|
|
|
@ -1,8 +1,8 @@
|
|
|
|
|
# Functions to implement several important functions for
|
|
|
|
|
# various Continous and Discrete Probability Distributions
|
|
|
|
|
#
|
|
|
|
|
# Author: Travis Oliphant 2002-2010 with contributions from
|
|
|
|
|
# SciPy Developers 2004-2010
|
|
|
|
|
# Author: Travis Oliphant 2002-2011 with contributions from
|
|
|
|
|
# SciPy Developers 2004-2011
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
from __future__ import division
|
|
|
|
@ -45,6 +45,38 @@ def _moment(data, n, mu=None):
|
|
|
|
|
mu = data.mean()
|
|
|
|
|
return ((data - mu)**n).mean()
|
|
|
|
|
|
|
|
|
|
def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args):
|
|
|
|
|
if (n==0):
|
|
|
|
|
return 1.0
|
|
|
|
|
elif (n==1):
|
|
|
|
|
if mu is None:
|
|
|
|
|
val = moment_func(1,*args)
|
|
|
|
|
else:
|
|
|
|
|
val = mu
|
|
|
|
|
elif (n==2):
|
|
|
|
|
if mu2 is None or mu is None:
|
|
|
|
|
val = moment_func(2,*args)
|
|
|
|
|
else:
|
|
|
|
|
val = mu2 + mu*mu
|
|
|
|
|
elif (n==3):
|
|
|
|
|
if g1 is None or mu2 is None or mu is None:
|
|
|
|
|
val = moment_func(3,*args)
|
|
|
|
|
else:
|
|
|
|
|
mu3 = g1*(mu2**1.5) # 3rd central moment
|
|
|
|
|
val = mu3+3*mu*mu2+mu**3 # 3rd non-central moment
|
|
|
|
|
elif (n==4):
|
|
|
|
|
if g1 is None or g2 is None or mu2 is None or mu is None:
|
|
|
|
|
val = moment_func(4,*args)
|
|
|
|
|
else:
|
|
|
|
|
mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment
|
|
|
|
|
mu3 = g1*(mu2**1.5) # 3rd central moment
|
|
|
|
|
val = mu4+4*mu*mu3+6*mu*mu*mu2+mu**4
|
|
|
|
|
else:
|
|
|
|
|
val = moment_func(n, *args)
|
|
|
|
|
|
|
|
|
|
return val
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _skew(data):
|
|
|
|
|
data = np.ravel(data)
|
|
|
|
|
mu = data.mean()
|
|
|
|
@ -121,18 +153,34 @@ _doc_pdf = \
|
|
|
|
|
"""pdf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Probability density function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_logpdf = \
|
|
|
|
|
"""logpdf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Log of the probability density function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_pmf = \
|
|
|
|
|
"""pmf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Probability mass function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_logpmf = \
|
|
|
|
|
"""logpmf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Log of the probability mass function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_cdf = \
|
|
|
|
|
"""cdf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Cumulative density function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_logcdf = \
|
|
|
|
|
"""logcdf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Log of the cumulative density function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_sf = \
|
|
|
|
|
"""sf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Survival function (1-cdf --- sometimes more accurate).
|
|
|
|
|
"""
|
|
|
|
|
_doc_logsf = \
|
|
|
|
|
"""logsf(x, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Log of the survival function.
|
|
|
|
|
"""
|
|
|
|
|
_doc_ppf = \
|
|
|
|
|
"""ppf(q, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Percent point function (inverse of cdf --- percentiles).
|
|
|
|
@ -141,6 +189,10 @@ _doc_isf = \
|
|
|
|
|
"""isf(q, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Inverse survival function (inverse of sf).
|
|
|
|
|
"""
|
|
|
|
|
_doc_moment = \
|
|
|
|
|
"""moment(n, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Non-central moment of order n
|
|
|
|
|
"""
|
|
|
|
|
_doc_stats = \
|
|
|
|
|
"""stats(%(shapes)s, loc=0, scale=1, moments='mv')
|
|
|
|
|
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
|
|
|
|
@ -153,9 +205,40 @@ _doc_fit = \
|
|
|
|
|
"""fit(data, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Parameter estimates for generic data.
|
|
|
|
|
"""
|
|
|
|
|
_doc_expect = \
|
|
|
|
|
"""expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
|
|
|
|
|
Expected value of a function (of one argument) with respect to the distribution.
|
|
|
|
|
"""
|
|
|
|
|
_doc_expect_discrete = \
|
|
|
|
|
"""expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False)
|
|
|
|
|
Expected value of a function (of one argument) with respect to the distribution.
|
|
|
|
|
"""
|
|
|
|
|
_doc_median = \
|
|
|
|
|
"""median(%(shapes)s, loc=0, scale=1)
|
|
|
|
|
Median of the distribution.
|
|
|
|
|
"""
|
|
|
|
|
_doc_mean = \
|
|
|
|
|
"""mean(%(shapes)s, loc=0, scale=1)
|
|
|
|
|
Mean of the distribution.
|
|
|
|
|
"""
|
|
|
|
|
_doc_var = \
|
|
|
|
|
"""var(%(shapes)s, loc=0, scale=1)
|
|
|
|
|
Variance of the distribution.
|
|
|
|
|
"""
|
|
|
|
|
_doc_std = \
|
|
|
|
|
"""std(%(shapes)s, loc=0, scale=1)
|
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
|
"""
|
|
|
|
|
_doc_interval = \
|
|
|
|
|
"""interval(alpha, %(shapes)s, loc=0, scale=1)
|
|
|
|
|
Endpoints of the range that contains alpha percent of the distribution
|
|
|
|
|
"""
|
|
|
|
|
_doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf,
|
|
|
|
|
_doc_cdf, _doc_sf, _doc_ppf, _doc_isf,
|
|
|
|
|
_doc_stats, _doc_entropy, _doc_fit])
|
|
|
|
|
_doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf,
|
|
|
|
|
_doc_logsf, _doc_ppf, _doc_isf, _doc_moment,
|
|
|
|
|
_doc_stats, _doc_entropy, _doc_fit,
|
|
|
|
|
_doc_expect, _doc_median,
|
|
|
|
|
_doc_mean, _doc_var, _doc_std, _doc_interval])
|
|
|
|
|
|
|
|
|
|
# Note that the two lines for %(shapes) are searched for and replaced in
|
|
|
|
|
# rv_continuous and rv_discrete - update there if the exact string changes
|
|
|
|
@ -199,6 +282,7 @@ _doc_default_example = \
|
|
|
|
|
"""Examples
|
|
|
|
|
--------
|
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
|
>>> from scipy.stats import %(name)s
|
|
|
|
|
>>> numargs = %(name)s.numargs
|
|
|
|
|
>>> [ %(shapes)s ] = [0.9,] * numargs
|
|
|
|
|
>>> rv = %(name)s(%(shapes)s)
|
|
|
|
@ -247,13 +331,23 @@ _doc_default_before_notes = ''.join([_doc_default_longsummary,
|
|
|
|
|
|
|
|
|
|
docdict = {'rvs':_doc_rvs,
|
|
|
|
|
'pdf':_doc_pdf,
|
|
|
|
|
'logpdf':_doc_logpdf,
|
|
|
|
|
'cdf':_doc_cdf,
|
|
|
|
|
'logcdf':_doc_logcdf,
|
|
|
|
|
'sf':_doc_sf,
|
|
|
|
|
'logsf':_doc_logsf,
|
|
|
|
|
'ppf':_doc_ppf,
|
|
|
|
|
'isf':_doc_isf,
|
|
|
|
|
'stats':_doc_stats,
|
|
|
|
|
'entropy':_doc_entropy,
|
|
|
|
|
'fit':_doc_fit,
|
|
|
|
|
'moment':_doc_moment,
|
|
|
|
|
'expect':_doc_expect,
|
|
|
|
|
'interval':_doc_interval,
|
|
|
|
|
'mean':_doc_mean,
|
|
|
|
|
'std':_doc_std,
|
|
|
|
|
'var':_doc_var,
|
|
|
|
|
'median':_doc_median,
|
|
|
|
|
'allmethods':_doc_allmethods,
|
|
|
|
|
'callparams':_doc_default_callparams,
|
|
|
|
|
'longsummary':_doc_default_longsummary,
|
|
|
|
@ -267,11 +361,15 @@ docdict = {'rvs':_doc_rvs,
|
|
|
|
|
docdict_discrete = docdict.copy()
|
|
|
|
|
|
|
|
|
|
docdict_discrete['pmf'] = _doc_pmf
|
|
|
|
|
_doc_disc_methods = ['rvs', 'pmf', 'cdf', 'sf', 'ppf', 'isf', 'stats',
|
|
|
|
|
'entropy', 'fit']
|
|
|
|
|
docdict_discrete['logpmf'] = _doc_logpmf
|
|
|
|
|
docdict_discrete['expect'] = _doc_expect_discrete
|
|
|
|
|
_doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf',
|
|
|
|
|
'ppf', 'isf', 'stats', 'entropy', 'fit', 'expect', 'median',
|
|
|
|
|
'mean', 'var', 'std', 'interval']
|
|
|
|
|
for obj in _doc_disc_methods:
|
|
|
|
|
docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '')
|
|
|
|
|
docdict_discrete.pop('pdf')
|
|
|
|
|
docdict_discrete.pop('logpdf')
|
|
|
|
|
|
|
|
|
|
_doc_allmethods = ''.join([docdict_discrete[obj] for obj in
|
|
|
|
|
_doc_disc_methods])
|
|
|
|
@ -362,9 +460,15 @@ class rv_frozen_old(object):
|
|
|
|
|
def pdf(self, x): #raises AttributeError in frozen discrete distribution
|
|
|
|
|
return self.dist.pdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def logpdf(self, x):
|
|
|
|
|
return self.dist.logpdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def cdf(self, x):
|
|
|
|
|
return self.dist.cdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def logcdf(self, x):
|
|
|
|
|
return self.dist.logcdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def ppf(self, q):
|
|
|
|
|
return self.dist.ppf(q, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
@ -379,6 +483,9 @@ class rv_frozen_old(object):
|
|
|
|
|
def sf(self, x):
|
|
|
|
|
return self.dist.sf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def logsf(self, x):
|
|
|
|
|
return self.dist.logsf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def stats(self, moments='mv'):
|
|
|
|
|
kwds = self.kwds.copy()
|
|
|
|
|
kwds.update({'moments':moments})
|
|
|
|
@ -402,6 +509,9 @@ class rv_frozen_old(object):
|
|
|
|
|
def pmf(self,k):
|
|
|
|
|
return self.dist.pmf(k, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def logpmf(self,k):
|
|
|
|
|
return self.dist.logpmf(k, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
def interval(self, alpha):
|
|
|
|
|
return self.dist.interval(alpha, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
@ -463,9 +573,13 @@ class rv_frozen(object):
|
|
|
|
|
def pdf(self, x):
|
|
|
|
|
''' Probability density function at x of the given RV.'''
