diff --git a/wafo/spectrum/core.py b/wafo/spectrum/core.py index de82919..fa1688d 100644 --- a/wafo/spectrum/core.py +++ b/wafo/spectrum/core.py @@ -1429,7 +1429,9 @@ class SpecData1D(PlotData): >>> f = S.to_t_pdf(pdef='Tc', paramt=(0, 10, 51), speed=7) >>> Hm0 = 7 >>> Tp = 11 - >>> S = sm.Jonswap(4*pi/Tp,[Hm0 Tp]) + >>> S = sm.Jonswap(4*pi/Tp,[Hm0, Tp]) + + Sk = spec2spec(S,'k1d') L0 = spec2mom(S,1) paramu = [sqrt(L0)*[-4 4] 41] diff --git a/wafo/stats/_distn_infrastructure.py b/wafo/stats/_distn_infrastructure.py index bbaa418..c9520bb 100644 --- a/wafo/stats/_distn_infrastructure.py +++ b/wafo/stats/_distn_infrastructure.py @@ -1,609 +1,609 @@ -from __future__ import absolute_import -from scipy.stats._distn_infrastructure import * # @UnusedWildImport -from scipy.stats._distn_infrastructure import (_skew, # @UnusedImport - _kurtosis, _lazywhere, _ncx2_log_pdf, # @IgnorePep8 @UnusedImport - _ncx2_pdf, _ncx2_cdf) # @UnusedImport @IgnorePep8 -from .estimation import FitDistribution -from ._constants import _XMAX - - -_doc_default_example = """\ -Examples --------- ->>> from wafo.stats import %(name)s ->>> import matplotlib.pyplot as plt ->>> fig, ax = plt.subplots(1, 1) - -Calculate a few first moments: - -%(set_vals_stmt)s ->>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') - -Display the probability density function (``pdf``): - ->>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s), -... %(name)s.ppf(0.99, %(shapes)s), 100) ->>> ax.plot(x, %(name)s.pdf(x, %(shapes)s), -... 'r-', lw=5, alpha=0.6, label='%(name)s pdf') - -Alternatively, the distribution object can be called (as a function) -to fix the shape, location and scale parameters. This returns a "frozen" -RV object holding the given parameters fixed. - -Freeze the distribution and display the frozen ``pdf``: - ->>> rv = %(name)s(%(shapes)s) ->>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - -Check accuracy of ``cdf`` and ``ppf``: - ->>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s) ->>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s)) -True - -Generate random numbers: - ->>> r = %(name)s.rvs(%(shapes)s, size=1000) - -And compare the histogram: - ->>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) ->>> ax.legend(loc='best', frameon=False) ->>> plt.show() - -Compare ML and MPS method ->>> phat = %(name)s.fit2(R, method='ml');>>> phat.plotfitsummary() ->>> plt.figure(plt.gcf().number+1) ->>> phat2 = %(name)s.fit2(R, method='mps') ->>> phat2.plotfitsummary(); plt.figure(plt.gcf().number+1) - -Fix loc=0 and estimate shapes and scale ->>> phat3 = %(name)s.fit2(R, scale=1, floc=0, method='mps') ->>> phat3.plotfitsummary(); plt.figure(plt.gcf().number+1) - -Accurate confidence interval with profile loglikelihood ->>> lp = phat3.profile() ->>> lp.plot() ->>> pci = lp.get_bounds() - -""" - - -# Frozen RV class -class rv_frozen(object): - ''' Frozen continous or discrete 1D Random Variable object (RV) - - Methods - ------- - rvs(size=1) - Random variates. - pdf(x) - Probability density function. - cdf(x) - Cumulative density function. - sf(x) - Survival function (1-cdf --- sometimes more accurate). - ppf(q) - Percent point function (inverse of cdf --- percentiles). - isf(q) - Inverse survival function (inverse of sf). - stats(moments='mv') - Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). - moment(n) - n-th order non-central moment of distribution. - entropy() - (Differential) entropy of the RV. - interval(alpha) - Confidence interval with equal areas around the median. - expect(func, lb, ub, conditional=False) - Calculate expected value of a function with respect to the - distribution. - ''' - def __init__(self, dist, *args, **kwds): - # create a new instance - self.dist = dist # .__class__(**dist._ctor_param) - shapes, loc, scale = self.dist._parse_args(*args, **kwds) - if isinstance(dist, rv_continuous): - self.par = shapes + (loc, scale) - else: # rv_discrete - self.par = shapes + (loc,) - self.a = self.dist.a - self.b = self.dist.b - self.shapes = self.dist.shapes - # @property - # def shapes(self): - # return self.dist.shapes - - @property - def random_state(self): - return self.dist._random_state - - @random_state.setter - def random_state(self, seed): - self.dist._random_state = check_random_state(seed) - - def pdf(self, x): - ''' Probability density function at x of the given RV.''' - return self.dist.pdf(x, *self.par) - - def logpdf(self, x): - return self.dist.logpdf(x, *self.par) - - def cdf(self, x): - '''Cumulative distribution function at x of the given RV.''' - return