxb0ovcmIjsMLSCE4M6dO9L35ORk4uPjsbCwKLIsKyurXC2XbFJTU3n/\n/feZMmUKjx8/JiEhge7duxfrLd3NzY3/+7//k/qls49BXXKOz8TGxuZ7nBYWFty5cyeX3Nu3b1O3\nbl1AdhjlhVOnTnH//n3atGmDqakplStX5vLly9LLRWJiIs+fP1dLlpubG//73/948uQJvXr1ok+f\nPvmWy882hgwZwtq1a9mzZw9GRkZ4eHgUWtfrNpptdzmpW7cut2/flr5n38dvk43KDqMIaLJLZMeO\nHRw5coS0tDS+/PJLWrZsma+R5ldnzu6Z4cOHExoayr59+8jKyuLevXtcu3aNtLQ00tLSqFmzJnp6\neuzcuZPdu3erpduRI0f473//y5MnTwC4evUqW7du5b333ivycQoh+Omnn7h37x7x8fF888039OvX\nL085Dw8PjIyMmDdvHunp6URGRrJt2zapbO3ataWJADK6Q7YdPn/+nG3bthEQEMCgQYNo0qQJenp6\nBAUFMWHCBMmW7t27p5Ydpqens3btWp49e4a+vj7GxsbSLL3XqV27ttT9lE3Lli1RKBRMnjyZwYMH\nq6zv66+/5uXLl1y6dIlVq1bRt2/fPGV69+7N9u3b2bdvH+np6cyfP59KlSrRqlWrAvV405AdRhHI\nngGR/Xn//fcB5ZvF628Xhb1tKBQK+vfvz/Tp0zE1NSUqKoo1a9bku29BsrN/c3d3JzQ0lIkTJ1K9\nenVpxpWxsTELFy6kT58+1KhRg/Xr1+eZXVSQjtWrV2fLli04OztjbGxMt27d8Pf3Z8qUKQXqpOpY\nO3fujJ2dHQ0aNMgVQ5Itp2LFimzdupWdO3diZmbGmDFjCAsLo2HDhoDSMV6+fBkTExP8/f3Vqlum\n9PH19aVq1apYW1sze/ZsJk2aRGhoqLR97ty52Nvb895771GtWjU6derE9evXpe2F2dGaNWuwtbWl\nWrVqLFu2jLVr1+a73+eff87XX3+NiYkJCxYskH4fPHgwf/75JwMHDlR5HO3atcPe3p6OHTvyySef\n0LFjR6me7LoaNWrEmjVrGDt2LGZmZmzfvp2tW7dKYyMF6fEmoRA6OpL44sUL/vWvf2FoaIiXlxf9\n+/fXtkoaIzAwEEtLS2bOnKltVUodW1tbVqxYofX4FZm3j7CwMJYvX87BgwcLLBMTE0P9+vXJyMgo\n9fimNwGdPUO//vorffr0YdmyZWzZskXb6mgUHfXRMhpg2LBh1K5dG2dn5wLLREZG0qxZM5ycnPDy\n8io75d4iUlJS+M9//sPIkSO1rcobRZk6jIJupl27duHg4ECDBg2YO3cuoOzrzJ65UFDfZXmlKF06\nMuWLwMBAdu3aVeD2xMREPvroI7Zu3crFixfZtGlTGWr3dvD7779Tq1YtzM3N1eqZkO9F9SnTLqlD\nhw5RpUoVqW8RIDMzk0aNGrFnzx7q1q2Lu7s769ev58yZM5iYmNCjRw8CAgLynRctI6OLxMTE4Ovr\nK9l4Tn766ScePnzIjBkztKCZjEzJKNNcUp6ennmysJ48eRJ7e3sp2V6/fv2IiIhg3LhxjBkzhu3b\nt+Pn55evPPnNQKYs0OQ71Y0bN0hPT8fb25ukpCTGjx+fb4yAbNsypU1x7FrrYxg5u54ALC0tuXfv\nHkZGRqxcuZKffvqJgICAAvfPnmKq6tOrUzLvcZTRisUsYSTHacELhRF3KtuzgT5MYQ4D6+zGstIT\n9PSCMTUVxMSoJ1vdT3BwsEbllabc8qRracrVNOnp6Zw9e5YdO3bw+++/M3PmTG7cuFEi2y7NcyLL\n0C0dNCWjuGg9W21J36RCQkLw8vJSOXgYuvEdRo5sycZ9LVn8FIyM4PKFDGYPvUby4Si61z5Lv5Rv\n+PFVFMEo8Hz6J0ttmnOtihvi3easjDClevUSqSpTjoiMjCQyMlLjcq2srKhZsyaVK1emcuXKtG3b\nlvPnz9OgQQON1yUjo2m03sKoW7durqjnO3fu5EqboYpsh6GK6tVh40Y4cwYsLeHyZahnV4E5W5uQ\n1nsg3a8u4IvWkZiQQBiD2cQH1CCescmzWHXQlvgaduwx68eM6vP5l/Mh/q/zCxITi3PEMuUBLy8v\nQkJCNC63Z8+eHD58mMzMTFJSUjhx4gSOjo4ar0dGpjTQegvDzc2NGzduEBMTg4WFBeHh4UUa4Fa3\nhZFNvXqQwz9JjgRg3ToYMECPP/7wZ0O6FxtQdoUpyKKRuIZ73ClacJKuz8JpcvESN2s04LCFBw9t\n3uNg6ns8rdmItev1CmyJlNYUytKQW550LQ25xW1hBAQEcODAAeLi4rCysmL69Omkp6cD8OGHH+Lg\n4EDXrl1xcXGRIqFLy2Fo4pzIMnRLB03JKC5lOksq+2Z6+vQptWrVYsaMGQQGBrJz504mTJhAZmYm\nw4cP5/PPP1dLXmktWJKYCEOHQkYGnD4Njx5BtWrw7Nk/fyuSiivn8OAE7QyP0yz1ONVJ5HYdD5qN\nbsm/j7fkj+ceULUq69bBlClw/bqyK2zdOuTurXKCthbFeRsW45HRHsW1L52N9FYHhUJBcHBwkVoY\nRSUxEUaOhG+/hU8+Uf597z3IzubdrBmYmsKePdDF9SGbJx/nnQvHuLD0KPWfRXETex7atWZLXGu2\nPvPkLlbUqgXXrslORJfJbmFMnz5ddhgybxxvrcPQhvrZLRCFArLT5owcCcuW/fPQ794d9uxMY2Dj\ns/wn4DD7Zh7BPf0IKRhxkLa8bO5J2O22HIlrCCgwNYUWLWTHoWvILQyZN5G31mGUdgujuGS3TLKd\nSKdOsGePoBHXGGB1iE9bHuTRpoNUyErjAO04QDv2482z2o3o0lVBTIzc8tAmcgtD5k3mrXUY5UX9\n11sl2U7kxp4YulaK5L1XkXizn4qkccSwPTtT27OXDjytYoO+PhgYKMdT6tXT9pG8XcgtDJk3Edlh\nlENyjo8ox0UEPZ2jaZuxD/Mre+lcYR+JGVXYTWd205krddpz9UE1bav9VlFUGxs2bBjbt2+nVq1a\n+aYGyebUqVO0bNmSjRs35puuvbzbtoxuU1z70nocRkkJCQkplQCrsiB7Sm+9enDlCvTurWDVwfoM\nOzqC33qvR//xQ3pX+I2b2DOKJZx9YgmtW7Oo5nQ6VTlG7ZqZ5FgATEaDREZGFisOQ1XyQVDmT/v0\n00/p2rWr7BRkyhUqWxiXLl3i4MGDxMTEoFAosLGxwdPTkyZNmpSVjgXyNryFeXtDZCS4uMCBXS+p\nfvEwi3x+p13abupyj9105mCVHkw90AWrd81UypMpGsWxscKSDwJ8//33VKxYkVOnTuHj4yMtxFXS\nenWVGjUgIaFkMkxMID5eM/rIFN++CgzcCwsLY9GiRZiamtKiRQvq16+PEIIHDx4wefJk4uLiGD9+\nvFqrWckUn99+yzl4XhnMOzGjaifi4qAud+nKLron/0rV5h+R4e5IhZ4+0KsXODoqB0xkikxiYiLH\njh2TEmXu2rWLli1bUq1aybsD7927R0REBPv27ePUqVOFpsbJ2cLRxYkd6pKQACX1fbIplwyNpboR\nBfDDDz+I58+fF7RZPHv2TPzwww8Fbi8LABEcHCz279+vVT3KmpgYISwthahRQwjlrShERV6JD6rt\nFv+rN1ZkWloLYWcnxKRJQhw6JERGhrZVLhccPHhQ+Pr6CmdnZ9G5c2fRpk0bAYjBgwcLZ2dn4evr\nKw4dOqRSTnR0tHBycsp32wcffCCOHz8uhBBiyJAhYtOmTfmWK+TWLHdo4lDeoNOhExTXvuRB73LM\n7dvQqBGkpoKxMSQlKX+vaCAIbHaO770jqLTrf3D/Pvj6wgcfQMeOyilXMnn4+OOPGT16dK5EgDlt\n7Pr16yxZskTles2FdUllt9QB4uLiMDIyYvny5XlS+JeJbW/dCs+fQ//+pfoKr1BopoXxFt/qGqfY\n9qXKo8TGxopevXqJmjVripo1awp/f39x586dYnknTaOG+m88CQlC9O4tRMeO/7Q2sj+9e/9dKDpa\nbHjv3+LPqi1FooGpeDVouBC//y5EerpWdS8PFMfGCmth5GTo0KFi8+bNGqu3yJw+LYSzsxA+PkLc\nvVtq1cgtDN2juPalcpZUYGAgfn5+3L9/n/v37+Pr60tgYGDRPZNMqZA90+qXX6BOnX9+b9ZMOe4B\ngI0Niw0n4Pz8KM7pZ9lwwRG++grMzeHDD1nQYy8d2mXQvTtyBl6UYxgTJ06kefPmAEyaNIlnz56p\ntW9AQACtWrXi2rVrWFlZsXLlSpYuXcrSpUtLU+Xi0by5MrineXOlwaxcKb/GyxSKyi6ppk2bcv78\neZW/aQNdjvTWBvkFB2bTvTvs3Anu7rB799/bYmLgl1+4OnMjJkmxhNOXnTUGsv6mO9VN3t5RRn9/\nf4yNjalevToLFy4kODiYCxcu8Ouvv5aZDmXe3Xr+PAQGQq1ayjcNa2uNiZa7pHSPUuuS8vb2FqtX\nrxYZGRkiPT1dhIWFifbt2xerOaNp1FBf5m+yu64SEvJu69ZNCDtuiC+ZLq5jL67rNxIrG84WiZdK\nr5tCl3FxcZH+z7axnL+VBVqx7bQ0Ib7+WoiaNYVYskSIrCyNiJW7pHSP4tqXyi6plStXsnHjRurU\nqYO5uTm//PILodkZ92TKDdldV/nlpVq3Dl7UsWcmX9G8ynWGZK4k/fot9F2duWjVleAmv+DXNe2t\n6a6qXLkyhw4dkr4fPnwYIyMjLWpURhgYwBdfKAN/Vq5UTpCIjta2VjK6hCqPcvjwYbV+0wZqqC+j\nJq8Pnru7C5Fw74WY6bBG7MNLPMJMLKs6SQx0vyq6dcu/pfKmEBUVJZydnYW1tbUARNOmTcW5c+fK\nVAet23ZGhhDz5ilbG4sWCZGZWWxRcgtD9yiufakcw2jWrBlRUVEqf9MGb/u02tLg9Sy72WMf/s43\n+L/4FXS8t4rzNOVMmwlMPdAF9Mp9dpk83Lp1i/r16/Ps2TOqV6+OEEL6razQGdu+ehWGDYOKFWHF\nCrCzK7IIeQxD99B4Lqljx44xf/58njx5woIFC5g/fz7z588nJCSErKysEikro7u83nW1bh307g0r\nDjZgncsc6nGbXyv1p8/5qWQ2bgJLlsCLF9pVWsNkp+rIGdndu3dvtfYdNmwYtWvXxtnZOd/ta9eu\npWnTpri4uNC6dWsuXLhQcoVLEwcHOHQI/PzAwwMWLgT5/n9rKdBhpKWlkZSURGZmJklJSSQnJ5Oc\nnEzVqlXZtGlTWepYKOU5+WB5IKcDWbcOqpkZsuzVEBoknWWGxRL4/XewsYHPPpMWSx85Ery8KHfT\ndK9cucLmzZt59uwZM2bMoE+fPgCsWrWKV69eqSVDVfLB+vXrc/DgQS5cuMCXX37JyJEjNaJ7qaKv\nDx9/DEePKo3Bywtu3tS2VjLaQFWfVUxMjBBCiOTk5GL1eZUmaqgvo2G6dcsxxpE9jnHzphATJghh\nYiJE375iVLPjeYMHywH/+9//xJAhQ0SNGjXE0KFDxdChQwUgxo4dK44cOaK2HHUD9+Lj40XdunXz\n3aaztp2RIcSCBUKYmgrx/fdqjW3IYxi6R3HtS+UYxtGjRxkxYgRJSUncuXOHc+fOsWzZMn766aey\n8GeFojP9vG8Rr49x5OL5c1i5kgdTF3LrpTkbG0xj+omuTPlUUa7WLj969CitWrUCSidbbTbfffcd\n169fZ5kUYfkP2TFG2ehcrNGNG8q4DX195YyqQsY25DEM7fN68sFirySpyqO4u7uL27dvC1dXV+k3\nR0fHYnknTaOG+jJaICEuQyx4b4PIaNxECDc38XmTCAFZAoSoU0f3Z1hdvXpVtG/fXjg6OgpAnD9/\nXsycOVPt/dVpYezbt080btxYxMfH57u9XNh2ztbGwoUFtjbkFobuUVz7UmuKi/VrUZ8VKhSYFV1G\nhuqm+kw81hf9ixfg888ZHvsVZ3kXH7by8KFA17vtg4KCmDVrFhUrVgTA2dmZ9evXa0z+hQsXCAoK\nYsuWLZiYmGhMbpmjrw8TJyrHNjZsgPbt4dYtbWslU4qodBjW1tYcOXIEUA6Ef/fddzRu3LjUFYuO\njmbEiBFqz06R0UH09MDfH9PbUSysHswspnKuShtWBB7W6YHxlJQUPDw8pO8KhQIDDWX4jY2Nxd/f\nnzVr1mBvb68RmVqnYUM4eFCZEblFC/jPf+SZVG8qqpogT548EQEBAcLMzEzUrFlT9O/fX8TFxRWr\nOVMcPvjggwK3qaG+jI6QkCBEnw8yRPLin4WwthaHTX2FIxd1cmC8a9eu4saNG8LV1VUA4pdffhFd\nu3ZVa99+/foJc3NzYWBgICwtLcWKFSvEkiVLxJIlS4QQQgwfPlzUqFFDuLq6CldXV+Hu7p6vnHJr\n21euCPHee0K0by9EdLQQQu6S0kWKa1+F7pWeni769+9fLMHZBAYGilq1auXp0925c6do1KiRsLe3\nF3PmzClwf9lhvIG8fCmWOcwXjzATPxmME35ez3RqXOPmzZuiffv2onLlygIQrVq1EtF/P/zKinJt\n2xkZQsydq4wSX7pUdhg6SHHtq9AuqQoVKnD79m1SU1OL3YLJb156ZmYmY8aMYdeuXVy+fJn169dz\n5coVwsLCmDhxIvfv3y92fTLlgEqV6H3sYzxNr2CQ/oIfI5uwvMdvOjENJjMzk8WLF7N3714eP34M\nwJEjR7CxsdGuYuUJfX2YMgUOHIDly5W//R2jI1O+UTmGYWtrS5s2bZg5c6YU7a1qxbGceHp65hnY\nO3nyJPb29tjY2GBgYEC/fv2IiIhg0KBB/Pvf/8bCwoL4+HhGjRrFuXPnmDt3btGPTEanqV4d7FqY\nEsR/memwlo/jpirXIo+N1ape+vr6HD58GCEEVapU0aou5R5HRzh2TPn/u+/CqlU68VIgU3xUTney\ns7PDzs6OrKwskpOTEUIUunC9Oty7dw8rKyvpu6WlJSdOnMhVpkaNGixZskSlrJCQEOl/nZurLlMo\n69YpYzrmLWuLfuVz8O23ygfL1KkwbhxUqMDIkZRpDEdkZCQZGRk4ODjg6OgIwObNm1EoFPj7+5du\n5W8i2TMq9+yBwYNh82ZlEI+5uXb1kikWKh1Gzgeypiipw8lJaegnUzZkpx1RYgjTpkHfvjB6NISF\nwbJlXL/uzoEDyhIjR+YsXzp4eXnh5OQE/GOn27ZtA1DLYQwbNozt27dTq1atAgP3xo0bx86dOzEy\nMmLVqlU0a9ZMQ9rrME2bwqlTMHMmuLrC999Dv36lupa4jOZR2SX1+PFjJk+eTPfu3fH29sbb25v2\n7duXqNK6detyJ0ef5p07d7C0tCyWLDmX1BtGgwbwxx8weTL4+fFxzFjeIRl39xxLzpYyq1atYujQ\nodSrVw+A0NBQtdeAUZVLaseOHdy8eZMbN26wbNkyRo8erRGdywUVKyodxrZtyr99+0JcnLa1kikC\nKh3GgAEDcHBw4NatW4SEhGBjY4Obm1uJKnVzc+PGjRvExMSQlpZGeHg4fn5+xZIVEhIid0O9aSgU\nMGAAXLpEl9bJXKzgikvqKfr3L5uYjZcvX3Lx4kVp0HvYsGEMGzZMrX3zG7PLyZYtWxgyZAgAHh4e\nJCYm8ujRo5IrXZ5wd4czZ5TLwLq4wJYt2tZIRk1UOoynT58yYsQIKlasSLt27QgNDWXfvn1qVxAQ\nEECrVq24fv06VlZWhIaGUqFCBX788Ue6dOmCo6Mjffv2LXYwoNzCeIOpUQPDtaGsaDiPWRd6YLJz\nbZlEiQ8aNIiTJ09K0d137tzR2AB4fuN3d+/e1YjsckXlyvDddxAerowWDwyEZ8+0rZWMClSOYWSn\nR6hTpw7btm3DwsKChIQEtSsoKKVCt27d6Natm9pyCkIew3jzOVPPn/aXG/K7oR+mlpcg6+tSXbjp\n5s2bnDt3DhcXFxITE9mxYwdt2rTRmHzx2kyhgsb03ooJHZ6ecP48fPKJsrURGqpMMSKjUV5PPlhs\nVAVqbNmyRSQkJIgLFy6Idu3aiWbNmomIiIhiBX1oGkAEBweL/fv3a1sVmVIke/nYxBuPhWjbVoie\nPYVISiq1+tzd3cX+/fulJVofP34sbG1t1d6/sOSDH374oVi/fr30vVGjRuLhw4d5yqlxa5Yb1D6U\nnTuFqFtXiHHjhHjxongyZNSiuPZVri/Dm3RTyahJaqoQI0YI4eIixN9rtWiaZcuWiadPn4rIyEgB\niJo1a4rFixervX9hDmP79u2iW7duQgghjh07Jjw8PPIt9ybZdpEO5elTIQIChGjYUIgTJ4onQ0Yl\npeYwbt68KXx8fISpqamoWbOm8PPzE3/99VexKtM0cgvjLSUrS7l4T506Qhw6JP0cFCREu3bKRZ5K\nmmpk//79Ijg4uMg3lqpcUkII8dFHHwk7Ozvh4uIizpw5k68cXXEYJiZCWgyrJJ8is3GjELVqCTFt\nmhCpqbJB4EqyAAAgAElEQVTD0DCl5jBatGghVq9eLdLS0kRaWpoICwsTLVq0KFZlmkZXbioZLbFr\nlxBmZkKsXCmEUDoLTaz09+TJEzFmzBgp+eC4cePKNOGmELpj21rNA/XggRA9egjRrJnsMDRMce1L\n5cjhy5cvGTRoEAYGBhgYGDBw4EC11zcuC+RZUm8xXboo02rPmgWTJlGlciZAiWM2+vXrx4sXL2jb\nti0AZmZm9O3bVxMayxSFOnVg61ZlICfAv/8tp03XMiqXaP3000+pXr06AQEBAISHh5OQkMCUKVMA\nZQoPbSEv0SoDQHw89OlDul5FRryznh9Cq5UohYiTkxMXL14E/rExZ2dnlUuuahJdsW1dWV5VoQDR\nuo0y+G/VKmUMh0yxKa59qXQYNjY2BU77UygU3NLiClu6clPJ6ADp6TBhAhw5ovy8806xRX388ce4\nu7vTt29f9PX12bBhAydPnmT+/PkaVLhwdMW2dcphZGQq840tWKD8DBggpxYpJqXmMHQZXbmpZHQE\nIWDYMEhNhbVri/0wqVKlCikpKejp6ZGZmYlCoeCdvx2QQqHg+fPnmtQ6X3TFtnXKYWTLOHcOBg5U\nZsNdvBhMTUsm/C2kuPalVvTT0aNHWbduHatXr5Y+uoI8hiEjoVDATz/B1auwaJFau+S3VGxycjL7\n9u1j2rRpAGRlZZGUlERSUpJKZ7Fr1y4cHBxo0KBBvmn54+Li6Nq1K66urjg5ObFq1aqiHKEMKJMX\nnj4NVlbKpIaF5O6S0SwqWxgDBw7k1q1buLq6oq+vL/2+SM0bsjTRlbcwGR0jOhree0+ZSltFhLaX\nF1I23N69/8mGe+/ePW7fvk3r1q058HeB7EHwgsjMzKRRo0bs2bOHunXr4u7uzvr163OlvQkJCSE1\nNZXZs2cTFxdHo0aNePToERUq5E66oCu2rZMtjJzs26dMK+LnB3PnKvPgy6ikuPalMjXImTNnuHz5\nskZTksvIlCq2tsqB0b59lW+ihay9kP18yTmz6tNPPyU8PFxaD+Pbb78FVDuMnAuDAdLCYDkdhrm5\nORcuXADg+fPnmJqa5nEWMkWgfXtlapGPPoLmzZVdke++q22t3lhUWqqTkxMPHjzAwsKiLPSRkdEM\n3brBhx9Cnz7Kt1ADg3yLZS/itGzZP4sz/fbbb1y7dg1DQ0MUCgVbt25Vq0p1FgYLCgqiffv2WFhY\nkJSUxMZCFvh4K3JJaYLq1ZWOYt066NpVmcxwyhTlUrEygOZySal0GE+ePMHR0ZEWLVpgaGgIKJsz\nW3QkJXF2enP5ZpLJw7RpcPKkMrHd99/nWyT3Ik5K7Ozs2Lt3LydPnixSdeq0wmfNmoWrqyuRkZH8\n9ddfdOrUifPnz2NsbJynrJxYs4j076/sghwyBHbsUC7CJa/FDuR94Zg+fXqx5Ki94l7OPi9d6p6S\nbyqZAtHTUz403NzAwwP+jiVSReXKlRk7diwdOnQAYOzYsSgUChYuXFjofuosDHb06FG++OILQOmY\nbG1tuXbtWonXmJH5G2tr2LtXOe3W3R3mz4dBg+TptxpCpcPw8vIiJiaGmzdv0rFjR1JSUsjIyCgL\n3WRkSo6JCfz6K3TsCM7O8Pfyq4Xh5+eHn58fCoWC5cuX07x5c7VeknIuDGZhYUF4eHie9P4ODg7s\n2bOH1q1b8+jRI65du0b9+vWLfXhvE+o/8/WAycrPEJQflKYQH18qqr09qModsnTpUuHm5ibq168v\nhBDi2rVron379sXKQ6Jp1FBfRkZJWJgQDRoIkZioVvEXL16IK1euFNnGduzYIRo2bCjs7OzErFmz\nhBAiV/LBJ0+eCB8fH+Hi4iKcnJzE2rVr85WjK7at1VxSmpCRkiLEmDFCWFvL+ahyUFz7UrmXi4uL\nePXqlXB1dZV+Kyh1c1mjKzeVTDnho4+Ua2lkZhZaLCIiQjRs2FDUq1dPAOLs2bPC19e3jJRUoiu2\nXe4dRjY7dihlfPaZMkX+W05x7Utl4J6hoaE02A2QkZGhU2MYMjJqs2ABPH6snK9fCCEhIZw4cUJa\nm7tZs2ZaTYEjowGyV/e8eBFat4br17WrTzlFpcNo164d33zzDSkpKfzxxx/07t0bX1/fstBNLeRI\nbxm1qVgRfvlFGQX+xx8FFlNmZT7HpUsPpd/0SnFJWJkyZMsWGDoUWrWC//635BGFbxkqI70zMzNZ\nsWIFu3fvBqBLly6MGDFCJ1oZuhINK1POOHBAGdR34gTUq5dn87Bhwzh2rANXr84BLjJmzBjS09NZ\nsmRJmamoK7at85HexZVx6ZJyGm7DhsognL9bk28LcvJBGZmisGCBMtDr8GGoVCnXphcvXuDi8g23\nbu0GzjB16lS+/PJLKr1WrjTRhG3XqAEJCSXXRece9pqS8eoVfPopRETAmjUq08i8SZSaw3B2ds4j\nvFq1ari7uzNt2jRMtZgpUnYYMsVGCGUro1o1WL48z+bERGUE+C+/FM3Gdu3axYQJE8jMzGTEiBF8\n+umnecpERkYyceJE0tPTqVmzZr5dqpqwbZ19UOuajG3bYMQIGDVKGez5FqRqKTWH8cknn1ChQgX6\n9++PEIINGzaQkpJCnTp1OHLkiNppE0oD2WHIlIikJGVA38yZ8P770s++vr6SbW3btg1fX1+qVq2K\nu7s7H374YYEtDXWSDyYmJtK6dWt+//13LC0tiYuLo2bNmnlkyQ6jjGU8eACDB8PLl8o0I/l0Vb5J\nlFp68z179jB79mycnZ1xcXFh1qxZHDhwgM8++4yYmJji6KoWERERjBw5kn79+vFHIQOUMjLFxtgY\n5syB2bNzPUlsbW2pUqUKI0eO/LuYMcbGxly/fp2goKACxeVMPmhgYCAlH8zJunXreP/996UI8Pyc\nhYwWMDeH33+Hnj2VEeKF5Ph6m1HZ9srMzOTEiRN4eHgAypsi6+91dUszy2bPnj3p2bMniYmJTJ48\nmU6dOpVaXTJvMT4+ylxTBw9Cu3aAMn3H6dOnpSJr167Fzc2N06dP06RJkwJFqZN88MaNG6Snp+Pt\n7U1SUhLjx49n0KBB+cqTkw+WMXp6Slvw9lamkdm9G374oUSrN+oKmko+qDJ64+TJk6JJkyaiXr16\nol69esLJyUmcOHFCJCcniw0bNqgM9AgMDBS1atXKE+y3c+dO0ahRI2Fvby/mzJlT4P6TJk0SUVFR\n+W5TQ30ZGdUsXSqEj4/01cHBQcTExAghlDYWExMjHBwchBAiVwDr62zatEmMGDFC+h4WFibGjBmT\nq8xHH30kWrZsKVJSUkRcXJxo0KCBuH79eh5ZmrBtnQiYK68ynj8XYtAgIRwchDh/vuSV6xjFtS+V\nTQR3d3cuXrxI4t/LkVXPzgEN9O3bV6VDCgwMZOzYsQwePFj6LTMzkzFjxuTq6/Xz8+P06dOcPXuW\nTz75BHNzcz777DO6deuGq6trUf2gjIz6DBoEX34JV65A48bMnz8fT09PKceTp6cnP/30Ey9evMhl\nx6+jTvJBKysratasSeXKlalcuTJt27bl/PnzNGjQoHSOTSYX6kcDGAN/ryzaVPnHxEQQH6/9cAKt\nUpAnCQ0NFenp6QV6mtTUVLFy5Uq1vFJ0dHSuFsbRo0dFly5dpO+zZ88Ws2fPzrXPDz/8IJo3by5G\njRol5eF5nULUl5EpGiEhQgQFSV9fvnwpoqKiBCBSUlLUEpGeni7q168voqOjRWpqqmjatKm4fPly\nrjJXrlwRHTp0EBkZGeLFixfCyclJXLp0KY8sTdh2uXyz10UZ168L0ayZcv/4+JIrogMU174KbGEk\nJyfj7u6Og4MDbm5umJubI4Tg4cOHnD59mqtXrxY6AFgY6vT1jhs3jnHjxqmUJffzymiEf/2LyPr1\noVs3Is+fz7WpcuXK0v/79+/H29s7XxEVKlTgxx9/pEuXLmRmZjJ8+HAaN27M0qVLAfjwww9xcHCg\na9euuLi4oKenR1BQkLSyn4yO0qABHDsGlYBmzWD9emjZUttaaYVCp9UKIThy5AiHDx8mNjYWgHr1\n6tGmTRtatWqldrR3TEwMvr6+/PnnnwBs3ryZXbt2sfzv+e9r1qzhxIkTRV4nXJ5WK6NJJru6cvDJ\nEzoOGSK9JLVq1YpNmzZx+vRp9uzZg7e3N/PmzSt1XeRptbonQ6EAEbEFgoJg0iSYPFk5UF4OKZU1\nvRUKBW3atKGNhiMg1enrVRd5xT0ZTfHdxo0ktWpFhJ0dP//8M5cvXwaUU8vbtGnDF198QZUqVbSs\npYxW8fMDV1fo10+ZYubnn+EtmhqtFfeYc6GZtLQ0wsPD8fPz04YqMjL/0LAhxm3aMDA1lYkTJzJg\nwAAAFi9ezIABA2RnIaPE2lrpLJo0gXffhSNHtK1R2aGpQZSC6NevnzA3NxcVK1YUlpaW0kB5fgvN\nFJUyUF/mbePQISHs7YXIyBBCaM/GNFFvuR9s1jEZ+e6/dasQtWoJMXeuynVWdIni2le5Tz4YHBws\nd0nJaA4hoGVLInv0IDIzk+nTp2s8lxTAqVOnaNmyJRs3bsTf3z/PdnkMQ/dkFLh/bKyyi8rEpNx0\nUZVaLqlLly5x8OBBYmJiUCgU2NjY4OnpWWjEa1khD3rLlAqbNsG//w1HjhTJxtTJJZVdrlOnThgZ\nGREYGMj7OfJYZSM7DN2TUej+6enwxRewYYNyFlXr1sWvqAzQeC6psLAwWrRoweTJk3n48CH169fH\nxsaGBw8eMHnyZNzd3VmzZk2JlJaR0UUSvb3Z+ddfLP7kE0DZanj27JnK/dTJJQWwaNEiPvjgA8zM\nzDSuu4yWMDCAefPgP/8Bf39l+vw38GW2wFlSCQkJ7N27F2Nj43y3P3/+nFWrVpWWXmojz5KS0RSH\nDh3i22+/JSYmBnMTE1JCQwFYv349U6ZMwcbGhilTphQ4a1Cd+KJ79+4RERHBvn37OHXqlE4sRCaj\nQXx9lQtz9e4NR4/CypVQtaq2tdIYBTqMwoLm0tLSqFq1qlqBdaVNzsA9GZmS8NtvvzF//nxlmo7k\nZNi+HUW/fvz8888AXL9+nSVLlhToMNR5+E+YMIE5c+ZIXQKFdQvIQanlFBsb5cJc48crM99u3gxO\nTlpVqcySD7Zt21bcunVL+n7ixAnh7OxcrBF2TQOI4OBgsX//fm2rIvOGsX//fhEcHFyk2STHjh3L\nlfJm1qxZeRJr2traChsbG2FjYyOqVKkiatWqJSIiIvLIKkq9BaELM4veJBnKPqaSfUxMSn4cmqC4\n9qVyr127dolGjRqJH3/8UXz++efC1dVVnDlzpliVaRpN3FQyMq8zYMAAkZCQIIRQ2lh0dLTw9vZW\nuZ86uaRyMnToULF58+Z8t8kOQ/dkFHv/c+eEsLMTYswYjRyHJiiufanMVtulSxcWL15Mp06dMDMz\nIyoqijp16pS8aSMjo6N4enri4eHBggULAOjcuTPz589XuZ86uaRk3kKaNoXTp2HIEOX3O3cgx1hX\neULltNqZM2cSHh7O8uXLuXDhAgsWLGD+/Pn4+PiUlY4FIk+rlSktDh06RPv27cnIyOD+/fuYm5uX\naf3ytFrdk1FiHbKyUOjrIeqYQ1gYdOxYAmElo9SWaH369KkUZPThhx+ye/dufvjhh2IpWRqEhIRo\nZjBHRuZvwsLCCAgIkNLVdO/enXPnzmlZK5lyT3aiwrVrlWuwlMOpt8WK9BZC6MR0QLmFIVMa9OrV\ni2XLllGrVi0UCgUnTpxg5MiRZeo05BaG7snQqA63b0OvXuDsDEuXQo4U+mWBxiO9hw0bxujRo3F3\nd893xxMnTrBkyRJC/56rrg1khyFT2mTbWGpqKoaGhmVeb8lkaP8h+ybJ0JQOJcXEBOLjS6qHhruk\nJk6cyKJFi2jYsCG+vr6MHDmSoKAgfH19adiwIYsXL2bSpEklUlpGRpcICQnh0aNH+W4zNDTkwYMH\nBAcHl7FWMm8auSbaZgnE7DkIi7qII0fVmpybkKA93QucJeXs7Mzq1atJTU0lKiqK27dvo1AoqFev\nHk2bNqVSpUplqWeByJHeMprCzc2Nfv36kZaWRu3ataV0IGPHjuXs2bMYGhoyefJklXJUJSBcu3Yt\n8+bNQwiBsbExixcvxsXFpVSOSUbHUSjgs8+UXVO9esGsWTBihLa1KpiC5tvevn27WPN0y5JC1JeR\nKTaxsbFi/fr1Yu7cuQIQGzZsEHfu3FFr34yMDGFnZyeio6NFWlpavrEYR48eFYmJiUIIIXbu3Ck8\nPDzyyNGEbetC7MKbJKPUdbhyRYiGDYX46CMh0tJKWY/iCSmwS6pnz57S//ll05SRedMYNGgQoFxC\nuF+/fkyZMgWAvn37qr0ipDoJCFu2bEm1atUA8PDw4O7duxo8Cplyi4ODMg9VdDR07gxPnmhbozyo\nDNwDuHXrVmnrISOjdc6cOcP9+/dZuXIlgwcPln6P/3uEsUaNGiplqJOAMCcrVqyge/fu+W6Tc0m9\nhVSvDlu2wLRpyjxUERHKwL8SoqlcUmo5DBmZt4FRo0bRoUMHbt26RfPmzaXfmzdvjkKhUOvFqSjT\nzffv38/KlSs5UsASn3JizbcUfX2YPRtcXJTBfT//DAW8VKjL6y8c06dPL5acArukLly4gLGxMcbG\nxvz555/S/8bGxlR9g9L1yshkM27cOK5cuUJgYCDR0dFER0cDEB0drXYru27duty5c0f6fufOnXy7\nsy5cuEBQUBBbtmzBxMREMwcg82YREKBsYQwfDosXa1sboJAWRmZmZlnqUWzkWVIymmbJkiXFbsK7\nublx48YNYmJisLCwIDw8nPXr1+cqExsbi7+/P2vWrMHe3l5DWsu8kbRqpUyV3r07/PWXcpEm1Qk6\nSo1yv6Z3OVZfphxQHBvbuXOnNK12+PDhfP7557kSEI4YMYLffvsNa2trAAwMDDh58mSJ682ru/aD\n3d4kGVrVIT5eOe3WzAzFr5s1oEcpremty8gOQ6a00ZaNyQ5D92RoXYfUVBg+HMXaNbLDKA6yw5Ap\nbWSHIcvQJR0QAoWeQmsOQ3udYTIyMjIyRUPLSV911mFcvXqV0aNH06dPH1asWKFtdWRkZGTeenTW\nYTg4OLB48WI2bNjA77//XqZ1l9b6GuVJbnnStTTllm8iZRkalaELOmhKRvEodYcxbNgwateujbOz\nc67fd+3ahYODAw0aNGDu3Ln57rt161Z69OhBv379SlvNXJS3h5rsMHTHYahj1+PGjaNBgwY0bdqU\nqKioUtQmUpahURm6oIOmZBSPUncYgYGB7Nq1K9dvmZmZjBkzhl27dnH58mXWr1/PlStXCAsLY+LE\nidy/fx8AX19fdu7cyc8//1zaasrIlJiC7DonO3bs4ObNm9y4cYNly5YxevRoLWkrI1N0Sj01iKen\nJzExMbl+y5mgDZAStH322WdSArgDBw7w66+/8urVK7y9vUtbTRmZElOQXTdu3Fgqs2XLFoYMGQIo\nEw8mJiby6NEjateurQ2VZWSKRoly5KpJdHS0cHJykr7/8ssvYsSIEdL3sLAwMWbMmCLLBeSP/Cn1\nj7qoY9c+Pj7iyJEj0vcOHTqI06dPy7Ytf8r8Uxy0knxQU+uBCzkGQ0aHUNeuX7fb/PaTbVtGF9HK\nLCl1E7TJyJQn1LHr18vcvXuXunXrlpmOMjIlQSsOI2eCtrS0NMLDw/Hz89OGKjIyGkMdu/bz82P1\n6tUAHD9+nOrVq8vjFzLlhlLvkgoICODAgQM8ffoUKysrZsyYQWBgID/++CNdunSRErTlHBiUkSmP\nVKhQIV+7zpl4sHv37uzYsQN7e3veeecdQkNDtay1jEwRKNbIRxmzc+dO0ahRI2Fvby/mzJlTYLmT\nJ08KfX19sXnzZo3J3b9/v3B1dRVNmjQR7dq104jcJ0+eiC5duoimTZuKJk2aiNDQUJUyAwMDRa1a\ntXJNHnidsWPHCnt7e+Hi4iLOnj1bYplr1qwRLi4uwtnZWbRq1UqcP39epUx1dRWi6NdLHblFvV6q\nZBbnWhUFVbaizjUo6f2hiftAEzavCRsvqU1rwnY1YaeasMvY2Fjh5eUlHB0dRZMmTcQPP/yQr6yi\nPDd03mFkZGQIOzs7ER0dLdLS0kTTpk3F5cuX8y3n7e0tevToITZt2qQRuQkJCcLR0VHcuXNHCKG8\nSDlZs2aN6Ny5c4Fy27ZtKywtLfPIDQ4OFp999pkks0aNGiI9Pb1AXffv3y/MzMzE2bNnCzSg7du3\ni27dugkhhDh+/Ljw8PBQeQ4OHjxYqMyjR4+KxMREIYTygaCOTCGUs4WMjIxEkyZNhBBCtGvXTvz3\nv//NVaao1ys/fRUKhfjrr7+k7aqulzoyX6eo16ooqGODqq5BSe+P1atXi8qVKxe4f7t27cTChQsL\nPa/q6DBkyBBhbGws7Z/feVR1LdSx8fDwcKFQKCTbex1V51OhUIgtW7bkq0P2/Z59LgHxn//8Rwgh\nxKhRo8TMmTPVOg517LQgGaGhoaJNmzZq2eWDBw9EVFSUEEKIpKQk0bBhwzzXpajPDZ1NDZJNzrnt\nBgYG0tz211m0aBEffPABZmZm+cqxsbHByMgIY2Nj6tSpQ48ePbCxsSlU7rp163j//felgcuaNWvm\n2j5gwIA8aUty6qunp4eHh0ceuebm5jx//hyA58+fY2pqSoUKhfcOGhoaFrgymxCCGTNmEBUVhZGR\nEX369OHGjRu5Blfzw9PTs9DV3lq2bEm1atUAZczA3bt38y1nY2PDvn37pO8ffPABly5dkmb/KBSK\nPDOBVF0vgJiYGPT09KSVHgcPHkx4eHiB5Qu6XqtWrcLT0zPffVSdg+JcK3VRx7ZzXoORI0dy8uRJ\nyYYHDRrE/v37S3R/2Nvb07Zt2wL3VygUnDhxotD7QJ3jMDU1lWZ+5Xce9fT06NatG56enly9epVJ\nkyaRlZWVS0ZBMSw5adGiRQFnO+/5LMims7e/Tvb9nn0uc7J48WKmTZsGKAM4e/ToUaAOqp4rISEh\ntG/fHk9PTy5fvkzr1q05fvx4rjLq2GW/fv04c+YMAFWqVKFx48ZSUHQ26pzTnOi8w7h37x5WVlbS\nd0tLS+7du5enTEREhBQ1m980RYVCwbZt20hKSuL8+fNcu3aNJ0+eFCr3xo0bxMfH4+3tjZubG2Fh\nYUXW18TEJI/coKAgLl26hIWFBU2bNuWHH35QKbcwxo0bx8WLF5kxYwbJycns3LmTjIwMKQhSE6xY\nsYLuBawrXNRUyepcr5w8e/aMpKQk1q9fz8KFC0lKSsq3XHGulyo0fa1yoo5t5yQ5OZlu3bpJNvzn\nn3+yaNGiEt0f6ujw+PHjQs+rOjJ69OhBenp6oefxwoULXLx4EVtbW9atW8fy5cvz1GNubp6rnoJe\nYtShMJsuiKLabn6oslOFQkFAQAAXL16kcePGtGnTBn9//1xl1LHLnLrFxMQQFRWFh4dHnuN5/doV\ndk513mGoc0EmTJjAnDlzpAeXqodX7dq1adq0KQkJCdJvN2/eZNOmTZiYmODq6sqBAwdIT0/n7Nmz\nBAQE8PTpU4YOHYqVlRXr1q0D8r65/vHHH4wfP57Vq1czduzYXHqEhIRID/BZs2ZRv359Hj58yNmz\nZ/noo49YvHgxjo6OVK1aFTs7O5YtW6bW+blx4waLFy+mWbNmODo6oqenh6OjI87Ozhw7dkzKseTl\n5ZUr6+/ruo8fPx5ra2uqVauGm5sbhw8flrYNHTqUGTNmkJSURNWqVXFycpLeXAYNGkRsbCy+vr4Y\nGxvz3XffERMTQ/369Qu8Dj179iQmJgZTU1N2797N48eP1TrW9957j4YNG5Kamppn27Nnz9i5cydL\nly7l1q1bdOnShRkzZrBr1y5Gjx7NsWPHMDY2pkaNGmrVlc2sWbNwdXXl/v37nDt3jo8++qhAh1VU\nivKw2b9/P8nJyYwcORJQ2nDnzp1z3dzHjx9n+vTpLF++XLJhUN4fnp6e2Nvbs3btWkaPHi3ZcGRk\nJFu3bpVkXLx4kTVr1lC9enXJhjMzMzl79iytW7emfv36zJw5U5oNpqenJ13n0NBQHB0dCQoKYvXq\n1blseO3atRgYGKh1Hg0NDfH09OTSpUvcvn0bPT09Vq5cyd69e5kwYQJCCL7++muOHDlC586dGTJk\niPS2nU1CQgJ169bFwsKC+fPnS7+fPHmSli1bYmxszOeffw5Aenp6nnN9/fp1zMzMmDJlinR8q1at\nwtXVVXrWwD/xMkOHDuXLL78kJSWFbt268ejRIy5fvkzVqlV58OABRkZGxMfHS/UdPHiQS5cusWPH\nDul8ZpPzGaZQKBg8eDAPHz6U9od/7HLTpk3Y2tri4+ODm5sbx44dA+CLL77g0KFDjBkzBmNjY1q0\naMEPP/xAlSpV8pzv1+/TwuxS5x2GOnPbz5w5Q79+/bC1tWXz5s3861//YsuWLXlkZZ+Yu3fvcvHi\nRQwNDQGll/3222/p1q0bCQkJfPfdd7z//vvUqFEDLy8vPvnkE3bv3k1gYCDBwcG4urrmkR0XF8f7\n77/P2LFj8fLyws7OjiNHjhAfH4+lpWWui3D06FHpzcbOzg5bW1vS0tLYvn07z58/JzQ0lIkTJ6qV\nmG7v3r1YWVnRpEmTXOcpLi4ONzc39uzZA+TfLZSTFi1acP78eRISEujfvz+9e/cmLS2NCxcusGXL\nFtLS0hgyZAjPnj3Dz8+PMWPGABAWFoa1tbXUeps8eXKh+kZERHD+/HnS09OpWrUqcXFxjBs3Lt/r\nlU32DXTkyBGuX79OpUqV8pQZO3YsFSpU4JNPPuHgwYNs2rQJc3NzkpOTWbJkCS1btiQpKSnXTacO\nR48epXfv3sA/1+ratWtFklEQ6sYjXbhwgaCgIGrXri3d8Hfv3mXXrl00b96cO3fucO/ePXx8fGjT\npg3Tp0+XbPjp06ecOnWKr7/+mtTUVAwNDcnKypLOg4mJieSA4+Li+P777/Hx8eHp06eSDZuYmNC5\ncz6W3VUAACAASURBVGcMDAwwNDSkbdu2nD9/Ps9x1K5dm+3bt/PVV18REBCQy4YvXryIkZFRoecx\n+/589eoVhw4dolmzZtK2gwcP0r9/fyZMmEBoaCg///wzFhYWnD59muTkZMkes3nx4gU3b95k9+7d\nzJ07l7179wLKmWxjxoyhVq1a7Nmzh8OHD/PTTz/l2nf37t3Y2dlx9uxZIiIiWLlypbQtKSlJetYA\nfPXVV2zZskW6v4yMjNi1axe1a9fG0dGR58+fY25ujre3Nxs3bgTAysqKd955h4CAAGrVqpXnfOYk\nKyuLVatWYW1tnetl5+jRo3Tp0oUePXrw6aef0q5dO/z9/enRowcJCQl88803eHp6snDhQlq1asXU\nqVPp1atXHvlFjQvSeYehztz2W7duER0dTXR0NB988AGLFy/OU0YIQa9evahatSrW1tY4OTmRmZlJ\nTEwMP//8M4aGhnzyyScAdOzYETc3N9555x2OHTuGnp4ep0+f5tixY7Rq1QpHR8c8eu7YsQMnJycm\nT57MzZs36dWrF3Xq1OHUqVP4+fnl8uIODg4cOXIEgEePHnHt2jUGDRokGWHbtm3p3Lkzhw4dUnl+\n4uLiqFOnTr7z+62trYmLi1PrPA8YMAATExP09PT4+OOPSU1NJTIyEn9/f/z9/Wnbti1du3ZFoVAw\ncODAAg1cFUuWLGHp0qXcvXuXmJgYAgIC0NPTy/VweJ2aNWtiampKUFAQn376aZ63pMzMTMLDw5k3\nbx4nT57E0tKSsWPHcvbsWRwdHUsUNe3g4CA53exrVb9+/WLLy4k6th0bG4u/vz9r1qxBX18/lw3b\n2dnx448/cuPGDRYtWkTXrl2JiorCz89PsuHt27dz+fJlqlWrxsKFC+nVqxdLly6VHrA2Nja8evWK\nmJgYtmzZgr6+PlOnTkVfX58JEyZQp04dmjVrxuHDh8nKyiIzM5MTJ07kugeyj8PR0ZG6desSHh7O\n+PHjc9mwtbU1r169KvQ8vvvuu7i6uhIbG0tQUBCBgYHStQsJCcHf358NGzawdu1a/P39MTMzw9bW\nltmzZ7Nhw4ZcYx61atWicuXKODk5ERgYyPr16wGlLQUHB7N27VratWvHyJEjpZZYNqNGjUJfXx8r\nKysmTJgg7Qvg7u4uPWsAZs6cKV2zbF3zs7fBgwezZs0aAHx8fDh79iz9+/cnJSUlz/kE2LhxI02b\nNuXatWtERUXx22+/5dru4ODA8uXLadSoER07duT69euMGjUKBweHXC9f2a2+CRMm5NEJih4XpJXU\nIEVBnbnt6qBQKIiIiKB9+/YcPHgQX19fpk+fTpcuXXj48CEpKSm0atWKtLQ0QDkI1759e3r06MGt\nW7cYOXIkmZmZTJkyhfnz59OoUaNc8u/fv4+lpWUufZ88eUKPHj1o3LgxZ86ckcZMpk6dSt++fRFC\n0KlTJ+bNm8eJEyeYPn06N27cICsri5SUFFxcXCT5T58+pVWrVsTFxWFlZcX06dNJT0/nypUrPHjw\nIN/5/RMnTqRhw4YFnpOrV69KMqtXr46RkRGJiYkoFApevXrF999/T0JCAtu3byc1NZUWLVpw8uRJ\njIyMePXqFVlZWejp5X3nGDduHEIIrl27Jr1NRUZGkp6ezu3btxk/fjyTJk0CICUlBYVCkacvNSdP\nnz5FT0+PgIAAli5dKp0DUA4gGhoakp6ejre3N5cvX8bFxYUXL15gZGSEo6MjJ0+eLPAcZMcJvX5e\nQWlbU6dOJTAwkKZNm5KVlcW8efOK3K1VEOrY9owZM0hISGD06NE8ePAAW1tbrl69KtnwuXPn+PHH\nHwkICOD58+cYGhpKdpyZmUn79u0xMjIiPDyc7777jgMHDnDlyhWaNGlCo0aN0NfXx87Oji5duhAX\nF4ednV0uHaysrDA3N6dr167MmzePtLQ0ZsyYgaOjo5RUNPs42rRpQ1xcHHp6erRq1Yrk5GTS09MZ\nN24cAwcOZNu2bYWex7Zt23LmzBlSUlIIDQ3FxsaGhw8fSnrY2NiwY8cOli1bxq1bt9i8eTOgdEYZ\nGRk8evRIsr3o6GjpesbGxvLnn38CMGnSJGJjY/H09JQcTJs2bSQdhBB8/PHHPHv2DCsrK95//30u\nXbrE0qVLpR4JVcycOZNHjx7lsqmUlBSioqKIiYnhzp07VKtWjWHDhqGnp0dQUFAeh2FhYUFqaiov\nX76UnMbJkyelLqepU6fi6enJgwcP6Nixo3Q+69WrJw1sP3v2jKioKFJSUqQXslmzZhEbGyvZV5Hj\nggqdQ/UGYWNjI/bu3St9/+KLL4SXl5cQQojZs2eLoKAglTJevfr/9s48rKlra+NvQLSAIyJUQUUC\niMwgOFYGqY0iapzBoYoK1lm/1qvW24u1VrHqdbyttlqtVKxTW9QC11sVJ1Cpc8UKWlC0alFEIA5M\n6/sj5hhIAockkAT273l82uTss7Ny8h7W2XuvvdZL+vDDD6lPnz5E9CbEjYjou+++ox49enBty8vL\nydbWlrZt20ZERKtWraJhw4Zxx1NTU0kgEFBZWRm9fPmSTE1N6cCBA1RaWkpERGKxmD755BMikobV\n2traKrXp5s2bZGRkROfPn6/w/t27d6lJkyZ0+vRpIiIaOHAgbdiwgTu+YsUKzvaTJ0+SlZUV/f77\n79zxVq1acdcrOjqaxo0bxx3LysribCci6tSpU4VrW/l4YGAgdx1EIhHFxcWpvMbyVO6nMrKw2tLS\nUmrcuHGFkMEtW7ZQUFAQERHt2LGD+66GTH3VMJFiiLQMZRoIDg6mL7/8knt98+ZNMjExobKyMq79\nH3/8wR3/xz/+wSWF7Nu3L82fP5+KioqIiGjt2rUVtCEQCCgpKYl7/eWXX9K7776rcK0q2zxx4kTu\nuyYnJyv9rlFRUfTZZ5/R2LFj6fPPP1d5LZYsWVLhfpNH3obY2Fjq1q1bheM9e/ak7777joiIgoKC\nuN9OW+j9lFRtMXfuXJw/fx7nzp3DuHHjcOjQIRw5cgRlZWV4+fIlkpOTcf/+ffz999+Ij4+HRCKB\niYkJzM3NYWxsrNBfSEgIrl+/jp9++gmlpaXYsGED93QEAF5eXjh58iRycnLw7NkzrFixgjtWXFyM\n4uJiWFpawsjICImJiThy5Aiv7+Hk5IQPPvgAY8eOxblz51BWVobr169j+PDhCA0NRe/evbnP//HH\nH/HixQvcunUL27Zt49Y0CgsL0ahRI1haWnJPkJUXEavC2toat2/f5tX2gw8+wPLly5Geng5A+hS0\nb98+3p+lDGNjY4waNQqLFy9GUVER7ty5g7Vr12LcuHGcfffu3VNY3DR06ouGa0p4eDjWrl2L7Oxs\nFBUV4eOPP0ZYWFiF0e6yZcvw4sULXL9+HTt27MDo0aMBSCPNmjVrBjMzM/zxxx/46quvFPpfvXo1\n8vPzkZOTgw0bNnDnVgXJLVRbW1vjyZMnCvfQ+++/j+3bt+PgwYNVRjASzynUAQMGICMjA7t370Zp\naSn27NmDP/74A6GhoZwdfO9LvjRYh2FpaYkJEyZg5cqVsLW1RXx8PJYvXw4rKyt06NABa9asARGh\nvLwca9euhY2NDVq3bo1Tp05xIpNfSLa0tMS+ffuwcOFCWFpa4tatWxWGuu+++y5Gjx4NDw8P+Pn5\nYdCgQdy5zZo1w4YNGzBq1ChYWFhg9+7dGDJkSAV7q1qw3rRpE6ZMmYJx48bB3Nwc7u7u8PDw4CJh\nAGDevHlo3LgxrK2tERERwf0xBYD+/fujf//+cHJygp2dHUxNTdGhQ4cKn1358+VfL1q0CMuWLUOr\nVq3w73//u0p7xWIxFixYgLCwMLRo0QLu7u5VluCt6nvLH9u4cSPMzc1hb2+PPn36YOzYsYiIiAAA\nBAcHw9XVFW+//TasrKxU9mdo1CcN1+TYpEmTMH78ePj7+8Pe3h5mZmbYuHFjhfYBAQFwcHDAu+++\ni/nz5+Pdd98FIHUGcXFxaN68OaKiohAWFqbQ/5AhQ9C1a1d4e3sjNDQUkydPVrhWle2SP+bs7Izw\n8HDY29vDwsKCc7q9e/eGkZERunbtqnL6VdnnqDrWunVrHD58GGvWrIGlpSVWr16Nw4cPc1N9c+bM\nwf79+2FhYaFyDaOmCIivO2MYDEuWLMHu3buRmpqqtfl2BoOhOe+++y7GjBmDSZMm6doUtdDJCENV\nnW8Zjx8/Rv/+/eHl5QU3Nzfs2LGjbg00cJYsWYLZs2fj3LlzujalwVGdtoG6rOnN0CfS0tJw8eJF\nXlNc+opOHIayOt/ybNq0Cd7e3rh8+TKSk5Px4YcforS0tA4tNHxmzJiBAQMGAJAK1dPTE69evYJE\nIoGbmxu3hsDQLtVpm9X01h6GpOsJEyagX79+WLduHczNzXVtjtroJKxWWZ1vedq2bYurV68C0H7+\nnoaIn58fBg8ejH/+85948eIFxo8fr3QvCUNzqtM2q+mtPQxJ1999952uTdAKevlXODIyEn379kW7\ndu1QWFjI7ZCsjLZKvTZEFi5cqGsTDAZtLvOpyt1T2WEwbasH0zV/1NG1XkZJ1SR/jyycTVf/oqOj\ndW5Dg7GnqAjk7w+KiACVldWJTbVB5X5VOYfa/m1rQyv6bqO+fefISEJAAEHU7AweoQ3eQxJcXGr/\nO6uLXjqM2szfwzBQJBIgJAQQCjHVeCsC+xohJATIz9e1YTWD1fRmyJORARSfSMHOQjHGIxZP/UQY\nNEjXVqlGLx1GbebvYRggcs4CW7fiZqYRTpwAEhOB18lbDQZW05shT9dXKfgZYnwqjIWZWIQjRwAl\nuTX1Bp2sYegyf4+2CQwM1LUJFah39lRyFjAywuukp/DzA3hmgdeuTVVQnbY1qemtbbtr4zrou436\n8p2jogCTtBQsuy7Ghp6x+DxBhJYt1e9P2/apwqA37tW0cA/DwFDiLADpNFRUlNRZyG6y2kJXGmPa\nrt/M8E5B9GXpNFSLkSKoiOupNdTVl8YOQyKRICcnBwKBALa2tnUaY8xuqnqMCmdRdx8v1XWXLl1Q\nVFRU57HzTNv1mJQU5AeJMbpYumZx5EjtP/hURl19qTUlVVhYiG+++QY//PADHj9+DGtraxARHj16\nhNatW2Ps2LGIjIxUWt2JwagWHTkLZboGADc3N6ZrhlaIGZKCqYlirHSLhVlHEfZsr3tnoQlq3Yli\nsRjNmjXDoUOH8OeffyI1NRVnz55FVlYWDh8+DHNzc4XEYwwGL5Q4i6goIDAQtR4VpUzXAJiuGRoT\nFSWdhpp8SIywklisvCSCiYlhOQuArWEw9AkVI4vAQEBWFG3kSNTpfC9bw2BoA/k1iyMQwc8POpmK\nklGnU1LyxMfH4+TJkwCkq/GD9DmImKG/VDENpWlUlDrI6/rQoUNM1wz1SUnB5+lijEYscr1FEHcE\nthvYVJQMjSaHFy5ciA0bNsDV1RUuLi7YsGEDFi1aVO15fDJ6Jicnw9vbG25ubnoXKsrQMtWsWcTF\nSUcWdfVEJq9rALx1zWAokJKCgmAxljrE4urbIvz0E/DTT4bpLABoVqLVzc2NK8dIRFRaWkpubm7V\nnnfy5Em6ePGiyrZPnz4lFxcXysnJISKi3Nxcpe00NJ+hDxQVEfn7E0VEEKkoxVrXyOsaAG9daxOm\nbcNnxeAzlGfShoY3SyKACCAaOVLXVklRV18ajTAEAgHy5VYh8/PzeSVN69OnD1q1aqXyeFxcHIYP\nHw5bW1sA0kpgjHqIRIIMhxAkZAgx8MFW5BfoR+IBdXXNYHCkSKOhwkpicaBQBKBup1RrC43WMBYt\nWgQfHx8EBQWBiHDixAnExMRobFRmZiZKSkoQFBSEwsJCzJkzp8oauAwD5PU01C0IEfpwKyhJGg1V\n1xuYlCGvawDo2rWrVnTNqN9ERUlzQ7VMT8H2fDGmmsbiSIkI3t5ARwNet5BHI4cRHh6OgIAApKWl\nQSAQICYmBm3bttXYqJKSEly8eBFHjx7F8+fP0bNnT/To0QOOjo4KbZcsWcL9f2BgIFvvMATk1iz+\nYyZ1Fvry9JWcnIybN29ixIgRuH//PgAgNTVVK7pm1G9kiQS/hhhhkDoLW1vg2DHDdxQcmsyD9e3b\nl9d7ysjKylI5LxwTE0PR0dHc68mTJ9O+ffsU2mloPkMXVFqzePpUOq/79KmuDXuDvIZlGuOra23B\ntG04REYSBQQQDWhxhh6hDQ01k65Z+Pnpl67lUVdfak0av3jxAk+ePEFubi7y8vK4f9nZ2dxTmSYM\nGTIEp0+fRllZGZ4/f45z587pbSUtRvXINt4NfU+C0vcqRkO1bCmdhtKHJzBlugZQI10nJSXB2dkZ\njo6OWLlypcJxVq++/iEbWex4JsY8y1isTRfVaVRfnaKOl1m7di3Z2dlR48aNyc7Ojvvn7u5OGzdu\nrPb8sLAwatu2LZmYmJCtrS1t27aNNm/eTJs3b+barFq1ilxcXMjNzY3Wr1+vtB81zWfUMQEBRGYo\nomT401E7/YmGqowyXQPgrevS0lISCoWUlZVFxcXF5OnpSenp6RXaREdH08KFC4lIGv1nYWFBJSUl\nCn0xbRsO/9dDOrKY5ZSktyOKyqirL41UqeoPeV3BbirDQNxP6iziLSPo6RP9dBbyyOu6JhpLSUkh\nkUjEvV6xYgWtWLGiQpvNmzfT9OnTiYjo9u3b5OjoqLQvpm0D4cwZKrNsQ8v6GI6zINJRWO3kyZPx\n2WefITIyEoA0uunw4cMajXgY9QyJBCuuhuD+W0Js8qz7rLPqoK6uldXrrjyVFRkZievXr6Ndu3bw\n9PTE+vXrtWs8o+5ISQHEYhh9H4vFJ0X1b/pJCRpFSUVERKBr165ISUkBALRr1w4jRoxAaGioVoxj\nGDivo6H+FAgx7uVW0FH9CZ2tCnV1zWevhqxefXJyMm7fvo1+/frhypUraNasmUJbFgGox7x2FoiN\nBUQiXVtTLcnJyUhOTta8I02GNT4+PkRE5OXlxb3n4eGhSZc1QkPzGbWJXDRUSP8yvY8akUde1zKN\n8dF1ampqhSmp5cuXU0xMTIU2AwYMoNOnT3Ov+/btS2lpaQp9MW3rL7Id3GMsk6h3b6IBAwxD1/Ko\nqy+N5geaNGmCFy9ecK9v376NJk2aaOTAGIaLqmioXbuNDCpqRF1d+/r6IjMzE9nZ2SguLsaePXsw\nePDgCm1YvXoDR24Hd9xjEc6cMcza8mqjiZf673//S/7+/mRpaUnh4eHUoUMHOnbsmCZd1ggNzWdo\nGUOJhqoOeV0DqJGuExISyMnJiYRCIS1fvpyIqEIEYG5uLoWGhpKHhwe5ubnRrl27lPbDtK2HnDlD\n1KYNLfaV7rNo0YIMauQsj7r6UrseRnl5Ofbt24fg4GCcPXsWANC9e3e0adNGa86sOljNAP1i6HsS\nzP1fCJ5ZCuF/cytaWuj/AndlKut60KBB+Pvvv+tU1wDTtt7xOuvsZ46xuGwtQtOmwLp1wPz5dVNb\nXtuorS9NvJRsrremREREkJWVVbUZQM+fP0/GxsZ04MABpcc1NJ+hRWZMLKKLzf0pzjSCsv80zJGF\nDHld60pjTNt6xOuRxUfu+pd1Vl3U1ZdGj4D9+vXD6tWrkZOTU2HHd3VEREQgKSmpyjZlZWVYsGAB\n+vfvz5609B2JBFN+CsGlAiHGvtiK+QsMb2Qhj7yuAfDWNaMe8joaal3XWGy7J42G8vbWj7xnukCj\nEq12dnZKQwmzsrKqPTc7OxuDBg3CtWvXlB5ft24dGjdujLS0NISGhmL48OEKbdiwXQ94HTp75LYQ\n/e9vha+fkcEsbqtCXtfZ2dmws7MDwE/X2oJpWw+Qm4b69r4IsmeGIUOAn3/WrWmaopMSrdnZ2Zqc\nrpL79+8jPj4ex44d4zLhqoLFquuQ1/UsbkGIda5bMcTPyOBTOCcnJ2PixInc608//bROHQVDP4gZ\nIo2GinwrFgeuvdln4ecHNOT0XxrX9P7999+Rnp6Oly9fcu+9//77GvU5d+5cxMTEcF6wKk8o7zAY\ndUjlehYPpaGzhuwsgDcPHTJdA8DOnTsBaK5rhoEgFzp7pOTNNFR9qWmhEZosnERHR1NgYCC1adOG\nJk6cSNbW1jR8+HBe51aV3rxTp05c8remTZuSlZUVxcfHK7TT0HyGurzelHfaKYIsWko35Xl7G15o\noSrkdQ2gRrrWFkzbOqJS6Ky3N5FYXH+0LUNdfWmkSldXVyotLeV2wT58+JCCg4N5nVuVw5Bn4sSJ\nLEpKn5DbwR3oX8ZFjQwZomvDtIe8rgHUSNfagmlbB7x2FpSUpJd1WrSJuvrSaErK1NQUxsbGaNSo\nEZ49ewYrKysusqQqwsPDceLECTx+/Bjt27fHp59+ipKSEgDA1KlTNTGJUZvIrVn8x2wrGjWWRkPV\nt3ldeV0D4K1rhgFTKTdUS+h/zjNdoJHD8PPzw9OnTxEZGQlfX1+Ym5ujV69e1Z63e/du3p+xfft2\nTUxkaAslNbiHDAFGjjTMjUtVIa/radOmwdvbm5euGQaKgSUS1CUahdXKk52djYKCAnh4eGijO16w\n0MM6Qq4G98AHW5Hwuga3oYfP8kEgEODKlSt1qmvZ5zJt1wGVnEVUlLSCnpkZEBdXf/Wtk7BaIsKP\nP/6I06dPQyAQoE+fPnV+YzFqB9mN06qxBPskIWjU+XUiwQJpivL6NqqQR17XgDT5INN1PUTJyCIj\nAzhxQnrYEFLx1zUajTCmTZuG27dvIzw8HESEvXv3wt7eHl9++aU2bVQJewqrPQIDgbQTEiQgBGV2\nQvS9bRjFj7SBvK4nTZoEkUhUp7oGmLZrHRXTUCEh0uyz9X0ErZNcUp07d6YyuYykZWVl1LlzZ026\nrBEams+oAicbadbZWBPDzw1VU+R1DaBGuk5MTKTOnTuTg4ODQi0MGcePHycvLy9ydXWlgIAApW2Y\ntmsRuWioytT36CgZ6upLoykpBwcH3L17l0udcPfuXTg4OGjSJUMfkEjwQ2EILkGIKSVbMWKBUYMa\nmqur67KyMsycORO//vorbGxs4Ofnh8GDB6NLly5cm/z8fMyYMQP//e9/YWtri8ePH9fW12AoQ8XI\noqGsXWiKRnMMBQUF6NKlCwICAhAYGAgXFxcUFhZi0KBBCoVjKjNp0iRYW1vD3d1d6fFdu3bB09MT\nHh4e6N27N65evaqJqQweREUB/ftIcK19CB41FWIKpLmhGlqiNXldA+Ct6/Pnz8PBwQF2dnYwMTFB\nWFgY4uPjK7SJi4vD8OHDYWtrCwCwtLSsvS/CqIgSZyEr+nXggHTtokEVQ1IDjUYYS5cuVXmsuvrG\nERERmDVrlsp0C/b29jh58iRatGiBpKQkREVFcXU3GLXD3RsSLDodgjQIcajPVoxoYlSvF7dVIa/r\noKAgJCQkcK+r0vX9+/fRvn177rWtrS3OnTtXoU1mZiZKSkoQFBSEwsJCzJkzB+PHj1faH8uTpkVU\nRENduwbIJyL286ufmWj1oqa3pvDd7Z2Xl0c2NjYK7+vY/HpDZCSR6J0iOtPIn7Yhgrr5ltX7OVy+\n1ERj+/fvpylTpnCvY2NjaebMmRXazJgxg3r27EnPnz+nx48fk6OjI2VkZGj0uYxqkFuziIyUVoa0\nsCAuS0F9TgGiCnX1pdEI48CBA1i4cCEePXrErbgLBAIUFBRo7Mjk2bZtG0JCQrTaJ+MNspHFHxBi\nic1WXP2fUYMbVcgjr2sAaNasGS9d29jYVNgRnpOTw009yWjfvj0sLS1hamoKU1NT+Pv748qVK3B0\ndNT+F2FwKcqnmsbiyBgRiICnT98cZkkFa4gmXsre3p7S09PVPp/PCOPYsWPUpUsXysvLUzgGgKKj\no7l/x48fV9uWhggbWShy/PhxatWqFU2fPp2io6Nr9CRWUlJC9vb2lJWVRa9evSJPT0+F++PGjRsU\nHBxMpaWlJJFIyM3Nja5fv67Ql4a3JoNIaaW8hjqiqIy6+tJIlb169dLk9GodxpUrV0goFFJmZqbS\n4+ym0gx7a2no7DZEkE1b5ixkyOu6phpLSEggJycnEgqFtHz5ciIi2rx5M23evJlrs2rVKnJxcSE3\nNzdav3690n6YttUnMpJoutcZyjVqQ/NcksjS8o2jcHdv2I5Chrr60mjj3pw5c/Dw4UOIxWI0btwY\ngHRKatiwYbzOr6rq3t27d9G3b198//336NGjh9Lz2eYmDZBIcKZlCG6WSqOhBg8xMvgqYtpCXtdj\nxozB/v37a6RrbcC0rT4zvFMQfVmM8YjFEUijodq1A7p1Y1NPMnSSGuTZs2cwNTXFkSNHKrzP58aq\nLmPt0qVL8fTpU0ybNg0AYGJigvPnz2tiboOmQpz5NxK0HBOCQishpvy1FV7eRvUq26ymVNb14cOH\nAfDTNUPHpKTg83QxRiMW51qIgGf1f9d2XaK15IO6gD2F8ScwUBpnbgYJ0ixD4DJIiPzVWxH1QcMM\nneWLrjTGtK0Gr0Nni76KxaQ9IqxaBcyfX7/znqmLuvrSaOPezZs3ERwcDFdXVwDA1atXsWzZMk26\nZGgJ2YakkBAgP186sjCDBKeahUAokiYSbGkh3cHNbqaKMF0bIHL7LJoOF2HvXmn0E9O3ltFk4aRP\nnz509uxZ8vLyIiKi8vJycnFx0aTLGqGh+fWagIA3C30jRxI9vVdE1y396eXYCKKyhpUbqqbI6xpA\nneuaiGmbD7I9FUPanKE8kzY0xjKJevcmGjCALWpXh7r60mgN4/nz5+jevTv3WiAQwMTERCMHxtCc\nqChAlknF2xv4eq10zaLlIOnIoqFknVUXpmvDICMDKD6Rgq8hRhhiceSxCHidmoulJq8dNHIYbdq0\nwa1bt7jX+/fvR9u2bTU2iqEZhw+/2ZzUyUrqLCBkzoIvTNf6DRfAcTkFeyHGB2axOPJchBYtgGfP\n6m96D71Ak2HNrVu3qG/fvvTWW29R27ZtqVevXpSVlaVJlzVCQ/PrLa1aSaeizFBE11r7E0WweB6f\nMQAAIABJREFUaaiaIK9rAHWuayKm7aoICCDqiTP0CNJpqOxs6bSr7L9sOqp61NWXVqKkJBIJysvL\n0axZM027qhEskkQR2VC85JkEJ8xD4C4WoslONrJQB4lEgqZNm7IoKT3jw54pWHBWjGVOsVh6TsQW\ntdVAJ/sw1qxZo5C9s0WLFujatSu8vLxUnjdp0iT88ssvsLKyUrppDwBmz56NxMREmJmZYceOHfD2\n9tbE1AaBvLNIQAjyWzNnoQ6Vdf3vf/+bl64ZtUtUFGCSloJl18XY0DMWSxOYs6hrNPpLcuHCBWze\nvBn379/HvXv3sGXLFiQmJiIyMhIrV65UeV5ERASSkpJUHk9ISMCtW7eQmZmJr7/+mtu8x6iajIw3\nziKnsRC+l5izUAd5XQPgrWtG7REVBWTHSXdwh5XE4rotcxY6QZN5sHfeeYcKCwu514WFhdSnTx+S\nSCTk7Oxc5blV5ZGaOnUq/fDDD9zrzp0708OHDxXaaWh+vUNWVvVbQQRdvczWLNRFXtcAaqRrbcG0\nXZHpXtI1i/eQRK1asXUKTVFXXxpNSeXm5nI5pABp+o5Hjx7BzMwMb731ltr9KitEc+/ePVhbWyu0\nZUVmpMyMkGDbwxBkQIgptBUjPm9YZVW1RXJyMm7cuIGVK1fC2NgYQM10nZSUhLlz56KsrAxTpkzB\nggULlLZLS0tDz549sXfvXpZyRAmySKjbt4GBrVLw2e9ijEMs0lqJcOkS24ynKzRyGGPHjkX37t0h\nFotBRDh06BDGjBkDiUQCFxcXjQyjSgsyqiqdyTuMBotEgik/heBimTSRYMtWDa+sqrYIDAzEnDlz\n8OOPP0IsFgMAevXqxUvXfGp6y9otWLAA/fv3ZwvbKsjIkKay6YkULL0ndRbptiL8eY05C12ikcP4\n5JNP0L9/f5w5cwYCgQBbtmyBr68vAGlNbnWpXIjm3r17sLGx0cTU+otEggyHEPz+QuosWrQ0Yk9g\nGiKvawC8dS1f0xsAV9O7ssPYuHEjRowYgbS0tNr5AvUAMzOps4gXiDGOYvHUT4RrLIGgzlHLYRQW\nFnIhtH5+fvDz86uyTU0ZPHgwNm3ahLCwMJw9exYtW7ZUOh3VkImKklbKW3U9BHdMhHi/eCsIRggI\nkObQYdQcZbqeN28e5ywqt6kMn5re9+/fR3x8PI4dO4a0tLQqa4Q35OnWPXNSUH5MjJdfx6LFYRH2\nsASCGqGtmt5qOYyhQ4eic+fOGDJkCHx9fWFhYQEAyMvLQ1paGn7++WdkZmbi119/VXp+danNQ0JC\nkJCQAAcHB5ibm2P79u1qfr36i6ysahqE+Ke11Fn4+YGlKdcATXVd1R9/GXPnzkVMTAwXB1/VlFRD\nnG6Vhc5+ni5Go7hYWA8XYe/7urbK8Kn8wPHpp5+q15G6q+xHjx6lyZMnk7OzMzVv3pyaN29Ozs7O\nNGXKlDorlaqB+YZNURGlNpFWymvZvIyuXmU7XLVFZV0D4K3r1NRUEolE3Ovly5dTTExMhTadOnUi\nOzs7srOzo6ZNm5KVlRXFx8cr9NVQtC1LIGhrS9S7N5Go2ZtoqJEjdW1d/UVdfRm0KhvKTVWBoiIi\nf3+KeyuCBCgjQFpyklE71ERjfGp6yzNx4kQ6cOCAxp9ryMhnVZal+3gPSeTnxx6AahN19aXRojej\njnm9wH0LQkwslU5DAdLbjaF7GjVqhE2bNkEkEqGsrAyTJ09Gly5dsGXLFgDS6VZGRczMpP/tZ56C\n7yVifCqMhZm7CHtYKVW9hFXcMxQkEiAkBAkZQoQ+fOMsvL2BY8fYzVVbsIp7tUt+PrB6WAo+vSpG\njEssZhxkO7jrAnX1xRyGISA/sijZitwnRvD2lkZDsaL2tQtzGLWDbGNe11cpWHVLDKPvYwGRSNdm\nNRjqNPlgXl5elcdl0SUMLfB6ZHHhmRBjX0hHFu3asVFFbaBK17L3ma61h6z40QKIsaJPLBYzZ2EQ\nqOUwfHx8qgwhzMrKqraP6lIoPH78GOPGjcPDhw9RWlqKjz76CBMnTlTHXMOl0shCNg3l58ecRW2g\nStddu3YFwE/XDH50fSV1FsucYrH0IHMWhoJOpqTKysrQuXPnCikUdu/eXWFH7JIlS/Dq1SusWLEC\njx8/RufOnfHo0SM0avTGx9XrYTtbs9AL2JRULZCSgvIhYqzowtYsdIW6+tIo93V5eTliY2OxdOlS\nAMDdu3dx/vz5as+TT6FgYmLCpVCQp23btigoKAAAFBQUoHXr1hWcRb3mtbOAUIhpjaTOonlzYOBA\n5izqAnV1zeBBSgoglq5ZLD7JnIWhoZHDmD59OlJTUxEXFwcAaNq0KaZPn17tecpSKMhqD8iIjIzE\n9evX0a5dO3h6emL9+vWamGo4vJ6GSsgQYuCDrWhrI/2JCgqkIYjsBqt91NU1oxpSUlAQLMb8t2MR\nsl6E/HxdG8SoKRo9sp87dw6XLl3iquFZWFhwKT6qgk8KheXLl8PLywvJycm4ffs2+vXrhytXrijk\n8alX+XYqL3AnGUGWQosVtq8bkpOTER8fj6lTp+LZs2cA+OuaUQWvRxafOcZi9TURcO1NhUiG4aCR\nw2jcuDHKysq417m5uTDiUeGtcjbanJwc2NraVmiTkpKCxYsXAwCEQiE6deqEmzdvVkgEB9SjfDty\n01ARqW/WLDw9gRYtpM6CjS5qn8DAQHTo0AGffPIJ4uPj8fDhQ966ZqjgtbNAbCyur5c6C/YAZJho\ndBfMmjULQ4cOxd9//42PP/4YvXv3xqJFi6o9z9fXF5mZmcjOzkZxcTH27NmDwYMHV2jj7OzMJXl7\n9OgRbt68CXt7e03M1V8qTUO9ZfbmZzE1lT6FMWdRd8jrGgBvXTOUIOcsIBIhLg4YORI4wlKVGyQa\nR0nduHEDR48eBQAEBwcr5P5XRWJiIhdWO3nyZCxatKhCCoXHjx8jIiICd+/eRXl5ORYtWoQxY8ZU\nNL4+RJIoiYaysgL+/ptFROkSma5nzZqF9PR03rrWFvVC25WchWyznpkZEBfHdK1L6nSnd+UNTrIu\nZGsTdbXBydBvqpkR0kp5fzcVYrXzVvzvqDRF+b59wPz5bBqqrlGma0tLSzx58gRA3W7cM3RtyzuL\nqAMiZGQA164Bsks8ciRbv9Aldeow7OzsuA+8e/cuWrVqBQB4+vQpOnbsWGcbnAz1ppIVP/rkbAhu\nlkor5Q0eYoTGjZmT0CXKdJ2XlweBQFAjXVe3KXXXrl344osvQERo1qwZvvrqK3h4eFRoY6jaBsA5\ni3VdY/HzC1EFRwFI1y/YlJRuUVtfauW4fc2UKVPol19+4V4nJCRQZGSkJl3WCA3N1wmRkURtmxdR\nMqT1LAQoY6mc9Qx5XQOoka5LS0tJKBRSVlYWFRcXK01xnpKSQvn5+URElJiYSN27d1foxxC1TURE\nZ84QtWlDlJRUIXU5QOTtLU3Fz7Sue9TVl0aqdHV15fVebWGIN5W99Rtn0bJ5GbuB9BB5Dcs0xlfX\nKSkpFYoorVixglasWKGyfV5eHtnY2Ci8b4jalncWREQDBjBHoa+oqy+NwmrbtWuHZcuWYdy4cSAi\nxMXFwcbGRpMu6y2yaajtf0tzQ03BVgx4xwg//aRryxiVkdc1AHz++ee8dc2nrrc827ZtQ0hIiNJj\nBrXHqPKaxQrAxET6FsuorHu0VdNbo8eYx48f06xZs8jLy4u8vLxo9uzZ9OTJE026rBEaml9nKJuG\n8vZmT1z6iryuAdRI1/v376cpU6Zwr2NjY2nmzJlK2x47doy6dOlCeXl5CscMRdtEpDCykJ+KYmVW\n9RN19aUVVRYUFFBBQYE2uqoRhnBTVXYWbBrKcCgoKKixxvjU9SYiunLlCgmFQsrMzFTajyFom4iI\nzpyhZ2+1oY/ck7i63JaWUmfB1ub0F504jKtXr5KXlxe1b9+e2rdvTz4+PnTt2jVe5yYmJlLnzp3J\nwcFB6Q1FRHT8+HHy8vIiV1dXCggIUDTeAG4q0TtvnEXjRmWUna1rixjVIa9rADXSNZ+63nfu3CGh\nUEipqakq+zEEbctGFh+5J1VY3AaIbG2Zs9BndOIwevToQceOHeNeHz9+nHr27FnteXwiSZ4+fUou\nLi6Uk5NDRES5ubmKxuv7TVVURKlNpM7CxLiMrl7VtUEMPsjrGgBvXctISEggJycnEgqFtHz5ciIi\n2rx5M23evJmIiCZPnkwWFhbcVK6fn59CH3qvbbmRhWxE0aIFG1kYCjpxGB4eHrzeqwyfSJL//Oc/\n9Mknn1TZj17fVEVFdPNtf9ppIl2zYPO5hoO8hmUa46NrbaLP2l4x+AzlmbSh4c2SKowosrOlGmfO\nQv9RV18aRUl16tQJn332GcaPHw8iwq5du3jle+ITSZKZmYmSkhIEBQWhsLAQc+bMwfjx4xX60stI\nkte5oc4/EWLC60p5rVqxZGuGQHJyMl69eoWgoCB4enoCAJYtW1Z/85jxRJbWo2V6Cr55LEYYxeJI\nibRSnvxGPLZ7u36jkcP49ttvER0djWHDhgEA+vTpg2+//bba8/ikNy8pKcHFixdx9OhRPH/+HD17\n9kSPHj3g6OhYoZ3eZauVS1H+/mtnYWICXLrEQgsNgcDAQKSkpCA6OhonT54EIM3CzEfX9RGZo7h2\nDeicl4KvIcY4xOIIRGjRAggKYmGzDQmNHIaFhQU2btxY4/P4pDdv3749LC0tYWpqClNTU/j7++PK\nlSsKDkOvUJGiPCgI6NhRx7YxeCOva4FA0HCKdykhIwM4cQLoiRT8DDE+MIvFkecitGolfQhium5Y\nqOUwBg0apDIXiUAgwMGDB6s8Xz69ebt27bBnzx7s3r27QpshQ4Zg5syZKCsrw6tXr3Du3Dn83//9\nnzrm1g2vp6FuQYj/mElTlL+S1t+BqaluTWPwQ5WuZe9Xp+v6iJmZ1FkcbiTGRr9YrN0tQiOWGLPB\nopbDOHv2LGxtbREeHo7u3bsDUMxYW+WHNmqETZs2QSQScenNu3TpUiG9ubOzM/r37w8PDw8YGRkh\nMjISLi4u6phb68iyzl5/IcT4YmmlPCsr6TFvb2DHDp2ax+CJMl0fPnwYH374IS9d10f2zElB+TEx\njHfFInq4dM2CrVM0XNTKVltaWor//e9/2L17N65du4aBAwciPDwcrq6utWGjSvQio6dEglSLENwo\nlqb7ILAU5YaKMl1//vnnOtGYrrUdFQWYpKXg83QxGsXFoulrZ8GoH+gkWy0R0cuXL2n79u3UunVr\n2rhxo6bd1QgtmK8ZL1/Szbf96VvBm9DZdu1YWGF9QKZrAHWuayLda3u61xl6hDb0HpJYOHg9RF19\nqb3o/fLlS/zyyy/44YcfkJ2djTlz5mDo0KHqdmeYNG6MXRYz8dnD4SAYoUUL4Pp1NqIwZCrrGkDD\n03WKdGQxGrF46ifCHhYOzniNWlNS48ePx/Xr1xESEoLRo0fD3d29NmyrFl0P2wFpUFRiIljUSD1A\nma51pTGdaft11tmir2IxaY+ITanWU+q04p6RkRHMzc1VGlJQUFBjQ9RBHxxGfr50vpfdWIaPMl0X\nFRWhadOmdaprQEfarlSDm1F/qVOHoS/og8Ng1G8ayggjZkgKpiaKMbNFLO50FqF5cyAujj0E1VfU\n1ZdRLdjCi6SkJDg7O8PR0RErV65U2S4tLQ2NGjXCjz/+WIfW8UcrRUm0CLOnemrTJj66nj17Nhwd\nHeHp6YlLly7x7lvbdnP9pUidRVhJLOIei3DmjHSaNSpKgz61hL73Vxt96nN/OnEYZWVlmDlzJpKS\nkpCeno7du3fjxo0bStstWLAA/fv319uRhL79QWT2VE9t2cRH1wkJCbh16xYyMzPx9ddfY9q0abz7\nr5U/JK+nodZ4vkn3AUjzQ6mT+0yf/9jVRn+10ac+96cTh3H+/Hk4ODjAzs4OJiYmCAsLQ3x8vEK7\njRs3YsSIEWjTpo0OrGQwagYfXR88eBATJkwAAHTv3h35+fl49OiRLswFcnJQECzG/Ldjca6lCGIx\ncOUKMHLkm2SCDIY8OnEYyrLV3r9/X6FNfHw89wTWUHfaMgwHvrqu3ObevXt1ZiNHdjbwww/4zDEW\nq6+J8Ouv0hrcHTtKd3IzZ8FQika7P9SET93jESNG0NmzZ4mIaMKECbR//36FfgCwf+xfrf/Tpq5D\nQ0Pp9OnT3Ovg4GC6cOEC0zb7V+f/1EGjbLXqwidb7YULFxAWFgYAePz4MRITE2FiYoLBgwdzbUhP\n1zUYDRM+uq7c5t69e7CxsVHoi2mboY/oZEpKPlttcXEx9uzZU8ERAMCff/6JrKwsZGVlYcSIEfjq\nq68U2jAY+gQfXQ8ePBg7d+4EIE122LJlS1hbW+vCXAajxuhkhMEnWy2DYWjw0XVISAgSEhLg4OAA\nc3NzbN++XcdWMxg1QK2JrAZIYmIide7cmRwcHCgmJkbh+PHjx6l58+bk5eVFXl5e9Nlnn9WaLRER\nEWRlZUVubm4q28yaNYscHBzIw8ODLl68WGu28LGnLq8NEdHdu3cpMDCQXFxcyNXVldavX6+0XV1e\nI3V48uQJvfvuu+To6Ej9+vWjp0qyWvL5rtVpl6hm16K6/r7//nvy8PAgd3d36tWrF125cqXa78rH\nRiKi8+fPk7GxMR04cEDj/o4fP05eXl7k6upKAQEBGvWXm5tLIpGIPD09ydXVlbZv315lf9q+h6vr\nT53fRBnMYfCgtLSUhEIhZWVlUXFxMXl6elJ6enqFNsePH6dBgwbViT0nT56kixcvqhTHL7/8QgMG\nDCAiorNnz1L37t11ak9dXhsiogcPHtClS5eIiKiwsJCcnJwUfq+6vkbqMH/+fFq5ciUREcXExNCC\nBQsU2lT3XflotybXgk9/KSkplJ+fT0TSP7TVXVs+fcraBQUF0cCBA5UGwdSkv6dPn5KLiwvl5OQQ\nkfQPvib9RUdH08KFC7m+LCwsqKSkRGWf2r6Hq+uvpr+JKnS209uQ4LtvhOpoobJPnz5o1aqVyuN1\nHetfnT1A3S7ivv322/Dy8gIANG3aFF26dMFff/1VoY1e7YdQgbyNEyZMwM8//6zQprrvqu29IXz6\n69mzJ1q83gHYvXv3asOGtb0vi09/cXFxGD58OBeUYGlpqVF/bdu25XKNFRQUoHXr1mjUSPWMv7bv\n4er6q+lvogrmMHjAJ75eIBAgJSUFnp6eCAkJQXp6el2byaE3sf6v0eW1yc7OxqVLl7gKejL07Rop\n49GjR9yCuLW1dbUOTdl31fbeED79ybNt2zaEhIRUabe292Xx6S8zMxN5eXkICgqCr68vYmNjNeov\nMjIS169fR7t27eDp6alxHfja1Cef30QVOln0NjT4bBr08fFBTk4OzMzMkJiYCLFYjIyMjDqwTjmV\nn+h1ufFRV9emqKgII0aMwPr169G0aVOF4/pwjfr164eHDx8qvP/5559XeC0QCKq0T9V35fud+F6L\nmlyj48eP49tvv8WZM2eqbMenz7lz5yImJoZLmlfViJVPfyUlJbh48SKOHj2K58+fo2fPnujRowcc\nHR3V6m/58uXw8vJCcnIybt++jX79+uHKlSto1qxZteeqojb0yfc3UQVzGDzgE18vL4wBAwZg+vTp\nyMvLg4WFRZ3ZKYNvrH9doYtrU1JSguHDh2PcuHEQi8UKx/XlGv3vf/9Tecza2hoPHz7E22+/jQcP\nHsBKVii+ElV9V23uDeHbHwBcvXoVkZGRSEpKqna6Ulv7smrSX/v27WFpaQlTU1OYmprC398fV65c\nUeow+PSXkpKCxYsXAwCEQiE6deqEmzdvwtfXt8rvrora0GdNfhOVqLXy0cAoKSkhe3t7ysrKolev\nXild9Hr48CGVl5cTEdG5c+eoY8eOtWpTVlYWrwWz1NTUOlnQrcqeur425eXlNH78eJo7d67KNrq4\nRjVl/vz5XETOihUrlC56V/dd+Wi3JteCT3937twhoVBIqampvL4nnz7lmThxYpVRUnz6u3HjBgUH\nB1NpaSlJJBJyc3Oj69evq93fvHnzaMmSJUQk1buNjQ09efKkyu+t7Xu4qv5q+puogjkMniQkJJCT\nkxMJhUJavnw5ERFt3ryZNm/eTEREmzZtIldXV/L09KSePXtq/MNURVhYGLVt25ZMTEzI1taWtm3b\nVsEWIqIZM2aQUCgkDw8Ppakn6tKeurw2RESnTp0igUBAnp6eXChvQkKCTq+ROjx58oSCg4MVwmrv\n379PISEhRKT8uyYmJlbopzrtEtXsWlTX3+TJk8nCwoKzx8/Pr9rvysdGGdU5DL79rVq1ilxcXMjN\nzU1l6DXf/nJzcyk0NJQ8PDzIzc2Ndu3aVWV/2r6Hq+tPnd9EGQZdQInBYDAYdQeLkmIwGAwGL5jD\nYDAYDAYvmMNgMBgMBi+Yw2AwGAwGL5jD0EOMjY3h7e3N/fviiy+00u/AgQO59AU1OVYVO3bswKxZ\nszQ1jdFAYNo2bNjGPT3EzMwMly5d0nq/v/zyi8J7siA5Zcf4wErnMmoC07Zhw0YYBoSdnR0+/vhj\neHt7w9fXFxcvXsR7770HBwcHruZCcnIy/P39ERoaCmdnZ0ybNo27cezs7JCXl4fs7Gx07twZEyZM\ngLu7O3JycrhjALBz5054enrCy8uLS4B26NAh9OjRAz4+PujXrx/+/vtv3VwERr2EadtAUGv3BqNW\nMTY25jbYeHl50d69e4mIyM7OjtuIM2/ePHJ3d6eioiLKzc0la2trIpKmEn/rrbcoKyuLysrKqF+/\nflwqaDs7O3ry5AllZWWRkZERnTt3jvtM2bHff/+dnJycuF2qeXl5REQVajF888039OGHHxIR0fbt\n2xXqVjMYqmDaNmzYlJQeYmpqqnLYLsud4+7uDolEAnNzc5ibm6NJkybcPG23bt1gZ2cHAAgPD8fp\n06cxfPjwCv107NgR3bp1q/AeEeHYsWMYNWoUl+dJlnMmJycHo0aNwsOHD1FcXAx7e3utfV9Gw4Fp\n27BhU1IGRpMmTQAARkZGaNy4Mfe+kZERSktLAVSceyUiGBkp/szm5uZK+5dlA63MrFmzMHv2bFy9\nehVbtmzBixcvNPoeDEZlmLb1H+YwDBRlwpdx/vx5ZGdno7y8HHv27ME777zDq0+BQIC+ffti3759\n3Jzv06dPAUiLwrRr1w6ANHqEwagtmLb1F+Yw9JAXL15UCD38+OOPFdpUro8g//9+fn6YOXMmXFxc\nIBQKMXToUIU2lSNAZK9dXFywePFiBAQEwMvLCx9++CEAYMmSJRg5ciR8fX3Rpk0brn11dRoYDHmY\ntg0blnywnpGcnIw1a9bg0KFDujaFwdAqTNu6R+MRhvxGHB8fH9y5cwe9e/cGANy5cwe7d+/W2Ehl\nnDhxAqmpqdzriRMn4sCBA2r3p+n58gQGBuLChQvVfp69vT137TZu3Ijo6GgcPXoUALBu3Tq15lLV\nfSrKzs6Gu7t7jc/jw+zZs+Ho6AhPT89qY/Bnz56tUKWMz/l2dnbw8PDgrmdqaqraG7Yqw+f3VIU6\nm78q//bGxsbw8fHhKvMtXrwYHTp0ULhOa9euRceOHbWy2SwpKQnOzs5wdHTEypUrlbZJTk5GixYt\nuGu+bNkyjT+3KtgTv+7ROEpK2UYcWfm/rKwsxMXFITw8XNOPUeD48eNo1qwZevbsCUDzTTbaFCOf\nvgQCAVavXo1hw4YpPb5+/XqMHz8epqamNfrsgIAABAQE1Oic2iQhIQG3bt1CZmYmzp07h2nTpuHs\n2bNK2/7222/Iz8+vcO34ni8QCJCcnFyhip+6G7aU9a2uNtQ5r/Jvb2ZmhosXL3LHhwwZglmzZilU\nh5s3bx4sLCzw22+/qWWrjLKyMsycORO//vorbGxs4Ofnh8GDB6NLly4KbQMCAnDw4EGNPo8v+qbt\nhkitrGHIagovXLgQp06dgre3t0JR9OTkZAQEBEAsFkMoFGLhwoWIjY1Ft27d4OHhgT///BMAkJub\nixEjRqBbt27o1q0bUlJScOfOHWzZsgVr166Fj48PTp8+DQA4efIkevfuDaFQyI0WiAjz58+Hu7s7\nPDw8sHfvXu79mTNnwtnZmdusU93s3JIlSzBhwgT4+/vDzs4OP/74Iz766CN4eHhgwIABXCQHXyp/\nnmyUs3HjRvz1118ICgpCcHCwwnl2dnZYsGABPDw80L17d9y+fVuhTXh4OBISEhT6vnPnDvz9/dG1\na1d07dq1wihNRuWn4tDQUJw4cQIAcOTIEfTq1Qtdu3bFqFGjIJFIqvyOBw8e5DZIde/eHfn5+Xj0\n6JFCu7KyMvzjH//AF198UeG68D0fULyesg1baWlp8PT0xKtXryCRSODm5ob09HRIJBJMmjQJ3bt3\nh4+PD/eH78WLFwgLC4OLiwuGDRuGFy9eVKuNiRMn4oMPPoCfnx86d+5cwVn99ddfGDBgAJycnLBg\nwQLu/enTp8PPzw9ubm5YsmQJAGDDhg1V/vaANLT07bff5nUN1OH8+fNwcHCAnZ0dTExMEBYWhvj4\n+Fr7PIYBoelGDvmNOMOGDSMioqZNmxIRUXJyMoWGhio97/jx49SyZUt6+PAhvXr1itq1a0fR0dFE\nRLR+/Xqu5GR4eDidPn2aiKRlBrt06UJEREuWLKE1a9Zw/U2YMIFGjRpFRETp6enk4OBARET79++n\nfv36UXl5OT169Ig6dOhADx48oAMHDnDv//XXX9SyZUuuite//vUvOnjwoILN0dHR1KdPHyotLaUr\nV66QqakpJSUlERHR0KFD6eeffyYiosDAwGorZE2YMIE6depEXl5e5O3tTdeuXatQSUy22UgZdnZ2\nXNWvnTt3Kr3GP/30E02YMIGIiF69ekXt27enly9f0vPnz+nly5dERJSRkUG+vr5EVLG8Y+UNS6Gh\noXTixAnKzc0lf39/ev78ORERxcTE0NKlS6u8ZqGhoXTmzBnudXBwMP32228K7datW0f5fh3EAAAH\nKElEQVTr1q0jojf6qcn5HTt2JHd3d/Ly8qIePXpw10l2Df/5z3/SRx99RDNmzODKni5atIi+//57\nIpJu3nJyciKJREJr1qyhyZMnExHR1atXqVGjRtzvOWXKFKWfP3HiRK6kZmZmJtna2tLLly9p+/bt\nZG9vTwUFBfTy5Uvq2LEj3bt3j4jebBwrLS2lwMBAunbtmoLdla+HPMre37Fjh9LNZrt27aqwYU72\nb+TIkQpt9+3bR1OmTOFex8bGKu0zOTmZLCwsyMPDgwYMGKCyxCmj/qDxlFRVG3GomqcPPz8/WFtb\nAwAcHBwgEokAAG5ubjh+/DgA4Ndff8WNGze4cwoLC7mnWvn+BQIBxGIxAKBLly7cU+jp06cxZswY\nCAQCWFlZISAgAGlpaTh16hT3ftu2bdG3b1+ur08//VSpvQKBAAMGDICxsTHc3NxQXl7O2ezu7o7s\n7Owqv2/lvqqakqoO2TRfWFgY5s2bp3C8f//+mDNnDoqLi5GYmIiAgAA0adIEz549w8yZM3HlyhUY\nGxsjIyOD1+cREc6ePYv09HT06tULAFBcXMz9v6prJjtXnsrTNH/99Rf279+P5ORkpZqp7nzZe5Wn\npOT517/+BV9fX5iammLjxo0ApKOlQ4cOYfXq1QCAV69e4e7duzh16hTmzJkDANzIVMY333yj8nuO\nGjUKgFTL9vb2+OOPPyAQCBAcHMytN7i4uODOnTuwsbHBnj178M0336C0tBQPHjxAeno63NzcVPav\nCWPGjMGYMWN4teU7jebj44OcnByYmZkhMTERYrGYt54YholOd3rLNuoA0s058ht3ZNM7RIRz585V\n2MijCvk2sj8yqjbryLepCbLPMDIygomJSQX7y8rKatSXOp+vDIFAgPLycvj4+EAgEGDIkCFYsmQJ\nAgMD8d///hd79+7lHMzatWvRtm1bxMbGoqysDG+99ZZCf40aNUJ5eTn3+uXLl9z/9+vXD3Fxcbxt\ns7GxQU5ODvf63r17sLGxqdDm8uXLuHXrFhwcHAAAz58/h5OTEzIyMnidz4fHjx9DIpGgrKwML168\ngJmZGQDgxx9/VFgLALTz28j+8Mrr3NjYGKWlpcjKysKaNWvw22+/oUWLFoiIiKhwnbXNrl27OMco\nj4ODA/bt21fhvcrXPCcnB7a2tgrnyi+6DxgwANOnT0deXp5Kp80wfGp1H0azZs1QWFioUR/vvfce\nNmzYwL2+fPlyjfru06cP9uzZg/LycuTm5uLkyZPo3r07/P39ufcfPHjAjWg0Qdkfmffffx9paWk1\n7qtZs2ZVRvjs2bOH+2+vXr1gZGSEy5cv49KlS9x8+OjRo/Htt9/i1KlT6N+/PwDpJiXZ/PfOnTuV\nOjk7OztcvnwZRIScnBycP38eAoEAPXr0wJkzZ7g1E4lEgszMzCq/x+DBg7Fz504AwNmzZ9GyZUtu\nVCkjJCQEDx48QFZWFrKysmBmZsY9qfI5nw9Tp07FsmXLMGbMGG4dQSQSVdCWbKTs7+/POcXff/8d\nV69erbZ/IsK+fftARLh9+zb+/PNPODs7qxwxFRYWwtzcHM2bN8ejR4+QmJjIHa/ut1eHsWPH4tKl\nSwr/KjsLAPD19UVmZiays7NRXFyMPXv2cGk75Hn06BH3/c6fPw8iYs6inqOxw1A1PQAAnp6eMDY2\nhpeXl8Kid1WRJ/LHNmzYgN9++w2enp5wdXXF119/DQAYNGgQfvrppwqL3so27wwdOhQeHh7w9PRE\ncHAwVq1aBSsrKwwdOhSOjo5wcXHBhAkTuKkVAIiOjlYZ681ng5A8165dU/lEXNXQPyoqCv3791e5\n8Pn06VN4enpi48aNWLt2rdI27733Hk6ePIl+/fqhUSPpYHL69On47rvv4OXlhZs3b3IBCvL2vPPO\nO+jUqRNcXFwwZ84cdO3aFQBgaWmJHTt2IDw8HJ6enujVqxdu3rwJQPU1CwkJgb29PRwcHDB16lR8\n+eWX3LGBAwdyoaKqrktV56s6p/J7O3fuRJMmTRAWFoaFCxciLS0NycnJ+OSTT1BSUgIPDw+4ubkh\nOjoaADBt2jQUFRXBxcUF0dHR8PX15fqMjIxUGmIrEAjQoUMHdOvWDSEhIdiyZQsaN26sVOcCgYAL\nAXZ2dsbYsWMr7Fiu7rf/xz/+gfbt2+PFixdo3749li5dqrSdujRq1AibNm2CSCSCi4sLRo8ezUVI\nbdmyhcseu3//fri7u8PLywtz587FDz/8oFU7GPoH27hXixQUFCAyMpIbDWiLTp064cKFC+xpTo+I\niIjAoEGD1F6TqoqajNR37NiBCxcucOs0DIY2YalBapHmzZtr3VkArLBLQ6N58+bw8fHBgwcPqmy3\ndu1axMTEoEWLFnVkGaOhwUYYDAaDweAFG2EwGAwGgxfMYTAYDAaDF8xhMBgMBoMXzGEwGAwGgxfM\nYTAYDAaDF/8PDafP7yMxRx8AAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 13 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Better CI for phat.par[i=0] shape parameter\n", + "Lp0 = phat.profile(i=0, pmin=-1,pmax=1)\n", + "Lp0.plot()\n", + "phat0_ci = Lp0.get_bounds(alpha=0.1)\n", + "print 'phat0_ci = ', phat0_ci\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "phat0_ci = [-0.73845586 -0.30183734]\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEXCAYAAACOFGLrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlFX/x/H3gEtpblluuGCpIMhmYi5pmKDlguZSLqmV\nWi5ppZXarwyXyFJb1FZLyzRxScXl0cTHsLIUzS0lwwWEABV3BRXR8/vj5DwSiwMMc88M39d1cSkz\nwz2fM+h859znPueYlFIKIYQQwkpcjA4ghBDCuUhhEUIIYVVSWIQQQliVFBYhhBBWJYVFCCGEVUlh\nEUIIYVVSWITT2rp1Kw0bNqRixYpERkbSqVMnvv32WwC+/vpr2rRpU6jjBgUF8dVXXxU5X1hYGAMG\nDAAgMTGRChUqcPPq/8I+x60/t2jRIjp27Gi+z8XFhaNHjxY59+08/fTTvPnmm8X+PMJ+SWERdsXd\n3Z1y5cpRoUIFatSowTPPPEN6enqhjjVx4kRGjx7NhQsX6NatG//5z3/Mb+RFYTKZMJlMVjnOTXXr\n1uXixYvm2wr7HLf+XP/+/fnhhx+KnLMoGUTJJIVF2BWTycTatWu5ePEiu3btYufOnUydOjXH47Ky\nsm57rMTERLy8vIojplU489xkZ26buD0pLMJu1apVi0cffZQDBw4A+lTOJ598QsOGDfHw8ABg7ty5\nNGzYkKpVq9KtWzdSU1MBuP/++zl69Chdu3alYsWKZGZm5nt66eDBg4SEhFC1alU8PT1ZtmyZRRmV\nUkydOhV3d3eqV6/OoEGDuHDhgvn+BQsWUK9ePe655x7z4zZv3pzjOAkJCbi4uHDjxo0c96WmpuLr\n68vMmTMB2LZtG61ataJKlSr4+/uzZcuWXLPldrovKiqKRo0aUaVKFV544QWL27F69Wq8vb2pUqUK\n7dq14+DBg+b7du/eTdOmTalYsSJ9+vThypUrFr12wnlJYRF25+an3aSkJNavX09AQID5vsjISHbs\n2EFsbCybN2/m9ddfZ9myZaSmplKvXj369OkDwJEjR6hbty5r167lwoULlClTJs9TNOnp6YSEhPDU\nU0+RlpZGREQEI0aM4M8//7xt1vnz5/PNN98QHR3N0aNHuXTpkvkNOzY2lpEjR7J48WJSU1M5f/48\nKSkpBXot4uPjCQoKYvTo0YwdO5bk5GS6dOnCxIkTOXv2LDNmzKBnz56cPn3aouOtW7eOnTt3sm/f\nPpYuXWo+VZZfO+Li4ujXrx+zZs3i1KlTdOrUia5du5KVlUVmZibdu3dn0KBBnD17lt69e/P999/L\nqbASTgqLsCtKKbp3706VKlVo06YNQUFBvP766+b7J0yYQOXKlSlbtiyLFi1i8ODB+Pv7U6ZMGd55\n5x1+++03EhMTC/Sca9eupX79+gwaNAgXFxf8/f3p0aOHRb2WRYsWMXbsWNzd3SlfvjzvvPMOERER\nXL9+neXLlxMaGkqrVq0oXbo0kydPLtAb7oEDB3jkkUeYPHkyQ4YMAWDhwoV06tSJRx99FIDg4GCa\nNWvGunXrLDrm+PHjqVixInXq1KFdu3bs3bv3tu1YsmQJXbp0oX379ri6uvLKK69w+fJltm7dyrZt\n28jKyuLFF1/E1dWVnj17EhgYaHEbhXMqZXQAIW5lMpmIjIzkkUceyfX+OnXqmP+emppKs2bNzN+X\nL1+eqlWrkpycTN26dS1+zmPHjrF9+3aqVKlivi0rK4uBAwfe9mdv9pRuqlu3LllZWZw4cYLU1FRq\n165tvu/OO++katWqFmVSSrFo0SIaNmxIz549s2VdtmwZa9asyZY1r9fr32rUqGH+e7ly5bh06ZJF\n7bj19TSZTNSpU4fk5GRcXV1xc3PL9hz16tWTMZYSTgqLcCi3fuKvVasWCQkJ5u/T09M5ffp0jje6\n26lbty4PP/wwGzduLHCef2dITEykVKlS1KhRg5o1a/LXX3+Z77t8+bLFp6xMJhOTJk1i/fr19OvX\nj4iICFxcXKhbty4DBgzgiy++KHDWwrajVq1a/PHHH+b7lFIkJSWZi2ZycnK2Yx07dowGDRpYNZ9w\nLHIqTDisvn37Mn/+fPbu3cvVq1d5/fXXadGiRYF6KwCdO3cmLi6OhQsXcu3aNa5du8aOHTuyDVDn\nl+GDDz4gISGBS5cu8frrr9OnTx9cXFzo2bMna9as4bfffiMzM5OwsLACfZIvXbo0y5YtIz09nYED\nB6KU4qmnnmLNmjVs3LiR69evc+XKFaKjo3O8uVtCKWXOk187evfuzbp169i8eTPXrl1j5syZ3HHH\nHbRq1YoWLVpQqlQpZs2axbVr11ixYgU7duwocBbhXKSwCIfx7/GJ9u3bM2XKFHr27EmtWrWIj48n\nIiLC4mPdPF6FChXYuHEjERERuLm5UbNmTSZMmEBmZuZtj/Pss88yYMAA2rZty3333Ue5cuWYPXs2\nAN7e3syePZs+ffpQq1YtKlSoQLVq1ShbtmyODLm1D3RxWbFiBSdOnGDw4MG4ubkRGRlJeHg41apV\no27dusycOTPXgnW74996f37t8PDwYOHChYwaNYp7772XdevWsWbNGkqVKkWZMmVYsWIFX3/9NVWr\nVmXp0qXZTt2JkskkG30JYRuXLl2iSpUqHD58ONt4hhDOxm56LDExMTRv3pyAgAACAwPz7E67u7vj\n6+tLQEAAzZs3t3FKIQpmzZo1ZGRkkJ6eziuvvIKvr68UFeH07KawvPbaa0yZMoXdu3czefJkXnvt\ntVwfZzKZiI6OZvfu3cTExNg4pRAFs3r1atzc3HBzc+PIkSMWn6oTwpHZzVVhNWvW5Pz58wCcO3cu\n3yt75OydcBRz585l7ty5RscQwqbsZozl2LFjPPTQQ5hMJm7cuMFvv/2Wbc7CTffddx+VKlXC1dWV\n559/nqFDhxqQVgghRJ6UDQUHB6smTZrk+IqMjFTt27dXK1asUEoptXTpUhUcHJzrMVJSUpRSSp08\neVL5+fmpn376KcdjAPmSL/mSL/kqxJc12E2PpWLFiuZF75RSVK5c2XxqLC+TJk3irrvuYuzYsdlu\nN5lMTn26LCwsjLCwMKNjFBt7aN/Jk7B/P/z5J2RlQblyUL58/n+WKwdlykB+q7bYQ9uKk7TPsVnt\nvdMq5ckKAgICVHR0tFJKqU2bNqlmzZrleEx6erq6cOGCUkqpS5cuqVatWqkffvghx+MApZz46y07\nyCDtk7ZJ++zsywqsVRLsZvD+iy++YOTIkVy9epU777zTvGRFSkoKQ4cOZd26dRw/fpwePXoAen2k\n/v3706FDh9wPqJStotteWJj+clbF1D6lYOdOWLIE9u7VPZL0dPD2/t9Xkyb6z5o18+955HX8hATY\nsgV++kn/eeECtG0LDz+sv9SKMJhk/bbZDfm3KbCjwXtrcvZTYdHR0QQFBRkdo9hYu31pabBwIcyb\nBxkZMGAANG+ui0idOgUvIAWRlPS/IrNlC6SkRPPII0E8/DB06KAzOBP5t+nYrPXeKYVFOKWsLNiw\nAebPh//+F7p1g2efhTZtwMXA2VvHj/+v0KxeDffdBy+/DF27gqurcbmEACks+ZLCUnL99ZcuJgsW\nQL16upg8+SRUrGh0spyuXYMVK+CDD+DUKRg9Gp55BipUMDqZKKmksORDCkvJcuUKfPedPtV1+DAM\nHKjfoBs3NjqZ5X77Dd5/HzZv1tlHjdKFUQhbksKSDyksJYNSsGYNvPQSeHrCsGHw2GNQurTRyQov\nIQFmz4avv4b27fVpspYtjU4lSgopLPmQwuL8Dh3SBeXIEZg1Sw+EO5OLF3UP7KOPoFo1GDMGevUy\ndnxIOD8pLPmQwuK80tMhPBw+/xzGjYMXX9STEp3V9et6kD88HO64Q7fby8voVMJZWeu9Uz7/CIeg\nFCxbpsdNEhL0PJRXX3XuogL6SrHHH4dt26BvXz0X5o034PJlo5MJkTfpsQi7Fxurr5g6cQLmzNFv\nriVVSoo+Bbh7N3z6KQQHG51IOBPpsQind+ECvPKKLiShofrNtCQXFYBatWDpUn2J8pAherJnWprR\nqYTITgqLsEsrV+rTXmfO6KVXRo+GUnazAJHxunSBAwegenU9e3/ePOdexUg4FjkVJuzK9et6DGHx\nYj03pVUroxPZv9274fnn4c479eC+p6fRiYSjklNhwumcPas/iW/bBjt2SFGxVECAnmDZqxc89BC8\n9RZcvWp0KlGSSWERdmH/fr0wpIcHbNwI995rdCLH4uqqZ+vv2aO/2rSBv/82OpUoqaSwCMN9/z20\nawcTJ8KHHzr2zHmj1a4Nq1ZBz566UP/0k9GJREkkYyzCMNev69M2336rF2N84AGjEzmXH37Q66a9\n+SaMHFm82wMI5yAz7/MhhcX+nTsH/fvrmfRLl+plS4T1HTmiJ1g+8ICe93LHHUYnEvZMBu+Fw4qN\n1adp7r8foqKkqBSn++/XA/sZGXrcJSnJ6ESiJJDCImxq5Uo9yfH11/XikTKeUvzKl4eICOjdWxf0\nLVuMTiScnZwKEzahFEyeDF99pQfrAwONTlQybdyoZ+u/8Qa88IKMu4jsZIwlH1JY7ItSMH68flPb\nsEHPFhfGOXpUj7v4+8Nnn+mJlUKAjLEIB3FrUdm0SYqKPbjvPvj1V8jM1OMuiYlGJxLORgqLKDZK\nwYQJ+rLXTZugalWjE4mbypfXS+Y8+SS0bg0HDxqdSDgTWdZPFAul9AD9hg3w3/9KUbFHJpPe06Za\nNXjkEVi/Hvz8jE4lnIEUFmF1N4vK+vXSU3EEgwZBuXJ6e+c1a/SVY0IUhRQWYVVKwf/9H/znP7qn\ncs89RicSlujdWw/id+mir9pr08boRMKRyRiLsJqbRWXdOikqjqhLFz3u0qOHnrgqRGFJYRFWoZSe\nG7F2rRQVRxYcrCex9u+vT4sJURhSWESRKaUXOlyzBjZvlqLi6B56SPc6hwyBJUuMTiMckYyxiCK5\nWVRWr5aeijMJDNSnwx59FC5fhqefNjqRcCRSWEShKaX3ULlZVGRzLufi6ws//qhPj2VkwIgRRicS\njkIKiyi0jz/WVxBt2SJFxVl5eOjNwtq318XllVeMTiQcgRQWUSg//ABvv62XBpGi4tzq19fFJThY\n75/z1ltGJxL2TgqLKLA//9Qr5K5Yod90hPOrXVv3TIOCoGJFePlloxMJeyaFRRTIqVPQtStMn66v\nHhIlR/Xquqf60EN6GZj+/Y1OJOyVFBZhscxM6NkTevXSy4CIkqduXb1UzyOP6CsAO3Y0OpGwR7If\ni7CIUjB4MJw9qwfsXWQGVIn266/QvbueECtrizkPp9uPZe/evbRs2RJfX19CQ0O5ePFiro/bsGED\nnp6eNGzYkHfffdfGKUuumTNh1y749lspKgJatYJ586BbN/jrL6PTCHtjNz2WwMBA3n//fdq0acP8\n+fOJj49n8uTJ2R5z/fp1PDw82LRpE25ubgQGBrJ48WIaN26c7XHSY7GuNWtg2DDYtg3q1DE6jbAn\nX38NYWGwdSu4uRmdRhSV0/VYDh06RJt/llQNDg7m+++/z/GYmJgYGjRogLu7O6VLl6ZPnz5ERkba\nOmqJsm8fPPusvgJMior4t6efhuHD9Qz9s2eNTiPshd0M3nt7exMZGUm3bt1YtmwZSUlJOR6TnJxM\nnVve3WrXrs327dtzPV5YWJj570FBQQQFBVk7stM7cQJCQ2H2bHjwQaPTCHv12mv/+7eycaNefl84\nhujoaKKjo61+XJueCgsJCeH48eM5bg8PD6dRo0aMHj2a06dPExoayqxZszh16lS2x33//fds2LCB\nuXPnArBw4UK2b9/O7Nmzsz1OToUV3ZUr+sqfDh30qQ4h8nPjBgwcCBcv6os7StnNR1ZRENZ677Tp\nrz/qNps8/PDDDwDExcWxbt26HPe7ubll68kkJSVRu3Zt64YUKKVXtq1TR68FJsTtuLjowfzQUHj+\nefjyS731sSiZ7GaMJS0tDYAbN24wdepUhg8fnuMxzZo149ChQyQkJJCZmcmSJUsIDQ21dVSnFx4O\ncXF6YFauABOWKlMGli+H/fv13jyi5LKbt43Fixfj4eFB48aNqV27Nk//s053SkoKnTt3BqBUqVLM\nmTOHjh074uXlxZNPPpnjijBRNJGR8Pnn+k85Vy4K6q679F4u338Ps2YZnUYYxW4uN7YmGWMpnKQk\naNZMF5UWLYxOIxzZsWN66ZfZs/VESuEYrPXeKYVFAHD9OrRrB506wfjxRqcRzmDnTnjsMb2nS5Mm\nRqcRlnC6eSzCWFOn6nPkr71mdBLhLJo1g/ff1z2WM2eMTiNsSXosgp9/hiee0Eu21KxpdBrhbF55\nBfbu1YtXymXI9k16LMIqzpyBp56Cr76SoiKKx7Rp+upC6Q2XHFJYSrCb81V69NBjK0IUh1KlICJC\nrzn3zTdGpxG2IB3TEuzzzyEhARYvNjqJcHZVquirDR9+GBo3lqX2nZ2MsZRQ+/frq8C2boVGjYxO\nI0qK1ath5EiIiZFTr/ZIxlhEoWVkQJ8+enthKSrClm4u+dKjB1y9anQaUVykx1ICDR8OFy7AwoWy\nnpOwPaX0VYgVKuiLRuTfoP2QHosolO+/10ubf/qp/IcWxjCZYP58PYFyzhyj04jiID2WEiQxEQID\n9dU5MngqjBYfDy1bwnff6S0ahPGkxyIKJCsL+veHsWOlqAj7UL++Lir9+ukiI5yHFJYSYsoUuOMO\nPQtaCHvxyCPwf/8H3brBpUtGpxHWIqfCSoAtW/RVYLJki7BHSsHgwXrX0kWLZOzPSHIqTFjk0iV4\n+mm9o58UFWGPTCb4+GP44w+9C6VwfNJjcXIvvQRnz8pSGsL+xcbqmfmyzL5xZD+WfEhh0X77TU9E\n278fqlY1Oo0Qt/f113ribkwMlC9vdJqSRwpLPqSw6FnNAQEwaRL07m10GiEsoxQMGgSlS+vJk8K2\nZIxF5Ovtt8HDA3r1MjqJEJYzmeCTT+CXX/RAvnBM0mNxQvv2QXAw7NkDtWoZnUaIgtu7V/8blkVS\nbUt6LCJXWVn60s133pGiIhyXnx9MngxPPqkvQxaORQqLk/nwQ6hYEZ591ugkQhTNsGHQoIFM6nVE\ncirMiRw+DC1a6Ctq7rvP6DRCFN25c9C0qb5SrGdPo9M4P7kqLB8lsbDcuKGXx+jWDV5+2eg0QljP\njh3QuTNs367XFxPFR8ZYRDZffgmXL8Po0UYnEcK6AgNhwgS9LFFmptFphCWkx+IE/v5bz1mRGcvC\nWSmld5/09NSnxUTxkFNh+ShJheXmf7hmzeCtt4xOI0TxOX1af4D69FN9akxYn7XeO0tZIYsw0JIl\nkJCgd4YUwplVrar3b+nVS+8+Wbu20YlEXqTH4sBOndKnviIj4cEHjU4jhG2Eh+vttTdvBhcZJbYq\nGbwXvPSS3n1PioooScaN01dBfvih0UlEXqTH4qDWrYNRo/QeFrIKrChpjh7VH6iio8Hb2+g0zkN6\nLCVYejqMGAFz50pRESXTfffpZYsGDJBLkO2RFBYHFB4ODz0E7dsbnUQI4wwerNfDmzrV6CTi3+RU\nmIM5fFifAti3D9zcjE4jhLGOHwd/f7mAxVrkVFgJNWYMvPqqFBUhAGrUgDlzYOBAyMgwOo24yW56\nLHv37mXYsGGkp6fj7u7OokWLqFChQo7Hubu7U7FiRVxdXSldujQxMTE5HuOsPZb16+HFF/WAfdmy\nRqcRwn489RTcfTfMmmV0EsfmdDPvAwMDef/992nTpg3z588nPj6eyZMn53hc/fr1+f3337n77rvz\nPJYzFparV8HHR19i2amT0WmEsC9nz4KvL8ybByEhRqdxXE53KuzQoUO0adMGgODgYL7PZyq5sxUN\nS3z4od5qWIqKEDlVqaKLyrPP6iIjjGU3hcXb25vIyEgAli1bRlJSUq6PM5lMBAcH06xZM+bOnWvL\niIZJSdEL733wgdFJhLBfISF62whZ4dt4Nl0rLCQkhOPHj+e4PTw8nHnz5jF69GimTJlCaGgoZcqU\nyfUYW7dupWbNmqSlpRESEoKnp6e5p3OrsLAw89+DgoIICgqyVjNs7rXX4Lnn9G56Qoi8vfuuXqhy\n+XK9ppjIX3R0NNHR0VY/rt2MsdwqLi6OAQMGsH379nwfN2nSJO666y7Gjh2b7XZnGmP55Rfo2xf+\n/BPuusvoNELYv23boHt32LNHXzUmLOd0YyxpaWkA3Lhxg6lTpzJ8+PAcj8nIyODixYsApKens3Hj\nRnx8fGya05auX9fLtkyfLkVFCEu1aAFDhsDQoXpbCWF7dlNYFi9ejIeHB40bN6Z27do8/fTTAKSk\npND5n80Xjh8/Tps2bfD39+fBBx+kS5cudOjQwcDUxWvuXKhUCZ580ugkQjiWiRP1Bnjz5hmdpGSy\ny1NhReUMp8JOnwYvL4iK0pdRCiEKZv9+aNcOYmKgfn2j0zgGp5vHYk3OUFhGjABXV5g92+gkQjiu\nGTNg9Wq9CrLs3XJ7xV5Yzpw5k+8P5jdB0WiOXlj27IGOHfWAvR2/zELYvevX4eGH9QUwI0cancb+\nFXthcXd3x2Qy5fmD8fHxRX7y4uLIhUUpaNtWLwf+3HNGpxHC8R08CG3awO+/Q926Rqexb3IqLB+O\nXFi++w5mztTnhV1djU4jhHOYOhV+/VVvkJfP5+USr9gvN96wYQPLli3Lcfvy5cuJiooq8hOLnC5d\n0pMh58yRoiKENb32GiQn6w9uovjl2WNp1aoVq1atolq1atluT0tLo2vXrmzbts0mAQvDUXss48dD\naip8843RSYRwPjt3QufO+mqxe+81Oo19KvYey9WrV3MUFYB7772X9PT0Ij+xyO7wYfjyS5g2zegk\nQjinZs30vi0vvmh0EueXZ2G5ePEi165dy3H7tWvXuHLlSrGGKolef11v4lWzptFJhHBekybp8cu1\na41O4tzyLCw9evTgueee49KlS+bbLl68yPPPP0+PHj1sEq6kiInRA4svvWR0EiGcW7lyekWLESPg\nwgWj0zivPAvLlClTqF69Ou7u7jRt2pSmTZtSv3597r33XqZOnWrLjE5NKT2wGBam/9ELIYpXu3Z6\nnti4cUYncV63vdw4IyODw4cPA9CgQQPKOcC7nyMN3q9bp/ew37cPStl0EwMhSq5z58DbGxYv1vPG\nhCbzWPLhKIXl+nXw94e334bQUKPTCFGyrFqlzxbs3Qt33ml0GvvgdMvml0QLFkDlytC1q9FJhCh5\nuncHPz+YPNnoJM5HeiwGuXwZGjWCpUuhZUuj0whRMh0/rlcP37ABmjY1Oo3xbN5jOXnyJG+88QZj\nxozh0KFDRX7ikm7WLGjeXIqKEEaqUQPeew8GD4ZcZleIQrK4xzJgwACGDh2KyWRizJgx7Nixo7iz\nFZq991hOnwZPT73tsIeH0WmEKNmU0leJPfKIXv2iJCv2HkvHjh356aefzN9nZmZSv3596tevz9Wr\nV4v8xCVZeDj06iVFRQh7YDLBF1/ovVvi4oxO4xzy7LGcO3eOqVOn8vfff/P2229z48YNJk2aREZG\nBmPGjOGhhx6ydVaL2XOPJSEBHngADhzQ3XAhhH348ENYsaJkbwpms8uNjxw5whtvvEGtWrV44403\nqFKlSpGftLjZc2EZMADuu08vLSGEsB/Xr0Pr1nq8ZehQo9MYo9gLy+HDh/nss88oU6YMI0eO5MiR\nI7z99tt07tyZkSNH4mrH67rba2HZvRs6ddLd7QoVjE4jhPi3PXugQwd9RqEkroBc7GMsffv25fHH\nHycoKIiBAwfStm1bNmzYQKVKlQgJCSnyE5dE48bBG29IURHCXvn7Q//+euKkKLw8C8utg/UZGRmA\nrmaDBg1irSwNWmBRURAfL9sNC2HvJk/W/19//tnoJI4rz9WpPvnkE0aNGkXp0qX57LPPst3nCOuF\n2ZMbN3RvJTwcSpc2Oo0QIj8VKsAHH8Dw4fr0tfyfLTiZeW8DixbpCZHbtsl+20I4AqXgscf03JaS\ndFrMJnve33Tu3DkGDx6Mj48P/fr148SJE0V+4pLi6lU9rvLee1JUhHAUJhPMmaP/3x47ZnQax5Nn\nYZkwYYL572PHjqVmzZqsWbOGwMBAnn/+eZuEcwaffKKX5374YaOTCCEKokEDGD1atjIujDxPhQUE\nBLB7924A/Pz82LNnD6Z/PnL7+fmxd+9e26UsIHs5FXbunF5ocvNmaNLE6DRCiIK6ehV8fGDmzJKx\nCrm13jvzHLxPS0vj/fffRynF+fPns91nD2/ajmDGDOjSRYqKEI6qbFl91mHIED3eUr680YkcQ56n\nwoYMGcLFixe5dOkSzzzzDGlpaQCkpqbi7+9vs4CO6tQp+PRTmDjR6CRCiKIIDtarkMuO7JaTq8KK\nyfjxcP68Li5CCMeWmqr3bdmyBby8jE5TfGyyVtiRI0dYsWIFf//9Ny4uLnh4eNCvXz8qVqxY5Ccu\nTkYXlpMnoXFjvTxEnTqGxRBCWNHs2fD99/Djj857hWexX2780UcfMWzYMK5evUpMTAxXr14lMTGR\nBx98kB9//LHIT+zM3nsP+vWToiKEMxkxAi5ehG+/NTqJ/cuzx9KkSRP27t2Lq6srGRkZPPbYY2zZ\nsoXExERCQ0PZs2ePrbNazMgeS2qqvrx4/36oVcuQCEKIYrJjh746LDYW7r7b6DTWV+w9FpPJxLV/\n9uq8cuUK6enpANStW9d8u8jp3Xdh4EApKkI4o8BA6NEDXn/d6CT2Lc/LjYcMGUJgYCAPPvggP//8\nM+PGjQPg5MmTVK1a1WYBHUlyMixYoD/NCCGcU3i4HkN95hl48EGj09infAfv9+/fz8GDB2nSpAme\nnp62zFUkRp0KGzVKX/c+Y4bNn1oIYUMLF8L770NMDJTK8+O54yn2U2Ggx1l69epltaKybNkyvL29\ncXV1ZdeuXdnue+edd2jYsCGenp5s3Lgx158/c+YMISEhNGrUiA4dOnDu3Dmr5LKGpCT47ruStWCd\nECVV//5QqZKePClysunOzj4+PqxcuZK2bdtmuz02NpYlS5YQGxvLhg0bGDFiBDdu3Mjx89OmTSMk\nJIS4uDgjpQnBAAAYfklEQVTat2/PtGnTbBX9tsLD9Xam1aoZnUQIUdxMJvj4Y5gyBf6ZOy5uYdPC\n4unpSaNGjXLcHhkZSd++fSldujTu7u40aNCAmJiYHI9bvXo1gwYNAmDQoEGsWrWq2DNbIiEBli6F\nV14xOokQwla8vOCpp2QgPzc2LSx5SUlJoXbt2ubva9euTXJyco7HnThxgurVqwNQvXp1u1m+/+23\n9aZA99xjdBIhhC299RasWQM7dxqdxL5YfdgpJCSE48eP57g9PDycrgVYHtR0m6mtJpMp38eEhYWZ\n/x4UFERQUJDFz10QR47AypUQF1cshxdC2LHKlfUHy9Gj4ZdfwMUuPqpbLjo6mujoaKsf1+qFJSoq\nqsA/4+bmRlJSkvn7v//+Gzc3txyPq169OsePH6dGjRqkpqZSLZ8BjVsLS3GaOhVeeME5J0sJIW7v\nmWfgs8/0TrEDBhidpmD+/aF70qRJVjmuYfX11kvaQkNDiYiIIDMzk/j4eA4dOkTz5s1z/ExoaCjf\nfPMNAN988w3du3e3Wd7cHDoEa9fCSy8ZGkMIYSAXF72O2PjxeskXYePCsnLlSurUqcO2bdvo3Lkz\njz32GABeXl488cQTeHl58dhjj/HJJ5+YT3MNHTqU33//HYDx48cTFRVFo0aN2Lx5M+PHj7dl/Bym\nTNG7y1WubGgMIYTBWrSAkBBZWv8mWTa/kA4ehLZt4fBhsPPFnoUQNpCaqneb/PVXvXOsI7LJBEmR\nt8mT4eWXpagIIbSaNfXpsJdfNjqJ8aTHUggHDuhtSg8fhgoViu1phBAOJjNT91pmztTbkjsa6bEY\naNIkPRlSiooQ4lZlysBHH+kLeq5eNTqNcaTHUkD79kHHjrq3Ur58sTyFEMLBdesGLVvqU2OOxCZb\nEzuq4iwsPXtC69YwZkyxHF4I4QSOHNFL6u/dC7lMybNbUljyUVyFJTZWj60cPQrlyln98EIIJ/J/\n/wfHjukl9h2FFJZ8FFdhGTBALzw3YYLVDy2EcDKXLukNwSIi9FkORyCFJR/FUViOHoXmzXUXt1Il\nqx5aCOGkFi+G6dNhxw5wdTU6ze3JVWE29t57MGyYFBUhhOX69NEX+Xz5pdFJbEt6LBZITtbXpsfF\nydL4QoiC2bNHX0n655/2v1itnArLh7ULy9ixcOMGfPCB1Q4phChBRozQi1XOmWN0kvxJYcmHNQvL\nqVN63Z8//nCsywaFEPbj9Gnw9IQtW/QFQPZKxlhsZNYs6NVLiooQovCqVtVbGJeU7culx5KPCxfg\nvvtg+3a4/34rBBNClFiZmeDtrU+HdexodJrcSY/FBj79VP8DkKIihCiqMmX0pcdjx0JWltFpipf0\nWPJw+TLUrw+bNkGTJlYKJoQo0ZTSq3f06QPPP290mpxk8D4f1nhx5szRRWXVKiuFEkIIYPdueOwx\n+Osv+5sXJ4UlH0V9cTIzoWFDWL4cAgOtGEwIIYBnn4V774V33zU6SXZSWPJR1Bdn/ny9FMPGjVYM\nJYQQ/0hJ0ZOud+7Up9zthRSWfBTlxbl+XS8c98UXEBRk3VxCCHHTlCl6ftzSpUYn+R+5KqyYLF+u\nu6gPP2x0EiGEMxs7Fn77DbZuNTqJ9UlhuYVSEB6uJzKZTEanEUI4s3Ll4J134OWX9ZJRzkQKyy3W\nrdMFpVMno5MIIUqCfv30B9rFi41OYl0yxvIPpaBVK/3p4YkniimYEEL8yy+/6AJz8KDxO9PKGIuV\nRUfDmTN6T3shhLCVhx6CFi1g5kyjk1iP9Fj+ERKiPzU880wxhRJCiDwcParnzP3xB9SqZVwOudw4\nHwV9cWJioHdvOHwYSpcuxmBCCJGHceMgLQ3mzTMugxSWfBT0xeneHYKD4YUXijGUEELk4/x58PCA\n9eshIMCYDFJY8lGQFyc2Vi8KFx8Pd95ZzMGEECIfn30GS5bA5s3GTHmQwXsrmTkTRo6UoiKEMN6Q\nIfp0WGSk0UmKpkT3WFJT9cY7hw7pHd6EEMJoP/ygT8sfOKD3cLEl6bFYwaxZ0L+/FBUhhP24ubng\n558bnaTwSmyP5eJFvapoTIzeflgIIezFvn16CkRcnG33bJEeSxF99ZUetJeiIoSwN76+ejOw994z\nOknhOG+PxegQQghhS9a4TNhKPZZSRT6CvcrnxVm8WF/Wt2WLDfMIIUQBjR8Pp07Bl18anaRgbHoq\nbNmyZXh7e+Pq6squXbuy3ffOO+/QsGFDPD092ZjH1o1hYWHUrl2bgIAAAgIC2LBhQ4EzKAXTp8Or\nrxaqCUIIYTPjx8Pq1bB/v9FJCsamPRYfHx9WrlzJ888/n+322NhYlixZQmxsLMnJyQQHBxMXF4eL\nS/a6ZzKZGDNmDGPGjCl0hs2b4coVWRpfCGH/KlfW+0ONHw9r1xqdxnI27bF4enrSqFGjHLdHRkbS\nt29fSpcujbu7Ow0aNCAmJibXYxT1/N+MGXrnNpcSe9mCEMKRDB+uVwj58Uejk1jOLsZYUlJSaNGi\nhfn72rVrk5ycnOtjZ8+ezYIFC2jWrBkzZ86kcuXKuT4uLCzM/PegoCCCgoL44w/YuxdWrbJqfCGE\nKDZly+qdbV97DbZvt+6H4ujoaKKjo613wH9YvbCEhIRw/PjxHLeHh4fTtWtXi49jymWhnOHDhzNx\n4kQA3nzzTcaOHctXX32V68/fWlhumjEDRo3SvyghhHAUTzyhl59auhT69LHecW9+6L5p0qRJVjmu\n1QtLVFRUgX/Gzc2NpKQk8/d///03bm5uOR5XrVo189+HDBlSoEL199+wZg18+GGB4wkhhKFcXPSc\nlsGD4fHH7f/DsWEjDbeOlYSGhhIREUFmZibx8fEcOnSI5s2b5/iZ1NRU899XrlyJj4+Pxc83axYM\nHAhVqhQttxBCGKFdO/Dygk8/NTrJ7dl0guTKlSsZPXo0p06dolKlSgQEBLB+/XpAnyqbN28epUqV\n4qOPPqJjx44ADB06lOHDh9O0aVMGDhzInj17MJlM1K9fn88//5zq1avnbNS/JvlcuKCXb/n9d3B3\nt0lThRDC6vbv1yuGxMXpK8asTfZjyce/X5wZM3RRWbzYwFBCCGEFQ4bAPffAtGnWP7YUlnzc+uJk\nZuqVQiMjoWlTg4MJIUQRJSfrtcT27IE6dax7bFmE0kJLlkCjRlJUhBDOwc1Nz2355wJZu+TUPRal\nwM8P3n1XrxQqhBDO4MIF/YF540bde7EW6bFYICpKrw326KNGJxFCCOupWBHeeAPGjTM6Se6curBM\nnw6vvAK5zLUUQgiH9txzcPgwbNpkdJKcnLaw7N4Nf/4JffsanUQIIayvTJn/LfVy44bRabJz2sIy\ncyaMHq1ffCGEcEa9ekHp0va3/qHTDt5XqaKIj7ftftFCCGFrqalQrRq4uhb9WLKD5G3MnClFRQjh\n/GrWNDpBTk7bY3HCZgkhRLGSy42FEELYJSksQgghrEoKixBCCKuSwiKEEMKqpLAIIYSwKiksQggh\nrEoKixBCCKuSwiKEEMKqpLAIIYSwKiksQgghrEoKixBCCKuSwiKEEMKqpLAIIYSwKiksQgghrEoK\nixBCCKuSwiKEEMKqpLAIIYSwKiksQgghrEoKixBCCKuSwiKEEMKqpLAIIYSwKiksQgghrEoKixBC\nCKuSwiKEEMKqpLAIIYSwKpsWlmXLluHt7Y2rqyu7du0y337mzBnatWtHhQoVGDVqVJ4/f+bMGUJC\nQmjUqBEdOnTg3Llztohtd6Kjo42OUKycuX3O3DaQ9gnNpoXFx8eHlStX0rZt22y333HHHUydOpUZ\nM2bk+/PTpk0jJCSEuLg42rdvz7Rp04ozrt1y9n/cztw+Z24bSPuEZtPC4unpSaNGjXLcXq5cOVq3\nbk3ZsmXz/fnVq1czaNAgAAYNGsSqVauKJacQQojCs6sxFpPJlO/9J06coHr16gBUr16dEydO2CKW\nEEKIAjAppZQ1DxgSEsLx48dz3B4eHk7Xrl0BaNeuHTNnzqRp06bZHvPNN9+wc+dOZs+eneuxq1Sp\nwtmzZ83f33333Zw5cybH425XoIQQQuTOGiWhlBVyZBMVFWXtQ5pVr16d48ePU6NGDVJTU6lWrVqu\nj7NyrRRCCFEAhp0Ky+3N/3YFITQ0lG+++QbQvZvu3bsXSzYhhBCFZ/VTYflZuXIlo0eP5tSpU1Sq\nVImAgADWr18PgLu7OxcvXiQzM5PKlSsTFRWFp6cnQ4cOZdiwYTzwwAOcOXOGJ554gsTERNzd3Vm6\ndCmVK1e2VXwhhBCWUE7g9OnTKjg4WDVs2FCFhISos2fP5vq48PBw5eXlpZo0aaL69u2rrly5YuOk\nhWNJ+w4ePKj8/f3NXxUrVlQfffSRAWkLxtLf3dmzZ1XPnj2Vp6enaty4sfrtt99snLRwLG1fvXr1\nlI+Pj/L391eBgYE2Tll4lrZPKaWysrKUv7+/6tKliw0TFo0l7bt8+bJq3ry58vPzU40bN1bjx483\nIGnhWNK+xMREFRQUpLy8vJS3t7dF7yt2dVVYYVkyvyUhIYG5c+eya9cu/vjjD65fv05ERIQBaQvO\nkvZ5eHiwe/dudu/eze+//065cuV4/PHHDUhbMJbOTXrxxRfp1KkTf/75J/v27aNx48Y2Tlo4lrbP\nZDIRHR3N7t27iYmJsXHKwivI3LKPPvoILy8vh7q4xpL23XHHHfz444/s2bOHffv28eOPP/LLL78Y\nkLbgLGlf6dKl+eCDDzhw4ADbtm3j448/5s8//8z/wMVRBW3Nw8NDHT9+XCmlVGpqqvLw8MjxmNOn\nT6tGjRqpM2fOqGvXrqkuXbqoqKgoW0ctFEvad6sffvhBtW7d2hbRisyStp07d07Vr1/f1tGswtLf\nnbu7uzp16pQto1mFpe1LSkpS7du3V5s3b3aoHktB/++lp6erZs2aqQMHDtgiXpEVtH1KKdWtWze1\nadOmfB/jFD0WS+a33H333YwdO5a6detSq1YtKleuTHBwsK2jFkpB5+9ERETQr18/W0QrMkvaFh8f\nz7333sszzzxD06ZNGTp0KBkZGbaOWiiW/u5MJhPBwcE0a9aMuXPn2jJikVjavpdffpnp06fj4uJY\nbzmWtu/GjRv4+/tTvXp12rVrh5eXly1jFlpB31sSEhLYvXs3Dz74YL6Ps/rlxsUlr/kxb7/9drbv\nTSZTrl3tI0eO8OGHH5KQkEClSpXo3bs3ixYton///sWWuSCK2r6bMjMzWbNmDe+++67VMxZWUduW\nlZXFrl27mDNnDoGBgbz00ktMmzaNyZMnF1vmgrDG727r1q3UrFmTtLQ0QkJC8PT0pE2bNsWSt6CK\n2r61a9dSrVo1AgIC7HJJFGv8/lxcXNizZw/nz5+nY8eOREdHExQUVBxxC8xa7y2XLl2iV69efPTR\nR9x11135P6lV+lMG8/DwUKmpqUoppVJSUnLtzkVERKjBgwebv1+wYIEaMWKEzTIWhSXtu2nVqlWq\nY8eOtopWZJa0LTU1Vbm7u5u///nnn1Xnzp1tlrEoCvK7uyksLEzNmDGjuKNZhSXtmzBhgqpdu7Zy\nd3dXNWrUUOXKlVMDBgywddRCKczvb/LkyWr69OnFHc0qLG1fZmam6tChg/rggw8sOq5j9UvzYMn8\nFk9PT7Zt28bly5dRSrFp0yaH6a4WZP7O4sWL6du3r62iFZklbatRowZ16tQhLi4OgE2bNuHt7W3T\nnIVlSfsyMjK4ePEiAOnp6WzcuBEfHx+b5iwsS9oXHh5OUlIS8fHxRERE8Mgjj7BgwQJbRy0US9p3\n6tQp80rrly9fJioqioCAAJvmLCxL2qeUYvDgwXh5efHSSy9ZdmArFT5DnT59WrVv3z7HJXPJycmq\nU6dO5se9++675suNBw4cqDIzM42KXCCWtu/SpUuqatWq6sKFC0ZFLTBL27Znzx7VrFkz5evrqx5/\n/HF17tw5oyIXiCXtO3LkiPLz81N+fn7K29tbhYeHGxm5QCz9/d0UHR2tunbtauuYhWZJ+/bu3asC\nAgKUn5+f8vHxUe+9956RkQvEkvb9/PPPymQyKT8/P/N0hvXr1+d7XJtOkBRCCOH8nOJUmBBCCPsh\nhUUIIYRVSWERQghhVVJYhBBCWJUUFuE03N3dc934LS979+41r65909q1awkLCwPg6tWrPPnkkzRs\n2JAWLVpw7NgxQM9W7tSpU57HPXnyJJ07dy54Awxy/vx5Pv3009s+7nbtFuImKSzCaZhMpgJt8rZ7\n927+85//ZLtt5syZDB8+HICvvvqKqlWrcujQIV5++WXGjRsH6KUvqlSpwq5du3I97pw5c3j66acL\n14hiopTK87U5e/Ysn3zyyW2Pcbt2C3GTFBbhUBISEvD09OSpp57Cy8uL3r17c/nyZfP9s2fP5oEH\nHsDX15e//voLgJiYGFq1akXTpk1p3bo1cXFxZGZmMnHiRJYsWUJAQADLli0jKSmJzMxM89pJq1ev\nZtCgQQD07NmT//73v+bnCQ0NZfHixblmXL58ubnHkpGRwRNPPIG3tzc9evSgRYsW/P777wBs3LiR\nVq1a8cADD/DEE0+Qnp4O6J5XWFhYjnaEhYUxYMAAWrVqRaNGjfjyyy8BvdRGcHCw+fGrV682v1Ye\nHh4MGjQIHx8fkpKSmD59Os2bN8fPz8/cMxs/fjxHjhwhICDAXDxfffVVfHx88PX1ZenSpRa1Wwiz\n4px8I4S1xcfHK5PJpH799VellFLPPvusefkTd3d3NWfOHKWUUp988okaMmSIUkqpCxcuqKysLKWU\nUlFRUapnz55KKaW+/vprNWrUKPOxFy9erF544QXz902aNFHJycnm7++//351+vRppZRSR48eVc2b\nN8+RLzU1VTVp0sT8/fTp09WwYcOUUkrt379flSpVSv3+++8qLS1NtW3bVmVkZCillJo2bZqaPHly\nvu146623lL+/v7py5Yo6deqUqlOnjkpJSVFZWVnmSbFpaWmqQYMG5tfKxcVFbd++XSmlV71+7rnn\nlFJKXb9+XXXp0kX99NNPKiEhIVvm5cuXq5CQEHXjxg114sQJVbduXfOyH3m1W4hbSY9FOJw6derQ\nsmVLAJ566qlse1/06NEDgKZNm5KQkADAuXPn6NWrFz4+PowZM4bY2Fgg5+mhxMREatasaVGGmjVr\nmo9/q2PHjmU7xtatW+nTpw8A3t7e+Pr6ArBt2zZiY2Np1aoVAQEBLFiwgMTExHzbYTKZ6NatG2XL\nlqVq1aq0a9eOmJgYlFJMmDABPz8/QkJCSElJ4eTJkwDUq1eP5s2bA7qHtHHjRgICAnjggQf466+/\nOHz4cI5TZFu3bqVfv36YTCaqVavGww8/zI4dO/JttxC3cpjVjYW46dYVWJVS2b4vW7YsAK6urmRl\nZQHw5ptv0r59e1auXMmxY8fyXXX21jdZNzc3EhMTqVWrFllZWZw/f56777471+fN6xj5fR8SEsJ3\n332X6zFya0duTCYTCxcu5NSpU+zatQtXV1fq16/PlStXAChfvny2x0+YMIHnnnsu2225FYp/Z77Z\n1vzaLcRN0mMRDicxMZFt27YB8N133912efkLFy5Qq1YtAObPn2++vWLFiubFH0F/ur91efFbF+hb\nvnw57du3N9+XmppKvXr1cjzXv4/RunVr8xhFbGwsf/zxByaTiRYtWrB161aOHDkC6MUnDx06lG87\nlFJERkZy9epVTp8+TXR0NM2bN+fChQtUq1YNV1dXfvzxR/PVa//WsWNH5s2bZx7LSU5OJi0tjQoV\nKmR7Hdq0acOSJUu4ceMGaWlp/PTTT+ZeT17tFuJWUliEw/Hw8ODjjz/Gy8uL8+fPm6/iuvWT9K17\nS7z22mtMmDCBpk2bcv36dfPt7dq1IzY21jx437p162xXPA0ePJjTp0/TsGFDPvzww2zbtsbExNC2\nbdsc2WrUqEFWVpb5zXvEiBGkpaXh7e3Nm2++ibe3N5UqVeKee+7h66+/pm/fvvj5+dGqVSvzIP2t\nbm2HyWTC19eXdu3a0bJlSyZOnEiNGjXo378/O3fuxNfXl2+//Tbbts23viYhISH069ePli1b4uvr\nS+/evbl06RJVq1aldevW+Pj4MG7cOB5//HF8fX3x8/Ojffv2TJ8+nWrVquXbbiGyMWRkR4hCio+P\nzzbQbG3t2rVTKSkpt31cv3791K5du3K976233lIRERFKKT1IfuXKFaWUUocPH1b169dX165dK1Q2\ne9inJb92C3GT9FiEwynOc/yvvPIKn332Wb6POXnyJOfOnctzz42RI0eaT6Glp6fz0EMP4e/vT48e\nPfj0008pVarwQ5tGjm/crt1C3CTL5gshhLAq6bEIIYSwKiksQgghrEoKixBCCKuSwiKEEMKqpLAI\nIYSwKiksQgghrOr/ARTmAr/EITBvAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 14 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Better CI for phat.par[i=2] scale \n", + "Lp2 = phat.profile(i=2,pmin=0.1,pmax=2)\n", + "Lp2.plot()\n", + "phat2_ci = Lp2.get_bounds(alpha=0.1)\n", + "print 'phat2_ci = ', phat2_ci\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "phat2_ci = [ 0.55127823 0.97075832]\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEXCAYAAACH/8KRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xdc1WX7wPHPEUdZDjInoJgLQZYrxTRM0VxortQyy7Qc\njSe10krD8ZC/HOXIfLI0TXNQGm6ljCxHDswGmVtQUDEHCiki9++PO08QIId1vmdc79eLV3DOl++5\nbrVznfu6l0kppRBCCCEKqITRAQghhLBvkkiEEEIUiiQSIYQQhSKJRAghRKFIIhFCCFEokkiEEEIU\niiQS4bB27NhBvXr1KF++PJGRkXTu3JnPPvsMgE8//ZTWrVsX6L7BwcF88sknhY4vLCyMgQMHAhAX\nF0e5cuW4PRu/oK+R+feWLVtGx44dzc+VKFGC48ePFzruvDz99NOMHz++2F9H2A5JJMKmeHp6UrZs\nWcqVK0e1atV45plnSElJKdC9JkyYwEsvvURycjLdu3dn48aN5jfuwjCZTJhMpiK5z201a9bk6tWr\n5scK+hqZf++JJ55gy5YthY6zMDEI5yCJRNgUk8nE+vXruXr1KjExMezbt48pU6Zkuy49PT3Pe8XF\nxeHt7V0cYRYJR14L7MhtE9lJIhE2q0aNGjz66KP89ttvgC7NzJs3j3r16tGgQQMAFixYQL169ahU\nqRLdu3cnMTERgDp16nD8+HG6detG+fLlSUtLu2O56NChQ4SEhFCpUiW8vLyIiIiwKEalFFOmTMHT\n05OqVasyaNAgkpOTzc8vWbKEWrVqcf/995uv27ZtW7b7nDx5khIlSpCRkZHtucTERPz8/JgxYwYA\nu3fvJigoCFdXVwICAvjuu+9yjC2n8l1UVBT169fH1dWVF154weJ2rF27Fh8fH1xdXWnbti2HDh0y\nP3fgwAEaN25M+fLl6devH9evX7foz044Dkkkwubc/jQbHx/Ppk2bCAwMND8XGRnJ3r17iY2NZdu2\nbbzxxhtERESQmJhIrVq16NevHwDHjh2jZs2arF+/nuTkZEqXLp1rySUlJYWQkBCefPJJkpKSWLFi\nBSNGjOD333/PM9ZFixaxePFioqOjOX78ONeuXTO/QcfGxjJy5EiWL19OYmIiV65cISEhIV9/FidO\nnCA4OJiXXnqJ0aNHc+bMGbp27cqECRO4dOkS06dPp1evXvz5558W3W/Dhg3s27ePn3/+mVWrVplL\nX3dqx+HDhxkwYACzZ8/mwoULdO7cmW7dupGenk5aWho9evRg0KBBXLp0iT59+vDll19KacvJSCIR\nNkUpRY8ePXB1daV169YEBwfzxhtvmJ8fN24cFStWpEyZMixbtoxnn32WgIAASpcuzTvvvMOuXbuI\ni4vL12uuX7+e2rVrM2jQIEqUKEFAQAA9e/a0qFeybNkyRo8ejaenJ/fccw/vvPMOK1as4NatW3zx\nxReEhoYSFBREqVKlmDRpUr7eYH/77TceeeQRJk2axJAhQwBYunQpnTt35tFHHwWgffv2NG3alA0b\nNlh0z7Fjx1K+fHk8PDxo27YtBw8ezLMdK1eupGvXrrRr1w4XFxfGjBnDX3/9xY4dO9i9ezfp6em8\n/PLLuLi40KtXL5o1a2ZxG4VjKGl0AEJkZjKZiIyM5JFHHsnxeQ8PD/P3iYmJNG3a1PzzPffcQ6VK\nlThz5gw1a9a0+DVPnTrFjz/+iKurq/mx9PR0nnrqqTx/93ZP6LaaNWuSnp7OuXPnSExMxN3d3fzc\n3XffTaVKlSyKSSnFsmXLqFevHr169coSa0REBOvWrcsSa25/Xv9WrVo18/dly5bl2rVrFrUj85+n\nyWTCw8ODM2fO4OLigpubW5bXqFWrloyROBlJJMKuZP5EX6NGDU6ePGn+OSUlhT///DPbG1teatas\nycMPP8zWrVvzHc+/Y4iLi6NkyZJUq1aN6tWr88cff5if++uvvywuQZlMJiZOnMimTZsYMGAAK1as\noESJEtSsWZOBAwfy0Ucf5TvWgrajRo0a/PLLL+bnlFLEx8ebk+SZM2ey3OvUqVPUrVu3SOMTtk1K\nW8Ju9e/fn0WLFnHw4EFu3LjBG2+8QYsWLfLVGwHo0qULhw8fZunSpdy8eZObN2+yd+/eLAPKd4rh\nvffe4+TJk1y7do033niDfv36UaJECXr16sW6devYtWsXaWlphIWF5euTeqlSpYiIiCAlJYWnnnoK\npRRPPvkk69atY+vWrdy6dYvr168THR2d7c3cEkopczx3akefPn3YsGED27Zt4+bNm8yYMYO77rqL\noKAgWrRoQcmSJZk9ezY3b95k9erV7N27N9+xCPsmiUTYjX+PL7Rr147JkyfTq1cvatSowYkTJ1ix\nYoXF97p9v3LlyrF161ZWrFiBm5sb1atXZ9y4caSlpeV5n8GDBzNw4EDatGnDAw88QNmyZZkzZw4A\nPj4+zJkzh379+lGjRg3KlStHlSpVKFOmTLYYcmof6GSyevVqzp07x7PPPoubmxuRkZGEh4dTpUoV\natasyYwZM3JMUHndP/Pzd2pHgwYNWLp0KS+++CKVK1dmw4YNrFu3jpIlS1K6dGlWr17Np59+SqVK\nlVi1alWWUpxwDiY52EoI67h27Rqurq4cPXo0y3iEEPbOZnoke/bsoXnz5gQGBtKsWbNcu8eenp74\n+fkRGBhI8+bNrRylEPmzbt06UlNTSUlJYcyYMfj5+UkSEQ7HZhLJa6+9xuTJkzlw4ACTJk3itdde\ny/E6k8lEdHQ0Bw4cYM+ePVaOUoj8Wbt2LW5ubri5uXHs2DGLS29C2BObmbVVvXp1rly5AsDly5fv\nOPNGqnHCXixYsIAFCxYYHYYQxcpmxkhOnTrFQw89hMlkIiMjg127dmVZM3DbAw88QIUKFXBxceH5\n559n6NChBkQrhBDCTFlR+/btVaNGjbJ9RUZGqnbt2qnVq1crpZRatWqVat++fY73SEhIUEopdf78\neeXv76+2b9+e7RpAvuRLvuRLvgrwVRA20yMpX768eZM4pRQVK1Y0l7pyM3HiRO69915Gjx6d5XGT\nyeTQ5a+wsDDCwsKMDqPY5Ld9GRnw55+QkABnzuj/JiRAcjJUqQLVq0O1av98VaoEJQwaHZS/O/vm\n6O0r8HtngdJPMQgMDFTR0dFKKaW+/vpr1bRp02zXpKSkqOTkZKWUUteuXVNBQUFqy5Yt2a4zNwsc\n8uttG4hB2idtk/YVw5fBCpoSbGaw/aOPPmLkyJHcuHGDu+++27wFREJCAkOHDmXDhg2cPXuWnj17\nAnp/oSeeeIIOHTrkflOlrBG69YWF6S9H9Xf7MjJg71746itYswauXYOuXcHLC2rU0F9ubrrHcddd\nlt8+LQ3On4ezZyExUX/t3w9btsCtW9ChA3TsCO3bw333FU/bHJa0zynZTGmrKDl6aSs6Oprg4GCj\nwygWN2/CrFnRHD8eTGQkVKgAPXrAY49BkybFW5JSCg4f1gllyxb4/nvw9tZJpWNHaN4cShbyo5cj\n/92BtM/eFfS9UxKJMFxKCmzerHsdGzdCgwY6efToob83yo0b8MMP/ySW+Hh45BF45hno1Mm4cRYh\nioskkkwkkdiHGzdg/nwID4eAAN3rCA3VJStblJioE93cuXD9OrzyCgwcCHffbXRkQhQNSSSZSCKx\nbRkZsHIlvPkmNGwIU6eCr6/RUVlOKYiOhhkz9BjOsGEwYgRUrWp0ZEIUjiSSTCSR2K6vv4bXXwcX\nF3j3XbD3cvOhQ/D++zox9uqleyk+PkZHJUTBSCLJRBKJ7fnpJ51Ajh/XpazevcGRjvVOStJlug8+\ngMBAGDVKz/pypDYKxyeJJBNJJLbj5El46y3dExk/Hp57DkqVMjqq4nP9Onz+Ocycqds5axa0aWN0\nVEJYpqDvnTLvRBSLK1f0p/ImTaBuXThyBEaOdOwkAno9y+DB8MsvegzoySf1gPzZs0ZHJkTxkUQi\nitwvv0DTpnqLkt9+0+u3ypUzOirrMpl0+S42Vs9C8/WFOXMgPd3oyIQoelLaEkVq+XJ46SV47z39\naVxov/+ue2SXLsG8edCypdERCZGdjJFkIonE+m7ehFdfhXXrYPVq8Pc3OiLboxSsWAFjxsCjj+pp\nz5UrGx2VEP+QMRJhmLNnoV07PQ6yb58kkdyYTNC/v+6dVKgAjRrB//6n9/cSwp5JIhGFsnOnHg95\n5BHdG3F1NToi21e+vJ7VFRUFS5dCixYQE2N0VEIUnCQSUSBK6TUTPXro9RNhYbL3VH75+cH27fDC\nC7rUNXu2425YLRybjJGIfEtN1duC/PSTHg+pW9foiOzf8ePQty/UrAkLF0LFikZHJJyRjJEIqzh+\nHIKCdF1/1y5JIkXlgQdgxw5wd4fGjfUeXkLYC0kkwmIxMXra6uDBurZ/zz1GR+RYypTR5a1p06BL\nF73uRDrWwh5IaUtY5Lff9MysefPg70MqRTE6dgwefxxq1YJPPpFSl7AOKW2JYnP0qD4hcPp0SSLW\nUqeOLnXVqCGlLmH7JJGIO4qL07vYTpggK9WtrUwZXd56910pdQnbJqUtkavERL1z7ciR8J//GB2N\nczt2TM/q8vTUs7oqVDA6IuGIpLQlitSFCxASAoMGSRKxBXXq6MWflSvDQw/B6dNGRyTEPySRiGwu\nX9ZjIt266a3QhW0oUwY+/FBvSx8UBL/+anREQmhS2hJZXLumk0iTJvpQJjnhzzZ9/rnuKa5cCW3b\nGh2NcBSy+28mkkgK5vp1Pajr6QkLFsiWJ7Zu2zbo10+vPenXz+hohCOQRJKJJJL8S0vTU3vvvReW\nLQMXF6MjEpb4+Wed/F9+GUaPlh6kKBxJJJlIIsmf9HQYMABu3IAvvnD843AdTXw8dOqkF4zOnCkf\nAkTByawtUSBKwfDheoB95UpJIvbIwwN++EH3Th5/HP76y+iIhLORROLkFi7U00rXrIG77jI6GlFQ\nFSvC5s36g0BICFy8aHREwplIInFiP/8MY8dCRIRswOgIypTR41stW0KrVnDypNERCWdR0ugAhDGu\nXtUrpWfOBG9vo6MRRaVECb17sIeHXrgYFQUNGxodlXB0MtjuhJTS+2bdfTd8/LHR0Yji8tlnuse5\nbRs0aGB0NMIeFPS9U3okTmjBAvjlF/jxR6MjEcVp4EB9AFm7djqZ1K9vdETCUUkicTI//aS3Pfn+\ne90jEY7t6achI0Mnk2+/lRMtRfGQROJEkpOhTx+99YmXl9HRCGsZPFj3TB55RCeTOnWMjkg4Gkkk\nTkIpGDpUv5kMGGB0NMLahg7VPZPbyeSBB4yOSDgSSSROYv58+OMP2LXL6EiEUZ5//p+eSXS03lNN\niKJgM+tIDh48SMuWLfHz8yM0NJSrV6/meN3mzZvx8vKiXr16/N///Z+Vo7RPMTH6hMOICBkXcXYj\nRsCYMTqZnDpldDTCUdhMIhkyZAjvvvsuP//8M4899hjTpk3Lds2tW7d44YUX2Lx5M7GxsSxfvpzf\nf//dgGjtx5Urer3I3LlQr57R0Qhb8MILepPHRx7R+3QJUVg2k0iOHDlC69atAWjfvj1ffvlltmv2\n7NlD3bp18fT0pFSpUvTr14/IyEhrh2o3lIJnn4UOHfQeTELc9vLLOqG0bSunLYrCs5kxEh8fHyIj\nI+nevTsRERHE5/BR6cyZM3h4eJh/dnd358dcFkOEhYWZvw8ODiY4OLioQ7Z5c+fC8eOwdKnRkQhb\n9MoresykbVs9ZuLmZnREwtqio6OJjo4u9H2smkhCQkI4e/ZstsfDw8NZuHAhL730EpMnTyY0NJTS\npUtnu86Uj8MWMicSZ7R/P0yerAfXZTNGkZsxY3Qyad9e7yBcqZLREQlr+veH7IkTJxboPlZNJFFR\nUXd8fsuWLQAcPnyYDRs2ZHvezc0tS08lPj4ed3f3og3SAaSn67UD770nawZE3l5/Hf78E0JD4euv\nZUKGyD+bGSNJSkoCICMjgylTpjB8+PBs1zRt2pQjR45w8uRJ0tLSWLlyJaGhodYO1ebNng2VK8t6\nEWG5qVOhVi144gndQxEiP2wmkSxfvpwGDRrQsGFD3N3defrppwFISEigS5cuAJQsWZK5c+fSsWNH\nvL29efzxx2koW5tmcfo0hIfDvHly7KqwXIkSsGiRPuDsP//REzWEsJTs/utgevcGHx8oYKlTOLkr\nV6B1a7079GuvGR2NsDbZ/VewcaPelFFmaYmCqlBB/ztq1UrP4nriCaMjEvZAEomDSE3V6wI+/FBm\naYnCcXfXyeSRR6BaNb1zsBB3YjNjJKJwwsOhWTPo2NHoSIQj8PGBVaugf384eNDoaIStkzESB3Do\nkK5rHzwINWoYHY1wJKtWwejRsGMH1KxpdDSiuMkYiZNSCoYPh/HjJYmIote3L5w5A48+qpOJq6vR\nEQlbJKUtO7dsmZ5pM2KE0ZEIR/XKKzqRdO8O168bHY2wRVLasmOXLoG3N0RGQvPmRkcjHFlGhh4v\nyciAlSv1uhPheAr63imJxI7d7oXMm2dsHMI5XL+ueybNmkEOpzwIByBjJE5mzx746iuIjTU6EuEs\n7roLvvxS934DAmSNifiHJBI7lJ4Ow4bBu+9CxYpGRyOcSaVK+gPMI49AgwbQtKnREQlbIJVOOzRv\nnk4g8olQGMHXF/73P+jZE86dMzoaYQtkjMTOJCSAvz98/z14eRkdjXBmb78N33wD27ZBDscHCTsk\ng+2ZOHIiefxxffb6lClGRyKcXUaG7pVUrap7KML+FfS9U0pbduS77/Qg+5tvGh2JEHoK8Gef6ZMV\n5883OhphJOmR2AmloE0beO45GDjQ6GiE+MfRo3q34IgI/W9U2C/pkTi4qCi4cEFOPRS2p25d3TN5\n/HGIizM6GmEESSR2QCm9l1ZYGLi4GB2NENl16ABjxkCPHvpIA+FcJJHYgfXr4a+/oE8foyMRInej\nRunt5599Vo7qdTaSSGxcRgZMmACTJsn+RsK2mUzw0Udw5IhsoeJsZGW7jVu9Wpezunc3OhIh8nb3\n3bBmDTz4IDRqBJ07Gx2RsAaZtWXDbt0CPz+YPh06dTI6GiEs98MPeo3Jzp16MF7YB5m15YBWrIAK\nFfSOq0LYk4ce0iXZvn3lDBNnID0SG5Wers8amT9fb5AnhL1RSieSKlXggw+MjkZYQnokDuazz8DN\nTZKIsF8mE3z8MWzerM9+F45LeiQ2KC1Nb9H92We6RCCEPdu/X5dnd+7U+8QJ2yU9EgeycKFOJJJE\nhCNo0kQvppXxEsclPRIbc/26nuWyerWcwy4ch1J6C5X775ejoW2Z9EgcxP/+B40bSxIRjsVkggUL\nYOtWWLnS6GhEUZMeiQ1JSdG9kU2b9JnYQjiamBjo2FHGS2yV9EgcwAcf6HERSSLCUTVuDBMnyniJ\no5EeiY1ITta9kehovX5ECEcl4yW2S3okdm7WLL0VtyQR4ehury+JipLxEkchPRIbcOmSrhfv2iV1\nY+E8DhzQH55kvMR2SI/Ejs2YoXf3lf+ZhDMJDNTHI/TpI+Ml9k56JAZLTgZPT736t3Zto6MRwrqU\ngn794L774MMPjY5G2H2P5ODBg7Rs2RI/Pz9CQ0O5evVqjtd5enri5+dHYGAgzR1gscWiRRASIklE\nOKfM60siI42ORhSUzfRImjVrxsyZM2ndujWLFi3ixIkTTJo0Kdt1tWvXZv/+/dx333253steeiS3\nbkH9+rB0KbRsaXQ0Qhhn507o1UuPm1SrZnQ0zsvueyRHjhyhdevWALRv354vv/wy12vtIUlYYv16\nPQWyRQujIxHCWEFBMHQoDB4s573bI5tJJD4+PkT+3beNiIggPj4+x+tMJhPt27enadOmLFiwwJoh\nFrn334f//Ed374VwduPHw4ULMlZij6x6ZntISAhnz57N9nh4eDgLFy7kpZdeYvLkyYSGhlK6dOkc\n77Fjxw6qV69OUlISISEheHl5mXsymYWFhZm/Dw4OJjg4uKiaUSQOHoTDh6F3b6MjEcI2lCqly7yt\nWkHbttCwodEROb7o6Giio6MLfR+bGSPJ7PDhwwwcOJAff/zxjtdNnDiRe++9l9GjR2d53B7GSAYP\n1ivZ33jD6EiEsC0ffaQ3L921C3L5PCmKid2PkSQlJQGQkZHBlClTGD58eLZrUlNTzbO5UlJS2Lp1\nK76+vlaNsyicPw9r1sBzzxkdiRC2Z+hQfTpopqKCsHE2k0iWL19OgwYNaNiwIe7u7jz99NMAJCQk\n0KVLFwDOnj1L69atCQgI4MEHH6Rr16506NDBwKgLZv58vQjr/vuNjkQI23N7C5VPP4Xvvzc6GmEJ\nmyxtFZYtl7Zu3NALEKOioFEjo6MRwnZt2AAjR+rxxAoVjI7GOdh9actZrFqlE4gkESHurEsX6NwZ\nXnzR6EhEXnLtkVy8ePGOv3inBYFGs9UeiVLQtKneX+jvap0Q4g5SU/85w+Txx42OxvEV9L0z10Ti\n6emJ6Q4LHE6cOJHvF7MWW00kP/ygZ2sdOgQlpC8ohEX27dMfvPbvB3d3o6NxbEWeSOyZrSaS3r31\n/PiRI42ORAj7Eh4O33yjxxblQ1jxKfIxks2bNxMREZHt8S+++IKoqKh8v5CzO3kSvv0WBg0yOhIh\n7M/rr+uJKu+/b3QkIie59kiCgoL46quvqFKlSpbHk5KS6NatG7t377ZKgAVhiz2SMWP0f6dPNzYO\nIezViRPQvLnumfj5GR2NYyroe2euW6TcuHEjWxIBqFy5MikpKfl+IWd27ZqeE79vn9GRCGG/ateG\nadNg4EDYu1dWvduSXEtbV69e5ebNm9kev3nzJtflOLN8WbwYgoP1+hEhRMENGgQeHvDOO0ZHIjLL\nNZH07NmT5557jmvXrpkfu3r1Ks8//zw9e/a0SnCOICMDZs2Cl182OhIh7J/JpPfh+uADvVBR2IZc\nE8nkyZOpWrUqnp6eNG7cmMaNG1O7dm0qV67MlClTrBmjXdu0CcqVg4ceMjoSIRyDmxu8+y48/TTk\nUDQRBshz+m9qaipHjx4FoG7dupQtW9YqgRWGLQ22d+iga7oDBxodiRCOQym9tqRlS32OiSgaso4k\nE1tJJL/9ps9jP3ECypQxOhohHMvp0xAYCNu2gR1uAm6TZK8tGzRrFgwfLklEiOLg7g7/939S4rIF\n0iMpJhcuQL168McfkMMsaiFEEVAKOnWCNm3kkLiiUOylrfPnzzN79mxSU1MZPnw49erVy/eLWYst\nJJJ33oEjR2DhQkPDEMLhxcVBkyZ65wjZVbtwir20NXr0aDp06MBjjz3GgAED8v1CzkQp+OQTGDbM\n6EiEcHw1a+q9uJ55BtLTjY7GOeWaSDp27Mj27dvNP6elpVG7dm1q167NjRs3rBKcvfrhBz0u0qyZ\n0ZEI4RyGDIGKFWULIqPkWtq6fPkyU6ZM4fTp0/z3v/8lIyODiRMnkpqayqhRo3jIhhdGGF3aevZZ\naNjwn/21hBDF79Qpfd7Pd9+Bt7fR0dinYhsjOXbsGG+99RY1atTgrbfewtXVtcBBWouRiSQlRc8m\n+f13qFbNkBCEcFr/+58el9yxA0rmupOgyE2Rj5EcPXqUMWPG8MknnzB9+nS6d+9Ov379mD17Nrdu\n3SpUsI7syy/1KnZJIkJY33PPwb33wsyZRkfiXHJNJP379+exxx4jODiYp556ijZt2rB582YqVKhA\nSEiINWO0K4sW6XntQgjrM5n0RJdp03RVQFhHrokk8+B6amoqoLs9gwYNYv369VYL0J6cOAG//gpd\nuxodiRDOy9MTJk3Ss7ikeGIduY6R7Nixg5kzZ1KqVCnGjRuHv7+/tWMrMKPGSCZOhD//hNmzrf7S\nQohMMjKgXTvo1g1GjTI6Gvshe21lYkQiyciAOnX0GEnjxlZ9aSFEDo4c0Zs67tsnZwFZqljObL/t\n8uXLPPvss/j6+jJgwADOnTtXsCgd2Pbterv4wECjIxFCgN6iaNQoGDlSLxIWxSfXRDJu3Djz96NH\nj6Z69eqsW7eOZs2a8fzzz1slOHvy6ae6JmsyGR2JEOK2MWP0+pKICKMjcWy5lrYCAwM5cOAAAP7+\n/vz000+Y/n6X9Pf356ANH09m7dLW1av6+M/Dh2WDRiFsza5d0KuXPtbBDpbBGaqg7525LtlJSkpi\n5syZKKW4cuVKlucccFilUL74Ah5+WJKIELaoZUt47DF4/XX46COjo3FMuZa2hgwZwtWrV7l27RrP\nPPMMSUlJACQmJhIQEGC1AO3BokW6rCWEsE3h4bBxI3z/vdGROCaZtVVIR49CUJA+ra10aau8pBCi\nAFavhjffhJ9+ksPmclMs03+PHTvG6tWrOX36NCVKlKBBgwYMGDCA8uXLFyrY4mbNRDJhAiQnw/vv\nW+XlhBAFpJQucQUGwttvGx2NbSry6b+zZs1i2LBh3Lhxgz179nDjxg3i4uJ48MEH+fbbbwsVrKPI\nyIDFi6WsJYQ9MJlg7lyYMwcOHTI6GseSa4+kUaNGHDx4EBcXF1JTU+nUqRPfffcdcXFxhIaG8tNP\nP1k7VotZq0fyzTd6euHfk9uEEHZgzhw9HTg6GkpYfLSfcyjyHonJZOLmzZsAXL9+nZSUFABq1qxp\nftzZySC7EPZnxAi4cUOOwS5Kd5y11axZM4YMGULLli0ZMWIEoM9ur1SpktUCtFVXrsD69SCnDgth\nX1xcYMECeOMNOHvW6Ggcwx0H23/99VcOHTpEo0aN8PLysmZchWKN0tbHH+vphKtXF+vLCCGKybhx\nesfuFSuMjsR2FHlpC/Q4Se/evYssiURERODj44OLiwsxMTFZnnvnnXeoV68eXl5ebN26Ncffv3jx\nIiEhIdSvX58OHTpw+fLlIomrIKSsJYR9mzAB9u7VHwhF4Vh1qMnX15c1a9bQpk2bLI/HxsaycuVK\nYmNj2bx5MyNGjCAjIyPb70+dOpWQkBAOHz5Mu3btmDp1qrVCz+LwYTh2DB591JCXF0IUgbvvhvnz\n9ZjJtWtGR2PfrJpIvLy8qF+/frbHIyMj6d+/P6VKlcLT05O6deuyZ8+ebNetXbuWQYMGATBo0CC+\n+uqrYo+tqTYJAAAXhElEQVQ5J59+Ck88AaVKGfLyQogiEhICbdrIupLCsonJbwkJCbi7u5t/dnd3\n58yZM9muO3fuHFWrVgWgatWqhmxnf+sWLFkix+kK4ShmzIClS/WKd1EwuW7aWFAhISGczWEqRHh4\nON26dbP4PqY89mM3mUx3vCYsLMz8fXBwMMHBwRa/9p188w1Uqwa+vkVyOyGEwSpXhilTdInrhx+c\na21JdHQ00dHRhb5PkSeSqKiofP+Om5sb8fHx5p9Pnz6Nm5tbtuuqVq3K2bNnqVatGomJiVS5w3a7\nmRNJUVq0SHojQjiaZ5+FTz7RZevBg42Oxnr+/SF74sSJBbqPYbk38xSz0NBQVqxYQVpaGidOnODI\nkSM0b9482++EhoayePFiABYvXkyPHj2sFi/A5ct6hkf//lZ9WSFEMStRAubN02tLLl40Ohr7Y9VE\nsmbNGjw8PNi9ezddunShU6dOAHh7e9O3b1+8vb3p1KkT8+bNM5ethg4dyv79+wEYO3YsUVFR1K9f\nn23btjF27Fhrhs+XX0L79iDrMYVwPI0bQ+/eOpmI/JFt5POhUydd1nr88SK/tRDCBly+DA0bwtq1\n0KyZ0dFYX7FsI2+viiORXLoEtWrBmTNQrlyR3loIYUMWL9YbO/74o95OxZkUy8p28Y+1a6FdO0ki\nQji6p57SixUXLDA6EvshicRCX3yh66dCCMdmMumB9wkT4O8TxkUepLRlgStXwMMD4uOhQoUiu60Q\nwoaNGqXHTJxpu3kpbRWj9evh4YcliQjhTMLCYOtW2LHD6EhsnyQSC0hZSwjnU748TJ+uV7ynpxsd\njW2T0lYerl4FNzc4dQpcXYvklkIIO6GUXjsWGgovv2x0NMVPSlvFZONGaNVKkogQzshkgg8+0Htx\nJSYaHY3tkkSSBylrCeHcvLxgyBAYM8boSGyXlLbuICUFatSA48dlWxQhnFlKCnh7600d27Y1Opri\nI6WtYrB5Mzz4oCQRIZzdPffAe+/ByJGQlmZ0NLZHEskdSFlLCHHbY4/pbZLef9/oSGyPlLZy8ddf\nUL26Pp/9DseeCCGcyNGj0KIF/PKLfn9wNFLaKmJbt+ptpSWJCCFuq1tXD7xb+QQLmyeJJBdS1hJC\n5OTNN+Hrr2H3bqMjsR1S2srBjRv6XPbYWMfsvgohCmfJEpg7VycTRzrjXUpbRSgqCnx9JYkIIXL2\n5JM6gfx98rfTk0SSAylrCSHupEQJmD1bl7mSk42OxnhS2vqXtDRd1vr5Z3B3L+LAhBAOZfBgvc5s\n2jSjIykaUtoqItu26S0RJIkIIfISHg6LFullAs5MEsm/SFlLCGGpatX0VOBXXjE6EmNJaSuTmzf1\nAPv+/XoFqxBC5CUtTU/Oee896NzZ6GgKR0pbReC77+CBBySJCCEsV7q0TiKvvOK8+3BJIslEylpC\niILo3Fmvep892+hIjCGlrb/duqW3jN+5E+rUKabAhBAO6/BhCAqCX3/VYyf2SEpbhfT99/pIXUki\nQoiCqF8fnnkG3njD6EisTxLJ36SsJYQorPHj9TlGe/caHYl1SWkLyMjQ60aio/WnCiGEKKhFi+Cj\nj2DHDvvbh0tKW4Wwcyfcf78kESFE4Q0apMdcly0zOhLrkUSClLWEEEXn9j5cY8fC1atGR2MdTl/a\nUgpq1oQtW8Dbu5gDE0I4jaee0iXz8HCjI7FcQUtbTp9IDhyAvn3hyJFiDkoI4VTOnAE/P4iJsZ9F\nzjJGUkAbN0KXLkZHIYRwNG5u8OKLMG6c0ZEUP0kkG+1/fxwhhG169VXYvt3xj+V17NKWyWR0KEII\nYTmD344LWtoqWQyx2I48/kCWL9dfa9daKR4hhNPJyIBmzeD11/V4rCOyamkrIiICHx8fXFxciImJ\nyfLcO++8Q7169fDy8mLr1q05/n5YWBju7u4EBgYSGBjI5s2bCxWPlLWEEMWtRAmYMUMnkuvXjY6m\neFg1kfj6+rJmzRratGmT5fHY2FhWrlxJbGwsmzdvZsSIEWRkZGT7fZPJxKhRozhw4AAHDhzg0Ucf\nLXAsGRl6ym+nTgW+hRBCWCQ4GAICYNYsoyMpHlZNJF5eXtTPYfl4ZGQk/fv3p1SpUnh6elK3bl32\n7NmT4z2Kakhn3z6oUsV+puUJIezbu+/qs93Pnzc6kqJnE2MkCQkJtGjRwvyzu7s7Z86cyfHaOXPm\nsGTJEpo2bcqMGTOoWLFijteFhYWZvw8ODiY4ODjL81LWEkJYU716MHAgvP02fPih0dFo0dHRREdH\nF/o+RZ5IQkJCOHv2bLbHw8PD6datm8X3MeUw42r48OFMmDABgPHjxzN69Gg++eSTHH8/cyLJycaN\n+hOCEEJYy4QJ0KABjBwJjRoZHU32D9kTJ04s0H2KPJFERUXl+3fc3NyIj483/3z69Gnc3NyyXVel\nShXz90OGDMlXYsrs3Dl9CE2rVgX6dSGEKBBXV3jrLRgzRm837ygMW5CYeawjNDSUFStWkJaWxokT\nJzhy5AjNmzfP9juJiYnm79esWYOvr2+BXnvLFmjXDkqVKtCvCyFEgQ0fDidOSCIpsDVr1uDh4cHu\n3bvp0qULnf6eMuXt7U3fvn3x9vamU6dOzJs3z1zaGjp0qHmq8Ouvv46fnx/+/v589913vPfeewWK\nQ8ZHhBBGKVVKD7qPHg3p6UZHUzQce2V7DtLT9WytX3/VZ7QLIYS1KaWrIn37wrBhRkfzD9m00UK7\nd+spv5JEhBBGMZlg5kwIC4MrV4yOpvCcLpFIWUsIYQsCAvTO4/Z0XklunK60FRAAH3wgM7aEEMZL\nSABfX71AunZto6ORg62yyO0P4/ZBM+fOQUmbWIophHB2kyfrMduVK42ORMZILLJpE3ToIElECGE7\nRo+G/fshLs7oSArOqd5SN22CHj2MjkIIIf5Rtiz89huUKWN0JAXnNKWttDQ97ffwYf1fIYQQWUlp\nKw87dug9biSJCCFE0XKaRCLTfoUQonhIIhFCCFEoTpFITp6EpCRo0sToSIQQwvE4RSLZtAkefVSf\nnSyEEKJoOcVbq5S1hBCi+Dj89N/r1/VMrZMn4b77jI1LCCFsmUz/zcV33+ltUSSJCCFE8XD4RCJl\nLSGEKF6SSIQQQhSKQyeSI0cgJQX8/Y2ORAghHJdDJ5JNm3Rv5O/j34UQQhQDh04kUtYSQoji57DT\nf69dU1Srpg+zKl/e6IiEEML2yfTff/n2W2jWTJKIEEIUN4dNJFLWEkII63DYExIbN4bgYKOjEEII\nx+ewYyQO2CwhhChWMkYihBDCEJJIhBBCFIokEiGEEIUiiUQIIUShSCIRQghRKJJIhBBCFIokEiGE\nEIUiiUQIIUShSCIRQghRKJJIhBBCFIpVE0lERAQ+Pj64uLgQExNjfvzixYu0bduWcuXK8eKLL+b6\n+xcvXiQkJIT69evToUMHLl++bI2wbU50dLTRIRQrR26fI7cNpH3OyqqJxNfXlzVr1tCmTZssj991\n111MmTKF6dOn3/H3p06dSkhICIcPH6Zdu3ZMnTq1OMO1WY7+j9mR2+fIbQNpn7OyaiLx8vKifv36\n2R4vW7YsrVq1okyZMnf8/bVr1zJo0CAABg0axFdffVUscQohhLCcTY2RmPI4XP3cuXNUrVoVgKpV\nq3Lu3DlrhCWEEOIOinwb+ZCQEM6ePZvt8fDwcLp16wZA27ZtmTFjBo0bN85yzeLFi9m3bx9z5szJ\n8d6urq5cunTJ/PN9993HxYsXs12XV0ISQgiRs4KkhCI/2CoqKqqob2lWtWpVzp49S7Vq1UhMTKRK\nlSo5XidnkQghhPUYVtrK6c0+rwQQGhrK4sWLAd176dGjR7HEJoQQwnJWPSFxzZo1vPTSS1y4cIEK\nFSoQGBjIpk2bAPD09OTq1aukpaVRsWJFoqKi8PLyYujQoQwbNowmTZpw8eJF+vbtS1xcHJ6enqxa\ntYqKFStaK3whhBA5UXZs06ZNqkGDBqpu3bpq6tSp2Z7/9ttvVfny5VVAQIAKCAhQkydPNiDKgsur\nfUrpNgYEBCgfHx/18MMPWzfAQsirbdOmTTP/vTVq1Ei5uLioS5cuGRBpweTVvqSkJNWxY0fl7++v\nfHx81KJFi6wfZCHk1b6LFy+qHj16KD8/P9W8eXP166+/GhBlwTzzzDOqSpUqqlGjRrle8+KLL6q6\ndesqPz8/FRMTY8XoCi+v9v3++++qRYsWqkyZMmr69OkW3dNuE0l6erqqU6eOOnHihEpLS1P+/v4q\nNjY2yzXffvut6tatm0ERFo4l7bt06ZLy9vZW8fHxSin95mQPLGlbZuvWrVPt2rWzYoSFY0n73n77\nbTV27FillP57u++++9TNmzeNCDffLGnfmDFj1KRJk5RSSh06dMiu/v62b9+uYmJicn2j3bBhg+rU\nqZNSSqndu3erBx980JrhFVpe7Tt//rzau3evevPNNy1OJDY1/Tc/9uzZQ926dfH09KRUqVL069eP\nyMjIbNcpOx14t6R9n3/+Ob169cLd3R2A+++/34hQ883Sv7vbPv/8c/r372/FCAvHkvZVr16d5ORk\nAJKTk6lUqRIlSxb53JdiYUn7fv/9d9q2bQtAgwYNOHnyJElJSUaEm2+tW7fG1dU11+czr2d78MEH\nuXz5sl0tRcirfZUrV6Zp06aUKlXK4nvabSI5c+YMHh4e5p/d3d05c+ZMlmtMJhM7d+7E39+fzp07\nExsba+0wC8yS9h05csS8vUzTpk357LPPrB1mgVjStttSU1PZsmULvXr1slZ4hWZJ+4YOHcpvv/1G\njRo18Pf3Z9asWdYOs8AsaZ+/vz+rV68GdOI5deoUp0+ftmqcxSWn9jtK2wrKPj4C5cCStSKNGzcm\nPj6esmXLsmnTJnr06MHhw4etEF3hWdK+mzdvEhMTwzfffENqaiotW7akRYsW1KtXzwoRFlx+1vms\nW7eOhx56yK4mVVjSvvDwcAICAoiOjubYsWOEhIRw8OBBypUrZ4UIC8eS9o0dO5aXX36ZwMBAfH19\nCQwMxMXFxQrRWce/Kx3OvnbNbnskbm5uxMfHm3+Oj483l3huK1euHGXLlgWgU6dO3Lx5M8cFjLbI\nkvZ5eHjQoUMH7r77bipVqkSbNm04ePCgtUPNN0vadtuKFSvsqqwFlrVv586d9OnTB4A6depQu3Zt\n/vjjD6vGWVCW/r+3cOFCDhw4wJIlS0hKSuKBBx6wdqjF4t/tP336NG5ubgZGZDy7TSRNmzblyJEj\nnDx5krS0NFauXEloaGiWa86dO2f+5LBnzx6UUtx3331GhJtvlrSve/fu/PDDD9y6dYvU1FR+/PFH\nvL29DYrYcpa0DeDKlSts376d7t27GxBlwVnSPi8vL77++mtA/zv9448/7OaN1pL2XblyhbS0NAAW\nLFjAww8/zL333mtEuEUuNDSUJUuWALB7924qVqxo3rrJkeRrfLmIJgIYYuPGjap+/fqqTp06Kjw8\nXCml1Pz589X8+fOVUkrNnTtX+fj4KH9/f9WyZUu1a9cuI8PNt7zap5SeJuvt7a0aNWqkZs2aZVSo\n+WZJ2z799FPVv39/o0IslLzal5SUpLp27ar8/PxUo0aN1LJly4wMN9/yat/OnTtV/fr1VYMGDVSv\nXr3U5cuXjQw3X/r166eqV6+uSpUqpdzd3dUnn3yS7d/myJEjVZ06dZSfn5/av3+/gdHmX17tS0xM\nVO7u7qp8+fKqYsWKysPDQ129evWO97TqgkQhhBCOx25LW0IIIWyDJBIhhBCFIolECCFEoUgiEUII\nUSiSSITD8PT0zNc6oYMHD5p3n75t/fr1hIWFATBz5kx8fHzw9/enffv2xMXFAXq6bufOnXO97/nz\n5+nSpUv+G2CQK1eu8OGHH+Z5XV7tFs5LEolwGCaTKV9z3w8cOMDGjRuzPDZjxgyGDx8O6J0R9u/f\nz8GDB+nduzevvfYaoA9Yc3V1JSYmJsf7zp07l6effrpgjSgmSm/QmuNzly5dYt68eXneI692C+cl\niUTYlZMnT+Ll5cWTTz6Jt7c3ffr04a+//jI/P2fOHJo0aYKfn595pfiePXsICgqicePGtGrVisOH\nD5OWlsaECRNYuXIlgYGBREREEB8fT1pamnlxWXBwMHfddRegN+fLvJ9SaGgoy5cvzzHGL774wtwj\nSU1NpW/fvvj4+NCzZ09atGjB/v37Adi6dStBQUE0adKEvn37kpKSAuieVVhYWLZ2hIWFMXDgQIKC\ngqhfvz4ff/wxANeuXaN9+/bm69euXWv+s2rQoAGDBg3C19eX+Ph4pk2bRvPmzfH39zf3vMaOHcux\nY8cIDAzk9ddfB+DVV1/F19cXPz8/Vq1aZVG7hRMr5rUvQhSpEydOKJPJpHbu3KmUUmrw4MHmra49\nPT3V3LlzlVJKzZs3Tw0ZMkQppVRycrJKT09XSikVFRWlevXqpZTSCx5ffPFF872XL1+uXnjhhRxf\nd+TIkeq///2v+efjx4+r5s2bZ7suMTExy/bc06ZNU8OGDVNKKfXrr7+qkiVLqv3796ukpCTVpk0b\nlZqaqpRSaurUqeZt13Nrx9tvv60CAgLU9evX1YULF5SHh4dKSEhQ6enpKjk5WSmlFzrWrVvX/GdV\nokQJ9eOPPyqllNqyZYt67rnnlFJK3bp1S3Xt2lVt375dnTx5MkvMX3zxhQoJCVEZGRnq3LlzqmbN\nmioxMfGO7RbOTXokwu54eHjQsmVLAJ588kl++OEH83M9e/YEdFnq5MmTAFy+fJnevXvj6+vLqFGj\nzLtAq3+Ve+Li4qhevXq211u6dCkxMTG8+uqr5seqV69uvn9mp06dynKPHTt20K9fPwB8fHzw8/MD\n9NYasbGxBAUFERgYyJIlS8xjMLm1w2Qy0b17d8qUKUOlSpVo27ateeufcePG4e/vT0hICAkJCZw/\nfx6AWrVq0bx5c0D3gLZu3UpgYCBNmjThjz/+4OjRo9lKXjt27GDAgAGYTCaqVKnCww8/zN69e+/Y\nbuHc7Hb3X+G8Mu+0qpTK8nOZMmUAcHFxIT09HYDx48fTrl071qxZw6lTpwgODs713v9+U/36668J\nDw9n+/btWc5n+Pfr3ukeuf0cEhLC559/nuM9cmpHTkwmE0uXLuXChQvExMTg4uJC7dq1uX79OgD3\n3HNPluvHjRvHc889l+WxnBLDv2O+3dY7tVs4L+mRCLsTFxfH7t27AX3oVevWre94fXJyMjVq1ABg\n0aJF5sfLly/P1atXzT/XqlWLs2fPmn8+cOAAw4YNY926ddkODUtMTKRWrVrZXuvf92jVqpV5jCE2\nNpZffvkFk8lEixYt2LFjB8eOHQMgJSWFI0eO3LEdSikiIyO5ceMGf/75J9HR0TRv3pzk5GSqVKmC\ni4sL3377LadOncrx9zt27MjChQvNYzFnzpwhKSmJcuXKZflzaN26NStXriQjI4OkpCS2b99u7tXk\n1m7h3CSRCLvToEEDPvjgA7y9vbly5Yp5llXmT8omk8n882uvvca4ceNo3Lgxt27dMj/etm1bYmNj\nzYPtrVq1yjIj6bXXXiMlJYXevXsTGBhIjx49zM/t2bOHNm3aZIutWrVqpKenm9+sR4wYQVJSEj4+\nPowfPx4fHx8qVKjA/fffz6effkr//v3x9/cnKCgox23kM7fDZDLh5+dH27ZtadmyJRMmTKBatWo8\n8cQT7Nu3Dz8/Pz777DMaNmyY5fdvCwkJYcCAAbRs2RI/Pz/69OnDtWvXqFSpEq1atcLX15fXX3+d\nxx57DD8/P/z9/WnXrh3Tpk2jSpUqd2y3cHKGjMwIUUAnTpzI9azpotC2bVuVkJCQ53UDBgxQMTEx\nOT739ttvqxUrViil9KD29evXlVJKHT16VNWuXbvAZ7OHhYVZfIZ2cblTu4Xzkh6JsDvFWaMfM2YM\n8+fPv+M158+f5/LlywQGBub4/MiRI1m8eDGgS1YPPfQQAQEB9OzZkw8//LBQZ7MbOT6RV7uF85Jt\n5IUQQhSK9EiEEEIUiiQSIYQQhSKJRAghRKFIIhFCCFEokkiEEEIUiiQSIYQQhfL/YRz4CEqcvKIA\nAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 15 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "SF = 1./990\n", + "x = phat.isf(SF)\n", + "\n", + "# CI for x\n", + "Lx = phat.profile(i=2, x=x, link=phat.dist.link)\n", + "Lx.plot()\n", + "x_ci = Lx.get_bounds(alpha=0.2)\n", + "print 'X_c = ', x_ci" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "X_c = [ 1.78350616 2.09079614]\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "c:\\pab\\workspace\\pywafo_svn\\pywafo\\src\\wafo\\stats\\distributions.py:4011: RuntimeWarning: invalid value encountered in true_divide\n", + " return where((c != 0) & (-inf < log_sf), expm1(-c * log_sf) / c, -log_sf)\n" + ] + }, + { + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEXCAYAAACH/8KRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8zNf+x/HXZEFJEFpBIo3WEkQkEQkqJAi1xdoWt4qW\nKm114dfiuq2taEvvVb3dXJRS2thiqaAq1NbY3dZaWyISlRIkQhI5vz++P/NDEhmZyXxnJp/n45FH\nMjPf+c47eTCfOed8zzkGpZRCCCGEKCYnvQMIIYSwb1JIhBBCmEUKiRBCCLNIIRFCCGEWKSRCCCHM\nIoVECCGEWaSQCIe1Y8cO6tatS8WKFYmNjaVz5858++23AHzzzTeEh4cX67wRERHMnTvX7HwTJkxg\nwIABACQmJuLu7s6dq/GL+xp3P2/x4sV07NjR+JiTkxOnT582O3dRBg0axD/+8Y8Sfx1hO6SQCJvi\n6+tL+fLlcXd3p3r16gwePJjMzMxineu9995j5MiRXLt2je7du/Pjjz8a37jNYTAYMBgMFjnPHT4+\nPly/ft14X3Ff4+7n/e1vf2PDhg1m5zQngygdpJAIm2IwGFi7di3Xr19n//797N27lylTpuQ7Ljc3\nt8hzJSYm0rBhw5KIaRGOPBfYkX83kZ8UEmGzatasydNPP83vv/8OaF0zn3/+OXXr1qV+/foAzJkz\nh7p161K1alW6d+9OSkoKAE8++SSnT5+mW7duVKxYkezs7Ad2Fx07doyoqCiqVq2Kn58fMTExJmVU\nSjFlyhR8fX3x9PRk4MCBXLt2zfj4woULefzxx3n00UeNx/3888/5znP27FmcnJzIy8vL91hKSgoB\nAQHMnDkTgN27d9OyZUs8PDwIDAxk69atBWYrqPtu06ZN1KtXDw8PD1577TWTf4/Vq1fTqFEjPDw8\niIyM5NixY8bHDhw4QHBwMBUrVqRv377cvHnTpL+dcBxSSITNufNpNikpifXr1xMUFGR8LDY2lj17\n9nDkyBF+/vlnxo0bR0xMDCkpKTz++OP07dsXgFOnTuHj48PatWu5du0aZcqUKbTLJTMzk6ioKJ5/\n/nkuXbrE0qVLGTFiBEePHi0y6/z581mwYAHx8fGcPn2ajIwM4xv0kSNHePXVV1myZAkpKSlcvXqV\nCxcuPNTf4syZM0RERDBy5EhGjRpFcnIyXbt25b333uPKlSvMmDGD3r1789dff5l0vnXr1rF3714O\nHz7MDz/8YOz6etDvceLECfr378+nn35KWloanTt3plu3buTm5pKdnU2PHj0YOHAgV65c4ZlnnmH5\n8uXStVXKSCERNkUpRY8ePfDw8CA8PJyIiAjGjRtnfHzs2LFUrlyZsmXLsnjxYl566SUCAwMpU6YM\n06ZNY9euXSQmJj7Ua65du5batWszcOBAnJycCAwMpFevXia1ShYvXsyoUaPw9fWlQoUKTJs2jaVL\nl3L79m2WLVtGdHQ0LVu2xNXVlUmTJj3UG+zvv/9O27ZtmTRpEkOGDAFg0aJFdO7cmaeffhqA9u3b\nExISwrp160w655gxY6hYsSK1atUiMjKSQ4cOFfl7fP/993Tt2pV27drh7OzM6NGjycrKYseOHeze\nvZvc3FzeeOMNnJ2d6d27N82aNTP5dxSOwUXvAELczWAwEBsbS9u2bQt8vFatWsafU1JSCAkJMd6u\nUKECVatWJTk5GR8fH5Nf89y5c/z66694eHgY78vNzeWFF14o8rl3WkJ3+Pj4kJuby8WLF0lJScHb\n29v42COPPELVqlVNyqSUYvHixdStW5fevXvfkzUmJoY1a9bck7Wwv9f9qlevbvy5fPnyZGRkmPR7\n3P33NBgM1KpVi+TkZJydnfHy8rrnNR5//HEZIyllpJAIu3L3J/qaNWty9uxZ4+3MzEz++uuvfG9s\nRfHx8aFNmzZs3LjxofPcnyExMREXFxeqV69OjRo1OH78uPGxrKwsk7ugDAYDEydOZP369fTv35+l\nS5fi5OSEj48PAwYM4Ouvv37orMX9PWrWrMl///tf42NKKZKSkoxFMjk5+Z5znTt3jjp16lg0n7Bt\n0rUl7Fa/fv2YP38+hw4d4tatW4wbN47mzZs/VGsEoEuXLpw4cYJFixaRk5NDTk4Oe/bsuWdA+UEZ\n/vnPf3L27FkyMjIYN24cffv2xcnJid69e7NmzRp27dpFdnY2EyZMeKhP6q6ursTExJCZmckLL7yA\nUornn3+eNWvWsHHjRm7fvs3NmzeJj4/P92ZuCqWUMc+Dfo9nnnmGdevW8fPPP5OTk8PMmTMpV64c\nLVu2pHnz5ri4uPDpp5+Sk5PDihUr2LNnz0NnEfZNComwG/ePL7Rr147JkyfTu3dvatasyZkzZ1i6\ndKnJ57pzPnd3dzZu3MjSpUvx8vKiRo0ajB07luzs7CLP8+KLLzJgwABat27NE088Qfny5Zk9ezYA\njRo1Yvbs2fTt25eaNWvi7u5OtWrVKFu2bL4MBf1+oBWTFStWcPHiRV566SW8vLyIjY1l6tSpVKtW\nDR8fH2bOnFlggSrq/Hc//qDfo379+ixatIjXX3+dxx57jHXr1rFmzRpcXFwoU6YMK1as4JtvvqFq\n1ar88MMP93TFidLBIBtbCWEdGRkZeHh48Mcff9wzHiGEvbOZFklCQgKhoaEEBQXRrFmzQpvHvr6+\nBAQEEBQURGhoqJVTCvFw1qxZw40bN8jMzGT06NEEBARIEREOx2YKyTvvvMPkyZM5cOAAkyZN4p13\n3inwOIPBQHx8PAcOHCAhIcHKKYV4OKtXr8bLywsvLy9OnTplctebEPbEZq7aqlGjBlevXgUgPT39\ngVfeSG+csBdz5sxhzpw5escQokTZzBjJuXPnaNWqFQaDgby8PHbt2nXPnIE7nnjiCSpVqoSzszPD\nhg1j6NChOqQVQghhpKyoffv2yt/fP99XbGysateunVqxYoVSSqkffvhBtW/fvsBzXLhwQSml1J9/\n/qmaNGmitm3blu8YQL7kS77kS76K8VUcVi0kD+Lu7m78OS8vT1WsWLHI50yYMEHNmDEj3/3F/WNY\n2/vvv2/W87OylPrlF6W++kqp8eOVevNNpd5+W6mJE5X6z3+U2rJFqStX9M9pLfaQ0x4yKiU5Lc1e\nctp9IQkKClLx8fFKKaV++uknFRISku+YzMxMde3aNaWUUhkZGaply5Zqw4YN+Y6zeiGBYn29X8zn\nWftLcpaujJLTyjltSHHfO23mqq2vv/6ad955h8DAQMaPH29cAuLChQt06dIFgNTUVMLDwwkMDCQs\nLIyuXbvSoUMHPWNrivvP6/2H+2+w/kdFQGNFaDPF/HmKq+lFP+d2rmLfXsX0aYqWLRRVqyheGaZI\n+FWh8komp25f9pDTHjJKTuvmdAQWLmg2wV5+rS1btph0XGamUoMGKVW7tlKrVyuVl1f81zx3TqkP\nPtDO1bSpUgsXKpWdbZmcerOHnPaQUSnJaWn2krO47502c9WWJRkMBhzl10pNhS5doEED+PJLcHOz\nzHnz8mD9evjkEzh5Et59F156CcqVs8z5hRD2p7jvnTbTtSXyS0mBiAiIjoZvv7VcEQFwctIK1ObN\nsHw5bNgAdevCnDlgwi62QghhJC0SG5WZCeHh0L271r1qDb/+CmPHagVsxgzo3BlkozshSo/ivndK\nIbFBSsFzz0H58jB/vnXfzJXSurxGjQJfX/jXv+D/tkcXQjg46dpyIPPnw7Fj2piItVsEBoPWEjl8\nGKKioFUrGD8esrKsm0MIYT+kRWJjkpOhSROIjwd/f73TwIUL8OabsH8/fPUVtGundyIhREmRrq27\n2HMh6dcPnnwSpkzRO8m91q6FESOgQwdt/KRyZb0TCSEsTbq2HMD27bBzJ4wbp3eS/Lp2hd9+A2dn\nCAiAYmxvLoRwUNIisSFt28Lzz8OLL+qd5ME2bYIhQ7TLhz/+GCpU0DuREMISpEVi57ZuhXPnYMAA\nvZMULSoKDh2CjAwICoJCNrMUQpQSUkhsxIwZMGYMuLrqncQ0lSvDwoXaWE6XLjB9ujZbXghR+kjX\nlg04fRpCQyExUZs7Ym+SkuBvf9OK4LffQs2aeicSQhSHdG3Zsc8/h8GD7bOIANSqBVu2QOvW0LQp\nxMXpnUgIYU3SItFZTg54e8OOHVCnjt5pzLd1q9Y6eeEFmDQJXFz0TiSEMJW0SOzUTz/BE084RhEB\naNNGm7y4b582eTElRe9EQoiSJoVEZ4sXa5/gHUm1avDjj1ohadpUm6UvhHBc0rWlo6wsqFEDTpzQ\n3nwd0aZN2iXNo0bB6NGymrAQtky6tuzQli0QGOi4RQS0OScJCRATA888A9ev651ICGFpUkh0tHat\ntvSIo/PxgW3boEoVCAuD48f1TiSEsCQpJDpRSiskXbroncQ6ypWDr7+Gt97SNuxas0bvREIIS5GL\nM3Xy3/9qE/j8/PROYl1Dh0LjxtCnDxw4oO114iQfZ4Swa/JfWCebN2tLspfGwefmzbX1ueLitHGT\njAy9EwkhzCGFRCdbt2pzLkqrGjW0iw08PKBFC22ZGCGEfZJCooO8PPjll9JdSADKloU5c2DYMGjZ\nUuabCGGvpJDo4LffoGpV7VN5aWcwwGuvaRMzn3tO26deCGFfpJDooLR3axWkXTttvbFPP9UKS06O\n3omEEKaSQqKDXbu0rhxxrzp1tL/NqVPQuTNcuaJ3IiGEKaSQ6GDvXmjWTO8UtqlSJW2OSaNG2tVd\nJ07onUgIURQpJFZ29SpcuFD65o88DBcX+Ne/tPW5wsO1q7uEELZLComV7d+vra8l+3QU7eWXYckS\n6NsX/vMfvdMIIQojhcTK9u7VllYXpmnbVrtU+qOP4H/+B27f1juREOJ+UkisbO9eCAnRO4V9qVdP\nG4Tfswd694bMTL0TCSHuJoXEyg4cgOBgvVPYn6pVYeNGbSZ8eDgkJ+udSAhxhxQSK7p5E5KSoG5d\nvZPYpzJlYN48bX2uFi3g4EG9EwkhQAqJVR0/ru3PXqaM3knsl8EAY8fCzJnaopfr1umdSAghhcSK\njhyBhg31TuEYnnkGVq/WlqX/7DO90whRutlMITl06BAtWrQgICCA6OhorheyJ2tcXBx+fn7UrVuX\nDz/80MopzSOFxLKaN9eWVfn8c3jzTbmiSwi92EwhGTJkCB999BGHDx+mZ8+efPzxx/mOuX37Nq+9\n9hpxcXEcOXKEJUuWcPToUR3SFo8UEsurXVsrJv/9L/TqJVd0CaEHmykkJ0+eJDw8HID27duzfPny\nfMckJCRQp04dfH19cXV1pW/fvsTGxlo7arH9/rsUkpLg4QHr12t7wrdpAykpeicSonSxmfnVjRo1\nIjY2lu7duxMTE0NSUlK+Y5KTk6lVq5bxtre3N7/++muB55swYYLx54iICCIiIiwd+aHcugVnz2pz\nIoTl3bmi64MPtCu61q3T1usSQhQuPj6eeAtsBGTVQhIVFUVqamq++6dOncq8efMYOXIkkydPJjo6\nmjIFXNpkeIh9ae8uJLbgzBnw9tY2cxIlw2DQ9oCvXRsiI+G776B9e71TCWG77v+QPXHixGKdx6qF\nZNOmTQ98fMOGDQCcOHGCdQVc1+nl5XVPSyUpKQlvb2/Lhiwhp0/Dk0/qnaJ0+NvftKL97LMwfToM\nHqx3IiEcm82MkVy6dAmAvLw8pkyZwvDhw/MdExISwsmTJzl79izZ2dl8//33REdHWztqsZw+rc0h\nEdbRpo22gdjkyfDee6CU3omEcFw2U0iWLFlC/fr1adCgAd7e3gwaNAiACxcu0KVLFwBcXFz47LPP\n6NixIw0bNuS5556jQYMGOqY23alT0iKxNj8/2L0bNmyAgQMhO1vvREI4JoNSjvdZzWAwYGu/Vvfu\n2ptZr156Jyl9btzQuruuXoXly7WrvIQQ+RX3vdNmWiSOTrq29FO+PCxbBk2awFNPaVfPCSEsRwqJ\nFSglhURvzs7wz3/CK69oxWTvXr0TCeE4pJBYwcWL2qfiihX1TiJGjoR//xs6dYK1a/VOI4RjkEJi\nBXLpr23p0UMrIi+/DF98oXcaIeyfzcxsd2SnT2uT5ITtCAuD7du1lsmZM9p8Eyf5WCVEsch/HSs4\nfx58fPROIe73xBOwc6e2jW+/ftrGY0KIhyeFxArOn9dmWgvbU7UqbNqkLa/Svj389ZfeiYSwP1JI\nrEAKiW0rV05bl+upp6BlS23yqBDCdFJIrEAKie1zcoIPP4S33oJWraCQRaWFEAWQQmIFUkjsxyuv\nwJw50LUrrFypdxoh7IMskVLCsrPBzQ2ysrRJccI+7NsH0dHwzjvwxht6pxHCOmSJFBt14QLUqCFF\nxN40bapd0fX117IfvBBFkUJSwpKSpFvLXj3+uLYf/OHD0KePtvijECI/KSQl7Px5uGt3YGFnKleG\nuDhwd9d2XfzzT70TCWF7pJCUMBlot39lysCCBdCxo7Yf/PHjeicSwrbIEikl7Px5WR7FERgMMGkS\n+PpC69basvTh4XqnEsI2SIukhN0ZbBeO4cUXYdEi6N0bli7VO40QtkFaJCXs4kWoXl3vFMKSoqJg\n82bo0kXbJOvdd7UWixCllbRISlhqqhQSR9S4sbbY49Kl2iTG3Fy9EwmhHykkJeziRfD01DuFKAle\nXvDLL5CYCN26wfXreicSQh9SSEpQVhbcugWVKumdRJQUd3dYvVq7xLt1a0hO1juRENYnhaQE3WmN\nSP+5Y3N1ha++gmef1S4PPnxY70RCWJcUkhIk3Vqlh8EAY8fCRx9p+5ps2KB3IiGsRwpJCUpNlUJS\n2vTtCytWwMCBWitFiNJALv8tQXLpb+nUqpU2CN+lC5w+DdOmyX7wwrHJP+8SJC2S0qtuXe3y4J07\n4bnntAsvhHBUUkhKkLRISrc7+8G7ukLbtrLgo3BcUkhKkAy2i3LltCVV2rXTrug6dkzvREJYnoyR\nlCDp2hKgjY9MmQJPPglt2sAPP2jfhXAU0iIpQdK1Je42eDB89x088wx8+63eaYSwHNmzvQRVqqQt\n6ufhoXcSYUuOHNGu6Bo4EN5/XyasCttR3PdOKSQlJCcHypeH7Gx5oxD5paZCdDTUrw//+Q+ULat3\nIiGK/94pXVsl5K+/tKt2pIiIglSvDvHx2mXB7dtDWpreiYQoPikkJSQtDR59VO8UwpaVL68NvLdq\nBc2byxa+wn5JISkhUkiEKZyctJnv48Zpqwdv2aJ3IiEens0UkkOHDtGiRQsCAgKIjo7meiGbO/j6\n+hIQEEBQUBChoaFWTmk6KSTiYbz4orZJVt++MH++3mmEeDg2U0iGDBnCRx99xOHDh+nZsycff/xx\ngccZDAbi4+M5cOAACQkJVk5purQ0bYxECFNFRsLWrfDBB1oLJS9P70RCmMZmCsnJkycJDw8HoH37\n9ixfvrzQY/W+IssU0iIRxeHnB7t3w7ZtskaXsB82U0gaNWpEbGwsADExMSQlJRV4nMFgoH379oSE\nhDBnzhxrRnwoUkhEcT36KGzerF0SHBGhXSoshC2z6hIpUVFRpBbwv2Lq1KnMmzePkSNHMnnyZKKj\noylTpkyB59ixYwc1atTg0qVLREVF4efnZ2zJ3G3ChAnGnyMiIoiIiLDUr2GStDRo2tSqLykcSNmy\n2uz3yZO1K7rWrgV/f71TCUcTHx9PfHy82eexyQmJJ06cYMCAAfz6668PPG7ixIm4ubkxatSoe+63\nhQmJTz8Nb7wBnTrpGkM4gO++gzffhIULtX9XQpQUu5+QeOnSJQDy8vKYMmUKw4cPz3fMjRs3jFdz\nZWZmsnHjRho3bmzVnKaSri1hKf37w8qV2lpdn32mdxoh8rOZQrJkyRLq169PgwYN8Pb2ZtCgQQBc\nuHCBLl26AJCamkp4eDiBgYGEhYXRtWtXOnTooGPqwkkhEZb01FPaJllffgmvvqotwSOErbDJri1z\n2ULXlpsbpKSAu7uuMYSDuXZNm2uSkwMxMVC5st6JhCOx+64tR5KVpf1Hd3PTO4lwNBUrwurV2sB7\n8+bwxx96JxLiAVdtXb58+YFPrFKlisXDOIq//tK6tWTBRlESXFzgn//U5py0aqXNiLfyRYlC3KPQ\nQhIcHIzhAe+EZ86cKZFAjuDOyr9ClKRhw6BuXW3i4gcfwJAheicSpVWhheTs2bNWjOFYLl8GabAJ\na2jbFn75Bbp1g6NH4aOPwNlZ71SitCl0jCQuLo6YmJh89y9btoxNmzaVaCh7d+WK7IoorKdePW1Z\nlYMHoUcPKGS9UyFKTKGFZNKkSbRp0ybf/W3atOEf//hHiYayd9IiEdbm4QFxceDlpV0qfO6c3olE\naVJoIbl16xbVqlXLd/9jjz1GZmZmiYayd9IiEXpwdYUvvtDGSlq00OadCGENhRaS69evk1PArKec\nnBxu3rxZoqHsnbRIhF4MBhg5EubNg5494Ztv9E4kSoNCC0mvXr14+eWXycjIMN53/fp1hg0bRq9e\nvawSzl5duSKFROjr6ae1PeE/+ABGjYLbt/VOJBxZoYVk8uTJeHp64uvrS3BwMMHBwdSuXZvHHnuM\nKVOmWDOj3bl8Wbq2hP4aNICEBDh8GLp2hfR0vRMJR1XkEik3btzgj/+bPlunTh3Kly9vlWDm0HuJ\nlKgoeOcd7bsQesvN1VolGzZos+Lr1dM7kbBVxX3vLHI/kvLlyxMQEFCsUKWVtEiELXFxgVmzYM4c\nCA/X9jmx0bVOhZ2StbZKgIyRCFs0dCgsWwYDB2qFxfGWaxV6kdV/S0DlynDmjLRKhG06exa6d4dm\nzeDf/9Z2YxQCrLD6759//sn48eN5++23OXny5EO/UGlx+zZkZEClSnonEaJgvr6wY4e2Jly7dvDn\nn3onEvbO5EIyatQoOnToQM+ePenfv39JZrJr6enaUt9O0mkobJibGyxfDpGREBoKhw7pnUjYs0Lf\n7jp27Mi2bduMt7Ozs6lduza1a9fm1q1bVglnj2R8RNgLJyeYPBk+/BDat9fGT4QojkLHSNLT05ky\nZQrnz5/ngw8+IC8vj4kTJ3Ljxg3efvttWrVqZe2sJtNzjCQhQdsKdc8eXV5eiGLZv1+bCT9gAEya\nJC3q0qq4751FDrafOnWK8ePHU7NmTcaPH4+HHYwg61lI4uK0TYc2bNDl5YUotj//hGee0bpmFy2S\ncb7SyOKD7X/88QejR49m7ty5zJgxg+7du9O3b18+/fRTbst6C4WSBRuFvapWDX76CR5/HMLC4Phx\nvRMJe1FoIenXrx89e/YkIiKCF154gdatWxMXF0elSpWIkinbhZLJiMKeubrCZ5/B6NHa5MV16/RO\nJOxBoYXk7sH1GzduAFqzZ+DAgaxdu9ZqAe1NeroMtgv7N2QIxMbCyy/D1KkyeVE8WKFLpHz++ee8\n/vrruLq68uWXX97zmD2st6WX9HR47DG9UwhhvhYttItHevWCAwdg/nztsmEh7icz2y3s5ZchJET7\nLoQjuHkThg/XruxatQpq19Y7kSgpFh9sj4uLM/6cnp7OSy+9ROPGjenfvz8XL14sXspSID1dWyJF\nCEdRrpy2UdZLL2mtlJ9/1juRsDWFFpKxY8cafx41ahQ1atRgzZo1NGvWjGHDhlklnD2SQiIc0Z2d\nF5csgf794V//knET8f+KXEYeYO/evRw8eBCDwcBbb73FN7J/Z6GkkAhHFhkJu3drkxf37oWvvwYZ\nMhWFtkguXbrEJ598wsyZM7l69eo9jzngsIrFpKfLRC7h2O4s+mgwQMuWcPq03omE3gotJEOGDOH6\n9etkZGQwePBgLl26BEBKSgqBgYFWC2hvrl6VFolwfOXLw8KF8OKL2riJrORQuslVWxaklDYwefWq\n9l2I0mDbNujbF157DcaO1Voqwj6VyFpbp06dYsWKFZw/fx4nJyfq169P//79qVixollhS5pehSQr\nS5uMmJVl9ZcWQlfJydC7N9SsCd98o63XJeyPxS//nTVrFq+88gq3bt0iISGBW7dukZiYSFhYGFu2\nbDErrKOSgXZRWnl5wdat2mTcsDA4dkzvRMKaCm2R+Pv7c+jQIZydnblx4wadOnVi69atJCYmEh0d\nzcGDB62d1WR6tUiOHtVmAR89avWXFsJm/Oc/MG6cdkVXjx56pxEPw+ItEoPBQE5ODgA3b94kMzMT\nAB8fH+P94l5yxZYQ2jpda9dq807+/ndt+2nh2B541VazZs0YMmQILVq0YMSIEYC2d3vVqlWtFtCe\nyBVbQmhCQ7V5Jjt2QNeu2qrYwnE9cLD9t99+49ixY/j7++Pn52fNXGbRq2tr6VJtLaKlS63+0kLY\npNxceOcd7f/FsmUQHKx3IvEgFu/aAm2cpE+fPhYrIjExMTRq1AhnZ2f2799/z2PTpk2jbt26+Pn5\nsXHjxgKff/nyZaKioqhXrx4dOnQgPT3dIrksRQbbhbiXiwt88glMnw4dO8LcuXonEiXBqjszN27c\nmJUrV9K6det77j9y5Ajff/89R44cIS4ujhEjRpCXl5fv+dOnTycqKooTJ07Qrl07pk+fbq3oJpFC\nIkTBnn1Wm28yc6a2+KNcIu9YrFpI/Pz8qFevXr77Y2Nj6devH66urvj6+lKnTh0SEhLyHbd69WoG\nDhwIwMCBA1m1alWJZ34YMtguROEaNND2N8nMhKeekqVVHIlVC0lhLly4gLe3t/G2t7c3ycnJ+Y67\nePEinp6eAHh6etrccvYy2C7Eg7m5aSsIDxqkLa0iW/k6BpNW/30YUVFRpKam5rt/6tSpdOvWzeTz\nGIpYZ8FgMDzwmAkTJhh/joiIICIiwuTXLi7p2hKiaHeWpG/aVFtaZfBgeP99cHbWO1npEx8fT3x8\nvNnnsXgh2bRp00M/x8vLi6SkJOPt8+fP4+Xlle84T09PUlNTqV69OikpKVSrVq3Qc95dSKxFuraE\nMN1TT2mXCPfrB506wXffwaOP6p2qdLn/Q/bEiROLdR7durbuvsQsOjqapUuXkp2dzZkzZzh58iSh\noaH5nhMdHc2CBQsAWLBgAT1sbNrs1atSSIR4GJ6esHGjdllw06baGIqwP1YtJCtXrqRWrVrs3r2b\nLl260KloswwOAAAUlUlEQVRTJwAaNmzIs88+S8OGDenUqROff/65sdtq6NCh7Nu3D4AxY8awadMm\n6tWrx88//8yYMWOsGb9I165JIRHiYbm4aJcHz5qlTV784gvZfdHeyDLyFlSrljaT18fH6i8thEM4\neRL69AF/f/jqK21wXlhPiUxIFA9HWiRCmKduXW0r30cegWbN4Pff9U4kTCGFxELy8iAjQz5BCWGu\nRx7RVhAeMwYiIrSdGIVtk64tC7l2Dby9te9CCMv47Tetq6tVK5g9WysyouRI15bO5IotISzP31+7\nRPjGDWjeHE6c0DuRKIgUEgu5elW2FxWiJLi5weLFMHy4Nvfkhx/0TiTuJ4XEQmSgXYiSYzDAK6/A\nhg0wdiy8/jrcuqV3KnGHFBILkRaJECUvOBj27YPkZG3c5MwZvRMJkEJiMdIiEcI6KleG5cuhf38I\nC4PVq/VOJKSQWIi0SISwHoMB3noLYmO1bq6334bsbL1TlV5SSCxEWiRCWF+LFnDgAJw6JXuc6EkK\niYXI5b9C6KNKFW1P+Oef1y4RXrZM70SljxQSC5GuLSH0YzDAG2/Ajz/Cu+/CiBFw86beqUoPKSQW\nIl1bQugvJAT274e0NK11cvy43olKBykkFiItEiFsQ6VK8P332gTGVq1g0SK9Ezk+KSQWIi0SIWyH\nwQDDhsFPP8GUKfDii5CZqXcqxyWFxEJksF0I29OkibZWV26utiz9b7/pncgxSSGxkGvXpGtLCFvk\n5qYtRf/uuxAZCXPmyA6MlibLyFuIpyccPqx9F0LYpqNHoW9fqFcPvv4aPDz0TmRbZBl5nUmLRAjb\n16AB/Por1KgBQUHa1tjCfNIisYDsbKhQQftuMFjtZYUQZlizBoYOhVdfhXHjwNlZ70T6kxaJjq5f\n11ojUkSEsB/dumkrCW/ZAm3bQlKS3onslxQSC5BuLSHsk5cXbNoEHTtqkxlXrtQ7kX2SQmIB16+D\nu7veKYQQxeHsrHVtxcbCqFHa8ipZWXqnsi9SSCxAWiRC2L/mzbWVhC9fljknD0sKiQVIIRHCMVSq\nBEuWaC2TiAj44guZc2IKKSQWIF1bQjgOgwEGD9YuDZ4zB3r0gEuX9E5l26SQWIC0SIRwPPXrw65d\n2vfAQNiwQe9EtksKiQVcuyYtEiEcUdmy8NFH8O23MGSItr2v7HOSnxQSC7gzj0QI4ZjatoVDh7S5\nJqGhMhB/PykkFiBdW0I4vipVICZGa5VERsLs2TIQf4cUEguQri0hSoc7A/G7dmkbZnXuDKmpeqfS\nnxQSC5CuLSFKlzp1YPt2bb5JUJC2bldpJoXEAqRrS4jSx9UVJk3SurtGjtRmxN+4oXcqfUghsQDp\n2hKi9GrVCg4e1N4HmjbVFoIsbWQZecu8oPVeSwjhWGzoLbi4750uJZCl1PF9XBEfD76+eicRQujt\n/HltQD4jQ9vit25dvROVPKt2bcXExNCoUSOcnZ3Zv3//PY9NmzaNunXr4ufnx8aNGwt8/oQJE/D2\n9iYoKIigoCDi4uKsEbtI0rUlhLjD21ubBd+/P7RsCV99ZVONjhJh1a6tY8eO4eTkxLBhw5g5cybB\nwcEAHDlyhP79+7Nnzx6Sk5Np3749J06cwMnp3jo3ceJE3N3defvttx/4Otbs2lIKypSBzEztuxBC\n3HH0KDz/PFSvDnPnat9tmV3skOjn50e9evXy3R8bG0u/fv1wdXXF19eXOnXqkJCQUOA5bG1I5+ZN\ncHGRIiKEyK9BA23OSXCwtl7XihV6JyoZNjFGcuHCBZo3b2687e3tTXJycoHHzp49m4ULFxISEsLM\nmTOpXLlygcdNmDDB+HNERAQRERGWjGwk3VpCiAcpUwYmT9YmLw4YAKtXw6xZ2pL1eouPjyc+Pt7s\n81i8kERFRZFawFTPqVOn0q1bN5PPYyjgSqjhw4fz3nvvAfCPf/yDUaNGMXfu3AKff3chKUkyGVEI\nYYoWLbTLhEeNgiZNYMECaNNG30z3f8ieOHFisc5j8UKyadOmh36Ol5cXSUlJxtvnz5/Hy8sr33HV\nqlUz/jxkyJCHKkwlRSYjCiFM5eamDb6vXQv9+mkTGocM0TuV+XSbkHj3WEd0dDRLly4lOzubM2fO\ncPLkSUJDQ/M9JyUlxfjzypUrady4sVWyPsiNG1BI75oQQhSoa1dtNeGnn9Y7iWVY9aqtlStXMnLk\nSNLS0qhUqRJBQUGsX78e0Lq+5s2bh4uLC7NmzaJjx44ADB06lOHDhxMcHMwLL7zAwYMHMRgM1K5d\nm6+++gpPT8/8v5SVJyQqJXMShRD2r7jvnTKzXQghBGAnl/8KIYRwPFJIhBBCmEUKiRBCCLNIIRFC\nCGEWKSRCCCHMIoVECCGEWaSQCCGEMIsUEiGEEGaRQiKEEMIsUkiEEEKYRQqJEEIIs0ghEUIIYRYp\nJEIIIcwihUQIIYRZpJAIIYQwixQSIYQQZpFCIoQQwixSSIQQQphFCokQQgizSCERQghhFikkQggh\nzCKFRAghhFmkkAghhDCLFBIhhBBmkUIihBDCLFJIhBBCmEUKiRBCCLNIIRFCCGEWKSRCCCHMIoVE\nCCGEWaSQCCGEMIsUEiGEEGaRQiKEEMIsUkiEEEKYRQqJEEIIs1i1kMTExNCoUSOcnZ3Zv3+/8f7L\nly8TGRmJu7s7r7/+eqHPv3z5MlFRUdSrV48OHTqQnp5ujdglJj4+Xu8IJpGclmMPGUFyWpq95Cwu\nqxaSxo0bs3LlSlq3bn3P/eXKlWPKlCnMmDHjgc+fPn06UVFRnDhxgnbt2jF9+vSSjFvi7OUfl+S0\nHHvICJLT0uwlZ3FZtZD4+flRr169fPeXL1+ep556irJlyz7w+atXr2bgwIEADBw4kFWrVpVITiGE\nEKazqTESg8HwwMcvXryIp6cnAJ6enly8eNEasYQQQjyAQSmlLHnCqKgoUlNT890/depUunXrBkBk\nZCQzZ84kODj4nmMWLFjA3r17mT17doHn9vDw4MqVK8bbVapU4fLly/mOK6ogCSGEKFhxSoKLpUNs\n2rTJ0qc08vT0JDU1lerVq5OSkkK1atUKPM7CtVEIIcQD6Na1VdCbfVEFIDo6mgULFgBa66VHjx4l\nkk0IIYTpLN619SArV65k5MiRpKWlUalSJYKCgli/fj0Avr6+XL9+nezsbCpXrsymTZvw8/Nj6NCh\nvPLKKzRt2pTLly/z7LPPkpiYiK+vLz/88AOVK1e2VnwhhBAFUXZq8ODBqlq1asrf37/Axz/++GMV\nGBioAgMDlb+/v3J2dlZXrlyxcsqic166dEl17NhRNWnSRDVq1EjNnz/fugH/T1E5L1++rHr06KEC\nAgJUaGio+u2336ycUKnExEQVERGhGjZsqBo1aqRmzZpV4HGvv/66qlOnjgoICFD79++3ckrTch49\nelQ1b95clS1bVs2YMcPqGZUyLeeiRYtUQECAaty4sWrZsqU6dOiQTeZctWqVCggIUIGBgSo4OFht\n3rzZJnPekZCQoJydndXy5cutmFBjSs4tW7aoihUrGt9DJ0+e/MBz2m0h2bZtm9q/f3+hb3x3W7Nm\njWrXrp0VUuVXVM73339fjRkzRimlFZUqVaqonJwca0ZUShWdc/To0WrSpElKKaWOHTumy98zJSVF\nHThwQCml1PXr11W9evXUkSNH7jlm3bp1qlOnTkoppXbv3q3CwsJsMueff/6p9uzZo/7+97/rVkhM\nyblz506Vnp6ulFJq/fr1Nvv3zMjIMP58+PBh9eSTT1o1o1Km5VRKqdzcXBUZGam6dOmili1bZu2Y\nJuXcsmWL6tatm8nntKnLfx9GeHg4Hh4eJh373Xff0a9fvxJOVLCictaoUYNr164BcO3aNapWrYqL\ni8WvgShSUTmPHj1KZGQkAPXr1+fs2bNcunTJWvEAqF69OoGBgQC4ubnRoEEDLly4cM8xd881CgsL\nIz093eqXiZuS87HHHiMkJARXV1erZrubKTlbtGhBpUqVAO3vef78eZvMWaFCBePPGRkZPProo1bN\nCKblBJg9ezZ9+vThscces3ZEwPSc6iFGPey2kJjqxo0bbNiwgd69e+sdpUBDhw7l999/p2bNmjRp\n0oRZs2bpHalATZo0YcWKFQAkJCRw7tw5Xd5U7jh79iwHDhwgLCzsnvuTk5OpVauW8ba3t7dN5rQ1\npuScO3cunTt3tmKq/B6Uc9WqVTRo0IBOnTrx6aef6pDu/z3o32dsbCzDhw8H9J+qUFhOg8HAzp07\nadKkCZ07d+bIkSMPPI/DF5I1a9bQqlUrmx2Unzp1KoGBgVy4cIGDBw/y6quvcv36db1j5TNmzBjS\n09MJCgris88+IygoCGdnZ12yZGRk0KdPH2bNmoWbm1u+x+//JKXXf9aictoKU3Ju2bKFefPm8eGH\nH1o53f8rKmePHj04evQoa9asYcCAATok1Dwo55tvvsn06dMxGAwobWhBp5QPzhkcHExSUhKHDh3i\n9ddfL/IKWev3oVjZ0qVLdevWMsXOnTv5+9//DsCTTz5J7dq1OX78OCEhITonu5e7uzvz5s0z3q5d\nuzZPPPGE1XPk5OTQu3dvnn/++QL/cXt5eZGUlGS8ff78eby8vKwZESg6p60wJefhw4cZOnQocXFx\nJncnW9rD/D3Dw8PJzc3lr7/+omrVqlZKqCkq5759++jbty8AaWlprF+/HldXV6Kjo20qp7u7u/Hn\nTp06MWLECC5fvkyVKlUKPJ9Dt0iuXr3Ktm3b6N69u95RCuXn58dPP/0EaEvAHD9+XJc36KJcvXqV\n7OxsAObMmUObNm2s/ilbKcVLL71Ew4YNefPNNws8Jjo6moULFwKwe/duKleubFxWx1pMyXn3sXox\nJWdiYiK9evVi0aJF1KlTx8oJNabkPHXqlPFveWdlcWsXEVNynj59mjNnznDmzBn69OnDF198YfUi\nYkrOixcvGv+eCQkJKKUKLSJg5XkkltSvXz+2bt1KWloanp6eTJw4kZycHACGDRsGaJMWN2zYwHff\nfWezOdPS0hg8eDCJiYnk5eUxduxY+vfvb3M5d+3axaBBgzAYDPj7+zN37lzjIKy1bN++ndatWxMQ\nEGDsrpo6dSqJiYnGnACvvfYacXFxVKhQgfnz5+dbiscWcqamptKsWTOuXbuGk5MT7u7uHDlyxKrF\n2ZScQ4YMYeXKlfj4+ADg6upKQkKC1TKamvOjjz5i4cKFuLq64ubmxieffEKzZs1sLufdBg8eTLdu\n3ejVq5fN5fz3v//NF198gYuLC+XLl+eTTz6hefPmhZ7TbguJEEII2+DQXVtCCCFKnhQSIYQQZpFC\nIoQQwixSSIQQQphFCokQ97l16xZt2rSxq31tpk6dWuQxt27donXr1uTl5VkhkShNpJAIcZ/FixfT\ntWtX3ZevuN+DCsC0adOKfH7ZsmUJDw9n1apVlowlhBQSUXrs2bOHJk2acOvWLTIzM/H39y9wDaEl\nS5YYJ7Hm5eUxYsQIGjRoQIcOHejSpQvLly8HtFnKERERhISE8PTTTxu3mI6IiGDMmDGEhYVRv359\ntm/fDsA333xD9+7diYyMpF69ekyaNMn4mj179iQkJAR/f3/mzJljvN/NzY3Ro0cTGBjIrl27WLRo\nEWFhYQQFBfHKK6+Ql5fHmDFjyMrKIigoyLg0yCeffELjxo1p3LjxPeu3RUdHs2TJEgv/ZUWpV/zF\niIWwP+PHj1ejR49Wr776qpo+fXq+x3Nzc1X16tWNt2NiYlTnzp2VUkqlpqYqDw8PtXz5cpWdna1a\ntGih0tLSlFJKLV26VL344otKKaUiIiLU6NGjlVJK/fjjj6p9+/ZKKaXmz5+vatSooS5fvqyysrKU\nv7+/2rt3r1JK2+9FKaVu3Lih/P39jbcNBoOKiYlRSil15MgR1a1bN5Wbm6uUUmr48OFq4cKFSiml\n3NzcjJn37t2rGjdurG7cuKEyMjJUo0aNjMuG37x5U9WsWdPsv6MQd3P4tbaEuNt7771HSEgIjzzy\nCLNnz873eFpa2j3rDO3YsYNnn30WAE9PT+NS+sePH+f333+nffv2ANy+fZuaNWsan3dntnJwcDBn\nz5413t+hQwfjelW9evVi+/btNG3alFmzZhm7nJKSkjh58iShoaE4OzsbV67evHkz+/btM67DlpWV\nRfXq1fP9Dtu3b6dXr1488sgjxtf55ZdfCAwMpGzZsuTl5XHz5k3KlStXjL+gEPlJIRGlSlpaGpmZ\nmdy+fZusrCzKly+f7xh13yD7/bfvaNSoETt37izwsbJlywLg7OxMbm5ugccopTAYDMTHx7N582Z2\n795NuXLliIyM5ObNmwCUK1funrGagQMHFjmwfmdl2ftfp7DbQphLxkhEqTJs2DCmTJlC//79effd\nd/M9/uijj5KRkWG8/dRTT7F8+XKUUly8eJH4+HhA29zr0qVL7N69G9BWUy1qzwaATZs2ceXKFbKy\nsoiNjaVVq1Zcu3YNDw8PypUrx7Fjx4znvF+7du1YtmyZcUOxy5cvG9dHcnV1NRasOwPqWVlZZGZm\nsmrVKsLDwwHtyi1nZ2djoRPCEqRFIkqNhQsXUrZsWfr27UteXh4tW7YkPj6eiIgI4zHOzs74+/tz\n/Phx6tevT+/evdm8eTMNGzakVq1aBAcHU6lSJVxdXVm2bBkjR47k6tWr5Obm8tZbb9GwYcN8r3v3\np//Q0FB69+7N+fPnGTBgAMHBwfj7+/Pll1/SsGFD6tevT4sWLQp8boMGDZgyZQodOnQgLy8PV1dX\nPv/8c3x8fHj55ZcJCAigadOmfPvttwwaNIjQ0FBA2zytSZMmABw4cOCe8wthCbJooxD3+eabb7h4\n8aKxxZKZmUmFChX466+/CAsLY+fOnVSrVq1Y5923b1+BYzPWMm7cOJo1a0bPnj11yyAcj3RtCXGf\n/v37s27dOuM4Q9euXQkKCqJ169a89957xSoioLUu9BybuHXrFtu3b7fpjbaEfZIWiRBCCLNIi0QI\nIYRZpJAIIYQwixQSIYQQZpFCIoQQwixSSIQQQphFCokQQgiz/C8SqkXnJNUx6gAAAABJRU5ErkJg\ngg==\n" + } + ], + "prompt_number": 16 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 16 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file