|
|
|
|
|
return self.dist.pdf(x, *self.par)
|
|
|
|
|
def logpdf(self, x):
|
|
|
|
|
return self.dist.logpdf(x, *self.par)
|
|
|
|
|
def cdf(self, x):
|
|
|
|
|
'''Cumulative distribution function at x of the given RV.'''
|
|
|
|
|
return self.dist.cdf(x, *self.par)
|
|
|
|
|
def logcdf(self, x):
|
|
|
|
|
return self.dist.logcdf(x, *self.par)
|
|
|
|
|
def ppf(self, q):
|
|
|
|
|
'''Percent point function (inverse of cdf) at q of the given RV.'''
|
|
|
|
|
return self.dist.ppf(q, *self.par)
|
|
|
|
@ -479,6 +593,8 @@ class rv_frozen(object):
|
|
|
|
|
def sf(self, x):
|
|
|
|
|
'''Survival function (1-cdf) at x of the given RV.'''
|
|
|
|
|
return self.dist.sf(x, *self.par)
|
|
|
|
|
def logsf(self, x):
|
|
|
|
|
return self.dist.logsf(x, *self.par)
|
|
|
|
|
def stats(self, moments='mv'):
|
|
|
|
|
''' Some statistics of the given RV'''
|
|
|
|
|
kwds = dict(moments=moments)
|
|
|
|
@ -492,13 +608,14 @@ class rv_frozen(object):
|
|
|
|
|
def std(self):
|
|
|
|
|
return self.dist.std(*self.par)
|
|
|
|
|
def moment(self, n):
|
|
|
|
|
par1 = self.par[:self.dist.numargs]
|
|
|
|
|
return self.dist.moment(n, *par1)
|
|
|
|
|
return self.dist.moment(n, *self.par)
|
|
|
|
|
def entropy(self):
|
|
|
|
|
return self.dist.entropy(*self.par)
|
|
|
|
|
def pmf(self, k):
|
|
|
|
|
'''Probability mass function at k of the given RV'''
|
|
|
|
|
return self.dist.pmf(k, *self.par)
|
|
|
|
|
def logpmf(self,k):
|
|
|
|
|
return self.dist.logpmf(k, *self.par)
|
|
|
|
|
def interval(self, alpha):
|
|
|
|
|
return self.dist.interval(alpha, *self.par)
|
|
|
|
|
|
|
|
|
@ -1072,7 +1189,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
momtype : int, optional
|
|
|
|
|
The type of generic moment calculation to use (check this).
|
|
|
|
|
The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf.
|
|
|
|
|
a : float, optional
|
|
|
|
|
Lower bound of the support of the distribution, default is minus
|
|
|
|
|
infinity.
|
|
|
|
@ -1099,7 +1216,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
The shape of the distribution. For example ``"m, n"`` for a
|
|
|
|
|
distribution that takes two integers as the two shape arguments for all
|
|
|
|
|
its methods.
|
|
|
|
|
extradoc : str, optional
|
|
|
|
|
extradoc : str, optional, deprecated
|
|
|
|
|
This string is used as the last part of the docstring returned when a
|
|
|
|
|
subclass has no docstring of its own. Note: `extradoc` exists for
|
|
|
|
|
backwards compatibility, do not use for new subclasses.
|
|
|
|
@ -1112,20 +1229,29 @@ class rv_continuous(rv_generic):
|
|
|
|
|
pdf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
probability density function
|
|
|
|
|
|
|
|
|
|
logpdf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
log of the probability density function
|
|
|
|
|
|
|
|
|
|
cdf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
cumulative density function
|
|
|
|
|
|
|
|
|
|
logcdf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
log of the cumulative density function
|
|
|
|
|
|
|
|
|
|
sf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
survival function (1-cdf --- sometimes more accurate)
|
|
|
|
|
|
|
|
|
|
logsf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
log of the survival function
|
|
|
|
|
|
|
|
|
|
ppf(q, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
percent point function (inverse of cdf --- quantiles)
|
|
|
|
|
|
|
|
|
|
isf(q, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
inverse survival function (inverse of sf)
|
|
|
|
|
|
|
|
|
|
moments(n, <shape(s)>)
|
|
|
|
|
non-central n-th moment of the standard distribution (oc=0, scale=1)
|
|
|
|
|
moment(n, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
non-central n-th moment of the distribution. May not work for array arguments.