self.dist.cdf(x, *self.par) - - def logcdf(self, x): - return self.dist.logcdf(x, *self.par) - - def ppf(self, q): - '''Percent point function (inverse of cdf) at q of the given RV.''' - return self.dist.ppf(q, *self.par) - - def isf(self, q): - '''Inverse survival function at q of the given RV.''' - return self.dist.isf(q, *self.par) - - def rvs(self, size=None, random_state=None): - kwds = {'size': size, 'random_state': random_state} - return self.dist.rvs(*self.par, **kwds) - - def sf(self, x): - '''Survival function (1-cdf) at x of the given RV.''' - return self.dist.sf(x, *self.par) - - def logsf(self, x): - return self.dist.logsf(x, *self.par) - - def stats(self, moments='mv'): - ''' Some statistics of the given RV''' - kwds = dict(moments=moments) - return self.dist.stats(*self.par, **kwds) - - def median(self): - return self.dist.median(*self.par) - - def mean(self): - return self.dist.mean(*self.par) - - def var(self): - return self.dist.var(*self.par) - - def std(self): - return self.dist.std(*self.par) - - def moment(self, n): - return self.dist.moment(n, *self.par) - - def entropy(self): - return self.dist.entropy(*self.par) - - def pmf(self, k): - '''Probability mass function at k of the given RV''' - return self.dist.pmf(k, *self.par) - - def logpmf(self, k): - return self.dist.logpmf(k, *self.par) - - def interval(self, alpha): - return self.dist.interval(alpha, *self.par) - - def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds): - if isinstance(self.dist, rv_continuous): - a, loc, scale = self.par[:-2], self.par[:-2], self.par[-1] - return self.dist.expect(func, a, loc, scale, lb, ub, conditional, - **kwds) - - a, loc = self.par[:-1], self.par[-1] - if kwds: - raise ValueError("Discrete expect does not accept **kwds.") - return self.dist.expect(func, a, loc, lb, ub, conditional) - - -def freeze(self, *args, **kwds): - """Freeze the distribution for the given arguments. - - Parameters - ---------- - arg1, arg2, arg3,... : array_like - The shape parameter(s) for the distribution. Should include all - the non-optional arguments, may include ``loc`` and ``scale``. - - Returns - ------- - rv_frozen : rv_frozen instance - The frozen distribution. - - """ - return rv_frozen(self, *args, **kwds) - - -def link(self, x, logSF, theta, i): - ''' - Return theta[i] as function of quantile, survival probability and - theta[j] for j!=i. - - Parameters - ---------- - x : quantile - logSF : logarithm of the survival probability - theta : list - all distribution parameters including location and scale. - - Returns - ------- - theta[i] : real scalar - fixed distribution parameter theta[i] as function of x, logSF and - theta[j] where j != i. - - LINK is a function connecting the fixed distribution parameter theta[i] - with the quantile (x) and the survival probability (SF) and the - remaining free distribution parameters theta[j] for j!=i, i.e.: - theta[i] = link(x, logSF, theta, i), - where logSF = log(Prob(X>x; theta)). - - See also - estimation.Profile - ''' - return self._link(x, logSF, theta, i) - - -def _link(self, x, logSF, theta, i): - msg = ('Link function not implemented for the %s distribution' % - self.name) - raise NotImplementedError(msg) - - -def nlogps(self, theta, x): - """ Moran's negative log Product Spacings statistic - - where theta are the parameters (including loc and scale) - - Note the data in x must be sorted - - References - ----------- - - R. C. H. Cheng; N. A. K. Amin (1983) - "Estimating Parameters in Continuous Univariate Distributions with a - Shifted Origin.", - Journal of the Royal Statistical Society. Series B (Methodological), - Vol. 45, No. 3. (1983), pp. 394-403. - - R. C. H. Cheng; M. A. Stephens (1989) - "A Goodness-Of-Fit Test Using Moran's Statistic with Estimated - Parameters", Biometrika, 76, 2, pp 385-392 - - Wong, T.S.T. and Li, W.K. (2006) - "A note on the estimation of extreme value distributions using maximum - product of spacings.", - IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283 - """ - - try: - loc = theta[-2] - scale = theta[-1] - args = tuple(theta[:-2]) - except IndexError: - raise ValueError("Not enough input arguments.") - if not self._argcheck(*args) or scale <= 0: - return inf - x = asarray((x - loc) / scale) - cond0 = (x < self.a) | (self.b < x) - Nbad = np.sum(cond0) - if Nbad > 0: - x = argsreduce(~cond0, x)[0] - - lowertail = True - if lowertail: - prb = np.hstack((0.0, self.cdf(x, *args), 1.0)) - dprb = np.diff(prb) - else: - prb = np.hstack((1.0, self.sf(x, *args), 0.0)) - dprb = -np.diff(prb) - - logD = log(dprb) - dx = np.diff(x, axis=0) - tie = (dx == 0) - if any(tie): - # TODO : implement this method for treating ties in data: - # Assume measuring error is delta. Then compute - # yL = F(xi-delta,theta) - # yU = F(xi+delta,theta) - # and replace - # logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1 - - # The following is OK when only minimization of T is wanted - i_tie, = np.nonzero(tie) - tiedata = x[i_tie] - logD[i_tie + 1] = log(self._pdf(tiedata, *args)) - log(scale) - - finiteD = np.isfinite(logD) - nonfiniteD = 1 - finiteD - Nbad += np.sum(nonfiniteD, axis=0) - if Nbad > 0: - T = -np.sum(logD[finiteD], axis=0) + 100.0 * np.log(_XMAX) * Nbad - else: - T = -np.sum(logD, axis=0) - return T - - -def _penalized_nnlf(self, theta, x): - ''' Return negative loglikelihood function, - i.e., - sum (log pdf(x, theta), axis=0) - where theta are the parameters (including loc and scale) - ''' - try: - loc = theta[-2] - scale = theta[-1] - args = tuple(theta[:-2]) - except IndexError: - raise ValueError("Not enough input arguments.") - if not self._argcheck(*args) or scale <= 0: - return inf - x = asarray((x-loc) / scale) - - loginf = log(_XMAX) - - if np.isneginf(self.a).all() and np.isinf(self.b).all(): - Nbad = 0 - else: - cond0 = (x < self.a) | (self.b < x) - Nbad = sum(cond0) - if Nbad > 0: - x = argsreduce(~cond0, x)[0] - - N = len(x) - return self._nnlf(x, *args) + N*log(scale) + Nbad * 100.0 * loginf - - -def _reduce_func(self, args, options): - # First of all, convert fshapes params to fnum: eg for stats.beta, - # shapes='a, b'. To fix `a`, can specify either `f1` or `fa`. - # Convert the latter into the former. - kwds = options # .copy() - if self.shapes: - shapes = self.shapes.replace(',', ' ').split() - for j, s in enumerate(shapes): - val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None) - if val is not None: - key = 'f%d' % j - if key in kwds: - raise ValueError("Duplicate entry for %s." % key) - else: - kwds[key] = val - - args = list(args) - Nargs = len(args) - fixedn = [] - names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale'] - x0 = [] - for n, key in enumerate(names): - if key in kwds: - fixedn.append(n) - args[n] = kwds.pop(key) - else: - x0.append(args[n]) - method = kwds.pop('method', 'ml').lower() - if method.startswith('mps'): - fitfun = self.nlogps - else: - fitfun = self._penalized_nnlf - - if len(fixedn) == 0: - func = fitfun - restore = None - else: - if len(fixedn) == Nargs: - raise ValueError( - "All parameters fixed. There is nothing to optimize.") - - def restore(args, theta): - # Replace with theta for all numbers not in fixedn - # This allows the non-fixed values to vary, but - # we still call self.nnlf with all parameters. - i = 0 - for n in range(Nargs): - if n not in fixedn: - args[n] = theta[i] - i += 1 - return args - - def func(theta, x): - newtheta = restore(args[:], theta) - return fitfun(newtheta, x) - - return x0, func, restore, args - - -def fit(self, data, *args, **kwargs): - """ - Return ML/MPS estimate for shape, location, and scale parameters from data. - - ML and MPS stands for Maximum Likelihood and Maximum Product Spacing, - respectively. Starting estimates for - the fit are given by input arguments; for any arguments not provided - with starting estimates, ``self._fitstart(data)`` is called to generate - such. - - One can hold some parameters fixed to specific values by passing in - keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) - and ``floc`` and ``fscale`` (for location and scale parameters, - respectively). - - Parameters - ---------- - data : array_like - Data to use in calculating the MLEs. - args : floats, optional - Starting value(s) for any shape-characterizing arguments (those not - provided will be determined by a call to ``_fitstart(data)``). - No default value. - kwds : floats, optional - Starting values for the location and scale parameters; no default. - Special keyword arguments are recognized as holding certain - parameters fixed: - - - f0...fn : hold respective shape parameters fixed. - Alternatively, shape parameters to fix can be specified by name. - For example, if ``self.shapes == "a, b"``, ``fa``and ``fix_a`` - are equivalent to ``f0``, and ``fb`` and ``fix_b`` are - equivalent to ``f1``. - - - floc : hold location parameter fixed to specified value. - - - fscale : hold scale parameter fixed to specified value. - - - optimizer : The optimizer to use. The optimizer must take ``func``, - and starting position as the first two arguments, - plus ``args`` (for