|
|
|
@ -12,7 +12,7 @@
|
|
|
|
|
from __future__ import division
|
|
|
|
|
from itertools import product
|
|
|
|
|
#from misc import tranproc, trangood
|
|
|
|
|
from numpy import pi, sqrt, atleast_2d, exp, newaxis #@UnresolvedImport
|
|
|
|
|
from numpy import pi, sqrt, atleast_2d, exp, newaxis, array #@UnresolvedImport
|
|
|
|
|
from scipy import interpolate, linalg
|
|
|
|
|
from scipy.special import gamma
|
|
|
|
|
from wafo.misc import meshgrid
|
|
|
|
@ -20,6 +20,7 @@ import copy
|
|
|
|
|
import numpy as np
|
|
|
|
|
import scipy
|
|
|
|
|
import warnings
|
|
|
|
|
from wafo.wafodata import WafoData
|
|
|
|
|
|
|
|
|
|
_stats_epan = (1. / 5, 3. / 5, np.inf)
|
|
|
|
|
_stats_biwe = (1. / 7, 5. / 7, 45. / 2)
|
|
|
|
@ -131,7 +132,7 @@ class _KDE(object):
|
|
|
|
|
else:
|
|
|
|
|
self.xmax = self.xmax * np.ones(self.d)
|
|
|
|
|
|
|
|
|
|
def eval_grid_fast(self, *args):
|
|
|
|
|
def eval_grid_fast(self, *args, **kwds):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -146,16 +147,12 @@ class _KDE(object):
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if len(args) == 0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid_fast(*args)
|
|
|
|
|
return self._eval_grid_fun(self._eval_grid_fast, *args, **kwds)
|
|
|
|
|
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def eval_grid(self, *args):
|
|
|
|
|
|
|
|
|
|
def eval_grid(self, *args, **kwds):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -163,24 +160,36 @@ class _KDE(object):
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
|
|
output : string
|
|
|
|
|
'value' if value output
|
|
|
|
|
'wafodata' if object output
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : array-like
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return self._eval_grid_fun(self._eval_grid, *args, **kwds)
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
pass
|
|
|
|
|
def _eval_grid_fun(self, eval_grd, *args, **kwds):
|
|
|
|
|
if len(args) == 0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid(*args)
|
|
|
|
|
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
f = eval_grd(*args)
|
|
|
|
|
if kwds.get('output', 'value')=='value':
|
|
|
|
|
return f
|
|
|
|
|
else:
|
|
|
|
|
titlestr = 'Kernel density estimate (%s)' % self.kernel.name
|
|
|
|
|
kwds2 = dict(title=titlestr)
|
|
|
|
|
kwds2.update(**kwds)
|
|
|
|
|
if self.d==1:
|
|
|
|
|
args = args[0]
|
|
|
|
|
return WafoData(f,args, **kwds2)
|
|
|
|
|
|
|
|
|
|
def _check_shape(self, points):
|
|
|
|
|
points = atleast_2d(points)
|
|
|
|
|
d, m = points.shape
|
|
|
|
@ -511,12 +520,16 @@ class KDE(_KDE):
|
|
|
|
|
>>> kde0.eval_grid(x)
|
|
|
|
|
array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 ,
|
|
|
|
|
0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821])
|
|
|
|
|
|
|
|
|
|
>>> f = kde0.eval_grid(x, output='plotobj')
|
|
|
|
|
>>> f.data
|
|
|
|
|
array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 ,
|
|
|
|
|
0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821])
|
|
|
|
|
|
|
|
|
|
>>> f = kde0.eval_grid_fast()
|
|
|
|
|
>>> np.interp(x, kde0.args[0], f)
|
|
|
|
|
array([ 0.21227584, 0.41256459, 0.5495661 , 0.5176579 , 0.38431616,
|
|
|
|
|
0.2591162 , 0.15978948, 0.07889179, 0.02769818, 0.00791829])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pylab as plb
|
|
|
|
|
h1 = plb.plot(x, f) # 1D probability density plot
|
|
|
|
|
t = np.trapz(f, x)
|
|
|
|
@ -875,7 +888,9 @@ class Kernel(object):
|
|
|
|
|
self.get_smoothing = getattr(self, fun)
|
|
|
|
|
except:
|
|
|
|
|
self.get_smoothing = self.hns
|
|
|
|
|
|
|
|
|
|
def _get_name(self):
|
|
|
|
|
return self.kernel.__class__.__name__.replace('_Kernel', '').title()
|
|
|
|
|
name = property(_get_name)
|
|
|
|
|
def stats(self):
|
|
|
|
|
''' Return some 1D statistics of the kernel.
|
|
|
|
|
|
|
|
|
|