|
|
|
|
|
|
|
|
|
|
stats(<shape(s)>, loc=0, scale=1, moments='mv')
|
|
|
|
|
mean('m'), variance('v'), skew('s'), and/or kurtosis('k')
|
|
|
|
@ -1136,10 +1262,31 @@ class rv_continuous(rv_generic):
|
|
|
|
|
fit(data, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
Parameter estimates for generic data
|
|
|
|
|
|
|
|
|
|
expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None,
|
|
|
|
|
conditional=False, **kwds)
|
|
|
|
|
Expected value of a function with respect to the distribution.
|
|
|
|
|
Additional kwd arguments passed to integrate.quad
|
|
|
|
|
|
|
|
|
|
median(<shape(s)>, loc=0, scale=1)
|
|
|
|
|
Median of the distribution.
|
|
|
|
|
|
|
|
|
|
mean(<shape(s)>, loc=0, scale=1)
|
|
|
|
|
Mean of the distribution.
|
|
|
|
|
|
|
|
|
|
std(<shape(s)>, loc=0, scale=1)
|
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
|
|
|
|
|
|
var(<shape(s)>, loc=0, scale=1)
|
|
|
|
|
Variance of the distribution.
|
|
|
|
|
|
|
|
|
|
interval(alpha, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
Interval that with `alpha` percent probability contains a random
|
|
|
|
|
realization of this distribution.
|
|
|
|
|
|
|
|
|
|
__call__(<shape(s)>, loc=0, scale=1)
|
|
|
|
|
calling a distribution instance creates a frozen RV object with the
|
|
|
|
|
Calling a distribution instance creates a frozen RV object with the
|
|
|
|
|
same methods but holding the given shape, location, and scale fixed.
|
|
|
|
|
see Notes section
|
|
|
|
|
See Notes section.
|
|
|
|
|
|
|
|
|
|
**Parameters for Methods**
|
|
|
|
|
|
|
|
|
@ -1199,8 +1346,9 @@ class rv_continuous(rv_generic):
|
|
|
|
|
New random variables can be defined by subclassing rv_continuous class
|
|
|
|
|
and re-defining at least the
|
|
|
|
|
|
|
|
|
|
_pdf or the cdf method which will be given clean arguments (in between a
|
|
|
|
|
and b) and passing the argument check method
|
|
|
|
|
_pdf or the _cdf method (normalized to location 0 and scale 1)
|
|
|
|
|
which will be given clean arguments (in between a and b) and
|
|
|
|
|
passing the argument check method
|
|
|
|
|
|
|
|
|
|
If postive argument checking is not correct for your RV
|
|
|
|
|
then you will also need to re-define ::
|
|
|
|
@ -1210,9 +1358,9 @@ class rv_continuous(rv_generic):
|
|
|
|
|
Correct, but potentially slow defaults exist for the remaining
|
|
|
|
|
methods but for speed and/or accuracy you can over-ride ::
|
|
|
|
|
|
|
|
|
|
_cdf, _ppf, _rvs, _isf, _sf
|
|
|
|
|
_logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf
|
|
|
|
|
|
|
|
|
|
Rarely would you override _isf and _sf but you could.
|
|
|
|
|
Rarely would you override _isf, _sf, and _logsf but you could.
|
|
|
|
|
|
|
|
|
|
Statistics are computed using numerical integration by default.
|
|
|
|
|
For speed you can redefine this using
|
|
|
|
@ -1498,7 +1646,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
"""
|
|
|
|
|
Log of the probability density function at x of the given RV.
|
|
|
|
|
|
|
|
|
|
This uses more numerically accurate calculation if available.
|
|
|
|
|
This uses a more numerically accurate calculation if available.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
@ -1804,7 +1952,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
|
|
|
|
|
proxy_value = self.a * scale + loc
|
|
|
|
|
if product(shape(proxy_value)) != 1:
|
|
|
|
|
proxy_value = extract(cond2, proxy_value * cond2)
|
|
|
|
|
proxy_value = extract(cond2, proxy_value * cond2)
|
|
|
|
|
place(output, cond2, proxy_value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -1943,7 +2091,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
else:
|
|
|
|
|
return tuple(output)
|
|
|
|
|
|
|
|
|
|
def moment(self, n, *args):
|
|
|
|
|
def moment(self, n, *args, **kwds):
|
|
|
|
|
"""
|
|
|
|
|
n'th order non-central moment of distribution
|
|
|
|
|
|
|
|
|
@ -1952,17 +2100,24 @@ class rv_continuous(rv_generic):
|
|
|
|
|
n: int, n>=1
|
|
|
|
|
order of moment
|
|
|
|
|
|
|
|
|
|
arg1, arg2, arg3,... : array-like
|
|
|
|
|
arg1, arg2, arg3,... : float
|
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
|
instance object for more information)
|
|
|
|
|
|
|
|
|
|
loc : float, optional
|
|
|
|
|
location parameter (default=0)
|
|
|
|
|
scale : float, optional
|
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if not self._argcheck(*args):
|
|
|
|
|
loc, scale = map(kwds.get,['loc','scale'])
|
|
|
|
|
args, loc, scale = self.fix_loc_scale(args, loc, scale)
|
|
|
|
|
if not (self._argcheck(*args) and (scale > 0)):
|
|
|
|
|
return nan
|
|
|
|
|
if (floor(n) != n):
|
|
|
|
|
raise ValueError("Moment must be an integer.")