extra arguments to pass to the - function to be optimized) and ``disp=0`` to suppress - output as keyword arguments. - - Returns - ------- - shape, loc, scale : tuple of floats - MLEs for any shape statistics, followed by those for location and - scale. - - Notes - ----- - This fit is computed by maximizing a log-likelihood function, with - penalty applied for samples outside of range of the distribution. The - returned answer is not guaranteed to be the globally optimal MLE, it - may only be locally optimal, or the optimization may fail altogether. - - - Examples - -------- - - Generate some data to fit: draw random variates from the `beta` - distribution - - >>> from wafo.stats import beta - >>> a, b = 1., 2. - >>> x = beta.rvs(a, b, size=1000) - - Now we can fit all four parameters (``a``, ``b``, ``loc`` and ``scale``): - - >>> a1, b1, loc1, scale1 = beta.fit(x) - - We can also use some prior knowledge about the dataset: let's keep - ``loc`` and ``scale`` fixed: - - >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1) - >>> loc1, scale1 - (0, 1) - - We can also keep shape parameters fixed by using ``f``-keywords. To - keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or, - equivalently, ``fa=1``: - - >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1) - >>> a1 - 1 - - """ - Narg = len(args) - if Narg > self.numargs: - raise TypeError("Too many input arguments.") - - kwds = kwargs.copy() - start = [None]*2 - if (Narg < self.numargs) or not ('loc' in kwds and - 'scale' in kwds): - # get distribution specific starting locations - start = self._fitstart(data) - args += start[Narg:-2] - loc = kwds.pop('loc', start[-2]) - scale = kwds.pop('scale', start[-1]) - args += (loc, scale) - x0, func, restore, args = self._reduce_func(args, kwds) - - optimizer = kwds.pop('optimizer', optimize.fmin) - # convert string to function in scipy.optimize - if not callable(optimizer) and isinstance(optimizer, string_types): - if not optimizer.startswith('fmin_'): - optimizer = "fmin_"+optimizer - if optimizer == 'fmin_': - optimizer = 'fmin' - try: - optimizer = getattr(optimize, optimizer) - except AttributeError: - raise ValueError("%s is not a valid optimizer" % optimizer) - - # by now kwds must be empty, since everybody took what they needed - if kwds: - raise TypeError("Unknown arguments: %s." % kwds) - - vals = optimizer(func, x0, args=(ravel(data),), disp=0) - if restore is not None: - vals = restore(args, vals) - vals = tuple(vals) - return vals - - -def fit2(self, data, *args, **kwds): - ''' Return Maximum Likelihood or Maximum Product Spacing estimator object - - Parameters - ---------- - data : array-like - Data to use in calculating the ML or MPS estimators - args : optional - Starting values for any shape arguments (those not specified - will be determined by dist._fitstart(data)) - kwds : loc, scale - Starting values for the location and scale parameters - Special keyword arguments are recognized as holding certain - parameters fixed: - f0..fn : hold respective shape paramters fixed - floc : hold location parameter fixed to specified value - fscale : hold scale parameter fixed to specified value - method : of estimation. Options are - 'ml' : Maximum Likelihood method (default) - 'mps': Maximum Product Spacing method - alpha : scalar, optional - Confidence coefficent (default=0.05) - search : bool - If true search for best estimator (default), - otherwise return object with initial distribution parameters - copydata : bool - If true copydata (default) - optimizer : The optimizer to use. The optimizer must take func, - and starting position as the first two arguments, - plus args (for extra arguments to pass to the - function to be optimized) and disp=0 to suppress - output as keyword arguments. - - Return - ------ - phat : FitDistribution object - Fitted distribution object with following member variables: - LLmax : loglikelihood function evaluated using par - LPSmax : log product spacing function evaluated using par - pvalue : p-value for the fit - par : distribution parameters (fixed and fitted) - par_cov : covariance of distribution parameters - par_fix : fixed distribution parameters - par_lower : lower (1-alpha)% confidence bound for the parameters - par_upper : upper (1-alpha)% confidence bound for the parameters - - Note - ---- - `data` is sorted using this function, so if `copydata`==False the data - in your namespace will be sorted as well. - ''' - return FitDistribution(self, data, args, **kwds) - - -rv_generic.freeze = freeze -rv_discrete.freeze = freeze -rv_continuous.freeze = freeze -rv_continuous.link = link -rv_continuous._link = _link -rv_continuous.nlogps = nlogps -rv_continuous._penalized_nnlf = _penalized_nnlf -rv_continuous._reduce_func = _reduce_func -rv_continuous.fit = fit -rv_continuous.fit2 = fit2 +from __future__ import absolute_import +from scipy.stats._distn_infrastructure import * # @UnusedWildImport +from scipy.stats._distn_infrastructure import (_skew, # @UnusedImport + _kurtosis, _lazywhere, _ncx2_log_pdf, # @IgnorePep8 @UnusedImport + _ncx2_pdf, _ncx2_cdf) # @UnusedImport @IgnorePep8 +from .estimation import FitDistribution +from ._constants import _XMAX + + +_doc_default_example = """\ +Examples +-------- +>>> from wafo.stats import %(name)s +>>> import matplotlib.pyplot as plt +>>> fig, ax = plt.subplots(1, 1) + +Calculate a few first moments: + +%(set_vals_stmt)s +>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') + +Display the probability density function (``pdf``): + +>>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s), +... %(name)s.ppf(0.99, %(shapes)s), 100) +>>> ax.plot(x, %(name)s.pdf(x, %(shapes)s), +... 'r-', lw=5, alpha=0.6, label='%(name)s pdf') + +Alternatively, the distribution object can be called (as a function) +to fix the shape, location and scale parameters. This returns a "frozen" +RV object holding the given parameters fixed. + +Freeze the distribution and display the frozen ``pdf``: + +>>> rv = %(name)s(%(shapes)s) +>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') + +Check accuracy of ``cdf`` and ``ppf``: + +>>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s) +>>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s)) +True + +Generate random numbers: + +>>> r = %(name)s.rvs(%(shapes)s, size=1000) + +And compare the histogram: + +>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) +>>> ax.legend(loc='best', frameon=False) +>>> plt.show() + +Compare ML and MPS method +>>> phat = %(name)s.fit2(R, method='ml');>>> phat.plotfitsummary() +>>> plt.figure(plt.gcf().number+1) +>>> phat2 = %(name)s.fit2(R, method='mps') +>>> phat2.plotfitsummary(); plt.figure(plt.gcf().number+1) + +Fix loc=0 and estimate shapes and scale +>>> phat3 = %(name)s.fit2(R, scale=1, floc=0, method='mps') +>>> phat3.plotfitsummary(); plt.figure(plt.gcf().number+1) + +Accurate confidence interval with profile loglikelihood +>>> lp = phat3.profile() +>>> lp.plot() +>>> pci = lp.get_bounds() + +""" + + +# Frozen RV class +class rv_frozen(object): + ''' Frozen continous or discrete 1D Random Variable object (RV) + + Methods + ------- + rvs(size=1) + Random variates. + pdf(x) + Probability density function. + cdf(x) + Cumulative density function. + sf(x) + Survival function (1-cdf --- sometimes more accurate). + ppf(q) + Percent point function (inverse of cdf --- percentiles). + isf(q) + Inverse survival function (inverse of sf). + stats(moments='mv') + Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). + moment(n) + n-th order non-central moment of distribution. + entropy() + (Differential) entropy of the RV. + interval(alpha) + Confidence interval with equal areas around the median. + expect(func, lb, ub, conditional=False) + Calculate expected value of a function with respect to the + distribution. + ''' + def __init__(self, dist, *args, **kwds): + # create a new instance + self.dist = dist # .__class__(**dist._ctor_param) + shapes, loc, scale = self.dist._parse_args(*args, **kwds) + if isinstance(dist, rv_continuous): + self.par = shapes + (loc, scale) + else: # rv_discrete + self.par = shapes + (loc,) + self.a = self.dist.a + self.b = self.dist.b + self.shapes = self.dist.shapes + # @property + # def shapes(self): + # return self.dist.shapes + + @property + def random_state(self): + return self.dist._random_state + + @random_state.setter + def random_state(self, seed): + self.dist._random_state = check_random_state(seed) + + def pdf(self, x): + ''' Probability density function at x of the given RV.''' + return self.dist.pdf(x, *self.par) + + def logpdf(self, x): + return self.dist.logpdf(x, *self.par) + + def cdf(self, x): + '''Cumulative distribution function at x of the given RV.''' + return self.dist.cdf(x, *self.par) + + def logcdf(self, x): + return self.dist.logcdf(x, *self.par) + + def ppf(self, q): + '''Percent point function (inverse of cdf) at q of the given RV.''' + return self.dist.ppf(q, *self.par) + + def isf(self, q): + '''Inverse survival function at q of the given RV.''' + return self.dist.isf(q, *self.par) + + def rvs(self, size=None, random_state=None): + kwds = {'size': size, 'random_state': random_state} + return self.dist.rvs(*self.par, **kwds) + + def sf(self, x): + '''Survival function (1-cdf) at x of the given RV.''' + return self.dist.sf(x, *self.par) + + def logsf(self, x): + return self.dist.logsf(x, *self.par) + + def stats(self, moments='mv'): + ''' Some statistics of the given RV''' + kwds = dict(moments=moments) + return self.dist.stats(*self.par, **kwds) + + def median(self): + return self.dist.median(*self.par) + + def mean(self): + return self.dist.mean(*self.par) + + def var(self): + return self.dist.var(*self.par) + + def std(self): + return self.dist.std(*self.par) + + def moment(self, n): + return self.dist.moment(n, *self.par) + + def entropy(self): + return self.dist.entropy(*self.par) + + def pmf(self, k): + '''Probability mass function at k of the given RV''' + return self.dist.pmf(k, *self.par) + + def logpmf(self, k): + return self.dist.logpmf(k, *self.par) + + def interval(self, alpha): + return self.dist.interval(alpha, *self.par) + + def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds): + if isinstance(self.dist, rv_continuous): + a, loc, scale = self.par[:-2], self.par[:-2], self.par[-1] + return self.dist.expect(func, a, loc, scale, lb, ub, conditional, + **kwds) + + a, loc = self.par[:-1], self.par[-1] + if kwds: + raise ValueError("Discrete expect does not accept **kwds.") + return self.dist.expect(func, a, loc, lb, ub, conditional) + + +def freeze(self, *args, **kwds): + """Freeze the distribution for the given arguments. + + Parameters + ---------- + arg1, arg2, arg3,... : array_like + The shape parameter(s) for the distribution. Should include all + the non-optional arguments, may include ``loc`` and ``scale``. + + Returns + ------- + rv_frozen : rv_frozen instance + The frozen distribution. + + """ + return rv_frozen(self, *args, **kwds) + + +def link(self, x, logSF, theta, i): + ''' + Return theta[i] as function of quantile, survival probability and + theta[j] for j!=i. + + Parameters + ---------- + x : quantile + logSF : logarithm of the survival probability + theta : list + all distribution parameters including location and scale. + + Returns + ------- + theta[i] : real scalar + fixed distribution parameter theta[i] as function of x, logSF and + theta[j] where j != i. + + LINK is a function connecting the fixed distribution parameter theta[i] + with the quantile (x) and the survival probability (SF) and the + remaining free distribution parameters theta[j] for j!=i, i.e.: + theta[i] = link(x, logSF, theta, i), + where logSF = log(Prob(X>x; theta)). + + See also + estimation.Profile + ''' + return self._link(x, logSF, theta, i) + + +def _link(self, x, logSF, theta, i): + msg = ('Link function not implemented for the %s distribution' % + self.name) + raise NotImplementedError(msg) + + +def nlogps(self, theta, x): + """ Moran's negative log Product Spacings statistic + + where theta are the parameters (including loc and scale) + + Note the data in x must be sorted + + References + ----------- + + R. C. H. Cheng; N. A. K. Amin (1983) + "Estimating Parameters in Continuous Univariate Distributions with a + Shifted Origin.", + Journal of the Royal Statistical Society. Series B (Methodological), + Vol. 45, No. 3. (1983), pp. 394-403. + + R. C. H. Cheng; M. A. Stephens (1989) + "A Goodness-Of-Fit Test Using Moran's Statistic with Estimated + Parameters", Biometrika, 76, 2, pp 385-392 + + Wong, T.S.T. and Li, W.K. (2006) + "A note on the estimation of extreme value distributions using maximum + product of spacings.", + IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283 + """ + + try: + loc = theta[-2] + scale = theta[-1] + args = tuple(theta[:-2]) + except IndexError: + raise ValueError("Not enough input arguments.") + if not self._argcheck(*args) or scale <= 0: + return inf + x = asarray((x - loc) / scale) + cond0 = (x < self.a) | (self.b < x) + Nbad = np.sum(cond0) + if Nbad > 0: + x = argsreduce(~cond0, x)[0] + + lowertail = True + if lowertail: + prb = np.hstack((0.0, self.cdf(x, *args), 1.0)) + dprb = np.diff(prb) + else: + prb = np.hstack((1.0, self.sf(x, *args), 0.0)) + dprb = -np.diff(prb) + + logD = log(dprb) + dx = np.diff(x, axis=0) + tie = (dx == 0) + if any(tie): + # TODO : implement this method for treating ties in data: + # Assume measuring error is delta. Then compute + # yL = F(xi-delta,theta) + # yU = F(xi+delta,theta) + # and replace + # logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1 + + # The following is OK when only minimization of T is wanted + i_tie, = np.nonzero(tie) + tiedata = x[i_tie] + logD[i_tie + 1] = log(self._pdf(tiedata, *args)) - log(scale) + + finiteD = np.isfinite(logD) + nonfiniteD = 1 - finiteD + Nbad += np.sum(nonfiniteD, axis=0) + if Nbad > 0: + T = -np.sum(logD[finiteD], axis=0) + 100.0 * np.log(_XMAX) * Nbad + else: + T = -np.sum(logD, axis=0) + return T + + +def _penalized_nnlf(self, theta, x): + ''' Return negative loglikelihood function, + i.e., - sum (log pdf(x, theta), axis=0) + where theta are the parameters (including loc and scale) + ''' + try: + loc = theta[-2] + scale = theta[-1] + args = tuple(theta[:-2]) + except IndexError: + raise ValueError("Not enough input arguments.") + if not self._argcheck(*args) or scale <= 0: + return inf + x = asarray((x-loc) / scale) + N = len(x) + cond0 = (x < self.a) | (self.b < x) + Nbad = sum(cond0) + if Nbad > 0: + x = argsreduce(~cond0, x)[0] + logpdf = self._logpdf(x, *args) + finite_logpdf = np.isfinite(logpdf) + Nbad += np.sum(~finite_logpdf, axis=0) + logscale = N * log(scale) + if Nbad > 0: + penalty = Nbad * log(_XMAX) * 100 + return -np.sum(logpdf[finite_logpdf], axis=0) + penalty + logscale + return -np.sum(logpdf, axis=0) + logscale + + +def _reduce_func(self, args, options): + # First of all, convert fshapes params to fnum: eg for stats.beta, + # shapes='a, b'. To fix `a`, can specify either `f1` or `fa`. + # Convert the latter into the former. + kwds = options # .copy() + if self.shapes: + shapes = self.shapes.replace(',', ' ').split() + for j, s in enumerate(shapes): + val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None) + if val is not None: + key = 'f%d' % j + if key in kwds: + raise ValueError("Duplicate entry for %s." % key) + else: + kwds[key] = val + + args = list(args) + Nargs = len(args) + fixedn = [] + names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale'] + x0 = [] + for n, key in enumerate(names): + if key in kwds: + fixedn.append(n) + args[n] = kwds.pop(key) + else: + x0.append(args[n]) + method = kwds.pop('method', 'ml').lower() + if method.startswith('mps'): + fitfun = self.nlogps + else: + fitfun = self._penalized_nnlf + + if len(fixedn) == 0: + func = fitfun + restore = None + else: + if len(fixedn) == Nargs: + raise ValueError( + "All parameters fixed. There is nothing to optimize.") + + def restore(args, theta): + # Replace with theta for all numbers not in fixedn + # This allows the non-fixed values to vary, but + # we still call self.nnlf with all parameters. + i = 0 + for n in range(Nargs): + if n not in fixedn: + args[n] = theta[i] + i += 1 + return args + + def func(theta, x): + newtheta = restore(args[:], theta) + return fitfun(newtheta, x) + + return x0, func, restore, args + + +def fit(self, data, *args, **kwargs): + """ + Return ML/MPS estimate for shape, location, and scale parameters from data. + + ML and MPS stands for Maximum Likelihood and Maximum Product Spacing, + respectively. Starting estimates for + the fit are given by input arguments; for any arguments not provided + with starting estimates, ``self._fitstart(data)`` is called to generate + such. + + One can hold some parameters fixed to specific values by passing in + keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) + and ``floc`` and ``fscale`` (for location and scale parameters, + respectively). + + Parameters + ---------- + data : array_like + Data to use in calculating the MLEs. + args : floats, optional + Starting value(s) for any shape-characterizing arguments (those not + provided will be determined by a call to ``_fitstart(data)``). + No default value. + kwds : floats, optional + Starting values for the location and scale parameters; no default. + Special keyword arguments are recognized as holding certain + parameters fixed: + + - f0...fn : hold respective shape parameters fixed. + Alternatively, shape parameters to fix can be specified by name. + For example, if ``self.shapes == "a, b"``, ``fa``and ``fix_a`` + are equivalent to ``f0``, and ``fb`` and ``fix_b`` are + equivalent to ``f1``. + + - floc : hold location parameter fixed to specified value. + + - fscale : hold scale parameter fixed to specified value. + + - optimizer : The optimizer to use. The optimizer must take ``func``, + and starting position as the first two arguments, + plus ``args`` (for extra arguments to pass to the + function to be optimized) and ``disp=0`` to suppress + output as keyword arguments. + + Returns + ------- + shape, loc, scale : tuple of floats + MLEs for any shape statistics, followed by those for location and + scale. + + Notes + ----- + This fit is computed by maximizing a log-likelihood function, with + penalty applied for samples outside of range of the distribution. The + returned answer is not guaranteed to be the globally optimal MLE, it + may only be locally optimal, or the optimization may fail altogether. + + + Examples + -------- + + Generate some data to fit: draw random variates from the `beta` + distribution + + >>> from wafo.stats import beta + >>> a, b = 1., 2. + >>> x = beta.rvs(a, b, size=1000) + + Now we can fit all four parameters (``a``, ``b``, ``loc`` and ``scale``): + + >>> a1, b1, loc1, scale1 = beta.fit(x) + + We can also use some prior knowledge about the dataset: let's keep + ``loc`` and ``scale`` fixed: + + >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1) + >>> loc1, scale1 + (0, 1) + + We can also keep shape parameters fixed by using ``f``-keywords. To + keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or, + equivalently, ``fa=1``: + + >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1) + >>> a1 + 1 + + """ + Narg = len(args) + if Narg > self.numargs: + raise TypeError("Too many input arguments.") + + kwds = kwargs.copy() + start = [None]*2 + if (Narg < self.numargs) or not ('loc' in kwds and + 'scale' in kwds): + # get distribution specific starting locations + start = self._fitstart(data) + args += start[Narg:-2] + loc = kwds.pop('loc', start[-2]) + scale = kwds.pop('scale', start[-1]) + args += (loc, scale) + x0, func, restore, args = self._reduce_func(args, kwds) + + optimizer = kwds.pop('optimizer', optimize.fmin) + # convert string to function in scipy.optimize + if not callable(optimizer) and isinstance(optimizer, string_types): + if not optimizer.startswith('fmin_'): + optimizer = "fmin_"+optimizer + if optimizer == 'fmin_': + optimizer = 'fmin' + try: + optimizer = getattr(optimize, optimizer) + except AttributeError: + raise ValueError("%s is not a valid optimizer" % optimizer) + + # by now kwds must be empty, since everybody took what they needed + if kwds: + raise TypeError("Unknown arguments: %s." % kwds) + + vals = optimizer(func, x0, args=(ravel(data),), disp=0) + if restore is not None: + vals = restore(args, vals) + vals = tuple(vals) + return vals + + +def fit2(self, data, *args, **kwds): + ''' Return Maximum Likelihood or Maximum Product Spacing estimator object + + Parameters + ---------- + data : array-like + Data to use in calculating the ML or MPS estimators + args : optional + Starting values for any shape arguments (those not specified + will be determined by dist._fitstart(data)) + kwds : loc, scale + Starting values for the location and scale parameters + Special keyword arguments are recognized as holding certain + parameters fixed: + f0..fn : hold respective shape paramters fixed + floc : hold location parameter fixed to specified value + fscale : hold scale parameter fixed to specified value + method : of estimation. Options are + 'ml' : Maximum Likelihood method (default) + 'mps': Maximum Product Spacing method + alpha : scalar, optional + Confidence coefficent (default=0.05) + search : bool + If true search for best estimator (default), + otherwise return object with initial distribution parameters + copydata : bool + If true copydata (default) + optimizer : The optimizer to use. The optimizer must take func, + and starting position as the first two arguments, + plus args (for extra arguments to pass to the + function to be optimized) and disp=0 to suppress + output as keyword arguments. + + Return + ------ + phat : FitDistribution object + Fitted distribution object with following member variables: + LLmax : loglikelihood function evaluated using par + LPSmax : log product spacing function evaluated using par + pvalue : p-value for the fit + par : distribution parameters (fixed and fitted) + par_cov : covariance of distribution parameters + par_fix : fixed distribution parameters + par_lower : lower (1-alpha)% confidence bound for the parameters + par_upper : upper (1-alpha)% confidence bound for the parameters + + Note + ---- + `data` is sorted using this function, so if `copydata`==False the data + in your namespace will be sorted as well. + ''' + return FitDistribution(self, data, args, **kwds) + + +rv_generic.freeze = freeze +rv_discrete.freeze = freeze +rv_continuous.freeze = freeze +rv_continuous.link = link +rv_continuous._link = _link +rv_continuous.nlogps = nlogps +rv_continuous._penalized_nnlf = _penalized_nnlf +rv_continuous._reduce_func = _reduce_func +rv_continuous.fit = fit +rv_continuous.fit2 = fit2