|
|
|
|
|
if (n < 0): raise ValueError("Moment must be positive.")
|
|
|
|
|
if (n == 0): return 1.0
|
|
|
|
|
mu, mu2, g1, g2 = None, None, None, None
|
|
|
|
|
if (n > 0) and (n < 5):
|
|
|
|
|
signature = inspect.getargspec(self._stats.im_func)
|
|
|
|
|
if (signature[2] is not None) or ('moments' in signature[0]):
|
|
|
|
@ -1970,28 +2125,20 @@ class rv_continuous(rv_generic):
|
|
|
|
|
else:
|
|
|
|
|
mdict = {}
|
|
|
|
|
mu, mu2, g1, g2 = self._stats(*args,**mdict)
|
|
|
|
|
if (n==1):
|
|
|
|
|
if mu is None: return self._munp(1,*args)
|
|
|
|
|
else: return mu
|
|
|
|
|
elif (n==2):
|
|
|
|
|
if mu2 is None or mu is None:
|
|
|
|
|
return self._munp(2,*args)
|
|
|
|
|
else: return mu2 + mu*mu
|
|
|
|
|
elif (n==3):
|
|
|
|
|
if g1 is None or mu2 is None:
|
|
|
|
|
return self._munp(3,*args)
|
|
|
|
|
else:
|
|
|
|
|
mu3 = g1*(mu2**1.5) # 3rd central moment
|
|
|
|
|
return mu3+3*mu*mu2+mu**3 # 3rd non-central moment
|
|
|
|
|
else: # (n==4)
|
|
|
|
|
if g2 is None or mu2 is None:
|
|
|
|
|
return self._munp(4,*args)
|
|
|
|
|
else:
|
|
|
|
|
mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment
|
|
|
|
|
mu3 = g1*(mu2**1.5) # 3rd central moment
|
|
|
|
|
return mu4+4*mu*mu3+6*mu*mu*mu2+mu**4
|
|
|
|
|
val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args)
|
|
|
|
|
|
|
|
|
|
# Convert to transformed X = L + S*Y
|
|
|
|
|
# so E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n,k)*(S/L)^k E[Y^k],k=0...n)
|
|
|
|
|
if loc == 0:
|
|
|
|
|
return scale**n * val
|
|
|
|
|
else:
|
|
|
|
|
return self._munp(n,*args)
|
|
|
|
|
result = 0
|
|
|
|
|
fac = float(scale) / float(loc)
|
|
|
|
|
for k in range(n):
|
|
|
|
|
valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args)
|
|
|
|
|
result += comb(n,k,exact=True)*(fac**k) * valk
|
|
|
|
|
result += fac**n * val
|
|
|
|
|
return result * loc**n
|
|
|
|
|
|
|
|
|
|
def nlogps(self, theta, x):
|
|
|
|
|
""" Moran's negative log Product Spacings statistic
|
|
|
|
@ -2106,7 +2253,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
return inf
|
|
|
|
|
else:
|
|
|
|
|
N = len(x)
|
|
|
|
|
return self._nnlf(x, *args) + N * log(scale)
|
|
|
|
|
return self._nnlf(x, *args) + N*log(scale)
|
|
|
|
|
def hessian_nlogps(self, theta, data, eps=None):
|
|
|
|
|
''' approximate hessian of nlogps where theta are the parameters (including loc and scale)
|
|
|
|
|
'''
|
|
|
|
@ -2230,6 +2377,8 @@ class rv_continuous(rv_generic):
|
|
|
|
|
args = (1.0,)*self.numargs
|
|
|
|
|
return args + self.fit_loc_scale(data, *args)
|
|
|
|
|
|
|
|
|
|
# Return the (possibly reduced) function to optimize in order to find MLE
|
|
|
|
|
# estimates for the .fit method
|
|
|
|
|
def _reduce_func(self, args, kwds):
|
|
|
|
|
args = list(args)
|
|
|
|
|
Nargs = len(args)
|
|
|
|
@ -2267,7 +2416,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
|
|
|
|
|
def func(theta, x):
|
|
|
|
|
newtheta = restore(args[:], theta)
|
|
|
|
|
return fitfun(newtheta, x)
|
|
|
|
|
return self.nnlf(newtheta, x)
|
|
|
|
|
|
|
|
|
|
return x0, func, restore, args
|
|
|
|
|
|
|
|
|
@ -2281,9 +2430,10 @@ class rv_continuous(rv_generic):
|
|
|
|
|
with starting estimates, ``self._fitstart(data)`` is called to generate
|
|
|
|
|
such.
|
|
|
|
|
|
|
|
|
|
One can hold some parameters fixed to specific values by passing in
|
|
|
|
|
keyword arguments f0..fn for shape paramters and floc, fscale for
|
|
|
|
|
location and scale parameters, respectively.
|
|
|
|
|
One can hold some parameters fixed to specific values by passing in
|
|
|
|
|
keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters)
|
|
|
|
|
and ``floc`` and ``fscale`` (for location and scale parameters,
|
|
|
|
|
respectively).
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
@ -2298,7 +2448,7 @@ class rv_continuous(rv_generic):
|
|
|
|
|
Special keyword arguments are recognized as holding certain
|
|
|
|
|
parameters fixed:
|
|
|
|
|
|
|
|
|
|
f0..fn : hold respective shape parameters fixed.
|
|
|
|
|
f0...fn : hold respective shape parameters fixed.
|
|
|
|
|
|
|
|
|
|
floc : hold location parameter fixed to specified value.
|
|
|
|
|
|
|
|
|
@ -2497,6 +2647,9 @@ class rv_continuous(rv_generic):
|
|
|
|
|
of the integration interval. The return value is the expectation
|
|
|
|
|
of the function, conditional on being in the given interval.
|
|
|
|
|
|
|
|
|
|
Additional keyword arguments are passed to the integration routine.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
expected value : float
|
|
|
|
@ -2506,19 +2659,21 @@ class rv_continuous(rv_generic):
|
|
|
|
|
This function has not been checked for it's behavior when the integral is
|
|
|
|
|
not finite. The integration behavior is inherited from integrate.quad.
|
|
|
|
|
"""
|
|
|
|
|
lockwds = {'loc': loc,
|
|
|
|
|
'scale':scale}
|
|
|
|
|
if func is None:
|
|
|
|
|
def fun(x, *args):
|
|
|
|
|
return x*self.pdf(x, *args, **{'loc':loc, 'scale':scale})
|
|
|
|
|
return x*self.pdf(x, *args, **lockwds)
|
|
|
|
|
else:
|
|
|
|
|
def fun(x, *args):
|
|
|
|
|
return func(x)*self.pdf(x, *args, **{'loc':loc, 'scale':scale})
|
|
|
|
|
return func(x)*self.pdf(x, *args, **lockwds)
|
|
|
|
|
if lb is None:
|
|
|
|
|
lb = loc + self.a * scale
|
|
|
|
|
if ub is None:
|
|
|
|
|
ub = loc + self.b * scale
|
|
|
|
|
if conditional:
|
|
|
|
|
invfac = (self.sf(lb, *args, **{'loc':loc, 'scale':scale})
|
|
|
|
|
- self.sf(ub, *args, **{'loc':loc, 'scale':scale}))
|
|
|
|
|
invfac = (self.sf(lb, *args, **lockwds)
|
|
|
|
|
- self.sf(ub, *args, **lockwds))
|
|
|
|
|
else:
|
|
|
|
|
invfac = 1.0
|
|
|
|
|
kwds['args'] = args
|
|
|
|
@ -3968,7 +4123,7 @@ class gumbel_l_gen(rv_continuous):
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
|
return x - exp(x)
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
|
return expm1(-exp(x))
|
|
|
|
|
return -expm1(-exp(x))
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
|
return log(-log1p(-q))
|
|
|
|
|
def _stats(self):
|
|
|
|
@ -4990,8 +5145,6 @@ for -1 <= x <= 1, c > 0.
|
|
|
|
|
# scale is the mode.
|
|
|
|
|
|
|
|
|
|
class rayleigh_gen(rv_continuous):
|
|
|
|
|
#rayleigh_gen.link.__doc__ = rv_continuous.link.__doc__
|
|
|
|
|
|
|
|
|
|
def link(self, x, logSF, phat, ix):
|
|
|
|
|
rv_continuous.link.__doc__
|
|
|
|
|
if ix == 1:
|
|
|
|
@ -5181,16 +5334,16 @@ class truncexpon_gen(rv_continuous):
|
|
|
|
|
#wrong answer with formula, same as in continuous.pdf
|
|
|
|
|
#return gam(n+1)-special.gammainc(1+n,b)
|
|
|
|
|
if n == 1:
|
|
|
|
|
return (1 - (b + 1) * exp(-b)) / (-expm1(-b))
|
|
|
|
|
return (1-(b+1)*exp(-b))/(-expm1(-b))
|
|
|
|
|
elif n == 2:
|
|
|
|
|
return 2 * (1 - 0.5 * (b * b + 2 * b + 2) * exp(-b)) / (-expm1(-b))
|
|
|
|
|
return 2*(1-0.5*(b*b+2*b+2)*exp(-b))/(-expm1(-b))
|
|
|
|
|
else:
|
|
|
|
|
#return generic for higher moments
|
|
|
|
|
#return rv_continuous._mom1_sc(self,n, b)
|
|
|
|
|
return self._mom1_sc(n, b)
|
|
|
|
|
def _entropy(self, b):
|
|
|
|
|
eB = exp(b)
|
|
|
|
|
return log(eB - 1) + (1 + eB * (b - 1.0)) / (1.0 - eB)
|
|
|
|
|
return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB)
|
|
|
|
|
truncexpon = truncexpon_gen(a=0.0, name='truncexpon',
|
|
|
|
|
longname="A truncated exponential",
|
|
|
|
|
shapes="b", extradoc="""
|
|
|
|
@ -5222,13 +5375,13 @@ class truncnorm_gen(rv_continuous):
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
|
return (_norm_cdf(x) - self._na) / self._delta
|
|
|
|
|
def _ppf(self, q, a, b):
|
|
|
|
|
return norm._ppf(q * self._nb + self._na * (1.0 - q))
|
|
|
|
|
return norm._ppf(q*self._nb + self._na*(1.0-q))
|
|
|
|
|
def _stats(self, a, b):
|
|
|
|
|
nA, nB = self._na, self._nb
|
|
|
|
|
d = nB - nA
|
|
|
|
|
pA, pB = _norm_pdf(a), _norm_pdf(b)
|
|
|
|
|
mu = (pA - pB) / d #correction sign
|
|
|
|
|
mu2 = 1 + (a * pA - b * pB) / d - mu * mu
|
|
|
|
|
mu2 = 1 + (a*pA - b*pB) / d - mu*mu
|
|
|
|
|
return mu, mu2, None, None
|
|
|
|
|
truncnorm = truncnorm_gen(name='truncnorm', longname="A truncated normal",
|
|
|
|
|
shapes="a, b", extradoc="""
|
|
|
|
@ -5251,11 +5404,14 @@ Truncated Normal distribution.
|
|
|
|
|
|
|
|
|
|
# FIXME: RVS does not work.
|
|
|
|
|
class tukeylambda_gen(rv_continuous):
|
|
|
|
|
def _argcheck(self, lam):
|
|
|
|
|
# lam in RR.
|
|
|
|
|
return np.ones(np.shape(lam), dtype=bool)
|
|
|
|
|
def _pdf(self, x, lam):
|
|
|
|
|
Fx = arr(special.tklmbda(x,lam))
|
|
|
|
|
Px = Fx**(lam-1.0) + (arr(1-Fx))**(lam-1.0)
|
|
|
|
|
Px = 1.0/arr(Px)
|
|
|
|
|
return where((lam > 0) & (abs(x) < 1.0/lam), Px, 0.0)
|
|
|
|
|
return where((lam <= 0) | (abs(x) < 1.0/arr(lam)), Px, 0.0)
|
|
|
|
|
def _cdf(self, x, lam):
|
|
|
|
|
return special.tklmbda(x, lam)
|
|
|
|
|
def _ppf(self, q, lam):
|
|
|
|
@ -5638,24 +5794,59 @@ class rv_discrete(rv_generic):
|
|
|
|
|
generic.pmf(x, <shape(s)>, loc=0)
|
|
|
|
|
probability mass function
|
|
|
|
|
|
|
|
|
|
logpmf(x, <shape(s)>, loc=0)
|
|
|
|
|
log of the probability density function
|
|
|
|
|
|
|
|
|
|
generic.cdf(x, <shape(s)>, loc=0)
|
|
|
|
|
cumulative density function
|
|
|
|
|
|
|
|
|
|
generic.logcdf(x, <shape(s)>, loc=0)
|
|
|
|
|
log of the cumulative density function
|
|
|
|
|
|
|
|
|
|
generic.sf(x, <shape(s)>, loc=0)
|
|
|
|
|
survival function (1-cdf --- sometimes more accurate)
|
|
|
|
|
|
|
|
|
|
generic.logsf(x, <shape(s)>, loc=0, scale=1)
|
|
|
|
|
log of the survival function
|
|
|
|
|
|
|
|
|
|
generic.ppf(q, <shape(s)>, loc=0)
|
|
|
|
|
percent point function (inverse of cdf --- percentiles)
|
|
|
|
|
|
|
|
|
|
generic.isf(q, <shape(s)>, loc=0)
|
|
|
|
|
inverse survival function (inverse of sf)
|
|
|
|
|
|
|
|
|
|
generic.moment(n, <shape(s)>, loc=0)
|
|
|
|
|
non-central n-th moment of the distribution. May not work for array arguments.
|
|
|
|
|
|
|
|
|
|
generic.stats(<shape(s)>, loc=0, moments='mv')
|
|
|
|
|
mean('m', axis=0), variance('v'), skew('s'), and/or kurtosis('k')
|
|
|
|
|
|
|
|
|
|
generic.entropy(<shape(s)>, loc=0)
|
|
|
|
|
entropy of the RV
|
|
|
|
|
|
|
|
|
|
generic.fit(data, <shape(s)>, loc=0)
|
|
|
|
|
Parameter estimates for generic data
|
|
|
|
|
|
|
|
|
|
generic.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False)
|
|
|
|
|
Expected value of a function with respect to the distribution.
|
|
|
|
|
Additional kwd arguments passed to integrate.quad
|
|
|
|
|
|
|
|
|
|
generic.median(<shape(s)>, loc=0)
|
|
|
|
|
Median of the distribution.
|
|
|
|
|
|
|
|
|
|
generic.mean(<shape(s)>, loc=0)
|
|
|
|
|
Mean of the distribution.
|
|
|
|
|
|
|
|
|
|
generic.std(<shape(s)>, loc=0)
|
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
|
|
|
|
|
|
generic.var(<shape(s)>, loc=0)
|
|
|
|
|
Variance of the distribution.
|
|
|
|
|
|
|
|
|
|
generic.interval(alpha, <shape(s)>, loc=0)
|
|
|
|
|
Interval that with `alpha` percent probability contains a random
|
|
|
|
|
realization of this distribution.
|
|
|
|
|
|
|
|
|
|
generic(<shape(s)>, loc=0)
|
|
|
|
|
calling a distribution instance returns a frozen distribution
|
|
|
|
|
|
|
|
|
@ -6355,17 +6546,24 @@ class rv_discrete(rv_generic):
|
|
|
|
|
----------
|
|
|
|
|
n: int, n>=1
|
|
|
|
|
order of moment
|
|
|
|
|
arg1, arg2, arg3,...: array-like
|
|
|
|
|
arg1, arg2, arg3,...: float
|
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
|
instance object for more information)
|
|
|
|
|
|
|
|
|
|
loc : float, optional
|
|
|
|
|
location parameter (default=0)
|
|
|
|
|
scale : float, optional
|
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if not self._argcheck(*args):
|
|
|
|
|
loc = kwds.get('loc', 0)
|
|
|
|
|
scale = kwds.get('scale', 1)
|
|
|
|
|
if not (self._argcheck(*args) and (scale > 0)):
|
|
|
|
|
return nan
|
|
|
|
|
if (floor(n) != n):
|
|
|
|
|
raise ValueError("Moment must be an integer.")
|
|
|
|
|
if (n < 0): raise ValueError("Moment must be positive.")
|
|
|
|
|
if (n == 0): return 1.0
|
|
|
|
|
mu, mu2, g1, g2 = None, None, None, None
|
|
|
|
|
if (n > 0) and (n < 5):
|
|
|
|
|
signature = inspect.getargspec(self._stats.im_func)
|
|
|
|
|
if (signature[2] is not None) or ('moments' in signature[0]):
|
|
|
|
@ -6373,27 +6571,21 @@ class rv_discrete(rv_generic):
|
|
|
|
|
else:
|
|
|
|
|
dict = {}
|
|
|
|
|
mu, mu2, g1, g2 = self._stats(*args,**dict)
|
|
|
|
|
if (n==1):
|
|
|
|
|
if mu is None: return self._munp(1,*args)
|
|
|
|
|
else: return mu
|
|
|
|
|
elif (n==2):
|
|
|
|
|
if mu2 is None or mu is None: return self._munp(2,*args)
|
|
|
|
|
else: return mu2 + mu*mu
|
|
|
|
|
elif (n==3):
|
|
|
|
|
if (g1 is None) or (mu2 is None) or (mu is None):
|
|
|
|
|
return self._munp(3,*args)
|
|
|
|
|
else:
|
|
|
|
|
mu3 = g1*(mu2**1.5) # 3rd central moment
|
|
|
|
|
return mu3+3*mu*mu2+mu**3 # 3rd non-central moment
|
|
|
|
|
else: # (n==4)
|
|
|
|
|
if (g2 is None) or (g1 is None) or (mu is None) or (mu2 is None):
|
|
|
|
|
return self._munp(4,*args)
|
|
|
|
|
else:
|
|
|
|
|
mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment
|
|
|
|
|
mu3 = g1*(mu2**1.5) # 3rd central moment
|
|
|
|
|
return mu4+4*mu*mu3+6*mu*mu*mu2+mu**4
|
|
|
|
|
val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args)
|
|
|
|
|
|
|
|
|
|
# Convert to transformed X = L + S*Y
|
|
|
|
|
# so E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n,k)*(S/L)^k E[Y^k],k=0...n)
|
|
|
|
|
if loc == 0:
|
|
|
|
|
return scale**n * val
|
|
|
|
|
else:
|
|
|
|
|
return self._munp(n,*args)
|
|
|
|
|
result = 0
|
|
|
|
|
fac = float(scale) / float(loc)
|
|
|
|
|
for k in range(n):
|
|
|
|
|
valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args)
|
|
|
|
|
result += comb(n,k,exact=True)*(fac**k) * valk
|
|
|
|
|
result += fac**n * val
|
|
|
|
|
return result * loc**n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def freeze(self, *args, **kwds):
|
|
|
|
|
return rv_frozen(self, *args, **kwds)
|
|
|
|
@ -6440,7 +6632,7 @@ class rv_discrete(rv_generic):
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
fn : function (default: identity mapping)
|
|
|
|
|
Function for which integral is calculated. Takes only one argument.
|
|
|
|
|
Function for which sum is calculated. Takes only one argument.
|
|
|
|
|
args : tuple
|
|
|
|
|
argument (parameters) of the distribution
|
|
|
|
|
optional keyword parameters
|
|
|
|
|